WorldWideScience

Sample records for mission ldcm imagery

  1. Data-driven simulations of the Landsat Data Continuity Mission (LDCM) platform

    Science.gov (United States)

    Gerace, Aaron; Gartley, Mike; Schott, John; Raqueño, Nina; Raqueño, Rolando

    2011-06-01

    The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are two new sensors being developed by the Landsat Data Continuity Mission (LDCM) that will extend over 35 years of archived Landsat data. In a departure from the whiskbroom design used by all previous generations of Landsat, the LDCM system will employ a pushbroom technology. Although the newly adopted modular array, pushbroom architecture has several advantages over the previous whiskbroom design, registration of the multi-spectral data products is a concern. In this paper, the Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool was used to simulate an LDCM collection, which gives the team access to data that would not otherwise be available prior to launch. The DIRSIG model was used to simulate the two-instrument LDCM payload in order to study the geometric and radiometric impacts of the sensor design on the proposed processing chain. The Lake Tahoe area located in eastern California was chosen for this work because of its dramatic change in elevation, which was ideal for studying the geometric effects of the new Landsat sensor design. Multi-modal datasets were used to create the Lake Tahoe site model for use in DIRSIG. National Elevation Dataset (NED) data were used to create the digital elevation map (DEM) required by DIRSIG, QuickBird data were used to identify different material classes in the scene, and ASTER and Hyperion spectral data were used to assign radiometric properties to those classes. In order to model a realistic Landsat orbit in these simulations, orbital parameters were obtained from a Landsat 7 two-line element set and propagated with the SGP4 orbital position model. Line-of-sight vectors defining how the individual detector elements of the OLI and TIRS instruments project through the optics were measured and provided by NASA. Additionally, the relative spectral response functions for the 9 bands of OLI and the 2 bands of TIRS were measured and provided by NASA

  2. Landsat Data Continuity Mission (LDCM) space to ground mission data architecture

    Science.gov (United States)

    Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM

  3. Landsat Data Continuity Mission (LDCM) - Optimizing X-Band Usage

    Science.gov (United States)

    Garon, H. M.; Gal-Edd, J. S.; Dearth, K. W.; Sank, V. I.

    2010-01-01

    The NASA version of the low-density parity check (LDPC) 7/8-rate code, shortened to the dimensions of (8160, 7136), has been implemented as the forward error correction (FEC) schema for the Landsat Data Continuity Mission (LDCM). This is the first flight application of this code. In order to place a 440 Msps link within the 375 MHz wide X band we found it necessary to heavily bandpass filter the satellite transmitter output . Despite the significant amplitude and phase distortions that accompanied the spectral truncation, the mission required BER is maintained at LDPC code and the amplitude and phase compensation provided in the receiver. Similar results were obtained with receivers from several vendors.

  4. Operational calibration and validation of landsat data continuity mission (LDCM) sensors using the image assessment system (IAS)

    Science.gov (United States)

    Micijevic, Esad; Morfitt, Ron

    2010-01-01

    Systematic characterization and calibration of the Landsat sensors and the assessment of image data quality are performed using the Image Assessment System (IAS). The IAS was first introduced as an element of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) ground segment and recently extended to Landsat 4 (L4) and 5 (L5) Thematic Mappers (TM) and Multispectral Sensors (MSS) on-board the Landsat 1-5 satellites. In preparation for the Landsat Data Continuity Mission (LDCM), the IAS was developed for the Earth Observer 1 (EO-1) Advanced Land Imager (ALI) with a capability to assess pushbroom sensors. This paper describes the LDCM version of the IAS and how it relates to unique calibration and validation attributes of its on-board imaging sensors. The LDCM IAS system will have to handle a significantly larger number of detectors and the associated database than the previous IAS versions. An additional challenge is that the LDCM IAS must handle data from two sensors, as the LDCM products will combine the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) spectral bands.

  5. Landsat Data Continuity Mission

    Science.gov (United States)

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  6. Landsat Data Continuity Mission (LDCM) Standard Product Generation and Characteristics

    Science.gov (United States)

    Micijevic, E.; Hayes, R.

    2012-12-01

    The LDCM's Landsat 8 (L8), planned for launch in February 2013, is the latest satellite in the 40 year history of the Landsat program. The satellite will have two imagers: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The data from both sensors will be processed and combined into the final Level 1 Terrain (L1T) standard product by the Landsat Product Generation System (LPGS) at the USGS Earth Resources Observation and Science (EROS). Landsat 8 products will nominally have 11 image bands; however, products will still be created if OLI only, or TIRS only collections are acquired. The LPGS is designed to create L1T products from Level 0 data by merging OLI and TIRS outputs and performing systematic radiometric and geometric corrections, followed by precision and terrain corrections that include Ground Control Points (GCP), and a Digital Elevation Model (DEM) for topographic accuracy. Scenes that have a quality score of 9 or greater and a percent cloud cover less than 40 will be automatically processed. In addition, any archived scene, regardless of cloud cover, can be requested for processing through USGS EROS clients, GloVis or Earth Explorer. While most data will be processed as Level L1T, some scenes will not have ground control or elevation data necessary for precision or terrain correction, respectively. In these cases, the best level of correction will be applied (Level 1G-systematic or Level 1Gt-systematic terrain). The standard Level 1T products will contain scaled Top of Atmosphere (TOA) reflectance data, only for OLI. The conversion between radiance and reflectance within radiometric processing (L1R) will be performed using the band specific coefficients that are proportional to the respective exoatmospheric solar irradiances and the Earth-Sun distance for the scene's acquisition day. The TIRS data will contain scaled at-sensor radiances and no at-sensor brightness temperature or emissivity conversions are planned. For users that

  7. LANDSAT 8 MULTISPECTRAL AND PANSHARPENED IMAGERY PROCESSING ON THE STUDY OF CIVIL ENGINEERING ISSUES

    Directory of Open Access Journals (Sweden)

    M. A. Lazaridou

    2016-06-01

    Full Text Available Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM – Landsat 8 is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion – pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  8. Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues

    Science.gov (United States)

    Lazaridou, M. A.; Karagianni, A. Ch.

    2016-06-01

    Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  9. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  10. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  11. Enhancing a Simple MODIS Cloud Mask Algorithm for the Landsat Data Continuity Mission

    Science.gov (United States)

    Wilson, Michael J.; Oreopoulos, Lazarous

    2011-01-01

    The presence of clouds in images acquired by the Landsat series of satellites is usually an undesirable, but generally unavoidable fact. With the emphasis of the program being on land imaging, the suspended liquid/ice particles of which clouds are made of fully or partially obscure the desired observational target. Knowing the amount and location of clouds in a Landsat scene is therefore valuable information for scene selection, for making clear-sky composites from multiple scenes, and for scheduling future acquisitions. The two instruments in the upcoming Landsat Data Continuity Mission (LDCM) will include new channels that will enhance our ability to detect high clouds which are often also thin in the sense that a large fraction of solar radiation can pass through them. This work studies the potential impact of these new channels on enhancing LDCM's cloud detection capabilities compared to previous Landsat missions. We revisit a previously published scheme for cloud detection and add new tests to capture more of the thin clouds that are harder to detect with the more limited arsenal channels. Since there are no Landsat data yet that include the new LDCM channels, we resort to data from another instrument, MODIS, which has these bands, as well as the other bands of LDCM, to test the capabilities of our new algorithm. By comparing our revised scheme's performance against the performance of the official MODIS cloud detection scheme, we conclude that the new scheme performs better than the earlier scheme which was not very good at thin cloud detection.

  12. Imagery Integration Team

    Science.gov (United States)

    Calhoun, Tracy; Melendrez, Dave

    2014-01-01

    The Human Exploration Science Office (KX) provides leadership for NASA's Imagery Integration (Integration 2) Team, an affiliation of experts in the use of engineering-class imagery intended to monitor the performance of launch vehicles and crewed spacecraft in flight. Typical engineering imagery assessments include studying and characterizing the liftoff and ascent debris environments; launch vehicle and propulsion element performance; in-flight activities; and entry, landing, and recovery operations. Integration 2 support has been provided not only for U.S. Government spaceflight (e.g., Space Shuttle, Ares I-X) but also for commercial launch providers, such as Space Exploration Technologies Corporation (SpaceX) and Orbital Sciences Corporation, servicing the International Space Station. The NASA Integration 2 Team is composed of imagery integration specialists from JSC, the Marshall Space Flight Center (MSFC), and the Kennedy Space Center (KSC), who have access to a vast pool of experience and capabilities related to program integration, deployment and management of imagery assets, imagery data management, and photogrammetric analysis. The Integration 2 team is currently providing integration services to commercial demonstration flights, Exploration Flight Test-1 (EFT-1), and the Space Launch System (SLS)-based Exploration Missions (EM)-1 and EM-2. EM-2 will be the first attempt to fly a piloted mission with the Orion spacecraft. The Integration 2 Team provides the customer (both commercial and Government) with access to a wide array of imagery options - ground-based, airborne, seaborne, or vehicle-based - that are available through the Government and commercial vendors. The team guides the customer in assembling the appropriate complement of imagery acquisition assets at the customer's facilities, minimizing costs associated with market research and the risk of purchasing inadequate assets. The NASA Integration 2 capability simplifies the process of securing one

  13. Landsat Data Continuity Mission - Launch Fever

    Science.gov (United States)

    Irons, James R.; Loveland, Thomas R.; Markham, Brian L.; Masek, Jeffrey G.; Cook, Bruce; Dwyer, John L.

    2012-01-01

    The year 2013 will be an exciting period for those that study the Earth land surface from space, particularly those that observe and characterize land cover, land use, and the change of cover and use over time. Two new satellite observatories will be launched next year that will enhance capabilities for observing the global land surface. The United States plans to launch the Landsat Data Continuity Mission (LDCM) in January. That event will be followed later in the year by the European Space Agency (ESA) launch of the first Sentinel 2 satellite. Considered together, the two satellites will increase the frequency of opportunities for viewing the land surface at a scale where human impact and influence can be differentiated from natural change. Data from the two satellites will provide images for similar spectral bands and for comparable spatial resolutions with rigorous attention to calibration that will facilitate cross comparisons. This presentation will provide an overview of the LDCM satellite system and report its readiness for the January launch.

  14. Centralized mission planning and scheduling system for the Landsat Data Continuity Mission

    Science.gov (United States)

    Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki

    2014-01-01

    Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.

  15. Feature Detection Systems Enhance Satellite Imagery

    Science.gov (United States)

    2009-01-01

    In 1963, during the ninth orbit of the Faith 7 capsule, astronaut Gordon Cooper skipped his nap and took some photos of the Earth below using a Hasselblad camera. The sole flier on the Mercury-Atlas 9 mission, Cooper took 24 photos - never-before-seen images including the Tibetan plateau, the crinkled heights of the Himalayas, and the jagged coast of Burma. From his lofty perch over 100 miles above the Earth, Cooper noted villages, roads, rivers, and even, on occasion, individual houses. In 1965, encouraged by the effectiveness of NASA s orbital photography experiments during the Mercury and subsequent Gemini manned space flight missions, U.S. Geological Survey (USGS) director William Pecora put forward a plan for a remote sensing satellite program that would collect information about the planet never before attainable. By 1972, NASA had built and launched Landsat 1, the first in a series of Landsat sensors that have combined to provide the longest continuous collection of space-based Earth imagery. The archived Landsat data - 37 years worth and counting - has provided a vast library of information allowing not only the extensive mapping of Earth s surface but also the study of its environmental changes, from receding glaciers and tropical deforestation to urban growth and crop harvests. Developed and launched by NASA with data collection operated at various times by the Agency, the National Oceanic and Atmospheric Administration (NOAA), Earth Observation Satellite Company (EOSAT, a private sector partnership that became Space Imaging Corporation in 1996), and USGS, Landsat sensors have recorded flooding from Hurricane Katrina, the building boom in Dubai, and the extinction of the Aral Sea, offering scientists invaluable insights into the natural and manmade changes that shape the world. Of the seven Landsat sensors launched since 1972, Landsat 5 and Landsat 7 are still operational. Though both are in use well beyond their intended lifespans, the mid

  16. Development of the Landsat Data Continuity Mission Cloud Cover Assessment Algorithms

    Science.gov (United States)

    Scaramuzza, Pat; Bouchard, M.A.; Dwyer, John L.

    2012-01-01

    The upcoming launch of the Operational Land Imager (OLI) will start the next era of the Landsat program. However, the Automated Cloud-Cover Assessment (CCA) (ACCA) algorithm used on Landsat 7 requires a thermal band and is thus not suited for OLI. There will be a thermal instrument on the Landsat Data Continuity Mission (LDCM)-the Thermal Infrared Sensor-which may not be available during all OLI collections. This illustrates a need for CCA for LDCM in the absence of thermal data. To research possibilities for full-resolution OLI cloud assessment, a global data set of 207 Landsat 7 scenes with manually generated cloud masks was created. It was used to evaluate the ACCA algorithm, showing that the algorithm correctly classified 79.9% of a standard test subset of 3.95 109 pixels. The data set was also used to develop and validate two successor algorithms for use with OLI data-one derived from an off-the-shelf machine learning package and one based on ACCA but enhanced by a simple neural network. These comprehensive CCA algorithms were shown to correctly classify pixels as cloudy or clear 88.5% and 89.7% of the time, respectively.

  17. Using Small UAS for Mission Simulation, Science Validation, and Definition

    Science.gov (United States)

    Abakians, H.; Donnellan, A.; Chapman, B. D.; Williford, K. H.; Francis, R.; Ehlmann, B. L.; Smith, A. T.

    2017-12-01

    Small Unmanned Aerial Systems (sUAS) are increasingly being used across JPL and NASA for science data collection, mission simulation, and mission validation. They can also be used as proof of concept for development of autonomous capabilities for Earth and planetary exploration. sUAS are useful for reconstruction of topography and imagery for a variety of applications ranging from fault zone morphology, Mars analog studies, geologic mapping, photometry, and estimation of vegetation structure. Imagery, particularly multispectral imagery can be used for identifying materials such as fault lithology or vegetation type. Reflectance maps can be produced for wetland or other studies. Topography and imagery observations are useful in radar studies such as from UAVSAR or the future NISAR mission to validate 3D motions and to provide imagery in areas of disruption where the radar measurements decorrelate. Small UAS are inexpensive to operate, reconfigurable, and agile, making them a powerful platform for validating mission science measurements, and also for providing surrogate data for existing or future missions.

  18. NOAA Emergency Response Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is in response to natural disasters. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The majority...

  19. JEarth | Analytical Remote Sensing Imagery Application for Researchers and Practitioners

    Science.gov (United States)

    Prashad, L.; Christensen, P. R.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.

    2009-12-01

    The ASU 100 Cities Project and the ASU Mars Space Flight Facility (MSFF) present JEarth, a set of analytical Geographic Information System (GIS) tools for viewing and processing Earth-based remote sensing imagery and vectors, including high-resolution and hyperspectral imagery such as TIMS and MASTER. JEarth is useful for a wide range of researchers and practitioners who need to access, view, and analyze remote sensing imagery. JEarth stems from existing MSFF applications: the Java application JMars (Java Mission-planning and Analysis for Remote Sensing) for viewing and analyzing remote sensing imagery and THMPROC, a web-based, interactive tool for processing imagery to create band combinations, stretches, and other imagery products. JEarth users can run the application on their desktops by installing Java-based open source software on Windows, Mac, or Linux operating systems.

  20. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    Energy Technology Data Exchange (ETDEWEB)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  1. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2014-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  2. Robust UAV mission planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissance

  3. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  4. Robust UAV Mission Planning

    NARCIS (Netherlands)

    L. Evers (Lanah); T.A.B. Dollevoet (Twan); A.I. Barros (Ana); H. Monsuur (Herman)

    2011-01-01

    textabstractUnmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  5. Hurricane Sandy: Rapid Response Imagery of the Surrounding Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of Hurricane Sandy. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The images were acquired...

  6. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    Science.gov (United States)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding

  7. IRIS Mission Operations Director's Colloquium

    Science.gov (United States)

    Carvalho, Robert; Mazmanian, Edward A.

    2014-01-01

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRISs mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  8. Satellite imagery and the Department of Safeguards

    International Nuclear Information System (INIS)

    Chitumbo, K.; Bunney, J.; Leve, G.; Robb, S.

    2001-01-01

    Full text: The presentation examines some of the challenges the Satellite Imagery and Analysis Laboratory (SIAL) is facing in supporting Strengthened Safeguards. It focuses on the analytical process, starting with specifying initial tasking and continuing through to end products that are a direct result of in-house analysis. In addition it also evaluates the advantages and disadvantages of SIAL's mission and introduces external forces that the agency must consider, but cannot itself, predict or control. Although SIAL's contribution to tasks relating to Article 2a(iii) of the Additional Protocol are known and are presently of great benefit to operations areas, this is only one aspect of its work. SIAL's ability to identify and analyze historical satellite imagery data has the advantage of permitting operations to take a more in depth view of a particular area of interest's (AOI) development, and thus may permit operations to confirm or refute specific assertions relating to the AOI's function or abilities. These assertions may originate in-house or may be open source reports the agency feels it is obligated to explore. SIAL's mission is unique in the world of imagery analysis. Its aim is to support all operations areas equally and in doing so it must maintain global focus. The task is tremendous, but the resultant coverage and concentration of unique expertise will allow SIAL to develop and provide operations with datasets that can be exploited in standalone mode or be incorporated into new cutting edge tools to be developed in SGIT. At present SIAL relies on two remote sensors, IKONOS-2 and EROS-AI, for present high- resolution imagery data and is using numerous sources for historical, pre 1999, data. A multiplicity of sources for high-resolution data is very important to SIAL, but is something that it cannot influence. It is hoped that the planned launch of two new sensors by Summer 2002 will be successful and will offer greater flexibility for image collection

  9. Effects of microgravity on cognition: The case of mental imagery.

    Science.gov (United States)

    Grabherr, Luzia; Mast, Fred W

    2010-01-01

    Human cognitive performance is an important factor for the successful and safe outcome of commercial and non-commercial manned space missions. This article aims to provide a systematic review of studies investigating the effects of microgravity on the cognitive abilities of parabolic or space flight participants due to the absence of the gravito-inertial force. We will focus on mental imagery: one of the best studied cognitive functions. Mental imagery is closely connected to perception and motor behavior. It aids important processes such as perceptual anticipation, problem solving and motor simulation, all of which are critical for space travel. Thirteen studies were identified and classified into the following topics: spatial representations, mental image transformations and motor imagery. While research on spatial representation and mental image transformation continues to grow and specific differences in cognitive functioning between 1 g and 0 g have been observed, motor imagery has thus far received little attention.

