Sample records for mitochondria studied autoradiographically

  1. DNA repair and biogenesis of mitochondria studied autoradiographically in the mouse brain in situ after a prenatal low dose X-irradiation

    Korr, H.; Benders, J.; Rohde, H.T.; Schmitz, C. [Technische Hochschule Aachen (Germany). Dept. of Anatomy and Cell Biology


    Mice were X-irradiated with 0, 10, or 50 cGy at day 13 of pregnancy. One day later, or postnatally at day 25 [P25] or P180, the offspring were sacrificed in order to investigate autoradiographically on different types of neurons whether the X-irradiation has led to unrepaired nuclear [n] DNA damage. This was studied by analysing both (i) the extent of nDNA repair via unscheduled DNA synthesis after injection of {sup 3}H-thymidine in vivo 2 h before the animal's death, and (ii) the relative content of DNA single strand breaks [SSB] by 'in situ nick translation' carried out on sections using {sup 3}H-dTTP and E. coli polymerase I. Furthermore, mitochondrial [mt] DNA synthesis which represents mt biogenesis was measured via the cytoplasmic labeling after injection of {sup 3}H-thymidine in vivo. The results can be summarized and interpreted as follows: One day after X-irradiation no unrepaired SSB could be detected. However, distinct types of neurons showed increased SSB as well as increased mt biogenesis at P25. This might be caused by an accumulation of unrepaired mtDNA damage. The finding that mt biogenesis and SSB of cortical lyer V and hippocampal pyramidal cells (area CA1-2) significantly decreased (p<0.05) after prenatal X-irradiation of 50 cGy but not 10 cGy between P25 and P180, led to the conclusion that neurons with higher grain numbers, i.e. neurons with a lot of unrepaired SSB, have died between P25 and P180. This late effect after prenatal low dose X-irradiation which will be studied in more detail with modern stereological methods, was unknown up to now. (orig.)

  2. Autoradiographic studies in a rabbit osteoarthrosis model

    Fengler, H.; Franz, R. (Medizinische Akademie, Dresden (German Democratic Republic))


    To study the onset of the osteoarthrotic process, an osteoarthrosis model was used on the knee joint in adult rabbits by a valgus deformity of the proximal tibia of 30/sup 0/ in conformity with Reimann 1973. The synthesis capacity of the chondrocytes was investigated by using /sup 35/S-sulfate autoradiographies. Already prior to the affection of the superficial integrity of the cartilage it was possible to observe an enhanced glycosaminoglycan synthesis, but with progressing fibrillation the sulfate incorporation was found to be diminished. Thanks to autoradiography with /sup 3/H-thymidine the replication of the chondrocytes was already found at very early stages of osteoarthrosis that is likely to occur mitotically. The osteotomy itself induces mitoses and an enhanced glycosaminoglycan synthesis.

  3. Mitochondrial DNA synthesis studied autoradiographically in various cell types in vivo

    Korr H.


    Full Text Available It is generally accepted that mitochondria are able to proliferate even in postmitotic cells due to their natural turnover and also to satisfy increased cell energy requirements. However, no detailed studies are available, particularly with respect to specific cell types. Since [3H]-thymidine is incorporated not only into nuclear (n DNA but also into the DNA of cytoplasmic mitochondria, an autoradiographic approach was developed at the light microscopy level in order to study basic questions of mitochondrial (mt proliferation in organs of rodents in situ via the cytoplasmic incorporation of [3H]-thymidine injected into the animals 1 h before sacrifice. Experiments carried out on mice after X-irradiation showed that cytoplasmic labeling was not due to a process such as unscheduled nuclear DNA synthesis (nUDS. Furthermore, half-lives of mitochondria between 8-23 days were deduced specifically in relation to cell types. The phase of mtDNA synthesis was about 75 min. Finally, mt proliferation was measured in brain cells of mice as a function of age. While all neurons showed a decreasing extent of mtDNA synthesis during old age, nUDS decreased only in distinct cell types of the cortex and hippocampus. We conclude that the leading theories explaining the phenomenon of aging are closely related, i.e., aging is due to a decreasing capacity of nDNA repair, which leads to unrepaired nDNA damage, or to an accumulation of mitochondria with damaged mtDNA, which leads to a deficit of cellular energy production

  4. Autoradiographic and ultrastructural studies on the human fibro-atheromatous plaque

    Villaschi, S.; Spagnoli, L.G. (Universita degli Studi, Rome (Italy). Istituto di Anatomia ed Istologia Patologica)


    Foam cells, either myogenic or macrophagic, are commonly detected in experimental and human fibro-atheromatous plaques. Their role in human atherosclerosis is not yet understood. This paper reports on a preliminary autoradiographic study combined with ultrastructural observations in the human fibro-atheromatous plaque. Most of the autoradiographic silver grains appeared on foam cells and monocytelike cells, thus suggesting a local proliferation of these cells.

  5. Regeneration of the vagus nerve after highly selective vagotomy, an autoradiographic study in the ferret stomach .

    Al Muhtaseb, M. H. [محمد هاشم المحتسب; Abu-Khalaf, M.


    This study investigates the regeneration of the vagal nerve fibres after highly selective vagotomy in the ferret stomach by using the autoradiographic technique. Autoradiographic examination of the body of the stomach in the acute experimental animals has failed to show any labelled nerve fibres after highly selective vagotomy while the pylorus has shown many labelled nerve fibres . These observations indicate that the highly selective vagotomy has been performed properly and adequately. ...

  6. An autoradiographic study of neurotensin receptors in the human hypothalamus.

    Najimi, Mohamed; Sarrieau, Alain; Kopp, Nicolas; Chigr, Fatiha


    The aim of the present investigation was to determine a detailed mapping of neurotensin (NT) in the human hypothalamus, the brain region involved in neuroendocrine control. For this, we investigated the presence and the distribution of neurotensin binding sites in the human hypothalamus, using an in vitro quantitative autoradiography technique and the selective radioligand monoiodo-Tyr3-neurotensin (2000Ci/mM). This study was performed on nine adult human postmortem hypothalami. We first determined the biochemical kinetics of the binding and found that binding affinity constants were of high affinity and do not differ significantly between all cases investigated. Our analysis of the autoradiographic distribution shows that NT binding sites are widely distributed throughout the rostrocaudal extent of the hypothalamus. However, the distribution of NT binding sites is not homogenous and regional variations exist. In general, the highest densities are mainly present in the anterior hypothalamic level, particularly in the preoptic region and the anterior boarding limit (i.e. the diagonal band of Broca). Important NT binding site densities are also present at the mediobasal hypothalamic level, particularly in the paraventricular, parafornical and dorsomedial nuclei. At the posterior level, relatively moderate densities could be observed in the mammillary complex subdivisions, apart from the supramammillary nucleus and the posterior hypothalamic area. In conclusion, the present study demonstrates the occurrence of high concentrations of NT binding sites in various structures in many regions in the human adult hypothalamus, involved in the control of neuroendocrine and/or neurovegetative functions. Copyright © 2013 Elsevier GmbH. All rights reserved.


    朱寿彭; 汪源长


    The early risk of internal contaminated accumualtion of 147Pm is in blood cells and endothelial cells,especially in red blood cells.Then 147Pm is selectively deposited in ultrastructure of liver cells,such as in nucleus,nucleolus,rough endoplasmic reticulum,mitochondria and microbodies,Dense tracks also appear in mitochondria and lysosome of pedal cells within renal corpuscle,and so dose in nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule.With the prolongation of observing time,147Pm is selectively and steadily depostied in subcellular level of organic ocmponent for bone.Substantial amount of 147Pm is taken up into the nuclear fraction of osteoclasts and osteoblasts.Particularly,in organelles 147Pm is mainly accumulated in rough endoplasmic reticulum and in mitochondria.Autoradiographic tracks especially localize in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum.In addition,numerous 147Pm deposited in collagenous fibre within interstitial of bone cells is hardly excreted.

  8. Ultrastructural and autoradiographic studies of the role of nucleolar vacuoles in soybean root meristem.

    Dariusz Stepiński


    Ultrastructural and autoradiographic studies of nucleoli in soybean root meristematic cells in seedlings: (1) grown for 3 days at 25 degrees C (control), (2) grown for three days at 25 degrees C and for 4 days at 10 degrees C, and (3) grown as in (2) and recovered for 1 day at 25 degrees C were carried out. Control nucleoli had dense structure and a few small nucleolar vacuoles. Chilled plant nucleoli had less dense structure and no vacuoles. Nucleoli of plants recovered at 25 degrees C had b...

  9. Site of anticonvulsant action on sodium channels: autoradiographic and electrophysiological studies in rat brain

    Worley, P.F.; Baraban, J.M.


    The anticonvulsants phenytoin and carbamazepine interact allosterically with the batrachotoxin binding site of sodium channels. In the present study, we demonstrate an autoradiographic technique to localize the batrachotoxin binding site on sodium channels in rat brain using (/sup 3/H)batrachotoxinin-A 20-alpha-benzoate (BTX-B). Binding of (/sup 3/H)BTX-B to brain sections is dependent on potentiating allosteric interactions with scorpion venom and is displaced by BTX-B (Kd approximately 200 nM), aconitine, veratridine, and phenytoin with the same rank order of potencies as described in brain synaptosomes. The maximum number of (/sup 3/H)BTX-B binding sites in forebrain sections also agrees with biochemical determinations. Autoradiographic localizations indicate that (/sup 3/H)BTX-B binding sites are not restricted to cell bodies and axons but are present in synaptic zones throughout the brain. For example, a particularly dense concentration of these sites in the substantia nigra is associated with afferent terminals of the striatonigral projection. By contrast, myelinated structures possess much lower densities of binding sites. In addition, we present electrophysiological evidence that synaptic transmission, as opposed to axonal conduction, is preferentially sensitive to the action of aconitine and veratridine. Finally, the synaptic block produced by these sodium channel activators is inhibited by phenytoin and carbamazepine at therapeutic anticonvulsant concentrations.

  10. Autoradiographic study of serotonin transporter during memory formation.

    Tellez, Ruth; Rocha, Luisa; Castillo, Carlos; Meneses, Alfredo


    Serotonin transporter (SERT) has been associated with drugs of abuse like d-methamphetamine (METH). METH is well known to produce effects on the monoamine systems but it is unclear how METH affects SERT and memory. Here the effects of METH and the serotonin reuptake inhibitor fluoxetine (FLX) on autoshaping and novel object recognition (NOR) were investigated. Notably, both memory tasks recruit different behavioral, neural and cognitive demand. In autoshaping task a dose-response curve for METH was determined. METH (1.0mg/kg) impaired short-term memory (STM; lasting less of 90min) in NOR and impaired both STM and long-term memory (LTM; lasting 24 and 48h) in autoshaping, indicating that METH had long-lasting effects in the latter task. A comparative autoradiography study of the relationship between the binding pattern of SERT in autoshaping new untrained vs. trained treated (METH, FLX, or both) animals was made. Considering that hemispheric dominance is important for LTM, hence right vs. left hemisphere of the brain was compared. Results showed that trained animals decreased cortical SERT binding relative to untrained ones. In untrained and trained treated animals with the amnesic dose (1.0mg/kg) of METH SERT binding in several areas including hippocampus and cortex decreased, more remarkably in the trained animals. In contrast, FLX improved memory, increased SERT binding, prevented the METH amnesic effect and re-established the SERT binding. In general, memory and amnesia seemed to make SERT more vulnerable to drugs effects.

  11. Light microscopic and autoradiographic study of non-irradiated and irradiated ocular wounds

    Chakravarthy, U.; Gardiner, T.A.; Archer, D.B.; Maguire, C.J. (Queen' s Univ., Belfast, Northern Ireland (UK). Dept. of Opthalmology; Royal Victoria Hospital, Belfast, Northern Ireland (UK). Eye and Ear Clinic)


    Focal gamma irradiation was used to limit the intraocular extension of scar tissue which typically occurs after posterior perforating injury to the eye. Standard posterior perforating injuries were created in the right eye of forty-eight rabbits, half of which had the site of perforation focally irradiated using a Cobalt 60 ophthalmic plaque. Non-irradiated wounds healed with profuse formation of highly cellular and vascularised granulation tissue which invaded the vitreous to form contractile vitreo-retinal membranes. In irradiated eyes vitreo-retinal membrane formation was infrequent; the wounds showing only sparse granulation tissue with little or no extension into the vitreous cavity. Autoradiographic studies carried out in a second group of 40 animals showed that the episclera was the main source of the proliferating fibroblasts, and call counts confirmed that the inflammatory and repair responses in irradiated wounds were both delayed and attenuated. (author).

  12. Use of /sup 75/Se tracer and autoradiographic techniques in the study of schistosomiasis

    Chandiwana, S.K. (New York State Veterinary Coll., Ithaca, NY (USA))


    The paper provides an overview of recent studies on the use of /sup 75/Se to tag larval schistosomes and to monitor their migration and distribution patterns in naive mice and those previously exposed to cercariae. The principles and techniques of radioassay and autoradiography in studying various aspects of /sup 75/Se-labelled larval schistosomes are described. The main shortcoming of radioassay in monitoring location and movement of labelled schistosomula is that some of the label dissociates from the schistosomula and accumulates in host tissues, notably the liver. Dissociated label is indistinguishable from schistosomula-bound label making monitoring of parasite migration extremely difficult. This difficulty is overcome by compressed tissue autoradiography where labelled schistosomula can be seen as reduced silver foci on an autoradiographic film, whereas dissociated label is too diffusely distributed to produce such reduced silver foci. Furthermore, using autoradiography, quantitative information on parasite migration in normal and immunized laboratory animals can be obtained that would be impossible using traditional recovery techniques. In addition to using /sup 75/Se tracer in migration studies, the radio-isotope has potential for elucidating various aspects of schistosome transmission ecology and snail population dynamics in natural waters. (author).

  13. Ultrastructural and autoradiographic studies of the role of nucleolar vacuoles in soybean root meristem.

    Dariusz Stepiński


    Full Text Available Ultrastructural and autoradiographic studies of nucleoli in soybean root meristematic cells in seedlings: (1 grown for 3 days at 25 degrees C (control, (2 grown for three days at 25 degrees C and for 4 days at 10 degrees C, and (3 grown as in (2 and recovered for 1 day at 25 degrees C were carried out. Control nucleoli had dense structure and a few small nucleolar vacuoles. Chilled plant nucleoli had less dense structure and no vacuoles. Nucleoli of plants recovered at 25 degrees C had big nucleolar vacuoles. In autoradiograms of squashed preparations, the labeling of nucleoli and cytoplasm after 20-min incubation in 3H-uridine was 5- and 6-fold stronger, respectively, in control than in chilled roots. Following recovery, the labeling of nucleoli and cytoplasm was much stronger than after chilling or even than in control roots. After 80-min postincubation in non-radioactive medium, average labeling of particular areas of cells was the highest in recovered plants which indicated intensification of rRNA synthesis, maturation and transport into cytoplasm resulting from the resumption of optimal conditions which was correlated with the appearance of big nucleolar vacuoles. In autoradiograms of semi-thin sections from roots of seedlings chilled for 4 days then recovered and incubated for 20 min in 3H-uridine, practically only extravacuolar parts of nucleoli were labeled. After 80-min postincubation, the labeling of nucleolar vacuoles was observed. Thus, during postincubation the labeled molecules were translocated from the nucleolar periphery into nucleolar vacuoles in cells where intensive transport of these molecules to the cytoplasm takes place. On the basis of these results, a hypothesis has been put forward that nucleolar vacuoles may be involved in the intensification of pre-ribosome transport outside nucleolus.

  14. Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain: an autoradiographic study.

    Meneses, A; Manuel-Apolinar, L; Castillo, C; Castillo, E


    Traditionally, the search for memory circuits has been centered on examinations of amnesic and AD patients, cerebral lesions and, neuroimaging. A complementary alternative might be the use of autoradiography with radioligands. Indeed, ex vivo autoradiographic studies offer the advantage to detect functionally active receptors altered by pharmacological tools and memory formation. Hence, herein the 5-HT(6) receptor antagonist SB-399885 and the amnesic drugs scopolamine or dizocilpine were used to manipulate memory consolidation and 5-HT(6) receptors expression was determined by using [(3)H]-SB-258585. Thus, memory consolidation was impaired in scopolamine and dizocilpine treated groups relative to control vehicle but improved it in SB-399885-treated animals. SB-399885 improved memory consolidation seems to be associated with decreased 5-HT(6) receptors expression in 15 out 17 brain areas. Scopolamine or dizocilpine decreased 5-HT(6) receptors expression in nine different brain areas and increased it in CA3 hippocampus or other eight areas, respectively. In brain areas thought to be in charge of procedural memory such basal ganglia (i.e., nucleus accumbens, caudate putamen, and fundus striate) data showed that relative to control animals amnesic groups showed diminished (scopolamine) or augmented (dizocilpine) 5-HT(6) receptor expression. SB-399885 showing improved memory displayed an intermediate expression in these same brain regions. A similar intermediate expression occurs with regard to amygdala, septum, and some cortical areas in charge of explicit memory storage. However, relative to control group amnesic and SB-399885 rats in the hippocampus, region where explicit memory is formed, showed a complex 5-HT(6) receptors expression. In conclusion, these results indicate neural circuits underlying the effects of 5-HT(6) receptor antagonists in autoshaping task and offer some general clues about cognitive processes in general.

  15. Development of the glucocorticoid receptor system in the rat limbic brain. 2. An autoradiographic study

    Meaney, M.J.; Sapolsky, R.M.; McEwen, B.S. (Rockefeller Univ., New York (USA))


    The authors report the results of an autoradiographic analysis of the postnatal development of the hippocampal glucocorticoid receptor system in the rat brain. Quantitative analysis of the autoradiograms revealed a varied pattern of gradual development towards adult receptor concentrations during the second week of life. Receptor concentrations in the dentate gyrus increased dramatically between Days 9 and 15, while the changes during this period in the pyramidal layers of Ammon's horn seemed to reflect both structural changes in these regions as well as increases in receptor concentrations.

  16. A novel radioligand for glycine transporter 1: characterization and use in autoradiographic and in vivo brain occupancy studies

    Zeng Zhizhen [Imaging, Merck Research Laboratories, West Point, PA 19486 (United States)], E-mail:; O' Brien, Julie A. [Sleep and Psychiatric Disorders, Merck Research Laboratories, West Point, PA 19486 (United States); Lemaire, Wei [Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486 (United States); O' Malley, Stacey S.; Miller, Patricia J. [Imaging, Merck Research Laboratories, West Point, PA 19486 (United States); Zhao Zhijian [Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486 (United States); Wallace, Michael A. [Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065 (United States); Raab, Conrad [Drug Metabolism, Merck Research Laboratories, West Point, PA 19486 (United States); Lindsley, Craig W. [Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486 (United States); Departments of Pharmacology and Chemistry, Vanderbilt University, Nashville, TN 37232 (United States); Sur, Cyrille; Williams, David L. [Imaging, Merck Research Laboratories, West Point, PA 19486 (United States)


    Introduction: In an effort to develop agents to test the NMDA hypofunction hypothesis of schizophrenia, benchmark compounds from a program to discover potent, selective, competitive glycine transporter 1 (GlyT1) inhibitors were radiolabeled in order to further study the detailed pharmacology of these inhibitors and the distribution of GlyT1 in brain. We here report the in vitro characterization of [{sup 35}S](S)-2-amino-4-chloro-N-(1-(4-phenyl-1-(propylsulfonyl)piperidin-4-yl) ethyl)benzamide ([{sup 35}S]ACPPB), a radiotracer developed from a potent and selective non-sarcosine-derived GlyT1 inhibitor, its use in autoradiographic studies to localize (S)-2-amino-6-chloro-N-(1-(4-phenyl-1-(propylsulfonyl)piperidin-4-yl)ethyl) benzamide (ACPPB) binding sites in rat and rhesus brain and for in vivo occupancy assays of competitive GlyT1 inhibitors. Methods: Functional potencies of unlabeled compounds were characterized by [{sup 14}C]glycine uptake into JAR (human placental choriocarcinoma) cells and synaptosomes. Radioligand binding studies were performed with tissue homogenates. Autoradiographic studies were performed on tissue slices. Results: ACPPB is a potent (K{sub d}=1.9 nM), selective, GlyT1 inhibitor that, when radiolabeled with [{sup 35}S], is a well-behaved radioligand with low nondisplaceable binding. Autoradiographic studies of rat and rhesus brain slices with this ligand showed that specific binding sites were plentiful and nonhomogeneously distributed, with high levels of binding in the brainstem, cerebellar white matter, thalamus, cortical white matter and spinal cord gray matter. In vivo studies demonstrate displaceable binding of [{sup 35}S]ACPPB in rat brain tissues following iv administration of this radioligand. Conclusions: This is the first report of detailed anatomical localization of GlyT1 using direct radioligand binding, and the first demonstration that an in vivo occupancy assay is feasible, suggesting that it may also be feasible to develop

  17. Decreased benzodiazepine receptor binding in epileptic El mice: A quantitative autoradiographic study

    Shirasaka, Y.; Ito, M.; Tsuda, H.; Shiraishi, H.; Oguro, K.; Mutoh, K.; Mikawa, H. (Kyoto Univ. (Japan))


    Benzodiazepine receptors and subtypes were examined in El mice and normal ddY mice with a quantitative autoradiographic technique. Specific (3H)flunitrazepam binding in stimulated El mice, which had experienced repeated convulsions, was significantly lower in the cortex and hippocampus than in ddY mice and unstimulated El mice. In the amygdala, specific ({sup 3}H)flunitrazepam binding in stimulated El mice was lower than in ddY mice. There was a tendency for the ({sup 3}H)flunitrazepam binding in these regions in unstimulated El mice to be intermediate between that in stimulated El mice and that in ddY mice, but there was no significant difference between unstimulated El mice and ddY mice. ({sup 3}H)Flunitrazepam binding displaced by CL218,872 was significantly lower in the cortex of stimulated El mice than in that of the other two groups, and in the hippocampus of stimulated than of unstimulated El mice. These data suggest that the decrease in ({sup 3}H)flunitrazepam binding in stimulated El mice may be due mainly to that of type 1 receptor and may be the result of repeated convulsions.

  18. A study on measurement of the regional cerebral blood flow using autoradiographic method in moyamoya disease

    Sasaki, Tomohiro; Kiya, Katsuzo; Yuki, Kiyoshi; Kawamoto, Hitoshi; Mizoue, Tatsuya; Kiura, Yoshihiro; Uozumi, Tohru [Hiroshima Prefectural Hospital (Japan); Ikawa, Fusao


    Development of Autoradiographic method (ARG) has provided measurement of cerebral blood flow in moyamoya disease. We evaluate a cerebral vasodilatory capacity (CVC) for moyamoya disease using ARG method. We used 5 patients with moyamoya disease as a candidate for measurement of the cerebral blood flow (CBF) who admitted to Hiroshima Prefectural Hospital during the past one year. There were 3 patients in an adult age and 2 patients in a young age. We tried to measure the regional CBF (rCBF) using ARG method which was a easy way to estimate the rCBF on SPECT. The CVC was calculated from the difference of the rCBF between resting SPECT and Diamox-loading SPECT. Results were as follows; Reactivity of cerebral vessels to CO{sub 2} loading and CVC weakened in moyamoya disease. The rCBF and CVC in the territories of anterior and middle cerebral arteries reduced in comparison with those in the area supplied by the posterior cerebral artery. The CVC at the treated side with surgical reconstruction recovered somewhat in an adult type. From these results, measurement of CBF using ARG method seems to be useful for evaluation of the CVC in moyamoya disease. (author)

  19. Autoradiographic studies on mucilage synthesis in Chara vulgaris antheridium with the use of {sup 3}H-fucose in total darkness and light

    Gosek, A. [Lodz Univ. (Poland)


    Autoradiographic studies with {sup 3}H-fucose have shown that this precursor of polysaccharide compounds is incorporated into manubria and antheridial mucilage of Chara vulgaris both in the light and in the darkness. The dynamic of this process is lower in total darkness. The decrease in overall labelling of antheridium (manubria an mucilage) reflects secondary metabolic changes both in proliferative phase and in spermiogenesis. The pulse (2 and 5 min) incubations with the isotope confirm the intensive mucilage translocation which at later developmental stages is more dynamic than at earlier ones. It can explain previously observed decrease in manubria radioactivity at later stages after long (40 min) incubation, because PAS-positive polysaccharide synthesis is simultaneous with their fast translocation to the antheridial space. The present and previous autoradiographic and cytophotometric data taken altogether confirm the assumption about a nutritive role of mucilage filling Chara antheridium during the process of spermatogenesis. (author). 19 refs, 7 figs.

  20. Analytical, ultrastructural, autoradiographic and biochemical studies on [3H]dicarboxylic acid added to cultures of melanoma cells.

    Ward, B J; Breathnach, A S; Robins, E J; Bhasin, Y; Ethridge, L; Passi, S; Nazzaro-Porro, M


    Lentigo maligna and malignant melanoma can be treated by dicarboxylic acids (C9 and C12), which are competitive inhibitors of tyrosinase. We therefore studied the intracellular location and possible sites of action of dodecanedioic acid (C12) in murine melanoma cells, using EM autoradiography and biochemical analysis of lipid extracts by HPLC. Significant levels of radioactivity were found in the mitochondria and in the nuclei but not in association with membranes of rough endoplasmic reticulum, Golgi-associated endoplasmic reticulum, or Golgi apparatus, and not in coated vesicles or melanosomes. Biochemical analysis revealed that the diacid underwent beta-oxidation, which occurs only in mitochondria. The results suggest that the toxicity of dicarboxylic acids in melanoma cells is not related to anti-tyrosinase activity but may be due to interference with oxidoreductase enzymes in the mitochondria and possibly to inhibition of DNA synthesis in the nucleus.

  1. Postmortem studies on mitochondria in schizophrenia.

    Roberts, Rosalinda C


    The aim of this paper is to provide a brief review of mitochondrial structure as it relates to function and then present abnormalities in mitochondria in postmortem schizophrenia with a focus on ultrastructure. Function, morphology, fusion, fission, motility, ΔΨmem, ATP production, mitochondrial derived vesicles, and mitochondria-associated ER membranes will be briefly covered. Pathology in mitochondria has long been implicated in schizophrenia, as shown by genetic, proteomic, enzymatic and anatomical abnormalities. The cortex and basal ganglia will be reviewed. In the anterior cingulate cortex, the number of mitochondria per neuronal somata in layers 5/6 in schizophrenia is decreased by 43%. There are also fewer mitochondria in terminals forming axospinous synapses. In the caudate and putamen the number of mitochondria is abnormal in both glial cells and neurons in schizophrenia subjects, the extent of which depends on treatment, response and predominant lifetime symptoms. Treatment-responsive schizophrenia subjects had about a 40% decrease in the number of mitochondria per synapse in the caudate nucleus and putamen, while treatment resistant cases had normal values. A decrease in mitochondrial density in the neuropil distinguishes paranoid from undifferentiated schizophrenia. The appearance, size and density of mitochondria were normal in the nucleus accumbens. In the substantia nigra, COX subunits were affected in rostral regions. Mitochondrial hyperplasia occurs within axon terminals that synapse onto dopamine neurons, but mitochondria in dopamine neuronal somata are similar in size and number. In schizophrenia, mitochondria are differentially affected depending on the brain region, cell type, subcellular location, treatment status, treatment response and symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Specificity of indium-111 granulocyte scanning and fecal excretion measurement in inflammatory bowel disease--an autoradiographic study

    Keshavarzian, A.; Price, Y.E.; Peters, A.M.; Lavender, J.P.; Wright, N.A.; Hodgson, H.J.


    The validity of /sup 111/In granulocyte scanning and fecal excretion measurement, as a reflection of loss of cells into the gastrointestinal tract, was studied using an autoradiographic technique in 11 patients in whom /sup 111/In granulocyte scan and colonoscopy were carried out simultaneously. /sup 111/In granulocytes were injected 1.5-4 hr prior to colonoscopy, and intraluminal fluid, mucosal brushings, and colonic biopsies were collected during the colonoscopy. In two patients with no histological evidence of inflammatory bowel disease, and four patients with clinically and histologically inactive inflammatory bowel disease, no /sup 111/Indium was detected in fluid, brushing, or biopsies. In five patients with active disease, 85% of the /sup 111/In activity in colonic fluid was precipitated by low-speed centrifugation. Autoradiography confirmed that the label remained attached to whole granulocytes in colonic fluid and mucosal brushings. Studies on biopsies, at intervals up to 4 1/2 hr following labeled granulocyte injection, demonstrated labeled polymorphonuclear neutrophils (PMNs) on the inflamed epithelial surface, with occasional cells in crypt abscesses by 110 min. We conclude that the techniques of /sup 111/In granulocyte scanning and fecal counting in patients with IBD are specifically measuring cell loss; labeled PMNs are capable of migrating through the gastrointestinal mucosa, in active disease, within 2 hr of administration.

  3. Effect of root conditioning on periodontal wound healing with and without guided tissue regeneration: a pilot study. II. Autoradiographic evaluation.

    Sammons, P R; Wang, H L; Chiego, D J; Castelli, W A; Smith, B A


    This investigation deals with the proliferation and migration of the progenitor cells during the healing of closed periodontal wounds. Periodontal surgical defects affecting the bone and dentin were created in four mongrel dogs. The defects were treated with topical applications of citric acid, tetracycline, or sterile water with and without the placement of nonresorbable membranes. The dogs were killed at 1, 3, 7, and 21 days after surgery. One hour before they were killed, they were intravenously injected with tritiated thymidine. Tissues were processed and routinely prepared for autoradiographic studies. Labeled cells were counted at the apical, coronal, and central areas of the defects. Results suggested that the citric acid and tetracycline treatments inhibited cellular proliferation at the initial time periods of 1 and 3 days. At 7 and 21 days, differences between citric acid and tetracycline treatments were minimal, and neither showed any advantage over the application of sterile water. The placement of the nonresorbable membrane demonstrated a trend of increased labeling at 21 days for all three treatments.

  4. Effect of morphine on /sup 3/H-thymidine incorporation in the subependyma of the rat: an autoradiographic study

    Miller, C.R.; O' Steen, W.K.; Deadwyler, S.A.


    Following morphine treatment, an autoradiographic study investigated the uptake of /sup 3/H-thymidine by the subependymal cells in the rat brain. /sup 3/H-thymidine was administered subcutaneously to adult, male Sprague-Dawley rats 30 minutes after saline or morphine (19 mg/kg) injection. The animals were sacrified 1 hour after /sup 3/H-thymidine administration. In some experiments the opioid antagonist, naloxone, was given alone 45 minutes before /sup 3/H-thymidine or 125 minutes before morphine treatment. Three areas of the subependyma were evaluated in terms of the percentage labeled cells and number of grains per nucleus, and a dorsal-to-ventral gradiant was described. Morphine treatment significantly increased the number of /sup 3/H-thymidine labeled subependymal cells and number of grains/nucleus within labeled cells. Examination of the distribution of grains/nucleus showed that morphine-treated animals had significantly more cells labeled with 30 or more grains than did saline-injected controls. Prior administration of naloxone blocked the increased /sup 3/H-thymidine uptake in morphine-treated animals but had no significant influence on cell proliferation when administered alone. The data are discussed in terms of morphine's possible dual influence on mechanisms which enhance cell transition from G to S phase and/or which accelerate DNA synthesis once these cells have entered the S phase of cell replication.

  5. Plasticity-related binding of GABA and muscarinic receptor sites in piriform cortex of rat: An autoradiographic study

    Thomas, A.P.; Westrum, L.E. (Univ. of Washington, Seattle (USA))


    This study has used the recently developed in vitro quantitative autoradiographic technique to examine the effects of olfactory bulb (OB) removal on receptor-binding sites in the deafferented piriform cortex (PC) of the rat. The gamma-aminobutyric acid-benzodiazepine receptor (GABA-BZR)- and muscarinic cholinergic receptor (MChR)-binding sites in layer I of PC were localized using (3H)flunitrazepam and (3H)quinuclidinyl benzilate as ligands, respectively. From the resultant autoradiograms the optical densities were measured using a Drexel-DUMAS image analysis system. The densities of BZR and MChR-binding sites were markedly increased in the PC ipsilateral to the lesion as compared to the contralateral side in those subjects that were operated in adulthood (Postnatal Day 100, PN 100). Comparisons between the unoperated and PN 100 operated animals also showed significant increases in the deafferented PC. In the animals operated on the day of birth (PN 0) no significant differences were seen between the operated and the contralateral PC. The difference between the PN 0 deafferented PC and the unoperated controls shows a slight decrease in BZR density in the former group; however, in case of the MChR there is a slight increase on the side of the lesion. These results demonstrate that deafferentation of PC by OB removal appears to modulate both the BZR-binding sites that are coupled with the GABA-A receptor complex and the MChR-binding sites. The results also suggest that possibility of a role for these neurotransmitter receptor-binding sites in plasticity following deafferentation.

  6. Distribution of pressure-induced fast axonal transport abnormalities in primate optic nerve. An autoradiographic study.

    Radius, R L


    The distribution of transport abnormalities in primate optic nerve from eyes subjected to five hours of pressure elevation (perfusion pressure of 35 mm Hg) was studied. Tissue autoradiography and electron microscopy were used to localize regions of the lamina cribrosa with increased transport interruption. A preferential involvement by this transport abnormality involved the superior, temporal, and inferior portions, to the exclusion of the nasal portion, of the optic nerve head. This observation supports the hypothesis that transport interruption seen in this model may be pertinent to the study of clinical glaucomatous neuropathy.

  7. Corticosterone modulation of neurotransmitter receptors in rat hippocampus: a quantitative autoradiographic study

    Biegon, A. (Hoffmann-La Roche, Inc., Nutley, NJ (USA). Dept. of Pharmacology); Rainbow, T.C. (Pennsylvania Univ., Philadelphia (USA). School of Medicine); McEwen, B.S. (Rockefeller Univ., New York (USA))


    The effect of adrenalectomy (ADX) and corticosterone (CORT) replacement on neurotransmitter receptors was studied in dorsal hippocampus of rat using quantitative autoradiography. ADX for one week causes an increase in (/sup 3/H)5-HT binding to 5-HT/sub 1/ receptors which is significant in the CA1 cell field. CORT treatment of ADX rats for 3-5 days results in localized reductions of (/sup 3/H)5-HT binding including a partial reversal of the increase observed after ADX in CA1. CORT treatment of ADX animals also decreases binding of (/sup 3/H)QNB to muscarinic receptors in the dorsal hippocampus, with a significant effect in an area designated as subiculum. No influence of CORT was detected on (/sup 3/H)prazosin binding to alpha/sub 1/ adrenergic receptors in dorsal hippocampus. Possible mechanisms for hormone effects on neurotransmitter receptor levels are discussed.

  8. Autoradiographic studies of the intensity of morphogenetic processes in the bone skeleton under modeling microgravity

    Rodionova, N. V.; Zolotova-Haidamaka, N. V.; Nithevich, T. P.

    In ontogenesis the development of long skeleton bones and reconstruction of bone structures during adaptive remodeling are performed due to a combination of the bone apposition and bone resorption processes. With the use of radioactive markers of specific biosyntheses -3H-thymidine and 3H-glycine we studied the dynamics and peculiarities of these processes under hypokinesia by unloading the hind limbs of young white rats (tail suspension method) during 28 days. The radionuclides were administered in a single dose at the end of the experiment and the biomaterial was taken 1, 24, 48, 120 and 192 h. after injection. In histoautographs the counts were made of a nuclei labeling index (3H-thymidine), of the number of silver grains over the cells and in the forming bone matrix in growth and remodeling zones of the femoral bone (3H-glycine). The tendency for a reduction of a labeling index in the 3H-thymidine-labeled osteogenic cells in the periost and endost has been established. The dynamics of labeled cells following various intervals after 3H-thymidine injection testifies to a delay in the rates of osteoblasts' differentiation and their transformation to osteocytes in the experiment animals. 3H-glycine is assimilated by osteogenic cells 30 min after the radionuclide injection and following 24 h. it is already incorporated into the forming bone matrix. As a result an appositional bone addition by 192 h. the silver grains are registered in the bone matrix as "labeling lines". A lower 3H-glycine uptake by the osteogenic cells and bone matrix as compared with a control is indicative of a decrease of the osteoplastic process under hypokinesia, particulary in the periost. At the same time the resorption and remodeling bone zones reveal regions of an intensive 3H-glycine uptake after 1 and 24 h. We associate this latter fact with an activation of collagen proteins in the differentiating fibroblasts (instead of osteoblasts) in these locations. This is confirmed by our previous

  9. Neurogenesis in the brain stem of the rabbit: an autoradiographic study

    Oblinger, M.M.; Das, G.D.


    With the aid of (/sup 3/H)-thymidine autoradiography, neurogenesis was documented in the nuclear groups of the medulla oblongata, pons, and mid-brain, as well as in the brain stem reticular formation of the rabbit. Following single injections of (/sup 3/H)-thymidine, counts were taken of intensely labeled neurons within the nuclei of the functional columns related to the cranial nerves, nuclei of several other functional classifications, and nuclei that did not fit into a functional category. In the brain stem as a whole, neurogenesis was found to occur between days 10.0 and 18.5 of gestation: however, the majority of nuclei studied contained intensely neurons only between days 12.0 and 15.0. Only in the pontine nucleus and the tectum were intensely labeled cells observed as late as day 18.5. Directional gradients of histogenesis were often observed within, as well as between, various nuclei. Within the nuclear columns related to the cranial nerves, a clear mediolateral spread of neurogenesis was observable such that nuclei of the motor columns reached a peak in neurogenesis before those in the sensory columns. Likewise, a mediolateral proliferation pattern was seen in the brain stem reticular formation. Other individual directional gradients were discernible; however, in the brain stem as a whole, distinct overall gradients were not observable. In many individual nuclei, gradients in neuron size were observed such that large neurons preferentially arose prior to smaller neurons. Information pertaining to gradients in neurogenesis, as well as to relationships among functionally related nuclei, are discussed.

  10. Effects of methylmercury on muscarinic receptors in the mouse brain: A quantitative autoradiographic study

    Lee, Haesung; Yee, S.; Geddes, J.; Choi, Byung, H. (Ewha Women' s Univ., Seoul (Korea) Univ. of California, Irvine (United States))


    Methylmercury (MeHg) is reported to inhibit several stages of cholinergic neurotransmission in brain tissue in-vitro and in-vivo. To examine whether or not behavioral disturbances and/or selective vulnerability of specific neuronal groups in MeHg poisoning may be related to MeHg effects on cholinergic receptors in specific regions of the brain, the density and distribution of muscarinic receptors in the brains of C57BL/6J mice were determined following repeated injections of 5 mg/kg of methylmercuric chloride (MMC). The receptor densities in six cortical laminae of seven cerebral cortical regions, hippocampus and striatum were quantitated by computer-assisted imaging system following in-vitro labeling with ({sup 3}H)-pirenzepine (M1) and ({sup 3}H)N-methyl scopolamine (M2). The results showed heterogeneous distribution of M1 and M2 sites in different regions of the brain, and significant reduction in the density of both receptor subtypes following MeHg poisoning in many cortical and subcortical regions. However, the changes in the density were variable in different laminae even in the same cortical regions. Prominent reductions in M1 densities were noted in the temporal and entorhinal cortices, CA3 and hilar regions of the hippocampus as compared to control, whereas the reduction in M2 receptor density was most prominently noted in the frontal, perirhinal and entorhinal cortices, and CA1 and hilar regions of the hippocampus. Thus, it is apparent that MeHg significantly affects muscarinic receptors in the mouse brain, and that these data when used in conjunction with immunocytochemical and other morphological studies would provide further insights into the mechanisms of neurotoxic effects of MeHg.

  11. The tryptophan hydroxylase activation inhibitor, AGN-2979, decreases regional 5-HT synthesis in the rat brain measured with alpha-[14C]methyl-L-tryptophan: an autoradiographic study.

    Hasegawa, Shu; Kanemaru, Kazuya; Gittos, Maurice; Diksic, Mirko


    Many experimental conditions are stressful for animals. It is well known that stress induces tryptophan hydroxylase (TPH) activation, resulting in increased serotonin (5-HT) synthesis. In our experimental procedure to measure 5-HT synthesis using alpha-[(14)C]methyl-L-tryptophan (alpha-MTrp) autoradiographic method, the hind limbs of animals are restrained using a loose-fitted plaster cast such that the forelimbs of the animal remain free. The objective of the present investigation was to evaluate the changes, if any, in 5-HT synthesis, after injecting these restrained rats with the TPH activation inhibitor AGN-2979. The effect on regional 5-HT synthesis was studied using the alpha-MTrp autoradiographic method. The hypothesis was that the TPH activation inhibitor would reduce 5-HT synthesis, if TPH activation was induced by this restraint. The rats received injection of AGN-2979 (10 mg/kg, i.p.) or distilled water vehicle (1 mL/kg, i.p.) 1 h prior to tracer administration. The free- and total tryptophan concentrations were not significantly different between the treatment and control groups. The results demonstrate that 5-HT synthesis in AGN-2979 treated rats is significantly decreased (-12 to -35%) in both the raphe nuclei and their terminal areas when compared to the control rats. These findings suggest that restrained conditions, such as those used in our experimental protocol, induce TPH activation resulting in an increased 5-HT synthesis throughout the brain. The reduction in 5-HT synthesis in the AGN-2979 group is not related to a change in the plasma tryptophan. Because there was no activation in the pineal body, the structure having a different isoform of TPH, we can propose that it is only the brain TPH that becomes activated with this specific restraint.

  12. Mitochondria in metabolic disease: getting clues from proteomic studies.

    Peinado, Juan R; Diaz-Ruiz, Alberto; Frühbeck, Gema; Malagon, Maria M


    Mitochondria play a key role as major regulators of cellular energy homeostasis, but in the context of mitochondrial dysfunction, mitochondria may generate reactive oxidative species and induce cellular apoptosis. Indeed, altered mitochondrial status has been linked to the pathogenesis of several metabolic disorders and specially disorders related to insulin resistance, such as obesity, type 2 diabetes, and other comorbidities comprising the metabolic syndrome. In the present review, we summarize information from various mitochondrial proteomic studies of insulin-sensitive tissues under different metabolic states. To that end, we first focus our attention on the pancreas, as mitochondrial malfunction has been shown to contribute to beta cell failure and impaired insulin release. Furthermore, proteomic studies of mitochondria obtained from liver, muscle, and adipose tissue are summarized, as these tissues constitute the primary insulin target metabolic tissues. Since recent advances in proteomic techniques have exposed the importance of PTMs in the development of metabolic disease, we also present information on specific PTMs that may directly affect mitochondria during the pathogenesis of metabolic disease. Specifically, mitochondrial protein acetylation, phosphorylation, and other PTMs related to oxidative damage, such as nitrosylation and carbonylation, are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration.

    Fišar, Z; Hroudová, J


    Oxidative phosphorylation is a key process of intracellular energy transfer by which mitochondria produce ATP. Isolated mitochondria serve as a biological model for understanding the mitochondrial respiration control, effects of various biologically active substances, and pathophysiology of mitochondrial diseases. The aim of our study was to evaluate pig brain mitochondria as a proper biological model for investigation of activity of the mitochondrial electron transport chain. Oxygen consumption rates of isolated pig brain mitochondria were measured using high-resolution respirometry. Mitochondrial respiration of crude mitochondrial fraction, mitochondria purified in sucrose gradient, and mitochondria purified in Percoll gradient were assayed as a function of storage time. Oxygen flux and various mitochondrial respiratory control ratios were not changed within two days of mitochondria storage on ice. Leak respiration was found higher and Complex I-linked respiration lower in purified mitochondria compared to the crude mitochondrial fraction. Damage to both outer and inner mitochondrial membrane caused by the isolation procedure was the greatest after purification in a sucrose gradient. We confirmed that pig brain mitochondria can serve as a biological model for investigation of mitochondrial respiration. The advantage of this biological model is the stability of respiratory parameters for more than 48 h and the possibility to isolate large amounts of mitochondria from specific brain areas without the need to kill laboratory animals. We suggest the use of high-resolution respirometry of pig brain mitochondria for research of the neuroprotective effects and/or mitochondrial toxicity of new medical drugs.

  14. Validation of MRI-based 3D digital atlas registration with histological and autoradiographic volumes: an anatomofunctional transgenic mouse brain imaging study.

    Lebenberg, J; Hérard, A-S; Dubois, A; Dauguet, J; Frouin, V; Dhenain, M; Hantraye, P; Delzescaux, T


    Murine models are commonly used in neuroscience to improve our knowledge of disease processes and to test drug effects. To accurately study neuroanatomy and brain function in small animals, histological staining and ex vivo autoradiography remain the gold standards to date. These analyses are classically performed by manually tracing regions of interest, which is time-consuming. For this reason, only a few 2D tissue sections are usually processed, resulting in a loss of information. We therefore proposed to match a 3D digital atlas with previously 3D-reconstructed post mortem data to automatically evaluate morphology and function in mouse brain structures. We used a freely available MRI-based 3D digital atlas derived from C57Bl/6J mouse brain scans (9.4T). The histological and autoradiographic volumes used were obtained from a preliminary study in APP(SL)/PS1(M146L) transgenic mice, models of Alzheimer's disease, and their control littermates (PS1(M146L)). We first deformed the original 3D MR images to match our experimental volumes. We then applied deformation parameters to warp the 3D digital atlas to match the data to be studied. The reliability of our method was qualitatively and quantitatively assessed by comparing atlas-based and manual segmentations in 3D. Our approach yields faster and more robust results than standard methods in the investigation of post mortem mouse data sets at the level of brain structures. It also constitutes an original method for the validation of an MRI-based atlas using histology and autoradiography as anatomical and functional references, respectively.

  15. Radioactive labeling of a natural assemblage of marine sedimentary bacteria and microalgae for trophic studies: An autoradiographic study.

    Carman, K R


    Autoradiography was used to examine critical questions for trophic studies concerning the uptake of radioactive tracers by a natural assemblage of sedimentary microorganisms. Labeled organic substrates ([(3)H]-acetate and [(3)H]-thymidine) were taken up only by heterotrophic bacteria, and [(14)C]-bicarbonate was taken up only by microalgae. Only approximately 2% of the bacterial assemblage took up detectable quantities of either [(3)H]-acetate or [(3)H]-thymidine, regardless of whether labeled substrates were delivered to sediments via slurries or by injection with a microliter syringe. Significantly more diatoms were labeled when [(14)C]-bicarbonate was delivered to sediments by the injection method (75%) as compared to the slurry method (50%). These results indicate that radio-active tracers can be used in natural sediments to selectively label potential microbial food of invertebrate grazers. Only a small proportion of bacteria, however, may actually use a labeled substrate, which introduces a large uncertainty into the conversion of radioactivity in grazers to the number of bacteria consumed. Finally, the use of disruptive methods (e.g., slurries) to deliver labels to sediments does not increase the proportion of microorganisms that become labeled. Thus, given the variety of artifacts that may be associated with the use of sediment slurries, it is probably advisable to use nondisruptive methods to deliver substrates to sediments.

  16. Omega 3 (peripheral type benzodiazepine binding) site distribution in the rat immune system: an autoradiographic study with the photoaffinity ligand (/sup 3/H)PK 14105

    Benavides, J.; Dubois, A.; Dennis, T.; Hamel, E.; Scatton, B.


    The anatomical distribution of omega 3 (peripheral type benzodiazepine binding) sites in the immune system organs of the rat has been studied autoradiographically at both macroscopic and microscopic levels of resolution using either reversible or irreversible (UV irradiation) labeling with (/sup 3/H)PK 14105. In thymus sections, (/sup 3/H)PK 14105 labeled with high affinity (Kd, derived from saturation experiments = 10.8 nM) a single population of sites which possessed the pharmacological characteristics of omega 3 sites. In the thymus gland, higher omega 3 site densities were detected in the cortex than in the medulla; in these subregions, silver grains were associated to small (10-18 microns diameter) cells. In the spleen, omega 3 sites were more abundant in the white than in the red pulp. In the white pulp, silver grains were denser in the marginal zone than in the vicinity of the central artery and labeling was, as in the thymus, associated to small cytoplasm-poor cells. In the red pulp, omega 3 site associated silver grains were observed mainly in the Bilroth cords. In the lymph nodes, the medullary region showed a higher labeling than the surrounding follicles and paracortex. A significant accumulation of silver grains was observed in the lymph node medullary cords. In the intestine, Peyer patches were particularly enriched in omega 3 sites (especially in the periphery of the follicles). The distribution of omega 3 sites in the immune system organs suggests a preferential labeling of cells of T and monocytic lineages. This is consistent with the proposed immunoregulatory properties of some omega 3 site ligands.

  17. Tellurium as a valuable tool for studying the prokaryotic origins of mitochondria.

    Pontieri, Paola; De Stefano, Mario; Massardo, Domenica Rita; Gunge, Norio; Miyakawa, Isamu; Sando, Nobundo; Pignone, Domenico; Pizzolante, Graziano; Romano, Roberta; Alifano, Pietro; Del Giudice, Luigi


    Mitochondria are eukaryotic organelles which contain the own genetic material and evolved from free-living Eubacteria, namely hydrogen-producing Alphaproteobacteria. Since 1965, biologists provided, by research at molecular level, evidence for the prokaryotic origins of mitochondria. However, determining the precise origins of mitochondria is challenging due to inherent difficulties in phylogenetically reconstructing ancient evolutionary events. The use of new tools to evidence the prokaryotic origin of mitochondria could be useful to gain an insight into the bacterial endosymbiotic event that resulted in the permanent acquisition of bacteria, from the ancestral cell, that through time were transformed into mitochondria. Electron microscopy has shown that both proteobacterial and yeast cells during their growth in the presence of increasing amount of tellurite resulted in dose-dependent blackening of the culture due to elemental tellurium (Te(0)) that formed large deposits either along the proteobacterial membrane or along the yeast cell wall and mitochondria. Since the mitochondrial inner membrane composition is similar to that of proteobacterial membrane, in the present work we evidenced the black tellurium deposits on both, cell wall and mitochondria of ρ(+) and respiratory deficient ρ(-) mutants of yeast. A possible role of tellurite in studying the evolutionary origins of mitochondria will be discussed.

  18. Methods to Study PTEN in Mitochondria and Endoplasmic Reticulum.

    Missiroli, Sonia; Morganti, Claudia; Giorgi, Carlotta; Pinton, Paolo


    Although PTEN has been widely described as a nuclear and cytosolic protein, in the last 2 years, alternative organelles, such as the endoplasmic reticulum (ER), pure mitochondria, and mitochondria-associated membranes (MAMs), have been recognized as pivotal targets of PTEN activity.Here, we describe different methods that have been used to highlight PTEN subcellular localization.First, a protocol to extract nuclear and cytosolic fractions has been described to assess the "canonical" PTEN localization. Moreover, we describe a protocol for mitochondria isolation with proteinase K (PK) to further discriminate whether PTEN associates with the outer mitochondrial membrane (OMM) or resides within the mitochondria. Finally, we focus our attention on a subcellular fractionation protocol of cells that permits the isolation of MAMs containing unique regions of ER membranes attached to the outer mitochondrial membrane (OMM) and mitochondria without contamination from other organelles. In addition to biochemical fractionations, immunostaining can be used to determine the subcellular localization of proteins; thus, a detailed protocol to obtain good immunofluorescence (IF) is described. The employment of these methodological approaches could facilitate the identification of different PTEN localizations in several physiopathological contexts.

  19. Proteomic approaches to the study of renal mitochondria.

    Tuma, Zdenek; Kuncova, Jitka; Mares, Jan; Grundmanova, Martina; Matejovic, Martin


    Dysfunction of kidney mitochondria plays a critical role in the pathogenesis of a number of renal diseases. Proteomics represents an untargeted attempt to reveal the remodeling of mitochondrial proteins during disease. Combination of separation methods and mass spectrometry allows identification and quantitative analysis of mitochondrial proteins including protein complexes. The aim of this review is to summarize the methods and applications of proteomics to renal mitochondria. Using keywords "mitochondria", "kidney", "proteomics", scientific databases (PubMed and Web of knowledge) were searched from 2000 to August 2015 for articles describing methods and applications of proteomics to analysis of mitochondrial proteins in kidney. Included were publications on mitochondrial proteins in kidneys of humans and animal model in health and disease. Proteomics of renal mitochondria has been/is mostly used in diabetes, hypertension, acidosis, nephrotoxicity and renal cancer. Integration of proteomics with other methods for examining protein activity is promising for insight into the role of renal mitochondria in pathological states. Several challenges were identified: selection of appropriate model organism, sensitivity of analytical methods and analysis of mitochondrial proteome in different renal zones/biopsies in the course of various kidney disorders.

  20. Quantitative autoradiographic microimaging in the development and evaluation of radiopharmaceuticals

    Som, P. [Brookhaven National Lab., Upton, NY (United States); Oster, Z.H. [State Univ. of New York, Stony Brook, NY (United States)


    Autoradiographic (ARG) microimaging is the method for depicting biodistribution of radiocompounds with highest spatial resolution. ARG is applicable to gamma, positron and negatron emitting radiotracers. Dual or multiple-isotope studies can be performed using half-lives and energies for discrimination of isotopes. Quantitation can be performed by digital videodensitometry and by newer filmless technologies. ARG`s obtained at different time intervals provide the time dimension for determination of kinetics.

  1. Autoradiographic studies and experiments on partial synchronization of human tumors, especially mammary carcinomas, in vitro and in vivo following xenotransplantation to NU/NU mice

    Nord, D.


    Human mammary carcinomas were evaluated radiographically in vitro in the native state. Penetration depths up to 552 into the tissue were reached by the incubating medium. The labelling indices for the 3H-thymidine autoradiography lay between 1.5 and 19.3 percent. A correlation of the autoradiographic labelling indices with the findings of a simultaneously performed in vitro sensitivity test against cytostatics could not be proved. There seems to be a relation between the histomorphological tumour image and the proliferation behaviour expressed by the autoradiographic labelling index. Human mammary carcinomas were cultivated as xeno-transplant on thymus-aplastic NU/NU mice in parallel to this investigation. These heterotransplants show a remarkable correlation to the proliferation behaviour of the directly examined human tumours, after an autoradiographic in-vivo-labelling, with index values between 1.5 and 23.8 percent. This parallelism in the biological behaviour represents a further proof for the usefulness of the oncological test model of the NU/NU mouse as a carrier for human carcinomas. The application of this pre-therapeutical test model followed by determination of the synchronization behaviour of three human malignomas after xeno-transplantation onto NU/NU mice. For all three tumous an individual synchronization behaviour could be determined. Therapy attempts followed with cyclophosphomide or ionizing radiation by using the optimal cell-cycle therapy. Therefore an improvement of the therapeutical success by means of pre-therapeutical synchronization of human tumours can be reached in particular cases.

  2. New nanocomposites for SERS studies of living cells and mitochondria

    Sarycheva, A. S.; Brazhe, N. A.; Baizhumanov, A. A.


    molecules. The SERS spectra of functional mitochondria are sensitive to the activity of the mitochondrial electron transport chain, thus making the method a novel label-free approach to monitor the redox state and conformation of cytochromes in their natural cell environment. The developed nanocomposites......A great enhancement in Raman scattering (SERS) from heme-containing submembrane biomolecules inside intact erythrocytes and functional mitochondria is demonstrated for the first time using silver–silica beads prepared using a new method involving aerosol pyrolysis with aqueous diamminesilver...

  3. [[superscript 3]H]-Flunitrazepam-Labeled Benzodiazepine Binding Sites in the Hippocampal Formation in Autism: A Multiple Concentration Autoradiographic Study

    Guptill, Jeffrey T.; Booker, Anne B.; Gibbs, Terrell T.; Kemper, Thomas L.; Bauman, Margaret L.; Blatt, Gene J.


    Increasing evidence indicates that the GABAergic system in cerebellar and limbic structures is affected in autism. We extended our previous study that found reduced [[superscript 3]H] flunitrazepam-labeled benzodiazepine sites in the autistic hippocampus to determine whether this reduction was due to a decrease in binding site number (B [subscript…

  4. Autoradiographic study of the effects of pulsed electromagnetic fields on bone and cartilage growth in juvenile rats.

    Wilmot, J J; Chiego, D J; Carlson, D S; Hanks, C T; Moskwa, J J


    Application of pulsed electromagnetic fields (PEMF) has been used in growth and repair of non-union bone fractures. The similarities between the fibrocartilage callus in non-union bone fractures and the secondary cartilage in the mandibular condyle, both histologically and functionally, lead naturally to study the effects of PEMFs on growth in the condyle. The purposes of this study were: (1) to describe the effects of PEMFs on the growth of the condyle using autoradiography, [3H]-proline and [3H]-thymidine, and (2) to differentiate between the effects of the magnetic and electrical components of the field. Male pre-adolescent Sprague-Dawley rats (28 days old) were divided into three experimental groups of five animals each: (1) PEMF-magnetic (M), (2) PEMF-electrical (E) and (3) control, and were examined at three different times-3, 7 and 14 days of exposure. Each animal was exposed to the field for 8 h per day. Histological coronal sections were processed for quantitative autoradiography to determine the mitotic activity of the condylar cartilage and the amount of bone deposition. The PEMF (magnetic or electrical) had statistically significant effects only on the thickness of the articular zone, with the thickness in the PEMF-M group being the most reduced. Length of treatment was associated with predictable significant changes in the thickness of the condylar cartilage zones and the amount of bone deposition.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Tritiated thymidine autoradiographic study on the influence of sensory and sympathetic innervation on periodontal wound healing in the rat.

    Wucherpfennig, A L; Chiego, D J; Avery, J K


    Understanding of wound healing mechanisms is important in designing preventive and therapeutic approaches to inflammatory periodontal diseases, which are a major cause of dental morbidity. In this study, cell proliferation was assessed after an experimental gingival wound; this was preceded by either resection of 3 mm of the inferior alveolar nerve, total extirpation of the superior cervical ganglion, trauma to those structures or sham operations. At different times, animals were pulsed with 0.5 microCi/g body weight of tritiated thymidine; histological sections were processed for quantitative autoradiography of different compartments of the periodontium. Wounding led to a significant increase in cell proliferation in the epithelial layer, the fibroblast compartment and the periodontal ligament, but not in the alveolar crest compartment. Sympathetic denervation significantly enhanced this response in the epithelial layer, the fibroblast compartment and the alveolar crest, whereas sensory denervation only modified the response in the fibroblast layer. Thus it appears that sympathetic innervation plays an important role in the regulation of cell proliferation in the periodontium and that pharmacological modulation of sympathetic activity should be further studied as a therapeutic approach in periodontal disease.

  6. Whole body autoradiographic and quantitative tissue distribution studies with /sup 14/C-cefotaxime in the rat

    Stevens, L.A.; Ings, R.M.J.; Fromson, J.M.; Coombes, J.D.


    The absorption, distribution and elimination of radioactivity following intravenous (i.v.) or intramuscular (i.m.) administration of /sup 14/C-cefotaxime (/sup 14/C-HR 756) to the rat has been examined by qualitative and quantitative techniques. After i.v. and i.m. doses to male albino animals radioactivity was extensively distributed throughout the body and rapidly eliminated with a predominant half-life of approximately 30 to 40 min. Maximum plasma levels for the i.m. dose were reached within 20 min and approximately 85% of the dose was recovered from the urine (74%) and faeces (11%) within 8 h after dosing. In all quantitative studies 100+-5% of the dose was recovered within 24 h. Whole body autoradiography studies showed good distribution of radioactivity from the blood into the tissues including lung, liver, kidney, heart, bone marrow and the gastrointestinal tract. Lowest levels were seen in the eye and brain. There was limited placental transfer of radioactivity in 14-days pregnant animals although by day 18 of the gestation period radioactivity was detected in the foetus but distribution into individual organs and tissues could not be seen. There was no evidence to show that retention of radioactivity in pigmented tissues had occurred nor was there any suggestion of accumulation of radioactivity in any organ or tissues as a consequence of multiple dosing /sup 14/C-cefotaxime.

  7. Evidence of sympathetic fibers in the male rat pelvic nerve by gross anatomy, retrograde labeling and high resolution autoradiographic study.

    Giuliano, F; Facchinetti, P; Bernabé, J; Benoit, G; Calas, A; Rampin, O


    Several arguments exist in various animal species and man for the presence of a sympathetic component in the pelvic nerve, classically regarded as parasympathetic. We tested this hypothesis in the male rat. Nerve bundles issued from the sacral region of the paravertebral sympathetic chain and reaching the S1 spinal nerve were identified. Neurons in the sacral parasympathetic nucleus of the L6-S1 spinal cord and in the L2-S1 paravertebral sympathetic chain were retrogradely labeled from the pelvic nerve. Radioautography evidenced labeling of unmyelinated fibers in the pelvic nerve following in vitro incubation with 3H-noradrenaline. A population of sympathetic fibers issued from the lumbosacral sympathetic chain exists in the pelvic nerve of the male rat. This qualitative study provides a morphological basis to uncover the role of the sympathetic outflow present in the pelvic nerve.

  8. Method for functional study of mitochondria in rat hypothalamus.

    Benani, Alexandre; Barquissau, Valentin; Carneiro, Lionel; Salin, Bénédicte; Colombani, Anne-Laure; Leloup, Corinne; Casteilla, Louis; Rigoulet, Michel; Pénicaud, Luc


    Different roles of mitochondria in brain function according to brain area are now clearly emerging. Unfortunately, no technique is yet described to investigate mitochondria function in specific brain area. In this article, we provide a complete description of a procedure to analyze the mitochondrial function in rat brain biopsies. Our two-step method consists in a saponin permeabilization of fresh brain tissues in combination with high-resolution respirometry to acquire the integrated respiratory rate of the biopsy. In the first part, we carefully checked the mitochondria integrity after permeabilization, defined experimental conditions to determine the respiratory control ratio (RCR), and tested the reproducibility of this technique. In the second part, we applied our method to test its sensitivity. As a result, this method was sensitive enough to reveal region specificity of mitochondrial respiration within the brain. Moreover, we detected physiopathological modulation of the mitochondrial function in the hypothalamus. Thus this new technique that takes all cell types into account, and does not discard or select any mitochondria sub-population is very suitable to analyze the integrated mitochondrial respiration of brain biopsies.

  9. Autoradiographic study of dopamine transporter in rat Model of Parkinson' s disease with 125I-β-CIT

    Liu Zhenguo; Chen Shengdi; Shum Wenshan


    Objective To evaluate the value of iaaging for dopamine transpter(DAT) wi th 125I- β-CIT. Methods The partial and complete lesioned rat models of hemiparkinsonism were rendered with 6- hydroxy-dopamine (6-OHDA). Each rat was injected intravenously with 1251-β-CIT containing 40 μ Ci. Coronal t issue sections were imaged by autoradiography. The levets of dopamine (DA)and its metabolites were measured by high performance 1iquid choromatography and electro-chemical detection (HPLC-ECD). The t yros i nc hydroxylase(Tll)-positive cells and fibres in substantia nigra and striatum of the rats were observed by immunohistochemieal staining. Results The radioactivities in the lesioned striatum of both partial and complete lesioned hemiparkinsonian rats were 2.67±0.25 and O. 98±0.29 respectively , and were singificantly decreased by.18% and 72% respectively, as compared with those of unlesioned side. The levels of DA in the lesioned striatum of partial and complete lesioned models were decreased by 39% and 98% respectively. The loss of TH-positive eells and fibres in the substantia nigra and striatum was found in the lesioned striatum of both partial and complete-lesioned models. Conclusion The imaging study of DAT may be helpful for the early diagnosis of Parkinson's disease and for the monitor of the progression of this discaose;.

  10. Quantitative Autoradiographic Study on Receptor Regulation in the Basal Ganglia in Rat Model of Levodopa-induced Motor Complications

    Yan XU; Zhentao ZHANG; Kairong QIN; Stella M.Papa; Xuebing CAO


    In order to study neurotransmitter receptor regulation in the basal ganglia involved in the functional changes underlying levodopa-induced motor complications,quantitative autoradiography was used to observe receptor bindings of dopamine D1 and D2,N-methyl-D-aspartate (NMDA),amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA) and amino butyric acid (GABA) in the basal ganglia of rats that had unilateral nigrostriatal lesions and had been chronically treated with levodopa until motor complications developed.The rats were randomly assigned to three groups:normal,denervated and treatment-complicated groups.The results showed that response duration to levodopa became progressively shorter and abnormal involuntary movement (AIM) score was progressively increased during the course of levodopa treatment.Chronic treatment augmented DI receptors more than denervation,and reduced D2 receptors that were also increased by dopamine denervation.Striatal NMDA receptors were substantially up-regulated in the treatment-complicated group.Levodopa treatment did not change receptors of nigral AMPA,pailidai GABA,and subthalamic GABA,which remained the same as that in denervation group.However,chronic treatment reversed the increase ofnigral GABA receptors caused by the lesion.It was concluded that a shortening of response duration and AIM mimicked levodopa-induced motor complications of Parkinson's patients.These data suggested that up-regulation of dopamine D1 and NMDA receptors in the striatum leads to an imbalance of stimulation through the striatal output pathways,which is associated with levodopa-induced motor complications.

  11. Development of intracerebral dopaminergic grafts: a combined immunohistochemical and autoradiographic study of its time course and environmental influences

    Abrous, N.; Guy, J.; Vigny, A.; Calas, A.; Le Moal, M.; Herman, J.P.


    The aim of the study was to obtain a description of some aspects of the development of intracerebral dopaminergic grafts, namely, the time course of the glial reaction and its relation to cell division on one hand, and the development of graft-originated innervation and its dependence on adequate matching of the implanted neurons and target site on the other hand. Cell suspensions obtained from the mesencephalon or hypothalamus of embryonic day (ED) 14 rat embryos were implanted into the striatum or lateral hypothalamus of adult rats following the destruction of the nigrostriatal system of the hosts. Animals were sacrificed at different postimplantation times, and the development of the graft was followed by immunohistochemistry by using antisera directed against tyrosine hydroxylase (TH) or glial fibrillary acidic protein (GFA). Furthermore, the existence of cell division at various times following implantation was examined by performing autoradiography on immunostained sections after prior intraventricular administration of 3H-thymidine to the host. The first stage of the development of intracerebral grafts was characterized by the existence of intense cell division within the grafted tissue, lasting about 2 weeks, and also in the host tissue surrounding the graft, lasting only about 6 days. The cell division in the host tissue was paralleled by the existence of a strong glial reaction which, however, did not extend into the graft itself. Glial reaction in the host tissue gradually decreased at later times and disappeared by 4 weeks postimplantation without leaving behind a noticeable glial scar. The graft itself was, however, transiently filled with a population of reactive astroglial cells between 3 and 6 weeks postimplantation. Within grafts of mesencephalic tissue located in the striatum TH-positive neurons were distributed evenly at short times postimplantation (2-6 days).