  10. Continuity of Landsat observations: Short term considerations

    Science.gov (United States)

    Wulder, Michael A.; White, Joanne C.; Masek, Jeffery G.; Dwyer, John L.; Roy, David P.

    2011-01-01

    As of writing in mid-2010, both Landsat-5 and -7 continue to function, with sufficient fuel to enable data collection until the launch of the Landsat Data Continuity Mission (LDCM) scheduled for December of 2012. Failure of one or both of Landsat-5 or -7 may result in a lack of Landsat data for a period of time until the 2012 launch. Although the potential risk of a component failure increases the longer the sensor's design life is exceeded, the possible gap in Landsat data acquisition is reduced with each passing day and the risk of Landsat imagery being unavailable diminishes for all except a handful of applications that are particularly data demanding. Advances in Landsat data compositing and fusion are providing opportunities to address issues associated with Landsat-7 SLC-off imagery and to mitigate a potential acquisition gap through the integration of imagery from different sensors. The latter will likely also provide short-term, regional solutions to application-specific needs for the continuity of Landsat-like observations. Our goal in this communication is not to minimize the community's concerns regarding a gap in Landsat observations, but rather to clarify how the current situation has evolved and provide an up-to-date understanding of the circumstances, implications, and mitigation options related to a potential gap in the Landsat data record.

  11. Transition, Training, and Assessment of Multispectral Composite Imagery in Support of the NWS Aviation Forecast Mission

    Science.gov (United States)

    Fuell, Kevin; Jedlovec, Gary; Leroy, Anita; Schultz, Lori

    2015-01-01

    The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program works closely with NOAA/NWS weather forecasters to transition unique satellite data and capabilities into operations in order to assist with nowcasting and short-term forecasting issues. Several multispectral composite imagery (i.e. RGB) products were introduced to users in the early 2000s to support hydrometeorology and aviation challenges as well as incident support. These activities lead to SPoRT collaboration with the GOES-R Proving Ground efforts where instruments such as MODIS (Aqua, Terra) and S-NPP/VIIRS imagers began to be used as near-realtime proxies to future capabilities of the Advanced Baseline Imager (ABI). One of the composite imagery products introduced to users was the Night-time Microphysics RGB, originally developed by EUMETSAT. SPoRT worked to transition this imagery to NWS users, provide region-specific training, and assess the impact of the imagery to aviation forecast needs. This presentation discusses the method used to interact with users to address specific aviation forecast challenges, including training activities undertaken to prepare for a product assessment. Users who assessed the multispectral imagery ranged from southern U.S. inland and coastal NWS weather forecast offices (WFOs), to those in the Rocky Mountain Front Range region and West Coast, as well as highlatitude forecasters of Alaska. These user-based assessments were documented and shared with the satellite community to support product developers and the broad users of new generation satellite data.

  12. Hurricane Gustav Aerial Photography: Rapid ResponseImagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regionsafter Hurricane Gustav made landfall. The aerial photography missions wereconducted by the NOAA Remote...

  13. Hurricane Ike Aerial Photography: Rapid ResponseImagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regionsafter Hurricane Ike made landfall. The aerial photography missions wereconducted by the NOAA Remote...

  14. Hurricane Humberto Aerial Photography: Rapid Response Imagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regions after Hurricane Humberto made landfall. The aerial photography missions were conducted by the NOAA...

  15. Progress Towards a 2012 Landsat Launch

    Science.gov (United States)

    Irons, Jim; Sabelhaus, Phil; Masek, Jeff; Cook, Bruce; Dabney, Phil; Loveland, Tom

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is on schedule for a December 2012 launch date. The mission is being managed by an interagency partnership between NASA and the U.S. Geological Survey (USGS). NASA leads the development and launch of the satellite observatory while leads ground system development. USGS will assume responsibility for operating the satellite and for collecting, archiving, and distributing the LDCM data following launch. When launched the satellite will carry two sensors into orbit. The Operational Land Imager (OLI) will collect data for nine shortwave spectral bands with a spatial resolution of 30 m (with a 15 m panchromatic band). The Thermal Infrared Sensor (TIRS) will coincidently collect data for two thermal infrared bands with a spatial resolution of 100 m. The OLI is fully assembled and tested and has been shipped by it?s manufacturer, Ball Aerospace and Technology Corporation, to the Orbital Sciences Corporation (Orbital) facility where it is being integrated onto the LDCM spacecraft. Pre-launch testing indicates that OLI will meet all performance specification with margin. TIRS is in development at the NASA Goddard Space Flight Center (GSFC) and is in final testing before shipping to the Orbital facility in January, 2012. The ground data processing system is in development at the USGS Earth Resources Observation and Science (EROS) Center. The presentation will describe the LDCM satellite system, provide the status of system development, and present prelaunch performance data for OLI and TIRS. The USGS has committed to renaming the satellite as Landsat 8 following launch.

  16. Impact spacecraft imagery and comparative morphology of craters

    International Nuclear Information System (INIS)

    Moutsoulas, M.; Piteri, S.

    1979-01-01

    The use of hard-landing 'simple' missions for wide-scale planetary exploration is considered. As an example of their imagery potentialities, Ranger VII data are used for the study of the morphological characteristics of 16 Mare Cognitum craters. The morphological patterns of lunar craters, expressed in terms of the Depth/Diameter ratios appear to be in most cases independent of the crater location or size. (Auth.)

  17. Digital Motion Imagery, Interoperability Challenges for Space Operations

    Science.gov (United States)

    Grubbs, Rodney

    2012-01-01

    With advances in available bandwidth from spacecraft and between terrestrial control centers, digital motion imagery and video is becoming more practical as a data gathering tool for science and engineering, as well as for sharing missions with the public. The digital motion imagery and video industry has done a good job of creating standards for compression, distribution, and physical interfaces. Compressed data streams can easily be transmitted or distributed over radio frequency, internet protocol, and other data networks. All of these standards, however, can make sharing video between spacecraft and terrestrial control centers a frustrating and complicated task when different standards and protocols are used by different agencies. This paper will explore the challenges presented by the abundance of motion imagery and video standards, interfaces and protocols with suggestions for common formats that could simplify interoperability between spacecraft and ground support systems. Real-world examples from the International Space Station will be examined. The paper will also discuss recent trends in the development of new video compression algorithms, as well likely expanded use of Delay (or Disruption) Tolerant Networking nodes.

  18. Leveraging CubeSat Technology to Address Nighttime Imagery Requirements over the Arctic

    Science.gov (United States)

    Pereira, J. J.; Mamula, D.; Caulfield, M.; Gallagher, F. W., III; Spencer, D.; Petrescu, E. M.; Ostroy, J.; Pack, D. W.; LaRosa, A.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) has begun planning for the future operational environmental satellite system by conducting the NOAA Satellite Observing System Architecture (NSOSA) study. In support of the NSOSA study, NOAA is exploring how CubeSat technology funded by NASA can be used to demonstrate the ability to measure three-dimensional profiles of global temperature and water vapor. These measurements are critical for the National Weather Service's (NWS) weather prediction mission. NOAA is conducting design studies on Earth Observing Nanosatellites (EON) for microwave (EON-MW) and infrared (EON-IR) soundings, with MIT Lincoln Laboratory and NASA JPL, respectively. The next step is to explore the technology required for a CubeSat mission to address NWS nighttime imagery requirements over the Arctic. The concept is called EON-Day/Night Band (DNB). The DNB is a 0.5-0.9 micron channel currently on the operational Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which is part of the Suomi-National Polar-orbiting Partnership and Joint Polar Satellite System satellites. NWS has found DNB very useful during the long periods of darkness that occur during the Alaskan cold season. The DNB enables nighttime imagery products of fog, clouds, and sea ice. EON-DNB will leverage experiments carried out by The Aerospace Corporation's CUbesat MULtispectral Observation System (CUMULOS) sensor and other related work. CUMULOS is a DoD-funded demonstration of COTS camera technology integrated as a secondary mission on the JPL Integrated Solar Array and Reflectarray Antenna mission. CUMULOS is demonstrating a staring visible Si CMOS camera. The EON-DNB project will leverage proven, advanced compact visible lens and focal plane camera technologies to meet NWS user needs for nighttime visible imagery. Expanding this technology to an operational demonstration carries several areas of risk that need to be addressed prior to an operational mission

  19. Tropical Storm Ernesto Aerial Photography: Rapid Response Imagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regions after Tropical Storm Ernesto made landfall. The aerial photography missions were conducted by the NOAA...

  20. Training visual imagery: Improvements of metacognition, but not imagery strength

    Directory of Open Access Journals (Sweden)

    Rosanne Lynn Rademaker

    2012-07-01

    Full Text Available Visual imagery has been closely linked to brain mechanisms involved in perception. Can visual imagery, like visual perception, improve by means of training? Previous research has demonstrated that people can reliably evaluate the vividness of single episodes of sensory imagination – might the metacognition of imagery also improve over the course of training? We had participants imagine colored Gabor patterns for an hour a day, over the course of five consecutive days, and again two weeks after training. Participants rated the subjective vividness and effort of their mental imagery on each trial. The influence of imagery on subsequent binocular rivalry dominance was taken as our measure of imagery strength. We found no overall effect of training on imagery strength. Training did, however, improve participant’s metacognition of imagery. Trial-by-trial ratings of vividness gained predictive power on subsequent rivalry dominance as a function of training. These data suggest that, while imagery strength might be immune to training in the current context, people’s metacognitive understanding of mental imagery can improve with practice.

  1. Earth observations during Space Shuttle Mission STS-42 - Discovery's mission to planet earth

    Science.gov (United States)

    Lulla, Kamlesh P.; Helfert, Michael; Amsbury, David; Pitts, David; Jaklitch, Pat; Wilkinson, Justin; Evans, Cynthia; Ackleson, Steve; Helms, David; Chambers, Mark

    1993-01-01

    The noteworthy imagery acquired during Space Shuttle Mission STS-42 is documented. Attention is given to frozen Tibetan lakes, Merapi Volcano in Java, Mt. Pinatubo in the Philippines, the coastline east of Tokyo Japan, land use in southern India, and the Indus River Delta. Observations of Kamchatka Peninsula, Lake Baikal, Moscow, Katmai National Park and Mt. Augustine, Alaska, the Alaskan coast by the Bering Sea, snow-covered New York, the Rhone River valley, the Strait of Gibraltar, and Mt. Ararat, Turkey, are also reported.

  2. Current Operational Use of and Future Needs for Microwave Imagery at NOAA

    Science.gov (United States)

    Goldberg, M.; McWilliams, G.; Chang, P.

    2017-12-01

    There are many applications of microwave imagery served by NOAA's operational products and services. They include the use of microwave imagery and derived products for monitoring precipitation, tropical cyclones, sea surface temperature under all weather conditions, wind speed, snow and ice cover, and even soil moisture. All of NOAA's line offices including the National Weather Service, National Ocean Service, National Marine Fisheries Service, and Office of Oceanic and Atmospheric Research rely on microwave imagery. Currently microwave imagery products used by NOAA come from a constellation of satellites that includes Air Force's Special Sensor Microwave Imager Sounder (SSMIS), the Japanese Advanced Microwave Scanning Radiometer (AMSR), the Navy's WindSat, and NASA's Global Precipitation Monitoring (GPM) Microwave Imager (GMI). Follow-on missions for SSMIS are very uncertain, JAXA approval for a follow-on to AMSR2 is still pending, and GMI is a research satellite (lacking high-latitude coverage) with no commitment for operational continuity. Operational continuity refers to a series of satellites, so when one satellite reaches its design life a new satellite is launched. EUMETSAT has made a commitment to fly a microwave imager in the mid-morning orbit. China and Russia have demonstrated on-orbit microwave imagers. Of utmost importance to NOAA, however, is the quality, access, and latency of the data This presentation will focus on NOAA's current requirements for microwave imagery data which, for the most part, are being fulfilled by AMSR2, SSMIS, and WindSat. It will include examples of products and applications of microwave imagery at NOAA. We will also discuss future needs, especially for improved temporal resolution which hopefully can be met by an international constellation of microwave imagers. Finally, we will discuss what we are doing to address the potential gap in imagery.

  3. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  4. ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP

    Directory of Open Access Journals (Sweden)

    E. Widyaningrum

    2016-06-01

    Full Text Available The Very High Resolution (VHR satellite imageries such us Pleiades, WorldView-2, GeoEye-1 used for precise mapping purpose must be corrected from any distortion to achieve the expected accuracy. Orthorectification is performed to eliminate geometric errors of the VHR satellite imageries. Orthorectification requires main input data such as Digital Elevation Model (DEM and Ground Control Point (GCP. The VHR systematic-ortho imageries were generated using SRTM 30m DEM without using any GCP data. The accuracy value differences of VHR systematic-ortho imageries and VHR orthorectified imageries using GCP currently is not exactly defined. This study aimed to identified the accuracy comparison of VHR systematic-ortho imageries against orthorectified imageries using GCP. Orthorectified imageries using GCP created by using Rigorous model. Accuracy evaluation is calculated by using several independent check points.

  5. Visualizing UAS-collected imagery using augmented reality

    Science.gov (United States)

    Conover, Damon M.; Beidleman, Brittany; McAlinden, Ryan; Borel-Donohue, Christoph C.

    2017-05-01

    One of the areas where augmented reality will have an impact is in the visualization of 3-D data. 3-D data has traditionally been viewed on a 2-D screen, which has limited its utility. Augmented reality head-mounted displays, such as the Microsoft HoloLens, make it possible to view 3-D data overlaid on the real world. This allows a user to view and interact with the data in ways similar to how they would interact with a physical 3-D object, such as moving, rotating, or walking around it. A type of 3-D data that is particularly useful for military applications is geo-specific 3-D terrain data, and the visualization of this data is critical for training, mission planning, intelligence, and improved situational awareness. Advances in Unmanned Aerial Systems (UAS), photogrammetry software, and rendering hardware have drastically reduced the technological and financial obstacles in collecting aerial imagery and in generating 3-D terrain maps from that imagery. Because of this, there is an increased need to develop new tools for the exploitation of 3-D data. We will demonstrate how the HoloLens can be used as a tool for visualizing 3-D terrain data. We will describe: 1) how UAScollected imagery is used to create 3-D terrain maps, 2) how those maps are deployed to the HoloLens, 3) how a user can view and manipulate the maps, and 4) how multiple users can view the same virtual 3-D object at the same time.

  6. Normalization of satellite imagery

    Science.gov (United States)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  7. Benchmark Imagery FY11 Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pope, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-14

    This report details the work performed in FY11 under project LL11-GS-PD06, “Benchmark Imagery for Assessing Geospatial Semantic Extraction Algorithms.” The original LCP for the Benchmark Imagery project called for creating a set of benchmark imagery for verifying and validating algorithms that extract semantic content from imagery. More specifically, the first year was slated to deliver real imagery that had been annotated, the second year to deliver real imagery that had composited features, and the final year was to deliver synthetic imagery modeled after the real imagery.

  8. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a 'Model Protocol Additional to Safeguards Agreements'. The Protocol provides the legal basis necessary to enhance the Agency's ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following 'Implementation Blueprint' study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small 'imagery unit' within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild's long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small 'imagery unit' using high-resolution data will be a sound and

  9. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a `Model Protocol Additional to Safeguards Agreements`. The Protocol provides the legal basis necessary to enhance the Agency`s ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following `Implementation Blueprint` study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small `imagery unit` within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild`s long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small `imagery unit` using high-resolution data will be a sound and

  10. Non-Drug Pain Relief: Imagery

    Science.gov (United States)

    PATIENT EDUCATION patienteducation.osumc.edu Non-Drug Pain Relief: Imagery Relaxation helps lessen tension. One way to help decrease pain is to use imagery. Imagery is using your imagination to create a ...

  11. Kinesthetic imagery of musical performance.

    Science.gov (United States)

    Lotze, Martin

    2013-01-01

    Musicians use different kinds of imagery. This review focuses on kinesthetic imagery, which has been shown to be an effective complement to actively playing an instrument. However, experience in actual movement performance seems to be a requirement for a recruitment of those brain areas representing movement ideation during imagery. An internal model of movement performance might be more differentiated when training has been more intense or simply performed more often. Therefore, with respect to kinesthetic imagery, these strategies are predominantly found in professional musicians. There are a few possible reasons as to why kinesthetic imagery is used in addition to active training; one example is the need for mental rehearsal of the technically most difficult passages. Another reason for mental practice is that mental rehearsal of the piece helps to improve performance if the instrument is not available for actual training as is the case for professional musicians when they are traveling to various appearances. Overall, mental imagery in musicians is not necessarily specific to motor, somatosensory, auditory, or visual aspects of imagery, but integrates them all. In particular, the audiomotor loop is highly important, since auditory aspects are crucial for guiding motor performance. All these aspects result in a distinctive representation map for the mental imagery of musical performance. This review summarizes behavioral data, and findings from functional brain imaging studies of mental imagery of musical performance.

  12. Simulated NASA Satellite Data Products for the NOAA Integrated Coral Reef Observation Network/Coral Reef Early Warning System

    Science.gov (United States)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.

  13. Meteosat third generation: preliminary imagery and sounding mission concepts and performances

    Science.gov (United States)

    Aminou, Donny M.; Bézy, Jean-Loup; Bensi, Paolo; Stuhlmann, Rolf; Rodriguez, Antonio

    2017-11-01

    The operational deployment of MSG-1 at the beginning of 2004, the first of a series of four Meteosat Second Generation (MSG) satellites, marks the start of a new era in Europe for the meteorological observations from the geostationary orbit. This new system shall be the backbone of the European operational meteorological services up to at least 2015. The time required for the definition and the development of new space systems as well as the approval process of such complex programs implies to plan well ahead for the future missions. EUMETSAT have initiated in 2001, with ESA support, a User Consultation Process aiming at preparing for a future operational geostationary meteorological satellite system in the post-MSG era, named Meteosat Third Generation (MTG). The first phase of the User Consultation Process was devoted to the definition and consolidation of end user requirements and priorities in the field of Nowcasting and Very Short Term Weather Forecasting (NWC), Medium/Short Range global and regional Numerical Weather Prediction (NWP), Climate and Air Composition Monitoring and to the definition of the relevant observation techniques. After an initial post-MSG mission study (2003-2004) where preliminary instrument concepts were investigated allowing in the same time to consolidate the technical requirements for the overall system study, a MTG pre-phase A study has been performed for the overall system concept, architecture and programmatic aspects during 2004-2005 time frame. This paper provides an overview of the outcome of the MTG sensor concept studies conducted in the frame of the pre-phase A. It namely focuses onto the Imaging and Sounding Missions, highlights the resulting instrument concepts, establishes the critical technologies and introduces the study steps towards the implementation of the MTG development programme.