  12. The effect of platelet-derived growth factor on the cellular response of the periodontium: an autoradiographic study on dogs.

    Wang, H L; Pappert, T D; Castelli, W A; Chiego, D J; Shyr, Y; Smith, B A


    Platelet-derived growth factor (PDGF) is a polypeptide growth factor considered to have a role in the proliferation and migration of fibroblasts at a wound healing site. The aim of this investigation was to determine if PDGF, when applied to root surfaces, would stimulate the proliferation of fibroblasts and further enhance regeneration. Six mongrel dogs with healthy periodontia were selected for this study. Using a closed wound surgical model, standardized 4 x 4 mm fenestration defects were created into dentin on the mid-facial of the mesial and distal roots of 4 mandibular posterior teeth in each quadrant. Each defect received either: 1) saline solution (C); 2) expanded polytetrafluoroethylene (ePTFE) membrane; 3) PDGF; or 4) ePTFE + PDGF. 3H-thymidine was administered 1 hour prior to animal sacrifice at 1, 3, and 7 days postsurgery. Each time period included 2 dogs with each dog undergoing the four different treatments. Slides were prepared for autoradiography. 3H-thymidine-labeled cells were counted and results were statistically analyzed using the Bonferroni (Dunn) t test on the SAS program. Results indicated PDGF enhanced fibroblast proliferation when compared to the groups without PDGF. Significant differences (P < 0.05) were noted at day 1 and 7 when PDGF and PDGF + GT were compared to C and GT groups. No significant differences were observed in labeled fibroblasts between the C and GT groups at any time period. These findings suggest that PDGF enhances fibroblast proliferation in early periodontal wound healing, whether used alone or in combination with the ePTFE membrane.

  13. Mitochondrial oxidative stress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria.

    Ahadpour, Morteza; Eskandari, Mohammad Reza; Mashayekhi, Vida; Haj Mohammad Ebrahim Tehrani, Kamaleddin; Jafarian, Iman; Naserzadeh, Parvaneh; Hosseini, Mir-Jamal


    Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the mitochondria as one of the possible molecular targets for INH toxicity, the aim of this study was to evaluate the mechanisms of INH mitochondrial toxicity on isolated mitochondria. Mitochondria were isolated by differential ultracentrifugation from male Sprague-Dawley rats and incubated with different concentrations of INH (25-2000 μM) for the investigation of mitochondrial parameters. The results indicated that INH could interact with mitochondrial respiratory chain and inhibit its activity. Our results showed an elevation in mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and mitochondrial membrane potential collapse after exposure of isolated liver mitochondria in INH. However, different results were obtained in brain mitochondria. Noteworthy, significant glutathione oxidation, adenosine triphosphate (ATP) depletion and lipid peroxidation were observed in higher concentration of INH, as compared to liver mitochondria. In conclusion, our results suggest that INH may initiate its toxicity in liver mitochondria through interaction with electron transfer chain, lipid peroxidation, mitochondrial membrane potential decline and cytochrome c expulsion which ultimately lead to cell death signaling.

  14. Water permeability of rat liver mitochondria: A biophysical study.

    Calamita, Giuseppe; Gena, Patrizia; Meleleo, Daniela; Ferri, Domenico; Svelto, Maria


    The movement of water accompanying solutes between the cytoplasm and the mitochondrial spaces is central for mitochondrial volume homeostasis, an important function for mitochondrial activities and for preventing the deleterious effects of excess matrix swelling or contraction. While the discovery of aquaporin water channels in the inner mitochondrial membrane provided valuable insights into the basis of mitochondrial plasticity, questions regarding the identity of mitochondrial water permeability and its regulatory mechanism remain open. Here, we use a stopped flow light scattering approach to define the water permeability and Arrhenius activation energy of the rat liver whole intact mitochondrion and its membrane subcompartments. The water permeabilities of whole brain and testis mitochondria as well as liposome models of the lipid bilayer composing the liver inner mitochondrial membrane are also characterized. Besides finding remarkably high water permeabilities for both mitochondria and their membrane subcompartments, the existence of additional pathways of water movement other than aquaporins are suggested.

  15. Autoradiographic localization of benzodiazepine receptor downregulation

    Tietz, E.I.; Rosenberg, H.C.; Chiu, T.H.


    Regional differences in downregulation of brain benzodiazepine receptors were studied using a quantitative autoradiographic method. Rats were given a 4-week flurazepam treatment known to cause tolerance and receptor downregulation. A second group of rats was given a similar treatment, but for only 1 week. A third group was given a single acute dose of diazepam to produce a brain benzodiazepine-like activity equivalent to that found after the chronic treatment. Areas studied included hippocampal formation, cerebral cortex, superior colliculus, substantia nigra, dorsal geniculate nucleus, lateral amygdala and lateral hypothalamus. There was a regional variation in the degree of downregulation after 1 week of flurazepam treatment, ranging from 12% to 25%. Extending the flurazepam treatment to 4 weeks caused little further downregulation in those areas studied, except for the pars reticulata of the substantia nigra, which showed a 13% reduction in (/sup 3/H)flunitrazepam binding after 1 week and a 40% reduction after 4 weeks of treatment. In a few areas, such as the lateral hypothalamus, no significant change in binding was found after 4 weeks. Acute diazepam treatment caused no change in binding. This latter finding as well as results obtained during the development of the methodology show that downregulation was not an artifact due to residual drug content of brain slices. The regional variations in degree and rate of downregulation suggest areas that may be most important for benzodiazepine tolerance and dependence and may be related to the varying time courses for tolerance to different benzodiazepine actions.

  16. Effects of fixation and demineralization on the intensity of autoradiographic labelling over the periodontal ligament of the mouse incisor after administration of [3H]-proline

    Beertsen, W.; Tonino, G.J.M.


    The effect of different histological procedures on the autoradiographic grain count over the periodontal ligament was studied quantitatively in autoradiographs made eight hours after administration of [3H]-proline. The lower jaws of 9 mice were fixed in Bouin's fixative, in 10 per cent formalin or i

  17. [Ca2+ accumulation study in isolated smooth muscle mitochondria using fluo-4 AM].

    Kolomiiets', O V; Danylovych, Iu V; Danylovych, H V; Kosterin, S O


    The opportunity of Ca2+-sensitive fluorescent dye Fluo-4 AM and spectrofluorimetry method application for the study of energy-dependent Ca2+ accumulation in mitochondria from uterus smooth muscle is proved. It has been found that the presence of mitochondrial preparation increases time-dependent fluorescent response considerably and this effect depends on Ca2+ concentration in the medium. Thus, in these conditions, deesterification active probe is formed which is sensitive to Ca2+. It is shown that the accumulation of calcium ions in mitochondria in the presence of Mg-ATP and succinate depends on exogenous Ca2+ concentration and is characterized by substrate saturating. The apparent activation constant of Ca2+ accumulation is 53.9 +/- 6.9 mM, which corresponds to the physiological concentration of the cation in the cell next to mitochondria. Transit addition of Ca2+-ionophore A23187 to the incubation me- dium caused a rapid release of ionized cation from mitochondria. When proton gradient on the inner mitochondrial membrane is dissipated by protonophore CCCP, in the case of suppressing the generation of the gradient by oligomycin and in the presence of ruthenium red that inhibits Ca2+ mitochondrial accumulation systems, Ca2+ entry is significantly reduced. The results indicate the prospects of using Fluo-4 AM to study the properties of the Ca2+ accumulation system in isolated mitochondria of the myometrium.

  18. Autoradiographic study of the effect of 1,25-dihydroxyvitamin D/sub 3/ on bone matrix synthesis in vitamin D replete rats

    Hock, J.M.; Kream, B.E.; Raisz, G.


    An autoradiographic technique using pulse labels of (/sup 3/H)proline was developed to assess the early effects of 1,25-dihydroxyvitamin D/sub 3/ (1,25(OH)/sub 2/D/sub 3/) on bone matrix synthesis in vitamin D replete rats. Rats, 7 days old, were given 0.25, 2.5, or 25 ng of 1,25(OH)/sub 2/D/sub 3/ or vehicle alone subcutaneously on days 1, 3, and 5 of the experiment. Rats received a subcutaneous injection of 100 (/sup 3/H)proline on days 2 and 6 and were killed on day 7. Calvaria and tibia were processed for autoradiography, and morphometric methods were developed to measure the rate and amount of bone matrix formed during the experimental period. When compared to control values, the amount and rate of formation of new bone matrix were both significantly decreased in rats receiving 25 ng of 1,25(OH)/sub 2/D/sub 3/ and slightly, but not significantly, decreased in rats receiving 2.5 ng. We conclude that administration of pharmacologic doses of 1,25(OH)/sub 2/D/sub 3/ to vitamin D replete rat pups impairs the formation of collagenous bone matrix.

  19. Degenerate mitochondria

    van der Giezen, Mark; Tovar, Jorge


    Mitochondria are the main sites of biological energy generation in eukaryotes. These organelles are remnants of a bacterial endosymbiont that took up residence inside a host cell over 1,500 million years ago. Comparative genomics studies suggest that the mitochondrion is monophyletic in origin. Thus, the original mitochondrial endosymbiont has evolved independently in anaerobic and aerobic environments that are inhabited by diverse eukaryotic lineages. This process has resulted in a collectio...

  20. Nanosqueezed light for probing mitochondria and calcium-induced membrane swelling for study of neuroprotectants

    Gourley, Paul L.; Chen, P.; Copeland, R. G.; Hendricks, Judy K.; McDonald, Anthony E.; Keep, M. E.; Karlsson, J. R.


    We report a new bioMEMs nanolaser technique for measuring characteristics of small organelles. We have initially applied the method to study mitochondria, a very small (500nm to 1um) organelle containing the respiration apparatus for animal cells. Because the mitochondria are so tiny, it has been difficult to study them using standard light microscope or flow cytometry techniques. We employ a recently discovered a nano-optical transduction method for high-speed analysis of submicron organelles. This ultrasensitive detection of submicron particles uses nano-squeezing of light into photon modes imposed by the ultrasmall organelle dimensions in a submicron laser cavity. In this paper, we report measurements of mitochondria spectra under normal conditions and under high calcium ion gradient conditions that upset membrane homeostasis and lead to organelle swelling and lysis, similar to that observed in the diseased state. The measured spectra are compared with our calculations of the electromagnetic modes in normal and distended mitochondria using multiphysics finite element methods.

  1. Electron microscopic radioautographic studies on macromolecular synthesis in mitochondria of animal cells in aging

    Nagata, Tetsuji, E-mail: [Shinshu Univ. School of Medicine, Matsumoto (Japan). Dept. of Anatomy and Cell Biology


    Study aging changes of intramitochondrial DNA, RNA, protein synthesis of mouse organs during the development and aging, 30 groups of developing and aging mice (3 individuals each), from fetal day 19 to postnatal newborn at day 1, 3, 9, 14 and adult at month 1, 2, 6, 12 to 24, were injected with either {sup 3}H-thymidine, {sup 3}H-uriidine, or {sup 3}H-leucine, sacrificed 1 h later and liver, adrenal, lung and testis tissues observed by electron microscopic radioautography. Accordingly, numbers of mitochondria per cell profile area, numbers of labeled mitochondria and the mitochondrial labeling index labeled with {sup 3}H-labeled precursors showing DNA, RNA, protein synthesis in these cells (hepatocytes, 3 zones of the adrenal cortices - zona glomerulosa, fasciculata and reticularis -, adrenal medullary cells, pulmonary cells and testis cells) were counted per cells and compared among the respective developing and aging groups. The numbers of mitochondria in these cells increased from fetal day 19 to postnatal month 1 and 2. However, the numbers of labeled mitochondria and the labeling indices of intramitochondrial DNA, RNA, protein syntheses incorporating the {sup 3}H-labeled precursors in the described tissue cells increased from fetal day 19 to postnatal month 1 and decreased to month 24. These data support that the activity of intramitochnodrial DNA, RNA, protein syntheses in cells of these tissues increased and decreased by development and aging in mice. The intramitochondrial DNA, RNA and protein syntheses in some other organs were also reviewed and discussed. (author)

  2. Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: A Monte Carlo study

    Kirkby, Charles, E-mail:; Ghasroddashti, Esmaeel [Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta T1J 1W5 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 4N2 (Canada)


    enhanced, as these simulations show, this work suggests the potential for both a tool to study the role of mitochondria in cellular response to radiation and a novel avenue for radiation therapy in that the mitochondria may be targeted, rather than the nuclear DNA.

  3. Molecular studies of functional aspects of plant mitochondria

    Siedow, J.N.


    The goal of this research is to characterize the mechanism by which a protein encoded by mitochondrial genome of cms-T maize (URF13) interacts with a family of the compounds produced by certain fungi (T-toxins) to permeabilize biological membranes. The research carried out during the current funding period has focused on the structure of URF13, and the results support the validity of the three-helix model of URF13 and provide direct evidence for the oligomeric nature of at least some of the URF13 molecules in the membrane. In addition, the toxin binding studies have provided insight into the dynamic nature of the T-toxin:URF13 interaction and the extent to which Asp-39 is crucial to the interaction that leads to membrane pore formation. Additional knowledge of the structure of URF13 is needed if the nature of the interaction between URF13 and T-toxin to produce a hydrophilic pore within the membrane is to ultimately be understood.

  4. Molecular studies of functional aspects of plant mitochondria. Progress report

    Siedow, J.N.


    The goal of this research is to characterize the mechanism by which a protein encoded by mitochondrial genome of cms-T maize (URF13) interacts with a family of the compounds produced by certain fungi (T-toxins) to permeabilize biological membranes. The research carried out during the current funding period has focused on the structure of URF13, and the results support the validity of the three-helix model of URF13 and provide direct evidence for the oligomeric nature of at least some of the URF13 molecules in the membrane. In addition, the toxin binding studies have provided insight into the dynamic nature of the T-toxin:URF13 interaction and the extent to which Asp-39 is crucial to the interaction that leads to membrane pore formation. Additional knowledge of the structure of URF13 is needed if the nature of the interaction between URF13 and T-toxin to produce a hydrophilic pore within the membrane is to ultimately be understood.

  5. Long-term changes in brain following continuous phencyclidine administration: An autoradiographic study using flunitrazepam, ketanserin, mazindol, quinuclidinyl benzilate, piperidyl-3,4-{sup 3}H(N)-TCP, and AMPA receptor ligands

    Ellison, Gaylord; Keys, Alan; Noguchi, Kevin [Univ. of California Los Angeles, Dept. of Psychology, Los Angeles, CA (United States)


    Phencyclidine induces a model psychosis which can persist for prolonged periods and presents a strong drug model of schizophrenia. When given continuously for several days to rats, phencyclidine and other N-methyl-D-aspartate (NMDA) antagonists induce neural degeneration in a variety of limbic structures, including retrosplenial cortex, hippocampus, septohippocampal projections, and piriform cortex. In an attempt to further clarify the mechanisms underlying these degeneration patterns, autoradiographic studies using a variety of receptor ligands were conducted in animals 21 days after an identical dosage of the continuous phencyclidine administration employed in the previous degeneration studies. The results indicated enduring alterations in a number of receptors: these included decreased piperidyl-3,4-{sup 3}H(N)-TCP (TCP), flunitrazepam, and mazindol binding in many of the limbic regions in which degeneration has been reported previously. Quinuclidinyl benzilate and (AMPA) binding were decreased in anterior cingulate and piriform cortex, and in accumbens and striatum. Piperidyl-3,4-{sup 3}H(N)-TCP binding was decreased in most hippocampal regions. Many of these long-term alterations would not have been predicted by prior studies of the neurotoxic effects of continuous phencyclidine, and these results do not suggest a unitary source for the neurotoxicity. Whereas retrosplenial cortex, the structure which degenerates earliest, showed minimal alterations, some of the most consistent, long term alterations were in structures which evidence no immediate signs of neural degeneration, such as anterior cingulate cortex and caudate nucleus. In these structures, some of the receptor changes appeared to develop gradually (they were not present immediately after cessation of drug administration), and thus were perhaps due to changed input from regions evidencing neurotoxicity. Some of these findings, particularly in anterior cingulate, may have implications for models of

  6. Autoradiographic localization of estrogen binding sites in human mammary lesions

    Buell, R.H.


    The biochemical assay of human mammary carcinomas for estrogen receptors is of proven clinical utility, but the cellular localization of estrogen binding sites within these lesions is less certain. The author describes the identification of estrogen binding sites as visualized by thaw-mount autoradiography after in vitro incubation in a series of 17 benign and 40 malignant human female mammary lesions. The results on the in vitro incubation method compared favorably with data from in vivo studies in mouse uterus, a well-characterized estrogen target organ. In noncancerous breast biopsies, a variable proportion of epithelial cells contained specific estrogen binding sites. Histologically identifiable myoepithelial and stromal cells were, in general, unlabeled. In human mammary carcinomas, biochemically estrogen receptor-positive, labeled and unlabeled neoplastic epithelial cells were identified by autoradiography. Quantitative results from the autoradiographic method compared favorably with biochemical data.

  7. Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide

    Shaffer, M.M.; Moody, T.W.


    Receptors for VIP were characterized in the rat CNS. /sup 125/I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific /sup 125/I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.

  8. Electron microscopic and autoradiographic analysis of the distribution of the vagus nerve in the ferret stomach

    Al Muhtaseb, M. H. [محمد هاشم المحتسب; Kittani, H. F.


    In this study, tritiated leucine was injected into the vagal dorsal motor nucleus after acute and chronic partial vagotomy. The method of sampling of the stomach, application of % 2 test and the analysis of the electron microscopic autoradiographs revealed that the distribution of silver grains over the axon profiles were uniformly distributed over the body and pyloric areas of the stomach. Also a % test showed that the number of grains is independent of the area chosen. Statistical analysis ...

  9. Autoradiographic localization of 5-hydroxytryptamine and noradrenaline in the central nervous system of Lithobius forficatus L. (Myriapoda; Chilopoda)

    Descamps, Michel; Joly, Robert; Jamault-Navarro, Catherine


    Using the ability of selective uptake by the neurons of their own secreted amines, two 3H labeled neurotransmitters were used: 5-hydroxytryptamine (5 HT, serotonin) and noradrenaline (NA). Autoradiographic study was conducted on semithin and on ultrathin sections. In the brain, 3H-5 HT labeling is o

  10. Doubly uniparental inheritance of mitochondria as a model system for studying germ line formation.

    Liliana Milani

    Full Text Available BACKGROUND: Doubly Uniparental Inheritance (DUI of mitochondria occurs when both mothers and fathers are capable of transmitting mitochondria to their offspring, in contrast to the typical Strictly Maternal Inheritance (SMI. DUI was found in some bivalve molluscs, in which two mitochondrial genomes are inherited, one through eggs, the other through sperm. During male embryo development, spermatozoon mitochondria aggregate in proximity of the first cleavage furrow and end up in the primordial germ cells, while they are dispersed in female embryos. METHODOLOGY/PRINCIPAL FINDINGS: We used MitoTracker, microtubule staining and transmission electron microscopy to examine the mechanisms of this unusual distribution of sperm mitochondria in the DUI species Ruditapes philippinarum. Our results suggest that in male embryos the midbody deriving from the mitotic spindle of the first division concurs in positioning the aggregate of sperm mitochondria. Furthermore, an immunocytochemical analysis showed that the germ line determinant Vasa segregates close to the first cleavage furrow. CONCLUSIONS/SIGNIFICANCE: In DUI male embryos, spermatozoon mitochondria aggregate in a stable area on the animal-vegetal axis: in organisms with spiral segmentation this zone is not involved in cleavage, so the aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area in which also germ plasm is transferred. In 2-blastomere embryos, the segregation of sperm mitochondria in the same region with Vasa suggests their contribution in male germ line formation. In DUI male embryos, M-type mitochondria must be recognized by egg factors to be actively transferred in the germ line, where they become dominant replacing the Balbiani body mitochondria. The typical features of germ line assembly point to a common biological mechanism shared by DUI and SMI organisms. Although the molecular dynamics of the segregation of sperm mitochondria in DUI species are unknown

  11. Mitochondria and Organismal Longevity


    Mitochondria are essential for various biological processes including cellular energy production. The oxidative stress theory of aging proposes that mitochondria play key roles in aging by generating reactive oxygen species (ROS), which indiscriminately damage macromolecules and lead to an age-dependent decline in biological function. However, recent studies show that increased levels of ROS or inhibition of mitochondrial function can actually delay aging and increase lifespan. The aim of thi...

  12. Pontine and medullary projections to the nucleus retroambiguus : A wheat germ agglutinin horseradish peroxidase and autoradiographic tracing study in the cat

    Gerrits, Peter O.; Holstege, Gert


    The nucleus retroambiguus (NRA) in the caudal medulla oblongata plays a role in expiration, vocalization, vomiting, and possibly lordosis. The present study tried to determine which structures, in turn, control the NRA. One cell group is the periaqueductal gray (FAG), which is considered to be the f

  13. Pontine and medullary projections to the nucleus retroambiguus : A wheat germ agglutinin horseradish peroxidase and autoradiographic tracing study in the cat

    Gerrits, Peter O.; Holstege, Gert


    The nucleus retroambiguus (NRA) in the caudal medulla oblongata plays a role in expiration, vocalization, vomiting, and possibly lordosis. The present study tried to determine which structures, in turn, control the NRA. One cell group is the periaqueductal gray (FAG), which is considered to be the

  14. Autoradiographic and histopathological studies of boric acid-mediated BNCT in hepatic VX2 tumor-bearing rabbits: Specific boron retention and damage in tumor and tumor vessels.

    Yang, C H; Lin, Y T; Hung, Y H; Liao, J W; Peir, J J; Liu, H M; Lin, Y L; Liu, Y M; Chen, Y W; Chuang, K S; Chou, F I


    Hepatoma is a malignant tumor that responds poorly to conventional therapies. Boron neutron capture therapy (BNCT) may provide a better way for hepatoma therapy. In this research, (10)B-enriched boric acid (BA, 99% (10)B) was used as the boron drug. A multifocal hepatic VX2 tumor-bearing rabbit model was used to study the mechanisms of BA-mediated BNCT. Autoradiography demonstrated that BA was selectively targeted to tumors and tumor vessels. Histopathological examination revealed the radiation damage to tumor-bearing liver was concentrated in the tumor regions during BNCT treatment. The selective killing of tumor cells and the destruction of the blood vessels in tumor masses may be responsible for the success of BA-mediated BNCT for liver tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Development and in-vivo behavior of tin containing radiopharmaceuticals--II. Autoradiographic and scintigraphic studies in normal animals and in animal models of bone disease

    Oster, Z.H.; Som, P.; Srivastava, S.C.; Fairchild, R.G.; Meinken, G.E.; Tillman, D.Y.; Sacker, D.F.; Richards, P.; Atkins, H.L.; Brill, A.B.


    Various 117mSn (2+ and 4+) compounds in well defined oxidation states were studied in normal mice using whole body autoradiography (WBARG), tissue distribution and scintigraphy in animal models of vitamin A induced bone disease, fracture, infected fracture and ischemic muscle lesions. The 117mSn4+-DTPA showed high affinity to normal bone with low soft tissue concentration. Increased deposition of this compound in fractures and ischemic lesions in muscle was also demonstrated. In hypervitaminosis A, reduced bone uptake of 117mSn4+-DTPA was shown to occur. Nude mice bearing osteogenic sarcoma of human origin showed uptake in spiculated pattern. The similar distribution of 117mSn4+-DTPA which does not contain phosphate or phosphonate groups, and the 99mTc(Sn) skeletal imaging compounds may indicate that tin is important in binding to bone. 117mSn4+-DTPA may not be ideal for routine imaging except when long term follow up is required. It should however be considered for therapy of bone tumors because of the long physical half-life of 117mSn (t1/2 = 14.03 days), abundance of short-range conversion and Auger electrons and its preferential deposition in cortical bone as indicated by our results.

  16. Autoradiographic studies of the rat renotropic system.

    Castillo, O; Robertson, D; Goldin, H; Preuss, H G


    Rat sera, 10-30 h after unilateral nephrectomy (UNI), enhance 3H-thymidine ("3H-Tdr) incorporation into DNA of incubating renal tissue from control rats. Stimulation is even greater when extracts from remaining growing kidneys 20 h after UNI are combined with sera from rats after UNI. UNI extracts, i.e., extracts from the kidney remaining after uninephrectomy, are nonstimulatory alone. UNI sera and UNI sera plus UNI extracts could theoretically augment 3H-Tdr incorporation into renal DNA via dilutional means rather than enhanced DNA synthesis. To determine if our results were secondary to enhanced DNA synthesis, we performed our in vitro assay using the labelling of nuclei via autoradiography as another index. The addition of UNI sera compared to sera from sham-operated rats (SHAM) in seven paired experiments enhanced incorporation of 3H-Tdr into DNA by 30% (p less than 0.02) and the addition of both UNI sera and UNI extracts compared to SHAM sera and SHAM extracts enhanced incorporation by 48% (p less than 0.001). Unlike a dilutional effect, nuclear labelling also increased in these same seven experiments: UNI sera versus SHAM sera increased 25% (p less than 0.05) and UNI sera + UNI extracts versus SHAM sera + SHAM extracts increased 37% (p less than 0.01). We conclude that UNI sera and UNI sera + UNI extracts enhance 3H-Tdr incorporation into DNA by augmenting DNA synthesis, driving cells into the "S" phase. The use of 3H-Tdr incorporation into DNA in our assay does estimate DNA synthesis.

  17. Tissue fixation and autoradiographic negative chemography in rat oral epithelium

    Prime, S.S.; MacDonald, D.G. (Glasgow Dental Hospital (UK))


    The effect of routine methods of tissue fixation on autoradiographic negative chemography was investigated in adult rat palatal and tongue epithelia following the incorporation of /sup 3/H thymidine in vivo. Tissues fixed in formalin or Bouin's without acetic acid demonstrated more negative chemography than those fixed in Bouin's fluid, formol-acetic-methanol or Carnoy's solutions. These findings were associated with the lowest silver grain counts per nucleus in the formalin fixed tissues, low grain counts in tissues fixed in Bouin's without acetic acid, but the addition of acetic acid to make complete Bouin's fluid gave results similar to those following fixation with Carnoy's solution. The highest silver grain counts were obtained with tissues fixed in formol-acetic-methanol. The relationship between negative chemography and the labelling indices of tissues was unclear except where the negative chemographic effects were severe. Formalin fixed tissues showed the maximum negative chemographic effects and the lowest labelling indices. Carnoy's solution appeared to be the fixative of choice for cell kinetic studies of oral epithelium.

  18. Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria

    Chen, Timothy; Shi, Linda Z.; Zhu, Qingyuan; Chandsawangbhuwana, Charlie; Berns, Michael W.


    The purpose of this study is to investigate how the mitochondrial membrane potential affects sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC6(3). A 1064 nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450 mW in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the escape force from the laser tweezers were measured. Human (Homo sapiens), dog (Canis lupis familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC6(3) to measure the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species exhibited an increase in fluorescence when treated with the DiOC6(3). When a cyanide inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration (glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic respiration for motility. The results demonstrate that optical trapping in combination with DiOC6(3) is an effective way to study sperm motility and energetics.

  19. Coevolution study of mitochondria respiratory chain proteins:Toward the understanding of protein-protein interaction

    Ming Yang; Yan Ge; Jiayan Wu; Jingfa Xiao; Jun Yu


    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein-protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein-protein interaction in intra-complex and the binary protein-protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 x 10-6). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein-protein interaction.Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study.

  20. 3-nitropropionic acid-induced mitochondrial permeability transition: comparative study of mitochondria from different tissues and brain regions.

    Mirandola, Sandra R; Melo, Daniela R; Saito, Angela; Castilho, Roger F


    The adult rat striatum is particularly vulnerable to systemic administration of the succinate dehydrogenase inhibitor 3-nitropropionic acid (3NP), which is known to induce degeneration of the caudate-putamen, as occurs in Huntington's disease. The aim of the present study was to compare the susceptibility of isolated mitochondria from different rat brain regions (striatum, cortex, and cerebellum) as well as from the liver, kidney, and heart to mitochondrial permeability transition (MPT) induced by 3NP and Ca(2+). In the presence of micromolar Ca(2+) concentrations, 3NP induces MPT in a dose-dependent manner, as estimated by mitochondrial swelling and a decrease in the transmembrane electrical potential. A 3NP concentration capable of promoting a 10% inhibition of ADP-stimulated, succinate-supported respiration was sufficient to stimulate Ca(2+)-induced MPT. Brain and heart mitochondria were generally more sensitive to 3NP and Ca(2+)-induced MPT than mitochondria from liver and kidney. In addition, a partial inhibition of mitochondrial respiration by 3NP resulted in more pronounced MPT in striatal mitochondria than in cortical or cerebellar organelles. A similar inhibition of succinate dehydrogenase activity was observed in rat tissue homogenates obtained from various brain regions as well as from liver, kidney, and heart 24 hr after a single i.p. 3NP dose. Mitochondria isolated from forebrains of 3NP-treated rats were also more susceptible to Ca(2+)-induced MPT than those of control rats. We propose that the increased susceptibility of the striatum to 3NP-induced neurodegeneration may be partially explained by its susceptibility to MPT, together with the greater vulnerability of this brain region to glutamate receptor-mediated Ca(2+) influx.

  1. Kinetics of nucleotide transport in rat heart mitochondria studied by a rapid filtration technique

    Brandolin, G.; Marty, I.; Vignais, P.V. (LBIO/Laboratoire de Biochimie, Grenoble (France))


    A rapid filtration technique has been used to measure at room temperature the kinetics of ADP and ATP transport in rat heart mitochondria in the millisecond time range. Transport was stopped by cessation of the nucleotide supply, without the use of a transport inhibitor, thus avoiding any quenching delay. The kinetics of ({sup 14}C)ADP transport in energized mitochondria were apparently monophasic. The rate of transport of ({sup 14}C)ATP in energized mitochondria was 5-10 times lower than that of ({sup 14}C)ADP. Upon uncoupling, the rate of ({sup 14}C)ATP uptake was enhanced, and that of ({sup 14}C)ADP uptake was decreased. However, the two rates did not equalize, indicating that transport was not exclusively electrogenic. Transport of ({sup 14}C)ADP and ({sup 14}C)ATP by resting mitochondria followed biphasic kinetics. Depletion of nucleotides in resting mitochondria resulted in a greater decrease in the extent of the slow phase than of the rapid one. In addition, about half of the nucleotides taken up at the end of the rapid phase were not discharged into the medium upon addition of carboxyatractyloside. This suggested that matricial nucleotides are compartmentalized in two pools which are exchangeable at different rates with external nucleotides.

  2. Study on the role of mitochondria in sodium butyrate-induced apoptosis of ovarian carcinoma cells

    Liu Wei; Tang Chunsheng; Rong Fengnian


    Objective:To investigate the role of mitochondria in sodium butyrate-induced apoptosis of ovarian carcinoma cells in vitro.Methods:Human ovarian epithelial cancer 3AO cells were cultured in vitro and treated with sodium butyrate of different concentration for different time. The characters of apoptosis were assessed through light microscopy and DNA ladder analysis. The morphological changes of mitochondria were detected through electron and epifluorescence microscopy. The functional changes of mitochondria and the expression of Bcl-2/Bax protein were analyzed by flow cytometry.Results:As the concentration of sodium butyrate rose to 4mmol/L, the morphologic characters of apoptosis were found by light microscopy, DNA ladder was observed. Under epifluorescence microscope the fluorescence of the control group was stronger than that of the experimental group. Under electron microscope swelled mitochondria was detected. Flow cytometry analysis showed mitochondria transmembrane potentials decreased and there were down-regulate of Bcl-2 protein and up-regulate of the Bax protein(P<0.05).Conclusion:Sodium butyrate can induce apoptosis of 3AO cells in a time-dose dependent manner. Mitochondrion may play a key role in the procedure of apoptosis of ovarian cancer cells.

  3. Nanolaser spectroscopy of Normal and Genetically Defective Mitochondria: New Biostatistical Tool for Studying Disease

    Gourley, Paul; Hendricks, Judy; Naviaux, Robert; Yaffe, Michael


    We report an analysis of wild and mutant strains of mitochondria from yeast cells using nanolaser spectroscopy to measure cytochrome density and its statistical variation in the population. The first strain 110 was derived from wild-type strain 104 (Saccharomyces cerevisiae) by removal of its mitochondrial DNA (mtDNA), resulting in loss of all mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b that can be detected in the laser spectra. Histograms of laser wavelengths produced by wild-type mitochondria produced peaked distributions, while mutant mitochondria exhibit asymmetric, highly skewed distributions. Surprisingly, all of these distributions exhibit extended tails and can be self-consistently fit with log-normal distribution functions. In striking contrast, the mitochondrial diameters (measured separately by microscopy) exhibit normal Gaussian distributions. These results indicate that the nanolaser spectra are useful for quantifying cytochrome content in mitochondria and may have important implications for quantifying defects in mitochondria that manifest human disease.

  4. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    Som, P.; Sacker, D.F.


    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  5. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    Som, P.; Sacker, D.F.


    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  6. Exogenous ether lipids predominantly target mitochondria

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian


    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high......, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria...

  7. Mitochondria-rich cells as experimental model in studies of epithelial chloride channels.

    Willumsen, Niels J; Amstrup, Jan; Møbjerg, Nadja; Jespersen, Ase; Kristensen, Poul; Larsen, E Hviid


    The mitochondria-rich (mr) cell of amphibian skin epithelium is differentiated as a highly specialised pathway for passive transepithelial transport of chloride. The apical membrane of mr cells expresses several types of Cl(-) channels, of which the function of only two types has been studied in detail. (i) One type of channel is gated by voltage and external chloride concentration. This intriguing type of regulation leads to opening of channels only if [Cl(-)](o) is in the millimolar range and if the electrical potential is of a polarity that secures an inwardly directed net flux of this ion. Reversible voltage activations of the conductance proceed with long time constants, which depend on V in such a way that the rate of conductance activation increases when V is clamped at more negative values (serosal bath grounded). The gating seems to involve processes that are dependent on F-actin localised in the submembrane domain in the neck region of the flask-shaped mr cell. (ii) The other identified Cl(-) pathway of mr cells is mediated by small-conductance apical CFTR chloride channels as concluded from its activation via beta-adrenergic receptors, ion selectivity, genistein stimulation and inhibition by glibenclamide. bbCFTR has been cloned, and immunostaining has shown that the gene product is selectively expressed in mr cells. There is cross-talk between the two pathways in the sense that activation of the conductance of the mr cell by voltage clamping excludes activation via receptor occupation, and vice versa. The mechanism of this cross-talk is unknown.

  8. Studies on the mechanism of the inhibitory effects of erucylcarnitine in rat heart mitochondria.

    Christophersen, B O; Christiansen, R Z


    1. The mechanism of the inhibitory effect of erucylcarnitine on palmityl-carnitine oxidation in rat heart mitochondria was studied. 2. Erucylcarnitine inhibited in the same time the oxidation of [U-14-C]-palmitylcarnitine and the total rate of oxygen uptake. Other acylcarnitines competed as well for the oxidation with radioactive palmitylcarnitine, but they were well oxidized themselves, so that the total oxygen uptake did not decrease. 3. The presence of erucylcarnitine did not change the distribution pattern of Krebs cycle intermediates derived from [U-minus 14 C] palmitylcarnitine except that succinate/malate ratio increased. 4. The presence of erucylcarnitine did not lead to the formation of any beta-oxidation cycle intermediates from [U-minus 14 C] palymitylcarnitine. The formation of beta-hydroxy-palmityl derivative when rotenon was included into the incubation medium, decreased in the presence of erucylcarnitine. 5. It is postulated, that the inhibited entrance of palmityl groups into the beta-oxidation cycle is due to the fact that erucylcarnitine and palmitylcarnitine behave as substrate-competitive inhibitors for long chain acyl-CoA dehydrogenase. 6. There was observed a latency of 1-2 min in the effect of erucylcarnitine on the palmitylcarnitine oxidation, which seems to correspond to the time required for the formation of high amounts of intramitochondrial erucyl-CoA. 7. Erucylcarnitine inhibited the total oxygen uptake with long, medium and short chain acylcarnitines, pyruvate and alpha-ketoglutarate as substrates, while the oxidation of succinate was not affected. 8. Sequestration of free CoA in the form of very slowly metabolized erucyl-CoA is proposed as the partial explanation of the observed inhibitory effects of erucylcarnitine on the oxidation of CoA-dependent substrates (alternatively to the inhibition at the level of acyl-CoA dehydrogenases in case of acylcarnitines).

  9. Study on Biological Effects of La(3+) on Rat Liver Mitochondria by Microcalorimetric and Spectroscopic Methods.

    Wu, Man; Gao, Jia-Ling; Feng, Zhi-Jiang; Liu, Wen; Zhang, Ye-Zhong; Liu, Yi; Dai, Jie


    The effects of lanthanum on heat production of mitochondria isolated from Wistar rat liver were investigated with microcalorimetry; simultaneously, the effects on mitochondrial swelling and membrane potential (Δψ) were determined by spectroscopic methods. La(3+) showed only inhibitory action on mitochondrial energy turnover with IC50 being 55.8 μmol L(-1). In the spectroscopic experiments, La(3+), like Ca(2+), induced rat liver mitochondrial swelling and decreased membrane potential (Δψ), which was inhibited by the specific permeability transition inhibitor, cyclosporine A (CsA). The induction ability of La(3+) was stronger than that of Ca(2+). These results demonstrated that La(3+) had some biotoxicity effect on mitochondria; the effects of La(3+) and Ca(2+) on rat liver mitochondrial membrane permeability transition (MPT) are different, and La represents toxic action rather than Ca analogy.

  10. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    Stoeckel, M.E.; Freund-Mercier, M.J. (Centre National de la Recherche Scientifique, Strasbourg (France))


    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.

  11. An allometric study of fatty acids and sensitivity to lipid peroxidation of brain microsomes and mitochondria isolated from different bird species.

    Gutiérrez, A M; Reboredo, G R; Mosca, S M; Catalá, A


    The objective of this investigation was to examine the relationship between body size, fatty acid composition and sensitivity to lipid peroxidation of mitochondria and microsomes isolated from the brain of different size bird species: manon, quail, pigeon, duck and goose, representing a 372-fold range of body mass. Fatty acids of total lipids were determined using gas chromatography and lipid peroxidation was evaluated using a chemiluminescence assay. The allometric study of the fatty acids present in brain mitochondria and microsomes of the different bird species showed a small number of significant allometric trends. In mitochondria the percentage of monounsaturated fatty acids, was significantly lower in the larger birds (r=-0.965; Pmicrosomes but not in mitochondria may indicate a preferential incorporation of this fatty acid in the brain endoplasmic reticulum of the larger bird species. The brain of all birds studied had a high content of docosahexaenoic acid. However brain mitochondria but not microsomes isolated from all the birds analyzed showed a significant decrease of arachidonic and docosahexaenoic acids during lipid peroxidation. The allometric analyses of chemiluminescence were not statistically significant. In conclusion our results show absence of correlation between the sensitivity to lipid peroxidation of brain mitochondria and microsomes with body size and maximum life span.

  12. Ca(2+)-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: a comparative study.

    Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Agafonov, Alexey V; Astashev, Maxim E; Kazakov, Alexey S; Saris, Nils-Erik L; Mironova, Galina D


    In the present work, we examine and compare the effects of saturated (palmitic) and unsaturated (oleic) fatty acids in relation to their ability to cause the Ca(2+)-dependent membrane permeabilization. The results obtained can be summarized as follows. (1) Oleic acid (OA) permeabilizes liposomal membranes at much higher concentrations of Ca(2+) than palmitic acid (PA): 1mM versus 100μM respectively. (2) The OA/Ca(2+)-induced permeabilization of liposomes is not accompanied by changes in the phase state of lipid bilayer, in contrast to what is observed with PA and Ca(2+). (3) The addition of Ca(2+) to the PA-containing vesicles does not change their size; in the case of OA, it leads to the appearance of larger and smaller vesicles, with larger vesicles dominating. This can be interpreted as a result of fusion and fission of liposomes. (4) Like PA, OA is able to induce a Ca(2+)-dependent high-amplitude swelling of mitochondria, yet it requires higher concentrations of Ca(2+) (30 and 100μM for PA and OA respectively). (5) In contrast to PA, OA is unable to cause the Ca(2+)-dependent high-amplitude swelling of mitoplasts, suggesting that the cause of OA/Ca(2+)-induced permeability transition in mitochondria may be the fusion of the inner and outer mitochondrial membranes. (6) The presence of OA enhances PA/Ca(2+)-induced permeabilization of liposomes and mitochondria. The paper discusses possible mechanisms of PA/Ca(2+)- and OA/Ca(2+)-induced membrane permeabilization, the probability of these mechanisms to be realized in the cell, and their possible physiological role.

  13. Metabolic pathways in Anopheles stephensi mitochondria.

    Giulivi, Cecilia; Ross-Inta, Catherine; Horton, Ashley A; Luckhart, Shirley


    No studies have been performed on the mitochondria of malaria vector mosquitoes. This information would be valuable in understanding mosquito aging and detoxification of insecticides, two parameters that have a significant impact on malaria parasite transmission in endemic regions. In the present study, we report the analyses of respiration and oxidative phosphorylation in mitochondria of cultured cells [ASE (Anopheles stephensi Mos. 43) cell line] from A. stephensi, a major vector of malaria in India, South-East Asia and parts of the Middle East. ASE cell mitochondria share many features in common with mammalian muscle mitochondria, despite the fact that these cells are of larval origin. However, two major differences with mammalian mitochondria were apparent. One, the glycerol-phosphate shuttle plays as major a role in NADH oxidation in ASE cell mitochondria as it does in insect muscle mitochondria. In contrast, mammalian white muscle mitochondria depend primarily on lactate dehydrogenase, whereas red muscle mitochondria depend on the malate-oxaloacetate shuttle. Two, ASE mitochondria were able to oxidize proline at a rate comparable with that of alpha-glycerophosphate. However, the proline pathway appeared to differ from the currently accepted pathway, in that oxoglutarate could be catabolized completely by the tricarboxylic acid cycle or via transamination, depending on the ATP need.

  14. Metabolic Pathways in Anopheles stephensi mitochondria

    Giulivi, Cecilia; Ross-Inta, Catherine; Horton, Ashley A.; Luckhart, Shirley


    No studies have been performed on mitochondria of malaria vector mosquitoes. This information would be valuable in understanding mosquito aging and detoxification of insecticides, two parameters that significantly impact malaria parasite transmission in endemic regions. Here, we report the analyses of respiration and oxidative phosphorylation in mitochondria of cultured cells (ASE line) from Anopheles stephensi, a major vector of malaria in India, Southeast Asia and parts of the Middle East. ASE cell mitochondria shared many features in common with mammalian muscle mitochondria, despite the fact that these cells have a larval origin. However, two major differences with mammalian mitochondria were apparent. One, the glycerol-phosphate shuttle plays a major role in NADH oxidation in ASE cell mitochondria as it does in insect muscle mitochondria. In contrast, mammalian white muscle mitochondria depend primarily on lactate dehydrogenase, whereas red muscle mitochondria depend on the malate-oxaloacetate shuttle. Two, ASE mitochondria were able to oxidize Pro at a rate comparable with that of α-glycerophosphate. However, the Pro pathway appeared to differ from the currently accepted pathway, in that ketoglutarate could be catabolyzed completely by the Krebs cycle or via transamination depending on the ATP need. PMID:18588503

  15. Comparative studies on mitochondria isolated from neuron-enriched and glia-enriched fractions of rabbit and beef brain.

    Hamberger, A; Blomstrand, C; Lehninger, A L


    Fractions enriched in neuronal and glial cells were obtained from dispersions of whole beef brain and rabbit cerebral cortex by large-scale density gradient centrifugation procedures. The fractions were characterized by appropriate microscopic observation. Mitochondria were then isolated from these fractions by differential centrifugation of their homogenates. The two different types of mitochondria were characterized with respect to certain enzyme activities, respiratory rate, rate of protein synthesis, and their buoyant density in sucrose gradients. The mitochondria from the neuron-enriched fraction were distinguished by a higher rate of incorporation of amino acids into protein, higher cytochrome oxidase activity, and a higher buoyant density in sucrose density gradients. Mitochondria from the glia-enriched fraction showed relatively high monoamine oxidase and Na(+)- and K(+)-stimulated ATPase activities. The rates of oxidation of various substrates and the acceptor control ratios did not differ appreciably between the two types of mitochondria. The difference in the buoyant density of mitochondria isolated from the neuron-enriched and glia-enriched cell fractions was utilized in attempts to separate neuronal and glial mitochondria from the mixed mitochondria obtained from whole brain homogenates in shallow sucrose gradients. The appearance of two peaks of cytochrome oxidase, monoamine oxidase, and protein concentration in such gradients shows the potential feasibility of such an approach.

  16. Study of the mechanism of permeabilization of lecithin liposomes and rat liver mitochondria by the antimicrobial drug triclosan.

    Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Tenkov, Kirill S; Penkov, Nikita V; Agafonov, Alexey V; Pavlik, Lyubov L; Yashin, Valery A; Samartsev, Victor N; Dubinin, Mikhail V


    The effect of the antimicrobial compound triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol;) on the permeability of lecithin liposomes and rat liver mitochondria was studied. It was found that triclosan was able to increase nonspecific permeability of liposomes in a dose-dependent manner, which was detected by the release of the fluorescent probe sulforhodamine B (SRB) from vesicles. A partial release of SRB occurs instantly at the moment of triclosan addition, which is followed by a slow leakage of the dye. The triclosan-induced release of SRB from liposomes grew as pH of the medium was decreased from 9.5 to 7.5. As revealed by the laurdan generalized polarization (GP) technique, triclosan increased laurdan GP in lecithin liposomes, indicating a decrease in membrane fluidity. Measurements of GP as a function of fluorescence excitation wavelength gave an ascending line for triclosan-containing liposomes, which can be interpreted as phase heterogeneity of the lipid/triclosan system. Dynamic light scattering experiments also showed that at a high triclosan-to-lipid molar ratio (~0.5), a population of smaller light-scattering particles (~0.4 of the size of liposomes) appear in the system. Experiments with rat liver mitochondria demonstrated that triclosan (10-70μM) induced a high-amplitude cyclosporin А-insensitive swelling of the organelles accompanied the release of cytochrome c. On the basis of the results obtained, possible mechanisms of the toxic effect of triclosan in eukaryotic cells are discussed. Copyright © 2017. Published by Elsevier B.V.

  17. Mitochondria: isolation, structure and function.

    Picard, Martin; Taivassalo, Tanja; Gouspillou, Gilles; Hepple, Russell T


    Mitochondria are complex organelles constantly undergoing processes of fusion and fission, processes that not only modulate their morphology, but also their function. Yet the assessment of mitochondrial function in skeletal muscle often involves mechanical isolation of the mitochondria, a process which disrupts their normally heterogeneous branching structure and yields relatively homogeneous spherical organelles. Alternatively, methods have been used where the sarcolemma is permeabilized and mitochondrial morphology is preserved, but both methods face the downside that they remove potential influences of the intracellular milieu on mitochondrial function. Importantly, recent evidence shows that the fragmented mitochondrial morphology resulting from routine mitochondrial isolation procedures used with skeletal muscle alters key indices of function in a manner qualitatively similar to mitochondria undergoing fission in vivo. Although these results warrant caution when interpreting data obtained with mitochondria isolated from skeletal muscle, they also suggest that isolated mitochondrial preparations might present a useful way of interrogating the stress resistance of mitochondria. More importantly, these new findings underscore the empirical value of studying mitochondrial function in minimally disruptive experimental preparations. In this review, we briefly discuss several considerations and hypotheses emerging from this work.


    STEEN, H; MEIJER, DKF; Merema, M.T.


    The effect of ethanol on the hepatic uptake of various cationic drugs was studied in isolated perfused rat livers, isolated rat hepatocytes and isolated rat liver mitochondria. In isolated rat hepatocytes and in isolated perfused rat livers, the uptake of the model organic cation tri-n-butylmethylam

  19. $sup 3$H-metyrapol as a tool for studies of interactions of deoxycorticosterone with adrenal cortex mitochondria

    Satre, M.; Lunardi, J.; Vignais, P.V.


    From international conference on mechanism in bioenergetica; Bari, Italy (1 May 1972). /sup 3/H-metyrapol was prepared by reduction of metyrapone with tritiated sodium borohydride. Metyrapol behaves like metyrapone as an inhibitor of the 11 BETA -hydroxylation of deoxycorticosterone in adrenal cortex mitochondria and competes with metyrapone in binding tests. These results, and the ease of preparation of highly labeled /sup 3/H-metyrapol, recommend /sup 3/ Hmetyrapol as a probe of deoxycorticosterone interactions with adrenal cortex mitochondria. (auth)

  20. How to split up: lessons from mitochondria

    Dikov, Daniel; Reichert, Andreas S.


    Mitochondria underlie a continuous cycle of fission and fusion. Recent studies published in The EMBO Journal, EMBO Reports and The Journal of Cell Biology identified factors that recruit the fission factor Drp1 to mitochondria and inhibit or activate Drp1 activity.

  1. Intracellular magnesium content changes during mitochondria-mediated apoptosis: in depth study of early events on mitochondrial membrane potential

    Lucia Merolle


    Full Text Available A recent study showed the antitumor activity of a new indole-derivative – MM-67 – inducing mitochondria-mediated apoptosis and a decrease of intracellular magnesium (Mg concentration in HT29 colon cancer cells. Aim of this work was to assess cellular Mg levels throughout MM-67-induced apoptosis from the early to the final stage of the process and to evaluate the correlation with mitochondrial membrane potential (ΔΨm variations. All analysis were performed by flow cytometry: ΔΨm was assessed by using mitochondrial potential sensitive dye DiOC6, while free and total intracellular cation concentrations were assessed by using the commercial probe MagFluo4-AM (Kd=4.7 mM, and the new synthesized DCHQ5 (Kd=8.3 mM, respectively. Our results evidenced that the MM67 induced apoptosis is characterized by a direct correlation between ΔΨ and free intracellular Mg content variations.

  2. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Lee, Jae Sung; Park, Kwang Suk [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea); Seoul National University College of Medicine, Department of Biomedical Engineering, Seoul (Korea); Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul [Seoul National University College of Medicine, Department of Otolaryngology, Head and Neck Surgery, Seoul (Korea); Lee, Dong Soo; Jeong, Jae Min [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea)


    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-{sup 14}C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in

  3. Development of a mitochondria-based centrifugal ultrafiltration/liquid chromatography/mass spectrometry method for screening mitochondria-targeted bioactive constituents from complex matrixes: Herbal medicines as a case study.

    Yang, Xing-Xin; Xu, Feng; Wang, Dan; Yang, Zhi-Wei; Tan, Huan-Ran; Shang, Ming-Ying; Wang, Xuan; Cai, Shao-Qing


    Mitochondria are an important intracellular pharmacological target because damage to this organelle results in a variety of human disorders and because mitochondria are involved in complex processes such as energy generation, apoptosis and lipid metabolism. To expedite the search for natural bioactive compounds targeting mitochondria, we initially developed an efficient mitochondria-based screening method by combining centrifugal ultrafiltration (CU) with liquid chromatography/mass spectrometry (LC/MS), which is called screening method for mitochondria-targeted bioactive constituents (SM-MBC) and is compatible with the search of mitochondria-targeted compounds from complex matrixes such as herbal medicines extracts. Functionally active, structurally intact and pure mitochondria were obtained from rat myocardium using an optimized protocol for mitochondrial isolation comprising organelle release followed by differential and Nycodenz density gradient centrifugation. After evaluating the reliability of the method using thiabendazole (TZ), rotenone (RN), amiodarone (AR) and trimetazidine (TD) as positive controls, this method was successfully applied to screen bioactive constituents from extracts of Polygoni Cuspidati Rhizoma et Radix (PCRR) and Scutellariae Radix (SR). Nineteen active compounds were detected and identified by LC/MS, of which 17 were new mitochondria-targeted compounds. The activity of 9 of the 19 hit compounds was confirmed by in vitro pharmacological trials. These results demonstrate that SM-MBC can be used for the efficient screening of mitochondria-targeted constituents in complex preparations used to treat mitochondrial disorders, such as PCRR and SR. The results may be meaningful for an in-depth understanding of drug mechanism of action and drug discovery from medicinal herbs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. DNA Import into Mitochondria.

    Konstantinov, Yu M; Dietrich, A; Weber-Lotfi, F; Ibrahim, N; Klimenko, E S; Tarasenko, V I; Bolotova, T A; Koulintchenko, M V


    In recent decades, it has become evident that the condition for normal functioning of mitochondria in higher eukaryotes is the presence of membrane transport systems of macromolecules (proteins and nucleic acids). Natural competence of the mitochondria in plants, animals, and yeasts to actively uptake DNA may be directly related to horizontal gene transfer into these organelles occurring at much higher rate compared to the nuclear and chloroplast genomes. However, in contrast with import of proteins and tRNAs, little is known about the biological role and molecular mechanism underlying import of DNA into eukaryotic mitochondria. In this review, we discuss current state of investigations in this area, particularly specificity of DNA import into mitochondria and its features in plants, animals, and yeasts; a tentative mechanism of DNA import across the mitochondrial outer and inner membranes; experimental data evidencing several existing, but not yet fully understood mechanisms of DNA transfer into mitochondria. Currently available data regarding transport of informational macromolecules (DNA, RNA, and proteins) into the mitochondria do not rule out that the mechanism of protein and tRNA import as well as tRNA and DNA import into the mitochondria may partially overlap.

  5. Ligand autoradiographical quantification of histamine H3 receptor in human dementia with Lewy bodies.

    Lethbridge, Natasha L; Chazot, Paul L


    Dementia with Lewy bodies (DLB) is a serious age-dependent human neurodegenerative disease, with multiple debilitating symptoms, including dementia, psychosis and significant motor deficits, but with little or no effective treatments. This comparative ligand autoradiographical study has quantified histamine H3 receptors (H3R) in a series of major cortical and basal ganglia structures in human DLB and Alzheimer's (AD) post-mortem cases using the highly selective radioligand, [(3)H] GSK189254. In the main, the levels of H3 receptor were largely preserved in DLB cases when compared with aged-matched controls. However, we provide new evidence showing variable levels in the globus pallidus, and, moreover, raised levels of Pallidum H3 correlated with positive psychotic symptoms, in particular delusions and visual hallucinations, but not symptoms associated with depression. Furthermore, no correlation was detected for H3 receptor levels to MMSE or IUPRS symptom severity. This study suggests that H3R antagonists have scope for treating the psychotic symptomologies in DLB and other human brain disorders.

  6. Calcium Transport by Corn Mitochondria 1

    Silva, Marco Aurelio P.; Carnieri, Eva G. S.; Vercesi, Anibal E.


    Mitochondria from some plant tissues possess the ability to take up Ca2+ by a phosphate-dependent mechanism associated with a decrease in membrane potential, H+ extrusion, and increase in the rate of respiration (AE Vercesi, L Pereira da Silva, IS Martins, CF Bernardes, EGS Carnieri, MM Fagian [1989] In G Fiskum, ed, Cell Calcium Metabolism. Plenum Press, New York, pp 103-111). The present study reexamined the nature of the phosphate requirement in this process. The main observations are: (a) Respiration-coupled Ca2+ uptake by isolated corn (Zea mays var Maya Normal) mitochondria or carbonyl cyanide p-trifluoromethoxyphenylhydrazone-induced efflux of the cation from such mitochondria are sensitive to mersalyl and cannot be dissociated from the silmultaneous movement of phosphate in the same direction. (b) Ruthenium red-induced efflux is not affected by mersalyl and can occur in the absence of phosphate movement. (c) In Ca2+-loaded corn mitochondria, mersalyl causes net Ca2+ release unrelated to a decrease in membrane potential, probably due to an inhibition of Ca2+ cycling at the level of the influx pathway. It is concluded that corn mitochondria (and probably other plant mitochondria) do possess an electrophoretic influx pathway that appears to be a mersalyl-sensitive Ca2+/inorganic phosphate-symporter and a phosphate-independent efflux pathway possibly similar to the Na2+-independent Ca2+ efflux mechanism of vertebrate mitochondria, because it is not stimulated by Na+. PMID:16668661

  7. Studies of the ADP/ATP carrier of mitochondria with fluorescent ADP analogue formycin diphosphate.

    Graue, C; Klingenberg, M


    The ADP/ATP carrier was studied by a fluorescent substrate, formycin diphosphate which is the only fluorescent ADP analogue to bind. Its low quantum yield, short decay time and spectral overlap with tryptophan has as yet prevented its wider use. By incorporating fluorescent acceptors of formycin diphosphate fluorescence, anthracene-maleimide and vinylanthracene, into the membrane, these difficulties were circumvented. Only bound formycin diphosphate transfers energy to the probes so that the secondary emission of these probes is a measure for membrane-bound formycin diphosphate. The fluorescent transfer is inhibited by ADP, bongkrekate and carboxyatractylate whether added before or after incubation of formycin diphosphate showing that only binding to the adenine nucleotide carrier is measured. It also shows directly that the earlier demonstrated ADP fixation by bongkrekate is indeed a displacement into the matrix. The fluorescence decay time of the bound formycin diphosphate is measured as 1.95 ns compared to 0.95 ns of the free formycin diphosphate, indicating that formycin diphosphate is bound at the carrier in a non-polar environment. The depolarization decay time was found to be larger than 15 ns, indicating that carrier-bound formycin diphosphate is immobile within this time period.

  8. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity

    Mori, N.; Hirayama, K. [Kumamoto University, School of Health Science, Kumamoto (Japan); Yasutake, A. [National Institute for Minamata Disease, Minamata (Japan)


    The involvement of oxidative stress has been suggested as a mechanism for neurotoxicity caused by methylmercury (MeHg), but the mechanism for MeHg selective toxicity in the central nervous system is still unclear. In this research, to clarify the mechanism of selective neurotoxicity caused by MeHg, the oxygen consumption levels, the reactive oxygen species (ROS) production rates and several antioxidant levels in mitochondria were compared among the cerebrum, cerebellum and liver of male Wistar rats. In addition, the alterations of these indexes were examined in MeHg-intoxicated rats (oral administration of 10 mg/kg day, for 5 days). Although the cerebrum and cerebellum in intact rats showed higher mitochondrial oxygen consumption levels and ROS production rates than the liver, glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities were much lower in the cerebrum and cerebellum than in the liver. Especially, the cerebellum showed the highest oxygen consumption and ROS production rate and the lowest mitochondrial glutathione (GSH) levels among the tissues examined. In the MeHg-treated rats, decrease in the oxygen consumption and increase in the ROS generation were found only in the cerebellum mitochondria, despite a lower Hg accumulation in the mitochondrial fraction compared to the liver. Since MeHg treatment produced an enhancement of ROS generation in cerebellum mitochondria supplemented with succinate substrates, MeHg-induced oxidative stress might affect the complex II-III mediated pathway in the electron transfer chain in the cerebellum mitochondria. Our study suggested that inborn factors, high production system activity and low defense system activity of ROS in the brain, would relate to the high susceptibility of the central nervous system to MeHg toxicity. (orig.)

  9. Erythroid precursors from patients with low-risk myelodysplasia demonstrate ultrastructural features of enhanced autophagy of mitochondria

    Houwerzijl, E. J.; Pol, H-W D.; Blom, N. R.; van der Want, J. J. L.; de Wolf, J. Thm; Vellenga, E.

    Recent studies in erythroid cells have shown that autophagy is an important process for the physiological clearance of mitochondria during terminal differentiation. However, autophagy also plays an important role in removing damaged and dysfunctional mitochondria. Defective mitochondria and impaired

  10. The new research on mitochondria

    JI Yu-bin; ZHANG He; JI Chen-feng; LIU Hong-juan


    Apoptosis, also known as programmed cell death, is the removal of damaged body organizations,aging or redundant cells in a suicide, has to maintain the health of the body, the normal development of the nervous system, the immune system to maintain the normal function of such areas is of great significance. The morphological characteristics of apoptosis are the cytoplasm concentrated, condensed nuclear chromatin, DNA fragments of a large-scale, the cell membrane invagination and foam formation of apoptotic bodies. There are two classic apoptosis ways which are generally accepted by majority of the scholars currently: Mitochondrial pathway and Death receptor pathway. Mitochondrial membrane is a two-tier structure surrounded the cystic, between the external cavity and internal cavity which is called the Room, surrounded by the internal cavity known as the mitochondria internal room or mitochondrial matrix. Mitochondria with the functions of control cell survival and death: mitochondria play an important role in physiological such as oxidative phosphorylation, electronic transfer, storage Ca2+, energy metabolism, anti-oxidation activity and so on, to provide the basic energy to the various activities of cell life. Study found that mitochondria contain some of the material is closely related to apoptosis, such as Cyt-C, Smac/Diablo, AIF, Ca2+, ROS and so on. In the signal to stimulate apoptosis, mitochondrial membrane permeability, resulting in a series of key changes, including Cyt-C, Smac/Diablo release, decline of the mitochondrial membrane potential (Δψm), the state of the redox within cells, the intervention of Bcl gene family and so on. Different signal transduction ultimately focuses on the mitochondria to activate or inhibit these incidents, then the corresponding signal transduction to control apoptosis. Therefore, the mitochondria in the incidence of apoptosis play an important role. In recent years, the study confirmed that apoptosis imbalance can cause a

  11. Exogenous ether lipids predominantly target mitochondria.

    Lars Kuerschner

    Full Text Available Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.

  12. Isolation of Mitochondria from Potato Tubers

    Havelund, Jesper F.; Salvato, Fernanda; Chen, Mingjie


    the in vivo properties of the organelle inside the plant cell. Here, we describe a method to isolate mitochondria from a relatively homogeneous plant tissue, the dormant potato tuber. The homogenization is done using a juice extractor, which is a relatively gentle homogenization procedure where......One way to study the function of plant mitochondria is to extract them from plant tissues in an uncontaminated, intact and functional form. The reductionist assumption is that the components present in such a preparation and the in vitro measurable functions or activities reliably reflect...... the mitochondria are only exposed to strong shearing forces once. After removal of starch and large tissue pieces by filtration, differential centrifugation is used to remove residual starch as well as larger organelles. The crude mitochondria are then first purified by using a step Percoll gradient...

  13. Autoradiographic localization of target cells for 1. cap alpha. , 25-dihydroxyvitamin D/sub 3/ in bones from fetal rats

    Narbaitz, R.; Stumpf, W.E.; Sar, M.; Huang, S.; DeLuca, H.F.


    Thaw-mount autoradiographic studies after injection of /sup 3/H-1,25-D/sub 3/ were conducted on 18- and 20-day-old rat fetuses. In maxillary bones, ribs, and tibia, nuclear concentration of radioactivity was found in osteoprogenitor cells and osteoblasts. Osteocytes and chondrocytes in epiphyseal plates were either unlabeled or weakly labeled. In competition experiments, nuclear concentration of radioactivity was blocked by the injection of a high dose of nonradioactive 1,25-D/sub 3/ prior to the administration of the labeled hormone, but not by a similar dose of nonradioactive 25-D/sub 3/. The results are interpreted as indicating that osteoprogenitor cells and osteoblasts are target cells for the direct action of 1,25-D/sub 3/ on fetal bone.

  14. Preparation of (125)I-ricin suitable as a probe for the autoradiographic localization of toxin binding sites

    Doebler, J.A.; Mayer, T.W.; Traub, R.K.; Broomfield, C.A.; Calamaio, C.A.


    The long term objectives of this research are to identify cellular binding sites for ricin and examine its organ distribution in mice following aerosol inhalation exposure. Preliminary studies relating to the synthesis and evaluation of (125 I)-ricin as an autoradiographic probe have been conducted. Non-radioactive (I)-ricin prepared using the Iodogen method was found to be non-toxic both in vivo and in vitro. Lactose was then added to the Iodogen reaction medium to block galactose-binding site associated tyrosines in an attempt to retain toxicity. However, this did not prevent iodination-induced loss of biological potency. We then switched to the lactoperoxidase method of iodination, which yielded an (I)-ricin preparation with toxicity comparable to that of native toxin.

  15. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    Edwards, A.G.; Ho, C.S.


    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.

  16. Lipids of mitochondria.

    Horvath, Susanne E; Daum, Günther


    A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Mitochondria, synaptic plasticity, and schizophrenia.

    Ben-Shachar, Dorit; Laifenfeld, Daphna


    The conceptualization of schizophrenia as a disorder of connectivity, i.e., of neuronal?synaptic plasticity, suggests abnormal synaptic modeling and neuronal signaling, possibly as a consequence of flawed interactions with the environment, as at least a secondary mechanism underlying the pathophysiology of this disorder. Indeed, deficits in episodic memory and malfunction of hippocampal circuitry, as well as anomalies of axonal sprouting and synapse formation, are all suggestive of diminished neuronal plasticity in schizophrenia. Evidence supports a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, and a dysfunction of the oxidative phosphorylation system, as well as altered mitochondrial-related gene expression. Mitochondrial dysfunction leads to alterations in ATP production and cytoplasmatic calcium concentrations, as well as reactive oxygen species and nitric oxide production. All of the latter processes have been well established as leading to altered synaptic strength or plasticity. Moreover, mitochondria have been shown to play a role in plasticity of neuronal polarity, and studies in the visual cortex show an association between mitochondria and synaptogenesis. Finally, mitochondrial gene upregulation has been observed following synaptic and neuronal activity. This review proposes that mitochondrial dysfunction in schizophrenia could cause, or arise from, anomalies in processes of plasticity in this disorder.

  18. On Cellular Darwinism: Mitochondria.

    Bull, Larry


    The significant role of mitochondria within cells is becoming increasingly clear. This letter uses the NKCS model of coupled fitness landscapes to explore aspects of organelle-nucleus coevolution. The phenomenon of mitochondrial diversity is allowed to emerge under a simple intracellular evolutionary process, including varying the relative rate of evolution by the organelle. It is shown how the conditions for the maintenance of more than one genetic variant of mitochondria are similar to those previously suggested as needed for the original symbiotic origins of the relationship using the NKCS model.

  19. Do we age because we have mitochondria?

    Bereiter-Hahn, Jürgen


    The process of aging remains a great riddle. Production of reactive oxygen species (ROS) by mitochondria is an inevitable by-product of respiration, which has led to a hypothesis proposing the oxidative impairment of mitochondrial components (e.g., mtDNA, proteins, lipids) that initiates a vicious cycle of dysfunctional respiratory complexes producing more ROS, which again impairs function. This does not exclude other processes acting in parallel or targets for ROS action in other organelles than mitochondria. Given that aging is defined as the process leading to death, the role of mitochondria-based impairments in those organ systems responsible for human death (e.g., the cardiovascular system, cerebral dysfunction, and cancer) is described within the context of "garbage" accumulation and increasing insulin resistance, type 2 diabetes, and glycation of proteins. Mitochondrial mass, fusion, and fission are important factors in coping with impaired function. Both biogenesis of mitochondria and their degradation are important regulatory mechanisms stimulated by physical exercise and contribute to healthy aging. The hypothesis of mitochondria-related aging should be revised to account for the limitations of the degradative capacity of the lysosomal system. The processes involved in mitochondria-based impairments are very similar across a large range of organisms. Therefore, studies on model organisms from yeast, fungi, nematodes, flies to vertebrates, and from cells to organisms also add considerably to the understanding of human aging.

  20. Extensive fusion of mitochondria in spinal cord motor neurons.

    Geoffrey C Owens

    Full Text Available The relative roles played by trafficking, fission and fusion in the dynamics of mitochondria in neurons have not been fully elucidated. In the present study, a slow widespread redistribution of mitochondria within cultured spinal cord motor neurons was observed as a result of extensive organelle fusion. Mitochondria were labeled with a photoconvertible fluorescent protein (mitoKaede that is red-shifted following brief irradiation with blue light. The behavior of these selectively labeled mitochondria was followed by live fluorescence imaging. Marking mitochondria within the cell soma revealed a complete mixing, within 18 hours, of these organelles with mitochondria coming from the surrounding neurites. Fusion of juxtaposed mitochondria was directly observed in neuritic processes at least 200 microns from the cell body. Within 24 hours, photoconverted mitoKaede was dispersed to all of the mitochondria in the portion of neurite under observation. When time lapse imaging over minutes was combined with long-term observation of marked mitochondria, moving organelles that traversed the field of view did not initially contain photoconverted protein, but after several hours organelles in motion contained both fluorescent proteins, coincident with widespread fusion of all of the mitochondria within the length of neurite under observation. These observations suggest that there is a widespread exchange of mitochondrial components throughout a neuron as a result of organelle fusion.

  1. Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using (/sup 3/H)pirenzepine

    Yamamura, H.I.; Deshmukh, P.; Roeske, W.R. (Arizona Univ., Tucson (USA). Health Sciences Center); Wamsley, J.K. (Utah Univ., Salt Lake City (USA). Medical Center)


    Recently, the authors demonstrated that radiolabelled pirenzepine ((/sup 3/H)PZ) bound to a high affinity population of muscarinic binding sites in the rat cerebral cortex, hippocampus, and corpus striatum. However, in the heart, cerebellum and ileum they found little or no (/sup 3/H)PZ binding. These data suggest that (/sup 3/H)PZ labels a subpopulation of muscarinic receptors. The present study examines the light microscopic autoradiographic localization of 3-(/sup 3/H)quinuclidinyl benzilate, (-)(/sup 3/H)QNB, an antagonist which labels muscarinic receptors with equal affinity and compares its localization to (/sup 3/H)PZ in the rat brainstem and spinal cord.

  2. Calcium in pollen-pistil interaction in `Petunia hybrida Hor`. Pt. 1. Localization of Ca{sup 2+} ions in mature pollen grain using pyroantimonate and autoradiographic methods

    Bednarska, E.; Butowt, R. [Uniwersytet Mikolaja Kopernika, Torun (Poland)


    The localization of Ca{sup 2+} in the mature pollen grain and the flow of these ions the somatic tissues of the anther to the pollen grains has been studied using pyroantimonate and autoradiographic methods. In the pollen grain, Ca{sup 2+} ions have been localized in the sporoderm in the cytoplasmic vesicles of probably dictyosomal origin. Calcium ions were transported into the sporoderm together with the compounds of degenerating tapetum. The material of degenerating tapetum forms pollen coat surrounding the mature pollen grains. (author). 18 refs, 9 figs.

  3. Mitochondria in lung disease.

    Cloonan, Suzanne M; Choi, Augustine M K


    Mitochondria are a distinguishing feature of eukaryotic cells. Best known for their critical function in energy production via oxidative phosphorylation (OXPHOS), mitochondria are essential for nutrient and oxygen sensing and for the regulation of critical cellular processes, including cell death and inflammation. Such diverse functional roles for organelles that were once thought to be simple may be attributed to their distinct heteroplasmic genome, exclusive maternal lineage of inheritance, and ability to generate signals to communicate with other cellular organelles. Mitochondria are now thought of as one of the cell's most sophisticated and dynamic responsive sensing systems. Specific signatures of mitochondrial dysfunction that are associated with disease pathogenesis and/or progression are becoming increasingly important. In particular, the centrality of mitochondria in the pathological processes and clinical phenotypes associated with a range of lung diseases is emerging. Understanding the molecular mechanisms regulating the mitochondrial processes of lung cells will help to better define phenotypes and clinical manifestations associated with respiratory disease and to identify potential diagnostic and therapeutic targets.

  4. Huntington's Disease and Mitochondria.

    Jodeiri Farshbaf, Mohammad; Ghaedi, Kamran


    Huntington's disease (HD) as an inherited neurodegenerative disorder leads to neuronal loss in striatum. Progressive motor dysfunction, cognitive decline, and psychiatric disturbance are the main clinical symptoms of the HD. This disease is caused by expansion of the CAG repeats in exon 1 of the huntingtin which encodes Huntingtin protein (Htt). Various cellular and molecular events play role in the pathology of HD. Mitochondria as important organelles play crucial roles in the most of neurodegenerative disorders like HD. Critical roles of the mitochondria in neurons are ATP generation, Ca(2+) buffering, ROS generation, and antioxidant activity. Neurons as high-demand energy cells closely related to function, maintenance, and dynamic of mitochondria. In the most neurological disorders, mitochondrial activities and dynamic are disrupted which associate with high ROS level, low ATP generation, and apoptosis. Accumulation of mutant huntingtin (mHtt) during this disease may evoke mitochondrial dysfunction. Here, we review recent findings to support this hypothesis that mHtt could cause mitochondrial defects. In addition, by focusing normal huntingtin functions in neurons, we purpose mitochondria and Huntingtin association in normal condition. Moreover, mHtt affects various cellular signaling which ends up to mitochondrial biogenesis. So, it could be a potential candidate to decline ATP level in HD. We conclude how mitochondrial biogenesis plays a central role in the neuronal survival and activity and how mHtt affects mitochondrial trafficking, maintenance, integrity, function, dynamics, and hemostasis and makes neurons vulnerable to degeneration in HD.

  5. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    Li, Jason Z. [Virginia Tech CRC, Blacksburg, VA (United States); Ke, Yuebin [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Misra, Hara P. [Virginia Tech CRC, Blacksburg, VA (United States); Trush, Michael A. [Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Li, Y. Robert [Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States); Virginia Tech-Wake Forest University SBES, Blacksburg, VA (United States); Department of Biology, University of North Carolina at Greensboro, NC (United States); Zhu, Hong, E-mail: [Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States); Jia, Zhenquan, E-mail: [Department of Biology, University of North Carolina at Greensboro, NC (United States)


    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with

  6. HIV-1 infection and first line ART induced differential responses in mitochondria from blood lymphocytes and monocytes: the ANRS EP45 "Aging" study.

    Sophie Perrin

    Full Text Available BACKGROUND: The ANRS EP45 "Aging" study investigates the cellular mechanisms involved in the accelerated aging of HIV-1 infected and treated patients. The data reported focus on mitochondria, organelles known to be involved in cell senescence. METHODS: 49 HIV-1 infected patients untreated with antiretroviral therapy, together with 49 seronegative age- and sex-matched control subjects and 81 HIV-1 infected and treated patients, were recruited by 3 AIDS centres (Marseille, Montpellier, Nice; France;, NCT01038999. In more than 88% of treated patients, the viral load was 500/mm(3. ROS (reactive oxygen species production and ΔΨm (inner membrane potential were measured by flow cytometry in blood lymphocytes and monocytes (functional parameters. Three mitochondrial network quantitative morphological parameters were computed using confocal microscopy and image analysis. Three PBMC mitochondrial proteins (porin and subunits 2 and 4 of cytochrome C oxidase encoded by mtDNA or nuclear DNA, respectively were analysed by western blotting. RESULTS: Quantitative changes in PBMC mitochondrial proteins were not induced by either HIV-1 infection or ART. Discriminant analysis integrating functional (ROS production and ΔΨm or morphological (network volume density, fragmentation and branching parameters revealed HIV-1 infection and ART differential effects according to cell type. First line ART tended to rescue lymphocyte mitochondrial parameters altered by viral infection, but induced slight changes in monocytes. No statistical difference was found between the effects of three ART regimens on mitochondrial parameters. Correlations between functional parameters and viral load confirmed the damaging effects of HIV-1 in lymphocyte mitochondria. CONCLUSIONS: In patients considered to be clinically stable, mitochondria exhibited functional and morphological modifications in PBMCs resulting from either direct or indirect effects of HIV-1

  7. Autoradiographic localization of specific [3H]dexamethasone binding in fetal lung.

    Beer, D G; Butley, M S; Cunha, G R; Malkinson, A M


    The cellular and subcellular localization of specific [3H]dexamethasone binding was examined in fetal mouse lung at various stages of development and in human fetal lung at 8 weeks of gestation using a rapid in vitro steroid incubation technique followed by thaw-mount autoradiography. Competition studies with unlabeled steroids demonstrate the specificity of [3H]dexamethasone labeling, and indicate that fetal lung mesenchyme is a primary glucocorticoid target during lung development. Quantitative binding studies, involving incubation of intact tissue with competing ligand and subsequent subcellular fractionation, show this to be specific, nuclear binding characteristic of glucocorticoid receptors. Autoradiographs of [3H]dexamethasone binding in lung tissue at early stages of development demonstrate that the mesenchyme directly adjacent to the more proximal portions of the bronchiolar network is heavily labeled. In contrast, the epithelium which will later differentiate into bronchi and bronchioles, is relatively unlabeled. Distal portions of the growing epithelium, destined to become alveolar ducts and alveoli, do show nuclear localization of [3H]dexamethasone. Because of the known importance of the mesenchyme in controlling lung development and the ability of glucocorticoids to stimulate lung development, these results suggest that many of the growth-promoting effects of glucocorticoids may be mediated through the mesenchyme. In addition, by utilizing a technique which allows the simultaneous examination of extracellular matrix components and [3H]dexamethasone binding, a relationship is observed between extensive mesenchymal [3H]dexamethasone binding and extensive extracellular matrix accumulation. Since glucocorticoids stimulate the synthesis of many extracellular matrix components, these results suggest a role for these hormones in affecting mesenchymal-epithelial interactions during lung morphogenesis.

  8. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung

    Mak, J.C.; Barnes, P.J. (National Heart and Lung Institute, London (England))


    Muscarinic receptor subtypes have been localized in human and guinea pig lung sections by an autoradiographic technique, using (3H)(-)quinuclidinyl benzilate (( 3H)QNB) and selective muscarinic antagonists. (3H)QNB was incubated with tissue sections for 90 min at 25 degrees C, and nonspecific binding was determined by incubating adjacent serial sections in the presence of 1 microM atropine. Binding to lung sections had the characterization expected for muscarinic receptors. Autoradiography revealed that muscarinic receptors were widely distributed in human lung, with dense labeling over submucosal glands and airway ganglia, and moderate labeling over nerves in intrapulmonary bronchi and of airway smooth muscle of large and small airways. In addition, alveolar walls were uniformly labeled. In guinea pig lung, labeling of airway smooth muscle was similar, but in contrast to human airways, epithelium was labeled but alveolar walls were not. The muscarinic receptors of human airway smooth muscle from large to small airways were entirely of the M3-subtype, whereas in guinea pig airway smooth muscle, the majority were the M3-subtype with a very small population of the M2-subtype present. In human bronchial submucosal glands, M1- and M3-subtypes appeared to coexist in the proportions of 36 and 64%, respectively. In human alveolar walls the muscarinic receptors were entirely of the M1-subtype, which is absent from the guinea pig lung. No M2-receptors were demonstrated in human lung. The localization of M1-receptors was confirmed by direct labeling with (3H)pirenzepine. With the exception of the alveolar walls in human lung, the localization of muscarinic receptor subtypes on structures in the lung is consistent with known functional studies.

  9. Autoradiographic localization of /sup 3/H-digoxin binding by neural cells in the medulla

    Traurig, H.H.; Bhagat, A.; Bass, N.H.


    The purpose of this investigation was to localize binding sites for the cardiac glycoside digoxin in the medulla of the rat in vivo. Adult male Sprague-Dawley rats were injected (IV) with /sup 3/H-digoxin and killed 30 minutes later. Autoradiographs of medullas showed evidence of /sup 3/H-digoxin binding to small- and medium-sized neural cells in the regions of the nucleus solitarius, dorsal motor nucleus of the vagus, area postrema, and in the zone between the area postrema and the underlying neuropil. However, the parasympathetic preganglionic neurons of the dorsal motor nucleus were not labeled. The /sup 3/H-digoxin-labeled cells in the medulla were located mainly in the commissural and medial portions of nucleus solitarius at the level of the area postrema. Animals injected with unlabeled digoxin followed by /sup 3/H-digoxin showed reduced binding of radioactivity. The small- and medium-sized neurons of the caudal portions of the nucleus solitarius are internuncial in position with respect to cardiovascular afferents of the glossopharyngeal and vagus nerves and sympathetic and parasympathetic cardiovascular efferent neurons of the medulla. The results of this study suggest that these /sup 3/H-digoxin-labeled cells, presumably neurons of nucleus solitarius, may possess high affinity binding sites for digoxin. Further, the area postrema, which lacks a blood-brain barrier, may provide a portal of entry for /sup 3/H-digoxin into regions of the medulla known to contain neurons that play a role in the regulation of cardiac rhythm.

  10. Transcellular degradation of axonal mitochondria.

    Davis, Chung-ha O; Kim, Keun-Young; Bushong, Eric A; Mills, Elizabeth A; Boassa, Daniela; Shih, Tiffany; Kinebuchi, Mira; Phan, Sebastien; Zhou, Yi; Bihlmeyer, Nathan A; Nguyen, Judy V; Jin, Yunju; Ellisman, Mark H; Marsh-Armstrong, Nicholas


    It is generally accepted that healthy cells degrade their own mitochondria. Here, we report that retinal ganglion cell axons of WT mice shed mitochondria at the optic nerve head (ONH), and that these mitochondria are internalized and degraded by adjacent astrocytes. EM demonstrates that mitochondria are shed through formation of large protrusions that originate from otherwise healthy axons. A virally introduced tandem fluorophore protein reporter of acidified mitochondria reveals that acidified axonal mitochondria originating from the retinal ganglion cell are associated with lysosomes within columns of astrocytes in the ONH. According to this reporter, a greater proportion of retinal ganglion cell mitochondria are degraded at the ONH than in the ganglion cell soma. Consistently, analyses of degrading DNA reveal extensive mtDNA degradation within the optic nerve astrocytes, some of which comes from retinal ganglion cell axons. Together, these results demonstrate that surprisingly large proportions of retinal ganglion cell axonal mitochondria are normally degraded by the astrocytes of the ONH. This transcellular degradation of mitochondria, or transmitophagy, likely occurs elsewhere in the CNS, because structurally similar accumulations of degrading mitochondria are also found along neurites in superficial layers of the cerebral cortex. Thus, the general assumption that neurons or other cells necessarily degrade their own mitochondria should be reconsidered.

  11. Mitochondria and Cardiovascular Aging

    Dai, Dao-Fu; Ungvari, Zoltan


    Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (e.g. renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics and exercise training. PMID:22499901

  12. Glutathione and mitochondria

    Vicent eRibas; Carmen eGarcia-Ruiz; Jose C eFernandez-Checa


    Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the e...

  13. Mitochondria and Neuroplasticity

    Aiwu Cheng; Yan Hou; Mattson, Mark P.


    The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and th...

  14. Mitochondria and Cancer

    Zong, Wei-Xing; Rabinowitz, Joshua D.; White, Eileen


    Decades ago Otto Warburg observed that cancers ferment glucose in the presence of oxygen, suggesting that defects in mitochondrial respiration may be the underlying cause of cancer. We now know that the genetic events, which drive aberrant cancer cell proliferation, also alter biochemical metabolism including promoting aerobic glycolysis, but do not typically impair mitochondrial function. Mitochondria supply energy, provide building blocks for new cells, and control redox homeostasis, oncoge...

  15. Mitochondria and neuroplasticity

    Cheng, Aiwu; Hou, Yan; Mark P. Mattson


    The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and th...

  16. Intracoronary Delivery of Mitochondria to the Ischemic Heart for Cardioprotection.

    Cowan, Douglas B; Yao, Rouan; Akurathi, Vamsidhar; Snay, Erin R; Thedsanamoorthy, Jerusha K; Zurakowski, David; Ericsson, Maria; Friehs, Ingeborg; Wu, Yaotang; Levitsky, Sidney; Del Nido, Pedro J; Packard, Alan B; McCully, James D


    We have previously shown that transplantation of autologously derived, respiration-competent mitochondria by direct injection into the heart following transient ischemia and reperfusion enhances cell viability and contractile function. To increase the therapeutic potential of this approach, we investigated whether exogenous mitochondria can be effectively delivered through the coronary vasculature to protect the ischemic myocardium and studied the fate of these transplanted organelles in the heart. Langendorff-perfused rabbit hearts were subjected to 30 minutes of ischemia and then reperfused for 10 minutes. Mitochondria were labeled with 18F-rhodamine 6G and iron oxide nanoparticles. The labeled mitochondria were either directly injected into the ischemic region or delivered by vascular perfusion through the coronary arteries at the onset of reperfusion. These hearts were used for positron emission tomography, microcomputed tomography, and magnetic resonance imaging with subsequent microscopic analyses of tissue sections to confirm the uptake and distribution of exogenous mitochondria. Injected mitochondria were localized near the site of delivery; while, vascular perfusion of mitochondria resulted in rapid and extensive dispersal throughout the heart. Both injected and perfused mitochondria were observed in interstitial spaces and were associated with blood vessels and cardiomyocytes. To determine the efficacy of vascular perfusion of mitochondria, an additional group of rabbit hearts were subjected to 30 minutes of regional ischemia and reperfused for 120 minutes. Immediately following regional ischemia, the hearts received unlabeled, autologous mitochondria delivered through the coronary arteries. Autologous mitochondria perfused through the coronary vasculature significantly decreased infarct size and significantly enhanced post-ischemic myocardial function. In conclusion, the delivery of mitochondria through the coronary arteries resulted in their rapid

  17. Melatonin protects lung mitochondria from aging.

    Acuña-Castroviejo, Darío; Carretero, Miguel; Doerrier, Carolina; López, Luis C; García-Corzo, Laura; Tresguerres, Jesús A; Escames, Germaine


    We assessed whether melatonin administration would prevent the hyperoxidative status that occurs in lung mitochondria with age. Mitochondria from lungs of male and female senescent prone mice at 5 and 10 months of age were studied. Age-dependent mitochondrial oxidative stress was evaluated by measuring the levels of lipid peroxidation and nitrite, glutathione/glutathione disulfide ratio, and glutathione peroxidase and reductase activities. Mitochondrial respiratory chain and oxidative phosphorylation capability were also measured. Age induces a significant oxidative/nitrosative status in lung mitochondria, which exhibited a significantly reduced activity of the respiratory chain and ATP production. These manifestations of age were more pronounced in males than in females. After 9 months of melatonin administration in the drinking water, the hyperoxidative status and functional deficiency of aged lung mitochondria were totally counteracted, and had increased ATP production. The beneficial effects of melatonin were generally similar in both mice genders. Thus, melatonin administration, as a single therapy, maintained fully functioning lung mitochondria during aging, a finding with important consequences in the pathophysiology of lung aging. In view of these data melatonin, the production of which decreases with age, should be considered a preventive therapy against the hyperoxidative status of the aged lungs, and its use may lead to the avoidance of respiratory complications in the elderly.

  18. Methods in laboratory investigation. Autoradiographic demonstration of the specific binding and nuclear localization of 3H-dexamethasone in adult mouse lung.

    Beer, D G; Cunha, G R; Malkinson, A M


    This report describes the first autoradiographic demonstration of specific nuclear localization of 3H-dexamethasone in different cell types of the lung. Adult mouse lung tissue was incubated in vitro for 90 minutes with 17 nM 3H-dexamethasone in the presence or absence of various nonradioactive steroids. After extensive washing to remove any nonspecifically bound ligand, the specimens were processed for autoradiography using the thaw-mount method. In the absence of competing steroids, silver grains were localized in the nuclei of alveolar type II cells, bronchiolar and arteriolar smooth muscle cells, fibroblasts, and endothelial cells of the pulmonary vasculature. No significant nuclear concentration of label was observed in the bronchiolar epithelium, however. The specificity of 3H-dexamethasone labeling was demonstrated by incubating 17 nM 3H-dexamethasone with a 600-fold excess of either unlabeled dexamethasone, estrogen, dihydrotestosterone, or progesterone. These autoradiographic binding and steroid competition studies were confirmed by quantifying with liquid scintillation counting the specific 3H-dexamethasone binding in nuclear and cytosolic fractions prepared from lung tissues that had undergone identical incubation and washing procedures as those for autoradiography. These results demonstrate that many cell types in adult lung are targets for glucocorticoids and may respond to physiologic concentrations of this hormone.

  19. [Autoradiographic investigations on postnatal proliferative activity of the telencephalic and diencephalic matrix-zones in the axolotl (Ambystoma mexicanum), with special references to the olfactory organ (author's transl)].

    Richter, W; Kranz, D


    The localization and proliferative activity of the matrix-zones has been investigated in the telencephalon and in the diencephalon of 21 axolotls (Ambystoma mexicanum) by means of autoradiographs, after injection of tritiated thymidine at different stages of the postnatal life. There are no previous detailed autoradiographical reports on postnatal brain development in the axolotl. Matrix-zones (i.e. ventricular and subventricular zone) exist in the dorsal part and in the ventral part of the telencephalon, we have found these also in the diencephalon in the wall of the preoptic recessus and ventrally of the habenula. The quantitative part of this study indicates high values of the labeling-index in the early postnatal stages. Then, the labeling-index decreases, but also in 3 years old specimens labeled cells were observed in the matrix-zones of the telencephalon; therefore a few of proliferative capacity remains in the central nervous system of adult axolotls. Labeled cells were also found in the olfactory organ of early postnatal and adult axolotls; these are neuroblasts which have relevance for the regeneration of the forebrain.

  20. Mitochondria-driven assembly of a cortical anchor for mitochondria and dynein.

    Kraft, Lauren M; Lackner, Laura L


    Interorganelle contacts facilitate communication between organelles and impact fundamental cellular functions. In this study, we examine the assembly of the MECA (mitochondria-endoplasmic reticulum [ER]-cortex anchor), which tethers mitochondria to the ER and plasma membrane. We find that the assembly of Num1, the core component of MECA, requires mitochondria. Once assembled, Num1 clusters persistently anchor mitochondria to the cell cortex. Num1 clusters also function to anchor dynein to the plasma membrane, where dynein captures and walks along astral microtubules to help orient the mitotic spindle. We find that dynein is anchored by Num1 clusters that have been assembled by mitochondria. When mitochondrial inheritance is inhibited, Num1 clusters are not assembled in the bud, and defects in dynein-mediated spindle positioning are observed. The mitochondria-dependent assembly of a dual-function cortical anchor provides a mechanism to integrate the positioning and inheritance of the two essential organelles and expands the function of organelle contact sites. © 2017 Kraft and Lackner.

  1. Isolation of rat adrenocortical mitochondria

    Solinas, Paola [Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Department of Medicine, Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Fujioka, Hisashi [Electron Microscopy Facility, Department of Pharmacology, Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Tandler, Bernard [Department of Biological Sciences, School of Dental Medicine, Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Hoppel, Charles L., E-mail: [Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Department of Medicine, Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States)


    Highlights: Black-Right-Pointing-Pointer A method for isolation of adrenocortical mitochondria from the adrenal gland of rats is described. Black-Right-Pointing-Pointer The purified isolated mitochondria show excellent morphological integrity. Black-Right-Pointing-Pointer The properties of oxidative phosphorylation are excellent. Black-Right-Pointing-Pointer The method increases the opportunity of direct analysis of adrenal mitochondria from small animals. -- Abstract: This report describes a relatively simple and reliable method for isolating adrenocortical mitochondria from rats in good, reasonably pure yield. These organelles, which heretofore have been unobtainable in isolated form from small laboratory animals, are now readily accessible. A high degree of mitochondrial purity is shown by the electron micrographs, as well as the structural integrity of each mitochondrion. That these organelles have retained their functional integrity is shown by their high respiratory control ratios. In general, the biochemical performance of these adrenal cortical mitochondria closely mirrors that of typical hepatic or cardiac mitochondria.

  2. Effect of ethanol on hepatobiliary transport of cationic drugs. A study in the isolated perfused rat liver, rat hepatocytes and rat mitochondria

    Steen, H.; Merema, M.; Meijer, D.K.F. (Department of Pharmacology and Therapeutics, University Centre for Pharmacy, Groningen State Univrsity, Groningen (Netherlands))


    The effect of ethanol on the hepatic uptake of various cationic drugs was studied in isolated perfused rat livers, isolated rat hepatocytes and isolated rat liver mitochondria. In isolated rat hepatocytes and in isolated perfused rat livers, the uptake of the model organic cation tri-n-butylmethylammonium was found to be markedly stimulated by ethanol in a concentration-dependent fashion. The uptake of tri-n-butylmethylammonium at 1 [mu]M was increased to 120% and 137% at 0.5% (v/v, (=87 mM)) and 1% (v/v, (=174 mM)) ethanol, respectively. At 25 [mu]M, tri-n-butylmethylamonium uptake was increased to 124% and 152% at 0.5% (v/v) and 1% (v/v) of ethanol, respectively. The uptake of the organic cations azidoprocainamide methoiodide, vecuronium, ORG 9426 and ORG 6368, the anionic compound taurocholate and the uncharge compound ouabain was not markedly increased at these ethanol concentrations. The mechanism of action of ethanol on the uptake of tri-n-butylmethylammonium was further studied. Competitive inhibitors for the type I organic cation uptake system, procainamide ethobromide and verapamil, almost completely blocked uptake of tri-n-butyl-methylammonium (1 [mu]M) in the presence of 1% (v/v) ethanol, indicating that carrier-mediated uptake is still involved and that additional passive diffusion is unlikely. Neither the plasma membrane potential nor the accumulation of the cation in mitochondria was altered after ethanol treatment, suggesting that potential driving forces for uptake and sequestration were not affected. The results of our study indicate that ethanol selectively stimulates the uptake of the aliphatic organic cation tri-n-butylmethylammonium rather than through generally alterated hepatobiliary transport processes. (EG) (28 refs.).

  3. Redox interplay between mitochondria and peroxisomes

    Celien eLismont


    Full Text Available Reduction-oxidation or ‘redox’ reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from ‘omics’ technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of

  4. A mouse ocular explant model that enables the study of living optic nerve head events after acute and chronic intraocular pressure elevation: Focusing on retinal ganglion cell axons and mitochondria.

    Kimball, Elizabeth C; Pease, Mary E; Steinhart, Matthew R; Oglesby, Ericka N; Pitha, Ian; Nguyen, Cathy; Quigley, Harry A


    We developed an explant model of the mouse eye and optic nerve that facilitates the study of retinal ganglion cell axons and mitochondria in the living optic nerve head (ONH) in an ex vivo environment. Two transgenic mouse strains were used, one expressing yellow fluorescent protein in selected axons and a second strain expressing cyan fluorescent protein in all mitochondria. We viewed an explanted mouse eye and optic nerve by laser scanning microscopy at and behind the ONH, the site of glaucoma injury. Explants from previously untreated mice were studied with the intraocular pressure (IOP) set artificially at normal or elevated levels for several hours. Explants were also studied from eyes that had undergone chronic IOP elevation from 14 h to 6 weeks prior to ex vivo study. Image analysis in static images and video of individual mitochondria or axonal structure determined effects of acute and chronic IOP elevation. At normal IOP, fluorescent axonal structure was stable for up to 3 h under ex vivo conditions. After chronic IOP elevation, axonal integrity index values indicated fragmentation of axon structure in the ONH. In mice with fluorescent mitochondria, the normal density decreased with distance behind the ONH by 45% (p = 0.002, t-test). Density increased with prior chronic IOP elevation to 21,300 ± 4176 mitochondria/mm(2) compared to control 16,110 ± 3159 mitochondria/mm(2) (p = 0.025, t-test), but did not increase significantly after 4 h, acute IOP elevation (1.5% decrease in density, p = 0.83, t-test). Mean normal mitochondrial length of 2.3 ± 1.4 μm became 13% smaller after 4 h of IOP elevation ex vivo compared to baseline (p = 0.015, t-test, N-10). Normal mitochondrial speed of movement was significantly slower in the anterograde direction (towards the brain) than retrograde, but there were more mitochondria in motion and traveling longer lengths in anterograde direction. The percent of mitochondria in motion decreased by >50

  5. Differential production of superoxide by neuronal mitochondria

    Levin Leonard A


    Full Text Available Abstract Background Mitochondrial DNA (mtDNA mutations, which are present in all mitochondria-containing cells, paradoxically cause tissue-specific disease. For example, Leber's hereditary optic neuropathy (LHON results from one of three point mutations mtDNA coding for complex I components, but is only manifested in retinal ganglion cells (RGCs, a central neuron contained within the retina. Given that RGCs use superoxide for intracellular signaling after axotomy, and that LHON mutations increase superoxide levels in non-RGC transmitochondrial cybrids, we hypothesized that RGCs regulate superoxide levels differently than other neuronal cells. To study this, we compared superoxide production and mitochondrial electron transport chain (METC components in isolated RGC mitochondria to mitochondria isolated from cerebral cortex and neuroblastoma SK-N-AS cells. Results In the presence of the complex I substrate glutamate/malate or the complex II substrate succinate, the rate of superoxide production in RGC-5 cells was significantly lower than cerebral or neuroblastoma cells. Cerebral but not RGC-5 or neuroblastoma cells increased superoxide production in response to the complex I inhibitor rotenone, while neuroblastoma but not cerebral or RGC-5 cells dramatically decreased superoxide production in response to the complex III inhibitor antimycin A. Immunoblotting and real-time quantitative PCR of METC components demonstrated different patterns of expression among the three different sources of neuronal mitochondria. Conclusion RGC-5 mitochondria produce superoxide at significantly lower rates than cerebral and neuroblastoma mitochondria, most likely as a result of differential expression of complex I components. Diversity in METC component expression and function could explain tissue specificity in diseases associated with inherited mtDNA abnormalities.

  6. Modulation of Calcium Entry by Mitochondria.

    Fonteriz, Rosalba; Matesanz-Isabel, Jessica; Arias-Del-Val, Jessica; Alvarez-Illera, Pilar; Montero, Mayte; Alvarez, Javier


    The role of mitochondria in intracellular Ca(2+) signaling relies mainly in its capacity to take up Ca(2+) from the cytosol and thus modulate the cytosolic [Ca(2+)]. Because of the low Ca(2+)-affinity of the mitochondrial Ca(2+)-uptake system, this organelle appears specially adapted to take up Ca(2+) from local high-Ca(2+) microdomains and not from the bulk cytosol. Mitochondria would then act as local Ca(2+) buffers in cellular regions where high-Ca(2+) microdomains form, that is, mainly close to the cytosolic mouth of Ca(2+) channels, both in the plasma membrane and in the endoplasmic reticulum (ER). One of the first targets proposed already in the 1990s to be regulated in this way by mitochondria were the store-operated Ca(2+) channels (SOCE). Mitochondria, by taking up Ca(2+) from the region around the cytosolic mouth of the SOCE channels, would prevent its slow Ca(2+)-dependent inactivation, thus keeping them active for longer. Since then, evidence for this mechanism has accumulated mainly in immunitary cells, where mitochondria actually move towards the immune synapse during T cell activation. However, in many other cell types the available data indicate that the close apposition between plasma and ER membranes occurring during SOCE activation precludes mitochondria from getting close to the Ca(2+)-entry sites. Alternative pathways for mitochondrial modulation of SOCE, both Ca(2+)-dependent and Ca(2+)-independent, have also been proposed, but further work will be required to elucidate the actual mechanisms at work. Hopefully, the recent knowledge of the molecular nature of the mitochondrial Ca(2+) uniporter will allow soon more precise studies on this matter.

  7. Glutathione and Mitochondria

    Vicent eRibas


    Full Text Available Glutathione (GSH is the main nonprotein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease and Alzheimer’s disease.

  8. Scintillation autoradiographic localization of 1,25-dihydroxyvitamin D/sub 3/ in chick intestine. [Tritium tracer techniques

    Jones, P.G.; Haussler, M.R.


    The intracellular binding site of 1,25-dihydroxyvitamin D/sub 3/ (1,25(OH)/sub 2/D/sub 3/) was determined via biochemical analysis of radioactive 1,25(OH)/sub 2/D/sub 3/ association with various chick tissues and then by direct autoradiography. When vitamin D-deficient chicks were injected intracardially with doses of tritiated 1,25(OH)/sub 2/D/sub 3/ and killed 2 h later, 2 to 3 times more radioactivity was found in the intestinal mucosa than was present in equal weights of pancreas, parathyroid, or liver tissue. Very little tritium was found in muscle tissue. The intestinally localized radioactivity was predominantly associated with the nuclear chromatin fraction, and binding of 1,25(OH)/sub 2/(/sup 3/H)D/sub 3/ to the nucleus was maximal 2 h after injection and at a dose of at least 0.52 nmol. Using this dose and time period, autoradiographic studies were done on duodenum and thoracic muscle of rachitic chicks injected with radioactive 1,25(OH)/sub 2/D/sub 3/ (11.2 Ci/mol). Thin sections of tissue were prepared for thaw and dry mount scintillation autoradiography as well as simple dip-coating autoradiography. After exposure for 4 to 6 months, a preferential concentration and retention of tritium-labeled 1,25(OH)/sub 2/D/sub 3/ was evident in the nuclei of intestinal villi and in the crypt of Lieberkuehn cells when each of the autoradiographic techniques was utilized. Quantitation of the labeled hormone confirms the significant nuclear accumulation in both villi and crypt cells. No such nuclear concentration of silver grains was observed in thoracic muscle cells, and the intestinal localization was abolished when a 100-fold excess of unlabeled 1,25(OH)/sub 2/D/sub 3/ was injected simultaneously with the radioactive hormone. It is concluded that 1,25(OH)/sub 2/D/sub 3/ is bound in a tissue-selective fashion to a high affinity, low capacity site within the nucleus of its intestinal target organ.

  9. Noninvasive radiofrequency treatment effect on mitochondria in pancreatic cancer cells.

    Curley, Steven A; Palalon, Flavio; Lu, Xiaolin; Koshkina, Nadezhda V


    The development of novel therapeutic approaches for cancer therapy is important, especially for tumors that have poor response or develop resistance to standard chemotherapy and radiation. We discovered that noninvasive radiofrequency (RF) fields can affect cancer cells but not normal cells, inhibit progression of tumors in mice, and enhance the anticancer effects of chemotherapy. However, it remains unclear what physiological and molecular mechanisms this treatment induces inside cells. Here, we studied the effect of RF treatment on mitochondria in human pancreatic cancer cells. The morphology of mitochondria in cells was studied via electron microscopy. The alteration of mitochondrial membrane potential (Δψ) was accessed using a Mitotracker probe. The respiratory activity of mitochondria was evaluated by analyzing changes in oxygen consumption rates determined with a Mito Stress Test Kit. The production of intracellular reactive oxygen species was performed using flow cytometry. The colocalization of mitochondria and autophagosome markers in cells was performed using fluorescence immunostaining and confocal microscopy analysis. RF fields treatment changed the morphology of mitochondria in cancer cells, altered polarization of the mitochondrial membrane, substantially impaired mitochondrial respiration, and increased reactive oxygen species production, indicating RF-induced stress on the mitochondria. We also observed frequent colocalization of the autophagosome marker LC3B with the mitochondrial marker Tom20 inside cancer cells after RF exposure, indicating the presence of mitochondria in the autophagosomes. This suggests that RF-induced stress can damage mitochondria and induce elimination of damaged organelles via autophagy. RF treatment impaired the function of mitochondria in cancer cells. Therefore, mitochondria can represent one of the targets of the RF treatment. © 2014 American Cancer Society.

  10. Mitochondria targeting nano agents in cancer therapeutics

    Zhang, Xiao-Ying; Zhang, Pei-Ying


    Mitochondria have emerged as noteworthy therapeutic targets as their physiological functions are often altered in pathological conditions such as cancer. The electronic databases of MEDLINE, EMBASE and PubMed were searched for recent studies reporting the importance of mitochondria targeting nanoagents in cancer therapeutics. The concluding remarks of the above papers mostly confirmed the growing potential of these novel nanoagents in the area of anticancer research. Furthermore, numerous studies demonstrated the immense potential of nanocarriers in delivering mitochondria-acting compounds to their target site. Among the assemblage of nanomaterials, carbon nanotubes (CNTs) are becoming more prominent for drug delivery due to favorable attributes including their unique shape, which promotes cellular uptake, and large aspect ratio that facilitates conjugation of bioactive molecules on their surface. The present review focused on the current view of variable options available in mitochondria-targeting anticancer therapeutics. It may be concluded that improvements are essential for its establishment as a gold standard therapeutic option especially in the clinical setting. PMID:28105197

  11. Biochemistry of Mitochondria

    Filiz Koc


    Full Text Available Mitochondria are energy source of cells. They have external and internal membranes, cristas and matrix. External membranes consist of specialized transport proteins. They have monoamine oxidase and citokrome-c reductase which both play role in KREBS cycle as catalyst and many enzymes which are necessary for phospholipid and phosphoric acid synthesis. Enzymes of electron transport chain and oxidative phosphorylation are located in the internal membranes. Also, here, there are transport systems for specific substances, such as ATP, ADP, P1, pyruvate, succinate, malate, citrate, and -ketoglutarate . Matrix; having gel-like consistency, contains a large number of enzymes. [Archives Medical Review Journal 2003; 12(0.100: 1-13

  12. Hide and seek: a comparative autoradiographic in vitro investigation of the adenosine A3 receptor

    Haeusler, D.; Fuchshuber, F.; Girschele, F.; Hacker, M.; Wadsak, W.; Mitterhauser, Markus [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Grassinger, L. [University of Applied Sciences Wiener Neustadt, Department of Biomedical Analytics, Wiener Neustadt (Austria); Hoerleinsberger, W.J. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); University of Vienna, Cognitive Science Research Platform, Vienna (Austria); Hoeftberger, R.; Leisser, I. [Medical University of Vienna, Institute of Neurology, Vienna (Austria); Shanab, K.; Spreitzer, H. [University of Vienna, Department of Drug and Natural Product Synthesis, Vienna (Austria); Gerdenitsch, W. [Medical University of Vienna, Institute of Biomedicinal Research, Vienna (Austria)


    Since the adenosine A3 receptor (A3R) is considered to be of high clinical importance in the diagnosis and treatment of ischaemic conditions (heart and brain), glaucoma, asthma, arthritis, cancer and inflammation, a suitable and selective A3R PET tracer such as [{sup 18}F]FE rate at SUPPY would be of high clinical value for clinicians as well as patients. A3R was discovered in the late 1990s, but there is still little known regarding its distribution in the CNS and periphery. Hence, in autoradiographic experiments the distribution of A3R in human brain and rat tissues was investigated and the specific binding of the A3R antagonist FE rate at SUPPY and MRS1523 compared. Immunohistochemical staining (IHC) experiments were also performed to validate the autoradiographic findings. For autoradiographic competition experiments human post-mortem brain and rat tissues were incubated with [{sup 125}I]AB-MECA and highly selective compounds to block the other adenosine receptor subtypes. Additionally, IHC was performed with an A3 antibody. Specific A3R binding of MRS1523 and FE rate at SUPPY was found in all rat peripheral tissues examined with the highest amounts in the spleen (44.0 % and 46.4 %), lung (44.5 % and 45.0 %), heart (39.9 % and 42.9 %) and testes (27.4 % and 29.5 %, respectively). Low amounts of A3R were found in rat brain tissues (5.9 % and 5.6 %, respectively) and human brain tissues (thalamus 8.0 % and 9.1 %, putamen 7.8 % and 8.2 %, cerebellum 6.0 % and 7.8 %, hippocampus 5.7 % and 5.6 %, caudate nucleus 4.9 % and 6.4 %, cortex 4.9 % and 6.3 %, respectively). The outcome of the A3 antibody staining experiments complemented the results of the autoradiographic experiments. The presence of A3R protein was verified in central and peripheral tissues by autoradiography and IHC. The specificity and selectivity of FE rate at SUPPY was confirmed by direct comparison with MRS1523, providing further evidence that [{sup 18}F]FE rate at SUPPY may be a suitable A3 PET

  13. Autoradiographic characterization of L-(/sup 3/H)glutamate binding sites in the central nervous system

    Greenamyre, J.T.


    A quantitative autoradiographic technique was developed to study L-(/sup 3/H(glutamate binding in sections of central nervous system tissue. This technique circumvented some problems associated with conventional receptor binding methodologies and allowed direct assessment of regional distribution, numbers and affinities of glutamate binding sites. The sensitivity and high degree of anatomical resolution attainable by autoradiography obviated the need for pooled samples of microdissected specimens. Under assay conditions, (/sup 4/H)glutamate bound rapidly and reversibly to sections of rat brain and was not metabolized appreciably. The distribution of glutamate binding sites corresponded to the projection areas of putative glutamatergic pathways. Thus, there was heavy glutamate binding in regions where there is evidence for glutamatergic innervation and little binding in nuclei which apparently do not receive glutamatergic input. Scatchard and Hill plots suggested that glutamate was interacting with a single population of sites; however, competition studies revealed binding site heterogeneity. Anatomical and pharmacological evidence suggested that the NMDA-, high affinity quisqualate-, and kainate-sensitive glutamate binding sites may correspond to physiologically-defined NMDA, quisqualate and kainate receptors.

  14. Toxicity of polyhydroxylated fullerene to mitochondria

    Yang, Li-Yun [State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Gao, Jia-Ling [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China); Gao, Tian; Dong, Ping; Ma, Long; Jiang, Feng-Lei [State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Liu, Yi, E-mail: [State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)


    Highlights: • Fullerenol-induced mitochondrial dysfunction was investigated at mitochondrial level. • Fullerenol disturbed mitochondrial inner membrane in polar protein regions. • Fullerenol affected the inner membrane and respiration chain of mitochondria. - Abstract: Mitochondrial dysfunction is considered as a crucial mechanism of nanomaterial toxicity. Herein, we investigated the effects of polyhydroxylated fullerene (C{sub 60}(OH){sub 44}, fullerenol), a model carbon-based nanomaterial with high water solubility, on isolated mitochondria. Our study demonstrated that fullerenol enhanced the permeabilization of mitochondrial inner membrane to H{sup +} and K{sup +} and induced mitochondrial permeability transition (MPT). The fullerenol-induced swelling was dose-dependent and could be effectively inhibited by MPT inhibitors such as cyclosporin A (CsA), adenosine diphosphate (ADP), ruthenium red (RR) and ethylenediaminetetraacetic acid (EDTA). After treating the mitochondria with fullerenol, the mitochondrial membrane potential (MMP) was found collapsed in a concentration-independent manner. The fluorescence anisotropy of hematoporphyrin (HP) changed significantly with the addition of fullerenol, while that of 1,6-diphenyl-hexatriene (DPH) changed slightly. Moreover, a decrease of respiration state 3 and increase of respiration state 4 were observed when mitochondria were energized with complex II substrate succinate. The results of transmission electron microscopy (TEM) provided direct evidence that fullerenol damaged the mitochondrial ultrastructure. The investigations can provide comprehensive information to elucidate the possible toxic mechanism of fullerenols at subcellular level.

  15. Stable Isotope Tracer Analysis in Isolated Mitochondria from Mammalian Systems

    Simon-Pierre Gravel


    Full Text Available Mitochondria are a focal point in metabolism, given that they play fundamental roles in catabolic, as well as anabolic reactions. Alterations in mitochondrial functions are often studied in whole cells, and metabolomics experiments using 13C-labeled substrates, coupled with mass isotopomer distribution analyses, represent a powerful approach to study global changes in cellular metabolic activities. However, little is known regarding the assessment of metabolic activities in isolated mitochondria using this technology. Studies on isolated mitochondria permit the evaluation of whether changes in cellular metabolic activities are due to modifications in the intrinsic properties of the mitochondria. Here, we present a streamlined approach to accurately determine 13C, as well as 12C enrichments in isolated mitochondria from mammalian tissues or cultured cells by GC/MS. We demonstrate the relevance of this experimental approach by assessing the effects of drugs perturbing mitochondrial functions on the mass isotopomer enrichment of metabolic intermediates. Furthermore, we investigate 13C and 12C enrichments in mitochondria isolated from cancer cells given the emerging role of metabolic alterations in supporting tumor growth. This original method will provide a very sensitive tool to perform metabolomics studies on isolated mitochondria.

  16. Isolation of mitochondria by gentle cell membrane disruption, and their subsequent characterization.

    Shibata, Takahiro; Yamashita, Saki; Hirusaki, Kotoe; Katoh, Kaoru; Ohta, Yoshihiro


    Mitochondria play a key role in several physiological processes as in integrating signals in the cell. However, understanding of the mechanism by which mitochondria sense and respond to signals has been limited due to the lack of an appropriate model system. In this study, we developed a method to isolate and characterize mitochondria without cell homogenization. By gently pipetting cells treated with streptolysin-O, a pore-forming membrane protein, we disrupted the cell membrane and were able to isolate both elongated and spherical mitochondria. Fluorescence imaging combined with super resolution microscopy showed that both the outer and inner membranes of the elongated mitochondria isolated using the newly developed method were intact. In addition, a FRET-based ATP sensor expressed in the mitochondrial matrix demonstrated that ATP generation by FoF1-ATPase in the isolated elongated mitochondria was as high as that in intracellular mitochondria. On the other hand, some of the spherical mitochondria isolated with this method had the outer membrane that no longer encapsulated the inner membrane. In addition, all mitochondria isolated using conventional procedures involving homogenization were spherical, many of them had damaged membranes, and low levels of ATP generation. Our results suggest that elongated mitochondria isolated from cells through gentle cell membrane disruption using a pore-forming protein tend to be more similar to intracellular mitochondria, having an intact membrane system and higher activity than spherical mitochondria. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Isolation of functionally active and highly purified neuronal mitochondria from human cortex.

    Khattar, Nicolas K; Yablonska, Svitlana; Baranov, Sergei V; Baranova, Oxana V; Kretz, Eric S; Larkin, Timothy M; Carlisle, Diane L; Richardson, R Mark; Friedlander, Robert M


    Functional and structural properties of mitochondria are highly tissue and cell dependent, but isolation of highly purified human neuronal mitochondria is not currently available. We developed and validated a procedure to isolate purified neuronal mitochondria from brain tissue. The method combines Percoll gradient centrifugation to obtain synaptosomal fraction with nitrogen cavitation mediated synaptosome disruption and extraction of mitochondria using anti mitochondrial outer membrane protein antibodies conjugated to magnetic beads. The final products of isolation are non-synaptosomal mitochondria, which are a mixture of mitochondria isolated from different brain cells (i.e. neurons, astrocytes, oligodendrocytes, microglia) and synaptic mitochondria, which are of neuronal origin. This method is well suited for preparing functional mitochondria from human cortex tissue that is surgically extracted. The procedure produces mitochondria with minimal cytoplasmic contaminations that are functionally active based on measurements of mitochondrial respiration as well as mitochondrial protein import. The procedure requires approximately four hours for the isolation of human neuronal mitochondria and can also be used to isolate mitochondria from mouse/rat/monkey brains. This method will allow researchers to study highly enriched neuronal mitochondria without the confounding effect of cellular and organelle contaminants. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner

    Li, Tianpeng; Zheng, Fan; Cheung, Martin; Wang, Fengsong; Fu, Chuanhai


    The cytoskeleton plays a critical role in regulating mitochondria distribution. Similar to axonal mitochondria, the fission yeast mitochondria are distributed by the microtubule cytoskeleton, but this is regulated by a motor-independent mechanism depending on the microtubule associated protein mmb1p as the absence of mmb1p causes mitochondria aggregation. In this study, using a series of chimeric proteins to control the subcellular localization and motility of mitochondria, we show that a chimeric molecule containing a microtubule binding domain and the mitochondria outer membrane protein tom22p can restore the normal interconnected mitochondria network in mmb1-deletion (mmb1∆) cells. In contrast, increasing the motility of mitochondria by using a chimeric molecule containing a kinesin motor domain and tom22p cannot rescue mitochondria aggregation defects in mmb1∆ cells. Intriguingly a chimeric molecule carrying an actin binding domain and tom22p results in mitochondria associated with actin filaments at the actomyosin ring during mitosis, leading to cytokinesis defects. These findings suggest that the passive motor-independent microtubule-based mechanism is the major contributor to mitochondria distribution in wild type fission yeast cells. Hence, we establish that attachment to microtubules, but not kinesin-dependent movement and the actin cytoskeleton, is required and crucial for proper mitochondria distribution in fission yeast. PMID:26046468

  19. Mitochondria in health and disease

    Durhuus, Jon Ambæk; Madsen, Claus Desler; Rasmussen, Lene Juel


    The primary role of mitochondria was long considered to be production of cellular energy. However, as the understanding of mitochondria in disease is ever expanding, so is their additional function for a healthy organism. Mitochondrial dysfunction is linked to a range of pathologies, including...... (SMRM) was titled "Mitochondria in Health and Disease". The conference was organized by Gayathri N, K Thangaraj, and KK Singh and was held at the National Institute of Mental Health & Neuro Sciences (NIMHANS) in Bangalore, India, from the 19th to 20th of December 2013. The meeting featured...

  20. Intermembrane space proteome of yeast mitochondria.

    Vögtle, F-Nora; Burkhart, Julia M; Rao, Sanjana; Gerbeth, Carolin; Hinrichs, Jens; Martinou, Jean-Claude; Chacinska, Agnieszka; Sickmann, Albert; Zahedi, René P; Meisinger, Chris


    The intermembrane space (IMS) represents the smallest subcompartment of mitochondria. Nevertheless, it plays important roles in the transport and modification of proteins, lipids, and metal ions and in the regulation and assembly of the respiratory chain complexes. Moreover, it is involved in many redox processes and coordinates key steps in programmed cell death. A comprehensive profiling of IMS proteins has not been performed so far. We have established a method that uses the proapoptotic protein Bax to release IMS proteins from isolated mitochondria, and we profiled the protein composition of this compartment. Using stable isotope-labeled mitochondria from Saccharomyces cerevisiae, we were able to measure specific Bax-dependent protein release and distinguish between quantitatively released IMS proteins and the background efflux of matrix proteins. From the known 31 soluble IMS proteins, 29 proteins were reproducibly identified, corresponding to a coverage of >90%. In addition, we found 20 novel intermembrane space proteins, out of which 10 had not been localized to mitochondria before. Many of these novel IMS proteins have unknown functions or have been reported to play a role in redox regulation. We confirmed IMS localization for 15 proteins using in organello import, protease accessibility upon osmotic swelling, and Bax-release assays. Moreover, we identified two novel mitochondrial proteins, Ymr244c-a (Coa6) and Ybl107c (Mic23), as substrates of the MIA import pathway that have unusual cysteine motifs and found the protein phosphatase Ptc5 to be a novel substrate of the inner membrane protease (IMP). For Coa6 we discovered a role as a novel assembly factor of the cytochrome c oxidase complex. We present here the first and comprehensive proteome of IMS proteins of yeast mitochondria with 51 proteins in total. The IMS proteome will serve as a valuable source for further studies on the role of the IMS in cell life and death.

  1. Maternal inheritance of mitochondrial DNA (mtDNA) in the Pacific oyster (Crassostrea gigas): a preliminary study using mtDNA sequence analysis with evidence of random distribution of MitoTracker-stained sperm mitochondria in fertilized eggs.

    Obata, Mayu; Shimizu, Michiyo; Sano, Natsumi; Komaru, Akira


    In many bivalve species, paternal and maternal mitochondrial DNA (mtDNA) from sperm and eggs is transmitted to the offspring. This phenomenon is known as doubly uniparental inheritance (DUI). In these species, sperm mtDNA (M type) is inherited by the male gonad of the offspring. Egg mtDNA (F type) is inherited by both male and female somatic cells and female gonadal cells. In Mytilidae, sperm mitochondria are distributed in the cytoplasm of differentiating male germ cells because they are transmitted to the male gonad. In the present study, we investigated maternal inheritance of mtDNA in the Pacific oyster, Crassostrea gigas. Sequence analysis of two mitochondrial non-coding regions revealed an identical sequence pattern in the gametes and adductor muscle samples taken from six males and five females. To observe whether sperm mitochondria were specifically located in the cytoplasm of differentiating germ cells, their distribution was recorded in C. gigas fertilized eggs by vital staining with MitoTracker Green. Although the 1D blastomere was identified in the cytoplasm of differentiating germ cells, sperm mitochondria were located at the 1D blastomere in only 32% of eggs during the 8-cell stage. Thus, in C. gigas, sperm mitochondria do not specifically locate in the germ cell region at the 1D blastomere. We suggest that the distribution of sperm mitochondria is not associated with germ cell formation in C. gigas. Furthermore, as evidenced by the mtDNA sequences of two non-coding regions, we conclude that mitochondrial DNA is maternally inherited in this species.

  2. Autoradiographic determination of marginal leakage of a pressed glass ceramic inlay.

    Canay, R S; Hersek, N E; Uzun, G; Ercan, M T


    The marginal integrity and microleakage of pressed glass ceramic inlays were evaluated using autoradiography. IPS/Empress ceramic inlays were fabricated for 10 human molar mandibular teeth. After adjusting the inlays, they were etched with 37% phosphoric acid gel for 30 s and silanized with Monobond S for 30 s. Before cementation with dual cure resin cement the inlays and cavity walls were gently covered with a thin layer of bonding agent. When the cementation process was completed the samples were cycled 300 times between a 55 degrees C hot bath and a 5 degrees C cold bath. The samples were placed in each bath for 60 s, with 5 s intervals between immersions, then the specimens were immersed in an aqueous solution of Ca-45. After 24 h the inlay and tooth assemblies were removed, rinsed with water and placed in cold-cured acrylic resin, then sectioned through the long axis for autoradiographic analysis. According to the penetration of Ca-45, the microleakage level was scored for each section. The results indicated slight penetration of Ca-45 on autoradiographic films.

  3. Targeting microbiota-mitochondria inter-talk: Microbiota control mitochondria metabolism.

    Saint-Georges-Chaumet, Y; Attaf, D; Pelletier, E; Edeas, M


    Our aim is to highlight the subtle relationship that exists between microbiota and mitochondria. Microbiota targets mitochondria by modulating the Reactive Oxygen Species (ROS) production and the mitochondrial activity through interactions with toxins, proteins or other metabolites released by gut microbiota. The intriguing relationship that exists between mitochondria and microbiota is strengthened by the probable prokaryotic origin of mitochondria. Emerging data implicates a role for ROS, nitric oxide, Short Chain Fatty Acids and hydrogen sulfide in the cross-talk between microbiota - mitochondria and REDOX signaling. Several studies have shown that microbiota act and modulate mitochondrial activity, and use it as a relay to strengthen host-microbiotal interaction. This modulation depends on the gut bacterial strain quality and diversity to increase its pathogenic versus beneficial effects. Furthermore, based on conclusions from new studies, it is possible that microbiota can directly interact with the host cell gene expression by favoring bacterial and mitochondrial DNA insertion in the nuclear genome. The emerging knowledge of mitochondria-microbiota interaction may be of great importance to better understand the mechanism of mitochondrial and metabolic diseases, and the syndromes associated with change in quality and quantity of microbiotal species. We suggest that microbiota via mitochondrial modulation influence cell homeostasis and metabolism. The challenge will be to find strategies to modulate the quality and diversity of microbiota rather than acting on microbiota metabolites and microbiota related factors. The medicine of tomorrow will be completely personalized. Firstly there will be a test to show the quality, quantity and diversity of microbiota, and secondly a preventive or therapeutic strategy will be administrated (probiotics, diet, prodrug or fecal transplantation). The era of digital medicine is here.

  4. Calpains, mitochondria, and apoptosis.

    Smith, Matthew A; Schnellmann, Rick G


    Mitochondrial activity is critical for efficient function of the cardiovascular system. In response to cardiovascular injury, mitochondrial dysfunction occurs and can lead to apoptosis and necrosis. Calpains are a 15-member family of Ca(2+)-activated cysteine proteases localized to the cytosol and mitochondria, and several have been shown to regulate apoptosis and necrosis. For example, in endothelial cells, Ca(2+) overload causes mitochondrial calpain 1 cleavage of the Na(+)/Ca(2+) exchanger leading to mitochondrial Ca(2+) accumulation. Also, activated calpain 1 cleaves Bid, inducing cytochrome c release and apoptosis. In renal cells, calpains 1 and 2 promote apoptosis and necrosis by cleaving cytoskeletal proteins, which increases plasma membrane permeability and cleavage of caspases. Calpain 10 cleaves electron transport chain proteins, causing decreased mitochondrial respiration and excessive activation, or inhibition of calpain 10 activity induces mitochondrial dysfunction and apoptosis. In cardiomyocytes, calpain 1 activates caspase 3 and poly-ADP ribose polymerase during tumour necrosis factor-α-induced apoptosis, and calpain 1 cleaves apoptosis-inducing factor after Ca(2+) overload. Many of these observations have been elucidated with calpain inhibitors, but most calpain inhibitors are not specific for calpains or a specific calpain family member, creating more questions. The following review will discuss how calpains affect mitochondrial function and apoptosis within the cardiovascular system.

  5. Mitochondria localize to the cleavage furrow in mammalian cytokinesis.

    Lawrence, Elizabeth J; Mandato, Craig A


    Mitochondria are dynamic organelles with multiple cellular functions, including ATP production, calcium buffering, and lipid biosynthesis. Several studies have shown that mitochondrial positioning is regulated by the cytoskeleton during cell division in several eukaryotic systems. However, the distribution of mitochondria during mammalian cytokinesis and whether the distribution is regulated by the cytoskeleton has not been examined. Using live spinning disk confocal microscopy and quantitative analysis of mitochondrial fluorescence intensity, we demonstrate that mitochondria are recruited to the cleavage furrow during cytokinesis in HeLa cells. After anaphase onset, the mitochondria are recruited towards the site of cleavage furrow formation, where they remain enriched as the furrow ingresses and until cytokinesis completion. Furthermore, we show that recruitment of mitochondria to the furrow occurs in multiple mammalian cells lines as well as in monopolar, bipolar, and multipolar divisions, suggesting that the mechanism of recruitment is conserved and robust. Using inhibitors of cytoskeleton dynamics, we show that the microtubule cytoskeleton, but not actin, is required to transport mitochondria to the cleavage furrow. Thus, mitochondria are specifically recruited to the cleavage furrow in a microtubule-dependent manner during mammalian cytokinesis. Two possible reasons for this could be to localize mitochondrial function to the furrow to facilitate cytokinesis and / or ensure accurate mitochondrial inheritance.

  6. Characterization of DNA-binding proteins from pea mitochondria

    Hatzack, F.A.; Dombrowski, S.; Brennicke, A.


    We studied transcription initiation in the mitochondria of higher plants, with particular respect to promoter structures. Conserved elements of these promoters have been successfully identified by in vitro transcription systems in different species, whereas the involved protein components are still...

  7. Insulin signaling meets mitochondria in metabolism

    Cheng, Zhiyong; Tseng, Yolanda; White, Morris F.


    Insulin controls nutrient and metabolic homeostasis via the IRS–PI3K–AKT signaling cascade that targets FOXO1 and mTOR. Mitochondria, as the prime metabolic platform, malfunction during insulin resistance in metabolic diseases. However, the molecular link between insulin resistance and mitochondrial dysfunction remains undefined. Here we review recent studies on insulin action and the mechanistic association with mitochondrial metabolism. These studies suggest that insulin signaling underpins...

  8. A combination of atlas-based and voxel-wise approaches to analyze metabolic changes in autoradiographic data from Alzheimer's mice.

    Lebenberg, J; Hérard, A-S; Dubois, A; Dhenain, M; Hantraye, P; Delzescaux, T


    Murine models are commonly used in neuroscience research to improve our knowledge of disease processes and to test drug effects. To accurately study brain glucose metabolism in these animals, ex vivo autoradiography remains the gold standard. The analysis of 3D-reconstructed autoradiographic volumes using a voxel-wise approach allows clusters of voxels representing metabolic differences between groups to be revealed. However, the spatial localization of these clusters requires careful visual identification by a neuroanatomist, a time-consuming task that is often subject to misinterpretation. Moreover, the large number of voxels to be computed in autoradiographic rodent images leads to many false positives. Here, we proposed an original automated indexation of the results of a voxel-wise approach using an MRI-based 3D digital atlas, followed by the restriction of the statistical analysis using atlas-based segmentation, thus taking advantage of the specific and complementary strengths of these two approaches. In a preliminary study of transgenic Alzheimer's mice (APP/PS1), and control littermates (PS1), we were able to achieve prompt and direct anatomical indexation of metabolic changes detected between the two groups, revealing both hypo- and hypermetabolism in the brain of APP/PS1 mice. Furthermore, statistical results were refined using atlas-based segmentation: most interesting results were obtained for the hippocampus. We thus confirmed and extended our previous results by identifying the brain structures affected in this pathological model and demonstrating modified glucose uptake in structures like the olfactory bulb. Our combined approach thus paves the way for a complete and accurate examination of functional data from cerebral structures involved in models of neurodegenerative diseases.

  9. The TOM complex is involved in the release of superoxide anion from mitochondria.

    Budzińska, Małgorzata; Gałgańska, Hanna; Karachitos, Andonis; Wojtkowska, Małgorzata; Kmita, Hanna


    Available data indicate that superoxide anion (O(2)(*-) ) is released from mitochondria, but apart from VDAC (voltage dependent anion channel), the proteins involved in its transport across the mitochondrial outer membrane still remain elusive. Using mitochondria of the yeast Saccharomyces cerevisiae mutant depleted of VDAC (Deltapor1 mutant) and the isogenic wild type, we studied the role of the TOM complex (translocase of the outer membrane) in the efflux of O(2)(*-) from the mitochondria. We found that blocking the TOM complex with the fusion protein pb(2)-DHFR decreased O(2)(*-) release, particularly in the case of Deltapor1 mitochondria. We also observed that the effect of the TOM complex blockage on O(2)(*-) release from mitochondria coincided with the levels of O(2)(*-) release as well as with levels of Tom40 expression in the mitochondria. Thus, we conclude that the TOM complex participates in O(2)(*-) release from mitochondria.

  10. Insulin signaling meets mitochondria in metabolism.

    Cheng, Zhiyong; Tseng, Yolanda; White, Morris F


    Insulin controls nutrient and metabolic homeostasis via the IRS-PI3K-AKT signaling cascade that targets FOXO1 and mTOR. Mitochondria, as the prime metabolic platform, malfunction during insulin resistance in metabolic diseases. However, the molecular link between insulin resistance and mitochondrial dysfunction remains undefined. Here we review recent studies on insulin action and the mechanistic association with mitochondrial metabolism. These studies suggest that insulin signaling underpins mitochondrial electron transport chain integrity and activity by suppressing FOXO1/HMOX1 and maintaining the NAD(+)/NADH ratio, the mediator of the SIRT1/PGC1α pathway for mitochondrial biogenesis and function. Mitochondria generate moderately reactive oxygen species (ROS) and enhance insulin sensitivity upon redox regulation of protein tyrosine phosphatase and insulin receptor. However, chronic exposure to high ROS levels could alter mitochondrial function and thereby cause insulin resistance.

  11. Novel cell-penetrating peptide targeting mitochondria.

    Cerrato, Carmine Pasquale; Pirisinu, Marco; Vlachos, Efstathios Nikolaos; Langel, Ülo


    Cell-penetrating peptides (CPPs) are short, nontoxic peptides with cationic and/or amphipathic properties able to cross the cellular membrane. CPPs are used for the delivery of a wide variety of cargoes, such as proteins, oligonucleotides, and therapeutic molecules. The aim of the present study was to synthesize unusually small novel CPPs targeting mitochondria based on the Szeto-Schiller peptide (SS-31) to influence intramitochondrial processes and to improve the biologic effects. All the peptides used were synthesized manually using 9-fluorenylmethyloxycarbonyl chemistry. In the first part of the study, HeLa 705, U87, and bEnd.3 cells were used as in vitro delivery model. Cells were incubated for 24 h at 37°C and 5% CO2 with different concentrations of our peptides. Cell proliferation assay was performed to evaluate cell viability. Biologic effects such as mitochondrial membrane potential and antioxidant activity were evaluated. H2O2 was used as positive control. Uptake studies were performed using peptides conjugated with 5(6)-carboxyfluorescein (FAM). Fluorescent microscopy was used to determine presence and localization of peptides into the cells. Isolated mitochondria from pretreated cells and mitochondria treated after isolation were used to confirm the targeting ability of the peptide. Uptake of FAM alone was used as negative control. Microscopy studies confirmed the ability of peptides to penetrate cell. Localization analysis showed increase in uptake by 35% compared with SS-31. Mitochondrial CPP 1 (mtCPP-1) had no effect on mitochondrial membrane potential and prevented reactive oxygen species formation in bEnd.3 cells by 2-fold compared with SS-31. No cytotoxicity was observed even at high concentration (100 µM). These data suggest that mtCPP-1 is a mitochondrial CPP and protect mitochondria from oxidative damage due to its own antioxidant activities. © FASEB.