  14. Climate Change for Agriculture, Forest Cover and 3d Urban Models

    Science.gov (United States)

    Kapoor, M.; Bassir, D.

    2014-11-01

    This research demonstrates the important role of the remote sensing in finding out the different parameters behind the agricultural crop change, forest cover and urban 3D models. Standalone software is developed to view and analysis the different factors effecting the change in crop productions. Open-source libraries from the Open Source Geospatial Foundation have been used for the development of the shape-file viewer. Software can be used to get the attribute information, scale, zoom in/out and pan the shapefiles. Environmental changes due to pollution and population that are increasing the urbanisation and decreasing the forest cover on the earth. Satellite imagery such as Landsat 5(1984) to Landsat TRIS/8 (2014), Landsat Data Continuity Mission (LDCM) and NDVI are used to analyse the different parameters that are effecting the agricultural crop production change and forest change. It is advisable for the development of good quality of NDVI and forest cover maps to use data collected from the same processing methods for the complete region. Management practices have been developed from the analysed data for the betterment of the crop and saving the forest cover

  15. Essential climatic variables estimation with satellite imagery

    Science.gov (United States)

    Kolotii, A.; Kussul, N.; Shelestov, A.; Lavreniuk, M. S.

    2016-12-01

    According to Sendai Framework for Disaster Risk Reduction 2015 - 2030 Leaf Area Index (LAI) is considered as one of essential climatic variables. This variable represents the amount of leaf material in ecosystems and controls the links between biosphere and atmosphere through various processes and enables monitoring and quantitative assessment of vegetation state. LAI has added value for such important global resources monitoring tasks as drought mapping and crop yield forecasting with use of data from different sources [1-2]. Remote sensing data from space can be used to estimate such biophysical parameter at regional and national scale. High temporal satellite imagery is usually required to capture main parameters of crop growth [3]. Sentinel-2 mission launched in 2015 be ESA is a source of high spatial and temporal resolution satellite imagery for mapping biophysical parameters. Products created with use of automated Sen2-Agri system deployed during Sen2-Agri country level demonstration project for Ukraine will be compared with our independent results of biophysical parameters mapping. References Shelestov, A., Kolotii, A., Camacho, F., Skakun, S., Kussul, O., Lavreniuk, M., & Kostetsky, O. (2015, July). Mapping of biophysical parameters based on high resolution EO imagery for JECAM test site in Ukraine. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1733-1736 Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., ... & Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 39-44. Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 9 (6), 2500-2508.

  16. Monitoring Nuclear Facilities Using Satellite Imagery and Associated Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Lafitte, Marc; Robin, Jean‑Philippe

    2015-01-01

    The mission of the European Union Satellite Centre (SatCen) is “to support the decision making and actions of the European Union in the field of the CFSP and in particular the CSDP, including European Union crisis management missions and operations, by providing, at the request of the Council or the European Union High Representative, products and services resulting from the exploitation of relevant space assets and collateral data, including satellite and aerial imagery, and related services”. The SatCen Non‑Proliferation Team, part of the SatCen Operations Division, is responsible for the analysis of installations that are involved, or could be involved, in the preparation or acquisition of capabilities intended to divert the production of nuclear material for military purposes and, in particular, regarding the spread of Weapons of Mass destruction and their means of delivery. For the last four decades, satellite imagery and associated remote sensing and geospatial techniques have increasingly expanded their capabilities. The unprecedented Very High Resolution (VHR) data currently available, the improved spectral capabilities, the increasing number of sensors and ever increasing computing capacity, has opened up a wide range of new perspectives for remote sensing applications. Concurrently, the availability of open source information (OSINF), has increased exponentially through the medium of the internet. This range of new capabilities for sensors and associated remote sensing techniques have strengthened the SatCen analysis capabilities for the monitoring of suspected proliferation installations for the detection of undeclared nuclear facilities, processes and activities. The combination of these remote sensing techniques, imagery analysis, open source investigation and their integration into Geographic Information Systems (GIS), undoubtedly improve the efficiency and comprehensive analysis capability provided by the SatCen to the EU stake‑holders. The

  17. Pornographic imagery and prevalence of paraphilia.

    Science.gov (United States)

    Dietz, P E; Evans, B

    1982-11-01

    The authors classified 1,760 heterosexual pornographic magazines according to the imagery of the cover photographs. Covers depicting only a woman posed alone predominated in 1970 but constituted only 10.7% of the covers in 1981. Bondage and domination imagery was the most prevalent nonormative imagery and was featured in 17.2% of the magazines. Smaller proportions of material were devoted to group sexual activity (9.8%), tranvestism and transsexualism (4.4%), and other nonnormative imagery. The authors suggest that pornographic imagery is an unobtrusive measure of the relative prevalence of those paraphilias associated with preferences for specific types of visual imagery and for which better data are lacking.

  18. User Validation of VIIRS Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Don Hillger

    2015-12-01

    Full Text Available Visible/Infrared Imaging Radiometer Suite (VIIRS Imagery from the Suomi National Polar-orbiting Partnership (S-NPP satellite is the finest spatial resolution (375 m multi-spectral imagery of any operational meteorological satellite to date. The Imagery environmental data record (EDR has been designated as a Key Performance Parameter (KPP for VIIRS, meaning that its performance is vital to the success of a series of Joint Polar Satellite System (JPSS satellites that will carry this instrument. Because VIIRS covers the high-latitude and Polar Regions especially well via overlapping swaths from adjacent orbits, the Alaska theatre in particular benefits from VIIRS more than lower-latitude regions. While there are no requirements that specifically address the quality of the EDR Imagery aside from the VIIRS SDR performance requirements, the value of VIIRS Imagery to operational users is an important consideration in the Cal/Val process. As such, engaging a wide diversity of users constitutes a vital part of the Imagery validation strategy. The best possible image quality is of utmost importance. This paper summarizes the Imagery Cal/Val Team’s quality assessment in this context. Since users are a vital component to the validation of VIIRS Imagery, specific examples of VIIRS imagery applied to operational needs are presented as an integral part of the post-checkout Imagery validation.

  19. Mental Imagery and Visual Working Memory

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024

  20. Mental imagery and visual working memory.

    Directory of Open Access Journals (Sweden)

    Rebecca Keogh

    Full Text Available Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.

  1. Mental imagery and visual working memory.

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.

  2. Photogrammetry of the Viking Lander imagery

    Science.gov (United States)

    Wu, S. S. C.; Schafer, F. J.

    1982-01-01

    The problem of photogrammetric mapping which uses Viking Lander photography as its basis is solved in two ways: (1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture, using computerized rectification; and (2) by interfacing a high-speed, general-purpose computer to the analytical plotter employed, so that all correction computations can be performed in real time during the model-orientation and map-compilation process. Both the efficiency of the Viking Lander cameras and the validity of the rectification method have been established by a series of pre-mission tests which compared the accuracy of terrestrial maps compiled by this method with maps made from aerial photographs. In addition, 1:10-scale topographic maps of Viking Lander sites 1 and 2 having a contour interval of 1.0 cm have been made to test the rectification method.

  3. NAIP 2015 Imagery Feedback

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback web application allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program...

  4. Current Resource Imagery Projects

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — Map showing coverage of current Resource imagery projects. High resolution/large scale Resource imagery is typically acquired for the U.S. Forest Service and other...

  5. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2012-10-01

    Full Text Available Thermal infrared (TIR imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions, which are often fine enough for field-scale applications. A classic thermal sharpening technique, TsHARP, uses a relationship between land surface temperature (LST and Normalized Difference Vegetation Index (NDVI developed empirically at the TIR pixel resolution and applied at the NDVI pixel resolution. However, recent studies show that unique relationships between temperature and NDVI may only exist for a limited class of landscapes, with mostly green vegetation and homogeneous air and soil conditions. To extend application of thermal sharpening to more complex conditions, a new data mining sharpener (DMS technique is developed. The DMS approach builds regression trees between TIR band brightness temperatures and shortwave spectral reflectances based on intrinsic sample characteristics. A comparison of sharpening techniques applied over a rainfed agricultural area in central Iowa, an irrigated agricultural region in the Texas High Plains, and a heterogeneous naturally vegetated landscape in Alaska indicates that the DMS outperformed TsHARP in all cases. The artificial box-like patterns in LST generated by the TsHARP approach are greatly reduced using the DMS scheme, especially for areas containing irrigated crops, water bodies, thin clouds or terrain. While the DMS technique can provide fine resolution TIR imagery, there are limits to the sharpening ratios that can be reasonably implemented. Consequently, sharpening techniques cannot replace actual thermal band imagery at fine resolutions or missions that

  6. Kinesthetic imagery of musical performance

    Directory of Open Access Journals (Sweden)

    Martin eLotze

    2013-06-01

    Full Text Available Musicians use different kinds of imagery. This review focuses on kinesthetic imagery, which has been shown to be an effective complement to actively playing an instrument. However, experience in actual movement performance seems to be a requirement for a recruitment of those brain areas representing movement ideation during imagery. An internal model of movement performance might be more differentiated when training has been more intense or simply performed more often. Therefore, with respect to kinesthetic imagery, these strategies are predominantly found in professional musicians. There are a few possible reasons as to why kinesthetic imagery is used in addition to active training; one example is the need for mental rehearsal of the technically most difficult passages. Training difficult passages repeatedly has the potential to induce fatigue in tendons and muscles and can ultimately result in the development of dystonia. Another reason for mental practice is that mental rehearsal of the piece helps to improve performance if the instrument is not available for actual training as is the case for professional musicians when they are travelling to various appearances. Overall, mental imagery in musicians is not necessarily specific to motor, somatosensory, auditory or visual aspects of imagery, but integrates them all. In particular, the audiomotor loop is highly important, since auditory aspects are crucial for guiding motor performance. Furthermore, slight co-movement, for instance of the fingers, usually occurs when imagining musical performance, a situation different to the laboratory condition where movement execution is strictly controlled. All these aspects result in a distinctive representation map for the mental imagery of musical performance. This review summarizes behavioral data, and findings from functional brain imaging studies of mental imagery of musical performance.

  7. Hypnagogic imagery and EEG activity.

    Science.gov (United States)

    Hayashi, M; Katoh, K; Hori, T

    1999-04-01

    The relationships between hypnagogic imagery and EEG activity were studied. 7 subjects (4 women and 3 men) reported the content of hypnagogic imagery every minute and the hypnagogic EEGs were classified into 5 stages according to Hori's modified criteria. The content of the hypnagogic imagery changed as a function of the hypnagogic EEG stages.

  8. Alcohol imagery on New Zealand television

    Directory of Open Access Journals (Sweden)

    Reeder Anthony I

    2007-02-01

    Full Text Available Abstract Background To examine the extent and nature of alcohol imagery on New Zealand (NZ television, a content analysis of 98 hours of prime-time television programs and advertising was carried out over 7 consecutive days' viewing in June/July 2004. The main outcome measures were number of scenes in programs, trailers and advertisements depicting alcohol imagery; the extent of critical versus neutral and promotional imagery; and the mean number of scenes with alcohol per hour, and characteristics of scenes in which alcohol featured. Results There were 648 separate depictions of alcohol imagery across the week, with an average of one scene every nine minutes. Scenes depicting uncritical imagery outnumbered scenes showing possible adverse health consequences of drinking by 12 to 1. Conclusion The evidence points to a large amount of alcohol imagery incidental to storylines in programming on NZ television. Alcohol is also used in many advertisements to market non-alcohol goods and services. More attention needs to be paid to the extent of alcohol imagery on television from the industry, the government and public health practitioners. Health education with young people could raise critical awareness of the way alcohol imagery is presented on television.

  9. Motor imagery training: Kinesthetic imagery strategy and inferior parietal fMRI activation.

    Science.gov (United States)

    Lebon, Florent; Horn, Ulrike; Domin, Martin; Lotze, Martin

    2018-04-01

    Motor imagery (MI) is the mental simulation of action frequently used by professionals in different fields. However, with respect to performance, well-controlled functional imaging studies on MI training are sparse. We investigated changes in fMRI representation going along with performance changes of a finger sequence (error and velocity) after MI training in 48 healthy young volunteers. Before training, we tested the vividness of kinesthetic and visual imagery. During tests, participants were instructed to move or to imagine moving the fingers of the right hand in a specific order. During MI training, participants repeatedly imagined the sequence for 15 min. Imaging analysis was performed using a full-factorial design to assess brain changes due to imagery training. We also used regression analyses to identify those who profited from training (performance outcome and gain) with initial imagery scores (vividness) and fMRI activation magnitude during MI at pre-test (MI pre ). After training, error rate decreased and velocity increased. We combined both parameters into a common performance index. FMRI activation in the left inferior parietal lobe (IPL) was associated with MI and increased over time. In addition, fMRI activation in the right IPL during MI pre was associated with high initial kinesthetic vividness. High kinesthetic imagery vividness predicted a high performance after training. In contrast, occipital activation, associated with visual imagery strategies, showed a negative predictive value for performance. Our data echo the importance of high kinesthetic vividness for MI training outcome and consider IPL as a key area during MI and through MI training. © 2018 Wiley Periodicals, Inc.

  10. Applications and Innovations for Use of High Definition and High Resolution Digital Motion Imagery in Space Operations

    Science.gov (United States)

    Grubbs, Rodney

    2016-01-01

    The first live High Definition Television (HDTV) from a spacecraft was in November, 2006, nearly ten years before the 2016 SpaceOps Conference. Much has changed since then. Now, live HDTV from the International Space Station (ISS) is routine. HDTV cameras stream live video views of the Earth from the exterior of the ISS every day on UStream, and HDTV has even flown around the Moon on a Japanese Space Agency spacecraft. A great deal has been learned about the operations applicability of HDTV and high resolution imagery since that first live broadcast. This paper will discuss the current state of real-time and file based HDTV and higher resolution video for space operations. A potential roadmap will be provided for further development and innovations of high-resolution digital motion imagery, including gaps in technology enablers, especially for deep space and unmanned missions. Specific topics to be covered in the paper will include: An update on radiation tolerance and performance of various camera types and sensors and ramifications on the future applicability of these types of cameras for space operations; Practical experience with downlinking very large imagery files with breaks in link coverage; Ramifications of larger camera resolutions like Ultra-High Definition, 6,000 [pixels] and 8,000 [pixels] in space applications; Enabling technologies such as the High Efficiency Video Codec, Bundle Streaming Delay Tolerant Networking, Optical Communications and Bayer Pattern Sensors and other similar innovations; Likely future operations scenarios for deep space missions with extreme latency and intermittent communications links.

  11. Measuring Creative Imagery Abilities

    Directory of Open Access Journals (Sweden)

    Dorota M. Jankowska

    2015-10-01

    Full Text Available Over the decades, creativity and imagination research developed in parallel, but they surprisingly rarely intersected. This paper introduces a new theoretical model of creative imagination, which bridges creativity and imagination research, as well as presents a new psychometric instrument, called the Test of Creative Imagery Abilities (TCIA, developed to measure creative imagery abilities understood in accordance with this model. Creative imagination is understood as constituted by three interrelated components: vividness (the ability to create images characterized by a high level of complexity and detail, originality (the ability to produce unique imagery, and transformativeness (the ability to control imagery. TCIA enables valid and reliable measurement of these three groups of abilities, yielding the general score of imagery abilities and at the same time making profile analysis possible. We present the results of eight studies on a total sample of more than 1,700 participants, showing the factor structure of TCIA using confirmatory factor analysis, as well as provide data confirming this instrument’s validity and reliability. The availability of TCIA for interested researchers may result in new insights and possibilities of integrating the fields of creativity and imagination science.

  12. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Somalia

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Somalia. The Mission suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US$ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat imagery interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas. (author)

  13. Assessment of motor imagery ability and training

    Directory of Open Access Journals (Sweden)

    André Luiz Felix Rodacki

    2010-09-01

    Full Text Available The aim of this study was to evaluate changes in motor imagery ability in response to a specific dart throwing training. Twelve subjects (17-22 years with no previous experience in dart throwing or imagery agreed to participate. Changes in imagery ability were assessed using the Sports Imagery Questionnaire before (pretreatment and after (post-treatment an imagery training program consisting of 10 sessions. Retention (RET was assessed 2 weeks after training. The program included mental exercises designed to develop vivid images, to control one’s own images, and to increase perception about performance. Comparison of the imagery training conditions (training alone, training accompanied, observing a colleague, and during assessment showed no differences between the pretreatment, post-treatment and RET evaluations. Although imagery ability did not respond to training, significant differences between imagery domains (visual, auditory, kinesthetic, and animic were found (p<0.05, except between the visual and animic domains (p=0.58. These differences might be related to subject’s domain preference subject during the imagery process and to the nature of the task in which the skill technique used seems to be a relevant aspect.