  12. Import of proteins into isolated yeast mitochondria.

    Peleh, Valentina; Ramesh, Ajay; Herrmann, Johannes M


    Mitochondria are essential organelles of eukaryotic cells. The vast majority of mitochondrial proteins is encoded within the nuclear genome and translocated into various mitochondrial compartments after translation in the cytosol as preproteins. Even in rather primitive eukaryotes like yeasts, there are 700-1,000 different proteins that need to be recognized in the cytosol, directed to the protein translocases in the two mitochondrial membranes and sorted to their appropriate mitochondrial subcompartment. In vitro reconstituted import systems have proved to be important tools to study these processes in detail. Using isolated mitochondria and radioactively labeled precursor proteins, it was possible to identify several import machineries and pathways consisting of a large number of components during the last few decades.

  13. Cardiovascular Disease, Mitochondria, and Traditional Chinese Medicine

    Jie Wang


    Full Text Available Recent studies demonstrated that mitochondria play an important role in the cardiovascular system and mutations of mitochondrial DNA affect coronary artery disease, resulting in hypertension, atherosclerosis, and cardiomyopathy. Traditional Chinese medicine (TCM has been used for thousands of years to treat cardiovascular disease, but it is not yet clear how TCM affects mitochondrial function. By reviewing the interactions between the cardiovascular system, mitochondrial DNA, and TCM, we show that cardiovascular disease is negatively affected by mutations in mitochondrial DNA and that TCM can be used to treat cardiovascular disease by regulating the structure and function of mitochondria via increases in mitochondrial electron transport and oxidative phosphorylation, modulation of mitochondrial-mediated apoptosis, and decreases in mitochondrial ROS. However further research is still required to identify the mechanism by which TCM affects CVD and modifies mitochondrial DNA.

  14. Role of mitochondria in the switch mechanism of the cell death mode from apoptosis to necrosis--studies on rho0 cells.

    Wochna, Agnieszka; Niemczyk, Edyta; Kurono, Chieko; Masaoka, Makoto; Majczak, Anna; Kedzior, Jakub; Slominska, Ewa; Lipinski, Marcin; Wakabayashi, Takashi


    Detailed mechanisms of the switch of the cell death mode from apoptosis to necrosis remain to be solved, although the intracellular level of ATP and that of free radicals have been postulated to be the major factors involved in the mechanisms. In the present study menadione (MEN)-induced cell injury processes were studied using rho0 cells derived from human osteosarcoma 143B cells and parental rho+ cells co-treated with inhibitors of electron transfer chain of mitochondria or oligomycin, an inhibitor of ATP synthesis. Treatment of rho+ cells with 100 microM MEN induced apoptosis, which reached the maximum at 6 h, and was followed by an abrupt decrease thereafter, while necrotic cells (NC) increased continuously when they were judged by Annexin V and PI double staining. On the other hand, MEN induced apoptotic and necrotic changes much faster in rho0 cells compared to rho+ cells. The frequency to find apoptotic cells (AP) in the former cells was distinctly smaller than that to find NC judged by Annexin V and PI double staining. Electron microscopically, a major population of rho0 cells treated with MEN for 6 h consisted of intermediate cells, and a small number of AP co-existed. At 9 h of the treatment intermediate cells were exclusively seen, and AP were hardly detected. When parental rho+ cells were treated with MEN in the presence of oligomycin or oligomycin plus antimycin A both apoptotic and necrotic changes of the cells were distinctly accelerated. The intracellular level of superoxide in rho0 cells continuously increased after the MEN treatment, whereas that of ATP remained distinctly low before and after the MEN treatment compared to that in rho+ cells. These data suggest that the intracellular level of superoxide may be a key factor controlling the switch from apoptosis to necrosis.

  15. 黄瓜线粒体离体电穿孔转化方法研究%Study on Electroporation Transformation of Isolated Cucumber Mitochondria

    徐海津; 董荣; 周腊梅; 鲁迪红; 谷彩凤; 白艳玲; 张秀明; 乔明强


    Cucumber mitochondria were isolated from cotyledons of seedlings grown at steril conditions, and then washed and resuspended in 0. 33 mol/L sorbitol. 0. 5~1 μg plasmid DNA in 100 μL suspension and with electroporation at 13 kV/cm was determined to be the optimal conditions for transformation. After incubation of the treated mitochondria for a short time, DNA was extracted and gfp gene was detected by PCR. The results showed that the plasmid DNA was introduced into mitochondria successfully. Comparation of RNA extracted from mitochondria before and after electroporation showed that no RNA degradation within mitochondria was caused by the treatment.%以无菌培养的黄瓜子叶为材料分离线粒体,以0.33 mol/L山梨醇为离体线粒体洗涤和重悬浮溶液.在100 μL线粒体悬液中加入0.5~1 μg转化质粒,以13 kV/cm电压进行电穿孔效果最佳.对电击后和离体短时孵育的线粒体进行DNA提取和外源基因PCR检测,结果表明转化质粒能成功导入离体线粒体中.电穿孔前后提取的线粒体RNA质量没有明显差别,这说明合适的电穿孔操作没有造成离体线粒体内部RNA降解.

  16. Sulfide detoxification in plant mitochondria.

    Birke, Hannah; Hildebrandt, Tatjana M; Wirtz, Markus; Hell, Rüdiger


    In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.

  17. Mitochondria Damage and Kidney Disease.

    Duann, Pu; Lin, Pei-Hui


    The kidney is a vital organ that demands an extraordinary amount of energy to actively maintain the body's metabolism, plasma hemodynamics, electrolytes and water homeostasis, nutrients reabsorption, and hormone secretion. Kidney is only second to the heart in mitochondrial count and oxygen consumption. As such, the health and status of the energy power house, the mitochondria, is pivotal to the health and proper function of the kidney. Mitochondria are heterogeneous and highly dynamic organelles and their functions are subject to complex regulations through modulation of its biogenesis, bioenergetics, dynamics and clearance within cell. Kidney diseases, either acute kidney injury (AKI) or chronic kidney disease (CKD), are important clinical issues and global public health concerns with high mortality rate and socioeconomic burden due to lack of effective therapeutic strategies to cure or retard the progression of the diseases. Mitochondria-targeted therapeutics has become a major focus for modern research with the belief that maintaining mitochondria homeostasis can prevent kidney pathogenesis and disease progression. A better understanding of the cellular and molecular events that govern mitochondria functions in health and disease will potentially lead to improved therapeutics development.

  18. Autoradiographic localization of adenosine receptors in rat brain using (/sup 3/H)cyclohexyladenosine

    Goodman, R.R.; Synder, S.H.


    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of (/sup 3/H)N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.

  19. Calcitonin receptors in the rat mesencephalon mediate its analgesic actions: autoradiographic and behavioral analyses

    Fabbri, A.; Pert, C.B.; Pert, A.; Fraioli, F.


    Autoradiographic analyses of salmon calcitonin (sCT) binding in the rat mesencephalon revealed an exceptionally high concentration of receptors in the ventral and ventrolateral segments of the periaqueductal gray matter (PAG) extending along the entire rostralcaudal axis. Relatively heavy labeling was also seen along a band extending ventrolaterally through the mesencephalic reticular formation. Other receptor-rich areas include the nucleus linearis, pars compacta and lateralis of the substantia nigra, locus coeruleus, parabrachial nuclei and nucleus raphe pontis of the pontine reticular formation. The biological effects are consistent with the potencies of both peptides in displacing SVI-sCT from slide-mounted sections of rat PAG. Naloxone failed to antagonize sCT-induced analgesia, suggesting an opiate independent mechanism for this peptide in elicting analgesia. (Auth.). 60 refs.; 9 figs.

  20. Analysis of mitochondria isolated from single cells.

    Johnson, Ryan D; Navratil, Marian; Poe, Bobby G; Xiong, Guohua; Olson, Karen J; Ahmadzadeh, Hossein; Andreyev, Dmitry; Duffy, Ciarán F; Arriaga, Edgar A


    Bulk studies are not suitable to describe and study cell-to-cell variation, which is of high importance in biological processes such as embryogenesis, tissue differentiation, and disease. Previously, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was used to measure the properties of organelles isolated from millions of cells. As such, these bulk measurements reported average properties for the organelles of cell populations. Similar measurements for organelles released from single cells would be highly relevant to describe the subcellular variations among cells. Toward this goal, here we introduce an approach to analyze the mitochondria released from single mammalian cells. Osteosarcoma 143B cells are labeled with either the fluorescent mitochondrion-specific 10-N-nonyl acridine orange (NAO) or via expression of the fluorescent protein DsRed2. Subsequently, a single cell is introduced into the CE-LIF capillary where the organelles are released by a combined treatment of digitonin and trypsin. After this treatment, an electric field is applied and the released organelles electromigrate toward the LIF detector. From an electropherogram, the number of detected events per cell, their individual electrophoretic mobilities, and their individual fluorescence intensities are calculated. The results obtained from DsRed2 labeling, which is retained in intact mitochondria, and NAO labeling, which labels all mitochondria, are the basis for discussion of the strengths and limitations of this single-cell approach.

  1. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel


    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic

  2. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Yu-Hao ePeng


    Full Text Available Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC on a flattened cortical map. A graphic user interface Cx-2D allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex–-changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and

  3. Autoradiographic detection of HPRT variants of human lymphocytes resistant to RNA synthesis inhibition

    Jones, I.M.; Zetterberg, G.; Strout, C.L.; Carrano, A.V.


    The feasibility of using RNA synthesis in freshly isolated, human peripheral blood lymphocytes to detect 6-thioguanine (TG)- and 8-azaguanine (AG)-resistant variants in an autoradiographic assay similar to that of Strauss and Albertini (1979) has been evaluated. In phytohemagglutinin (PHA)-stimulated cultures RNA synthesis and HPRT activity began well in advance of DNA synthesis and increased in parallel during the first 44 h of culture. Introduction of TG or AG with PHA at the beginning of culture completely inhibited DNA synthesis during the first 44 h and reduced RNA synthesis to low levels within 24 h. When TG or AG was added after cells had been in culture for 38 h, DNA synthesis was reduced quickly while RNA synthesis was inhibited more slowly. An autoradiographic assay is described in which freshly isolated lymphocytes are cultured with PHA for 24 h, with or without TG or AG, then labeled with (/sup 3/H)uridine for 1 h. TG-resistant and AG-resistant variant frequencies for 2 normal individuals and a Lesch-Nyhan individual were determined with this assay. The variant frequencies for the normal individuals ranged from 0.46 to 10.6 x 10/sup -5/ depending upon the selective conditions used. All the Lesch-Nyhan cells were resistant to 0.2 mM AG; some were sensitive to 0.2 mM TG and most were sensitive to 2.0 mM TG. 24 references, 3 figures, 1 table.

  4. Crosstalk between mitochondria and peroxisomes

    Jean; Demarquoy; Fran?oise; Le; Borgne


    Mitochondria and peroxisomes are small ubiquitous organelles. They both play major roles in cell metabolism,especially in terms of fatty acid metabolism,reactive oxygen species(ROS) production,and ROS scavenging,and it is now clear that they metabolically interact with each other. These two organelles share some properties,such as great plasticity and high potency to adapt their form and number according to cell requirements. Their functions are connected,and any alteration in the function of mitochondria may induce changes inperoxisomal physiology. The objective of this paper was to highlight the interconnection and the crosstalk existing between mitochondria and peroxisomes. Special emphasis was placed on the best known connections between these organelles:origin,structure,and metabolic interconnections.

  5. Cardiac mitochondria exhibit dynamic functional clustering

    Felix Tobias Kurz


    Full Text Available Multi-oscillatory behavior of mitochondrial inner membrane potential ΔΨm in self-organized cardiac mitochondrial networks can be triggered by metabolic or oxidative stress. Spatio-temporal analyses of cardiac mitochondrial networks have shown that mitochondria are heterogeneously organized in synchronously oscillating clusters in which the mean cluster frequency and size are inversely correlated, thus suggesting a modulation of cluster frequency through local inter-mitochondrial coupling. In this study, we propose a method to examine the mitochondrial network's topology through quantification of its dynamic local clustering coefficients. Individual mitochondrial ΔΨm oscillation signals were identified for each cardiac myocyte and cross-correlated with all network mitochondria using previously described methods (Kurz et al., 2010. Time-varying inter-mitochondrial connectivity, defined for mitochondria in the whole network whose signals are at least 90% correlated at any given time point, allowed considering functional local clustering coefficients. It is shown that mitochondrial clustering in isolated cardiac myocytes changes dynamically and is significantly higher than for random mitochondrial networks that are constructed using the Erdös-Rényi model based on the same sets of vertices. The network's time-averaged clustering coefficient for cardiac myocytes was found to be 0.500 ± 0.051 (N=9 versus 0.061 ± 0.020 for random networks, respectively. Our results demonstrate that cardiac mitochondria constitute a network with dynamically connected constituents whose topological organization is prone to clustering. Cluster partitioning in networks of coupled oscillators has been observed in scale-free and chaotic systems and is therefore in good agreement with previous models of cardiac mitochondrial networks (Aon et al., 2008.

  6. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model.

    Dash, Ranjan K; Li, Yanjun; Kim, Jaeyeon; Beard, Daniel A; Saidel, Gerald M; Cabrera, Marco E


    Control mechanisms of cellular metabolism and energetics in skeletal muscle that may become evident in response to physiological stresses such as reduction in blood flow and oxygen supply to mitochondria can be quantitatively understood using a multi-scale computational model. The analysis of dynamic responses from such a model can provide insights into mechanisms of metabolic regulation that may not be evident from experimental studies. For the purpose, a physiologically-based, multi-scale computational model of skeletal muscle cellular metabolism and energetics was developed to describe dynamic responses of key chemical species and reaction fluxes to muscle ischemia. The model, which incorporates key transport and metabolic processes and subcellular compartmentalization, is based on dynamic mass balances of 30 chemical species in both capillary blood and tissue cells (cytosol and mitochondria) domains. The reaction fluxes in cytosol and mitochondria are expressed in terms of a general phenomenological Michaelis-Menten equation involving the compartmentalized energy controller ratios ATP/ADP and NADH/NAD(+). The unknown transport and reaction parameters in the model are estimated simultaneously by minimizing the differences between available in vivo experimental data on muscle ischemia and corresponding model outputs in coupled with the resting linear flux balance constraints using a robust, nonlinear, constrained-based, reduced gradient optimization algorithm. With the optimal parameter values, the model is able to simulate dynamic responses to reduced blood flow and oxygen supply to mitochondria associated with muscle ischemia of several key metabolite concentrations and metabolic fluxes in the subcellular cytosolic and mitochondrial compartments, some that can be measured and others that can not be measured with the current experimental techniques. The model can be applied to test complex hypotheses involving dynamic regulation of cellular metabolism and

  7. Role of mitochondria in parvovirus pathology.

    Jonna Nykky

    Full Text Available Proper functioning of the mitochondria is crucial for the survival of the cell. Viruses are able to interfere with mitochondrial functions as they infect the host cell. Parvoviruses are known to induce apoptosis in infected cells, but the role of the mitochondria in parvovirus induced cytopathy is only partially known. Here we demonstrate with confocal and electron microscopy that canine parvovirus (CPV associated with the mitochondrial outer membrane from the onset of infection. During viral entry a transient depolarization of the mitochondrial transmembrane potential and increase in ROS level was detected. Subsequently, mitochondrial homeostasis was normalized shortly, as detected by repolarization of the mitochondrial membrane and decrease of ROS. Indeed, activation of cell survival signalling through ERK1/2 cascade was observed early in CPV infected cells. At 12 hours post infection, concurrent with the expression of viral non-structural protein 1, damage to the mitochondrial structure and depolarization of its membrane were apparent. Results of this study provide additional insight of parvovirus pathology and also more general information of virus-mitochondria association.

  8. Connecting Mitochondria, Metabolism, and Stem Cell Fate.

    Wanet, Anaïs; Arnould, Thierry; Najimi, Mustapha; Renard, Patricia


    As sites of cellular respiration and energy production, mitochondria play a central role in cell metabolism. Cell differentiation is associated with an increase in mitochondrial content and activity and with a metabolic shift toward increased oxidative phosphorylation activity. The opposite occurs during reprogramming of somatic cells into induced pluripotent stem cells. Studies have provided evidence of mitochondrial and metabolic changes during the differentiation of both embryonic and somatic (or adult) stem cells (SSCs), such as hematopoietic stem cells, mesenchymal stem cells, and tissue-specific progenitor cells. We thus propose to consider those mitochondrial and metabolic changes as hallmarks of differentiation processes. We review how mitochondrial biogenesis, dynamics, and function are directly involved in embryonic and SSC differentiation and how metabolic and sensing pathways connect mitochondria and metabolism with cell fate and pluripotency. Understanding the basis of the crosstalk between mitochondria and cell fate is of critical importance, given the promising application of stem cells in regenerative medicine. In addition to the development of novel strategies to improve the in vitro lineage-directed differentiation of stem cells, understanding the molecular basis of this interplay could lead to the identification of novel targets to improve the treatment of degenerative diseases.

  9. Role of mitochondria in parvovirus pathology.

    Nykky, Jonna; Vuento, Matti; Gilbert, Leona


    Proper functioning of the mitochondria is crucial for the survival of the cell. Viruses are able to interfere with mitochondrial functions as they infect the host cell. Parvoviruses are known to induce apoptosis in infected cells, but the role of the mitochondria in parvovirus induced cytopathy is only partially known. Here we demonstrate with confocal and electron microscopy that canine parvovirus (CPV) associated with the mitochondrial outer membrane from the onset of infection. During viral entry a transient depolarization of the mitochondrial transmembrane potential and increase in ROS level was detected. Subsequently, mitochondrial homeostasis was normalized shortly, as detected by repolarization of the mitochondrial membrane and decrease of ROS. Indeed, activation of cell survival signalling through ERK1/2 cascade was observed early in CPV infected cells. At 12 hours post infection, concurrent with the expression of viral non-structural protein 1, damage to the mitochondrial structure and depolarization of its membrane were apparent. Results of this study provide additional insight of parvovirus pathology and also more general information of virus-mitochondria association.

  10. Depletion of mitochondria in mammalian cells through enforced mitophagy.

    Correia-Melo, Clara; Ichim, Gabriel; Tait, Stephen W G; Passos, João F


    Mitochondria are not only the 'powerhouse' of the cell; they are also involved in a multitude of processes that include calcium storage, the cell cycle and cell death. Traditional means of investigating mitochondrial importance in a given cellular process have centered upon depletion of mtDNA through chemical or genetic means. Although these methods severely disrupt the mitochondrial electron transport chain, mtDNA-depleted cells still maintain mitochondria and many mitochondrial functions. Here we describe a straightforward protocol to generate mammalian cell populations with low to nondetectable levels of mitochondria. Ectopic expression of the ubiquitin E3 ligase Parkin, combined with short-term mitochondrial uncoupler treatment, stimulates widespread mitophagy and effectively eliminates mitochondria. In this protocol, we explain how to generate Parkin-expressing, mitochondria-depleted cells from scratch in 23 d, as well as offer a variety of methods for confirming mitochondrial clearance. Furthermore, we describe culture conditions to maintain mitochondrial-depleted cells for up to 30 d with minimal loss of viability, for longitudinal studies. This method should prove useful for investigating the importance of mitochondria in a variety of biological processes.

  11. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis.

    Manfredi, Giovanni; Kawamata, Hibiki


    Physical and functional interactions between mitochondria and the endoplasmic reticulum (ER) are crucial for cell life. These two organelles are intimately connected and collaborate to essential processes, such as calcium homeostasis and phospholipid biosynthesis. The connections between mitochondria and endoplasmic reticulum occur through structures named mitochondria associated membranes (MAMs), which contain lipid rafts and a large number of proteins, many of which serve multiple functions at different cellular sites. Growing evidence strongly suggests that alterations of ER-mitochondria interactions are involved in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a devastating and rapidly fatal motor neuron disease. Mutations in proteins that participate in ER-mitochondria interactions and MAM functions are increasingly being associated with genetic forms of ALS and other neurodegenerative diseases. This evidence strongly suggests that, rather than considering the two organelles separately, a better understanding of the disease process can derive from studying the alterations in their crosstalk. In this review we discuss normal and pathological ER-mitochondria interactions and the evidence that link them to ALS. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Quantitative Proteomics of Synaptic and Nonsynaptic Mitochondria: Insights for Synaptic Mitochondrial Vulnerability


    Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage. PMID:24708184

  13. A Study of the Protective Effects of Vitamin E and Fennel Extract on Mitochondria Changes in Mice Ovary Due to Electromagnetic Field Exposure

    Asghari Ali


    Full Text Available Objective: Everyday use of different types of electrical instruments and appliances has caused a large number of people to constantly be under the influence of electromagnetic fields. Materials and Methods: For the purpose of this study, 40 female rats were randomly chosen from among 3 months old rats from the animals’ laboratory and they weighed 20 + 200 g. Then, they were randomly divided into 4 groups; control (n = 10, experiment 1 (Ex1 (n = 10, experiment 2 (Ex2 (n = 10, and experiment 3 (Ex3 (n = 10. During the experiment, all 4 groups were maintained in the same conditions and received the same feeding. The experiment groups 1, 2, and 3 were under the influence of a 50 Hz electromagnetic field (EMF for 8 weeks. Subsequently, the second and third groups were kept away from the EMF effect for another 8 weeks. At the end of the study, after removal of the ovaries by glutaraldehyde, they were prepared for examination using an electron microscope. Group Ex2 rats were not sacrificed and were maintained in the normal laboratory environment for another 8 weeks away from the impacts of EMF. The rats were fed vitamin E(100 mg/kg and fennel extract (1.5 g per body weight every day orally and at the end of the second 8 weeks samples were taken. During the second 8 weeks, group Ex3 was kept in normal conditions without the use of vitamin E and fed fennel extract, and then, samples were taken. Samples were taken simultaneously from 10 rats of the control group and Ex1 group. Results: The results from the mitochondria in the ovary in the groups under the influence of electromagnetic waves indicated that this intracellular organ, compared to samples from the control group, was deformed and the majority of the organs were vacuolated. The mitochondrial vacuolization of the first to fourth groups were 1 ± 0.55, 9 ± 0.55, 6 ± 0.55, and 11 ± 0.55, respectively. Conclusion: Vitamin E and fennel extract can reduce the damaging effects of non

  14. Mutation of mitochondria genome: trigger of somatic cell transforming to cancer cell

    Jianping, Du


    Nearly 80 years ago, scientist Otto Warburg originated a hypothesis that the cause of cancer is primarily a defect in energy metabolism. Following studies showed that mitochondria impact carcinogenesis to remodel somatic cells to cancer cells through modifying the genome, through maintenance the tumorigenic phenotype, and through apoptosis. And the Endosymbiotic Theory explains the origin of mitochondria and eukaryotes, on the other hands, the mitochondria also can fall back. Compared to chro...

  15. An improved method with a wider applicability to isolate plant mitochondria for mtDNA extraction


    Background Mitochondria perform a principal role in eukaryotic cells. Mutations in mtDNA can cause mitochondrial dysfunction and are frequently associated with various abnormalities during plant development. Extraction of plant mitochondria and mtDNA is the basic requirement for the characterization of mtDNA mutations and other molecular studies. However, currently available methods for mitochondria isolation are either tissue specific or species specific. Extracted mtDNA may contain substant...

  16. Qualitative and quantitative modifications of root mitochondria during senescence of above-ground parts of Arabidopis thaliana.

    Fanello, Diego Darío; Bartoli, Carlos Guillermo; Guiamet, Juan José


    This work studied modifications experienced by root mitochondria during whole plant senescence or under light deprivation, using Arabidopsis thaliana plants with YFP tagged to mitochondria. During post-bolting development, root respiratory activity started to decline after aboveground organs (i.e., rosette leaves) had senesced. This suggests that carbohydrate starvation may induce root senescence. Similarly, darkening the whole plant induced a decrease in respiration of roots. This was partially due to a decrease in the number of total mitochondria (YFP-labelled mitochondria) and most probably to a decrease in the quantity of mitochondria with a developed inner membrane potential (ΔΨm, i.e., Mitotracker red- labelled mitochondria). Also, the lower amount of mitochondria with ΔΨm compared to YFP-labelled mitochondria at 10d of whole darkened plant, suggests the presence of mitochondria in a "standby state". The experiments also suggest that small mitochondria made the main contribution to the respiratory activity that was lost during root senescence. Sugar supplementation partially restored the respiration of mitochondria after 10d of whole plant dark treatment. These results suggest that root senescence is triggered by carbohydrate starvation, with loss of ΔΨm mitochondria and changes in mitochondrial size distribution. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mitochondria and mitochondria-induced signalling molecules as longevity determinants.

    Rose, Giuseppina; Santoro, Aurelia; Salvioli, Stefano


    An intense cross talk between mitochondria and nucleus continuously informs the cell about the functional state of these crucial organelles and elicits an effective stress response that strenghtens the cell, promoting its survival. Interestingly, this effect can spread also in a non-cell autonomous fashion to distal tissues by means of soluble factors. This stress response is responsible of a consistent lifespan increase in many animal models, while in humans there is still a lack of knowledge. This review summarises the available data on the involvement of mitochondria in longevity focusing in particular on this signalling activity and the consequent stress response that is elicited, and proposes the idea that, similarly to animal models, humans may benefit from this response in terms of delayed aging and longevity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. BioMEMS for mitochondria medicine

    Padmaraj, Divya

    A BioMEMS device to study cell-mitochondrial physiological functionalities was developed. The pathogenesis of many diseases including obesity, diabetes and heart failure as well as aging has been linked to functional defects of mitochondria. The synthesis of Adenosine Tri Phosphate (ATP) is determined by the electrical potential across the inner mitochondrial membrane and by the pH difference due to proton flux across it. Therefore, electrical characterization by E-fields with complementary chemical testing was used here. The BioMEMS device was fabricated as an SU-8 based microfluidic system with gold electrodes on SiO2/Si wafers for electromagnetic interrogation. Ion Sensitive Field Effect Transistors (ISFETs) were incorporated for proton studies important in the electron transport chain, together with monitoring Na+, K+ and Ca++ ions for ion channel studies. ISFETs are chemically sensitive Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices and their threshold voltage is directly proportional to the electrolytic H+ ion variation. These ISFETs (sensitivity ˜55 mV/pH for H+) were further realized as specific ion sensitive Chemical Field Effect Transistors (CHEMFETs) by depositing a specific ion sensitive membrane on the gate. Electrodes for dielectric spectroscopy studies of mitochondria were designed as 2- and 4-probe structures for optimized operation over a wide frequency range. In addition, to limit polarization effects, a 4-electrode set-up with unique meshed pickup electrodes (7.5x7.5 mum2 loops with 4 mum wires) was fabricated. Sensitivity of impedance spectroscopy to membrane potential changes was confirmed by studying the influence of uncouplers and glucose on mitochondria. An electrical model was developed for the mitochondrial sample, and its frequency response correlated with impedance spectroscopy experiments of sarcolemmal mitochondria. Using the mesh electrode structure, we obtained a reduction of 83.28% in impedance at 200 Hz. COMSOL

  19. Centrifugation-Free Magnetic Isolation of Functional Mitochondria Using Paramagnetic Iron Oxide Nanoparticles.

    Banik, Bhabatosh; Dhar, Shanta


    Subcellular fractionation techniques are essential for cell biology and drug development studies. The emergence of organelle-targeted nanoparticle (NP) platforms necessitates the isolation of target organelles to study drug delivery and activity. Mitochondria-targeted NPs have attracted the attention of researchers around the globe, since mitochondrial dysfunctions can cause a wide range of diseases. Conventional mitochondria isolation methods involve high-speed centrifugation. The problem with high-speed centrifugation-based isolation of NP-loaded mitochondria is that NPs can pellet even if they are not bound to mitochondria. We report development of a mitochondria-targeted paramagnetic iron oxide nanoparticle, Mito-magneto, that enables isolation of mitochondria under the influence of a magnetic field. Isolation of mitochondria using Mito-magneto eliminates artifacts typically associated with centrifugation-based isolation of NP-loaded mitochondria, thus producing intact, pure, and respiration-active mitochondria. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. A BID on mitochondria with MTCH2

    Sara Cogliati; Luca Scorrano


    @@ Apoptosis is a key process for tissue homeostasis and renewal. Its dysregulation is implicated in most human diseases, from cancer to neurodegeneration. Apoptosis is triggered by stimuli that damage the internal structures of the cell, or by specialized "death"receptors on its surface. In certain cell types, Bid, a "BH3-only" member of the Bcl-2 family of death regulators integrates these two pathways at the mitochondrial level. Despite years of intense research, the mechanisms by which Bid translocates to mitochondria remain unclear. A recent study by Gross and colleagues sheds new light on this process.

  1. Getting mitochondria to center stage

    Schatz, Gottfried, E-mail:


    The question of how eukaryotic cells assemble their mitochondria was long considered to be inaccessible to biochemical investigation. This attitude changed about fifty years ago when the powerful tools of yeast genetics, electron microscopy and molecular biology were brought to bear on this problem. The rising interest in mitochondrial biogenesis thus paralleled and assisted in the birth of modern biology. This brief recollection recounts the days when research on mitochondrial biogenesis was an exotic effort limited to a small group of outsiders.

  2. Stem cell mitochondria during aging.

    Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Shyh-Chang, Ng


    Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future.

  3. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    Messer, W.S.


    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit (/sup 3/H)-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M/sub 1/ subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M/sub 2/ subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memory task. Pirenzepine, the M/sub 1/ selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function.

  4. Autoradiographic distribution of /sup 125/I-galanin binding sites in the rat central nervous system

    Skofitsch, G.; Sills, M.A.; Jacobowitz, D.M.


    Galanin (GAL) binding sites in coronal sections of the rat brain were demonstrated using autoradiographic methods. Scatchard analysis of /sup 125/I-GAL binding to slide-mounted tissue sections revealed saturable binding to a single class of receptors with a Kd of approximately 0.2 nM. /sup 125/I-GAL binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the following areas: prefrontal cortex, the anterior nuclei of the olfactory bulb, several nuclei of the amygdaloid complex, the dorsal septal area, dorsal bed nucleus of the stria terminalis, the ventral pallidum, the internal medullary laminae of the thalamus, medial pretectal nucleus, nucleus of the medial optic tract, borderline area of the caudal spinal trigeminal nucleus adjacent to the spinal trigeminal tract, the substantia gelatinosa and the superficial layers of the dorsal spinal cord. Moderate binding was observed in the piriform, periamygdaloid, entorhinal, insular cortex and the subiculum, the nucleus accumbens, medial forebrain bundle, anterior hypothalamic, ventromedial, dorsal premamillary, lateral and periventricular thalamic nuclei, the subzona incerta, Forel's field H1 and H2, periventricular gray matter, medial and superficial gray strata of the superior colliculus, dorsal parts of the central gray, peripeduncular area, the interpeduncular nucleus, substantia nigra zona compacta, ventral tegmental area, the dorsal and ventral parabrachial and parvocellular reticular nuclei. The preponderance of GAL-binding in somatosensory as well as in limbic areas suggests a possible involvement of GAL in a variety of brain functions.

  5. Contradictory Effects of Mitochondria- and Non-mitochondria-targeted Antioxidants on Hepatocarcinogenesis by Altering DNA Repair.

    Wang, Bibo; Fu, Jing; Yu, Ting; Xu, An; Qin, Wenhao; Yang, Zhishi; Chen, Yao; Wang, Hongyang


    Conflicting effects of antioxidant supplementation on cancer prevention or promotion is of great concern to healthy people and cancer patients. Despite recent studies about antioxidants accelerating the progression of lung cancer and melanoma, it does not fully deny antioxidants for cancer prevention. Both tumor and antioxidants types influence the actual efficacy. However, little is known about the impact of different types of antioxidants on primary hepatocellular carcinoma (HCC), including non-mitochondrial- and mitochondrial-targeted antioxidants. Based on the mouse models of chemical hepatocarcinogenesis, we showed that administration of non-mitochondria-targeted antioxidants N-acetylcysteine (NAC) and the soluble vitamin E analog Trolox prevented tumorigenesis, whereas administration of mitochondria-targeted antioxidants SS-31 (the mitochondria targeted peptide) and Mito-Q (a derivative of ubiquinone) encouraged tumorigenesis. RNA sequencing revealed that NAC and SS-31 cause highly different changes in oxidation-reduction state and DNA damage response. Remarkably, in diethylnitrosamine (DEN)-treated primary hepatocytes, NAC and Trolox alleviated DNA damage by activating ATM/ATR for DNA repair while SS-31 and MitoQ aggravated damage by inactivating them. Interestingly, partial recovery of SS-31-scavengened mitochondrial ROS (mtROS) could alleviate SS-31-aggravated DNA damage. Localization of ATM between mitochondria and nuclei was changed after NAC and SS-31 treatment. Furthermore, blockage of p-ATR led to the recurrence of NAC-ameliorated DEN HCC. In contrast, reactivation of p-ATR blocked SS-31-promoted DEN HCC. These results demonstrate that the type of antioxidants plays a previously unappreciated role in hepatocarcinogenesis, and provide a mechanistic rationale for exploring the therapeutic use of antioxidants for liver cancer. This article is protected by copyright. All rights reserved. © 2017 by the American Association for the Study of Liver Diseases.

  6. The pathways of mitophagy for quality control and clearance of mitochondria.

    Ashrafi, G; Schwarz, T L


    Selective autophagy of mitochondria, known as mitophagy, is an important mitochondrial quality control mechanism that eliminates damaged mitochondria. Mitophagy also mediates removal of mitochondria from developing erythrocytes, and contributes to maternal inheritance of mitochondrial DNA through the elimination of sperm-derived mitochondria. Recent studies have identified specific regulators of mitophagy that ensure selective sequestration of mitochondria as cargo. In yeast, the mitochondrial outer membrane protein autophagy-related gene 32 (ATG32) recruits the autophagic machinery to mitochondria, while mammalian Nix is required for degradation of erythrocyte mitochondria. The elimination of damaged mitochondria in mammals is mediated by a pathway comprised of PTEN-induced putative protein kinase 1 (PINK1) and the E3 ubiquitin ligase Parkin. PINK1 and Parkin accumulate on damaged mitochondria, promote their segregation from the mitochondrial network, and target these organelles for autophagic degradation in a process that requires Parkin-dependent ubiquitination of mitochondrial proteins. Here we will review recent advances in our understanding of the different pathways of mitophagy. In addition, we will discuss the relevance of these pathways in neurons where defects in mitophagy have been implicated in neurodegeneration.

  7. EST analysis on pig mitochondria reveal novel expression differences between developmental and adult tissues

    Scheibye-Alsing, Karsten; Cirera, Susanna; Gilchrist, Michael J.;


    BACKGROUND: The mitochondria are involved in many basic functions in cells of vertebrates, and can be considered the power generator of the cell. Though the mitochondria have been extensively studied there appear to be only few expression studies of mitochondrial genes involving a large number...

  8. Effects of melatonin on mitochondria after cerebral isehemic reperfusion

    Wang Hongyu


    Melatonin has been regarded as a free radical scavenger and antioxidant. In both in vitro and in vivo experiments. Melatonin was found to protect cells, tissues and organs against oxidative damage induced by a variety of free radical generating agents and processes, e.g., ischemic reperfusion. The mechanisms underlying these interactions have not been defined. The goal of the present study was to observe the effects of melatonin on rnitochondria after cerebral ischemic reperfusion and the mechanisms of neuroprotection of melatonin by gerbil ischemic model. Male Mongolian gerbils were subjected to 10 min of forebrain ischemia by occlusion of both common carotid arteries under anesthesia. Melatonin(0.8 mg/kg) was administrated intraperitoneum 30 min befbre arteries occlusion. We measured the respiratory function of mitochondria, the activities of ATPase, the free mitochondrial calcium contents and the GSH level of mitochondria. The results show that oxidative phosphorylation function of mitochondria was damaged after cerebral ischemic reperfusion. And mitochondrial calcium was overloaded after cerebral ischemic reperfusion. And the level of GSH in mitochondria decreased after cerebral ischemic reperfision. It is concluded that melatonin have neuroprotection effects after cerebral ischemic repertusion and this effects probably related to the protection mitochondria.

  9. Fluoxetine and the mitochondria: A review of the toxicological aspects.

    de Oliveira, Marcos Roberto


    Fluoxetine (a selective serotonin reuptake inhibitor (SSRI)) is used as an antidepressant by modulating the levels of serotonin in the synaptic cleft. Nevertheless, fluoxetine also induces undesirable effects, such as anxiety, sexual dysfunction, sleep disturbances, and gastrointestinal impairments. Fluoxetine has been viewed as an agent that may interfere with cell fate by triggering apoptosis. On the other hand, fluoxetine intake has been associated with increased cancer risk. Nonetheless, data remain contradictory and no conclusions were taken. Several studies demonstrated that fluoxetine interacts with mitochondria triggering apoptosis and/or altering mitochondrial function by modulating the activity of respiratory chain components and enzymes of the Krebs cycle. Furthermore, fluoxetine affects mitochondria-related redox parameters in different experimental models. In this review, data demonstrating the effects of fluoxetine upon mammalian mitochondria are described and discussed, as well as several unsolved questions in this field of research are addressed. A separate section deals with future needs regarding the research involving the impact of fluoxetine treatment upon mitochondria and mitochondria-related signaling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Statins lower calcium-induced oxidative stress in isolated mitochondria.

    Parihar, A; Parihar, M S; Zenebe, W J; Ghafourifar, P


    Statins are widely used cholesterol-lowering agents that exert cholesterol-independent effects including antioxidative. The present study delineates the effects of statins, atorvastatin, and simvastatin on oxidative stress and functions of mitochondria that are the primary cellular sources of oxidative stress. In isolated rat liver mitochondria, both the statins prevented calcium-induced cytochrome c release, lipid peroxidation, and opening of the mitochondrial membrane permeability transition (MPT). Both the statins decreased the activity of mitochondrial nitric oxide synthase (mtNOS), lowered the intramitochondrial ionized calcium, and increased the mitochondrial transmembrane potential. Our findings suggest that statins lower intramitochondrial ionized calcium that decreases mtNOS activity, lowers oxidative stress, prevents MPT opening, and prevents the release of cytochrome c from the mitochondria. These results provide a novel framework for understanding the antioxidative properties of statins and their effects on mitochondrial functions.

  11. Effect of some organic solvents on oxidative phosphorylation in rat liver mitochondria

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré


    The effect of acetone, acetonitrile, dimethyl sulfoxide (DMSO), ethanol and methanol on oxidative phosphorylation (ATP synthesis) in rat liver mitochondria has been studied. All the organic solvents inhibited the oxidative phosphorylation in a concentration dependent manner, but with differences...... on oxidative phosphorylation in mitochondria should therefore include the use of relevant concentrations of the organic solvent in order to validate the contribution....




    This paper describes a non-invasive method for the study of mitochondrial morphology in cultured human skin fibroblasts by confocal scanning laser microscopy after staining the mitochondria with 2-[4-(dimethyl-aminostyryl]-1-methylpyridinium iodide. This method is applied to compare mitochondria in

  13. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes

    Schneider, Rachel E.; Mark T. Brown; Shiflett, April M.; Dyall, Sabrina D.; Hayes, Richard D.; Xie, Yongming; Loo, Joseph A.; Johnson, Patricia J.


    The human pathogen Trichomonas vaginalis lacks conventional mitochondria and instead contains divergent mitochondrial-related organelles. These double-membrane bound organelles, called hydrogenosomes, produce molecular hydrogen. Phylogenetic and biochemical analyses of hydrogenosomes indicate a common origin with mitochondria; however identification of hydrogenosomal proteins and studies on its metabolism have been limited. Here we provide a detailed proteomic analysis of the T. vaginalis hyd...

  14. Monitoring of singlet oxygen luminescence and mitochondrial autofluorescence after illumination of hypericin/mitochondria complex

    Petrovajova, D; Jancura, D; Miskovsky, P;


    and mitochondria was studied by steady-state and time-resolved UV–vis absorption and fluorescence spectroscopy. A high concentration of Hyp leads to the aggregation of this compound inside the mitochondria and the relative population of the monomeric (biologically active) form of Hyp decreases concomitantly...

  15. Mitochondria: a target for bacteria.

    Lobet, Elodie; Letesson, Jean-Jacques; Arnould, Thierry


    Eukaryotic cells developed strategies to detect and eradicate infections. The innate immune system, which is the first line of defence against invading pathogens, relies on the recognition of molecular patterns conserved among pathogens. Pathogen associated molecular pattern binding to pattern recognition receptor triggers the activation of several signalling pathways leading to the establishment of a pro-inflammatory state required to control the infection. In addition, pathogens evolved to subvert those responses (with passive and active strategies) allowing their entry and persistence in the host cells and tissues. Indeed, several bacteria actively manipulate immune system or interfere with the cell fate for their own benefit. One can imagine that bacterial effectors can potentially manipulate every single organelle in the cell. However, the multiple functions fulfilled by mitochondria especially their involvement in the regulation of innate immune response, make mitochondria a target of choice for bacterial pathogens as they are not only a key component of the central metabolism through ATP production and synthesis of various biomolecules but they also take part to cell signalling through ROS production and control of calcium homeostasis as well as the control of cell survival/programmed cell death. Furthermore, considering that mitochondria derived from an ancestral bacterial endosymbiosis, it is not surprising that a special connection does exist between this organelle and bacteria. In this review, we will discuss different mitochondrial functions that are affected during bacterial infection as well as different strategies developed by bacterial pathogens to subvert functions related to calcium homeostasis, maintenance of redox status and mitochondrial morphology.

  16. Dynamic survey of mitochondria by ubiquitin.

    Escobar-Henriques, Mafalda; Langer, Thomas


    Ubiquitin is a post-translational modifier with proteolytic and non-proteolytic roles in many biological processes. At mitochondria, it performs regulatory homeostatic functions and contributes to mitochondrial quality control. Ubiquitin is essential for mitochondrial fusion, regulates mitochondria-ER contacts, and participates in maternal mtDNA inheritance. Under stress, mitochondrial dysfunction induces ubiquitin-dependent responses that involve mitochondrial proteome remodeling and culminate in organelle removal by mitophagy. In addition, many ubiquitin-dependent mechanisms have been shown to regulate innate immune responses and xenophagy. Here, we review the emerging roles of ubiquitin at mitochondria.

  17. Mitochondria in biology and medicine

    Madsen, Claus Desler; Rasmussen, Lene Juel


    pathologies (Luft, 1994). Since 1959, the understanding of mitochondrial cytopathies has evolved immensely and mitochondrial cytopathies are now known to be the largest group of metabolic diseases and to be resulting in a wide variety of pathologies. "Mitochondria in Biology and Medicine" was the title...... of the first annual conference of Society of Mitochondrial Research and Medicine - India. The conference was organized by A. S. Sreedhar, Keshav Singh and Kumarasamy Thangaraj, and was held at The Centre for Cellular and Molecular Biology (CCMB) Hyderabad, India, during 9-10 December 2011. The conference...

  18. Mitochondria-targeting for improved photodynamic therapy

    Ngen, Ethel J.

    Photodynamic therapy (PDT) is an emerging cancer therapeutic modality, with great potential to selectively treat surface cancers, thus minimizing systemic side effects. In this dissertation, two approaches to deliver photosensitizers to mitochondria were investigated: 1) Reducing photosensitizer sizes to improve endocytosis and lysosomal localization. Upon irradiation the photosensitizers would then produce singlet oxygen which could rupture the lysosomal membrane releasing the lysosomally trapped photosensitizers to the cytosol, from where they could relocalize to mitochondria by passive diffusion (photochemical internalization). 2) Using delocalized lipophilic cationic dyes (DLCs) to exploit membrane potential differences between the cytoplasm and mitochondria in delivering photosensitizers to mitochondria. To investigate the effects of steric hindrance on mitochondrial localization and photodynamic response, a series of eight thiaporphyrins were studied. Two new thiaporphyrin analogues 6 and 8 with reduced steric hindrance at the 10- and 15- meso positions were studied in comparison to 5,20-diphenyl-10,15-bis[4 (carboxymethyleneoxy)-phenyl]-21,23-dithiaporphyrin 1, previously validated as a potential second generation photosensitizer. Although 6 showed an extraordinarily high uptake (7.6 times higher than 1), it was less potent than 1 (IC 50 = 0.18 muM versus 0.13 muM) even though they both showed similar sub-cellular localization patterns. This low potency was attributed to its high aggregation tendency in aqueous media (4 times higher than 1), which might have affected its ability to generate singlet oxygen in vitro . 8 on the other hand showed an even lower potency than 6 (2.28 vs 0.18 muM). However this was attributed to its low cellular uptake (20 times less than 6) and inefficient generation of singlet oxygen. Overall, although the structural modifications did improve the cellular uptake of 6, 6 was still less potent than the lead photosensitizers 1. Thus

  19. Continuous ethanol administration influences rat brain 5-hyroxytrytamine synthesis non-umiformly: alpha-[14C]methyl-L-trytophan autoradiographic measurements.

    Yamane, Fumitaka; Tohyama, Yoshihiro; Diksic, Mirko


    The influence of alcohol on the brain serotonergic system has been studied for several decades with some discordant results. The effects of continuous and constant treatment with ethanol on the rates of serotonin [5-hydroxytryptamine (5-HT)] synthesis in discrete regions of the rat brain were studied. 5-HT synthesis rates were measured using the alpha-[(14)C]methyl-l-tryptophan autoradiographic method. The rats in the experimental group were treated with 50% ethyl alcohol and those in the control group received distilled water. The fluid was delivered subcutaneously by implanted osmotic mini-pumps for 14 days at the rate of 5 micro l/h or 0.12 ml/day (0.06 ml of alcohol per day). Chronic ethanol treatment, as delivered in the present experiment, induced a significant increase in the rate of 5-HT synthesis in descending serotonergic cell bodies (raphe pallidum, raphe obscurus, raphe magnus), nigrostriatal structures, the hippocampus and cortices. No significant changes were observed in the dorsal and median raphe nuclei or pineal body. The results suggest that there may be differences in the regulation of 5-HT synthesis in different brain structures after 14 days of continuous (subcutaneous) injection of 50% alcohol. Chronic ethanol treatments using osmotic mini-pumps induce non-uniform increases in 5-HT synthesis in the rat brain.

  20. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury

    Masuzawa, Akihiro; Black, Kendra M.; Pacak, Christina A.; Ericsson, Maria; Barnett, Reanne J.; Drumm, Ciara; Seth, Pankaj; Bloch, Donald B.; Levitsky, Sidney; Cowan, Douglas B.


    Mitochondrial damage and dysfunction occur during ischemia and modulate cardiac function and cell survival significantly during reperfusion. We hypothesized that transplantation of autologously derived mitochondria immediately prior to reperfusion would ameliorate these effects. New Zealand White rabbits were used for regional ischemia (RI), which was achieved by temporarily snaring the left anterior descending artery for 30 min. Following 29 min of RI, autologously derived mitochondria (RI-mitochondria; 9.7 ± 1.7 × 106/ml) or vehicle alone (RI-vehicle) were injected directly into the RI zone, and the hearts were allowed to recover for 4 wk. Mitochondrial transplantation decreased (P mitochondria (7.9 ± 2.9%) compared with RI-vehicle (34.2 ± 3.3%, P mitochondria hearts returned to normal contraction within 10 min after reperfusion was started; however, RI-vehicle hearts showed persistent hypokinesia in the RI zone at 4 wk of recovery. Electrocardiogram and optical mapping studies showed that no arrhythmia was associated with autologously derived mitochondrial transplantation. In vivo and in vitro studies show that the transplanted mitochondria are evident in the interstitial spaces and are internalized by cardiomyocytes 2–8 h after transplantation. The transplanted mitochondria enhanced oxygen consumption, high-energy phosphate synthesis, and the induction of cytokine mediators and proteomic pathways that are important in preserving myocardial energetics, cell viability, and enhanced post-infarct cardiac function. Transplantation of autologously derived mitochondria provides a novel technique to protect the heart from ischemia-reperfusion injury. PMID:23355340

  1. Bench-to-bedside review: Targeting antioxidants to mitochondria in sepsis


    Development of organ dysfunction associated with sepsis is now accepted to be due at least in part to oxidative damage to mitochondria. Under normal circumstances, complex interacting antioxidant defense systems control oxidative stress within mitochondria. However, no studies have yet provided conclusive evidence of the beneficial effect of antioxidant supplementation in patients with sepsis. This may be because the antioxidants are not accumulating in the mitochondria, where they are most needed. Antioxidants can be targeted selectively to mitochondria by several means. This review describes the in vitro studies and animal models of several diseases involving oxidative stress, including sepsis, in which antioxidants targeted at mitochondria have shown promise, and the future implications for such approaches in patients. PMID:20804578

  2. RNA Editing in Plant Mitochondria

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel


    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  3. Autoradiographic evidence that transport of newly synthesized neuropeptides is directed to release sites in the X-organ--sinus gland of Cardisoma carnifex.

    Stuenkel, E; Gillary, E; Cooke, I


    Sections of isolated X-organ--sinus gland neurosecretory systems of the crab, Cardisoma carnifex, were studied by light- and electron microscopy with conventional and autoradiographic procedures. The somata only were exposed to a pulse of 3H-leucine (5 min-5 h) and the entire system perfused with chase medium for various times (1-72 h) before fixation. Within 1 h, radiolabel is concentrated in Golgi complexes and nascent granules of both large and small somata. Label is undetectable in the terminal region following a 10 h chase. It is found in the nerve tract near terminals at 14 h, while after a 19 h chase, label is concentrated in terminal profiles abutting blood sinuses of the neurohemal organ (sinus gland). Following a 72 h chase, label is distributed throughout the terminal region. Each of the six morphologically distinguishable terminal types shows labelling. These observations show that the vast majority of newly formed granules are initially transported to release sites of the perisinus terminals. They thus provide an explanation for previous analyses indicating that newly synthesized peptides are preferentially secreted.

  4. Double labelling of tissue combining tritiated thymidine autoradiography with immunodetection of bromodeoxyuridine: the autoradiographic significance of inhibition of thymidine incorporation into DNA by bromodeoxyuridine given simultaneously

    Hume, W.J.; Thompson, J. (Leeds Univ. (UK). School of Dentistry)


    The authors describe a method for combining tritiated thymidine (({sup 3}H)TdR) autoradiography with immunoperoxidase detection of bromodeoxyuridine (BrdU) in paraffin-embedded tissues, which was used to examine, in mouse tongue epithelium, the inhibition of incorporation into DNA of ({sup 3}H)TdR by simultaneous injection of BrdU in the doses that both compounds are likely to be used in cell proliferation studies. The inhibition of uptake into DNA of ({sup 3}H)TdR from 0.23 to 1.85 MBq (6.25 to 50 {mu}Ci) per animal, produced by a simultaneous injection of 2.5 mg BrdU shows a linear, dose-dependent relationship. Provided the injected dose (in {mu}Ci per animal) multiplied by the autoradiographic exposure time (in days) is greater than a value of 700, then all cells that are labelled after incorporation of ({sup 3}H)TdR alone are also labelled after simultaneous double labelling, despite the latter producing a lower average grain count. (author).

  5. Scavenging of H2O2 by mouse brain mitochondria.

    Starkov, Anatoly A; Andreyev, Alexander Yu; Zhang, Steven F; Starkova, Natalia N; Korneeva, Maria; Syromyatnikov, Mikhail; Popov, Vasily N


    Mitochondrial reactive oxygen species (ROS) metabolism is unique in that mitochondria both generate and scavenge ROS. Recent estimates of ROS scavenging capacity of brain mitochondria are surprisingly high, ca. 9-12 nmol H2O2/min/mg, which is ~100 times higher than the rate of ROS generation. This raises a question whether brain mitochondria are a source or a sink of ROS. We studied the interaction between ROS generation and scavenging in mouse brain mitochondria by measuring the rate of removal of H2O2 added at a concentration of 0.4 μM, which is close to the reported physiological H2O2 concentrations in tissues, under conditions of low and high levels of mitochondrial H2O2 generation. With NAD-linked substrates, the rate of H2O2 generation by mitochondria was ~50-70 pmol/min/mg. The H2O2 scavenging dynamics was best approximated by the first order reaction equation. H2O2 scavenging was not affected by the uncoupling of mitochondria, phosphorylation of added ADP, or the genetic ablation of glutathione peroxidase 1, but decreased in the absence of respiratory substrates, in the presence of thioredoxin reductase inhibitor auranofin, or in partially disrupted mitochondria. With succinate, the rate of H2O2 generation was ~2,200-2,900 pmol/min/mg; the scavenging of added H2O2 was masked by a significant accumulation of generated H2O2 in the assay medium. The obtained data were fitted into a simple model that reasonably well described the interaction between H2O2 scavenging and production. It showed that mitochondria are neither a sink nor a source of H2O2, but can function as both at the same time, efficiently stabilizing exogenous H2O2 concentration at a level directly proportional to the ratio of the H2O2 generation rate to the rate constant of the first order scavenging reaction.

  6. A Highly Photostable Hyperbranched Polyglycerol-Based NIR Fluorescence Nanoplatform for Mitochondria-Specific Cell Imaging.

    Dong, Chunhong; Liu, Zhongyun; Liu, Junqing; Wu, Changzhu; Neumann, Falko; Wang, Hanjie; Schäfer-Korting, Monika; Kleuser, Burkhard; Chang, Jin; Li, Wenzhong; Ma, Nan; Haag, Rainer


    Considering the critical role of mitochondria in the life and death of cells, non-invasive long-term tracking of mitochondria has attracted considerable interest. However, a high-performance mitochondria-specific labeling probe with high photostability is still lacking. Herein a highly photostable hyperbranched polyglycerol (hPG)-based near-infrared (NIR) quantum dots (QDs) nanoplatform is reported for mitochondria-specific cell imaging. Comprising NIR Zn-Cu-In-S/ZnS QDs as extremely photostable fluorescent labels and alkyl chain (C12 )/triphenylphosphonium (TPP)-functionalized hPG derivatives as protective shell, the tailored QDs@hPG-C12 /TPP nanoprobe with a hydrodynamic diameter of about 65 nm exhibits NIR fluorescence, excellent biocompatibility, good stability, and mitochondria-targeted ability. Cell uptake experiments demonstrate that QDs@hPG-C12 /TPP displays a significantly enhanced uptake in HeLa cells compared to nontargeted QDs@hPG-C12 . Further co-localization study indicates that the probe selectively targets mitochondria. Importantly, compared with commercial deep-red mitochondria dyes, QDs@hPG-C12 /TPP possesses superior photostability under continuous laser irradiation, indicating great potential for long-term mitochondria labeling and tracking. Moreover, drug-loaded QDs@hPG-C12 /TPP display an enhanced tumor cell killing efficacy compared to nontargeted drugs. This work could open the door to the construction of organelle-targeted multifunctional nanoplatforms for precise diagnosis and high-efficient tumor therapy.

  7. Endosome-mitochondria interactions are modulated by iron release from transferrin.

    Das, Anupam; Nag, Sagarika; Mason, Anne B; Barroso, Margarida M


    Transient "kiss and run" interactions between endosomes containing iron-bound transferrin (Tf) and mitochondria have been shown to facilitate direct iron transfer in erythroid cells. In this study, we used superresolution three-dimensional (3D) direct stochastic optical reconstruction microscopy to show that Tf-containing endosomes directly interact with mitochondria in epithelial cells. We used live-cell time-lapse fluorescence microscopy, followed by 3D rendering, object tracking, and a distance transformation algorithm, to track Tf-endosomes and characterize the dynamics of their interactions with mitochondria. Quenching of iron sensor RDA-labeled mitochondria confirmed functional iron transfer by an interacting Tf-endosome. The motility of Tf-endosomes is significantly reduced upon interaction with mitochondria. To further assess the functional role of iron in the ability of Tf-endosomes to interact with mitochondria, we blocked endosomal iron release by using a Tf K206E/K534A mutant. Blocking intraendosomal iron release led to significantly increased motility of Tf-endosomes and increased duration of endosome-mitochondria interactions. Thus, intraendosomal iron regulates the kinetics of the interactions between Tf-containing endosomes and mitochondria in epithelial cells. © 2016 Das et al.

  8. Mito-methyl coumarin, a novel mitochondria-targeted drug with great antitumor potential was synthesized.

    Wang, Huanan; Xu, Wenqing


    Due to higher transmembrane potential of tumor cells, enhanced accumulation of cationic drugs in tumor mitochondria has been attributed to a higher (more negative inside) mitochondrial transmembrane potential compared with normal cells, emerging researchers are focus on developing mitochondria-targeted antitumor drugs. Coumarins showed great potential on antitumor, but mitochondria-targeted coumarin derivatives have not been reported. In the present study, we synthesized mitochondria-targeted-methyl coumarin (mito-methyl coumarin) through coupling 6-methyl coumarin to TPP. We confirmed that mito-methyl coumarin inhibited HeLa cells proliferation selectively, induced ROS generation, reduced mitochondrial membrane potential, promoted mitochondria Ca(2+) accumulation, decreased mitochondria mass and induced HeLa cells apoptosis, but methyl coumarin did not. These results demonstrate that we succeed in synthesizing a novel mitochondria-targeted drug, mito-methyl coumarin, which is effective in inhibiting HeLa cells proliferation and inducing HeLa cells apoptosis through promoting ROS generation and mitochondria Ca(2+) accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications.

    Zielonka, Jacek; Joseph, Joy; Sikora, Adam; Hardy, Micael; Ouari, Olivier; Vasquez-Vivar, Jeannette; Cheng, Gang; Lopez, Marcos; Kalyanaraman, Balaraman


    Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.

  10. Ripening and in vitro retention of respiratory control by avocado and pear mitochondria.

    Ozelkök, S I; Romani, R J


    The retention of respiratory control ("survival") by mitochondria held at 25 C was studied in relation to the ripening of two varieties of avocado (Persea americana Mill. var. ;Fuerte' and ;Hass') and one variety of pear (Pyrus communis. L. var. ;Bartlett') fruit. The survival of avocado mitochondria increased from 8 to 10 hours when isolated from unripe, preclimacteric fruit, to 48 hours when isolated from fully ripe, postclimacteric fruits. Although rates of alpha-ketoglutarate oxidation, respiratory control, and ADP/O decreased somewhat in the postclimacteric phase, survival per se was not affected. Pear mitochondria survived for more than 30 hours regardless of the physiological age of the source.Exposure of postclimacteric avocado mitochondria to a preclimacteric supernatant fraction curtailed their survival. The harmful effect of some unknown substance(s) in the preclimacteric avocado supernatant fraction was confirmed by utilizing pear mitochondria as an independent test system.

  11. Effect of 6-ketocholestanol on FCCP- and DNP-induced uncoupling in plant mitochondria.

    Vianello, A; Macri, F; Braidot, E; Mokhova, E N


    Effect of 6-ketocholestanol on FCCP-induced and DNP-induced uncoupling in beef liver and pea stem mitochondria was studied, under experimental conditions at which this steroid abolished the effect of low concentrations of FCCP and other most potent uncouplers in rat mitochondria [Starkov et al. (1994) FEBS Lett., 355, 305-308]. It is shown that, in both types of mitochondria, 6-ketocholestanol prevents or reverses the uncoupling induced by low concentrations of FCCP, but not that caused by high concentrations of FCCP or by any concentration of DNP. Progesterone and male sex hormones, showing recoupling capability in animal mitochondria, appear to be ineffective in the plant system. Cholesterol does not recouple in both animal and plant mitochondria. Plant steroids, such as beta-sitosterol and stigmasterol, are also without effect.

  12. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers

    Qu, Qiuyu; Ma, Xing; Zhao, Yanli


    A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis in isolated mitochondria. In addition, enhanced cancer cell killing efficacy was achieved when using DOX-loaded and TPP-functionalized MSNPs for mitochondria-targeted delivery. Lowered adenosine triphosphate (ATP) production and decreased mitochondrial membrane potential were observed, demonstrating the mitochondria dysfunction caused by delivered DOX. The positive results indicate promising application potential of MSNPs in targeted subcellular drug delivery.A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis

  13. Mitochondria during androgenesis in Hordeum vulgare

    Krystyna Idzikowska


    Full Text Available Different number of mitochondria of varying structure was observed in particular stages of the development of barley (Hordeum vulgare microspores, stimulated by the in vitro culture to form embryoids. This variability was reflected in different shape of sections, different ratio between total area of mitochondria profiles and area of cytoplasm sections, varying number of cristae, and different density of the matrix. Within the cristae of some mitochondria crystalline inclusions were observed. Mitochondria divided by a contraction. In the matrix of some mitochondria spheric bodies were formed. They were surrounded by one or two membranes. It is suggested that the bi-membrane forms constituted promitochandria, whereas unimembrane forms could constitute promicrobodies.

  14. Mechanism(s of Toxic Action of Zn2+ and Selenite: A Study on AS-30D Hepatoma Cells and Isolated Mitochondria

    Elena A. Belyaeva


    Full Text Available Mitochondria of AS-30D rat ascites hepatoma cells are found to be the main target for Zn2+ and sodium selenite (Na2SeO3. High [mu]M concentrations of Zn2+ or selenite were strongly cytotoxic, killing the AS-30D cells by both apoptotic and necrotic ways. Both Zn2+ and selenite produced strong changes in intracellular generation of reactive oxygen species (ROS and the mitochondrial dysfunction via the mitochondrial electron transport chain (mtETC disturbance, the membrane potential dissipation, and the mitochondrial permeability transition pore opening. The significant distinctions in toxic action of Zn2+ and selenite on AS-30D cells were found. Selenite induced a much higher intracellular ROS level (the early event compared to Zn2+ but a lower membrane potential loss and a lower decrease of the uncoupled respiration rate of the cells, whereas the mtETC disturbance was the early and critical event in the mechanism of Zn2+ cytotoxicity. Sequences of events manifested in the mitochondrial dysfunction produced by the metal/metalloid under test are compared with those obtained earlier for Cd2+, Hg2+, and Cu2+ on the same model system.

  15. Three Toxic Gases Meet in the Mitochondria

    Richard A Decreau


    Full Text Available The rationale of the study was two-fold : (i develop a functional synthetic model of the Cytochrome c oxidase (CcO active site, (ii use it as a convenient tool to understand or predict the outcome of the reaction of CcO with ligands (physiologically relevant gases and other ligands. At physiological pH and potential, the model catalyzes the 4-electron reduction of oxygen. This model was immobilized on self-assembled-monolayer (SAM modified electrode. During catalytic oxygen reduction, electron delivery through SAMs is rate limiting, similar to the situation in CcO. This model contains all three redox-active components in CcO’s active site, which are required to minimize the production of partially-reduced-oxygen-species (PROS: Fe¬-heme (heme a3 in a myoglobin-like model fitted with a proximal imidazole ligand, and a distal tris-imidazole Copper (CuB complex, where one imidazole is cross-linked to a phenol (mimicking Tyr244. This functional CcO model demonstrates how CcO itself might tolerate the hormone NO (which diffuses through the mitochondria. It is proposed that CuB delivers superoxide to NO bound to Fe-heme forming peroxynitrite, then nitrate that diffuses away. Another toxic gas, H2S, has exceptional biological effects: at ~80 ppm, H2S induces a state similar to hibernation in mice, lowering the animal's temperature and slowing respiration. Using our functional CcO model, we have demonstrated that at the same concentration range H2S can reversibly inhibit catalytic oxygen reduction. Such a reversible catalytic process on the model was also demonstrated with an organic compound, tetrazole (TZ. Following studies showed that TZ reversibly inhibits respiration in isolated mitochondria, and induces deactivation of platelets, a mitochondria-rich key component of blood coagulation. Hence, this program is a rare example illustrating the use of a functional model to understand and predict physiologically important reactions at the active site

  16. Role of mitochondria in the pathogenesis and treatment of glaucoma

    YANG Xue-jiao; GE Jian; ZHUO Ye-hong


    Objective To gain insight into the potential mechanism of mitochondria dysfunction in pathogenesis,progression and therapeutic management of glaucoma.Data sources The data used in this review were mainly published in English from 2000 to present obtained from PubMed.The search terms were "mitochondria","glaucoma" and 'trabecular meshwork" or "retinal ganglion cells".Study selection Articles studying the mitochondria-related pathologic mechanism and treatment of glaucoma were selected and reviewed.Results Mitochondrial dysfunction or injury was demonstrated in different eye tissue of glaucoma.A variety of potential injuries (light,toxic materials,oxidative injury,mechanical stress,aging,etc.) and the inherent DNA defects are deemed to cause mitochondrial structural and functional destruction in trabecular meshwork cells,retinal ganglion cells,etc.of glaucoma.In addition,various new experimental and therapeutic interventions were used to preserve mitochondrial function,which may be useful for protecting against optic nerve degeneration or reducing the death of retinal ganglion cells in glaucoma.Conclusions Mitochondria play an important role in the pathogenesis of glaucoma,various strategies targeting mitochondrial protection might provide a promising way to delay the onset of glaucoma or protect RGCs against glaucomatous damage.

  17. Involvement of S6K1 in mitochondria function and structure in HeLa cells.

    Park, Jisoo; Tran, Quangdon; Mun, Kisun; Masuda, Kouhei; Kwon, So Hee; Kim, Seon-Hwan; Kim, Dong-Hoon; Thomas, George; Park, Jongsun


    The major biological function of mitochondria is to generate cellular energy through oxidative phosphorylation. Apart from cellular respiration, mitochondria also play a key role in signaling processes, including aging and cancer metabolism. It has been shown that S6K1-knockout mice are resistant to obesity due to enhanced beta-oxidation, with an increased number of large mitochondria. Therefore, in this report, the possible involvement of S6K1 in regulating mitochondria dynamics and function has been investigated in stable lenti-shS6K1-HeLa cells. Interestingly, S6K1-stably depleted HeLa cells showed phenotypical changes in mitochondria morphology. This observation was further confirmed by detailed image analysis of mitochondria shape. Corresponding molecular changes were also observed in these cells, such as the induction of mitochondrial fission proteins (Drp1 and Fis1). Oxygen consumption is elevated in S6K1-depeleted HeLa cells and FL5.12 cells. In addition, S6K1 depletion leads to enhancement of ATP production in cytoplasm and mitochondria. However, the relative ratio of mitochondrial ATP to cytoplasmic ATP is actually decreased in lenti-shS6K1-HeLa cells compared to control cells. Lastly, induction of mitophagy was found in lenti-shS6K1-HeLa cells with corresponding changes of mitochondria shape on electron microscope analysis. Taken together, our results indicate that S6K1 is involved in the regulation of mitochondria morphology and function in HeLa cells. This study will provide novel insights into S6K1 function in mitochondria-mediated cellular signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Analysis of the Behavior of Mitochondria in the Ovaries of the Earthworm Dendrobaena veneta Rosa 1839

    Faron, Justyna; Bernaś, Tytus; Sas–Nowosielska, Hanna; Klag, Jerzy


    We examined six types of cells that form the ovary of the earthworm Dendrobena veneta ogonia, prooocytes, vitellogenic oocytes, trophocytes, fully grown postvitellogenic oocytes and somatic cells of the gonad. The quantitative stereological method revealed a much higher “volume density” of mitochondria in all of the types of germ-line cells except for the somatic cells. Fluorescent vital stain JC-1, however, showed a much higher oxidative activity of mitochondria in the somatic cells than in the germ-line cells. The distribution of active and inactive mitochondria within the studied cells was assessed using the computer program ImageJ. The analysis showed a higher luminosity of inactive mitochondria in all of the types of germ-line cells and a higher luminosity of active mitochondria in somatic cells. The OXPHOS activity was found in somatic cells mitochondria and in the peripheral mitochondria of the vitellogenic oocytes. The detection of reactive oxygen species (ROS) revealed a differentiated distribution of ROS in the different cell types. The amount of ROS substances was lower in somatic cells than in younger germ-line cells. The ROS level was also low in the cytoplasm of fully grown postwitellogenic oocytes. The distribution of the MnSOD enzyme that protects mitochondria against destructive role of ROS substances was high in the oogonia and in prooocytes and it was very high in vitellogenic and postvitellogenic oocytes. However, a much lower level of this protective enzyme was observed in the trophocytes and the lowest level was found in the cytoplasm of somatic cells. The lower mitochondrial activity and higher level of MnSOD activity in germ-line cells when compared to somatic cells testifies to the necessity of the organisms to protect the mitochondria of oocytes against the destructive role of the ROS that are produced during oxidative phosphorylation. The protection of the mitochondria in oocytes is essential for the transfer of healthy organelles to

  19. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.

    Antos-Krzeminska, Nina; Jarmuszkiewicz, Wieslawa


    The mitochondrial respiratory chain of plants and some fungi contains multiple rotenone-insensitive NAD(P)H dehydrogenases, of which at least two are located on the outer surface of the inner membrane (i.e., external NADH and external NADPH dehydrogenases). Annotated sequences of the putative alternative NAD(P)H dehydrogenases of the protozoan Acanthamoeba castellanii demonstrated similarity to plant and fungal sequences. We also studied activity of these dehydrogenases in isolated A. castellanii mitochondria. External NADPH oxidation was observed for the first time in protist mitochondria. The coupling parameters were similar for external NADH oxidation and external NADPH oxidation, indicating similar efficiencies of ATP synthesis. Both external NADH oxidation and external NADPH oxidation had an optimal pH of 6.8 independent of relevant ubiquinol-oxidizing pathways, the cytochrome pathway or a GMP-stimulated alternative oxidase. The maximal oxidizing activity with external NADH was almost double that with external NADPH. However, a lower Michaelis constant (K(M)) value for external NADPH oxidation was observed compared to that for external NADH oxidation. Stimulation by Ca(2+) was approximately 10 times higher for external NADPH oxidation, while NADH dehydrogenase(s) appeared to be slightly dependent on Ca(2+). Our results indicate that external NAD(P)H dehydrogenases similar to those in plant and fungal mitochondria function in mitochondria of A. castellanii.

  20. Mitochondria mediate septin cage assembly to promote autophagy of Shigella.

    Sirianni, Andrea; Krokowski, Sina; Lobato-Márquez, Damián; Buranyi, Stephen; Pfanzelter, Julia; Galea, Dieter; Willis, Alexandra; Culley, Siân; Henriques, Ricardo; Larrouy-Maumus, Gerald; Hollinshead, Michael; Sancho-Shimizu, Vanessa; Way, Michael; Mostowy, Serge


    Septins, cytoskeletal proteins with well-characterised roles in cytokinesis, form cage-like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single-cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri-infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin-related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin-polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti-Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  1. [Metabolic changes in pulmonary mitochondria of rats with experimental hyperhomocysteinemia].

    Medvedev, D V; Zvyagina, V I; Uryasev, O M; Belskikh, E S; Bulatetskiy, S V; Ryabkov, A N


    Hyperhomocysteinemia is a risk factor for many human diseases, including pulmonary pathologies. In this context much interest attracts secondary mitochondrial dysfunction, which is an important link in pathogenesis of diseases associated with hyperhomocysteinemia. The study was conducted using male Wistar rats. It was found that under conditions of severe hyperhomocysteinemia caused by administration of methionine, homocysteine was accumulated in lung mitochondria thus suggesting a direct toxic effect on these organelles. However, we have not observed any significant changes in the activity of mitochondrial enzymes involved in tissue respiration (succinate dehydrogenase) and oxidative phosphorylation (H+-ATPase) and of cytoplasmic lactate dehydrogenase. Also there was no accumulation of lactic acid in the cytoplasm. Animals with severe hyperhomocysteinemia had higher levels of lung mitochondrial protein carbonylation, decreased reserve-adaptive capacity, and increased superoxide dismutase activity. These results indicate that severe hyperhomocysteinemia causes development of oxidative stress in lung mitochondria, which is compensated by activation of antioxidant protection. These changes were accompanied by a decrease in the concentration of mitochondrial nitric oxide metabolites. Introduction to animals a nonselective NO-synthase inhibitor L-NAME caused similar enhancement of mitochondrial protein carbonylation. It demonstrates importance of reducing bioavailability of nitric oxide, which is an antioxidant in physiological concentrations, in the development of oxidative stress in lung mitochondria during hyperhomocysteinemia. Key words: hyperhomocysteinemia, nitric oxide, lung, oxidative stress, mitochondria.

  2. Connection of Protein Transport and Organelle Contact Sites in Mitochondria.

    Ellenrieder, Lars; Rampelt, Heike; Becker, Thomas


    Mitochondrial biogenesis and function depend on the intensive exchange of molecules with other cellular compartments. The mitochondrial outer membrane plays a central role in this communication process. It is equipped with a number of specific protein machineries that enable the transport of proteins and metabolites. Furthermore, the outer membrane forms molecular contact sites with other cell organelles like the endoplasmic reticulum (ER), thus integrating mitochondrial function in cellular physiology. The best-studied mitochondrial organelle contact site, the ER-mitochondria encounter structure (ERMES) has been linked to many vital processes including mitochondrial division, inheritance, mitophagy, and phospholipid transport. Strikingly, ER-mitochondria contact sites are closely connected to outer membrane protein translocases. The translocase of the outer mitochondrial membrane (TOM) represents the general mitochondrial entry gate for precursor proteins that are synthesized on cytosolic ribosomes. The outer membrane also harbors the sorting and assembly machinery (SAM) that mediates membrane insertion of β-barrel proteins. Both of these essential protein translocases are functionally linked to ER-mitochondria contact sites. First, the SAM complex associates with an ERMES core component to promote assembly of the TOM complex. Second, several TOM components have been co-opted as ER-mitochondria tethers. We propose that protein import and organelle contact sites are linked to coordinate processes important for mitochondrial biogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. tRNA Biology in Mitochondria

    Thalia Salinas-Giegé


    Full Text Available Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.

  4. tRNA Biology in Mitochondria

    Salinas-Giegé, Thalia; Giegé, Richard; Giegé, Philippe


    Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation. PMID:25734984

  5. Biochemical studies of pigments from a pathogenic fungus Microsporum cookei. III. Comparison of the effects of xanthomegnin and O-methylxanthomegnin on the oxidative phosphorylation of rat liver mitochondria.

    Kawai, K; Akita, T; Nishibe, S; Nozawa, Y; Ogihara, Y; Ito, Y


    The effects of xanthomegnin and O-methylxanthomegnin on the oxidative phosphorylation of rat liver mitochondria were compared. The n-octanol/water partition coefficient of xanthomegnin was markedly enhanced by O-methylation, but O-methylation of xanthomegnin reduced the uncoupling effect on the respiratory system of mitochondria. Analogous results were obtained in the uncoupling action of 5-hydroxy-1, 4-naphthoquinone (juglone) and 5-methoxy-1, 4-naphthoquinone (O-methyljuglone) on the oxidative phosphorylation of rat liver mitochondria. These data indicate that the phenolic hydroxyl groups of xanthomegnin might contribute to its uncoupling action on the oxidative phosphorylation of mitochondria. Bovine serum albumin (BSA) improved the efficiency of oxidative phosphorylation of mitochondria which were uncoupled by xanthomegnin. Spectroscopic observations revealed that xanthomegnin interacted with BSA by means of hydrophobic and ionic forces but O-methylxanthomegnin showed only hydrophobic interaction. Analogous interactions between mitochondria and xanthomegnin or O-methylxanthomegnin were observed. These results indicate that the uncoupling action of xanthomegnin on the respiratory system in mitochondria might involve ionic interaction of xanthomegnin with cationic residues in the hydrophobic region of mitochondrial membrane proteins.

  6. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria.

    Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio


    Brain bioenergetic abnormalities in mood disorders were detected by neuroimaging in vivo studies in humans. Because of the increasing importance of mitochondrial pathogenetic hypothesis of Depression, in this study the effects of sub-chronic treatment (21days) with desipramine (15mg/kg) and fluoxetine (10mg/kg) were evaluated on brain energy metabolism. On mitochondria in vivo located in neuronal soma (somatic) and on mitochondria of synapses (synaptic), the catalytic activities of regulatory enzymes of mitochondrial energy-yielding metabolic pathways were assayed. Antidepressants in vivo treatment modified the activities of selected enzymes of different mitochondria, leading to metabolic modifications in the energy metabolism of brain cortex: (a) the enhancement of cytochrome oxidase activity on somatic mitochondria; (b) the decrease of malate, succinate dehydrogenase and glutamate-pyruvate transaminase activities of synaptic mitochondria; (c) the selective effect of fluoxetine on enzymes related to glutamate metabolism. These results overcome the conflicting data so far obtained with antidepressants on brain energy metabolism, because the enzymatic analyses were made on mitochondria with diversified neuronal in vivo localization, i.e. on somatic and synaptic. This research is the first investigation on the pharmacodynamics of antidepressants studied at subcellular level, in the perspective of (i) assessing the role of energy metabolism of cerebral mitochondria in animal models of mood disorders, and (ii) highlighting new therapeutical strategies for antidepressants targeting brain bioenergetics. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. The mitochondria-plasma membrane contact site.

    Westermann, Benedikt


    Mitochondria are dynamic organelles that are highly motile and frequently fuse and divide. It has recently become clear that their complex behavior is governed to a large extent by interactions with other cellular structures. This review will focus on a mitochondria-plasma membrane tethering complex that was recently discovered and molecularly analyzed in budding yeast, the Num1/Mdm36 complex. This complex attaches mitochondria to the cell cortex and ensures that a portion of the organelles is retained in mother cells during cell division. At the same time, it supports mitochondrial division and integrates mitochondrial dynamics into cellular architecture. Recent evidence suggests that similar mechanisms might exist also in mammalian cells.

  8. Isolation of mitochondria from tissue culture cells.

    Clayton, David A; Shadel, Gerald S


    The number of mitochondria per cell varies substantially from cell line to cell line. For example, human HeLa cells contain at least twice as many mitochondria as smaller mouse L cells. This protocol starts with a washed cell pellet of 1-2 mL derived from ∼10⁹ cells grown in culture. The cells are swollen in a hypotonic buffer and ruptured with a Dounce or Potter-Elvehjem homogenizer using a tight-fitting pestle, and mitochondria are isolated by differential centrifugation. © 2014 Cold Spring Harbor Laboratory Press.

  9. Systematic Analysis of Small RNAs Associated with Human Mitochondria by Deep Sequencing: Detailed Analysis of Mitochondrial Associated miRNA

    Sripada, Lakshmi; Tomar, Dhanendra; Prajapati, Paresh; Singh, Rochika; Singh, Arun Kumar; Singh, Rajesh


    Mitochondria are one of the central regulators of many cellular processes beyond its well established role in energy metabolism. The inter-organellar crosstalk is critical for the optimal function of mitochondria. Many nuclear encoded proteins and RNA are imported to mitochondria. The translocation of small RNA (sRNA) including miRNA to mitochondria and other sub-cellular organelle is still not clear. We characterized here sRNA including miRNA associated with human mitochondria by cellular fractionation and deep sequencing approach. Mitochondria were purified from HEK293 and HeLa cells for RNA isolation. The sRNA library was generated and sequenced using Illumina system. The analysis showed the presence of unique population of sRNA associated with mitochondria including miRNA. Putative novel miRNAs were characterized from unannotated sRNA sequences. The study showed the association of 428 known, 196 putative novel miRNAs to mitochondria of HEK293 and 327 known, 13 putative novel miRNAs to mitochondria of HeLa cells. The alignment of sRNA to mitochondrial genome was also studied. The targets were analyzed using DAVID to classify them in unique networks using GO and KEGG tools. Analysis of identified targets showed that miRNA associated with mitochondria regulates critical cellular processes like RNA turnover, apoptosis, cell cycle and nucleotide metabolism. The six miRNAs (counts >1000) associated with mitochondria of both HEK293 and HeLa were validated by RT-qPCR. To our knowledge, this is the first systematic study demonstrating the associations of sRNA including miRNA with mitochondria that may regulate site-specific turnover of target mRNA important for mitochondrial related functions. PMID:22984580

  10. Impact of mitochondria on nitrite metabolism in HL-1 cardiomyocytes

    Peter eDungel


    Full Text Available Apart from ATP synthesis mitochondria have many other functions, one being nitrite reductase activity. NO released from nitrite has been shown to protect the heart from ischemia/reperfusion injury in a cGMP-dependent manner. However, the exact impact of mitochondria on the release of NO from nitrite in cardiomyocytes is not completely understood. Besides mitochondria, a number of non-mitochondrial metalloproteins have been suggested to facilitate this process. The aim of this study was to investigate the impact of mitochondria on the bioactivation of nitrite in HL-1 cardiomyocytes.The levels of nitrosyl complexes of hemoglobin (NO-Hb and cGMP levels were measured by electron spin resonance spectroscopy and enzyme immunoassay. In addition the formation of free NO was determined by confocal microscopy as well as intracellular nitrite and S-nitrosothiols by chemoluminescence analysis. NO was released from nitrite in cell culture in an oxygen dependent manner. Application of specific inhibitors of the respiratory chain, p450, NO synthases and xanthine oxidoreductase showed that all four enzymatic systems are involved in the release of NO, but more than 50% of NO is released via the mitochondrial pathway. Only NO released by mitochondria activated cGMP synthesis. Cardiomyocytes co-cultured with red blood cells (RBC competed with RBC for nitrite, but free NO was detected only in HL-1 cells suggesting that RBC are not a source of NO in this model. Apart from activation of cGMP synthesis, NO formed in HL-1 cells diffused out of the cells and formed NO-Hb complexes. In addition nitrite was converted by HL-1 cells to S-nitrosyl complexes. In HL-1 cardiomyocytes, several enzymatic systems are involved in nitrite reduction to NO but only the mitochondrial pathway of NO release activates cGMP synthesis. Our data suggest that this pathway may be a key regulator of myocardial contractility especially under hypoxic conditions.

  11. ABCB10 depletion reduces unfolded protein response in mitochondria.

    Yano, Masato


    Mitochondria have many functions, including ATP generation. The electron transport chain (ETC) and the coupled ATP synthase generate ATP by consuming oxygen. Reactive oxygen species (ROS) are also produced by ETC, and ROS damage deoxyribonucleic acids, membrane lipids and proteins. Recent analysis indicate that mitochondrial unfolded protein response (UPR(mt)), which enhances expression of mitochondrial chaperones and proteases to remove damaged proteins, is activated when damaged proteins accumulate in the mitochondria. In Caenorhabditis elegans, HAF-1, a putative ortholog of human ABCB10, plays an essential role in signal transduction from mitochondria to nuclei to enhance UPR(mt). Therefore, it is possible that ABCB10 has a role similar to that of HAF-1. However, it has not been reported whether ABCB10 is a factor in the signal transduction pathway to enhance UPR(mt). In this study, ABCB10 was depleted in HepG2 cells using small interfering RNA (siRNA), and the effect was examined. ABCB10 depletion upregulated ROS and the expression of ROS-detoxifying enzymes (SOD2, GSTA1, and GSTA2), and SESN3, a protein induced by ROS to protect the cell from oxidative stress. In addition, ABCB10 depletion significantly decreased expression of UPR(mt)-related mitochondrial chaperones (HSPD1 and DNAJA3), and a mitochondrial protease (LONP1). However, the putative activity of ABCB10 to export peptides from mitochondria was not lost by ABCB10 depletion. Altogether, these data suggest that ABCB10 is involved in UPR(mt) signaling pathway similar to that of HAF-1, although ABCB10 probably does not participate in peptide export from mitochondria. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Automatic detection of mitochondria from electron microscope tomography images: a curve fitting approach

    Tasel, Serdar F.; Hassanpour, Reza; Mumcuoglu, Erkan U.; Perkins, Guy C.; Martone, Maryann


    Mitochondria are sub-cellular components which are mainly responsible for synthesis of adenosine tri-phosphate (ATP) and involved in the regulation of several cellular activities such as apoptosis. The relation between some common diseases of aging and morphological structure of mitochondria is gaining strength by an increasing number of studies. Electron microscope tomography (EMT) provides high-resolution images of the 3D structure and internal arrangement of mitochondria. Studies that aim to reveal the correlation between mitochondrial structure and its function require the aid of special software tools for manual segmentation of mitochondria from EMT images. Automated detection and segmentation of mitochondria is a challenging problem due to the variety of mitochondrial structures, the presence of noise, artifacts and other sub-cellular structures. Segmentation methods reported in the literature require human interaction to initialize the algorithms. In our previous study, we focused on 2D detection and segmentation of mitochondria using an ellipse detection method. In this study, we propose a new approach for automatic detection of mitochondria from EMT images. First, a preprocessing step was applied in order to reduce the effect of nonmitochondrial sub-cellular structures. Then, a curve fitting approach was presented using a Hessian-based ridge detector to extract membrane-like structures and a curve-growing scheme. Finally, an automatic algorithm was employed to detect mitochondria which are represented by a subset of the detected curves. The results show that the proposed method is more robust in detection of mitochondria in consecutive EMT slices as compared with our previous automatic method.

  13. Mitochondria in the striatum of subjects with schizophrenia: relationship to treatment response.

    Somerville, Shahza M; Lahti, Adrienne C; Conley, Robert R; Roberts, Rosalinda C


    Schizophrenia (SZ) is a severe mental illness with neuropathology in many regions, including the striatum. The typical symptoms of this disease are psychosis (such as hallucinations and delusions), cognitive impairments, and the deficit syndrome. Not all patients respond to treatment and, in those who do, only psychotic symptoms are improved. Imaging studies support a biological distinction between treatment response and resistance, but postmortem examinations of this issue are rare. This study tests the hypotheses that abnormalities in mitochondria, the energy producing organelles in the cell, may correlate with treatment response. Postmortem striatal tissue was obtained from the Maryland Brain Collection. The density of mitochondria (in various neuropil compartments) and the number of mitochondria per synapse (all types of synapses combined) were tallied using electron microscopy and stereology in striatum from SZ subjects (rated treatment responsive or not) and normal controls. The number of mitochondria per synapse was significantly different among groups for both the caudate nucleus (P mitochondria per synapse in the caudate nucleus and putamen. In the putamen, treatment-responsive subjects also had decreases in this measure compared to treatment-resistant subjects (34%). Our results provide further support for a biological distinction between treatment response and treatment resistance in SZ. Because treatment responders have fewer mitochondria per synapse than controls, although the treatment-resistant subjects have similar results to that of controls, fewer mitochondria per synapse may be related to treatment response.

  14. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate.

    Chen, Zhao; Zhang, Hui; Lu, Weiqin; Huang, Peng


    It has long been observed that cancer cells rely more on glycolysis to generate ATP and actively use certain glycolytic metabolic intermediates for biosynthesis. Hexokinase II (HKII) is a key glycolytic enzyme that plays a role in the regulation of the mitochondria-initiated apoptotic cell death. As a potent inhibitor of hexokinase, 3-bromopyruvate (3-BrPA) is known to inhibit cancer cell energy metabolism and trigger cell death, supposedly through depletion of cellular ATP. The current study showed that 3-BrPA caused a covalent modification of HKII protein and directly triggered its dissociation from mitochondria, leading to a specific release of apoptosis-inducing factor (AIF) from the mitochondria to cytosol and eventual cell death. Co-immunoprecipitation revealed a physical interaction between HKII and AIF. Using a competitive peptide of HKII, we showed that the dissociation of hexokinase II from mitochondria alone could cause apoptotic cell death, especially in the mitochondria-deficient rho(0) cells that highly express HKII. Interestingly, the dissociation of HKII itself did not directly affect the mitochondrial membrane potential, ROS generation, and oxidative phosphorylation. Our study suggests that the physical association between HKII and AIF is important for the normal localization of AIF in the mitochondria, and disruption of this protein complex by 3-BrPA leads to their release from the mitochondria and eventual cell death.

  15. Isolation and functional assessment of mitochondria from small amounts of mouse brain tissue.

    Chinopoulos, Christos; Zhang, Steven F; Thomas, Bobby; Ten, Vadim; Starkov, Anatoly A


    Recent discoveries have brought mitochondria functions in focus of the neuroscience research community and greatly stimulated the demand for approaches to study mitochondria dysfunction in neurodegenerative diseases. Many mouse disease models have been generated, but studying mitochondria isolated from individual mouse brain regions is a challenge because of small amount of the available brain tissue. Conventional techniques for isolation and purification of mitochondria from mouse brain subregions, such as ventral midbrain, hippocampus, or striatum, require pooling brain tissue from six to nine animals for a single mitochondrial preparation. Working with pooled tissue significantly decreases the quality of data because of the time required to dissect several brains. It also greatly increases the labor intensity and the cost of experiments as several animals are required per single data point. We describe a method for isolation of brain mitochondria from mouse striata or other 7-12 mg brain samples. The method utilizes a refrigerated table-top microtube centrifuge, and produces research grade quality mitochondria in amounts sufficient for performing multiple enzymatic and functional assays, thereby eliminating the necessity for pooling mouse brain tissue. We also include a method of measuring ADP-ATP exchange rate as a function of mitochondrial membrane potential (ΔΨm) in small amounts of isolated mitochondria, adapted to a plate reader format.

  16. Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways.

    Kaipparettu, Benny Abraham; Ma, Yewei; Park, Jun Hyoung; Lee, Tin-Lap; Zhang, Yiqun; Yotnda, Patricia; Creighton, Chad J; Chan, Wai-Yee; Wong, Lee-Jun C


    Mitochondrial-nucleus cross talks and mitochondrial retrograde regulation can play a significant role in cellular properties. Transmitochondrial cybrid systems (cybrids) are an excellent tool to study specific effects of altered mitochondria under a defined nuclear background. The majority of the studies using the cybrid model focused on the significance of specific mitochondrial DNA variations in mitochondrial function or tumor properties. However, most of these variants are benign polymorphisms without known functional significance. From an objective of rectifying mitochondrial defects in cancer cells and to establish mitochondria as a potential anticancer drug target, understanding the role of functional mitochondria in reversing oncogenic properties under a cancer nuclear background is very important. Here we analyzed the potential reversal of oncogenic properties of a highly metastatic cell line with the introduction of non-cancerous mitochondria. Cybrids were established by fusing the mitochondria DNA depleted 143B TK- ρ0 cells from an aggressive osteosarcoma cell line with mitochondria from benign breast epithelial cell line MCF10A, moderately metastatic breast cancer cell line MDA-MB-468 and 143B cells. In spite of the uniform cancerous nuclear background, as observed with the mitochondria donor cells, cybrids with benign mitochondria showed high mitochondrial functional properties including increased ATP synthesis, oxygen consumption and respiratory chain activities compared to cybrids with cancerous mitochondria. Interestingly, benign mitochondria could reverse different oncogenic characteristics of 143B TK(-) cell including cell proliferation, viability under hypoxic condition, anti-apoptotic properties, resistance to anti-cancer drug, invasion, and colony formation in soft agar, and in vivo tumor growth in nude mice. Microarray analysis suggested that several oncogenic pathways observed in cybrids with cancer mitochondria are inhibited in cybrids with

  17. Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana.

    Slocinska, Malgorzata; Antos-Krzeminska, Nina; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa


    We have identified and characterized an uncoupling protein in mitochondria isolated from leg muscle and from fat body, an insect analogue tissue of mammalian liver and adipose tissue, of the cockroach Gromphadorhina coquereliana (GcUCP). This is the first functional characterization of UCP activity in isolated insect mitochondria. Bioenergetic studies clearly indicate UCP function in both insect tissues. In resting (non-phosphorylating) mitochondria, cockroach GcUCP activity was stimulated by the addition of micromolar concentrations of palmitic acid and inhibited by the purine nucleotide GTP. Moreover, in phosphorylating mitochondria, GcUCP activity was able to divert energy from oxidative phosphorylation. Functional studies indicate a higher activity of GcUCP-mediated uncoupling in cockroach muscle mitochondria compared to fat body mitochondria. GcUCP activation by palmitic acid resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of UCPs in insects. GcUCP protein was immunodetected using antibodies raised against human UCP4 as a single band of around 36 kDa. GcUCP protein expression in cockroach muscle mitochondria was significantly higher compared to mitochondria isolated from fat body. LC-MS/MS analyses revealed 100% sequence identities for peptides obtained from GcUCP to UCP4 isoforms from D. melanogaster (the highest homology), human, rat or other insect mitochondria. Therefore, it can be proposed that cockroach GcUCP corresponds to the UCP4 isoforms of other animals.

  18. Energetic, oxidative and ionic exchange in rat brain and liver mitochondria at experimental audiogenic epilepsy (Krushinsky-Molodkina model).

    Venediktova, Natalya I; Gorbacheva, Olga S; Belosludtseva, Natalia V; Fedotova, Irina B; Surina, Natalia M; Poletaeva, Inga I; Kolomytkin, Oleg V; Mironova, Galina D


    The role of brain and liver mitochondria at epileptic seizure was studied on Krushinsky-Molodkina (KM) rats which respond to sound with an intensive epileptic seizure (audiogenic epilepsy). We didn't find significant changes in respiration rats of brain and liver mitochondria of KM and control rats; however the efficiency of АТР synthesis in the KM rat mitochondria was 10% lower. In rats with audiogenic epilepsy the concentration of oxidative stress marker malondialdehyde in mitochondria of the brain (but not liver) was 2-fold higher than that in the control rats. The rate of H2O2 generation in brain mitochondria of КМ rats was twofold higher than in the control animals when using NAD-dependent substrates. This difference was less pronounced in liver mitochondria. In KM rats, the activity of mitochondrial ATP-dependent potassium channel was lower than in liver mitochondria of control rats. The comparative study of the mitochondria ability to retain calcium ions revealed that in the case of using the complex I and complex II substrates, permeability transition pore is easier to trigger in brain and liver mitochondria of KM and КМs rats than in the control ones. The role of the changes in the energetic, oxidative, and ionic exchange in the mechanism of audiogenic epilepsy generation in rats and the possible correction of the epilepsy seizures are discussed.

  19. Cyclosporin and mitochondria: a neuroprotective approach

    Alok Singh


    Full Text Available Cyclosporin A (CsA an immunophilin, discovered in 1969 and approved in 1983 to be used as immunosuppressant agent and is widely used in organ transplantation and auto-immune disorders. Its ability to alter mitochondria and apoptotic pathways makes it attractive agent to be employed in variety of diseases including age related neurodegenerative diseases. Mitochondria play pivotal role in cell energetics and reactive oxygen species production and are known to be key regulator of apoptosis hence it is important in a wide range of diseases. The structural and functional properties of mitochondria enable the targeting of drugs supposed to modulate the function of organelle for therapeutic advantage. By targeting mitochondria we can prevent oxidative damage associated with neurodegenerative diseases and ischemia and reperfusion tissue injury. Similarly targeting Bcl-2 can be helpful in cancer by triggering apoptosis. [Int J Basic Clin Pharmacol 2013; 2(3.000: 339-340

  20. Mechanisms of mitochondria and autophagy crosstalk.

    Rambold, Angelika S; Lippincott-Schwartz, Jennifer


    Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuronal loss in Parkinson's disease. In addition to autophagy's significance in mitochondrial integrity, several lines of evidence suggest that mitochondria can also substantially influence the autophagic process. The mitochondria's ability to influence and be influenced by autophagy places both elements (mitochondria and autophagy) in a unique position where defects in one or the other system could increase the risk to various metabolic and autophagic related diseases.

  1. Mitochondria are not captive bacteria.

    Harish, Ajith; Kurland, Charles G


    Lynn Sagan's conjecture (1967) that three of the fundamental organelles observed in eukaryote cells, specifically mitochondria, plastids and flagella were once free-living primitive (prokaryotic) cells was accepted after considerable opposition. Even though the idea was swiftly refuted for the specific case of origins of flagella in eukaryotes, the symbiosis model in general was accepted for decades as a realistic hypothesis to describe the endosymbiotic origins of eukaryotes. However, a systematic analysis of the origins of the mitochondrial proteome based on empirical genome evolution models now indicates that 97% of modern mitochondrial protein domains as well their homologues in bacteria and archaea were present in the universal common ancestor (UCA) of the modern tree of life (ToL). These protein domains are universal modular building blocks of modern genes and genomes, each of which is identified by a unique tertiary structure and a specific biochemical function as well as a characteristic sequence profile. Further, phylogeny reconstructed from genome-scale evolution models reveals that Eukaryotes and Akaryotes (archaea and bacteria) descend independently from UCA. That is to say, Eukaryotes and Akaryotes are both primordial lineages that evolved in parallel. Finally, there is no indication of massive inter-lineage exchange of coding sequences during the descent of the two lineages. Accordingly, we suggest that the evolution of the mitochondrial proteome was autogenic (endogenic) and not endosymbiotic (exogenic). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Redox homeostasis protects mitochondria through accelerating ROS conversion to enhance hypoxia resistance in cancer cells.

    Li, Pengying; Zhang, Dongyang; Shen, Lingxiao; Dong, Kelei; Wu, Meiling; Ou, Zhouluo; Shi, Dongyun


    Mitochondria are the powerhouses of eukaryotic cells and the main source of reactive oxygen species (ROS) in hypoxic cells, participating in regulating redox homeostasis. The mechanism of tumor hypoxia tolerance, especially the role of mitochondria in tumor hypoxia resistance remains largely unknown. This study aimed to explore the role of mitochondria in tumor hypoxia resistance. We observed that glycolysis in hypoxic cancer cells was up-regulated more rapidly, with far lesser attenuation in aerobic oxidation, thus contributing to a more stable ATP/ADP ratio. In hypoxia, cancer cells rapidly convert hypoxia-induced O(2˙)(-) into H2O2. H2O2 is further decomposed by a relatively stronger antioxidant system, causing ROS levels to increase lesser compared to normal cells. The moderate ROS leads to an appropriate degree of autophagy, eliminating the damaged mitochondria and offering nutrients to promote mitochondria fusion, thus protects mitochondria and improves hypoxia tolerance in cancer. The functional mitochondria could enable tumor cells to flexibly switch between glycolysis and oxidative phosphorylation to meet the different physiological requirements during the hypoxia/re-oxygenation cycling of tumor growth.

  3. Structural and biochemical changes in mitochondria after cisplatin treatment of Dalton's lymphoma-bearing mice.

    Prasad, Surya Bali; Rosangkima, Gabriel; Kharbangar, Arpaia


    Cisplatin treatment of tumor-bearing mice and analysis of ultrastructural features of mitochondria in the kidney and Dalton's lymphoma cells showed the appearance of more roundish mitochondria with thickened membranes. It also caused the reduction in the number and irregularity in the shape of cristae and formation of vacuoles in the mitochondria. After cisplatin treatment, decreased level of protein, succinate dehydrogenase activity, and increased level of lipid peroxidation were noted in Dalton's lymphoma tumor cells and kidney. Cisplatin-mediated decrease in SDH activity, GSH level and an increase in LPO in the mitochondria of kidney could play an important role to produce nephrotoxicity. However, in DL cells, decrease in cellular GSH could be noteworthy than mt-GSH, along with decrease in SDH activity and increase in LPO in the cisplatin-mediated anticancer activity. These changes could play an important role to produce both the cisplatin-mediated effects i.e. anticancer activity and nephrotoxicity. Cisplatin-induced biochemical and ultrastructural changes in mitochondria after cisplatin treatment should be an important factor in the development of biochemical injury in mitochondria and affecting the overall metabolism in the cells. The findings from the present studies indicate multilevel effect of cisplatin in the cells and do support the earlier view that mitochondria could be a critical target in cisplatin-mediated anticancer activity and toxicity in the hosts.

  4. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.




    Rat liver mitochondria allowed to accumulate maximal amounts of Ca(++) and HPO(4) (=) ions from the suspending medium in vitro during respiration have a considerably higher specific gravity than normal mitochondria and may be easily separated from the latter by isopycnic centrifugation in density gradients of sucrose or cesium chloride. When the mitochondria are allowed to accumulate less than maximal amounts of Ca(++) and HPO(4) (=) from the medium, they have intermediate specific gravities which are roughly proportional to their content of calcium phosphate. Maximally "loaded" mitochondria are relatively homogeneous with respect to specific gravity. Correlated biochemical and electron microscopic studies show that Ca(++)-loaded mitochondria contain numerous dense granules, of which some 85 per cent are over 500 A in diameter. These granules are electron-opaque not only following fixation and staining with heavy metal reagents, but also following fixation with formaldehyde, demonstrating that the characteristic granules in Ca(++)-loaded mitochondria have intrinsic electron-opacity. The dense granules are almost always located within the inner compartment of the mitochondria and not in the space between the inner and outer membranes. They are frequently located at or near the cristae and they often show electron-transparent "cores." Such granules appear to be made up of clusters of smaller dense particles, but preliminary x-ray diffraction analysis and electron diffraction studies have revealed no evidence of crystallinity in the deposits. The electron-opaque granules decrease in number when the Ca(++)-loaded mitochondria are incubated with 2,4-dinitrophenol; simultaneously there is discharge of Ca(++) and phosphate from the mitochondria into the medium.

  6. Role of Mitochondria in Parvovirus Pathology

    Jonna Nykky; Matti Vuento; Leona Gilbert


    Proper functioning of the mitochondria is crucial for the survival of the cell. Viruses are able to interfere with mitochondrial functions as they infect the host cell. Parvoviruses are known to induce apoptosis in infected cells, but the role of the mitochondria in parvovirus induced cytopathy is only partially known. Here we demonstrate with confocal and electron microscopy that canine parvovirus (CPV) associated with the mitochondrial outer membrane from the onset of infection. ...

  7. Morphological and biochemical characterization of mitochondria in Torpedo red blood cells.

    Pica, A; Scacco, S; Papa, F; De Nitto, E; Papa, S


    A study is presented on the morphology and respiratory functions of mitochondria from Torpedo marmorata red blood cells. In vivo staining of red blood cells and transmission electron microscopy showed the existence of a considerable number of vital and orthodox mitochondria which decreased from young erythroblasts to mature erythrocytes from 60-50 to 30-20 per cell. In erythrocytes mitochondria exhibited a canonical, functional respiratory chain. The content and activity of cytochromes in erythrocytes were, however, significantly lower as compared to mammalian tissues.

  8. Autoradiographic Distribution and Applied Pharmacological Characteristics of Dextromethorphan and Related Antitissue/Anticonvulsant Drugs and Novel Analogs.


    4.4 4 Cerebellum: Purkinje cell layer 64.0 ± 10.5 4 granular cell layer 46.1 ± 7.5 4 molecular cell layer 23.4 ± 1.1 4 TABLE 2: Autoradiographical...43.0 ± 7.4 5 granular cell layer 23.0 ± 7.3 5 molecular cell layer 14.0 ± 4.4 5 j cu 4) A k- , -.- ’ A 1 *9 ,𔃻 I A .. ’, * 3A .. . .A *4...nucleus solitary tract 36.8 ± 7.1 5 reticular nucleus 36.6 ± 7.6 5 Cerebellum: Purkinje cell layer 48.6 ± 10.3 5 granular cell layer 28.6 ± 7.8 5 molecular

  9. Atypical Cristae Morphology of Human Syncytiotrophoblast Mitochondria

    De Los Rios Castillo, Daniela; Zarco-Zavala, Mariel; Olvera-Sanchez, Sofia; Pardo, Juan Pablo; Juarez, Oscar; Martinez, Federico; Mendoza-Hernandez, Guillermo; García-Trejo, José J.; Flores-Herrera, Oscar


    Mitochondrial complexes I, III2, and IV from human cytotrophoblast and syncytiotrophoblast associate to form supercomplexes or respirasomes, with the following stoichiometries: I1:(III2)1 and I1:(III2)1–2:IV1–4. The content of respirasomes was similar in both cell types after isolating mitochondria. However, syncytiotrophoblast mitochondria possess low levels of dimeric complex V and do not have orthodox cristae morphology. In contrast, cytotrophoblast mitochondria show normal cristae morphology and a higher content of ATP synthase dimer. Consistent with the dimerizing role of the ATPase inhibitory protein (IF1) (García, J. J., Morales-Ríos, E., Cortés-Hernandez, P., and Rodríguez-Zavala, J. S. (2006) Biochemistry 45, 12695–12703), higher relative amounts of IF1 were observed in cytotrophoblast when compared with syncytiotrophoblast mitochondria. Therefore, there is a correlation between dimerization of complex V, IF1 expression, and the morphology of mitochondrial cristae in human placental mitochondria. The possible relationship between cristae architecture and the physiological function of the syncytiotrophoblast mitochondria is discussed. PMID:21572045

  10. Frontal cortical mitochondrial dysfunction and mitochondria-related β-amyloid accumulation by chronic sleep restriction in mice.

    Zhao, Hongyi; Wu, Huijuan; He, Jialin; Zhuang, Jianhua; Liu, Zhenyu; Yang, Yang; Huang, Liuqing; Zhao, Zhongxin


    Mitochondrial dysfunction induced by mitochondria-related β-amyloid (Aβ) accumulation is increasingly being considered a novel risk factor for sporadic Alzheimer's disease pathophysiology. The close relationship between chronic sleep restriction (CSR) and cortical Aβ elevation was confirmed recently. By assessing frontal cortical mitochondrial function (electron microscopy manifestation, cytochrome C oxidase concentration, ATP level, and mitochondrial membrane potential) and the levels of mitochondria-related Aβ in 9-month-old adult male C57BL/6J mice subjected to CSR and as an environmental control (CO) group, we aimed to evaluate the association of CSR with mitochondrial dysfunction and mitochondria-related Aβ accumulation. In this study, frontal cortical mitochondrial dysfunction was significantly more severe in CSR mice compared with CO animals. Furthermore, CSR mice showed higher mitochondria-associated Aβ, total Aβ, and mitochondria-related β-amyloid protein precursor (AβPP) levels compared with CO mice. In the CSR model, mouse frontal cortical mitochondrial dysfunction was correlated with mitochondria-associated Aβ and mitochondria-related AβPP levels. However, frontal cortical mitochondria-associated Aβ levels showed no significant association with cortical total Aβ and mitochondrial AβPP concentrations. These findings indicated that CSR-induced frontal cortical mitochondrial dysfunction and mitochondria-related Aβ accumulation, which was closely related to mitochondrial dysfunction under CSR.

  11. Defects in skeletal muscle subsarcolemmal mitochondria in a non-obese model of type 2 diabetes mellitus.

    Lai, Nicola; Kummitha, China; Hoppel, Charles


    Skeletal muscle resistance to insulin is related to accumulation of lipid-derived products, but it is not clear whether this accumulation is caused by skeletal muscle mitochondrial dysfunction. Diabetes and obesity are reported to have a selective effect on the function of subsarcolemmal and interfibrillar mitochondria in insulin-resistant skeletal muscle. The current study investigated the role of the subpopulations of mitochondria in the pathogenesis of insulin resistance in the absence of obesity. A non-obese spontaneous rat model of type 2 diabetes mellitus, (Goto-Kakizaki), was used to evaluate function and biochemical properties in both populations of skeletal muscle mitochondria. In subsarcolemmal mitochondria, minor defects are observed whereas in interfibrillar mitochondria function is preserved. Subsarcolemmal mitochondria defects characterized by a mild decline of oxidative phosphorylation efficiency are related to ATP synthase and structural alterations of inner mitochondria membrane but are considered unimportant because of the absence of defects upstream as shown with polarographic and spectrophometric assays. Fatty acid transport and oxidation is preserved in both population of mitochondria, whereas palmitoyl-CoA increased 25% in interfibrillar mitochondria of diabetic rats. Contrary to popular belief, these data provide compelling evidence that mitochondrial function is unaffected in insulin-resistant skeletal muscle from T2DM non-obese rats.

  12. Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death.

    Cha, Moon-Yong; Han, Sun-Ho; Son, Sung Min; Hong, Hyun-Seok; Choi, Young-Ju; Byun, Jayoung; Mook-Jung, Inhee


    Mitochondria are best known as the essential intracellular organelles that host the homeostasis required for cellular survival, but they also have relevance in diverse disease-related conditions, including Alzheimer's disease (AD). Amyloid β (Aβ) peptide is the key molecule in AD pathogenesis, and has been highlighted in the implication of mitochondrial abnormality during the disease progress. Neuronal exposure to Aβ impairs mitochondrial dynamics and function. Furthermore, mitochondrial Aβ accumulation has been detected in the AD brain. However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain, and it is questionable whether mitochondrial Aβ accumulation followed by mitochondrial dysfunction leads directly to neuronal toxicity. This study demonstrated that an exogenous Aβ(1-42) treatment, when applied to the hippocampal cell line of mice (specifically HT22 cells), caused a deleterious alteration in mitochondria in both morphology and function. A clathrin-mediated endocytosis blocker rescued the exogenous Aβ(1-42)-mediated mitochondrial dysfunction. Furthermore, the mitochondria-targeted accumulation of Aβ(1-42) in HT22 cells using Aβ(1-42) with a mitochondria-targeting sequence induced the identical morphological alteration of mitochondria as that observed in the APP/PS AD mouse model and exogenous Aβ(1-42)-treated HT22 cells. In addition, subsequent mitochondrial dysfunctions were demonstrated in the mitochondria-specific Aβ(1-42) accumulation model, which proved indistinguishable from the mitochondrial impairment induced by exogenous Aβ(1-42)-treated HT22 cells. Finally, cellular toxicity was directly induced by mitochondria-targeted Aβ(1-42) accumulation, which mimics the apoptosis process in exogenous Aβ(1-42)-treated HT22 cells. Taken together, these results indicate that mitochondria-targeted Aβ(1-42) accumulation is the necessary and sufficient condition for Aβ-mediated mitochondria impairments, and leads

  13. GnRH receptors in human granulosa cells: Anatomical localization and characterization by autoradiographic study

    Latouche, J.; Crumeyrolle-Arias, M.; Jordan, D.; Kopp, N.; Augendre-Ferrante, B.; Cedard, L.; Haour, F. (Institut Pasteur, Paris (France))


    The presence of receptors for GnRH in human ovary has been investigated by quantitative autoradiography. Simultaneous visualization and characterization of specific receptors on frozen sections were obtained on six pairs of human ovaries. Among them only one exhibited a large preovulatory follicle. This dominant follicle exhibited a specific and high affinity binding capacity for {sup 125}I-GnRHa exclusively localized on the granulosa cell layer. Analysis of saturation curve indicates a Kd value of 0.22 nM and Bmax of 9.6 fmol/mg protein. In contrast LH-hCG binding sites were present in all antral follicles. These data demonstrate for the first time the presence of high affinity GnRH receptors in human granulosa cells at a late stage of follicular maturation.

  14. Autoradiographic study of the efferent connections of the entorhinal cortex in the rat

    Wyss, J.M.


    The major findings can be summarized as follows. Whereas the projection of the lateral entorhinal area (LEA) to the dentate gyrus is broad in its longitudinal extent, the medial entorhinal area (MEA), and especially the ventral portion of this zone, projects in a more lamellar fashion. In the transverse plane the LEA preferentially projects to the inner (dorsal) blade of the dentate gyrus, while the MEA innervates both blades equally. Within the radial dimension, the entorhinal cortex projects to the dentate gyrus according to a medial to lateral gradient, with lateral portions of the LEA projecting along the pial surface and successively more medial portions of the entorhinal projecting closer to the granule cells. The commissural entorhinal to dentate projections are similar to the ipsilateral projections in location; however, they are considerably reduced in septotemporal extent and do not arise from cells in the ventral half of either LEA or the intermediate entorhinal area (IEA). The projection of the entorhinal cortex to Ammon's horn reflects the same longitudinal characteristics as the dentate projections. An alvear input which extends only to the pyramidal cells at the CA1-subicular junction was most noticeable at ventral hippocampal levels. The extrahippocampal projections arise predominantly from cells in the LEA and project forward along the angular bundle to the piriform and periamygdaloid cortices, as well as the endopiriform nucleus, the lateral, basolateral, and cortical amygdaloid nuclei, the nucleus of the lateral olfactory tract, the olfactory tubercle, the anterior olfactory nucleus, the taenia tecta, and the indusium griseum.

  15. Acute treatment with fluvoxamine elevates rat brain serotonin synthesis in some terminal regions: An autoradiographic study

    Muck-Seler, Dorotea; Pivac, Nela; Diksic, Mirko


    Introduction A considerable body of evidence indicates the involvement of the neurotransmitter serotonin (5-HT) in the pathogenesis and treatment of depression. Methods The acute effect of fluvoxamine, on 5-HT synthesis rates was investigated in rat brain regions, using α-14C-methyl-L-tryptophan as a tracer. Fluvoxamine (25 mg/kg) and saline (control) were injected intraperitoneally, one hour before the injection of the tracer (30 μCi). Results There was no significant effect of fluvoxamine on plasma free tryptophan. After Benjamini–Hochberg False Discovery Rate correction, a significant decrease in the 5-HT synthesis rate in the fluvoxamine treated rats, was found in the raphe magnus (−32%), but not in the median (−14%) and dorsal (−3%) raphe nuclei. In the regions with serotonergic axon terminals, significant increases in synthesis rates were observed in the dorsal (+41%) and ventral (+43%) hippocampus, visual (+38%), auditory (+65%) and parietal (+37%) cortex, and the substantia nigra pars compacta (+56%). There were no significant changes in the 5-HT synthesis rates in the median (+11%) and lateral (+24%) part of the caudate-putamen, nucleus accumbens (+5%), VTA (+16%) or frontal cortex (+ 6%). Conclusions The data show that the acute administration of fluvoxamine affects 5-HT synthesis rates in a regionally specific pattern, with a general elevation of the synthesis in the terminal regions and a reduction in some cell body structures. The reasons for the regional specific effect of fluvoxamine on 5-HT synthesis are unclear, but may be mediated by the presynaptic serotonergic autoreceptors. PMID:22560971

  16. Cerebral malformation induced by prenatal X-irradiation: an autoradiographic and Golgi study

    Ferrer, I.; Xumetra, A.; Santamaria, J. (Neuropatologia, Depto. Anatomia Patologica, C.S. ' Principes de Espana' , Hospitalet de Llobregat, Barcelona (Spain))


    Brain malformations are produced after X-irradiation at different post-conceptional ages in the rat. Malformed cortical patterns result from abnormal organisation and capricious orientation of the neurons, while a radical migratory pattern of neuroblasts outwards to the cerebral cortex is preserved in animals irradiated on the fourteenth, sixteenth or eighteenth days of gestation. Migratory disturbances are restricted to the large subcortical ectopic masses found in rats irradiated on the fourteenth gestational day and to pyramidal ectopic nodules in the hippocampus in rats irradiated on the sixteenth gestational day. Subcortical ectopic masses develop from ectopic germinal rosettes and are formed by several types of cortical neuron distributed in a stereotyped pattern. The presence of large numbers of intrinsic, afferent and efferent connections are indicative of integrative functions of the subcortical masses.

  17. Differentiated effect of ageing on the enzymes of Krebs' cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex.

    Villa, R F; Gorini, A; Hoyer, S


    The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.

  18. Neuropeptide Y receptor binding sites in rat brain: differential autoradiographic localizations with sup 125 I-peptide YY and sup 125 I-neuropeptide Y imply receptor heterogeneity

    Lynch, D.R.; Walker, M.W.; Miller, R.J.; Snyder, S.H. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))


    Neuropeptide Y (NPY) receptor binding sites have been localized in the rat brain by in vitro autoradiography using picomolar concentrations of both 125I-NPY and 125I-peptide YY (PYY) and new evidence provided for differentially localized receptor subtypes. Equilibrium binding studies using membranes indicate that rat brain contains a small population of high-affinity binding sites and a large population of moderate-affinity binding sites. 125I-PYY (10 pM) is selective for high-affinity binding sites (KD = 23 pM), whereas 10 pM 125I-NPY labels both high- and moderate-affinity sites (KD = 54 pM and 920 pM). The peptide specificity and affinity of these ligands in autoradiographic experiments match those seen in homogenates. Binding sites for 125I-PYY are most concentrated in the lateral septum, stratum oriens, and radiatum of the hippocampus, amygdala, piriform cortex, entorhinal cortex, several thalamic nuclei, including the reuniens and lateral posterior nuclei, and substantia nigra, pars compacta, and pars lateralis. In the brain stem, 125I-PYY sites are densest in a variety of nuclei on the floor of the fourth ventricle, including the pontine central grey, the supragenual nucleus, and the area postrema. 125I-NPY binding sites are found in similar areas, but relative levels of NPY binding and PYY binding differ regionally, suggesting differences in sites labeled by the two ligands. These receptor localizations resemble the distribution of endogenous NPY in some areas, but others, such as the hypothalamus, contain NPY immunoreactivity but few binding sites.

  19. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts.

    Onesto, Elisa; Colombrita, Claudia; Gumina, Valentina; Borghi, Maria Orietta; Dusi, Sabrina; Doretti, Alberto; Fagiolari, Gigliola; Invernizzi, Federica; Moggio, Maurizio; Tiranti, Valeria; Silani, Vincenzo; Ratti, Antonia


    Dysregulation of RNA metabolism represents an important pathogenetic mechanism in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) due to the involvement of the DNA/RNA-binding proteins TDP-43 and FUS and, more recently, of C9ORF72. A potential link between dysregulation of RNA metabolism and mitochondrial dysfunction is recently emerged in TDP-43 disease models. To further investigate the possible relationship between these two pathogenetic mechanisms in ALS/FTD, we studied mitochondria functionality in human mutant TARDBP(p.A382T) and C9ORF72 fibroblasts grown in galactose medium to induce a switch from a glycolytic to an oxidative metabolism. In this condition we observed significant changes in mitochondria morphology and ultrastructure in both mutant cells with a fragmented mitochondria network particularly evident in TARDBP(p.A382T) fibroblasts. From analysis of the mitochondrial functionality, a decrease of mitochondria membrane potential with no alterations in oxygen consumption rate emerged in TARDBP fibroblasts. Conversely, an increased oxygen consumption and mitochondria hyperpolarization were observed in C9ORF72 fibroblasts in association to increased ROS and ATP content. We found evidence of autophagy/mitophagy in dynamic equilibrium with the biogenesis of novel mitochondria, particularly in mutant C9ORF72 fibroblasts where an increase of mitochondrial DNA content and mass, and of PGC1-α protein was observed. Our imaging and biochemical data show that wild-type and mutant TDP-43 proteins do not localize at mitochondria so that the molecular mechanisms responsible for such mitochondria impairment remain to be further elucidated. For the first time our findings assess a link between C9ORF72 and mitochondria dysfunction and indicate that mitochondria functionality is affected in TARDBP and C9ORF72 fibroblasts with gene-specific features in oxidative conditions. As in neuronal metabolism mitochondria are actively used for ATP

  20. Respiratory capacities of mitochondria of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 grown under glucose limitation

    Urk, Hendrik van; Bruinenberg, Peter M.; Veenhuis, Marten; Scheffers, W. Alexander; Dijken, Johannes P. van


    A comparative study was made of the in vitro respiratory capacity of mitochondria isolated from Saccharomyces cerevisiae and Candida utilis grown in glucose-limited chemostat cultures. An electron-microscopic analysis of whole cells revealed that the volume density of mitochondria was the same in

  1. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration

    Mendizabal-Zubiaga, Juan; Melser, Su; Bénard, Giovanni; Ramos, Almudena; Reguero, Leire; Arrabal, Sergio; Elezgarai, Izaskun; Gerrikagoitia, Inmaculada; Suarez, Juan; Rodríguez de Fonseca, Fernando; Puente, Nagore; Marsicano, Giovanni; Grandes, Pedro


    The cannabinoid type 1 (CB1) receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1), where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and function...

  2. In silico Prediction of MicroRNAs in Plant Mitochondria

    Jaiashre Sridhar


    Full Text Available MicroRNAs are endogenous, short (ca. 21 base, non-coding, post transcriptional, regulatory RNA molecules. These microRNAs (miRNAs are complementary to their target messenger RNAs, and bind principally to its 3' UTR. The conserved nature of miRNAs, and their high sequence complementarities of miRNA and its targets in plants, provides the basis for the easy identification of miRNA and its targets. Presence of miRNA in plant mitochondria is scantily studied. Identification of miRNA targets in plant mitochondria might indicate the involvement of miRNA in mitochondrial gene regulation and nuclear mitochondrial interactions. In this study, we used a computational approach to predict miRNA targets in plant mitochondria. The mitochondrial gene targets identified for miRNAs are located both in mitochondrial and nuclear compartments. This observation points to a fairly early origin of miRNAs. Besides, most of the targets identified can have copies in two compartments and suggest the possibility of miRNA mediated regulation. This study unfurls the possibility of regulating the plant mitochondrial genes by amending the miRNA genes in the nuclear compartment.

  3. Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome.

    El-Hattab, Ayman W; Emrick, Lisa T; Chanprasert, Sirisak; Craigen, William J; Scaglia, Fernando


    Mitochondria are found in all nucleated human cells and generate most of the cellular energy. Mitochondrial disorders result from dysfunctional mitochondria that are unable to generate sufficient ATP to meet the energy needs of various organs. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a frequent maternally inherited mitochondrial disorder. There is growing evidence that nitric oxide (NO) deficiency occurs in MELAS syndrome and results in impaired blood perfusion that contributes significantly to several complications including stroke-like episodes, myopathy, and lactic acidosis. Both arginine and citrulline act as NO precursors and their administration results in increased NO production and hence can potentially have therapeutic utility in MELAS syndrome. Citrulline raises NO production to a greater extent than arginine, therefore, citrulline may have a better therapeutic effect. Controlled studies assessing the effects of arginine or citrulline supplementation on different clinical aspects of MELAS syndrome are needed.

  4. Photostimulation of mitochondria as a treatment for retinal neurodegeneration.

    Beirne, Kathy; Rozanowska, Malgorzata; Votruba, Marcela


    Absorption of photon energy by neuronal mitochondria leads to numerous downstream neuroprotective effects. Red and near infrared (NIR) light are associated with significantly less safety concerns than light of shorter wavelengths and they are therefore, the optimal choice for irradiating the retina. Potent neuroprotective effects have been demonstrated in various models of retinal damage, by red/NIR light, with limited data from human studies showing its ability to improve visual function. Improved neuronal mitochondrial function, increased blood flow to neural tissue, upregulation of cell survival mediators and restoration of normal microglial function have all been proposed as potential underlying mechanisms of red/NIR light. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  5. Hijacking mitochondria: bacterial toxins that modulate mitochondrial function.

    Jiang, Jhih-Hang; Tong, Janette; Gabriel, Kipros


    Bacterial infection has enormous global social and economic impacts stemming from effects on human health and agriculture. Although there are still many unanswered questions, decades of research has uncovered many of the pathogenic mechanisms at play. It is now clear that bacterial pathogens produce a plethora of proteins known as "toxins" and "effectors" that target a variety of physiological host processes during the course of infection. One of the targets of host targeted bacterial toxins and effectors are the mitochondria. The mitochondrial organelles are major players in many biological functions, including energy conversion to ATP and cell death pathways, which inherently makes them targets for bacterial proteins. We present a summary of the toxins targeted to mitochondria and for those that have been studied in finer detail, we also summarize what we know about the mechanisms of targeting and finally their action at the organelle.

  6. Exploiting endobiotic metabolic pathways to target xenobiotic antioxidants to mitochondria.

    Anders, M W


    Oxidative stress plays a role in a range of human disease entities. Hence, strategies to target antioxidants to mitochondria are an active area of investigation. Triphenylphosphonium cation-based antioxidants and SS-peptides have been described and show significant uptake by mitochondria and effectiveness in animal models of conditions linked to oxidative stress. We tested the hypothesis that the mitochondrial β-oxidation pathway could be exploited to activate the antioxidant phenolic and methimazole prodrugs. Most compounds studied underwent mitochondrial biotransformation to release their antioxidant moieties, and some were cytoprotective in a hypoxia-reoxygenation model in rat cardiomyocytes. These results demonstrate the feasibility of exploiting mitochondrial bioactivation reactions for targeted drug delivery.

  7. Ethanol induced mitochondria injury and permeability transition pore opening: Role of mitochondria in alcoholic liver disease

    Ming Yan; Ping Zhu; Hui-Min Liu; Hai-Tao Zhang; Li Liu


    AIM: To observe changes of mitochondria and investigate the effect of ethanol on mitochondrial permeability transition pore (PTP), mitochondrial membrane potential (MMP, Δψm) and intracellular calcium concentration in hepatocytes by establishing an animal model of alcoholic liver disease (ALD).METHODS: Fourty adult male Wistar rats were randomly divided into two groups, the model group (20) was administered alcohol intragastrically plus an Oliver oil diet to establish an ALD model, and the control group (20) was given an equal amount of normal saline. The ultramicrostructural changes of mitochondria were observed under electron microscopy. Mitochondria of liver was extracted, and patency of PTP, mitochondrial membrane potential (Δψm), mitochondrial mass and intracellular calcium concentration of isolated hepacytes were detected by flow cytometry using rhodamine123 (Rh123), Nonyl-Acridine Orange and calcium fluorescent probe Fluo-3/AM, respectively.RESULTS: Membrane and cristae were broken or disappeared in mitochondria in different shapes under electron microscopy. Some mitochondria showed U shape or megamitochondrion. In the model group, liver mitochondria PTP was broken, and mitochondria swelled, the absorbance at 450 nm, A540 decreased (0.0136 ± 0.0025 vs 0.0321 ± O.0013,model vs control,P<O.01);mitochondria transmembrane potential (239.4638 ± 12.7263 vs 377.5850 ± 16.8119,P<0.01) was lowered;mitochondrial mass (17.4350 ± 1.9880 vs 31.6738 ± 3.4930,P<0.01);and [Ca2+]i was increased in liver cells (7.0020 ± 0.5008 vs 10.2050 ± 0.4701,P<0.01).CONCLUSION:Chronic alcohol intake might lead to broken mitochondria PTP,decreased mitochondria membrane potential and injury,and elevated intracellular Ca2+ production.Ethanol-induced chondriosome injury may be an important mechanism of alcoholic diseases.

  8. Ca(2+-dependent regulation of the Ca(2+ concentration in the myometrium mitochondria. II. Ca(2+ effects on mitochondria membranes polarization and [Ca(2+](m

    L. G. Babich


    Full Text Available It is known that Ca2+ accumulation in the mitochondria undergoes complex regulation by Ca2+ itself. But the mechanisms of such regulation are still discussed. In this paper we have shown that Ca ions directly or indirectly regulate the level of myometrium mitochondria membranes polarization. The additions of 100 µM Ca2+ were accompanied by depolarization of the mitochondria membranes. The following experiments were designed to study the impact of Ca2+ on the myometrium mitochondria [Ca2+]m. Isolated myometrium mitochondria were preincubated without or with 10 μM Са2+ followed by 100 μM Са2+ addition. Experiments were conducted in three mediums: without ATP and Mg2+ (0-medium, in the presence of 3 mM Mg2+ (Mg-medium and 3 mM Mg2+ + 3 mM ATP (Mg,ATP-medium. It was shown that the effects of 10 μM Са2+ addition were different in different mediums, namely in 0- and Mg-medium the [Ca2+]m values increased, whereas in Mg,ATP-medium statistically reliable changes were not registered. Preincubation of mitochondria with 10 μM Са2+ did not affect the [Ca2+]m value after the addition of 100 μM Са2+. The [Ca2+]m values after 100 μM Са2+ addition were the same in 0- and Mg,ATP-mediums and somewhat lower in Mg-medium. Preliminary incubation of mitochondria with 10 μM Са2+ in 0- and Mg-mediums reduced changes of Fluo 4 normalized fluorescence values that were induced by 100 μM Са2+ additions, but in Mg,ATP-medium such differences were not recorded. It is concluded that Са2+ exchange in myometrium mitochondria is regulated by the concentration of Ca ions as in the external medium, so in the matrix of mitochondria. The medium composition had a significant impact on the [Са2+]m values in the absence of exogenous cation. It is suggested that light increase of [Са2+]m before the addition of 100 μM Са2+ may have a positive effect on the functional activity of the mitochondria.

  9. Mmb1p binds mitochondria to dynamic microtubules

    Fu, Chuanhai; Jain, Deeptee; Costa, Judite; Velve-Casquillas, Guilhem; Tran, Phong T.


    Summary Background Mitochondria form a dynamics tubular network within the cell. Proper mitochondria movement and distribution are critical for their localized function in cell metabolism, growth, and survival. In mammalian cells, mechanisms of mitochondria positioning appear dependent on the microtubule cytoskeleton, with kinesin or dynein motors carrying mitochondria as cargos and distributing them throughout the microtubule network. Interestingly, the timescale of microtubule dynamics occurs in seconds, and the timescale of mitochondria distribution occurs in minutes. How does the cell couple these two time constants? Results Fission yeast also relies on microtubules for mitochondria distribution. We report here a new microtubule-dependent but motor-independent mechanism for proper mitochondria positioning in fission yeast. We identify the protein mmb1p, which binds to mitochondria and microtubules. Mmb1p attaches the tubular mitochondria to the microtubule lattice at multiple discrete interaction sites. Mmb1 deletion causes mitochondria to aggregate, with the long-term consequence of defective mitochondria distribution and cell death. Mmb1p decreases microtubule dynamicity. Conclusion Mmb1p is a new microtubule-mitochondria binding protein. We propose that mmb1p act to couple long-term mitochondria distribution to short-term microtubule dynamics by attenuating microtubule dynamics, thus enhancing the mitochondria-microtubule interaction time. PMID:21856157

  10. Our (Mother's) Mitochondria and Our Mind.

    Kramer, Peter; Bressan, Paola


    Most of the energy we get to spend is furnished by mitochondria, minuscule living structures sitting inside our cells or dispatched back and forth within them to where they are needed. Mitochondria produce energy by burning down what remains of our meal after we have digested it, but at the cost of constantly corroding themselves and us. Here we review how our mitochondria evolved from invading bacteria and have retained a small amount of independence from us; how we inherit them only from our mother; and how they are heavily implicated in learning, memory, cognition, and virtually every mental or neurological affliction. We discuss why counteracting mitochondrial corrosion with antioxidant supplements is often unwise, and why our mitochondria, and therefore we ourselves, benefit instead from exercise, meditation, sleep, sunshine, and particular eating habits. Finally, we describe how malfunctioning mitochondria force rats to become socially subordinate to others, how such disparity can be evened off by a vitamin, and why these findings are relevant to us.

  11. Reactive biomolecular divergence in genetically altered yeast cells and isolated mitochondria as measured by biocavity laser spectroscopy : a rapid diagnostic method for studying cellular responses to stress and disease.

    Yaffe, Michael P. (University of California, San Diego, CA); Gourley, Paul Lee; Copeland, Robert Guild; McDonald, Anthony Eugene; Hendricks, Judy K.; Naviaux, Robert K. (Univesity of California, San Diego, CA)


    We report an analysis of four strains of baker's yeast (Saccharomyces cerevisiae) using biocavity laser spectroscopy. The four strains are grouped in two pairs (wild type and altered), in which one strain differs genetically at a single locus, affecting mitochondrial function. In one pair, the wild-type rho+ and a rho0 strain differ by complete removal of mitochondrial DNA (mtDNA). In the second pair, the wild-type rho+ and a rho- strain differ by knock-out of the nuclear gene encoding Cox4, an essential subunit of cytochrome c oxidase. The biocavity laser is used to measure the biophysical optic parameter Deltalambda, a laser wavelength shift relating to the optical density of cell or mitochondria that uniquely reflects its size and biomolecular composition. As such, Deltalambda is a powerful parameter that rapidly interrogates the biomolecular state of single cells and mitochondria. Wild-type cells and mitochondria produce Gaussian-like distributions with a single peak. In contrast, mutant cells and mitochondria produce leptokurtotic distributions that are asymmetric and highly skewed to the right. These distribution changes could be self-consistently modeled with a single, log-normal distribution undergoing a thousand-fold increase in variance of biomolecular composition. These features reflect a new state of stressed or diseased cells that we call a reactive biomolecular divergence (RBD) that reflects the vital interdependence of mitochondria and the nucleus.

  12. Elimination of paternal mitochondria through the lysosomal degradation pathway in C.elegans

    Qinghua Zhou; Haimin Li; Ding Xue


    In mammals,the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal,despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization.The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown.We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans,and that the lysosomal pathway actively participates in this process.Molecular and cell biological analyses indicate that in wild-type animals paternal mitoehondria and mtDNA are destroyed within two hours after fertilization.In animals with compromised lysosomes,paternal mitochondria persist until late embryonic stages.Therefore,the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization.Our study indicates that C.elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.

  13. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function.

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S


    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.

  14. The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria

    Zhai, L; Blom, J; Chen, M


    the ultrastructure of Leishmania major promastigote and amastigote mitochondria in a concentration-dependent manner without damaging the organelles of macrophages or the phagocytic function of these cells. Studies on the function of the parasite mitochondria showed that licochalcone A inhibited the respiration....... Khrazmi, Antimicrob. Agents Chemother. 38:1339-1344, 1994) and antimalarial (M. Chen, T.G. Theander, S.B. Christensen, L. Hviid, L. Zhai, and A. Kaharazmi, Antimicrob. Agents Chemother. 38:1470-1475, 1994) activities. We have observed that licochalcone A alters the ultrastructure of the mitochondria...... of the parasite by the parasites. Moreover, licochalcone A inhibited the activity of the parasite mitochondrial dehydrogenase. The inhibition of the activity of the parasite mitochondrial enzyme correlated well with the changes in the ultrastructure of the mitochondria shown by electron microscopy. These findings...