  14. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Somalia

    International Nuclear Information System (INIS)

    Levich, Robert A.; Muller-Kahle, Eberhard

    1983-04-01

    The IUREP Orientation Phase Mission to Somalia suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US $ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat Imagery Interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas

  15. Kinesthetic motor imagery modulates body sway.

    Science.gov (United States)

    Rodrigues, E C; Lemos, T; Gouvea, B; Volchan, E; Imbiriba, L A; Vargas, C D

    2010-08-25

    The aim of this study was to investigate the effect of imagining an action implicating the body axis in the kinesthetic and visual motor imagery modalities upon the balance control system. Body sway analysis (measurement of center of pressure, CoP) together with electromyography (EMG) recording and verbal evaluation of imagery abilities were obtained from subjects during four tasks, performed in the upright position: to execute bilateral plantar flexions; to imagine themselves executing bilateral plantar flexions (kinesthetic modality); to imagine someone else executing the same movement (visual modality), and to imagine themselves singing a song (as a control imagery task). Body sway analysis revealed that kinesthetic imagery leads to a general increase in CoP oscillation, as reflected by an enhanced area of displacement. This effect was also verified for the CoP standard deviation in the medial-lateral direction. An increase in the trembling displacement (equivalent to center of pressure minus center of gravity) restricted to the anterior-posterior direction was also observed to occur during kinesthetic imagery. The visual imagery task did not differ from the control (sing) task for any of the analyzed parameters. No difference in the subjects' ability to perform the imagery tasks was found. No modulation of EMG data were observed across imagery tasks, indicating that there was no actual execution during motor imagination. These results suggest that motor imagery performed in the kinesthetic modality evokes motor representations involved in balance control. Copyright (c)10 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Visuospatial imagery and working memory in schizophrenia.

    Science.gov (United States)

    Matthews, Natasha L; Collins, Kathleen P; Thakkar, Katharine N; Park, Sohee

    2014-01-01

    The ability to form mental images that reconstruct former perceptual experiences is closely related to working memory (WM) ability. However, whereas WM deficits are established as a core feature of schizophrenia, an independent body of work suggests that mental imagery ability is enhanced in the disorder. Across two experiments we investigated mental imagery in schizophrenia and its relationship with WM. In Experiment 1, individuals with schizophrenia (SZ: n=15) and matched controls (CO: n=14) completed a mental imagery generation and inspection task and a spatial delayed-response WM task. In Experiment 2, SZ (n=16) and CO (n=16) completed a novel version of the mental imagery task modified to increase WM maintenance demand. In Experiment 1, SZ demonstrated enhanced mental imagery performance, as evidenced by faster response times relative to CO, with preserved accuracy. However, enhanced mental imagery in SZ was accompanied by impaired WM as assessed by the delayed-response task. In Experiment 2, when WM maintenance load was increased, SZ no longer showed superior imagery performance. We found evidence for enhanced imagery manipulation in SZ despite their WM maintenance deficit. However, this imagery enhancement was abolished when WM maintenance demands were increased. This profile of enhanced imagery manipulation but impaired maintenance could be used to implement novel remediation strategies in the disorder.

  17. Kinesthetic Imagery Provides Additive Benefits to Internal Visual Imagery on Slalom Task Performance.

    Science.gov (United States)

    Callow, Nichola; Jiang, Dan; Roberts, Ross; Edwards, Martin G

    2017-02-01

    Recent brain imaging research demonstrates that the use of internal visual imagery (IVI) or kinesthetic imagery (KIN) activates common and distinct brain areas. In this paper, we argue that combining the imagery modalities (IVI and KIN) will lead to a greater cognitive representation (with more brain areas activated), and this will cause a greater slalom-based motor performance compared with using IVI alone. To examine this assertion, we randomly allocated 56 participants to one of the three groups: IVI, IVI and KIN, or a math control group. Participants performed a slalom-based driving task in a driving simulator, with average lap time used as a measure of performance. Results revealed that the IVI and KIN group achieved significantly quicker lap times than the IVI and the control groups. The discussion includes a theoretical advancement on why the combination of imagery modalities might facilitate performance, with links made to the cognitive neuroscience literature and applied practice.

  18. NAIP 2017 Imagery Feedback Map

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2017 Imagery Feedback map allows users to make comments and observations about the quality of the 2017 National Agriculture Imagery Program (NAIP)...

  19. NAIP 2015 Imagery Feedback Map

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback map allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program (NAIP)...

  20. AgSat Imagery Collection Footprints

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The AgSat Imagery Collection Footprints map shows the imagery footprints which have been collected under the USDA satellite blanket purchase agreement. Click on a...

  1. OrthoImagery Submission for Isabella county, MI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This data set contains 1-meter resolution imagery derived from the 2005 National Agriculture Imagery Program (NAIP) statewide aerial imagery acquisition. Data have...

  2. Unconscious Imagination and the Mental Imagery Debate

    Directory of Open Access Journals (Sweden)

    Berit Brogaard

    2017-05-01

    Full Text Available Traditionally, philosophers have appealed to the phenomenological similarity between visual experience and visual imagery to support the hypothesis that there is significant overlap between the perceptual and imaginative domains. The current evidence, however, is inconclusive: while evidence from transcranial brain stimulation seems to support this conclusion, neurophysiological evidence from brain lesion studies (e.g., from patients with brain lesions resulting in a loss of mental imagery but not a corresponding loss of perception and vice versa indicates that there are functional and anatomical dissociations between mental imagery and perception. Assuming that the mental imagery and perception do not overlap, at least, to the extent traditionally assumed, then the question arises as to what exactly mental imagery is and whether it parallels perception by proceeding via several functionally distinct mechanisms. In this review, we argue that even though there may not be a shared mechanism underlying vision for perception and conscious imagery, there is an overlap between the mechanisms underlying vision for action and unconscious visual imagery. On the basis of these findings, we propose a modification of Kosslyn’s model of imagery that accommodates unconscious imagination and explore possible explanations of the quasi-pictorial phenomenology of conscious visual imagery in light of the fact that its underlying neural substrates and mechanisms typically are distinct from those of visual experience.

  3. Imagery encoding and false recognition errors: Examining the role of imagery process and imagery content on source misattributions.

    Science.gov (United States)

    Foley, Mary Ann; Foy, Jeffrey; Schlemmer, Emily; Belser-Ehrlich, Janna

    2010-11-01

    Imagery encoding effects on source-monitoring errors were explored using the Deese-Roediger-McDermott paradigm in two experiments. While viewing thematically related lists embedded in mixed picture/word presentations, participants were asked to generate images of objects or words (Experiment 1) or to simply name the items (Experiment 2). An encoding task intended to induce spontaneous images served as a control for the explicit imagery instruction conditions (Experiment 1). On the picture/word source-monitoring tests, participants were much more likely to report "seeing" a picture of an item presented as a word than the converse particularly when images were induced spontaneously. However, this picture misattribution error was reversed after generating images of words (Experiment 1) and was eliminated after simply labelling the items (Experiment 2). Thus source misattributions were sensitive to the processes giving rise to imagery experiences (spontaneous vs deliberate), the kinds of images generated (object vs word images), and the ways in which materials were presented (as pictures vs words).

  4. Mental Imagery in Depression: Phenomenology, Potential Mechanisms, and Treatment Implications.

    Science.gov (United States)

    Holmes, Emily A; Blackwell, Simon E; Burnett Heyes, Stephanie; Renner, Fritz; Raes, Filip

    2016-01-01

    Mental imagery is an experience like perception in the absence of a percept. It is a ubiquitous feature of human cognition, yet it has been relatively neglected in the etiology, maintenance, and treatment of depression. Imagery abnormalities in depression include an excess of intrusive negative mental imagery; impoverished positive imagery; bias for observer perspective imagery; and overgeneral memory, in which specific imagery is lacking. We consider the contribution of imagery dysfunctions to depressive psychopathology and implications for cognitive behavioral interventions. Treatment advances capitalizing on the representational format of imagery (as opposed to its content) are reviewed, including imagery rescripting, positive imagery generation, and memory specificity training. Consideration of mental imagery can contribute to clinical assessment and imagery-focused psychological therapeutic techniques and promote investigation of underlying mechanisms for treatment innovation. Research into mental imagery in depression is at an early stage. Work that bridges clinical psychology and neuroscience in the investigation of imagery-related mechanisms is recommended.

  5. Agency Video, Audio and Imagery Library

    Science.gov (United States)

    Grubbs, Rodney

    2015-01-01

    The purpose of this presentation was to inform the ISS International Partners of the new NASA Agency Video, Audio and Imagery Library (AVAIL) website. AVAIL is a new resource for the public to search for and download NASA-related imagery, and is not intended to replace the current process by which the International Partners receive their Space Station imagery products.

  6. Motion/imagery secure cloud enterprise architecture analysis

    Science.gov (United States)

    DeLay, John L.

    2012-06-01

    Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.

  7. Imagery mismatch negativity in musicians.

    Science.gov (United States)

    Herholz, Sibylle C; Lappe, Claudia; Knief, Arne; Pantev, Christo

    2009-07-01

    The present study investigated musical imagery in musicians and nonmusicians by means of magnetoencephalography (MEG). We used a new paradigm in which subjects had to continue familiar melodies in their mind and then judged if a further presented tone was a correct continuation of the melody. Incorrect tones elicited an imagery mismatch negativity (iMMN) in musicians but not in nonmusicians. This finding suggests that the MMN component can be based on an imagined instead of a sensory memory trace and that imagery of music is modulated by musical expertise.

  8. Sensory Substitution and Multimodal Mental Imagery.

    Science.gov (United States)

    Nanay, Bence

    2017-09-01

    Many philosophers use findings about sensory substitution devices in the grand debate about how we should individuate the senses. The big question is this: Is "vision" assisted by (tactile) sensory substitution really vision? Or is it tactile perception? Or some sui generis novel form of perception? My claim is that sensory substitution assisted "vision" is neither vision nor tactile perception, because it is not perception at all. It is mental imagery: visual mental imagery triggered by tactile sensory stimulation. But it is a special form of mental imagery that is triggered by corresponding sensory stimulation in a different sense modality, which I call "multimodal mental imagery."

  9. VHR satellite imagery for humanitarian crisis management: a case study

    Science.gov (United States)

    Bitelli, Gabriele; Eleias, Magdalena; Franci, Francesca; Mandanici, Emanuele

    2017-09-01

    During the last years, remote sensing data along with GIS have been largely employed for supporting emergency management activities. In this context, the use of satellite images and derived map products has become more common also in the different phases of humanitarian crisis response. In this work very high resolution satellite imagery was processed to assess the evolution of Za'atari Refugee Camp, built in Jordan in 2012 by the UN Refugee Agency to host Syrian refugees. Multispectral satellite scenes of the Za'atari area were processed by means of object-based classifications. The main aim of the present work is the development of a semiautomated procedure for multi-temporal camp monitoring with particular reference to the dwellings detection. Whilst in the emergency mapping domain automation of feature extraction is widely investigated, in the field of humanitarian missions the information is often extracted by means of photointerpretation of the satellite data. This approach requires time for the interpretation; moreover, it is not reliable enough in complex situations, where features of interest are often small, heterogeneous and inconsistent. Therefore, the present paper discusses a methodology to obtain information for assisting humanitarian crisis management, using a semi-automatic classification approach applied to satellite imagery.

  10. A question of intention in motor imagery.

    Science.gov (United States)

    Gabbard, Carl; Cordova, Alberto; Lee, Sunghan

    2009-03-01

    We examined the question-is the intention of completing a simulated motor action the same as the intention used in processing overt actions? Participants used motor imagery to estimate distance reachability in two conditions: Imagery-Only (IO) and Imagery-Execution (IE). With IO (red target) only a verbal estimate using imagery was given. With IE (green target) participants knew that they would actually reach after giving a verbal estimate and be judged on accuracy. After measuring actual maximum reach, used for the comparison, imagery targets were randomly presented across peripersonal- (within reach) and extrapersonal (beyond reach) space. Results indicated no difference in overall accuracy by condition, however, there was a significant distinction by space; participants were more accurate in peripersonal space. Although more research is needed, these findings support an increasing body of evidence suggesting that the neurocognitive processes (in this case, intention) driving motor imagery and overt actions are similar.

  11. The Sport Imagery Questionnaire for Children (SIQ-C)

    Science.gov (United States)

    Hall, C. R.; Munroe-Chandler, K. J.; Fishburne, G. J.; Hall, N. D.

    2009-01-01

    Athletes of all ages report using imagery extensively to enhance their sport performance. The Sport Imagery Questionnaire (Hall, Mack, Paivio, & Hausenblas, 1998) was developed to assess cognitive and motivational imagery used by adult athletes. No such instrument currently exists to measure the use of imagery by young athletes. The aim of the…

  12. Mission Adaptive UAS Platform for Earth Science Resource Assessment

    Science.gov (United States)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.

    2015-01-01

    NASA Ames Research Center has led a number of important Earth science remote sensing missions including several directed at the assessment of natural resources. A key asset for accessing high risk airspace has been the 180 kg class SIERRA UAS platform, providing mission durations of up to 8 hrs at altitudes up to 3 km. Recent improvements to this mission capability are embodied in the incipient SIERRA-B variant. Two resource mapping problems having unusual mission characteristics requiring a mission adaptive capability are explored here. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This challenges the management of resources in the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the ocean color signal. Furthermore, as for all scanning imager applications, the primary flight control priority to fly the UAS directly to the next waypoint should compromise with the requirement to minimize roll and crab effects in the imagery. A second example involves the mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in several recent Earth Science missions including the October 2013 OCEANIA mission directed at improving the capability for hyperspectral reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magentometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub

  13. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    Science.gov (United States)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben

    2012-01-01

    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  14. Performance improvements from imagery:evidence that internal visual imagery is superior to external visual imagery for slalom performance

    Directory of Open Access Journals (Sweden)

    Nichola eCallow

    2013-10-01

    Full Text Available We report three experiments investigating the hypothesis that use of internal visual imagery (IVI would be superior to external visual imagery (EVI for the performance of different slalom-based motor tasks. In Experiment 1, three groups of participants (IVI, EVI, and a control group performed a driving-simulation slalom task. The IVI group achieved significantly quicker lap times than EVI and the control group. In Experiment 2, participants performed a downhill running slalom task under both IVI and EVI conditions. Performance was again quickest in the IVI compared to EVI condition, with no differences in accuracy. Experiment 3 used the same group design as Experiment 1, but with participants performing a downhill ski-slalom task. Results revealed the IVI group to be significantly more accurate than the control group, with no significant differences in time taken to complete the task. These results support the beneficial effects of IVI for slalom-based tasks, and significantly advances our knowledge related to the differential effects of visual imagery perspectives on motor performance.

  15. Selective effect of physical fatigue on motor imagery accuracy.

    Directory of Open Access Journals (Sweden)

    Franck Di Rienzo

    Full Text Available While the use of motor imagery (the mental representation of an action without overt execution during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001 were observed during the posttest for internal visual imagery. A significant correlation (r=0.64; p<0.05 was observed between motor imagery vividness (estimated through imagery questionnaire and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to

  16. New percepts via mental imagery?

    Directory of Open Access Journals (Sweden)

    Fred Walter Mast

    2012-10-01

    Full Text Available We are able to extract detailed information from mental images that we were not explicitly aware of during encoding. For example, we can discover a new figure when we rotate a previously seen image in our mind. However, such discoveries are not really new but just new interpretations. In two recent publications, we have shown that mental imagery can lead to perceptual learning (Tartaglia et al., 2009, 2012. Observers imagined the central line of a bisection stimulus for thousands of trials. This training enabled observers to perceive bisection offsets that were invisible before training. Hence, it seems that perceptual learning via mental imagery leads to new percepts. We will argue, however, that these new percepts can occur only within known models. In this sense, perceptual learning via mental imagery exceeds new discoveries in mental images. Still, the effects of mental imagery on perceptual learning are limited. Only perception can lead to really new perceptual experience.

  17. Detection of Coccolithophore Blooms in Ocean Color Satellite Imagery: a Generalized Approach for Use with Multiple Sensors

    Science.gov (United States)

    Moore, Timothy; Dowell, Mark; Franz, Bryan A.

    2012-01-01

    A generalized coccolithophore bloom classifier has been developed for use with ocean color imagery. The bloom classifier was developed using extracted satellite reflectance data from SeaWiFS images screened by the default bloom detection mask. In the current application, we extend the optical water type (OWT) classification scheme by adding a new coccolithophore bloom class formed from these extracted reflectances. Based on an in situ coccolithophore data set from the North Atlantic, the detection levels with the new scheme were between 1,500 and 1,800 coccolithophore cellsmL and 43,000 and 78,000 lithsmL. The detected bloom area using the OWT method was an average of 1.75 times greater than the default bloom detector based on a collection of SeaWiFS 1 km imagery. The versatility of the scheme is shown with SeaWiFS, MODIS Aqua, CZCS and MERIS imagery at the 1 km scale. The OWT scheme was applied to the daily global SeaWiFS imagery mission data set (years 19972010). Based on our results, average annual coccolithophore bloom area was more than two times greater in the southern hemisphere compared to the northern hemi- sphere with values of 2.00 106 km2 and 0.75 106 km2, respectively. The new algorithm detects larger bloom areas in the Southern Ocean compared to the default algorithm, and our revised global annual average of 2.75106 km2 is dominated by contributions from the Southern Ocean.

  18. Assessing mental imagery in clinical psychology: A review of imagery measures and a guiding framework

    Science.gov (United States)

    Pearson, David G.; Deeprose, Catherine; Wallace-Hadrill, Sophie M.A.; Heyes, Stephanie Burnett; Holmes, Emily A.

    2013-01-01

    Mental imagery is an under-explored field in clinical psychology research but presents a topic of potential interest and relevance across many clinical disorders, including social phobia, schizophrenia, depression, and post-traumatic stress disorder. There is currently a lack of a guiding framework from which clinicians may select the domains or associated measures most likely to be of appropriate use in mental imagery research. We adopt an interdisciplinary approach and present a review of studies across experimental psychology and clinical psychology in order to highlight the key domains and measures most likely to be of relevance. This includes a consideration of methods for experimentally assessing the generation, maintenance, inspection and transformation of mental images; as well as subjective measures of characteristics such as image vividness and clarity. We present a guiding framework in which we propose that cognitive, subjective and clinical aspects of imagery should be explored in future research. The guiding framework aims to assist researchers in the selection of measures for assessing those aspects of mental imagery that are of most relevance to clinical psychology. We propose that a greater understanding of the role of mental imagery in clinical disorders will help drive forward advances in both theory and treatment. PMID:23123567

  19. Aerial Photography and Imagery, Ortho-Corrected, This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S. NAIP imagery may contain as much as 10% cloud cover per tile. This fil, Published in 2005, 1:63360 (1in=1mile) scale, University of Georgia.

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2005. This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP...