  15. Mitochondria localization and dimerization are required for CIDE-B to induce apoptosis.

    Chen, Z; Guo, K; Toh, S Y; Zhou, Z; Li, P


    Cell death-inducing DFF45-like effector (CIDE)-B is a member of the novel family of apoptosis-inducing factors that share homology with the N-terminal region of DFF, the DNA fragmentation factor. The molecular mechanism of CIDE-B-induced apoptosis is unclear. We have shown here that CIDE-B protein is localized in mitochondria and forms homodimers and heterodimers with other family members. Serial deletion analyses suggest that the mitochondria localization signal and dimerization interface are overlapped and localized to the 30 amino acid residues at the C-terminal region of CIDE-B. Mitochondria localization and dimerization are both required for CIDE-B-induced apoptosis. Our study has thus revealed a mechanism for CIDE-B-induced apoptosis by localization to mitochondria and the formation of a high affinity homo- or heterodimeric complex.

  16. The role of mitochondria in reactive oxygen species metabolism and signaling.

    Starkov, Anatoly A


    Oxidative stress is considered a major contributor to the etiology of both "normal" senescence and severe pathologies with serious public health implications. Several cellular sources, including mitochondria, are known to produce significant amounts of reactive oxygen species (ROS) that may contribute to intracellular oxidative stress. Mitochondria possess at least 10 known sites that are capable of generating ROS, but they also feature a sophisticated multilayered ROS defense system that is much less studied. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal at the level of mitochondria. An integrative systemic approach is applied to analysis of mitochondrial ROS metabolism, which is "dissected" into ROS generation, ROS emission, and ROS scavenging. The in vitro ROS-producing capacity of several mitochondrial sites is compared in the metabolic context and the role of mitochondria in ROS-dependent intracellular signaling is discussed.

  17. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress.

    Wang, Lin; Feng, Chao; Zheng, Xiaodong; Guo, Yan; Zhou, Fangfang; Shan, Dongqian; Liu, Xuan; Kong, Jin


    Synthesis of melatonin in mitochondria was reported in animals. However, there is no report on whether plant mitochondria also produce melatonin. Herein, we show that plant mitochondria are a major site for melatonin synthesis. In an in vitro study, isolated apple mitochondria had the capacity to generate melatonin. Subcellular localization analysis documented that an apple SNAT isoform, MzSNAT5, was localized in the mitochondria of both Arabidopsis protoplasts and apple callus cells. The kinetic analysis revealed that the recombinant MzSNAT5 protein exhibited high enzymatic activity to catalyze serotonin to N-acetylserotonin with the Km and Vmax of 55 μmol/L and 0.909 pmol/min/mg protein at 35°C, respectively; this pathway functioned over a wide range of temperatures from 5 to 75°C. In an in vivo study, MzSNAT5 was drought inducible. The transgenic Arabidopsis ectopically expressing MzSNAT5 elevated the melatonin level and, hence, enhanced drought tolerance. The mechanistic study indicated that the ectopically expressing MzSNAT5 allows plant mitochondria to increase melatonin synthesis. As a potent free radical scavenger, melatonin reduces the oxidative stress caused by the elevated reactive oxygen species which are generated under drought stress in plants. Our findings provide evidence that engineered melatonin-enriched plants exhibit enhanced oxidative tolerance. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Hydrogen Sulfide as an Endogenous Modulator in Mitochondria and Mitochondria Dysfunction

    Wei Guo


    Full Text Available Hydrogen sulfide (H2S has historically been considered to be a toxic gas, an environmental and occupational hazard. However, with the discovery of its presence and enzymatic production through precursors of L-cysteine and homocysteine in mammalian tissues, H2S has recently received much interest as a physiological signaling molecule. H2S is a gaseous messenger molecule that has been implicated in various physiological and pathological processes in mammals, including vascular relaxation, angiogenesis, and the function of ion channels, ischemia/reperfusion (I/R, and heart injury. H2S is an endogenous neuromodulator and present studies show that physiological concentrations of H2S enhance NMDA receptor-mediated responses and aid in the induction of hippocampal long-term potentiation. Moreover, in the field of neuronal protection, physiological concentrations of H2S in mitochondria have many favorable effects on cytoprotection.

  19. Giant crystals inside mitochondria of equine chondrocytes.

    Nürnberger, S; Rentenberger, C; Thiel, K; Schädl, B; Grunwald, I; Ponomarev, I; Marlovits, St; Meyer, Ch; Barnewitz, D


    The present study reports for the first time the presence of giant crystals in mitochondria of equine chondrocytes. These structures show dark contrast in TEM images as well as a granular substructure of regularly aligned 1-2 nm small units. Different zone axes of the crystalline structure were analysed by means of Fourier transformation of lattice-resolution TEM images proving the crystalline nature of the structure. Elemental analysis reveals a high content of nitrogen referring to protein. The outer shape of the crystals is geometrical with an up to hexagonal profile in cross sections. It is elongated, spanning a length of several micrometres through the whole cell. In some chondrocytes, several crystals were found, sometimes combined in a single mitochondrion. Crystals were preferentially aligned along the long axis of the cells, thus appearing in the same orientation as the chondrocytes in the tissue. Although no similar structures have been found in the cartilage of any other species investigated, they have been found in cartilage repair tissue formed within a mechanically stimulated equine chondrocyte construct. Crystals were mainly located in superficial regions of cartilage, especially in joint regions of well-developed superficial layers, more often in yearlings than in adult horses. These results indicate that intramitochondrial crystals are related to the high mechanical stress in the horse joint and potentially also to the increased metabolic activity of immature individuals.

  20. Mitochondria as target of Quantum dots toxicity

    Li, Jiahan; Zhang, Yue; Xiao, Qi; Tian, Fangfang; Liu, Xiaorong; Li, Ran; Zhao, Guangyuan; Jiang, Fenglei [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Liu, Yi, E-mail: [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)


    Highlights: {yields} The present work investigated the toxicity of CdTe QDs on the function of mitochondria isolated from rat livers. {yields} These results will help us learn more about QDs toxicity at subcellular (mitochondrial) level. {yields} QDs toxicity on mitochondria indicates that the QDs require to be further improved before they can be safely used in clinic. - Abstract: Quantum dots (QDs) hold great promise in many biological applications, with the persistence of safety concerns about the environment and human health. The present work investigated the potential toxicity of CdTe QDs on the function of mitochondria isolated from rat livers by examining mitochondrial respiration, swelling, and lipid peroxidation. We observed that QDs can significantly affect the mitochondrial membrane properties, bioenergetics and induce mitochondrial permeability transition (MPT). These results will help us learn more about QDs toxicity at subcellular (mitochondrial) level.

  1. Mitochondria in White, Brown, and Beige Adipocytes

    Miroslava Cedikova


    Full Text Available Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT, the brown (BAT, and the beige/brite/brown-like (bAT adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes.

  2. K-Ras and mitochondria: Dangerous liaisons

    Jiri Neuzil; Jakub Rohlena; Lan-Feng Dong


    It is well documented that the KRAS oncogene efficiently transforms non-malignant cells,and there is some evidence for the role of mitochondria in this process.Now Peng Huang and colleagues show that K-Ras induction results early on in mitochondria assuming the phenotype consistent with the so-called Warburg effect,i.e.,increased glycolysis and attenuated oxidative phosphorylation.Thus the K-Ras protein capable of swift induction of phenotypic changes typical of cancer cells,yet these changes are reversible,and for cells to irreversibly reach their full malignant potential a much longer K-Ras expression is required,implicating mitochondria in the longer-term effects of the oncogene.

  3. Mitochondria and endocrine function of adipose tissue.

    Medina-Gómez, Gema


    Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future.

  4. Mitochondria in biology and medicine--2012

    Madsen, Claus Desler; Rasmussen, Lene Juel


    As the understanding of mitochondria and their importance for the cell and organism is developing, increasing evidence is demonstrating the organelle to be intricately involved in an extensive range of pathologies. This range of pathologies include general signs of premature aging, neuro-muscular......As the understanding of mitochondria and their importance for the cell and organism is developing, increasing evidence is demonstrating the organelle to be intricately involved in an extensive range of pathologies. This range of pathologies include general signs of premature aging, neuro...... as biomarkers for the diseases and most important, it opens the possibility of a treatment or a cure for a disease. "Mitochondria in Biology and Medicine" was the title of the second annual conference of Society of Mitochondrial Research and Medicine-India. The conference was organized by Rana P. Singh, Keshav...

  5. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria

    Johansson, F.I.; Michalecka, A.M.; Møller, I.M.


    The inner mitochondrial membrane is selectively permeable, which limits the transport of solutes and metabolites across the membrane. This constitutes a problem when intramitochondrial enzymes are studied. The channel-forming antibiotic AlaM (alamethicin) was used as a potentially less invasive m...... environment not only in plant mitochondria but also in other membrane-enclosed compartments, such as intact cells, chloroplasts and peroxisomes....... method to permearbilize mitochondria and study the highly branched electron-transport chain in potato tuber (Solanum tuberosum) and pea leaf (Pisum sativum) mitochondria. We show that AlaM permeabilized the inner membrane of plant mitochondria to NAD(P)H, allowing the quantification of internal NAD......M-treated mitochondria was much higher than what has been previously measured by other techniques. Our results also show a difference in substrate specificities for complex I in mitochondria as compared with inside-out submitochondrial particles. AlaM facilitated the passage of cofactors to and from the mitochondrial...

  6. Three-dimensional Imaging and Analysis of Mitochondria within Human Intraepidermal Nerve Fibers.

    Hamid, Hussein S; Hayes, John M; Feldman, Eva L; Lentz, Stephen I


    The goal of this protocol is to study mitochondria within intraepidermal nerve fibers. Therefore, 3D imaging and analysis techniques were developed to isolate nerve-specific mitochondria and evaluate disease-induced alterations of mitochondria in the distal tip of sensory nerves. The protocol combines fluorescence immunohistochemistry, confocal microscopy and 3D image analysis techniques to visualize and quantify nerve-specific mitochondria. Detailed parameters are defined throughout the procedures in order to provide a concrete example of how to use these techniques to isolate nerve-specific mitochondria. Antibodies were used to label nerve and mitochondrial signals within tissue sections of skin punch biopsies, which was followed by indirect immunofluorescence to visualize nerves and mitochondria with a green and red fluorescent signal respectively. Z-series images were acquired with confocal microscopy and 3D analysis software was used to process and analyze the signals. It is not necessary to follow the exact parameters described within, but it is important to be consistent with the ones chosen throughout the staining, acquisition and analysis steps. The strength of this protocol is that it is applicable to a wide variety of circumstances where one fluorescent signal is used to isolate other signals that would otherwise be impossible to study alone.

  7. Subsarcolemmal and interfibrillar mitochondria display distinct superoxide production profiles.

    Crochemore, C; Mekki, M; Corbière, C; Karoui, A; Noël, R; Vendeville, C; Vaugeois, J-M; Monteil, C


    Cardiac subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) subpopulations display distinct biochemical, morphological, and functional characteristics. Moreover, they appear to be differently influenced during cardiac pathologies or toxic injuries. Although mitochondrial reactive oxygen species seem to play a critical role in cardiac function and diseases, limited information exists about the superoxide production characteristics of these mitochondrial subpopulations. In this work, using direct measurement of superoxide by electron paramagnetic resonance, we showed that differences in superoxide production profiles were present between cardiac IFM and SSM, in terms of intensity and major sites of superoxide generation. In SSM incubated with glutamate plus malate as substrates, the total observed superoxide levels were significantly higher than those observed with IFM, with an important contribution of the NADH-oxidizing site of complex I (site If) and the quinol-oxidizing site of complex III (site IIIQ0). In both IFM and SSM, succinate leads to similar rates of total superoxide levels with a substantial role for contribution of reverse electron transfer. Finally, using two spin probes with different membrane permeabilities, our data on complex III showed direct intra- and extra-mitochondrial superoxide release whereas complex I- and II-dependent superoxide were exclusively released inside the mitochondria, confirming previous studies. Feasibility of this approach to measure intra- and extra-mitochondrial superoxide levels and to characterize distinct superoxide production profiles of cardiac IFM and SSM has been demonstrated.

  8. Maternal inheritance of plastids and mitochondria in Cycas L. (Cycadaceae).

    Zhong, Zhi-Rong; Li, Nan; Qian, Dan; Jin, Jian-Hua; Chen, Tao


    Cycas is often considered a living fossil, thereby providing a unique model for revealing the evolution of spermatophytes. To date, the genetic inheritance of these archaic plants is not fully understood. The present study seeks to document the process of organelle inheritance in an interspecific cross of Cycas species. Extranuclear organelle DNA from chloroplasts and mitochondria was analyzed using both polymerase chain reaction-restriction fragment length polymorphism analysis and microscopy. Here, we show that the chloroplasts and mitochondria in the progeny of interspecific crosses between Cycas taitungensis and Cycas ferruginea were exclusively inherited from the female parent. Epifluorescence microscopic analyses of the pollen cells from Cycas elongata indicated that there was a significant degradation of organelle DNA in male reproductive cells following maturation; the DNA fluorescent signals were only seen after pollen mitosis two, but not detectable at mature stage. Lack of organelle DNA fluorescent signal in prothallial cells was confirmed by the absence of plastids and mitochondria in electronic microscopic images. In conclusion, these data suggest that the maternal plastid and mitochondrial inheritance in Cycas, native to the old world, are the same as seen in seed plants.

  9. Spontaneous NA+ transients in individual mitochondria of intact astrocytes.

    Azarias, Guillaume; Van de Ville, Dimitri; Unser, Michael; Chatton, Jean-Yves


    Mitochondria in intact cells maintain low Na(+) levels despite the large electrochemical gradient favoring cation influx into the matrix. In addition, they display individual spontaneous transient depolarizations. The authors report here that individual mitochondria in living astrocytes exhibit spontaneous increases in their Na(+) concentration (Na(mit)(+) spiking), as measured using the mitochondrial probe CoroNa Red. In a field of view with approximately 30 astrocytes, up to 1,400 transients per minute were typically detected under resting conditions. Na(mit)(+) spiking was also observed in neurons, but was scarce in two nonneural cell types tested. Astrocytic Na(mit)(+) spikes averaged 12.2 +/- 0.8 s in duration and 35.5 +/- 3.2 mM in amplitude and coincided with brief mitochondrial depolarizations; they were impaired by mitochondrial depolarization and ruthenium red pointing to the involvement of a cation uniporter. Na(mit)(+) spiking activity was significantly inhibited by mitochondrial Na(+)/H(+) exchanger inhibition and sensitive to cellular pH and Na(+) concentration. Ca(2+) played a permissive role on Na(mit)(+) spiking activity. Finally, the authors present evidence suggesting that Na(mit)(+) spiking frequency was correlated with cellular ATP levels. This study shows that, under physiological conditions, individual mitochondria in living astrocytes exhibit fast Na(+) exchange across their inner membrane, which reveals a new form of highly dynamic and localized functional regulation.

  10. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus.

    Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G; Stork, Christian; Li, Yang V


    Zinc (Zn(2+)) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis.

  11. Metformin directly acts on mitochondria to alter cellular bioenergetics


    Background Metformin is widely used in the treatment of diabetes, and there is interest in ‘repurposing’ the drug for cancer prevention or treatment. However, the mechanism underlying the metabolic effects of metformin remains poorly understood. Methods We performed respirometry and stable isotope tracer analyses on cells and isolated mitochondria to investigate the impact of metformin on mitochondrial functions. Results We show that metformin decreases mitochondrial respiration, causing an increase in the fraction of mitochondrial respiration devoted to uncoupling reactions. Thus, cells treated with metformin become energetically inefficient, and display increased aerobic glycolysis and reduced glucose metabolism through the citric acid cycle. Conflicting prior studies proposed mitochondrial complex I or various cytosolic targets for metformin action, but we show that the compound limits respiration and citric acid cycle activity in isolated mitochondria, indicating that at least for these effects, the mitochondrion is the primary target. Finally, we demonstrate that cancer cells exposed to metformin display a greater compensatory increase in aerobic glycolysis than nontransformed cells, highlighting their metabolic vulnerability. Prevention of this compensatory metabolic event in cancer cells significantly impairs survival. Conclusions Together, these results demonstrate that metformin directly acts on mitochondria to limit respiration and that the sensitivity of cells to metformin is dependent on their ability to cope with energetic stress. PMID:25184038

  12. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications


    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  13. Protein trafficking at the crossroads to mitochondria.

    Wasilewski, Michal; Chojnacka, Katarzyna; Chacinska, Agnieszka


    Mitochondria are central power stations in the cell, which additionally serve as metabolic hubs for a plethora of anabolic and catabolic processes. The sustained function of mitochondria requires the precisely controlled biogenesis and expression coordination of proteins that originate from the nuclear and mitochondrial genomes. Accuracy of targeting, transport and assembly of mitochondrial proteins is also needed to avoid deleterious effects on protein homeostasis in the cell. Checkpoints of mitochondrial protein transport can serve as signals that provide information about the functional status of the organelles. In this review, we summarize recent advances in our understanding of mitochondrial protein transport and discuss examples that involve communication with the nucleus and cytosol.

  14. In vivo imaging reveals mitophagy independence in the maintenance of axonal mitochondria during normal aging.

    Cao, Xu; Wang, Haiqiong; Wang, Zhao; Wang, Qingyao; Zhang, Shuang; Deng, Yuanping; Fang, Yanshan


    Mitophagy is thought to be a critical mitochondrial quality control mechanism in neurons and has been extensively studied in neurological disorders such as Parkinson's disease. However, little is known about how mitochondria are maintained in the lengthy neuronal axons in the context of physiological aging. Here, we utilized the unique Drosophila wing nerve model and in vivo imaging to rigorously profile changes in axonal mitochondria during aging. We revealed that mitochondria became fragmented and accumulated in aged axons. However, lack of Pink1 or Parkin did not lead to the accumulation of axonal mitochondria or axonal degeneration. Further, unlike in in vitro cultured neurons, we found that mitophagy rarely occurred in intact axons in vivo, even in aged animals. Furthermore, blocking overall mitophagy by knockdown of the core autophagy genes Atg12 or Atg17 had little effect on the turnover of axonal mitochondria or axonal integrity, suggesting that mitophagy is not required for axonal maintenance; this is regardless of whether the mitophagy is PINK1-Parkin dependent or independent. In contrast, downregulation of mitochondrial fission-fusion genes caused age-dependent axonal degeneration. Moreover, Opa1 expression in the fly head was significantly decreased with age, which may underlie the accumulation of fragmented mitochondria in aged axons. Finally, we showed that adult-onset, neuronal downregulation of the fission-fusion, but not mitophagy genes, dramatically accelerated features of aging. We propose that axonal mitochondria are maintained independently of mitophagy and that mitophagy-independent mechanisms such as fission-fusion may be central to the maintenance of axonal mitochondria and neural integrity during normal aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Mitochondria and the insect steroid hormone receptor (EcR): A complex relationship.

    Vafopoulou, Xanthe; Steel, Colin G H


    The actions of the insect steroid molting hormones, ecdysteroids, on the genome of target cells has been well studied, but little is known of their extranuclear actions. We previously showed in Rhodnius prolixus that much of the ecdysteroid receptor (EcR) resides in the cytoplasm of various cell types and undergoes shuttling between nucleus and cytoplasm with circadian periodicity, possibly using microtubules as tracks for translocation to the nucleus. Here we report that cytoplasmic EcR appears to be also involved in extranuclear actions of ecdysteroids by association with the mitochondria. Western blots of subcellular fractions of brain lysates revealed that EcR is localized in the mitochondrial fraction, indicating an intimate association of EcR with mitochondria. Confocal laser microscopy and immunohistochemistry using anti-EcR revealed abundant co-localization of EcR with mitochondria in brain neurons and their axons, especially intense in the subplasmalemmal region, raising the possibility of EcR involvement in mitochondrial functions in subplasmalemmal microdomains. When mitochondria are dispersed by disruption of microtubules with colchicine, EcR remains associated with mitochondria showing strong receptor association with mitochondria. Treatment in vitro with ecdysteroids of brains of developmentally arrested R. prolixus (containing neither ecdysteroids nor EcR) induces EcR and abundant co-localization with mitochondria in neurons, concurrently with a sharp increase of the mitochondrial protein COX 1, suggesting involvement of EcR in mitochondrial function. These findings align EcR with various vertebrate steroid receptors, where actions of steroid receptors on mitochondria are widely known and suggest that steroid receptors across distant phyla share similar functional attributes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Melatonin modulates permeability transition pore and 5-hydroxydecanoate induced KATP channel inhibition in isolated brain mitochondria.

    Waseem, Mohammad; Tabassum, Heena; Parvez, Suhel


    There is increasing recognition of the magnitude of mitochondria in neurodegenerative disorders. Mitochondria play a key role in apoptotic and necrotic cell death. Melatonin (Mel), an indoleamine produced in several organs including the pineal gland has been known for its neuroprotective actions. In our study, we have investigated whether the mitochondrial ATP sensitive potassium (mtKATP) channel blocker 5-hydroxydecanoate (5-HD) and calcium (Ca(2+)) affects permeability transition pore (PTP) alterations in isolated brain mitochondria treated with melatonin (Mel) and cyclosporin A (CsA). Mitochondrial swelling, mitochondrial membrane potential (Δψm), ROS measurement and mitochondrial respiration were evaluated in isolated brain mitochondria. In our results, mitochondrial swelling stimulated by exposing Ca(2+) ions and 5-HD associated by mPTP opening as depicted by modulation of CsA and Mel. In addition, Ca(2+) and 5-HD decreased Δψm, depleted intracellular ROS, and inhibition of mitochondrial respiration (state 3 and state 4) in isolated brain mitochondria. Addition of Mel and CsA has shown significant restoration in mitochondrial swelling, Δψm, intracellular ROS measurement and mitochondrial respiration in isolated brain mitochondria. Therefore, we speculate the modulatory effect of Mel and CsA in mitochondria treated with 5-HD and Ca(2+) hinders the mPTP-mediated mitochondrial dysfunction and cellular oxidative stress. We conclude that inhibition of mPT is one likely mechanism of CsA's and its neuroprotective actions. Development of neuroprotective agents including Mel targeting the mPTP therefore bears hope for future treatment of severe neurodegenerative diseases. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  17. Caspase-6 Induces 7A6 Antigen Localization to Mitochondria During FAS-induced Apoptosis of Jurkat Cells.

    Suita, Hiroaki; Shinomiya, Takahisa; Nagahara, Yukitoshi


    Mitochondria are central to apoptosis. However, apoptosis progression involving mitochondria is not fully understood. A factor involved in mitochondria-mediated apoptosis is 7A6 antigen. 7A6 localizes to mitochondria from the cytosol during apoptosis, which seems to involve 'effector' caspases. In this study, we investigated the precise role of effector caspases in 7A6 localization to mitochondria during apoptosis. Human T-cell lymphoma Jurkat cells were treated with an antibody against FAS. 7A6 localization was analyzed by confocal laser scanning microscopy and flow cytometry. Caspases activation was determined by western blot analysis. 7A6 localization to mitochondria during anti-FAS-induced apoptosis was significantly reduced by the caspase-6 inhibitor, N-acetyl-Val-Glu-Ile-Asp-aldehyde, but not by the caspase-3 inhibitor, N-acetyl-Asp-Asn-Leu-Asp-aldehyde, nor caspase-7/3 inhibitor, N-acetyl-Asp-Gln-Thr-Asp-aldehyde. Moreover, caspase-6 down-regulation suppressed 7A6 localization to mitochondria. Caspase-6 regulates 7A6 localization to mitochondria during anti-FAS-induced apoptosis of Jurkat cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    Park, So Jung; Park, Young Jun; Shin, Ji Hyun; Kim, Eun Sung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeoggi-Do 446-701 (Korea, Republic of); Hwang, Jung Jin; Jin, Dong-Hoon; Kim, Jin Cheon [Institute for Innovative Cancer Research, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Cho, Dong-Hyung, E-mail: [Graduate School of East-West Medical Science, Kyung Hee University, Gyeoggi-Do 446-701 (Korea, Republic of)


    Highlights: {yields} We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. {yields} Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. {yields} Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. {yields} Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  19. Targeting of pro-apoptotic TLR adaptor SARM to mitochondria: definition of the critical region and residues in the signal sequence.

    Panneerselvam, Porkodi; Singh, Laishram Pradeepkumar; Ho, Bow; Chen, Jianzhu; Ding, Jeak Ling


    The fifth and the most well-conserved member of the TLR (Toll-like receptor) adaptor, SARM (sterile α- and HEAT/armadillo-motif-containing protein), has been reported to be an important mediator of apoptosis. However, the exact cellular localization of SARM with respect to its role is unclear. In the present study we show that SARM specifically co-localizes with mitochondria. Endogenous SARM is mainly found in the mitochondria. We demonstrate that the N-terminal 27 amino acids (S27) of SARM, which is hydrophobic and polybasic, acts as a mitochondria-targeting signal sequence, associating SARM to the mitochondria. The S27 peptide has an inherent ability to bind to lipids and mitochondria. This sequence effectively translocates the soluble EGFP (enhanced green fluorescence protein) reporter into the mitochondria. Positioning S27 downstream of the EGFP abrogates its mitochondria-targeting ability. Transmission electron microscopy confirms the ability of S27 to import EGFP into the mitochondria. Importantly, by mutagenesis study, we delineated the specificity of the mitochondria-targeting ability to the arginine residue at the 14th position. The R14A SARM mutant also showed reduced apoptotic potential when compared with the wild-type. Taken together, S27, which is a bona fide signal sequence that targets SARM to the mitochondria, explains the pro-apoptotic activity of SARM.

  20. Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria

    Banerjee, Partha S.; Ma, Junfeng; Hart, Gerald W.


    Elevated mitochondrial O-GlcNAcylation caused by hyperglycemia, as occurs in diabetes, significantly contributes to mitochondrial dysfunction and to diabetic cardiomyopathy. However, little is known about the enzymology of mitochondrial O-GlcNAcylation. Herein, we investigated the enzymes responsible for cycling O-GlcNAc on mitochondrial proteins and studied the mitochondrial transport of UDP-GlcNAc. Analyses of purified rat heart mitochondria from normal and streptozocin-treated diabetic rats show increased mitochondrial O-GlcNAc transferase (OGT) and a concomitant decrease in the mito-specific O-GlcNAcase (OGA). Strikingly, OGT is mislocalized in cardiac mitochondria from diabetic rats. Interaction of OGT and complex IV observed in normal rat heart mitochondria is visibly reduced in diabetic samples, where OGT is mislocalized to the matrix. Live cell OGA activity assays establish the presence of O-GlcNAcase within the mitochondria. Furthermore, we establish that the inner mitochondrial membrane transporter, pyrimidine nucleotide carrier, transports UDP-GlcNAc from the cytosol to the inside of the mitochondria. Knockdown of this transporter substantially lowers mitochondrial O-GlcNAcylation. Inhibition of OGT or OGA activity within neonatal rat cardiomyocytes significantly affects energy production, mitochondrial membrane potential, and mitochondrial oxygen consumption. These data suggest that cardiac mitochondria not only have robust O-GlcNAc cycling, but also that dysregulation of O-GlcNAcylation likely plays a key role in mitochondrial dysfunction associated with diabetes. PMID:25918408

  1. Mitochondria are involved in apoptosis induced by ultraviolet radiation in lepidopteran Spodoptera litura cell line

    Shigang Shan; Kaiyu Liu; Jianxin Peng; Hanchao Yao; Yi Li; Huazhu Hong


    Mitochondria are involved in apoptosis of mammalian cells and even single-cell organisms, but mitochondria are not required in apoptosis in cultured Drosophila cells such as S2 and BG2 cell lines. It is not very clear whether mitochondria are involved in apoptosis in other insect cells such as lepidopteran cell lines. Thus, we determined to elucidate the role of mitochondria in apoptosis induced by ultraviolet radiation in Spodoptera litura (Lepidoptera: Noctuidae) cell line (SL-ZSU-1). The Western blot results suggested that cytochrome c in the ultraviolet-treated SL-1 cells was released from the mitochondria to cytosol as early as 4 h after the induction of ultraviolet radiation and increased in the cytosolic fractions in a time-dependent manner. Flow cytometric analysis of mitochondrial membrane potential (△Ψm) of SL-ZSU-1 cell treated with ultraviolet-C (UV-C) light indicated the decrease in mitochondrial membrane potential was dependent on the times of ultraviolet treatment. Both of them are different from apoptosis in cultured Drosophila melanogaster cell lines (S2 and BG2) and it appears evident mitochondria are involved in apoptosis of the studied lepidopteran cells.

  2. Role of altered mitochondria functions in the pathogenesis of systemic lupus erythematosus.

    Leishangthem, B D; Sharma, A; Bhatnagar, A


    Mitochondria, main producers of reactive-oxygen species (ROS), were studied to examine their role in the pathogenesis of systemic lupus erythematosus (SLE). PBMCs and mitochondria were isolated from SLE patients and healthy volunteers for various parameters. Mitochondrial ROS, swelling, hyperpolarization and levels of cytochrome c, caspase3 in the cells were assessed by flow cytometry. ROS was significantly increased in SLE patients (SLE vs controls: 1.83 ± 1.03 vs 1.10 ± 0.35; p mitochondria was greater in patients (SLE vs controls: 7.10 ± 5.50% vs 2.5 ± 1.8%; p Mitochondria swelling was found to be significantly altered in patients (SLE vs controls: 112.65 ± 36.56 vs 60.49 ± 20.69; p mitochondria. A significant decrease in activity of Complex I (SLE vs controls: 11.79 ± 3.18 vs 15.10 ± 6.38 nmol NADH oxidized/min/mg protein, p mitochondria in the pathogenesis of lupus. © The Author(s) 2015.

  3. Endosome–mitochondria juxtaposition during apoptosis induced by H. pylori VacA

    Calore, F; Genisset, C; Casellato, A; Rossato, M; Codolo, G; Esposti, MD; Scorrano, L; de Bernard, M


    The vacuolating cytotoxin (VacA) is an important virulence factor of Helicobacter pylori with pleiotropic effects on mammalian cells, including the ability to trigger mitochondria-dependent apoptosis. However, the mechanism by which VacA exerts its apoptotic function is unclear. Using a genetic approach, in this study we show that killing by VacA requires the proapoptotic Bcl-2 family members BAX and BAK at the mitochondrial level, but not adequate endoplasmic reticulum Ca2+ levels, similarly controlled by BAX and BAK. A combination of subcellular fractionation and imaging shows that wild-type VacA, but not mutants in its channel-forming region, induces the accumulation of BAX on endosomes and endosome–mitochondria juxtaposition that precedes the retrieval of active BAX on mitochondria. It is noteworthy that in Bax- and Bak-deficient cells, VacA is unable to cause endosome–mitochondria juxtaposition and is not retrieved in mitochondria. Thus, VacA causes BAX/BAK-dependent juxtaposition of endosomes and mitochondria early in the process of cell death, revealing a new function for these proapoptotic proteins in the regulation of relative position of organelles. PMID:20431599

  4. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae

    Hansson Petersen, Camilla A; Alikhani, Nyosha; Behbahani, Homira


    The amyloid beta-peptide (Abeta) has been suggested to exert its toxicity intracellularly. Mitochondrial functions can be negatively affected by Abeta and accumulation of Abeta has been detected in mitochondria. Because Abeta is not likely to be produced locally in mitochondria, we decided...... to investigate the mechanisms for mitochondrial Abeta uptake. Our results from rat mitochondria show that Abeta is transported into mitochondria via the translocase of the outer membrane (TOM) machinery. The import was insensitive to valinomycin, indicating that it is independent of the mitochondrial membrane...... potential. Subfractionation studies following the import experiments revealed Abeta association with the inner membrane fraction, and immunoelectron microscopy after import showed localization of Abeta to mitochondrial cristae. A similar distribution pattern of Abeta in mitochondria was shown...

  5. Isolation of Endoplasmic Reticulum, Mitochondria, and Mitochondria-Associated Membrane and Detergent Resistant Membrane Fractions from Transfected Cells and from Human Cytomegalovirus-Infected Primary Fibroblasts.

    Williamson, Chad D; Wong, Daniel S; Bozidis, Petros; Zhang, Aiping; Colberg-Poley, Anamaris M


    Increasingly mechanistic virology studies require dependable and sensitive methods for isolating purified organelles containing functional cellular sub-domains. The mitochondrial network is, in part, closely apposed to the endoplasmic reticulum (ER). The mitochondria-associated membrane (MAM) fraction provides direct physical contact between the ER and mitochondria. Characterization of the dual localization and trafficking of human cytomegalovirus (HCMV) UL37 proteins required establishing protocols in which the ER and mitochondria could be reliably separated. Because of its documented role in lipid and ceramide transfer from the ER to mitochondria, a method to purify MAM from infected cells was also developed. Two robust procedures were developed to efficiently isolate mitochondria, ER, and MAM fractions while providing substantial protein yields from HCMV-infected primary fibroblasts and from transfected HeLa cells. Furthermore, this unit includes protocols for isolation of detergent resistant membranes from subcellular fractions as well as techniques that allow visualization of the mitochondrial network disruption that occurs in permissively infected cells by their optimal resolution in Percoll gradients. Copyright © 2015 John Wiley & Sons, Inc.

  6. Mitochondria in biology and medicine--2012

    Madsen, Claus Desler; Rasmussen, Lene Juel


    as biomarkers for the diseases and most important, it opens the possibility of a treatment or a cure for a disease. "Mitochondria in Biology and Medicine" was the title of the second annual conference of Society of Mitochondrial Research and Medicine-India. The conference was organized by Rana P. Singh, Keshav...

  7. Isolation of Mitochondria from Potato Tubers

    Havelund, Jesper F.; Salvato, Fernanda; Chen, Mingjie;


    the in vivo properties of the organelle inside the plant cell. Here, we describe a method to isolate mitochondria from a relatively homogeneous plant tissue, the dormant potato tuber. The homogenization is done using a juice extractor, which is a relatively gentle homogenization procedure where...

  8. Mitochondria in biology and medicine--2012.

    Desler, Claus; Rasmussen, Lene Juel


    As the understanding of mitochondria and their importance for the cell and organism is developing, increasing evidence is demonstrating the organelle to be intricately involved in an extensive range of pathologies. This range of pathologies include general signs of premature aging, neuro-muscular dysfunctions, cancer, diabetes, various heart diseases, inflammation and other conditions not previously known to be related to mitochondrial function. A better understanding of mitochondria therefore allows a better understanding of related pathologies. It enables the usage of mitochondrial function as biomarkers for the diseases and most important, it opens the possibility of a treatment or a cure for a disease. "Mitochondria in Biology and Medicine" was the title of the second annual conference of Society of Mitochondrial Research and Medicine-India. The conference was organized by Rana P. Singh, Keshav Singh and Kumarasamy Thangaraj, and was held at the newly opened School of Life Sciences, Central University of Gujarat (CUG), Gandhinagar, India, during 2-3 November 2012. The conference featured talks from internationally renowned scientists within the field of mitochondrial research and offered both students and fellow researchers a comprehensive update to the newest research within the field. This paper summarizes key outcomes of the presentations. Copyright © 2013 © Elsevier B.V. and Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.

  9. Jurassic PARK2: You eat your mitochondria, and you are what your mitochondria eat.

    Dorn, Gerald W


    Park2/Parkin is a central mediator of selective mitochondrial autophagy for mitochondrial quality control. We showed in mouse hearts that PINK1/Mfn2/Park2 mediated generalized mitophagy is essential to the normal perinatal transition from fetal mitochondria that prefer carbohydrates as metabolic substrates to adult fatty-acid metabolizing mitochondria. Our findings demonstrate how functional interactions between mitophagic mitochondrial removal and biogenic mitochondrial replacement facilitate metabolic maturation of the heart.

  10. Mitochondria are required for ATM activation by extranuclear oxidative stress in cultured human hepatoblastoma cell line Hep G2 cells

    Morita, Akinori, E-mail: [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Department of Radiological Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509 (Japan); Tanimoto, Keiji; Murakami, Tomoki; Morinaga, Takeshi [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Hosoi, Yoshio, E-mail: [Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Department of Radiation Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan)


    Highlights: • Oxidative ATM activation can occur in the absence of nuclear DNA damage response. • The oxidized Hep G2 cells were subjected to subcellular fractionation. • The obtained results suggest that the ATM activation occurs in mitochondria. • ATM failed to respond to oxidative stress in mitochondria-depleted Hep G2 cells. • Mitochondria are required for the oxidative activation of ATM. - Abstract: Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue of where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in mitochondria

  11. The effects of low-intensity laser irradiation on the fatigue induced by dysfunction of mitochondria

    Xu, Xiao-Yang; Liu, Timon C.; Duan, Rui; Liu, Xiao-Guang


    Exercise-induced fatigue has long been an important field in sports medicine. The electron leak of mitochondrial respiratory chain during the ATP synthesis integrated with proton leak and O-.2 can decrease the efficiency of ATP synthesis in mitochondria. And the exercise-induced fatigue occur followed by the decrease of performance. If the dysfunction of mitochondria can be avoided, the fatigue during the exercise may be delayed and the performance may be enhanced. Indeed there are some kind of materials can partially prevent the decrease of ATP synthesis efficiency in mitochondria. But the side effects and safety of these materials is still needed to be studied. Low intensity laser can improve the mitochondria function. It is reasonable to consider that low intensity laser therapy may become the new and more effective way to delay or elimination the fatigue induced by dysfunction of mitochondria. Because the effect of laser irradiation may not be controlled exactly when study in vivo, we use electrical stimulation of C2C12 muscle cells in culture to define the effect of low intensity laser on the dysfunction of mitochondria, and to define the optimal laser intensity to prevent the decrease of ATP synthesis efficiency. Our study use the C2C12 muscle cells in culture to define some of the mechanisms involved in the contractile-induced changes of mitochondrial function firstly in sports medicine and may suggest a useful study way to other researchers. We also give a new way to delay or eliminating the fatigue induced by dysfunction of mitochondria without side effect.

  12. Preservation of mitochondrial functional integrity in mitochondria isolated from small cryopreserved mouse brain areas.

    Valenti, Daniela; de Bari, Lidia; De Filippis, Bianca; Ricceri, Laura; Vacca, Rosa Anna


    Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses.

  13. 腺相关病毒2-ND4基因转染细胞线粒体的研究%Study on transfection of adeno associated virus 2-ND4 gene into mitochondria

    杨硕; 刘磊; 裴晗; 万幸; 陆朵朵; 胡维琨; 李斌


    Background Leber hereditary optic neuropathy (LHON) is mitochondrial DNA (mtDNA) disease and mainly leads to optical nerve degeneration.Its primary mechanism is synthesis disorder of DN4 protein due to variation of mtDNA 11778 locus.So to construct a vector with exogenous normal ND4 and transfect into mitochondria is a key of gene therapy for LHON.Objective This study was to investigate the in vitro transfection of adeno-associated virus (AAV)-ND4 gene into mitochondria.Methods Human renal epithelial cell lines transfected adenovirus E1A (293 cells) were regularly cultured and divided into two groups.Framework plasmids of recombinant AAV-ND4 or simple AAV2 were added to the cell medium respectively.The expression of ND4 in cells were located 12,24,36 and 48 hours after transfected by Y03 dual fluorescent quantum dots staining.The positive response for ND4 showed the green fluorescence.Results Cultured 293 cells grew well with 80% confluence.Abundant green fluorescence particles were seen in cytoplasm in the AAV-ND4 transfected group,but only red fluorescence from mitochondrial protein was seen in the simple AAV transfected group under the fluorescence microscope.Conclusions Exogenous ND4 protein can been successfully transfected into mitochondria using the ND4 gene constructed AAV.This result provides experimental evidence for the further study on gene therapy of LHON.%背景 Leber遗传性视神经病变(LHON)是导致视神经退行性变的线粒体遗传性疾病,主要与线粒体11778位点突变导致ND4蛋白合成异常有关,构建含正常ND4蛋白的载体是基因治疗的关键.由于ND4 DNA存在于线粒体,而转染的外源基因只能进入细胞核,不能作用于突变的线粒体DNA.探讨将ND4基因成功转染到线粒体是LHON的基因治疗的关键. 目的 验证人工合成的ND4基因所构建的重组腺相关病毒(AAV)转染细胞后产生的ND4蛋白能否进入线粒体.方法 常规体外培养转染腺病毒E1A

  14. Dendritic mitochondria reach stable positions during circuit development.

    Faits, Michelle C; Zhang, Chunmeng; Soto, Florentina; Kerschensteiner, Daniel


    Mitochondria move throughout neuronal dendrites and localize to sites of energy demand. The prevailing view of dendritic mitochondria as highly motile organelles whose distribution is continually adjusted by neuronal activity via Ca(2+)-dependent arrests is based on observations in cultured neurons exposed to artificial stimuli. Here, we analyze the movements of mitochondria in ganglion cell dendrites in the intact retina. We find that whereas during development 30% of mitochondria are motile at any time, as dendrites mature, mitochondria all but stop moving and localize stably to synapses and branch points. Neither spontaneous nor sensory-evoked activity and Ca(2+) transients alter motility of dendritic mitochondria; and pathological hyperactivity in a mouse model of retinal degeneration elevates rather than reduces motility. Thus, our findings indicate that dendritic mitochondria reach stable positions during a critical developmental period of high motility, and challenge current views about the role of activity in regulating mitochondrial transport in dendrites.

  15. Peroxidation stimulated by lipid hydroperoxides on bovine retinal pigment epithelium mitochondria: effect of cellular retinol-binding protein.

    Terrasa, Ana M; Guajardo, Margarita H; Catalá, Angel


    This study analyzes the effect of cellular retinol-binding protein (CRBP), partially purified from retinal pigment epithelium (RPE) cytosol, on the non-enzymatic lipid peroxidation induced by fatty acid hydroperoxides of mitochondrial membranes isolated from bovine RPE. The effect of different amounts (50, 75 and 100 nmol) of linoleic acid hydroperoxide (LHP), arachidonic acid hydroperoxide (AHP) and docosahexaenoic acid hydroperoxide (DHP) on the lipid peroxidation of RPE mitochondria was studied; RPE mitochondria deprived of exogenously added hydroperoxide was utilized as control. The process was measured simultaneously by determining chemiluminescence as well as polyunsaturated fatty acid (PUFA) degradation of total lipids isolated from RPE mitochondria. The addition of hydroperoxides to RPE mitochondria produces a marked increase in light emission that was hydroperoxide concentration dependent. The highest value of activation was produced by LHP. The major difference in the fatty acid composition of total lipids isolated from native and peroxidized RPE mitochondria incubated with and without hydroperoxides was found in the docosahexaenoic acid content, this decreased 40.90+/-3.01% in the peroxidized group compared to native RPE mitochondria. The decrease was significantly high: 86.32+/-2.57% when the lipid peroxidation was stimulated by 100 nmol of LHP. Inhibition of lipid peroxidation (decrease of chemiluminescence) was observed with the addition of increasing amounts (100-600 microg) of CRBP to RPE mitochondria. The inhibitory effect reaches the highest values in the presence of LHP.

  16. Striatal mitochondria in subjects with chronic undifferentiated vs. chronic paranoid schizophrenia.

    Somerville, Shahza M; Conley, Robert R; Roberts, Rosalinda C


    Schizophrenia (SZ) is a heterogeneous disease with a spectrum of symptoms, risk factors, and etiology. Abnormalities in mitochondria, the energy-producing organelles of the cell, have been observed in mixed cohorts of subjects with SZ. The purpose of the present study was to determine if striatal mitochondria were differentially affected in two different DSM-IV subgroups of SZ. Postmortem striatal tissue was examined from normal controls (NC), chronic paranoid SZs (SZP), and chronic undifferentiated SZs (SZU). Tissue was processed for calbindin immunohistochemistry to identify striosomal compartments, prepared for electron microscopy and analyzed using stereological methods. In both caudate and putamen, the density of mitochondria in the neuropil was decreased in SZP compared to both NCs and SZU. In the putamen, both the SZP and the SZU subgroups had fewer mitochondria per synapse than did NCs. When examining patch matrix compartments, striatal compartments associated with different circuitry and function, only the matrix exhibited changes. In the caudate matrix, the SZP subgroup had fewer mitochondria in the neuropil than did the SZU and NCs. In the putamen matrix, the SZP had fewer mitochondria in the neuropil as compared to NCs, but not the SZU. The numbers of mitochondria per synapse in both the SZP and the SZU groups were similar to each other and fewer than that of NCs. A decrease in mitochondrial density in the neuropil distinguishes the SZP from the SZU subgroup, which could be associated with the symptoms of paranoia and/or could represent a protective mechanism against some of the symptoms that are less pronounced in this subtype than in the SZU subgroup such as cognitive and emotional deficits.

  17. Three-dimensional structure of axonal mitochondria reflects the age of drosophila

    Honglian Zhu; Xiaojiang Sun


    This study aimed to reconstruct a three-dimensional map of axonal mitochondria using Fiji and Neurolucida software, and to observe directly the morphology and distribution of mitochondria in axons of motor neurons in dorsal longitudinal flight muscles of drosophila aged 5 days and 20 days, using electron microscopy. Results indicated that there was no difference in the total area and volume of mitochondria between 5-day-old drosophila and 20-day-old drosophila in all sections, but the ratio of mitochondrial total areas to axon total areas, as well as mitochondrial density of 20-day-old drosophila, was lower than that of 5-day-old drosophila. The number of mitochondria, whose volume was less than 1 000 000 μm3, and between 1 000 000 μm3 and 10 000 000 μm3, was higher in 20-day-old drosophila than that in 5-day-old drosophila. The number of mitochondria with a volume between 1 000 000 μm3 and 100 000 000 μm3 was apparently higher than those with a volume less than 1 000 000 μm3 or larger than 100 000 000 μm3. In addition, the number of mitochondria with a volume more than 100 000 000 μm3 was small; however, the volume was nearly 70% of the total volume in both 5-day-old and 20-day-old drosophila. In contrast, the number of mitochondria with a volume between 1 000 000 μm3 and 10 000 000 μm3 was large, but the volume was less than 30% of the total volume. These experimental findings suggest that changes in mitochondrial morphology and number in motor neurons from the dorsal longitudinal muscle of drosophila are present during different ages.

  18. Extracellular Mitochondria in Cerebrospinal Fluid and Neurological Recovery After Subarachnoid Hemorrhage.

    Chou, Sherry H-Y; Lan, Jing; Esposito, Elga; Ning, MingMing; Balaj, Leonora; Ji, Xunming; Lo, Eng H; Hayakawa, Kazuhide


    Recent studies suggest that extracellular mitochondria may be involved in the pathophysiology of stroke. In this study, we assessed the functional relevance of endogenous extracellular mitochondria in cerebrospinal fluid (CSF) in rats and humans after subarachnoid hemorrhage (SAH). A standard rat model of SAH was used, where an intraluminal suture was used to perforate a cerebral artery, thus leading to blood extravasation into subarachnoid space. At 24 and 72 hours after SAH, neurological outcomes were measured, and the standard JC1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolylcarbocyanineiodide) assay was used to quantify mitochondrial membrane potentials in the CSF. To further support the rat model experiments, CSF samples were obtained from 41 patients with SAH and 27 control subjects. Mitochondrial membrane potentials were measured with the JC1 assay, and correlations with clinical outcomes were assessed at 3 months. In the standard rat model of SAH, extracellular mitochondria was detected in CSF at 24 and 72 hours after injury. JC1 assays demonstrated that mitochondrial membrane potentials in CSF were decreased after SAH compared with sham-operated controls. In human CSF samples, extracellular mitochondria were also detected, and JC1 levels were also reduced after SAH. Furthermore, higher mitochondrial membrane potentials in the CSF were correlated with good clinical recovery at 3 months after SAH onset. This proof-of-concept study suggests that extracellular mitochondria may provide a biomarker-like glimpse into brain integrity and recovery after injury. © 2017 American Heart Association, Inc.

  19. Nuclear apoptosis induced by isolated mitochondria


    We isolated and purified mitochondria from mouse livers and spinach leaves. When added into egg extracts of Xenopus laevis, they caused nuclei of mouse liver to undergo apoptotic changes. Chromatin condensation, margination and DNA ladder were observed. After incubating isolated mitochondria in some hypotonic solutions, and centrifuging these mixtures at high speed, we got mitochondrial supernatants. It was found that in the absence of cytosolic factor, the supernatant alone was able to induce apoptotic changes in nuclei. The effective components were partly of protein. DNA fragmentation was partly inhibited by caspase inhibitors AC-DEVD-CHO and AC-YVADCHO. Meanwhile, caspase inhibitors fully blocked chromatin condensation. Primary characterization of the nuclear endonuclease(s) induced by mitochondrial supernatants was also conducted. It was found that this endonuclease is different from endonuclease G, cytochrome c-induced nuclease, or Ca2+-activated endonuclease.

  20. The curious case of vanishing mitochondria

    Anna Karnkowska


    Full Text Available Due to their involvement in the energy metabolism, mitochondria are essential for most eukaryotic cells. Microbial eukaryotes living in low oxygen environments possess reduced forms of mitochondria, namely mitochondrion-related organelles (MROs. These do not produce ATP by oxidative phosphorylation on their membranes and some do not produce ATP at all. Still, they are indispensable because of other essential functions such as iron-sulphur (Fe-S cluster assembly. Recently, the first microbial eukaryote with neither mitochondrion nor MRO was characterized – Monocercomonoides sp. Genome and transcriptome sequencing of Monocercomonoides revealed that it lacks all hallmark mitochondrial proteins. Crucially, the essential mitochondrial pathway for the Fe-S cluster assembly (ISC was replaced by a bacterial sulphur mobilization (SUF system. The discovery of such bona fide amitochondriate eukaryote broadens our knowledge about the diversity and plasticity of eukaryotic cells and provides a substantial contribution to our understanding of eukaryotic cell evolution.

  1. The curious case of vanishing mitochondria

    Karnkowska, Anna; Hampl, Vladimír


    Due to their involvement in the energy metabolism, mitochondria are essential for most eukaryotic cells. Microbial eukaryotes living in low oxygen environments possess reduced forms of mitochondria, namely mitochondrion-related organelles (MROs). These do not produce ATP by oxidative phosphorylation on their membranes and some do not produce ATP at all. Still, they are indispensable because of other essential functions such as iron-sulphur (Fe-S) cluster assembly. Recently, the first microbial eukaryote with neither mitochondrion nor MRO was characterized - Monocercomonoides sp. Genome and transcriptome sequencing of Monocercomonoides revealed that it lacks all hallmark mitochondrial proteins. Crucially, the essential mitochondrial pathway for the Fe-S cluster assembly (ISC) was replaced by a bacterial sulphur mobilization (SUF) system. The discovery of such bona fide amitochondriate eukaryote broadens our knowledge about the diversity and plasticity of eukaryotic cells and provides a substantial contribution to our understanding of eukaryotic cell evolution. PMID:28357316

  2. Fluoroacetylcarnitine: metabolism and metabolic effects in mitochondria

    Bremer, J.; Davis, E.J.


    The metabolism and metabolic effects of fluoroacetylcarnitine have been investigated. Carnitineacetyltransferase transfers the fluoro-acetyl group of fluoroacetylcarnitine nearly as rapidly to CoA as the acetyl group of acetylcarnitine. Fluorocitrate is then formed by citrate synthase, but this second reaction is relatively slow. The fluorocitrate formed intramitochondrially inhibits the metabolism of citrate. In heart and skeletal muscle mitochondria the accumulated citrate inhibits citrate synthesis and the ..beta..-oxidation of fatty acids. Free acetate is formed, presumably because accumulated acetyl-CoA is hydrolyzed. In liver mitochondria the accumulation of citrate leads to a relatively increased rate of ketogenesis. Increased ketogenesis is obtained also upon the addition of citrate to the reaction mixture.

  3. Mitochondria, prostate cancer, and biopsy sampling error.

    Parr, Ryan L; Mills, John; Harbottle, Andrew; Creed, Jennifer M; Crewdson, Gregory; Reguly, Brian; Guimont, François S


    Mitochondria and their associated genome are emerging as sophisticated indicators of prostate cancer biology. Alterations in the mitochondrial genome (mtgenome) have been implicated in cell proliferation, metastatic behavior, androgen independence, as a signal for apoptosis, and as a predictor of biochemical recurrence. Somatic mutation patterns in complete mtgenomes are associated with prostate specific antigen levels (PSA) in prostate cancer patients and a large-scale mtgenome deletion (3.4 kb) is consistent with a prostate "cancerization" field effect. This review will focus on the biological characteristics of mitochondria and their direct clinical application to prostate cancer. Mitochondrial science is currently influencing clinical prostate cancer diagnostics and the rapid progress in this area indicates future, break-through contributions in the general field of oncology.

  4. Mechanisms of mitochondria and autophagy crosstalk

    Rambold, Angelika S; Lippincott-Schwartz, Jennifer


    Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuro...

  5. Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites.

    John Peter, Arun T; Herrmann, Beatrice; Antunes, Diana; Rapaport, Doron; Dimmer, Kai Stefan; Kornmann, Benoît


    Membrane contact sites between endoplasmic reticulum (ER) and mitochondria, mediated by the ER-mitochondria encounter structure (ERMES) complex, are critical for mitochondrial homeostasis and cell growth. Defects in ERMES can, however, be bypassed by point mutations in the endosomal protein Vps13 or by overexpression of the mitochondrial protein Mcp1. How this bypass operates remains unclear. Here we show that the mitochondrial outer membrane protein Mcp1 functions in the same pathway as Vps13 by recruiting it to mitochondria and promoting its association to vacuole-mitochondria contacts. Our findings support a model in which Mcp1 and Vps13 work as functional effectors of vacuole-mitochondria contact sites, while tethering is mediated by other factors, including Vps39. Tethered and functionally active vacuole-mitochondria interfaces then compensate for the loss of ERMES-mediated ER-mitochondria contact sites. © 2017 John Peter et al.

  6. Tissue specific structural variations of mitochondria of fish ectoparasite Argulus bengalensis Ramakrishna, 1951 (Crustacea: Branchiura: Functional implications

    Anirban Banerjee


    Full Text Available We studied the fine structure of some classical and six variant mitochondria from different tissues viz. proboscis gland, spinal gland, ovary, testis, and muscle of a fish ectoparasite, Argulus bengalensis. In the proboscis gland and spinal gland, mitochondria are protected within vesicle to preserve their structure and activity from exposure to glandular synthesis for its parasitic mode of feeding. In the oocytes, mitochondria are larger and cylindrical in appearance. Oocyte mitochondria are highly dynamic and exhibit frequent fission and fusion. Those are clustered in the cytoplasm of previtellogenic oocytes which prepare for different synthetic activities for successful reproductive investment. In contrast, mitochondrial abundance is less in the male gametic lineage. The spermatocytes and the nurse cells in the testis have an unusual type of mitochondria, nebenkern which is formed by the fusions of number of mitochondria. A completely different type of mitochondrion is discovered in the flagellum of the spermatozoa. It is provided with fifteen numbers of singlet microtubules at its outer periphery which is a salient feature of the flagellum of this Branchiuran genus. This unique mitochondrion uses the microtubule tract for its movement to distribute energy efficiently along the axoneme. Such mitochondrion and microtubular association provide evidence in favor of phylogenetic relationship between Argulus and pentastomid Raillietiella. In striated muscle of thoracic appendages, mitochondria maintain tight junctions with the endoplasmic reticulum and remain in close apposition of the myofibrils which helps in Ca2+ uptake for stimulating continuous muscular activity required for ventilation of respiratory structures of the parasites.

  7. Curcumin reduces oxidative damage by increasing reduced glutathione and preventing membrane permeability transition in isolated brain mitochondria.

    Jat, D; Parihar, P; Kothari, S C; Parihar, M S


    Mitochondria are critical regulators of energy metabolism and programmed cell death pathways. Mitochondria are also the major site for the production of reactive oxygen species which make this organelle more susceptible to oxidative damage and impairments of mitochondrial functions. Antioxidants have been of limited therapeutic success to ameliorate the toxic effects of oxidative stress in mitochondria. One reason may be the inability of mitochondria to selectively take up antioxidants. In the present study we synthesized mitochondrially targeted curcumin with an aim of delivering this polyphenolic compound to isolated mitochondria. Our observations show the strong anti-oxidative effects of curcumin and mitochondrially targeted curcumin against the lipid peroxidation, protein carbonylation and mitochondrial permeability transition induced by tert-butylhydroperoxide. Both curcumin and mitochondrially targeted curcumin significantly enhanced endogenous reduced glutathione level in the mitochondria thus preserving mitochondrial defense system against oxidative stress. We concluded that curcumin and mitochondrially targeted curcumin protected mitochondria against tert-butylhydroperoxide by lowering the oxidative damage, increasing the availability of endogenous reduced glutathione and preserving the mitochondrial integrity. Importantly, mitochondrially targeted curcumin was found most effective in ameliorating oxidative stress and preserving mitochondrial integrity than curcumin.

  8. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer


    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  9. SNARE-Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells.

    Lin, Ye; Hou, Xiaoming; Shen, Wen-Jun; Hanssen, Ruth; Khor, Victor K; Cortez, Yuan; Roseman, Ann N; Azhar, Salman; Kraemer, Fredric B


    Vesicular transport involving soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins is known to be responsible for many major cellular activities. In steroidogenic tissues, chronic hormone stimulation results in increased expression of proteins involved in the steroidogenic pathway, whereas acute hormone stimulation prompts the rapid transfer of cholesterol to the inner mitochondrial membrane to be utilized as substrate for steroid hormone production. Several different pathways are involved in supplying cholesterol to mitochondria, but mobilization of stored cholesteryl esters appears to initially constitute the preferred source; however, the mechanisms mediating this cholesterol transfer are not fully understood. To study the potential contribution of SNARE proteins in steroidogenesis, we examined the expression levels of various SNARE proteins in response to hormone stimulation in steroidogenic tissues and cells and established an in vitro mitochondria reconstitution assay system to assess the contribution of various SNARE proteins on cholesterol delivery for steroidogenesis. Our results from reconstitution experiments along with knockdown studies in rat primary granulosa cells and in a Leydig cell line show that soluble N-ethylmaleimide sensitive factor attachment protein-α, synaptosomal-associated protein of 25 kDa, syntaxin-5, and syntaxin-17 facilitate the transport of cholesterol to mitochondria. Thus, although StAR is required for efficient cholesterol movement into mitochondria for steroidogenesis, specific SNAREs participate and are necessary to mediate cholesterol movement to mitochondria.

  10. SNARE-Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells

    Lin, Ye; Hou, Xiaoming; Shen, Wen-Jun; Hanssen, Ruth; Khor, Victor K.; Cortez, Yuan; Roseman, Ann N.; Azhar, Salman


    Vesicular transport involving soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins is known to be responsible for many major cellular activities. In steroidogenic tissues, chronic hormone stimulation results in increased expression of proteins involved in the steroidogenic pathway, whereas acute hormone stimulation prompts the rapid transfer of cholesterol to the inner mitochondrial membrane to be utilized as substrate for steroid hormone production. Several different pathways are involved in supplying cholesterol to mitochondria, but mobilization of stored cholesteryl esters appears to initially constitute the preferred source; however, the mechanisms mediating this cholesterol transfer are not fully understood. To study the potential contribution of SNARE proteins in steroidogenesis, we examined the expression levels of various SNARE proteins in response to hormone stimulation in steroidogenic tissues and cells and established an in vitro mitochondria reconstitution assay system to assess the contribution of various SNARE proteins on cholesterol delivery for steroidogenesis. Our results from reconstitution experiments along with knockdown studies in rat primary granulosa cells and in a Leydig cell line show that soluble N-ethylmaleimide sensitive factor attachment protein-α, synaptosomal-associated protein of 25 kDa, syntaxin-5, and syntaxin-17 facilitate the transport of cholesterol to mitochondria. Thus, although StAR is required for efficient cholesterol movement into mitochondria for steroidogenesis, specific SNAREs participate and are necessary to mediate cholesterol movement to mitochondria. PMID:26771535

  11. Respiratory chain supercomplexes in plant mitochondria.

    Eubel, Holger; Heinemeyer, Jesco; Sunderhaus, Stephanie; Braun, Hans-Peter


    Supercomplexes are defined associations of protein complexes, which are important for several cellular functions. This "quintenary" organization level of protein structure recently was also described for the respiratory chain of plant mitochondria. Except succinate dehydrogenase (complex II), all complexes of the oxidative phosphorylation (OXPOS) system (complexes I, III, IV and V) were found to form part of supercomplexes. Compositions of these supramolecular structures were systematically investigated using digitonin solubilizations of mitochondrial fractions and two-dimensional Blue-native (BN) polyacrylamide gel electrophoresis. The most abundant supercomplex of plant mitochondria includes complexes I and III at a 1:2 ratio (I1 + III2 supercomplex). Furthermore, some supercomplexes of lower abundance could be described, which have I2 + III4, V2, III2 + IV(1-2), and I1 + III2 + IV(1-4) compositions. Supercomplexes consisting of complexes I plus III plus IV were proposed to be called "respirasome", because they autonomously can carry out respiration in the presence of ubiquinone and cytochrome c. Plant specific alternative oxidoreductases of the respiratory chain were not associated with supercomplexes under all experimental conditions tested. However, formation of supercomplexes possibly indirectly regulates alternative respiratory pathways in plant mitochondria on the basis of electron channeling. In this review, procedures to characterize the supermolecular organization of the plant respiratory chain and results concerning supercomplex structure and function are summarized and discussed.

  12. Mitochondria and the evolutionary roots of cancer

    Davila, Alfonso F.; Zamorano, Pedro


    Cancer disease is inherent to, and widespread among, metazoans. Yet, some of the hallmarks of cancer such as uncontrolled cell proliferation, lack of apoptosis, hypoxia, fermentative metabolism and free cell motility (metastasis) are akin to a prokaryotic lifestyle, suggesting a link between cancer disease and evolution. In this hypothesis paper, we propose that cancer cells represent a phenotypic reversion to the earliest stage of eukaryotic evolution. This reversion is triggered by the dysregulation of the mitochondria due to cumulative oxidative damage to mitochondrial and nuclear DNA. As a result, the phenotype of normal, differentiated cells gradually reverts to the phenotype of a facultative anaerobic, heterotrophic cell optimized for survival and proliferation in hypoxic environments. This phenotype matches the phenotype of the last eukaryotic common ancestor (LECA) that resulted from the endosymbiosis between an α-proteobacteria (which later became the mitochondria) and an archaebacteria. As such, the evolution of cancer within one individual can be viewed as a recapitulation of the evolution of the eukaryotic cell from fully differentiated cells to LECA. This evolutionary model of cancer is compatible with the current understanding of the disease, and explains the evolutionary basis for most of the hallmarks of cancer, as well as the link between the disease and aging. It could also open new avenues for treatment directed at reestablishing the synergy between the mitochondria and the cancerous cell.

  13. A cannabinoid link between mitochondria and memory.

    Hebert-Chatelain, Etienne; Desprez, Tifany; Serrat, Román; Bellocchio, Luigi; Soria-Gomez, Edgar; Busquets-Garcia, Arnau; Pagano Zottola, Antonio Christian; Delamarre, Anna; Cannich, Astrid; Vincent, Peggy; Varilh, Marjorie; Robin, Laurie M; Terral, Geoffrey; García-Fernández, M Dolores; Colavita, Michelangelo; Mazier, Wilfrid; Drago, Filippo; Puente, Nagore; Reguero, Leire; Elezgarai, Izaskun; Dupuy, Jean-William; Cota, Daniela; Lopez-Rodriguez, Maria-Luz; Barreda-Gómez, Gabriel; Massa, Federico; Grandes, Pedro; Bénard, Giovanni; Marsicano, Giovanni


    Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.

  14. Mitochondria in anthropology and forensic medicine.

    Grzybowski, Tomasz; Rogalla, Urszula


    Mitochondria's role in crucial metabolic pathways is probably the first answer which comes to our minds for the question: what do these tiny organelles serve for? However, specific features of their DNA made them extremely useful also in the field of anthropology and forensics. MtDNA analyses became a milestone in the complex task of unraveling earliest human migrations. Evidence provided by these experiments left no doubts on modern humans origins pointing to Africa being our cradle. It also contributed to interpretation of putative ways of our dispersal around Asia and Americas thousands years ago. On the other hand, analysis of mtDNA is well established and valuable tool in forensic genetics. When other definitely more popular markers give no answer on identity, it is the time to employ information carried by mitochondria. This chapter summarizes not only current reports on the role of mitochondria in forensics and reconstruction of modern humans phylogeny, but also calls one's attention to a broad range of difficulties and constraints associated with mtDNA analyses.

  15. Biology of Mitochondria in Neurodegenerative Diseases

    Martin, Lee J.


    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal degeneration in these familial diseases, and in the more common idiopathic (sporadic) diseases, are unresolved. Genetic, biochemical, and morphological analyses of human AD, PD, and ALS, as well as their cell and animal models, reveal that mitochondria could have roles in this neurodegeneration. The varied functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and the overlying genetic variations. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial programmed cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This chapter reviews several aspects of mitochondrial biology and how mitochondrial pathobiology might contribute to the mechanisms of neurodegeneration in AD, PD, and ALS. PMID:22482456

  16. Endothelin Receptors, Mitochondria and Neurogenesis in Cerebral Ischemia

    Gulati, Anil


    Background: Neurogenesis is most active during pre-natal development, however, it persists throughout the human lifespan. The putative role of mitochondria in neurogenesis and angiogenesis is gaining importance. Since, ETB receptor mediated neurogenesis and angiogenesis has been identified, the role of these receptors with relevance to mitochondrial functions is of interest. Methods: In addition to work from our laboratory, we undertook an extensive search of bibliographic databases for peer-reviewed research literature. Specific technical terms such as endothelin, mitochondria and neurogenesis were used to seek out and critically evaluate literature that was relevant. Results: The ET family consists of three isopeptides (ET-1, ET-2 and ET-3) that produce biological actions by acting on two types of receptors (ETA and ETB). In the central nervous system (CNS) ETA receptors are potent constrictors of the cerebral vasculature and appear to contribute in the causation of cerebral ischemia. ETA receptor antagonists have been found to be effective in animal model of cerebral ischemia; however, clinical studies have shown no efficacy. Mitochondrial functions are critically important for several neural development processes such as neurogenesis, axonal and dendritic growth, and synaptic formation. ET appears to impair mitochondrial functions through activation of ETA receptors. On the other hand, blocking ETB receptors has been shown to trigger apoptotic processes by activating intrinsic mitochondrial pathway. Mitochondria are important for their role in molecular regulation of neurogenesis and angiogenesis. Stimulation of ETB receptors in the adult ischemic brain has been found to promote angiogenesis and neurogenesis mediated through vascular endothelial growth factor and nerve growth factor. It will be interesting to investigate the effect of ETB receptor stimulation on mitochondrial functions in the CNS following cerebral ischemia. Conclusion: The findings of this

  17. Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077.

    Modica-Napolitano, J S; Koya, K; Weisberg, E; Brunelli, B T; Li, Y; Chen, L B


    We investigated the mitochondrial toxicity of the lipophilic cation, MKT-077, and the role of mitochondria in selective malignant cell killing by this compound by examining the effect of MKT-077 on mitochondrial structure and function in treated cells and in isolated organelles. Results of this study demonstrate changes in mitochondrial ultrastructure that are induced by MKT-077 treatment in carcinoma cells but not in similarly treated normal epithelial cells. In addition, MKT-077 was found to inhibit respiratory activity in isolated intact mitochondria and electron transport activity in freeze-thawed mitochondrial membrane fragments in a dose-dependent manner. The concentration of MKT-077 necessary to obtain half-maximal inhibition of ADP-stimulated respiration was approximately 4-fold greater in mitochondria isolated from cells of the normal epithelial cell line, CV-1 (15 micrograms MKT-077/mg protein), as compared to the human colon carcinoma cell line, CX-1 (4 micrograms MKT-077/mg protein). Further, the data show a selective loss of mitochondrial DNA in CX-1 and CRL1420 cells (carcinoma) but not CV-1 cells (normal epithelial) treated with 3 microgram/ml MKT-077 for up to 3 days. Under the same conditions, nuclear DNA was unaffected in all three cell lines. The sensitivity of the cell lines tested to mitochondrial damage by MKT-077 correlates well with their sensitivity to cytotoxicity by MKT-077. These results demonstrate selective mitochondrial damage by MKT-077 at the cellular, biochemical, and molecular levels and suggest that selective effects on mitochondrial structure and function may provide a basis for the selective malignant cell killing exhibited by this compound.

  18. Effects of doxorubicin on cardiac muscle subsarcolemmal and intermyofibrillar mitochondria

    Kavazis, Andreas N.; Morton, Aaron B.; Hall, Stephanie E.; Smuder, Ashley J.


    Doxorubicin (DOX) is a highly effective chemotherapeutic used in the treatment of a broad spectrum of malignancies. However, clinical use of DOX is highly limited by cumulative and irreversible cardiomyopathy that occurs following DOX treatment. The pathogenesis of DOX-induced cardiac muscle dysfunction is complex. However, it has been proposed that the etiology of this myopathy is related to mitochondrial dysfunction, as a result of the dose-dependent increase in the mitochondrial accumulation of DOX. In this regard, cardiac muscle possesses two morphologically distinct populations of mitochondria. Subsarcolemmal (SS) mitochondria are localized just below the sarcolemma, whereas intermyofibrillar (IMF) mitochondria are found between myofibrils. Mitochondria in both regions exhibit subtle differences in biochemical properties, giving rise to differences in respiration, lipid composition, enzyme activities and protein synthesis rates. Based on the heterogeneity of SS and IMF mitochondria, we hypothesized that acute DOX administration would have distinct effects on each cardiac mitochondrial subfraction. Therefore, we isolated SS and IMF mitochondria from the hearts of female Sprague-Dawley rats 48 h after administration of DOX. Our results demonstrate that while SS mitochondria appear to accumulate greater amounts of DOX, IMF mitochondria demonstrate a greater apoptotic and autophagic response to DOX exposure. Thus, the divergent protein composition and function of the SS and IMF cardiac mitochondria result in differential responses to DOX, with IMF mitochondria appearing more susceptible to damage after DOX treatment. PMID:27832997

  19. Immunodetection of outer membrane proteins by flow cytometry of isolated mitochondria.

    Pickles, Sarah; Arbour, Nathalie; Vande Velde, Christine


    Methods to detect and monitor mitochondrial outer membrane protein components in animal tissues are vital to study mitochondrial physiology and pathophysiology. This protocol describes a technique where mitochondria isolated from rodent tissue are immunolabeled and analyzed by flow cytometry. Mitochondria are isolated from rodent spinal cords and subjected to a rapid enrichment step so as to remove myelin, a major contaminant of mitochondrial fractions prepared from nervous tissue. Isolated mitochondria are then labeled with an antibody of choice and a fluorescently conjugated secondary antibody. Analysis by flow cytometry verifies the relative purity of mitochondrial preparations by staining with a mitochondrial specific dye, followed by detection and quantification of immunolabeled protein. This technique is rapid, quantifiable and high-throughput, allowing for the analysis of hundreds of thousands of mitochondria per sample. It is applicable to assess novel proteins at the mitochondrial surface under normal physiological conditions as well as the proteins that may become mislocalized to this organelle during pathology. Importantly, this method can be coupled to fluorescent indicator dyes to report on certain activities of mitochondrial subpopulations and is feasible for mitochondria from the central nervous system (brain and spinal cord) as well as liver.

  20. Schwann cell mitochondria as key regulators in the development and maintenance of peripheral nerve axons.

    Ino, Daisuke; Iino, Masamitsu


    Formation of myelin sheaths by Schwann cells (SCs) enables rapid and efficient transmission of action potentials in peripheral axons, and disruption of myelination results in disorders that involve decreased sensory and motor functions. Given that construction of SC myelin requires high levels of lipid and protein synthesis, mitochondria, which are pivotal in cellular metabolism, may be potential regulators of the formation and maintenance of SC myelin. Supporting this notion, abnormal mitochondria are found in SCs of neuropathic peripheral nerves in both human patients and the relevant animal models. However, evidence for the importance of SC mitochondria in myelination has been limited, until recently. Several studies have recently used genetic approaches that allow SC-specific ablation of mitochondrial metabolic activity in living animals to show the critical roles of SC mitochondria in the development and maintenance of peripheral nerve axons. Here, we review current knowledge about the involvement of SC mitochondria in the formation and dysfunction of myelinated axons in the peripheral nervous system.

  1. Isolation of functional mitochondria from rat kidney and skeletal muscle without manual homogenization.

    Gross, Vera S; Greenberg, Heather K; Baranov, Sergei V; Carlson, Greta M; Stavrovskaya, Irina G; Lazarev, Alexander V; Kristal, Bruce S


    Isolation of functional and intact mitochondria from solid tissue is crucial for studies that focus on the elucidation of normal mitochondrial physiology and/or mitochondrial dysfunction in conditions such as aging, diabetes, and cancer. There is growing recognition of the importance of mitochondria both as targets for drug development and as off-target mediators of drug side effects. Unfortunately, mitochondrial isolation from tissue is generally carried out using homogenizer-based methods that require extensive operator experience to obtain reproducible high-quality preparations. These methods limit dissemination, impede scale-up, and contribute to difficulties in reproducing experimental results over time and across laboratories. Here we describe semiautomated methods to disrupt tissue using kidney and muscle mitochondria preparations as exemplars. These methods use the Barocycler, the PCT Shredder, or both. The PCT Shredder is a mechanical grinder that quickly breaks up tissue without significant risk of overhomogenization. Mitochondria isolated using the PCT Shredder are shown to be comparable to controls. The Barocycler generates controlled pressure pulses that can be adjusted to lyse cells and release organelles. The mitochondria subjected to pressure cycling-mediated tissue disruption are shown to retain functionality, enabling combinations of the PCT Shredder and the Barocycler to be used to purify mitochondrial preparations. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Paradoxical effect of methimazole on liver mitochondria: In vitro and in vivo.

    Niknahad, Hossein; Jamshidzadeh, Akram; Heidari, Reza; Hosseini, Zeynab; Mobini, Keivan; Khodaei, Forouzan; Ommati, Mohammad Mehdi; Abdoli, Narges; Keshavarz, Nahid; Bazyari, Mandana; Najibi, Asma


    Methimazole is the most frequently prescribed antithyroid agent. On the other hand, several cases of liver injury are attributed to this drug. The mechanism of methimazole-induced liver injury is obscure. Hepatocytes mitochondria seem to be a target for methimazole cytotoxicity. Current investigation aimed to evaluate the effects of methimazole on the hepatocytes mitochondria in different experimental models. In the in vivo model, methimazole (100, 200 and 400mg/kg, i.p) was administered to mice and liver mitochondria were isolated and assessed. In the in vitro experiments, intact isolated liver mitochondria were incubated with increasing methimazole concentrations (10μM-100mM). It was found that methimazole decreased liver mitochondrial ATP and glutathione, increased mitochondrial swelling, lipid peroxidation and reactive oxygen species (ROS), and collapsed mitochondrial membrane potential when administered to mice. Paradoxically, methimazole not only caused no significant injury toward isolated liver mitochondria in vitro but improved mitochondrial function and protected this organelle. The differences between two investigated models in the current study might be associated with drug bioactivation and reactive metabolites formation. These findings suggest mitochondrial dysfunction as a mechanism for methimazole-induced liver injury. Moreover, methimazole seems to be a novel mitochondrial protecting agent in vitro. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. Mitochondria and chloroplasts shared in animal and plant tissues: significance of communication.

    Snyder, Christopher; Stefano, George B


    Mitochondria have long been recognized as the main source of energy production for the eukaryotic cell. Recent studies have found that the mitochondria have a variety of dynamic functions aside from the production of energy. It communicates bidirectionally with other organelles in order to modulate its energy balance efficiently, as well as maintain homeostasis, ultimately prolonging its own and the cell's longevity. The mitochondria achieves this level of regulation via specific and common bidirectional chemical messengers, especially involving the endoplasmic/sarcoplasmic reticulum (ER/SR), deoxyribonucleoside triphosphates (dNTP's), ATP and the generation of reactive oxygen species (ROS). Its communication network is also involved in stress associated events. In this regard, the activation of the Bax family proteins and the release of cytochrome c occurs during cellular stress. The communication can also promote apoptosis of the cell. When mitochondrial abnormalities cannot be dealt with, there is an increased chance that major illnesses like type 2 diabetes, Alzheimer's disease, and cancer may occur. Importantly, functioning chloroplasts can be found in animals, suggesting conserved chemical messengers during its evolutionary path. The dynamic capacity of mitochondria is also noted by their ability to function anaerobically. Indeed, this latter phenomenon may represent a return to an earlier developmental stage of mitochondria, suggesting certain disorders result from its untimely appearance.

  4. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of); Shin, Ki Soon [Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kang, Shin Jung, E-mail: [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of)


    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  5. Ultrastructural changes of mitochondria in human retinoblastoma: correlation with tumor differentiation and invasiveness.

    Singh, Lata; Nag, Tapas C; Kashyap, Seema


    Retinoblastoma still represents a challenge for pediatric tumors. Mitochondria have been implicated in tumor progression, cell differentiation, and apoptotic pathways. Electron microscopy allows the study of mitochondrial morphology and it is still debated in human retinoblastoma. Demographic, clinical, and histopathological parameters were recorded in 17 enucleated retinoblastoma specimens. Hematoxylin and eosin staining was performed to study tumor characteristics and the extent of invasion in ocular structures. The aim of this study was to describe and analyze the mitochondrial morphology in human retinoblastoma by transmission electron microscopy (TEM). There was a male preponderance in our study. Ages ranged from 2 to 78 months. Histopathological analysis revealed that 15 (88.2 %) tumors were poorly differentiated retinoblastomas. Massive choroidal invasion was the most frequent histopathological high-risk factor among the others. Histopathological high-risk factors were found in 7/17 (41.1 %) cases. Tumor samples of all patients were examined by means of TEM. All cases showed tumor cells with high nucleocytoplasmic ratio. Poorly differentiated retinoblastoma cases showed fewer mitochondria, scant cytoplasm, disorganized organelles (mitochondria), and necrosis, whereas well-differentiated retinoblastomas had larger number of mitochondria and more organized organelles. However, there was no significant difference in mitochondrial changes between invasive and noninvasive tumors. Our study observed that cristolysis and swollen mitochondria were more frequent in retinoblastoma tumors. Understanding the structural and functional characteristics of mitochondria in retinoblastoma might be essential for the design of future therapeutic strategies. The authors have no proprietary or commercial interest in any materials discussed in this article.

  6. EST analysis on pig mitochondria reveal novel expression differences between developmental and adult tissues

    Scheibye-Alsing, Karsten; Cirera, Susanna; Gilchrist, Michael J.


    BACKGROUND: The mitochondria are involved in many basic functions in cells of vertebrates, and can be considered the power generator of the cell. Though the mitochondria have been extensively studied there appear to be only few expression studies of mitochondrial genes involving a large number......, emphasizing differences between adult and developmental tissues. Our work indicates that there are presently unknown mechanisms which work to customize mitochondrial processes to the specific needs of the cell, illustrated by the different patterns between adult and developmental tissues. Furthermore, our...

  7. Energetic and dynamic: how mitochondria meet neuronal energy demands.

    Dzhamilja Safiulina


    Full Text Available Mitochondria are the power houses of the cell, but unlike the static structures portrayed in textbooks, they are dynamic organelles that move about the cell to deliver energy to locations in need. These organelles fuse with each other then split apart; some appear anchored and others more free to move around, and when damaged they are engulfed by autophagosomes. Together, these processes-mitochondrial trafficking, fusion and fission, and mitophagy-are best described by the term "mitochondrial dynamics". The molecular machineries behind these events are relatively well known yet the precise dynamics in neurons remains under debate. Neurons pose a peculiar logistical challenge to mitochondria; how do these energy suppliers manage to traffic down long axons to deliver the requisite energy supply to distant parts of the cell? To date, the majority of neuronal mitochondrial dynamics studies have used cultured neurons, Drosophila larvae, zebrafish embryos, with occasional experiments in resting mouse nerves. However, a new study in this issue of PLOS Biology from Marija Sajic and colleagues provides an in vivo look at mitochondrial dynamics along resting and electrically active neurons of live anaesthetized mice.

  8. Protein import into plant mitochondria: signals, machinery, processing, and regulation.

    Murcha, Monika W; Kmiec, Beata; Kubiszewski-Jakubiak, Szymon; Teixeira, Pedro F; Glaser, Elzbieta; Whelan, James


    The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.

  9. Targeting cancer cell mitochondria as a therapeutic approach: recent updates.

    Cui, Qingbin; Wen, Shijun; Huang, Peng


    Mitochondria play a key role in ATP generation, redox homeostasis and regulation of apoptosis. Due to the essential role of mitochondria in metabolism and cell survival, targeting mitochondria in cancer cells is considered as an attractive therapeutic strategy. However, metabolic flexibility in cancer cells may enable the upregulation of compensatory pathways, such as glycolysis to support cancer cell survival when mitochondrial metabolism is inhibited. Thus, compounds capable of both targeting mitochondria and inhibiting glycolysis may be particularly useful to overcome such drug-resistant mechanism. This review provides an update on recent development in the field of targeting mitochondria and novel compounds that impact mitochondria, glycolysis or both. Key challenges in this research area and potential solutions are also discussed.

  10. Transfer of mitochondria from astrocytes to neurons after stroke

    Hayakawa, Kazuhide; Esposito, Elga; Wang, Xiaohua; Terasaki, Yasukazu; Liu, Yi; Xing, Changhong; Ji, Xunming; Lo, Eng H.


    Recently, it was suggested that neurons can release and transfer damaged mitochondria to astrocytes for disposal and recycling 1. This ability to exchange mitochondria may represent a potential mode of cell-cell signaling in the central nervous system (CNS). Here, we show that astrocytes can also release functional mitochondria that enter into neurons. Astrocytic release of extracellular mitochondria particles was mediated by a calcium-dependent mechanism involving CD38/cyclic ADP ribose signaling. Transient focal cerebral ischemia in mice induced astrocytic mitochondria entry to adjacent neurons that amplified cell survival signals. Suppression of CD38 signaling with siRNA reduced extracellular mitochondria transfer and worsened neurological outcomes. These findings suggest a new mitochondrial mechanism of neuroglial crosstalk that may contribute to endogenous neuroprotective and neurorecovery mechanisms after stroke. PMID:27466127

  11. Effect of phenol and halogenated phenols on energy transfer reactions of rat liver mitochondria.



    Full Text Available The in vitro effects of phenol and p-halogenated phenols on mitochondrial energy transfer reactions were examined using isolated rat liver mitochondria. The relationship between physiochemical properties of phenolic compounds and their effects on mitochondria were studied. Phenol and p-halogenated phenols induced the release of K+ ions from mitochondria, suggesting a change in permeability to K+ ions. A decrease in the respiratory control index, an increase in K+ release and stimulation of latent ATPase activity were observed with these compounds in the descending order of p-iodophenol, p-bromophenol, p-chlorophenol, p-fluorophenol and phenol. The concentrations of the phenolic compounds resulting in fifty percent inhibition of the respiratory control index and those resulting in fifty percent release of K+ ions significantly correlated with Hammett's substituent constant (sigma and the hydrophobic binding constant (pi of the compounds.

  12. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy

    Brazhe, Nadezda A.; Evlyukhin, Andrey B.; Goodilin, Eugene A.


    Selective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow...... due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living...... mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman...

  13. There's Something Wrong with my MAM; the ER-Mitochondria Axis and Neurodegenerative Diseases.

    Paillusson, Sebastien; Stoica, Radu; Gomez-Suaga, Patricia; Lau, Dawn H W; Mueller, Sarah; Miller, Tanya; Miller, Christopher C J


    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or 'MAM'). Moreover, several recent studies have shown that disturbances to ER-mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings.

  14. Effect of primycin on the inner membrane permeability of rat liver mitochondria.

    Mészáros, L; König, T; Paróczai, M; Náhm, K; Horváth, I


    The effects of primycin on mitochondrial respiration, volume changes, ATPase activity and the acidification following ATP hydrolysis were studied. Primycin in concentrations below 2--3 nmoles/mg mitochondrial protein reacts only with energized mitochondria rendering their inner membrane permeable to K+, Na+, Tris+ but not to TEA+. Above this concentration primycin interacts both with energized and deenergized mitochondria and the inner membrane also becomes permeable for H+, Cl- but not for ATP. In this case mitochondria very probably lose Mg2+. It is concluded that primycin up to concentrations of 2--3 nmoles/mg mitochondrial protein acts like an ionophore, while at higher concentrations it changes the permeability properties of the mitochondrial inner membrane without a drastic alteration of the membrane itself.

  15. Functional evidence for nitric oxide production by skeletal-muscle mitochondria from lipopolysaccharide-treated mice.

    Aguirre, Enara; López-Bernardo, Elia; Cadenas, Susana


    The possible existence of a mitochondrially localized nitric oxide (NO) synthase (mtNOS) is controversial. To clarify this, we studied the ability of intact mitochondria to generate NO and the effect of mitochondrial NO on respiration. Respiratory rates and oxygen kinetics (P(50) values) were determined by high-resolution respirometry in skeletal-muscle mitochondria from control mice and mice injected with Escherichia coli lipopolysaccharide (LPS). In the presence of the NOS substrate L-arginine, mitochondria from LPS-treated mice had lower respiration rates and higher P(50) values than control animals. These effects were prevented by the NOS inhibitor L-NMMA. Our results suggest that mitochondrially derived NO is generated by an LPS-inducible NOS protein other than iNOS and modulates oxygen consumption in mouse skeletal muscle.

  16. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Harner, Max; Neupert, Walter; Deponte, Marcel


    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  17. Structure of cristae in cardiac mitochondria of aged rat

    Riva, Alessandro; Tandler, Bernard; Lesnefsky, Edward J.; Conti, Gabriele; Loffredo, Felice; Vazquez, Edwin; Charles L Hoppel


    Interfibrillar mitochondria (IFM) of the heart in aged Fischer 344 rats show a biochemical defect which might be reflected in their morphology. We examined by high resolution scanning electron microscopy over 5,500 mitochondria to determine if a concomitant structural alteration existed. This methodology provides a means of examining mitochondrial cristae in three dimensions. Cristae of in situ subsarcolemmal mitochondria (SSM) and of IFM in both 6 and 24 month old Fischer rats are predominan...

  18. Three-dimensional autoradiographic localization of quench-corrected glycine receptor specific activity in the mouse brain using sup 3 H-strychnine as the ligand

    White, W.F.; O' Gorman, S.; Roe, A.W. (Harvard Medical School, Boston, MA (USA))


    The autoradiographic analysis of neurotransmitter receptor distribution is a powerful technique that provides extensive information on the localization of neurotransmitter systems. Computer methodologies are described for the analysis of autoradiographic material which include quench correction, 3-dimensional display, and quantification based on anatomical boundaries determined from the tissue sections. These methodologies are applied to the problem of the distribution of glycine receptors measured by 3H-strychnine binding in the mouse CNS. The most distinctive feature of this distribution is its marked caudorostral gradient. The highest densities of binding sites within this gradient were seen in somatic motor and sensory areas; high densities of binding were seen in branchial efferent and special sensory areas. Moderate levels were seen in nuclei related to visceral function. Densities within the reticular formation paralleled the overall gradient with high to moderate levels of binding. The colliculi had low and the diencephalon had very low levels of binding. No binding was seen in the cerebellum or the telencephalon with the exception of the amygdala, which had very low levels of specific binding. This distribution of glycine receptors correlates well with the known functional distribution of glycine synaptic function. These data are illustrated in 3 dimensions and discussed in terms of the significance of the analysis techniques on this type of data as well as the functional significance of the distribution of glycine receptors.

  19. Mitochondria-Derived Reactive Intermediate Species Mediate Asbestos-Induced Genotoxicity and Oxidative Stress–Responsive Signaling Pathways

    Huang, Sarah X.L.; Partridge, Michael A.; Ghandhi, Shanaz A.; Davidson, Mercy M.; Sally A Amundson; Hei, Tom K.


    Background: The incidence of asbestos-induced human cancers is increasing worldwide, and considerable evidence suggests that reactive oxygen species (ROS) are important mediators of these diseases. Our previous studies suggested that mitochondria might be involved in the initiation of oxidative stress in asbestos-exposed mammalian cells. Objective: We investigated whether mitochondria are a potential cytoplasmic target of asbestos using a mitochondrial DNA–depleted (ρ0) human small airway epi...

  20. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis

    Vedrana eTadic


    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Although the etiology remains unclear, disturbances in calcium homoeostasis and protein folding are essential features of neurodegeneration in this disorder. Here, we review recent research findings on the interaction between endoplasmic reticulum (ER and mitochondria, and its effect on calcium signaling and oxidative stress. We further provide insights into studies, providing evidence that structures of the ER mitochondria calcium cycle (ERMCC serve as a promising targets for therapeutic approaches for treatment of ALS.

  1. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.

    Hamdi, Amel; Roshan, Tariq M; Kahawita, Tanya M; Mason, Anne B; Sheftel, Alex D; Ponka, Prem


    In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe(2+) into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the "kiss-and-run" hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a "chase" with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of (59)Fe by reticulocytes and diminishes (59)Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a "traffic jam" leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. MMP-2 is localized to the mitochondria-associated membrane of the heart.

    Hughes, Bryan G; Fan, Xiaohu; Cho, Woo Jung; Schulz, Richard


    Matrix metalloproteinase-2 (MMP-2) has been extensively studied in the context of extracellular matrix remodeling but is also localized within cells and can be activated by prooxidants to proteolyze specific intercellular targets. Although there are reports of MMP-2 in mitochondria, a critical source of cellular oxidative stress, these studies did not take into account the presence within their preparations of the mitochondria-associated membrane (MAM), a subdomain of the endoplasmic reticulum (ER). We hypothesized that MMP-2 is situated in the MAM and therefore investigated its subcellular distribution between mitochondria and the MAM. Immunogold electron microscopy revealed MMP-2 localized in mitochondria of heart sections from mice. In contrast, immunofluorescence analysis of an MMP-2:HaloTag fusion protein expressed in HL-1 cardiomyocytes showed an ER-like distribution, with greater colocalization with an ER marker (protein disulfide isomerase) relative to the mitochondrial marker, MitoTracker red. Although MMP-2 protein and enzymatic activity were present in crude mitochondrial fractions, once these were separated into purified mitochondria and MAM, MMP-2 was principally associated with the latter. Thus, although mitochondria may contain minimal levels of MMP-2, the majority of MMP-2 previously identified as "mitochondrial" is in fact associated with the MAM. We also found that calreticulin, an ER- and MAM-resident Ca(2+) handling protein and chaperone, could be proteolyzed by MMP-2 in vitro. MAM-localized MMP-2 could therefore potentially impact mitochondrial function by affecting ER-mitochondrial Ca(2+) signaling via its proteolysis of calreticulin.

  3. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge


    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  4. Pluripotent Stem Cell Metabolism and Mitochondria: Beyond ATP

    Jarmon G. Lees


    Full Text Available Metabolism is central to embryonic stem cell (ESC pluripotency and differentiation, with distinct profiles apparent under different nutrient milieu, and conditions that maintain alternate cell states. The significance of altered nutrient availability, particularly oxygen, and metabolic pathway activity has been highlighted by extensive studies of their impact on preimplantation embryo development, physiology, and viability. ESC similarly modulate their metabolism in response to altered metabolite levels, with changes in nutrient availability shown to have a lasting impact on derived cell identity through the regulation of the epigenetic landscape. Further, the preferential use of glucose and anaplerotic glutamine metabolism serves to not only support cell growth and proliferation but also minimise reactive oxygen species production. However, the perinuclear localisation of spherical, electron-poor mitochondria in ESC is proposed to sustain ESC nuclear-mitochondrial crosstalk and a mitochondrial-H2O2 presence, to facilitate signalling to support self-renewal through the stabilisation of HIFα, a process that may be favoured under physiological oxygen. The environment in which a cell is grown is therefore a critical regulator and determinant of cell fate, with metabolism, and particularly mitochondria, acting as an interface between the environment and the epigenome.

  5. T cells display mitochondria hyperpolarization in human type 1 diabetes.

    Chen, Jing; Chernatynskaya, Anna V; Li, Jian-Wei; Kimbrell, Matthew R; Cassidy, Richard J; Perry, Daniel J; Muir, Andrew B; Atkinson, Mark A; Brusko, Todd M; Mathews, Clayton E


    T lymphocytes constitute a major effector cell population in autoimmune type 1 diabetes. Despite essential functions of mitochondria in regulating activation, proliferation, and apoptosis of T cells, little is known regarding T cell metabolism in the progression of human type 1 diabetes. In this study, we report, using two independent cohorts, that T cells from patients with type 1 diabetes exhibited mitochondrial inner-membrane hyperpolarization (MHP). Increased MHP was a general phenotype observed in T cell subsets irrespective of prior antigen exposure, and was not correlated with HbA1C levels, subject age, or duration of diabetes. Elevated T cell MHP was not detected in subjects with type 2 diabetes. T cell MHP was associated with increased activation-induced IFNγ production, and activation-induced IFNγ was linked to mitochondria-specific ROS production. T cells from subjects with type 1 diabetes also exhibited lower intracellular ATP levels. In conclusion, intrinsic mitochondrial dysfunction observed in type 1 diabetes alters mitochondrial ATP and IFNγ production; the latter is correlated with ROS generation. These changes impact T cell bioenergetics and function.

  6. Genes and processed paralogs co-exist in plant mitochondria.

    Cuenca, Argelia; Petersen, Gitte; Seberg, Ole; Jahren, Anne Hoppe


    RNA-mediated gene duplication has been proposed to create processed paralogs in the plant mitochondrial genome. A processed paralog may retain signatures left by the maturation process of its RNA precursor, such as intron removal and no need of RNA editing. Whereas it is well documented that an RNA intermediary is involved in the transfer of mitochondrial genes to the nucleus, no direct evidence exists for insertion of processed paralogs in the mitochondria (i.e., processed and un-processed genes have never been found simultaneously in the mitochondrial genome). In this study, we sequenced a region of the mitochondrial gene nad1, and identified a number of taxa were two different copies of the region co-occur in the mitochondria. The two nad1 paralogs differed in their (a) presence or absence of a group II intron, and (b) number of edited sites. Thus, this work provides the first evidence of co-existence of processed paralogs and their precursors within the plant mitochondrial genome. In addition, mapping the presence/absence of the paralogs provides indirect evidence of RNA-mediated gene duplication as an essential process shaping the mitochondrial genome in plants.

  7. A novel potassium channel in skeletal muscle mitochondria.

    Skalska, Jolanta; Piwońska, Marta; Wyroba, Elzbieta; Surmacz, Liliana; Wieczorek, Rafal; Koszela-Piotrowska, Izabela; Zielińska, Joanna; Bednarczyk, Piotr; Dołowy, Krzysztof; Wilczynski, Grzegorz M; Szewczyk, Adam; Kunz, Wolfram S


    In this work we provide evidence for the potential presence of a potassium channel in skeletal muscle mitochondria. In isolated rat skeletal muscle mitochondria, Ca(2+) was able to depolarize the mitochondrial inner membrane and stimulate respiration in a strictly potassium-dependent manner. These potassium-specific effects of Ca(2+) were completely abolished by 200 nM charybdotoxin or 50 nM iberiotoxin, which are well-known inhibitors of large conductance, calcium-activated potassium channels (BK(Ca) channel). Furthermore, NS1619, a BK(Ca)-channel opener, mimicked the potassium-specific effects of calcium on respiration and mitochondrial membrane potential. In agreement with these functional data, light and electron microscopy, planar lipid bilayer reconstruction and immunological studies identified the BK(Ca) channel to be preferentially located in the inner mitochondrial membrane of rat skeletal muscle fibers. We propose that activation of mitochondrial K(+) transport by opening of the BK(Ca) channel may be important for myoprotection since the channel opener NS1619 protected the myoblast cell line C2C12 against oxidative injury.

  8. Differences in endolymphatic sac mitochondria-rich cells indicate specific functions.

    Peters, T.A.; Tonnaer, E.L.G.M.; Kuijpers, W.; Cremers, C.W.R.J.; Curfs, J.H.A.J.


    OBJECTIVE/HYPOTHESIS: The purpose of the study was to examine the specific involvement of endolymphatic sac mitochondria-rich cells in endolymph homeostasis. STUDY DESIGN: Transmission electron microscopy and immunohistochemistry were performed on the endolymphatic sac of young adult rats, and two

  9. Isolation of mitochondria from animal tissue.

    Clayton, David A; Shadel, Gerald S


    Rat or mouse liver is the most frequently used tissue for mitochondrial preparations because it is readily available, easy to homogenize, and replete with mitochondria. A motor-driven Teflon and glass Potter-Elvehjem homogenizer is the best choice for homogenizing liver, but if one is not available, this tissue is soft enough that a Dounce homogenizer with a loose (A) pestle can also be used. The yield and purity of the mitochondrial preparation will be influenced by the method and speed of preparation and the age and physiological condition of the animal. © 2014 Cold Spring Harbor Laboratory Press.

  10. [Effect of acute stress on the fatty acid composition of lipids of adrenal and heart mitochondria in rabbits].

    Mandrik, K A; Doroshkevich, N A; Buko, V U; Vinogradov, V V


    A comparative study of changes in the fatty acid composition of rabbit heart and adrenal mitochondria was carried out after acute (1h) immobilization stress. In heart mitochondria the stress induced a decrease in the content of capric, lauric, myristic and pentadecanic acids. A statistically significant reduction of the amount of heptadecanoic, linoleic, arachidonic acids and an increase in the level of palmitic acid was noted in adrenal mitochondria. The acute stress resulted in differently directed shifts in the saturation of fatty acids. An elevation of the sum of unsaturated fatty acids was observed in the heart, and a decrease was detected in the adrenal glands. The above shifts in the fatty acid composition of adrenal and heart mitochondria provide evidence for different directions of lipid metabolism in these organs following stress.

  11. GSK3β is involved in the relief of mitochondria pausing in a Tau-dependent manner.

    María Llorens-Martín

    Full Text Available Mitochondrial trafficking deficits have been implicated in the pathogenesis of several neurological diseases, including Alzheimer's disease (AD. The Ser/Thre kinase GSK3β is believed to play a fundamental role in AD pathogenesis. Given that GSK3β substrates include Tau protein, here we studied the impact of GSK3β on mitochondrial trafficking and its dependence on Tau protein. Overexpression of GSK3β in neurons resulted in an increase in motile mitochondria, whereas a decrease in the activity of this kinase produced an increase in mitochondria pausing. These effects were dependent on Tau proteins, as Tau (-/- neurons did not respond to distinct GSK3β levels. Furthermore, differences in GSK3β expression did not affect other parameters like mitochondria velocity or mitochondria run length. We conclude that GSK3B activity regulates mitochondrial axonal trafficking largely in a Tau-dependent manner.

  12. The effect of alpha-tocopherol on lipid peroxidation of microsomes and mitochondria from rat testis.

    Gavazza, M B; Catalá, A


    The testis is a remarkably active metabolic organ; hence it is suitable not only for studies of lipid metabolism in the organ itself but also for the study of lipid peroxidation processes in general. The content of fatty acids in testis is high with a prevalence of polyunsaturated fatty acids (PUFA) which renders this tissue very susceptible to lipid peroxidation. Studies were carried out to evaluate the effect of alpha-tocopherol in vitro on ascorbate-Fe(++) lipid peroxidation of rat testis microsomes and mitochondria. Chemiluminescence and fatty acid composition were used as an index of the oxidative destruction of lipids. Special attention was paid to the changes produced on the highly PUFA [C20:4 n6] and [C22:5 n6]. Lipid peroxidation of testis microsomes or mitochondria induced a significant decrease of both fatty acids. Total chemiluminescence was similar in both kinds of organelles when the peroxidized without (control) and with ascorbate-Fe(++) (peroxidized) groups were compared. Arachidonic acid was protected more efficiently than docosapentaenoic acid at all alpha-tocopherol concentrations tested when rat testis microsomes or mitochondria were incubated with ascorbate-Fe(++). The maximal percentage of inhibition in both organelles was approximately 70%; corresponding to an alpha-tocopherol concentration between 1 and 0.25 mM. IC50 values from the inhibition of alpha-tocopherol on the chemiluminescence were higher in microsomes (0.144 mM) than mitochondria (0.078 mM). The protective effect observed by alpha-tocopherol in rat testis mitochondria was higher compared with microsomes, associated with the higher amount of [C20:4 n6]+[C22:5 n6] in microsomes that in mitochondria. It is proposed that the vulnerability to lipid peroxidation of rat testis microsomes and mitochondria is different because of the different proportion of PUFA in these organelles The peroxidizability index (PI) was positively correlated with the level of long chain fatty acids. The

  13. Research on biogenesis of mitochondria in astrocytes in sepsis-associated encephalopathy models.

    Zhao, Y-Z; Gao, Z-Y; Ma, L-Q; Zhuang, Y-Y; Guan, F-L


    To study the structural and functional changes in mitochondria in astrocytes of the cerebral cortex of the rats in the simulated sepsis environment in vitro and the relationship between these changes and the biogenesis of mitochondria in astrocytes by establishing models of sepsis astrocytes. The structural and functional changes in mitochondria in astrocytes of the cerebral cortex of the rats were evaluated. The ultra structural changes in the mitochondria, astrocytes, and ultrathin sections, were observed with a transmission electron microscope. The expression of the regulatory factors related to biogenesis of mitochondria in astrocytes of the cerebral cortex of the rats was evaluated in various experimental groups. RT-PCR and Western blot were used to evaluate the expression of the regulatory factors related to biogenesis of mitochondria in astrocytes of the cerebral cortex of the rats. The "point grid method" was used to evaluate the volume density of the mitochondria in the astrocytes of the cerebral cortex of the rats in various experimental groups. The Western blotting was used to evaluate the role of fusion and fission of mitochondria in the astrocytes of the cerebral cortex of the rats in various experimental groups in regulating the expression of the protein-OPAI and DRPI. In the sepsis astrocyte models established by co-incubation of LPS and IFN-γ and astrocytes of the cerebral cortex of the rats, the mitochondria with a minor injury in the 6 h group (2.97± 0.92) increased significantly when compared with those in the 0 h group (1.08±0.95), 12 h group (1.70±1.01), and 24 h group (1.59±0.55) (p<0.05); the concentration of adenosine triphosphate (ATP) in the astrocytes of the cerebral cortex of the rats in the 6 h, 12 h, and 24 h groups increased significantly when compared with that in the 0 h group (p<0.05). PGC-1α mRNA, NRF-1 mRNA, NRF-2α mRNA, NRF-2β mRNA, and mitochondrial transcription factor A (TFAM) mRNA in the astrocytes of the cerebral

  14. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment

    Ayswarya, A.; Kurian, G. A.


    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  15. Sensitivity of interfibrillar and subsarcolemmal mitochondria to cobalt chloride-induced oxidative stress and hydrogen sulfide treatment

    A Ayswarya


    Full Text Available Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment. Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co

  16. A mitochondria targeting Mn nanoassembly of BODIPY for LDH-A, mitochondria modulated therapy and bimodal imaging of cancer.

    Boison, Daniel; Lu, Wen-Long; Xu, Qin-Mei; Yang, Huang; Huang, Tao; Chen, Qiu-Yun; Gao, Jing; Zhao, Yao


    HIF-1α and LDH-A are important targets for hypoxia-driven drug resistance. Mitochondria targeted fluorescent manganese(II)-complexes can be used as potential fluorescence imaging agents, MRI contrast agents and HIF-1α and LDH-A involved anticancer complexes. In this study, a fluorescent manganese(II) nanoparticle, labeled as (PEG-Mn-BDA), was synthesized and used as both fluorescent and MRI imaging agents in cancer cells. In vitro bioassay results indicate that PEG-Mn-BDA was able to inhibit LDH-A activity and depolarize mitochondrial membrane potential with the generation of intracellular ROS, which contributed to the induction of apoptosis. Moreover, the pro-apoptotic protein, caspase 3 was highly expressed. In vivo, PEG-Mn-BDA could also exert inhibition on a mouse hepatocellular carcinoma xenograft. These results suggest that mitochondria targeted PEG-Mn-BDA was able to simultaneously induce selective inhibition on cancer cells and a mouse carcinoma xenograft, label cancer cells with fluorescence and enhance MRI contrast. Therefore, PEG-Mn-BDA is a good candidate for cancer treatment and imaging.

  17. The regulation of electron partitioning between the cytochrome and alternative pathways in soybean cotyledon and root mitochondria

    Ribas-Carbo, M.; Lennon, A.M.; Robinson, S.A. [Duke Univ., Durham, NC (United States)] [and others


    The regulation of electron partitioning between the cytochrome (Cyt) and alternative pathways in soybean (Glycine max L. cv Ransom) mitochondria in the absence of added inhibitors has been studied using the oxygen isotope fractionation technique. This regulation can depend on several factors, including the amount of alternative oxidase protein, the redox status of the alternative oxidase regulatory sulfhydryl-disulfide system, the degree of activation by {alpha}-keto acids, and the concentration and redox state of the ubiquinone pool. We studied electron partitioning onto the alternative pathway in mitochondria isolated from etiolated and light-grown cotyledons and roots to ascertain how these factors interact in different tissues. In light-grown cotyledon mitochondria there is some partitioning to the alternative pathway in state 4, which is increased dramatically by either pyruvate or dithiothreitol. In etiolated cotyledon mitochondria, the alternative pathway shows little ability to complete for electrons with the Cyt pathway under any circumstances. In root mitochondria, control of alternative pathway activity is exercised by both the ubiquinone pool and the regulatory sulfhydryl-disulfide system. In addition, oxygen isotope fractionation by the Cyt and alternative pathways in mitochondria were identical to the fractionation for the respective pathways seen in intact tissue, suggesting that residual respiration is not present in the absence of inhibitors. 38 refs., 3 figs., 2 tabs.

  18. Three-dimensional analysis of abnormal ultrastructural alteration in mitochondria of hippocampus of APP/PSEN1 transgenic mouse

    Ki Ju Choi; Mi Jeong Kim; A Reum Je; Sangmi Jun; Chulhyun Lee; Eunji Lee; Mijung Jo; Yang Hoon Huh; Hee-Seok Kweon


    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. The deterioration of subcellular organelles, including the mitochondria, is another major ultrastructural characteristic of AD pathogenesis, in addition to amyloid plaque deposition. However, the three-dimensional (3-D) study of mitochondrial structural alteration in AD remains poorly understood. Therefore, ultrastructural analysis, 3-D electron tomography, and immunogold electron microscopy were performed in the present study to clarify the abnormal structural alterations in mitochondria caused by the progression of AD in APP/PSEN1 transgenic mice, expressing human amyloid precursor protein, as a model for AD. Amyloid (A) plaques accumulated and dystrophic neurites (DN) developed in the hippocampus of transgenic AD mouse brains. We also identified the loss of peroxiredoxin 3, an endogenous cytoprotective antioxidant enzyme and the accumulation of A in the hippocampal mitochondria of transgenic mice, which differs from those in age-matched wild-type mice. The mitochondria in A plaque-detected regions were severely disrupted, and the patterns of ultrastructural abnormalities were classified into three groups: disappearance of cristae, swelling of cristae, and bulging of the outer membrane. These results demonstrated that morpho-functional alterations of mitochondria and AD progression are closely associated and may be beneficial in investigating the function of mitochondria in AD pathogenesis.

  19. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.


    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  20. Mitochondria: Target organelles for estrogen action

    Małgorzata Chmielewska


    Full Text Available Estrogens belong to a group of sex hormones, which have been shown to act in multidirectional way. Estrogenic effects are mediated by two types of intracellular receptors: estrogen receptor 1 (ESR1 and estrogen receptor 2 (ESR2. There are two basic mechanisms of estrogen action: 1 classical-genomic, in which the ligand-receptor complex acts as a transcriptional factor and 2 a nongenomic one, which is still not fully understood, but has been seen to lead to distinct biological effects, depending on tissue and ligand type. It is postulated that nongenomic effects may be associated with membrane signaling and the presence of classical nuclear receptors within the cell membrane. Estrogens act in a multidirectional way also within cell organelles. It is assumed that there is a mechanism which manages the migration of ESR into the mitochondrial membrane, wherein the exogenous estrogen affect the morphology of mitochondria. Estrogen, through its receptor, can directly modulate mitochondrial gene expression. Moreover, by regulating the level of reactive oxygen species, estrogens affect the biology of mitochondria. The considerations presented in this paper indicate the pleiotropic effects of estrogens, which represent a multidirectional pathway of signal transduction.

  1. Vesicular transport of a ribonucleoprotein to mitochondria

    Joyita Mukherjee


    Full Text Available Intracellular trafficking of viruses and proteins commonly occurs via the early endosome in a process involving Rab5. The RNA Import Complex (RIC-RNA complex is taken up by mammalian cells and targeted to mitochondria. Through RNA interference, it was shown that mito-targeting of the ribonucleoprotein (RNP was dependent on caveolin 1 (Cav1, dynamin 2, Filamin A and NSF. Although a minor fraction of the RNP was transported to endosomes in a Rab5-dependent manner, mito-targeting was independent of Rab5 or other endosomal proteins, suggesting that endosomal uptake and mito-targeting occur independently. Sequential immunoprecipitation of the cytosolic vesicles showed the sorting of the RNP away from Cav1 in a process that was independent of the endosomal effector EEA1 but sensitive to nocodazole. However, the RNP was in two types of vesicle with or without Cav1, with membrane-bound, asymmetrically orientated RIC and entrapped RNA, but no endosomal components, suggesting vesicular sorting rather than escape of free RNP from endosomes. In vitro, RNP was directly transferred from the Type 2 vesicles to mitochondria. Live-cell imaging captured spherical Cav1− RNP vesicles emerging from the fission of large Cav+ particles. Thus, RNP appears to traffic by a different route than the classical Rab5-dependent pathway of viral transport.


    Vanina eRomanello


    Full Text Available Loss of muscle mass and force occurs in many diseases such as disuse/inactivity, diabetes, cancer, renal and cardiac failure and in aging-sarcopenia. In these catabolic conditions the mitochondrial content, morphology and function are greatly affected. The changes of mitochondrial network influence the production of reactive oxygen species (ROS that play an important role in muscle function. Moreover, dysfunctional mitochondria trigger catabolic signaling pathways which feed-forward to the nucleus to promote the activation of muscle atrophy. Exercise, on the other hand, improves mitochondrial function by activating mitochondrial biogenesis and mitophagy, possibly playing an important part in the beneficial effects of physical activity in several diseases. Optimised mitochondrial function is strictly maintained by the coordinated activation of different mitochondrial quality control pathways. In this review we outline the current knowledge linking mitochondria-dependent signaling pathways to muscle homeostasis in aging and disease and the resulting implications for the development of novel therapeutic approaches to prevent muscle loss.

  3. Role of mitochondria and network connectivity in intercellular calcium oscillations

    Dokukina, I V; Grachev, E A; Gunton, J D; Dokukina, Irina V.; Gracheva, Maria E.; Grachev, Eugene A.; Gunton, James D.


    Mitochondria are large-scale regulators of cytosolic calcium under normal cellular conditions. In this paper we model the complex behavior of mitochondrial calcium during the action of inositol 1,4,5-trisphosphate on a single cell and find results that are in good agreement with recent experimental studies. We also study the influence of the cellular network connectivity on intercellular signalling via gap junction diffusion. We include in our model the dependence of the junctional conductivity on the cytosolic calcium concentrations in adjacent cells. We consider three different mechanisms of calcium wave propagation through gap junctions: via calcium diffusion, inositol 1,4,5-trisphosphate diffusion, and both calcium and inositol 1,4,5-trisphosphate diffusion. We show that inositol 1,4,5-trisphosphate diffusion is the mechanism of calcium wave propagation and that calcium diffusion is the mechanism of synchronization of cytosolic calcium oscillations in adjacent cells. We also study the role of different to...

  4. Tl+ induces the permeability transition pore in Ca2+-loaded rat liver mitochondria energized by glutamate and malate.

    Korotkov, Sergey M; Emelyanova, Larisa V; Konovalova, Svetlana A; Brailovskaya, Irina V


    It is known that Ca2+ and heavy metals more actively induce MPTP opening in mitochondria, energized by the I complex substrates. Thus, a rise in a Tl+-induced MPTP was proposed in experiments on isolated rat liver mitochondria energized by the complex I substrate (glutamate and malate). Expose of the mitochondria to Ca2+ into a medium containing TlNO3, glutamate, and malate as well as sucrose or KNO3 resulted in a decrease in state 3, state 4, or DNP-stimulated respiration as well as an increase of both mitochondrial swelling and ΔΨmito dissipation. The MPTP inhibitors, CsA and ADP, almost completely eliminated the effect of Ca2+, which was more pronounced in the presence of the complex I substrates than the complex II substrate (succinate) and rotenone (Korotkov and Saris, 2011). The present study concludes that Tl+-induced MPTP opening is more appreciable in mitochondria energized by glutamate and malate but not succinate in the presence of rotenone. We assume that the Tl+-induced MPTP opening along with followed swelling and possible structural deformations of the complex I in Ca2+-loaded mitochondria may be a part of the thallium toxicity mechanism on mitochondria in living organisms. At the same time, oxidation of Tl+ to Tl3+ by mitochondrial oxygen reactive species is proposed for the mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH)-syndrome. Ultrastructural changes of mitochondria in cultured dermal fibroblasts of three patients.

    Haust, M D; Dewar, R A; Gatfield, D P; Gordon, B A


    Mitochondria of fibroblasts cultured from the skin obtained at biopsy from three patients with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH)-syndrome, one of the autosomal recessive, heritable urea cycle disorders, were studied with appropriate controls ultrastructurally. The patients were two severely retarded 10- and 12-year-old boys, and a 22-year-old sister of the former whose mental status was at the low normal range; she never had motor impairments or seizures. The mitochondria, similar in all three patients, were increased in number, very long, branching and/or "looping," and tortuous. "Spurs" or "buddings" extended from their lateral surfaces and the terminal segments were often bulbous. Other unusual configurations were also present. In addition, giant forms with large diameter contained innumerable closely-packed and parallel cristae which traversed the entire width of these mitochondria; at times they assumed a "whirled" pattern. The mitochondrial matrix was usually of high electron density. These changes were not a feature of fibroblastic mitochondria of controls. Several changes resembled those of hepatic mitochondria in this disorder. All features are interpreted as an attempt at expanding the mitochondrial volume (via structural substratum) to compensate for the metabolic incompetence of these organelles (a block in transmembranous transfer of ornithine from hyaloplasm into mitochondria for conversion to citrulline).

  6. Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications

    Andrés Caicedo


    Full Text Available The objective of this review is to outline existing artificial mitochondria transfer techniques and to describe the future steps necessary to develop new therapeutic applications in medicine. Inspired by the symbiotic origin of mitochondria and by the cell’s capacity to transfer these organelles to damaged neighbors, many researchers have developed procedures to artificially transfer mitochondria from one cell to another. The techniques currently in use today range from simple coincubations of isolated mitochondria and recipient cells to the use of physical approaches to induce integration. These methods mimic natural mitochondria transfer. In order to use mitochondrial transfer in medicine, we must answer key questions about how to replicate aspects of natural transport processes to improve current artificial transfer methods. Another priority is to determine the optimum quantity and cell/tissue source of the mitochondria in order to induce cell reprogramming or tissue repair, in both in vitro and in vivo applications. Additionally, it is important that the field explores how artificial mitochondria transfer techniques can be used to treat different diseases and how to navigate the ethical issues in such procedures. Without a doubt, mitochondria are more than mere cell power plants, as we continue to discover their potential to be used in medicine.

  7. Neuroprotection and Anti-Epileptogenesis with Mitochondria-Targeted Antioxidant


    Award Number: W81XWH-12-1-0258 TITLE: Neuroprotection and Anti-Epileptogenesis with Mitochondria -Targeted Antioxidant PRINCIPAL INVESTIGATOR...SUBTITLE Neuroprotection and Anti-Epileptogenesis with Mitochondria -Targeted Antioxidant 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0258 5c

  8. Traveling Bax and Forth from Mitochondria to Control Apoptosis

    Soriano, Maria Eugenia; Scorrano, Luca


    Antiapoptotic Bcl-2 proteins on mitochondria inhibit prodeath proteins, such as Bax, which are found primarily in the cytosol. In this issue, Edlich et al., (2011) show that Bax and Bcl-xL interact on the mitochondrial surface and then retrotranslocate to the cytosol, effectively preventing Bax-induced permeabilization of mitochondria. PMID:21458662

  9. Digital imaging of autoradiographs from paintings by Georges de La Tour (1593-1652)

    Fischer, C O; Laurenze, C; Schmidt, C; Slusallek, K


    The artistic work of the painter Georges de La Tour has been studied very intensively in the last few years, mainly by French and US-American art historians and natural scientists. To support the in-depth analysis of two paintings from the Kimbell Art Museum in Fort Worth, Texas, USA, two similar paintings from the Gemaeldegalerie Berlin have been investigated. The method of neutron activation autoradiography has been applied using imaging plates with digital image processing.

  10. Toxicity of Atorvastatin on Pancreas Mitochondria: A Justification for Increased Risk of Diabetes Mellitus.

    Sadighara, Melina; Amirsheardost, Zahra; Minaiyan, Mohsen; Hajhashemi, Valiollah; Naserzadeh, Parvaneh; Salimi, Ahmad; Seydi, Enayatollah; Pourahmad, Jalal


    Statins (including atorvastatin) are a widely used class of drugs, and like all medications, they have a potential for adverse effects. Recently, it has been shown that statins also exert side effects on the pancreas. In vitro studies have suggested that this class of drugs induced a reduction in insulin secretion. Also, the use of statins is associated with a raised risk of diabetes mellitus (DM), but the mechanisms underlying statin-induced diabetes are poorly known. Literature data indicate that several statins are able to induce apoptosis signalling. This study was designed to examine the mechanism of atorvastatin on mitochondria obtained from rat pancreas. In our study, mitochondria were obtained from the pancreas and then exposed to atorvastatin and vehicle to investigate probable toxic effects. The results showed that atorvastatin (25, 50, 75, 100 and 125 μM) increased reactive oxygen species (ROS) production, mitochondrial swelling, collapse of mitochondrial membrane potential and cytochrome c release, the orchestrating factor for mitochondria-mediated apoptosis signalling. Atorvastatin also reduced the ATP levels. These results propose that the toxicity of atorvastatin on pancreas mitochondria is a key point for drug-induced apoptotic cell loss in the pancreas and therefore a justification for increased risk of DM. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  11. A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria.

    Tasel, Serdar F; Mumcuoglu, Erkan U; Hassanpour, Reza Z; Perkins, Guy


    Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondrial function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from large volumes. Computerized segmentation of mitochondria with minimum manual effort is essential to accelerate the study of mitochondrial structure/function relationships. In this work, we improved and extended our previous attempts to detect and segment mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was utilized to extract membrane structures. Then, curve energy based active contours were employed to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity Coefficient and boundary error were measured as 0.87 and 14nm respectively.

  12. A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria

    Tasel, Serdar F.; Mumcuoglu, Erkan U.; Hassanpour, Reza Z.; Perkins, Guy


    Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondrial function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from large volumes. Computerized segmentation of mitochondria with minimum manual effort is essential to accelerate the study of mitochondrial structure/function relationships. In this work, we improved and extended our previous attempts to detect and segment mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was utilized to extract membrane structures. Then, curve energy based active contours were employed to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity Coefficient and boundary error were measured as 0.87 and 14 nm respectively. PMID:26956730

  13. Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants.

    Vigani, Gianpiero


    In plants, iron (Fe) deficiency-induced chlorosis is a major problem, affecting both yield and quality of crops. Plants have evolved multifaceted strategies, such as reductase activity, proton extrusion, and specialised storage proteins, to mobilise Fe from the environment and distribute it within the plant. Because of its fundamental role in plant productivity, several issues concerning Fe homeostasis in plants are currently intensively studied. The activation of Fe uptake reactions requires an overall adaptation of the primary metabolism because these activities need the constant supply of energetic substrates (i.e., NADPH and ATP). Several studies concerning the metabolism of Fe-deficient plants have been conducted, but research focused on mitochondrial implications in adaptive responses to nutritional stress has only begun in recent years. Mitochondria are the energetic centre of the root cell, and they are strongly affected by Fe deficiency. Nevertheless, they display a high level of functional flexibility, which allows them to maintain the viability of the cell. Mitochondria represent a crucial target of studies on plant homeostasis, and it might be of interest to concentrate future research on understanding how mitochondria orchestrate the reprogramming of root cell metabolism under Fe deficiency. In this review, I summarise what it is known about the effect of Fe deficiency on mitochondrial metabolism and morphology. Moreover, I present a detailed view of the possible roles of mitochondria in the development of plant responses to Fe deficiency, integrating old findings with new and discussing new hypotheses for future investigations.

  14. Mitochondria as a target for radiosensitisation by gold nanoparticles

    McMahon, S. J.; McNamara, A. L.; Schuemann, J.; Prise, K. M.; Paganetti, H.


    While Gold Nanoparticles (GNPs) have been extensively studied as radiosensitisers in recent years, there is a lack of studies of their impact on targets outside of the cell’s nuclear DNA. We present Monte Carlo simulations of the energy deposited by X-ray irradiation in mitochondria in cells with and without cytoplasmic GNPs. These simulations show that the presence of GNPs within the cytoplasm can significantly increase (3-4 fold) the number of ionisation clusters of both small and large sizes. As these clusters are strongly associated with DNA damage, these results suggest that mitochondrial DNA may be a significant target for GNP radiosensitisation when the nanoparticles cannot penetrate the cell nucleus.

  15. Lipid droplets interact with mitochondria using SNAP23

    Jägerström, Sara; Polesie, Sam; Wickström, Ylva


    factors are involved. Moreover, the presence of LD markers in mitochondria isolated by subcellular fractionations is demonstrated. Finally, ablation of SNAP23 using siRNA reduced complex formation and beta oxidation, which suggests that the LD-mitochondria complex is functional in the cell.......Triglyceride-containing lipid droplets (LD) are dynamic organelles stored on demand in all cells. These droplets grow through a fusion process mediated by SNARE proteins, including SNAP23. The droplets have also been shown to be highly motile and interact with other cell organelles, including...... peroxisomes and the endoplasmic reticulum. We have used electron and confocal microscopy to demonstrate that LD form complexes with mitochondria in NIH 3T3 fibroblasts. Using an in vitro system of purified LD and mitochondria, we also show the formation of the LD-mitochondria complex, in which cytosolic...

  16. Arsenate uncoupling of oxidative phosphorylation in isolated plant mitochondria

    Wickes, W.A.; Wiskich, J.T.


    The uncoupling by arsenate of beetroot and cauliflower bud mitochondria showed the following characteristics: arsenate stimulation of respiration above the rate found with phosphate; inhibition of arsenate-stimulated respiration by phosphate; enhancement of arsenate-stimulated respiration by ADP; only partial prevention of this ADP-enhanced respiration by atractyloside; inhibition by oligomycin of the arsenate-stimulated respiration back to the phosphate rate; and the absence of any stimulatory effect of ADP in the presence of oligomycin. These results are qualitatively analogous to those reported for arsenate uncoupling in rat liver mitochondria. Arsenate stimulated malate oxidation, presumably by stimulating malate entry, in both beetroot and cauliflower bud mitochondria; however, high rates of oxidation, and presumably entry, were only sustained with arsenate in beetroot mitochondria. NADH was oxidized rapidly in cauliflower bud mitochondria in the presence of arsenate, showing that arsenate did not inhibit electron transfer processes.

  17. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization.

    Zhou, Qinghua; Li, Haimin; Li, Hanzeng; Nakagawa, Akihisa; Lin, Jason L J; Lee, Eui-Seung; Harry, Brian L; Skeen-Gaar, Riley Robert; Suehiro, Yuji; William, Donna; Mitani, Shohei; Yuan, Hanna S; Kang, Byung-Ho; Xue, Ding


    Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development.

  18. BCL-2 family proteins as regulators of mitochondria metabolism.

    Gross, Atan


    The BCL-2 family proteins are major regulators of apoptosis, and one of their major sites of action are the mitochondria. Mitochondria are the cellular hubs for metabolism and indeed selected BCL-2 family proteins also possess roles related to mitochondria metabolism and dynamics. Here we discuss the link between mitochondrial metabolism/dynamics and the fate of stem cells, with an emphasis on the role of the BID-MTCH2 pair in regulating this link. We also discuss the possibility that BCL-2 family proteins act as metabolic sensors/messengers coming on and off of mitochondria to "sample" the cytosol and provide the mitochondria with up-to-date metabolic information. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Amyloid β-42 induces neuronal apoptosis by targeting mitochondria.

    Han, Xiao-Jian; Hu, Yang-Yang; Yang, Zhang-Jian; Jiang, Li-Ping; Shi, Sheng-Lan; Li, Ye-Ru; Guo, Miao-Yu; Wu, Hong-Li; Wan, Yu-Ying


    Alzheimer's disease (AD), with a typical pathological hallmark of amyloid‑beta (Aβ)‑containing plaques and neurofibrillary tangles, is one of the most common types of chronic neurodegenerative diseases. Aβ oligomers serve a crucial role in the pathogenesis of AD, and lead to neuronal loss. However, the precise mechanism of Aβ oligomers in AD remains to be elucidated. The present study demonstrated that 10 µM Aβ‑42 activated the caspase signaling pathway, and induced significant apoptosis in primary cultured mouse cerebral cortical neurons. The results of reverse transcription‑quantitative polymerase chain reaction and western blotting demonstrated that Aβ‑42 (10 µM) also significantly upregulated the transcription and expression of the mitochondrial fission protein dynamin‑related protein 1 (Drp1), and downregulated the transcription and expression of mitochondrial fusion proteins, including mitofusin 1/2 (Mfn1/2) and mitochondrial dynamin like GTPase (OPA‑1). Neurons were transfected with pDsRed2‑Mito for mitochondrial imaging, which revealed that 10 µM Aβ‑42 induced mitochondrial fission in cortical neurons. In addition, 2',7'‑dichlorodihydrofluorescein diacetate and tetramethylrhodamine ethyl ester staining indicated that Aβ‑42 increased the reactive oxygen species (ROS) level and reduced mitochondrial membrane potential in neurons. Inhibition of Drp1 activity by Mdivi‑1 efficiently prevented Aβ‑42‑induced ROS production and disruption of mitochondrial membrane potential. Loss of mitochondrial membrane potential may activate PTEN‑induced putative kinase 1 (Pink1), the prominent sensor for mitochondrial damage, and trigger the process of mitophagy to remove the damaged mitochondria. In the present study, western blotting revealed that the levels of autophagy marker microtubule‑associated proteins 1A/1B light chain 3B (LC3B) and Pink1 were upregulated after Aβ‑42 stimulation. In conclusion, these data indicated that

  20. Morphological abnormalities in mitochondria of the skin of patients with sporadic amyotrophic lateral sclerosis

    Gabriel E. Rodríguez


    Full Text Available OBJECTIVES: Mitochondrial dysfunction has been reported in the central nervous system, hepatocytes and peripheral blood lymphocytes from patients with sporadic amyotrophic lateral sclerosis (SALS. However, the status of skin mitochondria has not been reported, in spite of the fact that SALS patients present skin abnormalities. The objective of the present study was to compare mitochondrial ultrastructural parameters in keratinocytes from patients with SALS and healthy controls. METHODS: Our study was based on the analysis of 112 skin mitochondria from 5 SALS patients and 99 organelles from 4 control subjects by electron microscopy. RESULTS: Computerized image analysis showed that mitochondrial major axis length, area and perimeter of the organelle were significantly smaller in SALS respect of healthy control subjects. Morphologically, SALS mitochondria presented cristolysis and breakage of the outer membrane. CONCLUSIONS: Mitochondrial dysfunction in the skin may possibly reflect changes occurring in mitochondria of the central nervous system. The analysis of mitochondrial morphology in this tissue may be of value to follow disease progression and, eventually, the effectiveness of current therapies for SALS.

  1. The Role of Mitochondria in Cancer Induction, Progression and Changes in Metabolism.

    Rogalinska, Malgorzata


    Mitochondria play important roles as energetic centers. Mutations in mitochondrial DNA (mtDNA) were found in several diseases, including cancers. Studies on cytoplasmic hybrids (cybrids) confirm that directed mutation introduced into mtDNA could be a reason for cancer induction. Mitochondria could also be a factor linking cancer transformation and progression. The importance of mitochondria in cancer also confirms their involvement in the resistance to treatment. Resistance to treatment of cancer cells can frequently be a reason for glycolysis acceleration. It could be explained by cancer cells' high proliferation index and high energy request. The involvement of mitochondria in metabolic disturbances of several metabolic diseases, including cancers, was reported. These data confirm that cancer induction, as well as cancer progression, could have metabolic roots. The aberrant products observed in prostate cells involved in the Krebs cycle could promote cancer progression. These multiple relationships between alterations on a genetic level translated into disturbances in cellular metabolism and their potential relation with epigenetic control of gene expression make cancerogenesis more complicated and prognoses' success in studies on cancer etiology more distant in time.

  2. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase.

    Sharma, Arvind; Sharma, Amit


    The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.

  3. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury

    Aleksandra Kezic


    Full Text Available Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS peptides (Bendavia, SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury.

  4. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth.

    Fitzgerald, M; Chiego, D J; Heys, D R


    Cell migration and replication associated with odontoblast replacement occurring soon after pulp exposure in primate teeth were studied. Class 5 cavity preparations resulting in pulp exposures were restored with a calcium hydroxide-containing capping agent and amalgam. Eighty-four and 96 h after this the animals were injected with 0.5 microCi/g body wt tritiated thymidine (sp. act. 6.7 Ci/mM). Teeth were extracted 6, 8, 10 and 12 days after treatment. The number of labelled cells as well as the number of grains per labelled cell were counted for odontoblast-like, fibroblast-like and perivascular cells in three 60 x 260 microns zones. These zones represented the odontoblast and cell-free (zone 1), cell-rich (zone 2) and deep pulp (zone 3) areas of normal pulp tissue. Ten sections centred around the mid-point of the exposure were counted for each tooth. Matrix formation and labelled odontoblast-like cells were observed at the interface between the capping agent and the pulp as early as day 8. Other significant findings were: (1) an increase in labelled odontoblast-like cells in zone 1 over time, suggesting a continual influx of differentiating cells; (2) an increase in labelled cells in zone 1 over time with a concurrent decrease in zone 3, suggesting that the influx of cells in zone 1 was from the deeper pulp; and (3) differences in grain counts between zones, treatment times and cell types, indicating that at least two DNA replications had occurred between initial treatment and final odontoblast-like cell differentiation.

  5. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts

    Schwartz, R. M.; Dayhoff, M. O.


    A computer branching model is used to analyze cellular evolution. Attention is given to certain key amino acids and nucleotide residues (ferredoxin, 5s ribosomal RNA, and c-type cytochromes) because of their commonality over a wide variety of cell types. Each amino acid or nucleotide residue is a sequence in an inherited biological trait; and the branching method is employed to align sequences so that changes reflect substitution of one residue for another. Based on the computer analysis, the symbiotic theory of cellular evolution is considered the most probable. This theory holds that organelles, e.g., mitochondria and chloroplasts invaded larger bodies, e.g., bacteria, and combined functions to form eucaryotic cells.

  6. Maternal inheritance of mitochondria in Eucalyptus globulus.

    Vaillancourt, R E; Petty, A; McKinnon, G E


    It is important to verify mitochondrial inheritance in plant species in which mitochondrial DNA (mtDNA) will be used as a source of molecular markers. We used a polymerase chain reaction (PCR)/restriction fragment length polymorphism (RFLP) approach to amplify mitochondrial introns from subunits 1, 4, 5, and 7 of NADH dehydrogenase (nad) and cytochrome oxidase subunit II (cox2) in Eucalyptus globulus. PCR fragments were then either sequenced or cut with restriction enzymes to reveal polymorphism. Sequencing cox2 showed that eucalypts lack the intron between exons 1 and 2. One polymorphism was found in intron 2-3 of nad7 following restriction digests with HphI. Fifty-four F1 progeny from seven families with parents distinguishable in their mitochondrial nad7 were screened to show that mitochondria were maternally inherited in E. globulus. These results constitute the first report of mitochondrial inheritance in the family Myrtaceae.