  20. Imagery Rescripting for Personality Disorders

    Science.gov (United States)

    Arntz, Arnoud

    2011-01-01

    Imagery rescripting is a powerful technique that can be successfully applied in the treatment of personality disorders. For personality disorders, imagery rescripting is not used to address intrusive images but to change the implicational meaning of schemas and childhood experiences that underlie the patient's problems. Various mechanisms that may…

  1. Tobacco imagery on New Zealand television 2002-2004.

    Science.gov (United States)

    McGee, Rob; Ketchel, Juanita

    2006-10-01

    Considerable emphasis has been placed on the importance of tobacco imagery in the movies as one of the "drivers" of smoking among young people. Findings are presented from a content analysis of 98 hours of prime-time programming on New Zealand television 2004, identifying 152 scenes with tobacco imagery, and selected characteristics of those scenes. About one in four programmes contained tobacco imagery, most of which might be regarded as "neutral or positive". This amounted to about two scenes containing such imagery for every hour of programming. A comparison with our earlier content analysis of programming in 2002 indicated little change in the level of tobacco imagery. The effect of this imagery in contributing to young viewers taking up smoking, and sustaining the addiction among those already smoking, deserves more research attention.

  2. NASA's Global Imagery Browse Services - Technologies for Visualizing Earth Science Data

    Science.gov (United States)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Schmaltz, J. E.; Thompson, C. K.; Roberts, J. T.; Rodriguez, J.; Wong, M. M.; King, B. A.; King, J.; De Luca, A. P.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has collected earth science data for thousands of scientific parameters now totaling nearly 15 Petabytes of data. In 2013, NASA's Global Imagery Browse Services (GIBS) formed its vision to "transform how end users interact and discover [EOS] data through visualizations." This vision included leveraging scientific and community best practices and standards to provide a scalable, compliant, and authoritative source for EOS earth science data visualizations. Since that time, GIBS has grown quickly and now services millions of daily requests for over 500 imagery layers representing hundreds of earth science parameters to a broad community of users. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. The GIBS system is built upon the OnEarth and MRF open source software projects, which are provided by the GIBS team. This software facilitates standards-based access for compliance with existing GIS tools. The GIBS imagery layers are predominantly rasterized images represented in two-dimensional coordinate systems, though multiple projections are supported. The OnEarth software also supports the GIBS ingest pipeline to facilitate low latency updates to new or updated visualizations. This presentation will focus on the following topics: Overview of GIBS visualizations and user community Current benefits and limitations of the OnEarth and MRF software projects and related standards GIBS access methods and their in/compatibilities with existing GIS libraries and applications Considerations for visualization accuracy and understandability Future plans for more advanced visualization concepts including Vertical Profiles and Vector-Based Representations Future plans for Amazon Web Service support and deployments

  3. Radiometric Non-Uniformity Characterization and Correction of Landsat 8 OLI Using Earth Imagery-Based Techniques

    Directory of Open Access Journals (Sweden)

    Frank Pesta

    2014-12-01

    Full Text Available Landsat 8 is the first satellite in the Landsat mission to acquire spectral imagery of the Earth using pushbroom sensor instruments. As a result, there are almost 70,000 unique detectors on the Operational Land Imager (OLI alone to monitor. Due to minute variations in manufacturing and temporal degradation, every detector will exhibit a different behavior when exposed to uniform radiance, causing a noticeable striping artifact in collected imagery. Solar collects using the OLI’s on-board solar diffuser panels are the primary method of characterizing detector level non-uniformity. This paper reports on an approach for using a side-slither maneuver to estimate relative detector gains within each individual focal plane module (FPM in the OLI. A method to characterize cirrus band detector-level non-uniformity using deep convective clouds (DCCs is also presented. These approaches are discussed, and then, correction results are compared with the diffuser-based method. Detector relative gain stability is assessed using the side-slither technique. Side-slither relative gains were found to correct streaking in test imagery with quality comparable to diffuser-based gains (within 0.005% for VNIR/PAN; 0.01% for SWIR and identified a 0.5% temporal drift over a year. The DCC technique provided relative gains that visually decreased striping over the operational calibration in many images.

  4. Visualisation, imagery, and the development of geometrical reasoning

    OpenAIRE

    Jones, Keith; Bills, Chris

    1998-01-01

    This report focuses on some aspects of the nature and role of visualisation and imagery in the teaching and learning of mathematics, particularly as a component in the development of geometrical reasoning. Issues briefly addressed include the relationship between imagery and perception, imagery and memory, the nature of dynamic images, and the interaction between imagery and concept development. The report concludes with a series of questions that may provide a suitable programme for research...

  5. Indexing, screening, coding and cataloging of earth resources aircraft mission data

    Science.gov (United States)

    1977-01-01

    Tasks completed are as follows: (1) preparation of large Area Crop Inventory experiment for data base entry;(2) preparation of Earth Observations Aircraft Flight summary reports for publication; (3) updating of the aircraft mission index coverage map and Ames aircraft flight map; (4) Prepared of Earth Observation Helicopter Flight reports for publication; and (5) indexing of LANDSAT imagery. (6) formulation of phase 3 biowindows 1, 2, 3, and 4 listings by country, footprint, and acqusition dates; (7) preparation of flight summary reports; and (8) preparation of an Alaska state index coverage map.

  6. Planning and Management of Real-Time Geospatialuas Missions Within a Virtual Globe Environment

    Science.gov (United States)

    Nebiker, S.; Eugster, H.; Flückiger, K.; Christen, M.

    2011-09-01

    This paper presents the design and development of a hardware and software framework supporting all phases of typical monitoring and mapping missions with mini and micro UAVs (unmanned aerial vehicles). The developed solution combines state-of-the art collaborative virtual globe technologies with advanced geospatial imaging techniques and wireless data link technologies supporting the combined and highly reliable transmission of digital video, high-resolution still imagery and mission control data over extended operational ranges. The framework enables the planning, simulation, control and real-time monitoring of UAS missions in application areas such as monitoring of forest fires, agronomical research, border patrol or pipeline inspection. The geospatial components of the project are based on the Virtual Globe Technology i3D OpenWebGlobe of the Institute of Geomatics Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). i3D OpenWebGlobe is a high-performance 3D geovisualisation engine supporting the web-based streaming of very large amounts of terrain and POI data.

  7. The differential contributions of visual imagery constructs on autobiographical thinking.

    Science.gov (United States)

    Aydin, Cagla

    2018-02-01

    There is a growing theoretical and empirical consensus on the central role of visual imagery in autobiographical memory. However, findings from studies that explore how individual differences in visual imagery are reflected on autobiographical thinking do not present a coherent story. One reason for the mixed findings was suggested to be the treatment of visual imagery as an undifferentiated construct while evidence shows that there is more than one type of visual imagery. The present study investigates the relative contributions of different imagery constructs; namely, object and spatial imagery, on autobiographical memory processes. Additionally, it explores whether a similar relation extends to imagining the future. The results indicate that while object imagery was significantly correlated with several phenomenological characteristics, such as the level of sensory and perceptual details for past events - but not for future events - spatial imagery predicted the level of episodic specificity for both past and future events. We interpret these findings as object imagery being recruited in tasks of autobiographical memory that employ reflective processes while spatial imagery is engaged during direct retrieval of event details. Implications for the role of visual imagery in autobiographical thinking processes are discussed.

  8. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    Science.gov (United States)

    Broquet, Grégoire; Bréon, François-Marie; Renault, Emmanuel; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich; Chevallier, Frédéric; Wu, Lin; Ciais, Philippe

    2018-02-01

    This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA). This assessment is based on observing system simulation experiments (OSSEs) with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ˜ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif) and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system is perfectly informed about the

  9. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    Directory of Open Access Journals (Sweden)

    G. Broquet

    2018-02-01

    Full Text Available This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA. This assessment is based on observing system simulation experiments (OSSEs with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ∼ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system

  10. Motor experience with a sport-specific implement affects motor imagery

    Science.gov (United States)

    Zhu, Hua; Shen, Cheng; Zhang, Jian

    2018-01-01

    The present study tested whether sport-specific implements facilitate motor imagery, whereas nonspecific implements disrupt motor imagery. We asked a group of basketball players (experts) and a group of healthy controls (novices) to physically perform (motor execution) and mentally simulate (motor imagery) basketball throws. Subjects produced motor imagery when they were holding a basketball, a volleyball, or nothing. Motor imagery performance was measured by temporal congruence, which is the correspondence between imagery and execution times estimated as (imagery time minus execution time) divided by (imagery time plus execution time), as well as the vividness of motor imagery. Results showed that experts produced greater temporal congruence and vividness of kinesthetic imagery while holding a basketball compared to when they were holding nothing, suggesting a facilitation effect from sport-specific implements. In contrast, experts produced lower temporal congruence and vividness of kinesthetic imagery while holding a volleyball compared to when they were holding nothing, suggesting the interference effect of nonspecific implements. Furthermore, we found a negative correlation between temporal congruence and the vividness of kinesthetic imagery in experts while holding a basketball. On the contrary, the implement manipulation did not modulate the temporal congruence of novices. Our findings suggest that motor representation in experts is built on motor experience associated with specific-implement use and thus was subjected to modulation of the implement held. We conclude that sport-specific implements facilitate motor imagery, whereas nonspecific implements could disrupt motor representation in experts. PMID:29719738

  11. Mental imagery in emotion and emotional disorders.

    Science.gov (United States)

    Holmes, Emily A; Mathews, Andrew

    2010-04-01

    Mental imagery has been considered relevant to psychopathology due to its supposed special relationship with emotion, although evidence for this assumption has been conspicuously lacking. The present review is divided into four main sections: (1) First, we review evidence that imagery can evoke emotion in at least three ways: a direct influence on emotional systems in the brain that are responsive to sensory signals; overlap between processes involved in mental imagery and perception which can lead to responding "as if" to real emotion-arousing events; and the capacity of images to make contact with memories for emotional episodes in the past. (2) Second, we describe new evidence confirming that imagery does indeed evoke greater emotional responses than verbal representation, although the extent of emotional response depends on the image perspective adopted. (3) Third, a heuristic model is presented that contrasts the generation of language-based representations with imagery and offers an account of their differing effects on emotion, beliefs and behavior. (4) Finally, based on the foregoing review, we discuss the role of imagery in maintaining emotional disorders, and its uses in psychological treatment. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Satellite imagery in a nuclear age

    International Nuclear Information System (INIS)

    Baines, P.J.

    1998-01-01

    Increasingly, high resolution satellite imaging systems are becoming available from multiple and diverse sources with capabilities useful for answering security questions. With increased supply, data availability and data authenticity may be assured. In a commercial market a supplier can ill afford the loss in market share that would result from any falsification of data. Similarly rising competitors willing to sell imagery of national security sites will decrease the tendency to endure self-imposed restrictions on sales of those sites. International organizations operating in the security interests of all nations might also gain preferential access. Costa for imagery will also fall to the point were individuals can afford purchases of satellite images. International organizations will find utility in exploiting imagery for solving international security problems. Housed within international organizations possessing competent staff, procedures, and 'shared destiny' stakes in resolving compliance discrepancies, the use of satellite imagery may provide a degree of stability in a world in which individuals, non-governmental organizations and governments may choose to exploit the available information for political gain. The use of satellite imagery outside these international organizations might not necessarily be aimed at seeking mutually beneficial solutions for international problems

  13. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  14. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  15. Closing the mind's eye: incoming luminance signals disrupt visual imagery.

    Directory of Open Access Journals (Sweden)

    Rachel Sherwood

    Full Text Available Mental imagery has been associated with many cognitive functions, both high and low-level. Despite recent scientific advances, the contextual and environmental conditions that most affect the mechanisms of visual imagery remain unclear. It has been previously shown that the greater the level of background luminance the weaker the effect of imagery on subsequent perception. However, in these experiments it was unclear whether the luminance was affecting imagery generation or storage of a memory trace. Here, we report that background luminance can attenuate both mental imagery generation and imagery storage during an unrelated cognitive task. However, imagery generation was more sensitive to the degree of luminance. In addition, we show that these findings were not due to differential dark adaptation. These results suggest that afferent visual signals can interfere with both the formation and priming-memory effects associated with visual imagery. It follows that background luminance may be a valuable tool for investigating imagery and its role in various cognitive and sensory processes.

  16. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    Science.gov (United States)

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Guided Imagery and Stress in Pregnant Adolescents.

    Science.gov (United States)

    Flynn, Theresa A; Jones, Brittney A; Ausderau, Karla K

    2016-01-01

    We examined the effects of a guided imagery intervention on perceived stress in pregnant adolescents. Thirty-five pregnant adolescents recruited from a local alternative education program participated in a guided imagery intervention. Participants listened to a pregnancy-specific guided imagery recording on four separate occasions during their pregnancies. Perceived stress was measured immediately before and after each session using the Perceived Stress Measure-9 (PSM-9). Participants' pre- and postsession PSM-9 scores for three of the four sessions demonstrated a significant reduction in stress. Participants' baseline stress levels also decreased significantly across the four listening sessions. The greatest reductions in stress within and between sessions occurred in the early sessions, with effects diminishing over time. Pregnant teens experienced initial short- and long-term stress reduction during a guided imagery intervention, supporting the use of guided imagery to reduce stress in pregnant adolescents. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  18. The role of mental imagery in non-clinical paranoia.

    Science.gov (United States)

    Bullock, Gemma; Newman-Taylor, Katherine; Stopa, Luisa

    2016-03-01

    Cognitive models of paranoia incorporate many of the processes implicated in the maintenance of anxiety disorders. Despite this, the role of mental imagery in paranoia remains under-researched. The current study examined the impact of a self-imagery manipulation in people with high non-clinical paranoia. We used a mixed design with one between-subjects variable (type of self-imagery) and one within-subjects variable (time--pre and post imagery manipulation). Thirty participants with high trait paranoia were allocated alternately to a positive or negative self-imagery condition. Scripts were used to elicit positive and negative self-imagery. All participants completed self-report state measures of paranoia, mood, self-esteem and self-compassion. Group by time interaction effects were found for each of the dependent variables. Positive imagery led to less state paranoia, anxiety and negative affect, and more positive affect, self-esteem and self-compassion, compared with the negative imagery group. This was a non-blind study, limited by allocation method and a brief time-frame which did not allow us to assess longevity of effects. We recruited a relatively small and predominantly female sample of people with high non-clinical paranoia. The study did not include a neutral control condition, a low paranoia comparison group, or a manipulation check following the imagery task. Self-imagery manipulations may affect paranoia, mood and self-beliefs. If the findings are replicated with clinical groups, and maintained over a longer period, this would suggest that imagery-based interventions targeting persecutory delusions might be usefully examined. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. The applied model of imagery use: Examination of moderation and mediation effects.

    Science.gov (United States)

    Koehn, S; Stavrou, N A M; Young, J A; Morris, T

    2016-08-01

    The applied model of mental imagery use proposed an interaction effect between imagery type and imagery ability. This study had two aims: (a) the examination of imagery ability as a moderating variable between imagery type and dispositional flow, and (b) the testing of alternative mediation models. The sample consisted of 367 athletes from Scotland and Australia, who completed the Sport Imagery Questionnaire, Sport Imagery Ability Questionnaire, and Dispositional Flow Scale-2. Hierarchical regression analysis showed direct effects of imagery use and imagery ability on flow, but no significant interaction. Mediation analysis revealed a significant indirect path, indicating a partially mediated relationship (P = 0.002) between imagery use, imagery ability, and flow. Partial mediation was confirmed when the effect of cognitive imagery use and cognitive imagery ability was tested, and a full mediation model was found between motivational imagery use, motivational imagery ability, and flow. The results are discussed in conjunction with potential future research directions on advancing theory and applications. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Mental imagery boosts music compositional creativity

    Science.gov (United States)

    Lim, Stephen Wee Hun

    2017-01-01

    We empirically investigated the effect of mental imagery on young children’s music compositional creativity. Children aged 5 to 8 years participated in two music composition sessions. In the control session, participants based their composition on a motif that they had created using a sequence of letter names. In the mental imagery session, participants were given a picture of an animal and instructed to imagine the animal’s sounds and movements, before incorporating what they had imagined into their composition. Six expert judges independently rated all music compositions on creativity based on subjective criteria (consensual assessment). Reliability analyses indicated that the expert judges demonstrated a high level of agreement in their ratings. The mental imagery compositions received significantly higher creativity ratings by the expert judges than did the control compositions. These results provide evidence for the effectiveness of mental imagery in enhancing young children’s music compositional creativity. PMID:28296965

  1. Mental imagery boosts music compositional creativity.

    Science.gov (United States)

    Wong, Sarah Shi Hui; Lim, Stephen Wee Hun

    2017-01-01

    We empirically investigated the effect of mental imagery on young children's music compositional creativity. Children aged 5 to 8 years participated in two music composition sessions. In the control session, participants based their composition on a motif that they had created using a sequence of letter names. In the mental imagery session, participants were given a picture of an animal and instructed to imagine the animal's sounds and movements, before incorporating what they had imagined into their composition. Six expert judges independently rated all music compositions on creativity based on subjective criteria (consensual assessment). Reliability analyses indicated that the expert judges demonstrated a high level of agreement in their ratings. The mental imagery compositions received significantly higher creativity ratings by the expert judges than did the control compositions. These results provide evidence for the effectiveness of mental imagery in enhancing young children's music compositional creativity.

  2. The Study of Object-Oriented Motor Imagery Based on EEG Suppression.

    Directory of Open Access Journals (Sweden)

    Lili Li

    Full Text Available Motor imagery is a conventional method for brain computer interface and motor learning. To avoid the great individual difference of the motor imagery ability, object-oriented motor imagery was applied, and the effects were studied. Kinesthetic motor imagery and visual observation were administered to 15 healthy volunteers. The EEG during cue-based simple imagery (SI, object-oriented motor imagery (OI, non-object-oriented motor imagery (NI and visual observation (VO was recorded. Study results showed that OI and NI presented significant contralateral suppression in mu rhythm (p 0.05. Compared with NI, OI showed significant difference (p < 0.05 in mu rhythm and weak significant difference (p = 0.0612 in beta rhythm over the contralateral hemisphere. The ability of motor imagery can be reflected by the suppression degree of mu and beta frequencies which are the motor related rhythms. Thus, greater enhancement of activation in mirror neuron system is involved in response to object-oriented motor imagery. The object-oriented motor imagery is favorable for improvement of motor imagery ability.