  7. Modelling the ATP production in mitochondria

    Saa, Alberto


    We revisit here the mathematical model for ATP production in mitochondria introduced recently by Bertram, Pedersen, Luciani, and Sherman (BPLS) as a simplification of the more complete but intricate Magnus and Keizer's model. We correct some inaccuracies in the BPLS original approximations and then analyze some of the dynamical properties of the model. We infer from exhaustive numerical explorations that the enhanced BPLS equations have a unique attractor fixed point for physiologically acceptable ranges of mitochondrial variables and respiration inputs. We determine, in the stationary regime, the dependence of the mitochondrial variables on the respiration inputs, namely the cytosolic concentration of calcium ${\\rm Ca}_{\\rm c}$ and the substrate fructose 1,6-bisphosphate FBP. The same effect of calcium saturation reported for the original BPLS model is observed here. We find out, however, an interesting non-stationary effect: the inertia of the model tends to increase considerably for high concentrations of ...

  8. Lactate oxidation in human skeletal muscle mitochondria

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B


    Lactate is an important intermediate metabolite in human bioenergetics and is oxidized in many different tissues including the heart, brain, kidney, adipose tissue, liver, and skeletal muscle. The mechanism(s) explaining the metabolism of lactate in these tissues, however, remains unclear. Here, we...... analyze the ability of skeletal muscle to respire lactate by using an in situ mitochondrial preparation that leaves the native tubular reticulum and subcellular interactions of the organelle unaltered. Skeletal muscle biopsies were obtained from vastus lateralis muscle in 16 human subjects. Samples were...... of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within...

  9. Mitochondria in cardiac hypertrophy and heart failure.

    Rosca, Mariana G; Tandler, Bernard; Hoppel, Charles L


    Heart failure (HF) frequently is the unfavorable outcome of pathological heart hypertrophy. In contrast to physiological cardiac hypertrophy, which occurs in response to exercise and leads to full adaptation of contractility to the increased wall stress, pathological hypertrophy occurs in response to volume or pressure overload, ultimately leading to contractile dysfunction and HF. Because cardiac hypertrophy impairs the relationship between ATP demand and production, mitochondrial bioenergetics must keep up with the cardiac hypertrophic phenotype. We review data regarding the mitochondrial proteomic and energetic remodeling in cardiac hypertrophy, as well as the temporal and causal relationships between mitochondrial failure to match the increased energy demand and progression to cardiac decompensation. We suggest that the maladaptive effect of sustained neuroendocrine signals on mitochondria leads to bioenergetic fading which contributes to the progression from cardiac hypertrophy to failure. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism". Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Apoptosis in Drosophila: which role for mitochondria?

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle


    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human.

  11. [Thiamine triphosphatase activity in mammalian mitochondria].

    Rusina, I M; Makarchikov, A F


    Mitochondrial preparations isolated from bovine kidney and brain as well as the liver and the brain of rat show thiamine triphosphatase (ThTPase) activity. The activity was determined from the particles by freezing-thawing suggesting that a soluble enzyme is involved. The liberation patterns of ThTPase and marker enzyme activities from mitochondria under osmotic shock or treatment with increasing Triton X-100 concentrations indicate the presence of ThTPase both in the matrix and intermembrane space. It was found, basing on gel filtration behavior, that the mitochondrial ThTPase has the same molecular mass as specific cytosolic ThTPase (EC The enzymes, however, were clearly distinguishable in Km values, the mitochondrial one showing a higher apparent affinity for substrate. These results imply the existence of ThTPase multiple forms in mammalian cells.

  12. Mitochondria in cardiac hypertrophy and heart failure

    Rosca, Mariana G.; Tandler, Bernard; Hoppel, Charles L.


    Heart failure (HF) frequently is the unfavorable outcome of pathological heart hypertrophy. In contrast to physiological cardiac hypertrophy, which occurs in response to exercise and leads to full adaptation of contractility to the increased wall stress, pathological hypertrophy occurs in response to volume or pressure overload, ultimately leading to contractile dysfunction and HF. Because cardiac hypertrophy impairs the relationship between ATP demand and production, mitochondrial bioenergetics must keep up with the cardiac hypertrophic phenotype. We review data regarding the mitochondrial proteomic and energetic remodeling in cardiac hypertrophy, as well as the temporal and causal relationship between mitochondrial failure to match the increased energy demand and progression to cardiac decompensation. We suggest that the maladaptive effect of sustained neuroendocrine signals on mitochondria leads to bioenergetic fading which contributes to the progression from cardiac hypertrophy to failure. PMID:22982369

  13. Mitochondria and Energetic Depression in Cell Pathophysiology

    Stephan Zierz


    Full Text Available Mitochondrial dysfunction is a hallmark of almost all diseases. Acquired or inherited mutations of the mitochondrial genome DNA may give rise to mitochondrial diseases. Another class of disorders, in which mitochondrial impairments are initiated by extramitochondrial factors, includes neurodegenerative diseases and syndromes resulting from typical pathological processes, such as hypoxia/ischemia, inflammation, intoxications, and carcinogenesis. Both classes of diseases lead to cellular energetic depression (CED, which is characterized by decreased cytosolic phosphorylation potential that suppresses the cell’s ability to do work and control the intracellular Ca2+ homeostasis and its redox state. If progressing, CED leads to cell death, whose type is linked to the functional status of the mitochondria. In the case of limited deterioration, when some amounts of ATP can still be generated due to oxidative phosphorylation (OXPHOS, mitochondria launch the apoptotic cell death program by release of cytochrome c. Following pronounced CED, cytoplasmic ATP levels fall below the thresholds required for processing the ATP-dependent apoptotic cascade and the cell dies from necrosis. Both types of death can be grouped together as a mitochondrial cell death (MCD. However, there exist multiple adaptive reactions aimed at protecting cells against CED. In this context, a metabolic shift characterized by suppression of OXPHOS combined with activation of aerobic glycolysis as the main pathway for ATP synthesis (Warburg effect is of central importance. Whereas this type of adaptation is sufficiently effective to avoid CED and to control the cellular redox state, thereby ensuring the cell survival, it also favors the avoidance of apoptotic cell death. This scenario may underlie uncontrolled cellular proliferation and growth, eventually resulting in carcinogenesis.

  14. Looking Beyond Structure: Membrane Phospholipids of Skeletal Muscle Mitochondria.

    Heden, Timothy D; Neufer, P Darrell; Funai, Katsuhiko


    Skeletal muscle mitochondria are highly dynamic and are capable of tremendous expansion to meet cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are generated in skeletal muscle. Herein we describe how each class of phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and summarize genetic evidence indicating that membrane phospholipid composition represents a significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on oxidative metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Key role of mitochondria in apoptosis of lymphocytes.

    Boichuk, S V; Minnebaev, M M; Mustafin, I G


    Changes in the mitochondrial potential, expression of phosphatidylserine, parameters of direct and lateral light scattering, and DNA fragmentation during spontaneous and induced apoptosis in peripheral blood lymphocytes were studied by flow cytofluorometry. Dexamethasone and Ca2+ ionophore A23187 served as inductors of apoptosis. A decrease in the mitochondrial potential is an early sign of spontaneous and induced apoptosis. Phosphatidylserine expression on the outer plasma membrane occurred later and inversely depended on the mitochondrial potential. Our results indicate that the involvement of mitochondria in spontaneous and induced apoptosis accompanied by a decrease in the mitochondrial potential is an early and key event of programmed lymphocyte death. The decrease in the mitochondrial potential of lymphocytes induced degradation of their nuclei (DNA fragmentation) and promoted elimination of apoptotic cells (phosphatidylserine expression).

  16. Nitric oxide damages neuronal mitochondria and induces apoptosis in neurons


    The cytotoxic effect of nitric oxide on primarily cultured rat cerebellar granule cells was studied,and the mechanisms were discussed.The results showed that nitric oxide donor S-nitroso-N-acetyl-penicillamine (SNAP; 500 μmol/L) could induce apoptosis in immature cultures of cerebellar granule cells.Flow cytometry and HPLC analyses revealed that after treatment with SNAP,the mitochondrial transmembrane potential and the cellular ATP content decreased significantly.Nitric oxide scavenger hemoglobin could effectively prevent the neuronal mitochondria from dysfunction and attenuate apoptosis.The results suggested that nitric oxide activated the apoptotic program by inhibiting the activity of mitochondrial respiratory chain and thus decreasing the cellular ATP content.

  17. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering.

    Ottolini, Denis; Calì, Tito; Negro, Alessandro; Brini, Marisa


    DJ-1 was first identified as an oncogene. More recently, mutations in its gene have been found causative for autosomal recessive familial Parkinson disease. Numerous studies support the DJ-1 role in the protection against oxidative stress and maintenance of mitochondria structure; however, the mechanism of its protective function remains largely unknown. We investigated whether mitochondrial Ca(2+) homeostasis, a key parameter in cell physiology, could be a target for DJ-1 action. Here, we show that DJ-1 modulates mitochondrial Ca(2+) transients induced upon cell stimulation with an 1,4,5-inositol-tris-phosphate agonist by favouring the endoplasmic reticulum (ER)-mitochondria tethering. A reduction of DJ-1 levels results in mitochondria fragmentation and decreased mitochondrial Ca(2+) uptake in stimulated cells. To functionally couple these effects with the well-recognized cytoprotective role of DJ-1, we investigated its action in respect to the tumour suppressor p53. p53 overexpression in HeLa cells impairs their ability to accumulate Ca(2+) in the mitochondrial matrix, causes alteration of the mitochondrial morphology and reduces ER-mitochondria contact sites. Mitochondrial impairments are independent from Drp1 activation, since the co-expression of the dominant negative mutant of Drp1 failed to abolish them. DJ-1 overexpression prevents these alterations by re-establishing the ER-mitochondria tethering. Similarly, the co-expression of the pro-fusion protein Mitofusin 2 blocks the effects induced by p53 on mitochondria, confirming that the modulation of the ER-mitochondria contact sites is critical to mitochondria integrity. Thus, the impairment of ER-mitochondria communication, as a consequence of DJ-1 loss-of-function, may be detrimental for mitochondria-related processes and be at the basis of mitochondrial dysfunction observed in Parkinson disease.

  18. Mitochondrial structure in steroid-producing cells: three-dimensional reconstruction of human Leydig cell mitochondria by electron microscopic tomography.

    Prince, Frederick P; Buttle, Karolyn F


    Mitochondria of human Leydig cells were reconstructed in three dimension utilizing the technique of electron microscopic tomography to obtain a better understanding of the topology of the internal membrane system and the relationship of these cristae to the inner boundary membrane (IBM). Cristae structure, in many respects, is consistent with previous tomographic studies from typical mitochondria, i.e., mitochondria from nonsteroid-producing cells. Cristae are diverse in form, with well-defined lamellar cristae interconnected to pleomorphic and tubular regions. Occasional fenestrations are present in the lamellar regions. Also consistent with other mitochondria studied by tomography, the openings of the cristae to the IBM (referred to as crista junctions) are roughly circular or elliptical and approximately 20-25 nm in diameter. Morphological contact sites between the outer mitochondrial membrane and IBM are also present. Cristae membranes in these steroid-producing mitochondria are often found in close proximity to the IBM. Unique to steroid-producing mitochondria is a form of the cristae in which multiple lamellae are in very close apposition, previously defined as the lamellar association. Tomographic reconstructions of the lamellar association reveal that these well-organized membranes also open to the IBM via crista junctions. These regions of closely apposed lamellar cristae are also interconnected and display small tubular extensions from the lamellae. The current study is the first electron microscopic tomography study of mitochondria from steroid-producing cells. The results show the cristae interconnect to form an extensive internal membrane system, which is perhaps better termed the cristae compartment. This internal membrane system is notable due to the high surface area with few small openings to the IBM. Such a morphology is more analogous to the thylakoid membrane system of chloroplasts than the long-standing view of mitochondrial cristae. The

  19. Incorporation of VSV-G produces fusogenic plasma membrane vesicles capable of efficient transfer of bioactive macromolecules and mitochondria.

    Lin, Hao-Peng; Zheng, De-Jin; Li, Yun-Pan; Wang, Na; Chen, Shao-Jun; Fu, Yu-Cai; Xu, Wen-Can; Wei, Chi-Ju


    The objective of this study was to determine if plasma membrane vesicles (PMVs) could be exploited for efficient transfer of macro-biomolecules and mitochondria. PMVs were derived from mechanical extrusion, and made fusogenic (fPMVs) by incorporating the glycoprotein G of vesicular stomatitis virus (VSV-G). Confocal microscopy examination revealed that cytoplasmic proteins and mitochondria were enclosed in PMVs as evidenced by tracing with cytoplasmically localized and mitochondria-targeted EGFP, respectively. However, no fluorescence signal was detected in PMVs from cells whose nucleus was labeled with an EGFP-tagged histone H2B. Consistently, qRT-PCR measurement showed that mRNA, miRNA and mitochondrial DNA decreased slightly; while nuclear DNA was not measureable. Further, Western blot analysis revealed that cytoplasmic and membrane-bound proteins fell inconspicuously while nuclear proteins were barely detecsle. In addition, fPMVs carrying cytoplamic DsRed proteins transduced about ~40 % of recipient cells. The transfer of protein was further confirmed by using the inducible Cre/loxP system. Mitochondria transfer was found in about 20 % recipient cells after incubation with fPMVs for 5 h. To verify the functionalities of transferred mitochondria, mitochodria-deficient HeLa cells (Rho0) were generated and cultivated with fPMVs. Cell enumeration demonstrated that adding fPMVs into culture media stimulated Rho0 cell growth by 100 % as compared to the control. Lastly, MitoTracker and JC-1 staining showed that transferred mitochondria maintained normal shape and membrane potential in Rho0 cells. This study established a time-saving and efficient approach to delivering proteins and mitochondria by using fPMVs, which would be helpful for finding a cure to mitochondria-associated diseases. Graphical abstract Schematic of the delivery of macro-biomolecules and organelles by fPMVs. VSV-G-expressing cells were extruded through a 3 μm polycarbonate membrane filter to

  20. Proteome Analysis of Subsarcolemmal Cardiomyocyte Mitochondria: A Comparison of Different Analytical Platforms

    Francesco Giorgianni


    Full Text Available Mitochondria are complex organelles that play critical roles in diverse aspects of cellular function. Heart disease and a number of other pathologies are associated with perturbations in the molecular machinery of the mitochondria. Therefore, comprehensive, unbiased examination of the mitochondrial proteome represents a powerful approach toward system-level insights into disease mechanisms. A crucial aspect in proteomics studies is design of bioanalytical strategies that maximize coverage of the complex repertoire of mitochondrial proteins. In this study, we evaluated the performance of gel-based and gel-free multidimensional platforms for profiling of the proteome in subsarcolemmal mitochondria harvested from rat heart. We compared three different multidimensional proteome fractionation platforms: polymeric reversed-phase liquid chromatography at high pH (PLRP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, and isoelectric focusing (IEF separations combined with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS, and bioinformatics for protein identification. Across all three platforms, a total of 1043 proteins were identified. Among the three bioanalytical strategies, SDS-PAGE followed by LC-MS/MS provided the best coverage of the mitochondrial proteome. With this platform, 890 proteins with diverse physicochemical characteristics were identified; the mitochondrial protein panel encompassed proteins with various functional roles including bioenergetics, protein import, and mitochondrial fusion. Taken together, results of this study provide a large-scale view of the proteome in subsarcolemmal mitochondria from the rat heart, and aid in the selection of optimal bioanalytical platforms for differential protein expression profiling of mitochondria in health and disease.

  1. Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria.

    Monzote, Lianet; Stamberg, Werner; Staniek, Katrin; Gille, Lars


    Chenopodium ambrosioides have been used for centuries in the Americas as a popular remedy for parasitic diseases. The essential oil of this plant possesses anthelmintic activity and is still used in some regions to treat parasitosis and leishmaniasis. However, the Chenopodium oil caused also some fatalities, leading to its commercial disuse. In this work, we studied the mechanism of toxicity of the essential oil and its major pure ingredients (carvacrol, caryophyllene oxide, and ascaridole, which was synthesized from alpha-terpinene) with respect to mammalian cells and mitochondria. We observed that all products, but especially caryophyllene oxide, inhibited the mitochondrial electron transport chain. This effect for carvacrol and caryophyllene oxide was mediated via direct complex I inhibition. Without Fe2+, ascaridole was less toxic to mammalian mitochondria than other major ingredients. However, evidence on the formation of carbon-centered radicals in the presence of Fe2+ was obtained by ESR spin-trapping. Furthermore, it was shown that Fe2+ potentiated the toxicity of ascaridole on oxidative phosphorylation of rat liver mitochondria. The increase of the alpha-tocopherol quinone/alpha-tocopherol ratio under these conditions indicated the initiation of lipid peroxidation by Fe2+-mediated ascaridole cleavage. Further ESR spin-trapping experiments demonstrated that in addition to Fe2+, reduced hemin, but not mitochondrial cytochrome c can activate ascaridole, explaining why ascaridole in peritoneal macrophages from BALB/c mice exhibited a higher toxicity than in isolated mitochondria.

  2. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration.

    Feng, Juan; Lü, Silin; Ding, Yanhong; Zheng, Ming; Wang, Xian


    Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretion in T cells. However, whether homocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivo and in vitro studies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition of ER stress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.

  3. Triage of oxidation-prone proteins by Sqstm1/p62 within the mitochondria

    Lee, Minjung [Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon-Si, Kyonggi-Do (Korea, Republic of); Shin, Jaekyoon, E-mail: [Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon-Si, Kyonggi-Do (Korea, Republic of)


    Highlights: {yields} The mitochondrion contains its own protein quality control system. {yields} p62 localizes within the mitochondria and forms mega-dalton sized complexes. {yields} p62 interacts with oxidation-prone proteins and the proteins of quality control. {yields} In vitro delivery of p62 improves mitochondrial functions. {yields} p62 is implicated as a participant in mitochondrial protein quality control. -- Abstract: As the mitochondrion is vulnerable to oxidative stress, cells have evolved several strategies to maintain mitochondrial integrity, including mitochondrial protein quality control mechanisms and autophagic removal of damaged mitochondria. Involvement of an autophagy adaptor, Sqstm1/p62, in the latter process has been recently described. In the present study, we provide evidence that a portion of p62 directly localizes within the mitochondria and supports stable electron transport by forming heterogeneous protein complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of mitochondrial proteins co-purified with p62 revealed that p62 interacts with several oxidation-prone proteins, including a few components of the electron transport chain complexes, as well as multiple chaperone molecules and redox regulatory enzymes. Accordingly, p62-deficient mitochondria exhibited compromised electron transport, and the compromised function was partially restored by in vitro delivery of p62. These results suggest that p62 plays an additional role in maintaining mitochondrial integrity at the vicinity of target machineries through its function in relation to protein quality control.

  4. Curcumin Protects Mitochondria and Cardiomyocytes from Oxidative Damage and Apoptosis Induced by Hemiscorpius Lepturus Venom.

    Naserzadeh, Parvaneh; Mehr, Sara Nekhoee; Sadabadi, Zeinab; Seydi, Enayatollah; Salimi, Ahmad; Pourahmad, Jalal


    The main aim of the current study was to determine cardio-toxicity mechanisms of H. lepturus and protective effect of curcumin against this toxin in rats, using isolated heart mitochondria and cardiomyocytes. Our findings indicated that H. lepturus venom caused significantly ((P<0.05) cytotoxicity and caspase 3 activation in cardiomyocytes and mitochondrial dysfunction including increased mitochondrial ROS level, swelling in the mitochondria, decline in the mitochondria membrane potential (MMP), decrease in the cytochrome-c oxidase activity (complex IV), decrease ATP level and finally mitochondrial outer membrane (MOM) rupture in isolated mitochondria. Our results showed that the administration of curcumin efficiently decreased (P<0.05) cytotoxicity and caspase 3 activation, ROS formation, MMP collapse, mitochondrial swelling and mitochondrial outer membrane (MOM) rupture. Our findings suggest H. lepturus venom cusses a disruptive effect on mitochondrial respiratory chain, especially on complex II, and IV that predispose cardiomyocytes to ATP depletion and death signaling that could be protected with administration of curcumin. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Association between ROS production, swelling and the respirasome integrity in cardiac mitochondria.

    Jang, Sehwan; Javadov, Sabzali


    Although mitochondrial Ca(2+) overload and ROS production play a critical role in mitochondria-mediated cell death, a cause-effect relationship between them remains elusive. This study elucidated the crosstalk between mitochondrial swelling, ROS production, and electron transfer chain (ETC) supercomplexes in rat heart mitochondria in response to Ca(2+) and tert-butyl hydroperoxide (TBH), a lipid-soluble organic peroxide. Results showed that ROS production induced by TBH was significantly increased in the presence of Ca(2+) in a dose-dependent manner. TBH markedly inhibited the state 3 respiration rate with no effect on the mitochondrial swelling. Ca(2+) exerted a slight effect on mitochondrial respiration that was greatly aggravated by TBH. Analysis of supercomplexes revealed a minor difference in the presence of TBH and/or Ca(2+). However, incubation of mitochondria in the presence of high Ca(2+) (1 mM) or inhibitors of ETC complexes (rotenone and antimycin A) induced disintegration of the main supercomplex, respirasome. Thus, PTP-dependent swelling of mitochondria solely depends on Ca(2+) but not ROS. TBH has no effect on the respirasome while Ca(2+) induces disintegration of the supercomplex only at a high concentration. Intactness of individual ETC complexes I and III is important for maintenance of the structural integrity of the respirasome. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Removing dysfunctional mitochondria from axons independent of mitophagy under pathophysiological conditions.

    Lin, Mei-Yao; Cheng, Xiu-Tang; Xie, Yuxiang; Cai, Qian; Sheng, Zu-Hang


    Chronic mitochondrial dysfunction has been implicated in major neurodegenerative diseases. Long-term cumulative pathological stress leads to axonal accumulation of damaged mitochondria. Therefore, the early removal of defective mitochondria from axons constitutes a critical step of mitochondrial quality control. We recently investigated the axonal mitochondrial response to mild stress in wild-type neurons and chronic mitochondrial defects in amyotrophic lateral sclerosis (ALS)- and Alzheimer disease (AD)-linked neurons. We demonstrated that remobilizing stressed mitochondria is critical for maintaining axonal mitochondrial integrity. The selective release of the mitochondrial anchoring protein SNPH (syntaphilin) from stressed mitochondria enhances their retrograde transport toward the soma before PARK2/Parkin-mediated mitophagy is activated. This SNPH-mediated response is robustly activated during the early disease stages of ALS-linked motor neurons and AD-related cortical neurons. Our study thus reveals a new mechanism for the maintenance of axonal mitochondrial integrity through SNPH-mediated coordination of mitochondrial stress and motility that is independent of mitophagy.

  7. Formation of Sulfate from L-Cysteine in Rat Liver Mitochondria



    Full Text Available Formation of sulfate in rat liver mitochondria was studied. About 0.1 mumol of sulfate was formed in mitochondria from 1 g of liver in 60 min when 10 mM L-cysteine was used as the substrate. Addition of either 10 mM 2-oxoglutarate or 10 mM glutathione to this system increased sulfate formation 3 to 4 times. The addition of both 2-oxoglutarate and glutathione resulted in a 20-fold increase in sulfate formation. Sulfate formation in the presence of 5 mM L-cysteine was 58% of that with 10 mM L-cysteine. L-Cysteine-glutathione mixed disulfide was not a good substrate, indicating that this mixed disulfide was not an intermediate of sulfate formation in the present system. Incubation of 3-mercaptopyruvate with rat liver mitochondria also resulted in sulfate formation, and the addition of glutathione accelerated it. Formation of sulfite and thiosulfate was also detected. These results indicate that sulfate is produced in mitochondria, at least in part, from L-cysteine through the transamination pathway (3-mercaptopyruvate pathway.

  8. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Quan He


    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  9. Morphology of mitochondrial nucleoids, mitochondria, and nuclei during meiosis and sporulation of the yeast Saccharomycodes ludwigii.

    Miyakawa, Isamu; Nakahara, Ayumi; Ito, Kohei


    The morphology of mitochondrial nucleoids (mt-nucleoids), mitochondria, and nuclei was investigated during meiosis and sporulation of the diploid cells of the ascosporogenic yeast Saccharomycodes ludwigii. The mt-nucleoids appeared as discrete dots uniformly distributed in stationary-phase cells as revealed by 4',6-diamidino-2-phenylindole (DAPI) staining. Throughout first and second meiotic divisions, the mt-nucleoids moved to be located close to the dividing nuclei with the appearance of dots. On the other hand, mitochondria, which had tubular or fragmented forms in stationary-phase cells, increasingly fused with each other to form elongated mitochondria during meiotic prophase as revealed by 3,3' -dihexyloxacarbocyanine iodide [DiOC(6)(3)] staining. Mitochondria assembled to be located close to dividing nuclei during first and second meiotic divisions, and were finally incorporated into spores. During the first meiotic division, nuclear division occurred in any direction parallel, diagonally, or perpendicular to the longitudinal axis of the cell. In contrast, the second meiotic division was exclusively parallel to the longitudinal axis of the cell. The behavior of dividing nuclei explains the formation of a pair of spores with opposite mating types at both ends of cells. In the course of this study, it was also found that ledges between two spores were specifically stained with DiOC(6)(3).

  10. Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations.

    Qi, Hong; Li, Linxi; Shuai, Jianwei


    A Ca(2+) signaling model is proposed to consider the crosstalk of Ca(2+) ions between endoplasmic reticulum (ER) and mitochondria within microdomains around inositol 1, 4, 5-trisphosphate receptors (IP3R) and the mitochondrial Ca(2+) uniporter (MCU). Our model predicts that there is a critical IP3R-MCU distance at which 50% of the ER-released Ca(2+) is taken up by mitochondria and that mitochondria modulate Ca(2+) signals differently when outside of this critical distance. This study highlights the importance of the IP3R-MCU distance on Ca(2+) signaling dynamics. The model predicts that when MCU are too closely associated with IP3Rs, the enhanced mitochondrial Ca(2+) uptake will produce an increase of cytosolic Ca(2+) spike amplitude. Notably, the model demonstrates the existence of an optimal IP3R-MCU distance (30-85 nm) for effective Ca(2+) transfer and the successful generation of Ca(2+) signals in healthy cells. We suggest that the space between the inner and outer mitochondria membranes provides a defense mechanism against occurrences of high [Ca(2+)]Cyt. Our results also hint at a possible pathological mechanism in which abnormally high [Ca(2+)]Cyt arises when the IP3R-MCU distance is in excess of the optimal range.

  11. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens.

    Huang, C; Jiao, H; Song, Z; Zhao, J; Wang, X; Lin, H


    The objective of this study was to explore the linkage of oxidative stress occurring in mitochondria, skeletal muscles, and plasma in heat stress-challenged broilers. At d 35, 24 broilers were randomly assigned to 2 treatments: rearing at high temperature (32 ± 1°C; heat stress group) or normal temperature (21 ± 1.2°C; control) for 7 d. The oxidative damage of lipid, DNA, and protein and the activities of antioxidative enzymes were measured, respectively, in plasma, skeletal muscles (breast and thigh muscles), and skeletal muscle mitochondria. The result showed that heat exposure increased (P stress in breast and thigh muscles. In skeletal muscle mitochondria, heat stress increased (P stress (P 0.05). Heat stress increased SOD (P stressed broilers, indicating that urate could serve as an antioxidant to enhance the antioxidative capacity during stress in a concentration-dependent manner. The activities of respiratory chain complexes I and III were estimated in skeletal muscle mitochondria. Mitochondrial complex I activity was suppressed (P stressed broiler. The fatty acid composition in skeletal muscle was not influenced by heat stress. In conclusion, suppressed mitochondrial complex I activity is associated with oxidative stress induced by heat exposure, which, in turn, is linked with the oxidative damages in muscle tissues and plasma.

  12. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC.

    Che, Ting-Fang; Lin, Ching-Wen; Wu, Yi-Ying; Chen, Yu-Ju; Han, Chia-Li; Chang, Yih-leong; Wu, Chen-Tu; Hsiao, Tzu-Hung; Hong, Tse-Ming; Yang, Pan-Chyr


    Dysfunction of the mitochondria is well-known for being associated with cancer progression. In the present study, we analyzed the mitochondria proteomics of lung cancer cell lines with different invasion abilities and found that EGFR is highly expressed in the mitochondria of highly invasive non-small-cell lung cancer (NSCLC) cells. EGF induces the mitochondrial translocation of EGFR; further, it leads to mitochondrial fission and redistribution in the lamellipodia, upregulates cellular ATP production, and enhances motility in vitro and in vivo. Moreover, EGFR can regulate mitochondrial dynamics by interacting with Mfn1 and disturbing Mfn1 polymerization. Overexpression of Mfn1 reverses the phenotypes resulting from EGFR mitochondrial translocation. We show that the mitochondrial EGFR expressions are higher in paired samples of the metastatic lymph node as compared with primary lung tumor and are inversely correlated with the overall survival in NSCLC patients. Therefore, our results demonstrate that besides the canonical role of EGFR as a receptor tyrosine, the mitochondrial translocation of EGFR may enhance cancer invasion and metastasis through regulating mitochondria dynamics.

  13. Modeling RNA polymerase interaction in mitochondria of chordates

    Lyubetsky Vassily A


    selected genes only relative RNA concentrations have been experimentally determined. Conversely, these characteristics and absolute transcription levels can be obtained using relative RNA concentrations and RNA half-lives known from various experimental studies. In this case, the “inverse problem” is solved with multi-objective optimization. Conclusions In this study, we demonstrate that our model accurately reproduces all relevant experimental data available for plant plastids, as well as the mitochondria of chordates. Using experimental data, the model is applied to estimate binding intensities of phage-type RNA polymerases to their promoters as well as predicting terminator characteristics, including polarization. In addition, one can predict characteristics of phage-type RNA polymerases and the transcription process that are difficult to measure directly, e.g., the association between the promoter’s nucleotide composition and the intensity of polymerase binding. To illustrate the application of our model in functional predictions, we propose a possible mechanism for MELAS syndrome development in human involving a decrease of Phe-tRNA, Val-tRNA and rRNA concentrations in the cell. In addition, we describe how changes in methylation patterns of the mTERF binding site and three promoters in hypothyroid rat correlate with changes in intensities of the mTERF binding and transcription initiations. Finally, we introduce an auxiliary model to describe the interaction between polysomal mRNA and ribonucleases.

  14. Metabolic integration during the evolutionary origin of mitochondria



    Although mitochondria provide eukaryotic cells with certain metabolic advantages, in other ways they may be disadvantageous. For example, mitochondria produce reactive oxygen species that damage both nucleocytoplasm and mitochondria, resulting in mutations, diseases, and aging. The relationship of mitochondria to the cytoplasm is best understood in the context of evolutionary history. Although it is clear that mitochondria evolved from symbiotic bacteria, the exact nature of the initial symbiosis is a matter of continuing debate. The exchange of nutrients between host and symbiont may have differed from that between the cytoplasm and mitochondria in modern cells. Speculations about the initial relationships include the following. (1) The pre-mitochondrion may have been an invasive, parasitic bacterium. The host did not benefit. (2) The relationship was a nutritional syntrophy based upon transfer of organic acids from host to symbiont. (3) The relationship was a syntrophy based upon H2 transfer from symbiont to host, where the host was a methanogen. (4) There was a syntrophy based upon reciprocal exchange of sulfur compounds.The last conjecture receives support from our detection in eukaryotic cells of substantial H2S-oxidizing activity in mitochondria, and sulfur-reducing activity in the cytoplasm.

  15. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis.

    Dan Dunn, Joe; Alvarez, Luis Aj; Zhang, Xuezhi; Soldati, Thierry


    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. Copyright © 2015. Published by Elsevier B.V.

  16. Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia.

    Brown, David A; Hale, Sharon L; Baines, Christopher P; del Rio, Carlos L; Hamlin, Robert L; Yueyama, Yukie; Kijtawornrat, Anusak; Yeh, Steve T; Frasier, Chad R; Stewart, Luke M; Moukdar, Fatiha; Shaikh, Saame Raza; Fisher-Wellman, Kelsey H; Neufer, P Darrell; Kloner, Robert A


    We recently showed that Bendavia, a novel mitochondria-targeting peptide, reduced infarction and no-reflow across several experimental models. The purpose of this study was to determine the therapeutic timing and mechanism of action that underlie Bendavia's cytoprotective property. In rabbits exposed to in vivo ischemia/reperfusion (30/180 min), Bendavia administered 20 minutes prior to reperfusion (0.05 mg/kg/h, intravenously) reduced myocardial infarct size by ∼50% when administered for either 1 or 3 hours of reperfusion. However, when Bendavia perfusion began just 10 minutes after the onset of reperfusion, the protection against infarction and no-reflow was completely lost, indicating that the mechanism of protection is occurring early in reperfusion. Experiments in isolated mouse liver mitochondria found no discernible effect of Bendavia on blocking the permeability transition pore, and studies in isolated heart mitochondria showed no effect of Bendavia on respiratory rates. As Bendavia significantly lowered reactive oxygen species (ROS) levels in isolated heart mitochondria, the ROS-scavenging capacity of Bendavia was compared to well-known ROS scavengers using in vitro (cell-free) systems that enzymatically generate ROS. Across doses ranging from 1 nmol/L to 1 mmol/L, Bendavia showed no discernible ROS-scavenging properties, clearly differentiating itself from prototypical scavengers. In conclusion, Bendavia is a promising candidate to reduce cardiac injury when present at the onset of reperfusion but not after reperfusion has already commenced. Given that both infarction and no-reflow are related to increased cellular ROS, Bendavia's protective mechanism of action likely involves reduced ROS generation (as opposed to augmented scavenging) by endothelial and myocyte mitochondria.

  17. Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning.

    Boengler, Kerstin; Dodoni, Giuliano; Rodriguez-Sinovas, Antonio; Cabestrero, Alberto; Ruiz-Meana, Marisol; Gres, Petra; Konietzka, Ina; Lopez-Iglesias, Carmen; Garcia-Dorado, David; Di Lisa, Fabio; Heusch, Gerd; Schulz, Rainer


    Connexin 43 (Cx43) is involved in infarct size reduction by ischemic preconditioning (IP); the underlying mechanism of protection, however, is unknown. Since mitochondria have been proposed to be involved in IP's protection, the present study analyzed whether Cx43 is localized at mitochondria of cardiomyocytes and whether such localization is affected by IP. Western blot analysis on mitochondrial preparations isolated from rat, mouse, pig, and human hearts showed the presence of Cx43. The preparations were not contaminated with markers for other cell compartments. The localization of Cx43 to mitochondria was also confirmed by FACS sorting (double staining with MitoTracker Red and Cx43) and immuno-electron and confocal microscopy. To study the role of Cx43 in IP, mitochondria were isolated from the ischemic anterior wall (AW) and the control posterior wall (PW) of pig myocardium at the end of 90 min low-flow ischemia without (n=13) or with (n=13) a preceding preconditioning cycle of 10 min ischemia and 15 min reperfusion. With IP, the mitochondrial Cx43/adenine nucleotide transporter ratio was 3.4+/-0.7 fold greater in AW than in PW, whereas the ratio remained unchanged in non-preconditioned myocardium (1.1+/-0.2, p<0.05). The enhancement of the mitochondrial Cx43 protein level occurred rapidly, since an increase of mitochondrial Cx43 was already detected with two cycles of 5 min ischemia/reperfusion in isolated rat hearts to 262+/-63% of baseline. These data demonstrate that Cx43 is localized at cardiomyocyte mitochondria and that IP enhances such mitochondrial localization.

  18. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration

    Juan Mendizabal-Zubiaga


    Full Text Available The cannabinoid type 1 (CB1 receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1, where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles. Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis and myocardium from wild-type and CB1-KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahidrocannabinol (Δ9-THC concentrations (100 nM or 200 nM was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1-KO mice. Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12% and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1-KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1-WT and CB1-KO. CB1-KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant

  19. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration

    Mendizabal-Zubiaga, Juan; Melser, Su; Bénard, Giovanni; Ramos, Almudena; Reguero, Leire; Arrabal, Sergio; Elezgarai, Izaskun; Gerrikagoitia, Inmaculada; Suarez, Juan; Rodríguez De Fonseca, Fernando; Puente, Nagore; Marsicano, Giovanni; Grandes, Pedro


    The cannabinoid type 1 (CB1) receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1), where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles. Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis) and myocardium from wild-type and CB1-KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahydrocannabinol (Δ9-THC) concentrations (100 nM or 200 nM) was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1-KO mice. Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12 and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1-KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA) cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1-WT and CB1-KO. CB1-KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant difference was

  20. Protein oxidation in plant mitochondria as a stress indicator

    Møller, I.M.; Kristensen, B.K.


    Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first ...... oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown...... shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear....

  1. Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics.

    Pizzo, Paola; Pozzan, Tullio


    Mitochondria and endoplasmic reticulum (ER) have different roles in living cells but they interact both physically and functionally. A key aspect of the mitochondria-ER relationship is the modulation of Ca(2+) signaling during cell activation, which thus affects a variety of physiological processes. We focus here on the molecular aspects that control the dynamics of the organelle-organelle interaction and their relationship with Ca(2+) signals, also discussing the consequences that these phenomena have, not only for cell physiology but also in the control of cell death.

  2. Mature Erythrocytes of Iguana iguana (Squamata, Iguanidae Possess Functional Mitochondria.

    Giuseppina Di Giacomo

    Full Text Available Electron microscopy analyses of Iguana iguana blood preparations revealed the presence of mitochondria within erythrocytes with well-structured cristae. Fluorescence microscopy analyses upon incubation with phalloidin-FITC, Hoechst 33342 and mitochondrial transmembrane potential (Δψm-sensitive probe MitoTracker Red indicated that mitochondria i widely occur in erythrocytes, ii are polarized, and iii seem to be preferentially confined at a "perinuclear" region, as confirmed by electron microscopy. The analysis of NADH-dependent oxygen consumption showed that red blood cells retain the capability to consume oxygen, thereby providing compelling evidence that mitochondria of Iguana erythrocytes are functional and capable to perform oxidative phosphorylation.

  3. Light-induced import of the chromoprotein, phytochrome, into mitochondria

    Serlin, B. S.; Roux, S. J.


    Mitochondria extracted from plants that were irradiated with actinic light in vivo have associated with them the chromoprotein, phytochrome. This phytochrome retains its native subunit size of 124 kDa after proteolytic treatment of the mitochondria with trypsin and chymotrypsin. This result suggests that phytochrome is not exposed on the outer surface of the outer mitochondrial membrane. Phytochrome, so protected, is not found to be associated with mitochondria derived from unirradiated plants. The possibility that the photoactivation of phytochrome induces a conformational change in its structure which facilitates its transport into the mitochondrion is discussed.

  4. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne


    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying

  5. Fish oil prevents colon cancer by modulation of structure and function of mitochondria.

    Agnihotri, Navneet; Sharma, Gayatri; Rani, Isha; Renuka; Bhatnagar, Archana


    Cancer cells are more susceptible to metabolic perturbations due to impaired electron transport chain (ETC) that promote uncontrolled proliferation. Mitochondria play a pivotal role in bioenergetics and apoptosis, hence are considered as a promising target in tumor cell eradication. Therefore, the present study is designed to elucidate chemopreventive action of fish oil (FO) in combination with corn oil (CO) on mitochondria in colorectal cancer (CRC). Male Wistar rats were divided into groups depending on dietary regimen-Control group, FO+CO(1:1) and FO+CO(2.5:1). These groups were further subdivided depending on whether these received a weekly intraperitoneal injection of ethylenediamine tetra-acetic acid (EDTA) or N,N-dimethylhydrazine dihydrochloride (DMH) for a period of 4 weeks. The animals sacrificed 48h and 16 weeks after EDTA/DMH treatment constituted initiation and post-initiation phase respectively. The structural and functional alterations in mitochondria were evaluated using transmission electron microscopy (TEM) and by assaying electron transport chain (ETC) enzymes. Mitochondrial lipid composition and cholesterol levels were also assessed. DMH treatment led to mitochondrial degeneration, disrupted cristae and a significant decrease in ETC complexes suggestive of metabolic reprogramming. Moreover, an increase in cholesterol and cardiolipin (CL) levels in post-initiation phase led to evasion of apoptosis. FO in both the ratios resulted in stabilization and increase in number of mitochondria, however, FO+CO(2.5:1)+DMH group also exhibited mitophagy and crystolysis alongwith altered dynamics in ETC which facilitated apoptosis. It also decreased cholesterol and CL levels to increase apoptosis. Fish oil targets mitochondria in a dose dependent manner that augments apoptosis and hence attenuates carcinogenesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. The Role of Mitochondria in the Activation/Maintenance of SOCE: Store-Operated Ca(2+) Entry and Mitochondria.

    Spät, András; Szanda, Gergö


    Mitochondria extensively modify virtually all cellular Ca(2+) transport processes, and store-operated Ca(2+) entry (SOCE) is no exception to this rule. The interaction between SOCE and mitochondria is complex and reciprocal, substantially altering and, ultimately, fine-tuning both capacitative Ca(2+) influx and mitochondrial function. Mitochondria, owing to their considerable Ca(2+) accumulation ability, extensively buffer the cytosolic Ca(2+) in their vicinity. In turn, the accumulated ion is released back into the neighboring cytosol during net Ca(2+) efflux. Since store depletion itself and the successive SOCE are both Ca(2+)-regulated phenomena, mitochondrial Ca(2+) handling may have wide-ranging effects on capacitative Ca(2+) influx at any given time. In addition, mitochondria may also produce or consume soluble factors known to affect store-operated channels. On the other hand, Ca(2+) entering the cell during SOCE is sensed by mitochondria, and the ensuing mitochondrial Ca(2+) uptake boosts mitochondrial energy metabolism and, if Ca(2+) overload occurs, may even lead to apoptosis or cell death. In several cell types, mitochondria seem to be sterically excluded from the confined space that forms between the plasma membrane (PM) and endoplasmic reticulum (ER) during SOCE. This implies that high-Ca(2+) microdomains comparable to those observed between the ER and mitochondria do not form here. In the following chapter, the above aspects of the many-sided SOCE-mitochondrion interplay will be discussed in greater detail.


    赵冠宏; 许炽标; 辛文芬


    Aim To study the mechanism of ABZ,ABZSX and ABZSN on Ascaris Suum. Methods The activities of enzyme complexes in mitochondria were detected by spectrophotometer for the study of effects of ABZ, ABZSX and ABZSN on the anaerobic respiratory chain of enzyme complexes in mitochondria of Ascaris Suum muscle and rat liver. Results The activity of succinate CoQ reductase in Ascaris muscle mitochondria was apparently suppressed by ABZ ,ABZSX. Conclusion Preliminary study on the mechanism and toxicity of ABZ through enzyme studies,in order to find a more effective and satisfactory drug with low toxicity for clinical use.%目的初步了解阿苯哒唑(albendazole,ABZ)及其主要代谢物亚砜(albendazole-sulfoxide,ABZSX)和砜(albenda-zole-sulfone,ABZSN)对猪蛔虫的作用机制。方法应用紫外分光光度计扫描系统对猪蛔虫肌肉线粒体中四种酶复合体(com-plex I-NADH细胞色素C脱氢酶complex Ⅱ-琥珀酸CoQ脱氢酶complex Ⅲ-CoQ细胞色素还原酶;complex Ⅳ-细胞色素C氧化酶)活性进行测定,以鼠肝线粒体作对照,再经ABZ及其代谢物ABZSX,ABZSN作用后观察其活性改变。结果 ABZ及其代谢物ABZSX对猪蛔虫肌肉线粒体中琥珀酸脱氢酶(complex Ⅱ)的活性有明显的抑制作用,而对鼠肝线粒体中四种酶复合体均无明显抑制作用。结论 ABZ及其代谢物主要抑制了蛔虫肌肉线粒体中琥珀酸脱氢酶的活性,使其不能完成呼吸链的氧化磷酸化过程,从而达到杀虫效果。

  8. Redox conditions and protein oxidation in plant mitochondria

    Møller, Ian Max; Kasimova, Marina R.; Krab, Klaas


    Redox conditions and protein oxidation in plant mitochondria NAD(P)H has a central position in respiratory metabolism. It is produced by a large number of enzymes, e.g. the Krebs cycle dehydrogenases, in the mitochondrial matrix and is oxidised by, amongst others, the respiratory chain. Most...... of this NAD(P)H appears to be bound to proteins, in fact free NAD(P)H – an important parameter in metabolic regulation - has never been observed in mitochondria. We have estimated free and bound NAD(P)H in isolated plant mitochondria under different metabolic conditions. The fluorescence spectra of free...... and bound NADH was determined and used to deconvolute fluorescence spectra of actively respiring mitochondria. Most of the mitochondrial NADH is bound in states 2 and 4. The amount of free NADH is lower but relatively constant even increasing a little in state 3 where it is about equal to bound NADH...

  9. Mitochondria: An intriguing target for killing tumour-initiating cells.

    Yan, Bing; Dong, Lanfeng; Neuzil, Jiri


    Tumour-initiating cells (TICs) play a pivotal role in cancer initiation, metastasis and recurrence, as well as in resistance to therapy. Therefore, development of drugs targeting TICs has become a focus of contemporary research. Mitochondria have emerged as a promising target of anti-cancer therapies due to their specific role in cancer metabolism and modulation of apoptotic pathways. Mitochondria of TICs possess special characteristics, some of which can be utilised to design drugs specifically targeting these cells. In this paper, we will review recent research on TICs and their mitochondria, and introduce drugs that kill these cells by way of mitochondrial targeting. Copyright © 2015 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  10. Mitochondrial aging and age-related dysfunction of mitochondria.

    Chistiakov, Dimitry A; Sobenin, Igor A; Revin, Victor V; Orekhov, Alexander N; Bobryshev, Yuri V


    Age-related changes in mitochondria are associated with decline in mitochondrial function. With advanced age, mitochondrial DNA volume, integrity and functionality decrease due to accumulation of mutations and oxidative damage induced by reactive oxygen species (ROS). In aged subjects, mitochondria are characterized by impaired function such as lowered oxidative capacity, reduced oxidative phosphorylation, decreased ATP production, significant increase in ROS generation, and diminished antioxidant defense. Mitochondrial biogenesis declines with age due to alterations in mitochondrial dynamics and inhibition of mitophagy, an autophagy process that removes dysfunctional mitochondria. Age-dependent abnormalities in mitochondrial quality control further weaken and impair mitochondrial function. In aged tissues, enhanced mitochondria-mediated apoptosis contributes to an increase in the percentage of apoptotic cells. However, implementation of strategies such as caloric restriction and regular physical training may delay mitochondrial aging and attenuate the age-related phenotype in humans.

  11. Mitochondria as Pharmacological Targets: The Discovery of Novel ...

    Obesity results from prolonged positive imbalance between energy in take and expenditure. When food intake chronically exceeds the body's energy need, an efficient metabolism results in the storage of the excess energy as fat. Mitochondria ...

  12. Glycerolipid synthesis and lipid trafficking in plant mitochondria.

    Michaud, Morgane; Prinz, William A; Jouhet, Juliette


    Lipid trafficking between mitochondria and other organelles is required for mitochondrial membrane biogenesis and signaling. This lipid exchange occurs by poorly understood nonvesicular mechanisms. In yeast and mammalian cells, this lipid exchange is thought to take place at contact sites between mitochondria and the ER or vacuolar membranes. Some proteins involved in the tethering between membranes or in the transfer of lipids in mitochondria have been identified. However, in plants, little is known about the synthesis of mitochondrial membranes. Mitochondrial membrane biogenesis is particularly important and noteworthy in plants as the lipid composition of mitochondrial membranes is dramatically changed during phosphate starvation and other stresses. This review focuses on the principal pathways involved in the synthesis of the most abundant mitochondrial glycerolipids in plants and the lipid trafficking that is required for plant mitochondria membrane biogenesis. © 2016 Federation of European Biochemical Societies.

  13. Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation.

    Ballinger, Mallory A; Schwartz, Christine; Andrews, Matthew T


    During hibernation, thirteen-lined ground squirrels (Ictidomys tridecemlineatus) regularly cycle between bouts of torpor and interbout arousal (IBA). Most of the brain is electrically quiescent during torpor but regains activity quickly upon arousal to IBA, resulting in extreme oscillations in energy demand during hibernation. We predicted increased functional capacity of brain mitochondria during hibernation compared with spring to accommodate the variable energy demands of hibernation. To address this hypothesis, we examined mitochondrial bioenergetics in the ground squirrel brain across three time points: spring (SP), torpor (TOR), and IBA. Respiration rates of isolated brain mitochondria through complex I of the electron transport chain were more than twofold higher in TOR and IBA than in SP (P mitochondria compared with TOR and IBA (P mitochondria function more effectively during the hibernation season, allowing for rapid production of energy to meet demand when extreme physiological changes are occurring. Copyright © 2017 the American Physiological Society.

  14. Lipid Transport between the Endoplasmic Reticulum and Mitochondria

    Flis, Vid V.


    Mitochondria are partially autonomous organelles that depend on the import of certain proteins and lipids to maintain cell survival and membrane formation. Although phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine are synthesized by mitochondrial enzymes, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and sterols need to be imported from other organelles. The origin of most lipids imported into mitochondria is the endoplasmic reticulum, which requires interaction of these two subcellular compartments. Recently, protein complexes that are involved in membrane contact between endoplasmic reticulum and mitochondria were identified, but their role in lipid transport is still unclear. In the present review, we describe components involved in lipid translocation between the endoplasmic reticulum and mitochondria and discuss functional as well as regulatory aspects that are important for lipid homeostasis. PMID:23732475

  15. Parkinson's Disease: The Mitochondria-Iron Link.

    Muñoz, Yorka; Carrasco, Carlos M; Campos, Joaquín D; Aguirre, Pabla; Núñez, Marco T


    Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences-mitochondrial dysfunction, iron accumulation, and oxidative damage-generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation-by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways-is a viable therapy for retarding this cycle.

  16. Electronic microscopy evidence for mitochondria as targets for Cd/Se/Te-based quantum dot 705 toxicity in vivo

    Chia-Hua Lin


    Full Text Available The safety of quantum dots (QDs 705 was evaluated in this study. Mice were treated with QD705 (intravenous at a single dose of (40 pmol for 4, 12, 16, and 24 weeks. Effects of QD705 on kidneys were examined. While there was a lack of histopathology, reduction in renal functions was detected at 16 weeks. Electron microscopic examination revealed alterations in proximal convoluted tubule (PCT cell mitochondria at even much earlier time, including disorientation and reduction of mitochondrial number (early change, mitochondrial swelling, and later compensatory mitochondrial hypertrophy (enlargement mitochondria: giant mitochondria with hyperplastic inner cristae as well as mitochondrial hyperplasia (increase in mitochondrial biogenesis and numbers were observed. Such changes probably represent compensatory attempts of the mitochondria for functional loss or reduction of mitochondria in QD705 treated animals. Moreover, degeneration of mitochondria (myelin-figure and cytoplasmic membranous body formation and degradation of cytoplasmic materials (isolated cytoplasmic pockets of degenerated materials and focal cytoplasmic degradation also occurred in later time points (16–24 weeks. Such mitochondrial changes were not identical with those induced by pure cadmium. Taken together, we suggest that mitochondria appeared to be the target of QD705 toxicity and specific mitochondrial markers may be useful parameters for toxicity assessments of QDs or other metal-based nanomaterials.

  17. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity.

    Brusco, Janaina; Haas, Kurt


    The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca(2+) and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2-mitochondria relationship mediating these functions. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  18. Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control.

    Thompson, Winston E; Ramalho-Santos, João; Sutovsky, Peter


    Ubiquitination of the sperm mitochondria during spermatogenesis has been implicated in the targeted degradation of paternal mitochondria after fertilization, a mechanism proposed to promote the predominantly maternal inheritance of mitochondrial DNA in humans and animals. The identity of ubiquitinated substrates in the sperm mitochondria is not known. In the present study, we show that prohibitin, a highly conserved, 30- to 32-kDa mitochondrial membrane protein, occurs in a number of unexpected isoforms, ranging from 64 to greater than 185 kDa in the mammalian sperm mitochondria, which are the ubiquitinated substrates. These bands bind antiubiquitin antibodies, displaying a pattern consistent with polyubiquitinated "ladders." Immunoprecipitation of sperm extracts with antiprohibitin antibodies followed by probing of the resultant immunocomplexes with antiubiquitin yields a banding pattern identical to that observed by antiprohibitin Western blot analysis. In fact, the presumably nonubiquitinated 30-kDa prohibitin band shows no antiubiquitin immunoreactivity. We demonstrate that ubiquitination of prohibitin occurs in testicular spermatids and spermatozoa. Ubiquitinated prohibitin molecules also accumulate in the defective fractions of ejaculated spermatozoa, which are thought to undergo surface ubiquitination during epididymal passage. In such sperm fractions, ubiquitin also coprecipitates with tubulin and microtubule-associated proteins, presumably contributed by the axonemes of defective, ubiquitinated spermatozoa. The results of the present study suggest that prohibitin is one of the ubiquitinated substrates that makes the sperm mitochondria recognizable by the egg's ubiquitin-proteasome dependent proteolytic machinery after fertilization and most likely facilitates the marking of defective spermatozoa in the epididymis for degradation.

  19. Identification and characterization of respirasomes in potato mitochondria.

    Eubel, Holger; Heinemeyer, Jesco; Braun, Hans-Peter


    Plant mitochondria were previously shown to comprise respiratory supercomplexes containing cytochrome c reductase (complex III) and NADH dehydrogenase (complex I) of I(1)III(2) and I(2)III(4) composition. Here we report the discovery of additional supercomplexes in potato (Solanum tuberosum) mitochondria, which are of lower abundance and include cytochrome c oxidase (complex IV). Highly active mitochondria were isolated from potato tubers and stems, solubilized by digitonin, and subsequently analyzed by Blue-native (BN) polyacrylamide gel electrophoresis (PAGE). Visualization of supercomplexes by in-gel activity stains for complex IV revealed five novel supercomplexes of 850, 1,200, 1,850, 2,200, and 3,000 kD in potato tuber mitochondria. These supercomplexes have III(2)IV(1), III(2)IV(2), I(1)III(2)IV(1), I(1)III(2)IV(2), and I(1)III(2)IV(4) compositions as shown by two-dimensional BN/sodium dodecyl sulfate (SDS)-PAGE and BN/BN-PAGE in combination with activity stains for cytochrome c oxidase. Potato stem mitochondria include similar supercomplexes, but complex IV is partially present in a smaller version that lacks the Cox6b protein and possibly other subunits. However, in mitochondria from potato tubers and stems, about 90% of complex IV was present in monomeric form. It was suggested that the I(1)III(2)IV(4) supercomplex represents a basic unit for respiration in mammalian mitochondria termed respirasome. Respirasomes also occur in potato mitochondria but were of low concentrations under all conditions applied. We speculate that respirasomes are more abundant under in vivo conditions.

  20. A common evolutionary origin for mitochondria and hydrogenosomes.

    Bui, E T; Bradley, P J; Johnson, P J


    Trichomonads are among the earliest eukaryotes to diverge from the main line of eukaryotic descent. Keeping with their ancient nature, these facultative anaerobic protists lack two "hallmark" organelles found in most eukaryotes: mitochondria and peroxisomes. Trichomonads do, however, contain an unusual organelle involved in carbohydrate metabolism called the hydrogenosome. Like mitochondria, hydrogenosomes are double-membrane bounded organelles that produce ATP using pyruvate as the primary s...

  1. Mitochondria Maintain Distinct Ca(2+) Pools in Cone Photoreceptors.

    Giarmarco, Michelle M; Cleghorn, Whitney M; Sloat, Stephanie R; Hurley, James B; Brockerhoff, Susan E


    Ca(2+) ions have distinct roles in the outer segment, cell body, and synaptic terminal of photoreceptors. We tested the hypothesis that distinct Ca(2+) domains are maintained by Ca(2+) uptake into mitochondria. Serial block face scanning electron microscopy of zebrafish cones revealed that nearly 100 mitochondria cluster at the apical side of the inner segment, directly below the outer segment. The endoplasmic reticulum surrounds the basal and lateral surfaces of this cluster, but does not reach the apical surface or penetrate into the cluster. Using genetically encoded Ca(2+) sensors, we found that mitochondria take up Ca(2+) when it accumulates either in the cone cell body or outer segment. Blocking mitochondrial Ca(2+) uniporter activity compromises the ability of mitochondria to maintain distinct Ca(2+) domains. Together, our findings indicate that mitochondria can modulate subcellular functional specialization in photoreceptors.SIGNIFICANCE STATEMENT Ca(2+) homeostasis is essential for the survival and function of retinal photoreceptors. Separate pools of Ca(2+) regulate phototransduction in the outer segment, metabolism in the cell body, and neurotransmitter release at the synaptic terminal. We investigated the role of mitochondria in compartmentalization of Ca(2+) We found that mitochondria form a dense cluster that acts as a diffusion barrier between the outer segment and cell body. The cluster is surprisingly only partially surrounded by the endoplasmic reticulum, a key mediator of mitochondrial Ca(2+) uptake. Blocking the uptake of Ca(2+) by mitochondria causes redistribution of Ca(2+) throughout the cell. Our results show that mitochondrial Ca(2+) uptake in photoreceptors is complex and plays an essential role in normal function. Copyright © 2017 the authors 0270-6474/17/372061-12$15.00/0.

  2. Sequence evidence for the symbiotic origins of chloroplasts and mitochondria

    George, D. G.; Hunt, L. T.; Dayhoff, M. O.


    The origin of mitochondria and chloroplasts is investigated on the basis of prokaryotic and early-eukaryotic evolutionary trees derived from protein and nucleic-acid sequences by the method of Dayhoff (1979). Trees for bacterial ferrodoxins, 5S ribosomal RNA, c-type cytochromes, the lipid-binding subunit of ATPase, and dihydrofolate reductase are presented and discussed. Good agreement among the trees is found, and it is argued that the mitochondria and chloroplasts evolved by multiple symbiotic events.

  3. l-Lactate metabolism in HEP G2 cell mitochondria due to the l-lactate dehydrogenase determines the occurrence of the lactate/pyruvate shuttle and the appearance of oxaloacetate, malate and citrate outside mitochondria.

    Pizzuto, Roberto; Paventi, Gianluca; Porcile, Carola; Sarnataro, Daniela; Daniele, Aurora; Passarella, Salvatore


    As part of an ongoing study of l-lactate metabolism both in normal and in cancer cells, we investigated whether and how l-lactate metabolism occurs in mitochondria of human hepatocellular carcinoma (Hep G2) cells. We found that Hep G2 cell mitochondria (Hep G2-M) possess an l-lactate dehydrogenase (ml-LDH) restricted to the inner mitochondrial compartments as shown by immunological analysis, confocal microscopy and by assaying ml-LDH activity in solubilized mitochondria. Cytosolic and mitochondrial l-LDHs were found to differ from one another in their saturation kinetics. Having shown that l-lactate itself can enter Hep G2 cells, we found that Hep G2-M swell in ammonium l-lactate, but not in ammonium pyruvate solutions, in a manner inhibited by mersalyl, this showing the occurrence of a carrier-mediated l-lactate transport in these mitochondria. Occurrence of the l-lactate/pyruvate shuttle and the appearance outside mitochondria of oxaloacetate, malate and citrate arising from l-lactate uptake and metabolism together with the low oxygen consumption and membrane potential generation are in favor of an anaplerotic role for l-LAC in Hep G2-M.

  4. "Respirasome"-like supercomplexes in green leaf mitochondria of spinach.

    Krause, Frank; Reifschneider, Nicole H; Vocke, Dirk; Seelert, Holger; Rexroth, Sascha; Dencher, Norbert A


    Higher plant mitochondria have many unique features compared with their animal and fungal counterparts. This is to a large extent related to the close functional interdependence of mitochondria and chloroplasts, in which the two ATP-generating processes of oxidative phosphorylation and photosynthesis, respectively, take place. We show that digitonin treatment of mitochondria contaminated with chloroplasts from spinach (Spinacia oleracea) green leaves at two different buffer conditions, performed to solubilize oxidative phosphorylation supercomplexes, selectively extracts the mitochondrial membrane protein complexes and only low amounts of stroma thylakoid membrane proteins. By analysis of digitonin extracts from partially purified mitochondria of green leaves from spinach using blue and colorless native electrophoresis, we demonstrate for the first time that in green plant tissue a substantial proportion of the respiratory complex IV is assembled with complexes I and III into "respirasome"-like supercomplexes, previously observed in mammalian, fungal, and non-green plant mitochondria only. Thus, fundamental features of the supramolecular organization of the standard respiratory complexes I, III, and IV as a respirasome are conserved in all higher eukaryotes. Because the plant respiratory chain is highly branched possessing additional alternative enzymes, the functional implications of the occurrence of respiratory supercomplexes in plant mitochondria are discussed.

  5. Mitochondria change dynamics and morphology during grapevine leaf senescence.

    Cristina Ruberti

    Full Text Available Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera, by stably expressing a GFP (green fluorescent protein reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells.

  6. Mitochondria change dynamics and morphology during grapevine leaf senescence.

    Ruberti, Cristina; Barizza, Elisabetta; Bodner, Martina; La Rocca, Nicoletta; De Michele, Roberto; Carimi, Francesco; Lo Schiavo, Fiorella; Zottini, Michela


    Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera), by stably expressing a GFP (green fluorescent protein) reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells.

  7. Internalization of isolated functional mitochondria: involvement of macropinocytosis

    Kitani, Tomoya; Kami, Daisuke; Matoba, Satoaki; Gojo, Satoshi


    In eukaryotic cells, mitochondrial dysfunction is associated with a variety of human diseases. Delivery of exogenous functional mitochondria into damaged cells has been proposed as a mechanism of cell transplant and physiological repair for damaged tissue. We here demonstrated that isolated mitochondria can be transferred into homogeneic and xenogeneic cells by simple co-incubation using genetically labelled mitochondria, and elucidated the mechanism and the effect of direct mitochondrial transfer. Intracellular localization of exogenous mitochondria was confirmed by PCR, real-time PCR, live fluorescence imaging, three-dimensional reconstruction imaging, continuous time-lapse microscopic observation, flow cytometric analysis and immunoelectron microscopy. Isolated homogeneic mitochondria were transferred into human uterine endometrial gland-derived mesenchymal cells in a dose-dependent manner. Moreover, mitochondrial transfer rescued the mitochondrial respiratory function and improved the cellular viability in mitochondrial DNA-depleted cells and these effects lasted several days. Finally, we discovered that mitochondrial internalization involves macropinocytosis. In conclusion, these data support direct transfer of exogenous mitochondria as a promising approach for the treatment of various diseases. PMID:24912369

  8. Cytosolic proteostasis through importing of misfolded proteins into mitochondria.

    Ruan, Linhao; Zhou, Chuankai; Jin, Erli; Kucharavy, Andrei; Zhang, Ying; Wen, Zhihui; Florens, Laurence; Li, Rong


    Loss of proteostasis underlies ageing and neurodegeneration characterized by the accumulation of protein aggregates and mitochondrial dysfunction. Although many neurodegenerative-disease-associated proteins can be found in mitochondria, it remains unclear how mitochondrial dysfunction and protein aggregation could be related. In dividing yeast cells, protein aggregates that form under stress or during ageing are preferentially retained by the mother cell, in part through tethering to mitochondria, while the disaggregase Hsp104 helps to dissociate aggregates and thereby enables refolding or degradation of misfolded proteins. Here we show that, in yeast, cytosolic proteins prone to aggregation are imported into mitochondria for degradation. Protein aggregates that form under heat shock contain both cytosolic and mitochondrial proteins and interact with the mitochondrial import complex. Many aggregation-prone proteins enter the mitochondrial intermembrane space and matrix after heat shock, and some do so even without stress. Timely dissolution of cytosolic aggregates requires the mitochondrial import machinery and proteases. Blocking mitochondrial import but not proteasome activity causes a marked delay in the degradation of aggregated proteins. Defects in cytosolic Hsp70s leads to enhanced entry of misfolded proteins into mitochondria and elevated mitochondrial stress. We term this mitochondria-mediated proteostasis mechanism MAGIC (mitochondria as guardian in cytosol) and provide evidence that it may exist in human cells.

  9. Pulmonary surfactant protein A inhibits the lipid peroxidation stimulated by linoleic acid hydroperoxide of rat lung mitochondria and microsomes.

    Terrasa, Ana M; Guajardo, Margarita H; de Armas Sanabria, Elizabeth; Catalá, Angel


    Reactive oxygen species play an important role in several acute lung injuries. The lung tissue contains polyunsaturated fatty acids (PUFAs) that are substrates of lipid peroxidation that may lead to loss of the functional integrity of the cell membranes. In this study, we compare the in vitro protective effect of pulmonary surfactant protein A (SP-A), purified from porcine surfactant, against ascorbate-Fe(2+) lipid peroxidation stimulated by linoleic acid hydroperoxide (LHP) of the mitochondria and microsomes isolated from rat lung; deprived organelles of ascorbate and LHP were utilized as control. The process was measured simultaneously by chemiluminescence as well as by PUFA degradation of the total lipids isolated from these organelles. The addition of LHP to rat lung mitochondria or microsomes produces a marked increase in light emission; the highest value of activation was produced in microsomes (total chemiluminescence: 20.015+/-1.735 x 10(5) cpm). The inhibition of lipid peroxidation (decrease of chemiluminescence) was observed with the addition of increasing amounts (2.5 to 5.0 microg) of SP-A in rat lung mitochondria and 2.5 to 7.5 microg of SP-A in rat lung microsomes. The inhibitory effect reaches the highest values in the mitochondria, thus, 5.0 microg of SP-A produces a 100% inhibition in this membranes whereas 7.5 microg of SP-A produces a 51.25+/-3.48% inhibition in microsomes. The major difference in the fatty acid composition of total lipids isolated from native and peroxidized membranes was found in the arachidonic acid content; this decreased from 9.68+/-1.60% in the native group to 5.72+/-1.64% in peroxidized mitochondria and from 7.39+/-1.14% to 3.21+/-0.77% in microsomes. These changes were less pronounced in SP-A treated membranes; as an example, in the presence of 5.0 microg of SP-A, we observed a total protection of 20:4 n-6 (9.41+/-3.29%) in mitochondria, whereas 7.5 microg of SP-A produced a 65% protection in microsomes (5

  10. Double-tracer autoradiographic study of protein synthesis and glucose consumption in rats with focal cerebral ischemia

    Christensen, Thomas; Balchen, T; Bruhn, T


    . Neighboring brain sections exposed an X-ray film (3H-insensitive), and a 3H-sensitive for determination of rCMRglc and PS, respectively. Sections for PS determination were washed in