  3. Panel Discussion: Near Real Time Imagery Intelligence How Will We Do It?

    Science.gov (United States)

    Andraitis, Arthur A.; Crane, Alfred C.; Daniels, George; Graham, Johnny; LaGesse, Francis R.

    1987-02-01

    This afternoon's panel discussion will address near real time imagery and intelligence--how will we do it? Our moderator is Arthur Andraitis, a consultant in intelligence reconnaissance systems and international marketing. He was commissioned in the United States Air Force out of the University of Idaho, and entered the Air Force in 1955 where he became an Image Intelligence Officer serving in a variety of intelligence and reconnaisance related assignments, including two tours each in Asia and Europe supporting tactical theater and national level operations. He also suffered through two Pentagon tours--one as Branch Chief of the Imagery Branch for the Assistant Chief of Staff for Intelligence. He was the U. S. National Coordinator for two NATO intelligence and reconnaissance panels, and served several assignments in support of special operations, which included a year with the special forces in Viet Nam where he flew many missions in L-19s, 01 and assault helicopters. He has been an advisor on intelligence and reconnaissance matters to several foreign countries. In 1978 he retired from the United States Air Force, went to work for Itek, and then became an independent consultant in intelligence and reconaissance systems. I would like to introduce Art Andraitis.

  4. Object versus spatial visual mental imagery in patients with schizophrenia

    Science.gov (United States)

    Aleman, André; de Haan, Edward H.F.; Kahn, René S.

    2005-01-01

    Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999

  5. 7 CFR 611.22 - Availability of satellite imagery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of satellite imagery. 611.22 Section 611... § 611.22 Availability of satellite imagery. Cloud-free maps of the United States based on imagery received from a satellite are prepared and released to the pubic by NRCS. The maps offer the first image of...

  6. Dynamic Neuro-Cognitive Imagery Improves Mental Imagery Ability, Disease Severity, and Motor and Cognitive Functions in People with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Amit Abraham

    2018-01-01

    Full Text Available People with Parkinson’s disease (PD experience kinesthetic deficits, which affect motor and nonmotor functions, including mental imagery. Imagery training is a recommended, yet underresearched, approach in PD rehabilitation. Dynamic Neuro-Cognitive Imagery (DNI™ is a codified method for imagery training. Twenty subjects with idiopathic PD (Hoehn and Yahr stages I–III were randomly allocated into DNI training (experimental; n=10 or in-home learning and exercise program (control; n=10. Both groups completed at least 16 hours of training within two weeks. DNI training focused on anatomical embodiment and kinesthetic awareness. Imagery abilities, disease severity, and motor and nonmotor functions were assessed pre- and postintervention. The DNI participants improved (p<.05 in mental imagery abilities, disease severity, and motor and spatial cognitive functions. Participants also reported improvements in balance, walking, mood, and coordination, and they were more physically active. Both groups strongly agreed they enjoyed their program and were more mentally active. DNI training is a promising rehabilitation method for improving imagery ability, disease severity, and motor and nonmotor functions in people with PD. This training might serve as a complementary PD therapeutic approach. Future studies should explore the effect of DNI on motor learning and control strategies.

  7. Mental Imagery in Creative Problem Solving.

    Science.gov (United States)

    Polland, Mark J.

    In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…

  8. Imagery, Music, Cognitive Style and Memory.

    Science.gov (United States)

    Stratton, Valerie N.; Zalanowski, Annette

    Paired associate memory was tested with imagery and repetition instructions, with and without background music. Subjects were 64 students enrolled in an introductory psychology course. Music was found to have no effect with imagery instructions, but significantly improved performance with the repetition instructions. Music had different effects on…

  9. USDA/FSA Imagery Programs - Public Map Gallery

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — Imagery programs are an important part of maintaining, creating and updating geospatial data at the USDA Farm Service Agency. Imagery acquisition is provided by the...

  10. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  11. Redefining nondiscriminatory access to remote sensing imagery and its impact on global transparency

    Science.gov (United States)

    Aten, Michelle L.

    2003-04-01

    Global transparency is founded on the Open Skies philosophy and its precept of non-discriminatory access. Global transparency implies that anyone can have anytime, anyplace access to a wide-array of remotely sensed imagery. The custom of non-discriminatory access requires that datasets of interest must be affordable, usable, and obtainable in a timely fashion devoid of political, economic or technical obstacles. Thus, an assessment of the correlation between the availability of satellite imagery and changes in governmental policies, pricing fluctuations of data, and advances in technology is critical to assessing the viability of global transparency. The Open Skies philosophy was originally proposed at the 1955 Geneva Summit to advocate mutually beneficial aerial reconnaissance missions over the USSR and the US as a verification tool for arms control and non-proliferation agreements. However, due to Cold War tensions, this philosophy and the custom of non-discriminatory were not widely adopted in the civilian remote sensing community until the commissioning of the Landsat Program in 1972. Since this time, commercial high-resolution satellites have drastically changed the circumstances on which the fundamental tenets of this philosophy are based. Since the successful launch of the first of this satellite class, the IKONOS satellite, high-resolution imagery is now available to non-US governments and an unlimited set of non-state actors. As more advanced capabilities are added to the growing assortment of remote sensing satellites, the reality of global transparency will rapidly evolve. This assessment includes an overview of historical precedents and a brief explanation of relevant US policy decisions that define non-discriminatory access with respect to US government and US based corporate assets. It also presents the dynamics of the political, economic, and technical barriers that may dictate or influence the remote sensing community's access to satellite data. In

  12. A hypnotically mediated guided imagery intervention for intrusive imagery: creating ground for figure.

    Science.gov (United States)

    Appel, P R

    1999-04-01

    Intrusive imagery can be seen as a cognitive dysfunction in the assimilation and accommodation of the psychological material represented by those images. From a gestalt psychological perspective, the intrusive image represents a figure without a ground that can provide meaning and context. Hypnotically mediated guided imagery interventions can be used to create a ground for the rogue image that metaphorically is an unassimilated figure; and thus allow for the creation of a new cognitive scheme. Four case examples are presented as well as a model for the intervention.

  13. Internal and External Imagery Effects on Tennis Skills Among Novices.

    Science.gov (United States)

    Dana, Amir; Gozalzadeh, Elmira

    2017-10-01

    The purpose of this study was to determine the effects of internal and external visual imagery perspectives on performance accuracy of open and closed tennis skills (i.e., serve, forehand, and backhand) among novices. Thirty-six young male novices, aged 15-18 years, from a summer tennis program participated. Following initial skill acquisition (12 sessions), baseline assessments of imagery ability and imagery perspective preference were used to assign participants to one of three groups: internal imagery ( n = 12), external imagery ( n = 12), or a no-imagery (mental math exercise) control group ( n = 12). The experimental interventions of 15 minutes of mental imagery (internal or external) or mental math exercises followed by 15 minutes of physical practice were held three times a week for six weeks. The performance accuracy of the groups on the serve, forehand, and backhand strokes was measured at pre- and post-test using videotaping. Results showed significant increases in the performance accuracy of all three tennis strokes in all three groups, but serve accuracy in the internal imagery group and forehand accuracy in the external imagery group showed greater improvements, while backhand accuracy was similarly improved in all three groups. These findings highlight differential efficacy of internal and external visual imagery for performance improvement on complex sport skills in early stage motor learning.

  14. Brain networks underlying mental imagery of auditory and visual information.

    Science.gov (United States)

    Zvyagintsev, Mikhail; Clemens, Benjamin; Chechko, Natalya; Mathiak, Krystyna A; Sack, Alexander T; Mathiak, Klaus

    2013-05-01

    Mental imagery is a complex cognitive process that resembles the experience of perceiving an object when this object is not physically present to the senses. It has been shown that, depending on the sensory nature of the object, mental imagery also involves correspondent sensory neural mechanisms. However, it remains unclear which areas of the brain subserve supramodal imagery processes that are independent of the object modality, and which brain areas are involved in modality-specific imagery processes. Here, we conducted a functional magnetic resonance imaging study to reveal supramodal and modality-specific networks of mental imagery for auditory and visual information. A common supramodal brain network independent of imagery modality, two separate modality-specific networks for imagery of auditory and visual information, and a common deactivation network were identified. The supramodal network included brain areas related to attention, memory retrieval, motor preparation and semantic processing, as well as areas considered to be part of the default-mode network and multisensory integration areas. The modality-specific networks comprised brain areas involved in processing of respective modality-specific sensory information. Interestingly, we found that imagery of auditory information led to a relative deactivation within the modality-specific areas for visual imagery, and vice versa. In addition, mental imagery of both auditory and visual information widely suppressed the activity of primary sensory and motor areas, for example deactivation network. These findings have important implications for understanding the mechanisms that are involved in generation of mental imagery. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Music to the inner ears: exploring individual differences in musical imagery.

    Science.gov (United States)

    Beaty, Roger E; Burgin, Chris J; Nusbaum, Emily C; Kwapil, Thomas R; Hodges, Donald A; Silvia, Paul J

    2013-12-01

    In two studies, we explored the frequency and phenomenology of musical imagery. Study 1 used retrospective reports of musical imagery to assess the contribution of individual differences to imagery characteristics. Study 2 used an experience sampling design to assess the phenomenology of musical imagery over the course of one week in a sample of musicians and non-musicians. Both studies found episodes of musical imagery to be common and positive: people rarely wanted such experiences to end and often heard music that was personally meaningful. Several variables predicted musical imagery, including personality, musical preferences, and positive mood. Musicians tended to hear musical imagery more often, but they reported less frequent episodes of deliberately-generated imagery. Taken together, the present research provides new insights into individual differences in musical imagery, and it supports the emerging view that such experiences are common, positive, and more voluntary than previously recognized. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Analisa Spektrum Motor Imagery pada Sinyal Aktivitas Otak

    Directory of Open Access Journals (Sweden)

    Johan Chandra

    2017-01-01

    Full Text Available Otak merupakan organ vital pada tubuh manusia yang berperan sebagai pusat kendali sistem saraf manusia. Sinyal yang dikeluarkan otak (EEG mengandung berbagai informasi yang dapat dimanfaatkan pada teknologi BCI. Salah satu informasi yang dapat digunakan adalah informasi motorik baik mengenai motor execution maupung motor imagery. Pada penderita stroke yang biasanya mengalami kelumpuhan pada anggota gerak tubuhnya, informasi mengenai motor imagery dapat dimanfaatkan untuk aplikasi Brain Computer Interface terutama dalam rehabilitasi kelumpuhan anggota gerak pasien tersebut. Pada penelitian ini dirancang sebuah alat sistem EEG untuk merekam sinyal EEG pada otak untuk menganalisa spektrum motor imagery pada sinyal aktivitas otak. Sistem terdiri dari rangkaian filter pasif, rangkaian proteksi, penguat isntrumentasi, common mode rejection, amplifier, dan filter. Pengujian dilakukan dengan membandingkan sinyal EEG pada tasking motor imagery dan motor execution. Selanjutnya, informasi motorik baik motor execution dan motor imagery dapat diaplikasikan lebih lanjut pada sistem BCI terutama pada rehabilitasi medik.

  17. EEG Topographic Mapping of Visual and Kinesthetic Imagery in Swimmers.

    Science.gov (United States)

    Wilson, V E; Dikman, Z; Bird, E I; Williams, J M; Harmison, R; Shaw-Thornton, L; Schwartz, G E

    2016-03-01

    This study investigated differences in QEEG measures between kinesthetic and visual imagery of a 100-m swim in 36 elite competitive swimmers. Background information and post-trial checks controlled for the modality of imagery, swimming skill level, preferred imagery style, intensity of image and task equality. Measures of EEG relative magnitude in theta, low (7-9 Hz) and high alpha (8-10 Hz), and low and high beta were taken from 19 scalp sites during baseline, visual, and kinesthetic imagery. QEEG magnitudes in the low alpha band during the visual and kinesthetic conditions were attenuated from baseline in low band alpha but no changes were seen in any other bands. Swimmers produced more low alpha EEG magnitude during visual versus kinesthetic imagery. This was interpreted as the swimmers having a greater efficiency at producing visual imagery. Participants who reported a strong intensity versus a weaker feeling of the image (kinesthetic) had less low alpha magnitude, i.e., there was use of more cortical resources, but not for the visual condition. These data suggest that low band (7-9 Hz) alpha distinguishes imagery modalities from baseline, visual imagery requires less cortical resources than kinesthetic imagery, and that intense feelings of swimming requires more brain activity than less intense feelings.

  18. Concepts are not represented by conscious imagery

    NARCIS (Netherlands)

    D. Pecher (Diane); S. van Dantzig (Saskia); H.N.J. Schifferstien (Hendrik)

    2009-01-01

    textabstractAccording to theories of grounded cognition, conceptual representation and perception share processing mechanisms. We investigated whether this overlap is due to conscious perceptual imagery. Participants filled out questionnaires to assess the vividness of their imagery (Questionnaire

  19. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Suwannee County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  20. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Taylor County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  1. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Okeechobee County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  2. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Baker County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  3. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Leon County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  4. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Sumter County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  5. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Alachua County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  6. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Putnam County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  7. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Lake County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  8. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Volusia County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  9. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Lee County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  10. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Nassau County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  11. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Duval County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  12. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Gadsden County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  13. Botswana team sport players' perception of cohesion and imagery ...

    African Journals Online (AJOL)

    Perception of cohesion and imagery use among 45 elite team sport players in Botswana were assessed with the Group Environment Questionnaire (Carron et al., 1985) and the Sport Imagery Questionnaire (Hall et al., 1998) to determine whether a relationship exists between the variables, and whether imagery use will ...

  14. Do the physical and environment PETTLEP elements predict sport imagery ability?

    Science.gov (United States)

    Anuar, Nurwina; Williams, Sarah E; Cumming, Jennifer

    2017-11-01

    The present study aimed to examine whether physical and environment elements of PETTLEP imagery relate to the ability to image five types of sport imagery (i.e. skill, strategy, goal, affect and mastery). Two hundred and ninety participants (152 males, 148 females; M age  = 20.24 years, SD = 4.36) from various sports completed the Sport Imagery Ability Questionnaire (SIAQ), and a set of items designed specifically for the study to assess how frequently participants incorporate physical (e.g. 'I make small movements or gestures during the imagery') and environment (e.g. 'I image in the real training/competition environment') elements of PETTLEP imagery. Structural equation modelling tested a hypothesised model in which imagery priming (i.e. the best fitting physical and environment elements) significantly and positively predicted imagery ability of the different imagery types (skill, β = 0.38; strategy, β = 0.23; goal, β = 0.21; affect, β = 0.25; mastery, β = 0.22). The model was a good fit to the data: χ 2 (174) = 263.87, p environment elements is associated with better skill, strategy, goal, affect and mastery imagery ability. The findings extend models of imagery use by indicating that how athletes images may influence their imagery ability.

  15. Team Action Imagery and Team Cognition: Imagery of Game Situations and Required Team Actions Promotes a Functional Structure in Players' Representations of Team-Level Tactics.

    Science.gov (United States)

    Frank, Cornelia; Linstromberg, Gian-Luca; Hennig, Linda; Heinen, Thomas; Schack, Thomas

    2018-02-01

    A team's cognitions of interpersonally coordinated actions are a crucial component for successful team performance. Here, we present an approach to practice team action by way of imagery and examine its impact on team cognitions in long-term memory. We investigated the impact of a 4-week team action imagery intervention on futsal players' mental representations of team-level tactics. Skilled futsal players were assigned to either an imagery training group or a no imagery training control group. Participants in the imagery training group practiced four team-level tactics by imagining team actions in specific game situations for three times a week. Results revealed that the imagery training group's representations were more similar to that of an expert representation after the intervention compared with the control group. This study indicates that team action imagery training can have a significant impact on players' tactical skill representations and thus order formation in long-term memory.

  16. Reflecting on imagery: a clinical perspective and overview of the special issue of memory on mental imagery and memory in psychopathology.

    Science.gov (United States)

    Hackmann, Ann; Holmes, Emily A

    2004-07-01

    The authors provide an overview of the papers in the special issue of Memory on mental imagery and memory in psychopathology. The papers address emotional, intrusive mental imagery across a range of psychological disorders including post-traumatic stress disorder (PTSD), agoraphobia, body dysmorphic disorder, mood disorders, and psychosis. They include work on information processing issues including modelling cravings, conditioning, and aversions, as well as imagery qualities such as vividness and emotionality. The overview aims to place the articles in a broader context and draw out some exciting implications of this novel work. It provides a clinical context to the recent growth in this area from a cognitive behavioural therapy (CBT) perspective. We begin with PTSD, and consider links to imagery in other disorders. The clinical implications stemming from this empirical work and from autobiographical memory theory are discussed. These include consideration of a variety of techniques for eliminating troublesome imagery, and creating healthy, realistic alternatives.

  17. Motor imagery and swallowing: a systematic literature review

    Directory of Open Access Journals (Sweden)

    Ada Salvetti Cavalcanti Caldas

    Full Text Available ABSTRACT Objetive: to identify, in the literature, studies that address the use of motor imagery of swallowing. Methods: a systematic review in SCOPUS databases, Science Direct and Medline, with descriptors and free terms "Motor Imagery"; "Swallow"; "Feeding"; "Stomatognathic System"; "mastication ", "Chew "; "Deglutition "; "Deglutition Disorders "; and "Mental Practice". Original articles using the motor imagery of swallowing were included, while reviews were excluded. For data analysis, at the first and second steps, the reading of titles and abstracts of the studies was carried out. In the third step, all studies that were not excluded were read in full. Results: four manuscripts were selected. The use of motor imagery in the rehabilitation of swallowing shows to be a recent proposal (2014-2015. The sample was reduced and comprised mainly healthy individuals. The EMG of the supra-hyoid muscles was used in two manuscripts. The most used neuroimaging technique was the Near-Infrared Spectroscopy, demonstrating the occurrence of hemodynamic changes during motor imagery and motor execution of swallowing. Conclusion: the motor imagery produces brain response in the motor area of the brain, suggesting that mentalization of actions related to swallowing is effective. However, further studies are needed for the application of this approach in the swallowing rehabilitation.

  18. The Movement Imagery Questionnaire-Revised, Second Edition (MIQ-RS Is a Reliable and Valid Tool for Evaluating Motor Imagery in Stroke Populations

    Directory of Open Access Journals (Sweden)

    Andrew J. Butler

    2012-01-01

    Full Text Available Mental imagery can improve motor performance in stroke populations when combined with physical therapy. Valid and reliable instruments to evaluate the imagery ability of stroke survivors are needed to maximize the benefits of mental imagery therapy. The purposes of this study were to: examine and compare the test-retest intra-rate reliability of the Movement Imagery Questionnaire-Revised, Second Edition (MIQ-RS in stroke survivors and able-bodied controls, examine internal consistency of the visual and kinesthetic items of the MIQ-RS, determine if the MIQ-RS includes both the visual and kinesthetic dimensions of mental imagery, correlate impairment and motor imagery scores, and investigate the criterion validity of the MIQ-RS in stroke survivors by comparing the results to the KVIQ-10. Test-retest analysis indicated good levels of reliability (ICC range: .83–.99 and internal consistency (Cronbach α: .95–.98 of the visual and kinesthetic subscales in both groups. The two-factor structure of the MIQ-RS was supported by factor analysis, with the visual and kinesthetic components accounting for 88.6% and 83.4% of the total variance in the able-bodied and stroke groups, respectively. The MIQ-RS is a valid and reliable instrument in the stroke population examined and able-bodied populations and therefore useful as an outcome measure for motor imagery ability.

  19. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Zambia

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Zambia. The IUREP Orientation Phase mission to Zambia estimates that the Speculative Resources of that country fall within the range of 33 000 and 100 000 tonnes uranium. The majority of these resources are believed to exist in the Karoo sediments. Other potentially favourable geological environments are the Precambrian Katanga sediments, as well as intrusive rocks of different chemical compositions and surficial duricrusts. Previous unofficial estimates of Zambia's Reasonably Assured Resources (RAR) and Estimated Additional Resources (EAR) are considered to be still valid: the total RAR amount to 6 000 tonnes uranium, located in Karoo (4 000 tonnes) and Katanga (2 000 tonnes) sediments, while the EAR are believed to total 4 000 tonnes being found only in Karoo sediments. The mission recommends that approximately US$ 40 million be spent on uranium exploration in Zambia over 10 years. The largest part of this expenditure would be for drilling, while the remainder should be spent on airborne and ground surveys, as well as on interpretative work on previous airborne data, Landsat imageries, etc. (author)

  20. Imagery for Disaster Response and Recovery

    Science.gov (United States)

    Bethel, G. R.

    2011-12-01

    Exposing the remotely sensed imagery for disaster response and recovery can provide the basis for an unbiased understanding of current conditions. Having created consolidated remotely sensed and geospatial data sources documents for US and Foreign disasters over the past six years, availability and usability are continuing to evolve. By documenting all existing sources of imagery and value added products, the disaster response and recovery community can develop actionable information. The past two years have provided unique situations to use imagery including a major humanitarian disaster and response effort in Haiti, a major environmental disaster in the Gulf of Mexico, a killer tornado in Joplin Missouri and long-term flooding in the Midwest. Each disaster presents different challenges and requires different spatial resolutions, spectral properties and/or multi-temporal collections. The community of data providers continues to expand with organized actives such as the International Charter for Space and Major Disasters and acquisitions by the private sector for the public good rather than for profit. However, data licensing, the lack of cross-calibration and inconsistent georeferencing hinder optimal use. Recent pre-event imagery is a critial component to any disaster response.

  1. Contrast and strength of visual memory and imagery differentially affect visual perception.

    Science.gov (United States)

    Saad, Elyana; Silvanto, Juha

    2013-01-01

    Visual short-term memory (VSTM) and visual imagery have been shown to modulate visual perception. However, how the subjective experience of VSTM/imagery and its contrast modulate this process has not been investigated. We addressed this issue by asking participants to detect brief masked targets while they were engaged either in VSTM or visual imagery. Subjective experience of memory/imagery (strength scale), and the visual contrast of the memory/mental image (contrast scale) were assessed on a trial-by-trial basis. For both VSTM and imagery, contrast of the memory/mental image was positively associated with reporting target presence. Consequently, at the sensory level, both VSTM and imagery facilitated visual perception. However, subjective strength of VSTM was positively associated with visual detection whereas the opposite pattern was found for imagery. Thus the relationship between subjective strength of memory/imagery and visual detection are qualitatively different for VSTM and visual imagery, although their impact at the sensory level appears similar. Our results furthermore demonstrate that imagery and VSTM are partly dissociable processes.

  2. Contrast and strength of visual memory and imagery differentially affect visual perception.

    Directory of Open Access Journals (Sweden)

    Elyana Saad

    Full Text Available Visual short-term memory (VSTM and visual imagery have been shown to modulate visual perception. However, how the subjective experience of VSTM/imagery and its contrast modulate this process has not been investigated. We addressed this issue by asking participants to detect brief masked targets while they were engaged either in VSTM or visual imagery. Subjective experience of memory/imagery (strength scale, and the visual contrast of the memory/mental image (contrast scale were assessed on a trial-by-trial basis. For both VSTM and imagery, contrast of the memory/mental image was positively associated with reporting target presence. Consequently, at the sensory level, both VSTM and imagery facilitated visual perception. However, subjective strength of VSTM was positively associated with visual detection whereas the opposite pattern was found for imagery. Thus the relationship between subjective strength of memory/imagery and visual detection are qualitatively different for VSTM and visual imagery, although their impact at the sensory level appears similar. Our results furthermore demonstrate that imagery and VSTM are partly dissociable processes.

  3. Olfactory dreams, olfactory interest, and imagery : Relationships to olfactory memory

    OpenAIRE

    Arshamian, Artin

    2007-01-01

    Existing evidence for olfactory imagery is mixed and mainly based on reports from hallucinations and volitional imagery. Using a questionnaire, Stevenson and Case (2005) showed that olfactory dreams provided a good source for olfactory imagery studies. This study applied an extended version of the same questionnaire and examined olfactory dreams and their relation to real-life experienced odors, volitional imagery, and olfactory interest. Results showed that olfactory dreams were similar to r...

  4. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Palm Beach County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  5. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Indian River County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  6. OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    Science.gov (United States)

    May, Alexander; Sutter, Brian; Linn, Timothy; Bierhaus, Beau; Berry, Kevin; Mink, Ron

    2014-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023.

  7. Improvement in spatial imagery following sight onset late in childhood.

    Science.gov (United States)

    Gandhi, Tapan K; Ganesh, Suma; Sinha, Pawan

    2014-03-01

    The factors contributing to the development of spatial imagery skills are not well understood. Here, we consider whether visual experience shapes these skills. Although differences in spatial imagery between sighted and blind individuals have been reported, it is unclear whether these differences are truly due to visual deprivation or instead are due to extraneous factors, such as reduced opportunities for the blind to interact with their environment. A direct way of assessing vision's contribution to the development of spatial imagery is to determine whether spatial imagery skills change soon after the onset of sight in congenitally blind individuals. We tested 10 children who gained sight after several years of congenital blindness and found significant improvements in their spatial imagery skills following sight-restoring surgeries. These results provide evidence of vision's contribution to spatial imagery and also have implications for the nature of internal spatial representations.

  8. Stereoscopy in cinematographic synthetic imagery

    Science.gov (United States)

    Eisenmann, Jonathan; Parent, Rick

    2009-02-01

    In this paper we present experiments and results pertaining to the perception of depth in stereoscopic viewing of synthetic imagery. In computer animation, typical synthetic imagery is highly textured and uses stylized illumination of abstracted material models by abstracted light source models. While there have been numerous studies concerning stereoscopic capabilities, conventions for staging and cinematography in stereoscopic movies have not yet been well-established. Our long-term goal is to measure the effectiveness of various cinematography techniques on the human visual system in a theatrical viewing environment. We would like to identify the elements of stereoscopic cinema that are important in terms of enhancing the viewer's understanding of a scene as well as providing guidelines for the cinematographer relating to storytelling. In these experiments we isolated stereoscopic effects by eliminating as many other visual cues as is reasonable. In particular, we aim to empirically determine what types of movement in synthetic imagery affect the perceptual depth sensing capabilities of our viewers. Using synthetic imagery, we created several viewing scenarios in which the viewer is asked to locate a target object's depth in a simple environment. The scenarios were specifically designed to compare the effectiveness of stereo viewing, camera movement, and object motion in aiding depth perception. Data were collected showing the error between the choice of the user and the actual depth value, and patterns were identified that relate the test variables to the viewer's perceptual depth accuracy in our theatrical viewing environment.

  9. Imagining a brighter future: the effect of positive imagery training on mood, prospective mental imagery and emotional bias in older adults.

    Science.gov (United States)

    Murphy, Susannah E; Clare O'Donoghue, M; Drazich, Erin H S; Blackwell, Simon E; Christina Nobre, Anna; Holmes, Emily A

    2015-11-30

    Positive affect and optimism play an important role in healthy ageing and are associated with improved physical and cognitive health outcomes. This study investigated whether it is possible to boost positive affect and associated positive biases in this age group using cognitive training. The effect of computerised imagery-based cognitive bias modification on positive affect, vividness of positive prospective imagery and interpretation biases in older adults was measured. 77 older adults received 4 weeks (12 sessions) of imagery cognitive bias modification or a control condition. They were assessed at baseline, post-training and at a one-month follow-up. Both groups reported decreased negative affect and trait anxiety, and increased optimism across the three assessments. Imagery cognitive bias modification significantly increased the vividness of positive prospective imagery post-training, compared with the control training. Contrary to our hypothesis, there was no difference between the training groups in negative interpretation bias. This is a useful demonstration that it is possible to successfully engage older adults in computer-based cognitive training and to enhance the vividness of positive imagery about the future in this group. Future studies are needed to assess the longer-term consequences of such training and the impact on affect and wellbeing in more vulnerable groups. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. A rat in the sewer: How mental imagery interacts with object recognition.

    Science.gov (United States)

    Karimpur, Harun; Hamburger, Kai

    2018-01-01

    The role of mental imagery has been puzzling researchers for more than two millennia. Both positive and negative effects of mental imagery on information processing have been discussed. The aim of this work was to examine how mental imagery affects object recognition and associative learning. Based on different perceptual and cognitive accounts we tested our imagery-induced interaction hypothesis in a series of two experiments. According to that, mental imagery could lead to (1) a superior performance in object recognition and associative learning if these objects are imagery-congruent (semantically) and to (2) an inferior performance if these objects are imagery-incongruent. In the first experiment, we used a static environment and tested associative learning. In the second experiment, subjects encoded object information in a dynamic environment by means of a virtual sewer system. Our results demonstrate that subjects who received a role adoption task (by means of guided mental imagery) performed better when imagery-congruent objects were used and worse when imagery-incongruent objects were used. We finally discuss our findings also with respect to alternative accounts and plead for a multi-methodological approach for future research in order to solve this issue.

  11. Gestures maintain spatial imagery.

    Science.gov (United States)

    Wesp, R; Hesse, J; Keutmann, D; Wheaton, K

    2001-01-01

    Recent theories suggest alternatives to the commonly held belief that the sole role of gestures is to communicate meaning directly to listeners. Evidence suggests that gestures may serve a cognitive function for speakers, possibly acting as lexical primes. We observed that participants gestured more often when describing a picture from memory than when the picture was present and that gestures were not influenced by manipulating eye contact of a listener. We argue that spatial imagery serves a short-term memory function during lexical search and that gestures may help maintain spatial images. When spatial imagery is not necessary, as in conditions of direct visual stimulation, reliance on gestures is reduced or eliminated.

  12. Change Detection with Polarimetric SAR Imagery for Nuclear Verification

    International Nuclear Information System (INIS)

    Canty, M.

    2015-01-01

    This paper investigates the application of multivariate statistical change detection with high-resolution polarimetric SAR imagery acquired from commercial satellite platforms for observation and verification of nuclear activities. A prototype software tool comprising a processing chain starting from single look complex (SLC) multitemporal data through to change detection maps is presented. Multivariate change detection algorithms applied to polarimetric SAR data are not common. This is because, up until recently, not many researchers or practitioners have had access to polarimetric data. However with the advent of several spaceborne polarimetric SAR instruments such as the Japanese ALOS, the Canadian Radarsat-2, the German TerraSAR-X, the Italian COSMO-SkyMed missions and the European Sentinal SAR platform, the situation has greatly improved. There is now a rich source of weather-independent satellite radar data which can be exploited for Nuclear Safeguards purposes. The method will also work for univariate data, that is, it is also applicable to scalar or single polarimetric SAR data. The change detection procedure investigated here exploits the complex Wishart distribution of dual and quad polarimetric imagery in look-averaged covariance matrix format in order to define a per-pixel change/no-change hypothesis test. It includes approximations for the probability distribution of the test statistic, and so permits quantitative significance levels to be quoted for change pixels. The method has been demonstrated previously with polarimetric images from the airborne EMISAR sensor, but is applied here for the first time to satellite platforms. In addition, an improved multivariate method is used to estimate the so-called equivalent number of looks (ENL), which is a critical parameter of the hypothesis test. (author)

  13. Self-imagery in individuals with high body dissatisfaction: the effect of positive and negative self-imagery on aspects of the self-concept.

    Science.gov (United States)

    Farrar, Stephanie; Stopa, Lusia; Turner, Hannah

    2015-03-01

    Cognitive behavioural models of eating disorders highlight low self-esteem as a maintaining factor. This study explored the impact of positive and negative self-imagery on aspects of the working self (implicit and explicit self-esteem and self-concept clarity) in individuals with high body dissatisfaction (an important aspect of eating disorders). The impact of these images on state body satisfaction and affect was also explored. A group of participants with high body dissatisfaction completed measures of explicit self-esteem, self-concept clarity, state body satisfaction and affect prior to completing a negative (n = 33) or positive (n = 33) self-imagery retrieval task. Following this they completed the baseline measures and a measure of implicit self-esteem. Holding a negative self-image in mind had a negative effect on explicit self-esteem, whilst holding a positive self-image had a beneficial effect. There were no effects of imagery on implicit self-esteem. Holding a negative image in mind led to a significant reduction in self-concept clarity; however, positive self-imagery did not affect self-concept clarity. Holding a negative self-image in mind led to a decrease in body satisfaction and state affect. The opposite was found for the positive self-imagery group. Implicit self-esteem was not measured at baseline. Imagery techniques which promote positive self-images may help improve aspects of the working self, body satisfaction and affect in individuals with high levels of body dissatisfaction. As such, these imagery techniques warrant further investigation in a clinical population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Commercial Satellite Imagery Analysis for Countering Nuclear Proliferation

    Science.gov (United States)

    Albright, David; Burkhard, Sarah; Lach, Allison

    2018-05-01

    High-resolution commercial satellite imagery from a growing number of private satellite companies allows nongovernmental analysts to better understand secret or opaque nuclear programs of countries in unstable or tense regions, called proliferant states. They include North Korea, Iran, India, Pakistan, and Israel. By using imagery to make these countries’ aims and capabilities more transparent, nongovernmental groups like the Institute for Science and International Security have affected the policies of governments and the course of public debate. Satellite imagery work has also strengthened the efforts of the International Atomic Energy Agency, thereby helping this key international agency build its case to mount inspections of suspect sites and activities. This work has improved assessments of the nuclear capabilities of proliferant states. Several case studies provide insight into the use of commercial satellite imagery as a key tool to educate policy makers and affect policy.

  15. Calibrating EEG-based motor imagery brain-computer interface from passive movement.

    Science.gov (United States)

    Ang, Kai Keng; Guan, Cuntai; Wang, Chuanchu; Phua, Kok Soon; Tan, Adrian Hock Guan; Chin, Zheng Yang

    2011-01-01

    EEG data from performing motor imagery are usually collected to calibrate a subject-specific model for classifying the EEG data during the evaluation phase of motor imagery Brain-Computer Interface (BCI). However, there is no direct objective measure to determine if a subject is performing motor imagery correctly for proper calibration. Studies have shown that passive movement, which is directly observable, induces Event-Related Synchronization patterns that are similar to those induced from motor imagery. Hence, this paper investigates the feasibility of calibrating EEG-based motor imagery BCI from passive movement. EEG data of 12 healthy subjects were collected during motor imagery and passive movement of the hand by a haptic knob robot. The calibration models using the Filter Bank Common Spatial Pattern algorithm on the EEG data from motor imagery were compared against using the EEG data from passive movement. The performances were compared based on the 10×10-fold cross-validation accuracies of the calibration data, and off-line session-to-session transfer kappa values to other sessions of motor imagery performed on another day. The results showed that the calibration performed using passive movement yielded higher model accuracy and off-line session-to-session transfer (73.6% and 0.354) than the calibration performed using motor imagery (71.3% and 0.311), and no significant differences were observed between the two groups (p=0.20, 0.23). Hence, this study shows that it is feasible to calibrate EEG-based motor imagery BCI from passive movement.

  16. Mental Imagery and Visual Working Memory

    OpenAIRE

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance ...

  17. Guided Imagery and Music - And Beyond?

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    4 original research articles, one essay, a classical article and two clinical papers documenting the development of theory, research and clinical practice within the receptive music therapy model [The Bonny Method of] Guided Imagery and Music.......4 original research articles, one essay, a classical article and two clinical papers documenting the development of theory, research and clinical practice within the receptive music therapy model [The Bonny Method of] Guided Imagery and Music....

  18. An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery

    Science.gov (United States)

    Tong, Xiaohua; Luo, Xin; Liu, Shuguang; Xie, Huan; Chao, Wei; Liu, Shuang; Liu, Shijie; Makhinov, A. N.; Makhinova, A. F.; Jiang, Yuying

    2018-02-01

    Remote sensing techniques offer potential for effective flood detection with the advantages of low-cost, large-scale, and real-time surface observations. The easily accessible data sources of optical remote sensing imagery provide abundant spectral information for accurate surface water body extraction, and synthetic aperture radar (SAR) systems represent a powerful tool for flood monitoring because of their all-weather capability. This paper introduces a new approach for flood monitoring by the combined use of both Landsat 8 optical imagery and COSMO-SkyMed radar imagery. Specifically, the proposed method applies support vector machine and the active contour without edges model for water extent determination in the periods before and during the flood, respectively. A map difference method is used for the flood inundation analysis. The proposed approach is particularly suitable for large-scale flood monitoring, and it was tested on a serious flood that occurred in northeastern China in August 2013, which caused immense loss of human lives and properties. High overall accuracies of 97.46% for the optical imagery and 93.70% for the radar imagery are achieved by the use of the techniques presented in this study. The results show that about 12% of the whole study area was inundated, corresponding to 5466 km2 of land surface.

  19. Assessing the value of Landsat imagery: Results from a 2012 comprehensive user survey

    Science.gov (United States)

    Miller, H. M.; Richardson, L.; Loomis, J.; Koontz, S.; Koontz, L.

    2012-12-01

    Landsat satellite imagery has long been recognized as unique among remotely sensed data due to the combination of its extensive archive, global coverage, and relatively high spatial and temporal resolution. Since the imagery became available at no cost in 2008, the number of users registered with the U.S. Geological Survey (USGS) has increased tenfold while the number of scenes downloaded annually has increased a hundredfold. It is clear that the imagery is being used extensively, and understanding the benefits provided by this imagery can help inform decisions involving its provision. However, the value of Landsat imagery is difficult to measure for a variety of reasons, one of which stems from the fact that the imagery has characteristics of a public good and does not have a direct market price to reflect its value to society. Further, there is not a clear understanding of the full range of users of the imagery, as well as how these users are distributed across the many different end uses this data is applied to. To assess the value of Landsat imagery, we conducted a survey of users registered with USGS in early 2012. Over 11,000 current users of Landsat imagery responded to the survey. The value of the imagery was measured both qualitatively and quantitatively. To explore the qualitative value of the imagery, users were asked about the importance of the imagery to their work, their dependence on the imagery, and the impacts on their work if there was no Landsat imagery. The majority of users deemed Landsat imagery important to their work and stated they were dependent on Landsat imagery to do their work. Additionally, if Landsat imagery was no longer available, over half of the users would have to discontinue some of their work. On average, these users would discontinue half of their current work if the imagery was no longer available. The focus of this presentation will be the quantitative results of a double-bounded contingent valuation analysis which reveals

  20. Dramatic and long-term lake level changes in the Qinghai-Tibet Plateau from Cryosat-2 altimeter: validation and augmentation by results from repeat altimeter missions and satellite imagery

    Science.gov (United States)

    Hwang, Cheinway; Huang, YongRuei; Cheng, Ys; Shen, WenBin; Pan, Yuanjin

    2017-04-01

    The mean elevation of the Qinghai-Tibet Plateau (QTP) exceeds 4000 m. Lake levels in the QTP are less affected by human activities than elsewhere, and may better reflect the state of contemporary climate change. Here ground-based lake level measurements are rare. Repeat altimeter missions, particularly those from the TOPEX and ERS series of altimetry, have provided long-term lake level observations in the QTP, but their large cross-track distances allow only few lakes to be monitored. In contrast, the Cryosat-2 altimeter, equipped with the new sensor SIRAL (interferometric/ synthetic aperture radar altimeter), provides a much better ranging accuracy and a finer spatial coverage than these repeated missions, and can detect water level changes over a large number of lakes in the QTP. In this study, Cryosat-2 data are used to determine lake level changes over 75˚E-100˚E and 28˚N-37.5˚N, where Cryosat-2 covers 60 lakes and SARAL/ AltiKa covers 32 lakes from 2013 to 2016. Over a lake, Cryosat-2 in different cycles can pass through different spots of the lake, making the numbers of observations non-uniform and requiring corrections for lake slopes. Four cases are investigated to cope with these situations: (1) neglecting inconsistency in data volume and lake slopes (2) considering data volume, (3) considering lake slopes only, and (4) considering both data volume and lake slopes. The CRYOSAT-2 result is then compared with the result from the SARAL to determine the best case. Because Cryosat-2 is available from 2010 to 2016, Jason-2 data are used to fill gaps between the time series of Cryosat-2 and ICESat (2003-2009) to obtain >10 years of lake level series. The Cryosat-2 result shows dramatic lake level rises in Lakes Kusai, Zhuoaihu and Salt in 2011 caused by floods. Landsat satellite imagery assists the determination and interpretation of such rises.

  1. Satellite imagery in safeguards: progress and prospects

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.

    2013-01-01

    The use of satellite imagery has become very important for the verification of the safeguards implementation under the Nuclear Non-Proliferation Treaty (NPT). The main applications of satellite imagery are to verify the correctness and completeness of the member states' declarations, and to provide preparatory information for inspections, complimentary access and other technical visits. If the area of interest is not accessible, remote sensing sensors provide one of the few opportunities of gathering data for nuclear monitoring, as for example in Iraq between 1998 and 2002 or currently in North Korea. Satellite data of all available sensor types contains a considerable amount of safeguard-relevant information. Very high-resolution optical satellite imagery provides the most detailed spatial information on nuclear sites and activities up to 0.41 m resolution, together with up to 8 spectral bands from the visible light and near infrared. Thermal infrared (TIR) images can indicate the operational status of nuclear facilities and help to identify undeclared activities. Hyper-spectral imagery allows a quantitative estimation of geophysical, geochemical and biochemical characteristics of the earth's surface and is therefore useful for assessing, for example, surface cover changes due to drilling, mining and milling activities. Synthetic Aperture Radar (SAR) image data up to 1 m spatial resolution provides an all-weather, day and night monitoring capability. However, the absence (or existence) of nuclear activities can never be confirmed completely based on satellite imagery. (A.C.)

  2. The French proposal for a high spatial resolution Hyperspectral mission

    Science.gov (United States)

    Carrère, Véronique; Briottet, Xavier; Jacquemoud, Stéphane; Marion, Rodolphe; Bourguignon, Anne; Chami, Malik; Chanussot, Jocelyn; Chevrel, Stéphane; Deliot, Philippe; Dumont, Marie; Foucher, Pierre-Yves; Gomez, Cécile; Roman-Minghelli, Audrey; Sheeren, David; Weber, Christiane; Lefèvre, Marie-José; Mandea, Mioara

    2014-05-01

    More than 25 years of airborne imaging spectroscopy and spaceborne sensors such as Hyperion or HICO have clearly demonstrated the ability of such a remote sensing technique to produce value added information regarding surface composition and physical properties for a large variety of applications. Scheduled missions such as EnMAP and PRISMA prove the increased interest of the scientific community for such a type of remote sensing data. In France, a group of Science and Defence users of imaging spectrometry data (Groupe de Synthèse Hyperspectral, GSH) established an up-to-date review of possible applications, define instrument specifications required for accurate, quantitative retrieval of diagnostic parameters, and identify fields of application where imaging spectrometry is a major contribution. From these conclusions, CNES (French Space Agency) decided a phase 0 study for an hyperspectral mission concept, named at this time HYPXIM (HYPerspectral-X IMagery), the main fields of applications are vegetation biodiversity, coastal and inland waters, geosciences, urban environment, atmospheric sciences, cryosphere and Defence. Results pointed out applications where high spatial resolution was necessary and would not be covered by the other foreseen hyperspectral missions. The phase A started at the beginning of 2013 based on the following HYPXIM characteristics: a hyperspectral camera covering the [0.4 - 2.5 µm] spectral range with a 8 m ground sampling distance (GSD) and a PAN camera with a 1.85 m GSD, onboard a mini-satellite platform. This phase A is currently stopped due to budget constraints. Nevertheless, the Science team is currently focusing on the preparation for the next CNES prospective meeting (March, 2014), an important step for the future of the mission. This paper will provide an update of the status of this mission and of new results obtained by the Science team.

  3. GATE: computation code for medical imagery, radiotherapy and dosimetry

    International Nuclear Information System (INIS)

    Jan, S.

    2010-01-01

    The author presents the GATE code, a simulation software based on the Geant4 development environment developed by the CERN (the European organization for nuclear research) which enables Monte-Carlo type simulation to be developed for tomography imagery using ionizing radiation, and radiotherapy examinations (conventional and hadron therapy) to be simulated. The authors concentrate on the use of medical imagery in carcinology. They comment some results obtained in nuclear imagery and in radiotherapy

  4. Lehrbuch Guided Imagery in Music (GIM)

    DEFF Research Database (Denmark)

    Maack, Carola; Geiger, Edith Maria

    Guided Imagery in Music (GIM) ist eine musikpsychotherapeutische Methode, bei welcher der Patient eine Auswahl meist klassischer Musik in einem entspannten Zustand hört und sein Erleben (= Imaginationen) der Therapeutin mitteilt. Theoretische Hintergründe, klinische Anwendung, sowie methodenspezi......Guided Imagery in Music (GIM) ist eine musikpsychotherapeutische Methode, bei welcher der Patient eine Auswahl meist klassischer Musik in einem entspannten Zustand hört und sein Erleben (= Imaginationen) der Therapeutin mitteilt. Theoretische Hintergründe, klinische Anwendung, sowie...

  5. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.

    Science.gov (United States)

    Ahn, Minkyu; Cho, Hohyun; Ahn, Sangtae; Jun, Sung C

    2018-01-01

    Performance variation is a critical issue in motor imagery brain-computer interface (MI-BCI), and various neurophysiological, psychological, and anatomical correlates have been reported in the literature. Although the main aim of such studies is to predict MI-BCI performance for the prescreening of poor performers, studies which focus on the user's sense of the motor imagery process and directly estimate MI-BCI performance through the user's self-prediction are lacking. In this study, we first test each user's self-prediction idea regarding motor imagery experimental datasets. Fifty-two subjects participated in a classical, two-class motor imagery experiment and were asked to evaluate their easiness with motor imagery and to predict their own MI-BCI performance. During the motor imagery experiment, an electroencephalogram (EEG) was recorded; however, no feedback on motor imagery was given to subjects. From EEG recordings, the offline classification accuracy was estimated and compared with several questionnaire scores of subjects, as well as with each subject's self-prediction of MI-BCI performance. The subjects' performance predictions during motor imagery task showed a high positive correlation ( r = 0.64, p performance even without feedback information. This implies that the human brain is an active learning system and, by self-experiencing the endogenous motor imagery process, it can sense and adopt the quality of the process. Thus, it is believed that users may be able to predict MI-BCI performance and results may contribute to a better understanding of low performance and advancing BCI.

  6. Aerial Photography and Imagery, Ortho-Corrected - FDOT 2009 Orthophotography

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — This Imagery was provided by Florida Department of Transportation to the Volusia County Property Appraiser. 1 Foot Color Pixel Orthophotography. This imagery was...

  7. Aerial Photography and Imagery, Ortho-Corrected - FL Bay Ortho Imagery Project Spring 2013

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This file references a single orthogonal imagery tile produced from nadir images captured by Pictometry International during the period of December 30th, 2012 and...

  8. GATE: computation code for medical imagery, radiotherapy and dosimetry; GATE: code de calcul pour l'imagerie medicale, la radiotherapie et la dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Jan, S. [CEA Direction des Sciences du Vivant, Institut d ' Imagerie Bio-Medicale, Service Hospitalier Frederic Joliot, 4 pl. du Gn. Leclerc 91401 Orsay Cedex (France)

    2010-07-01

    The author presents the GATE code, a simulation software based on the Geant4 development environment developed by the CERN (the European organization for nuclear research) which enables Monte-Carlo type simulation to be developed for tomography imagery using ionizing radiation, and radiotherapy examinations (conventional and hadron therapy) to be simulated. The authors concentrate on the use of medical imagery in carcinology. They comment some results obtained in nuclear imagery and in radiotherapy

  9. Data and Geocomputation: Time Critical Mission Support for the 2017 Hurricane Season

    Science.gov (United States)

    Bhaduri, B. L.; Tuttle, M.; Rose, A.; Sanyal, J.; Thakur, G.; White, D.; Yang, H. H.; Laverdiere, M.; Whitehead, M.; Taylor, H.; Jacob, M.

    2017-12-01

    A strong spatial data infrastructure and geospatial analysis capabilities are nucleus to the decision-making process during emergency preparedness, response, and recovery operations. For over a decade, the U.S. Department of Energy's Oak Ridge National Laboratory has been developing critical data and analytical capabilities that provide the Federal Emergency Management Agency (FEMA) and the rest of the federal response community assess and evaluate impacts of natural hazards on population and critical infrastructures including the status of the national electricity and oil and natural gas networks. These capabilities range from identifying structures or buildings from very high-resolution satellite imagery, utilizing machine learning and high-performance computing, to daily assessment of electricity restoration highlighting changes in nighttime lights for the impacted region based on the analysis of NOAA JPSS VIIRS Day/Night Band (DNB) imagery. This presentation will highlight our time critical mission support efforts for the 2017 hurricane season that witnessed unprecedented devastation from hurricanes Harvey, Irma, and Maria. ORNL provided 90m resolution LandScan USA population distribution data for identifying vulnerable population as well as structure (buildings) data extracted from 1m imagery for damage assessment. Spatially accurate data for solid waste facilities were developed and delivered to the response community. Human activity signatures were assessed from large scale collection of open source social media data around points of interests (POI) to ascertain level of destruction. The electricity transmission system was monitored in real time from data integration from hundreds of utilities and electricity outage information were provided back to the response community via standardized web-services.

  10. Enhancing voluntary imitation through attention and motor imagery.

    Science.gov (United States)

    Bek, Judith; Poliakoff, Ellen; Marshall, Hannah; Trueman, Sophie; Gowen, Emma

    2016-07-01

    Action observation activates brain areas involved in performing the same action and has been shown to increase motor learning, with potential implications for neurorehabilitation. Recent work indicates that the effects of action observation on movement can be increased by motor imagery or by directing attention to observed actions. In voluntary imitation, activation of the motor system during action observation is already increased. We therefore explored whether imitation could be further enhanced by imagery or attention. Healthy participants observed and then immediately imitated videos of human hand movement sequences, while movement kinematics were recorded. Two blocks of trials were completed, and after the first block participants were instructed to imagine performing the observed movement (Imagery group, N = 18) or attend closely to the characteristics of the movement (Attention group, N = 15), or received no further instructions (Control group, N = 17). Kinematics of the imitated movements were modulated by instructions, with both Imagery and Attention groups being closer in duration, peak velocity and amplitude to the observed model compared with controls. These findings show that both attention and motor imagery can increase the accuracy of imitation and have implications for motor learning and rehabilitation. Future work is required to understand the mechanisms by which these two strategies influence imitation accuracy.

  11. Effects of kinesthetic versus visual imagery practice on two technical dance movements: a pilot study.

    Science.gov (United States)

    Girón, Elizabeth Coker; McIsaac, Tara; Nilsen, Dawn

    2012-03-01

    Motor imagery is a type of mental practice that involves imagining the body performing a movement in the absence of motor output. Dance training traditionally incorporates mental practice techniques, but quantitative effects of motor imagery on the performance of dance movements are largely unknown. This pilot study compared the effects of two different imagery modalities, external visual imagery and kinesthetic imagery, on pelvis and hip kinematics during two technical dance movements, plié and sauté. Each of three female dance students (mean age = 19.7 years, mean years of training = 10.7) was assigned to use a type of imagery practice: visual imagery, kinesthetic imagery, or no imagery. Effects of motor imagery on peak external hip rotation varied by both modality and task. Kinesthetic imagery increased peak external hip rotation for pliés, while visual imagery increased peak external hip rotation for sautés. Findings suggest that the success of motor imagery in improving performance may be task-specific. Dancers may benefit from matching imagery modality to technical tasks in order to improve alignment and thereby avoid chronic injury.

  12. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    Science.gov (United States)

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  13. Motor imagery: Lessons learned in movement science might be applicable for spaceflight

    Directory of Open Access Journals (Sweden)

    Otmar eBock

    2015-05-01

    Full Text Available Before participating in a space mission, astronauts undergo parabolic-flight and underwater training to facilitate their subsequent adaptation to weightlessness. Unfortunately, similar training methods can’t be used to prepare re-adaptation to planetary gravity. Here, we propose a quick, simple and inexpensive approach that could be used to prepare astronauts both for the absence and for the renewed presence of gravity. This approach is based on motor imagery (MI, a process in which actions are produced in working memory without any overt output. Training protocols based on MI have repeatedly been shown to modify brain circuitry and to improve motor performance in healthy young adults, healthy seniors and stroke victims, and are routinely used to optimize performance of elite athletes. We propose to use similar protocols preflight, to prepare for weightlessness, and late inflight, to prepare for landing.

  14. Motor imagery: lessons learned in movement science might be applicable for spaceflight

    Science.gov (United States)

    Bock, Otmar; Schott, Nadja; Papaxanthis, Charalambos

    2015-01-01

    Before participating in a space mission, astronauts undergo parabolic-flight and underwater training to facilitate their subsequent adaptation to weightlessness. Unfortunately, similar training methods can’t be used to prepare re-adaptation to planetary gravity. Here, we propose a quick, simple and inexpensive approach that could be used to prepare astronauts both for the absence and for the renewed presence of gravity. This approach is based on motor imagery (MI), a process in which actions are produced in working memory without any overt output. Training protocols based on MI have repeatedly been shown to modify brain circuitry and to improve motor performance in healthy young adults, healthy seniors and stroke victims, and are routinely used to optimize performance of elite athletes. We propose to use similar protocols preflight, to prepare for weightlessness, and late inflight, to prepare for landing. PMID:26042004

  15. Monitoring Termite-Mediated Ecosystem Processes Using Moderate and High Resolution Satellite Imagery

    Science.gov (United States)

    Lind, B. M.; Hanan, N. P.

    2016-12-01

    Termites are considered dominant decomposers and prominent ecosystem engineers in the global tropics and they build some of the largest and architecturally most complex non-human-made structures in the world. Termite mounds significantly alter soil texture, structure, and nutrients, and have major implications for local hydrological dynamics, vegetation characteristics, and biological diversity. An understanding of how these processes change across large scales has been limited by our ability to detect termite mounds at high spatial resolutions. Our research develops methods to detect large termite mounds in savannas across extensive geographic areas using moderate and high resolution satellite imagery. We also investigate the effect of termite mounds on vegetation productivity using Landsat-8 maximum composite NDVI data as a proxy for production. Large termite mounds in arid and semi-arid Senegal generate highly reflective `mound scars' with diameters ranging from 10 m at minimum to greater than 30 m. As Sentinel-2 has several bands with 10 m resolution and Landsat-8 has improved calibration, higher radiometric resolution, 15 m spatial resolution (pansharpened), and improved contrast between vegetated and bare surfaces compared to previous Landsat missions, we found that the largest and most influential mounds in the landscape can be detected. Because mounds as small as 4 m in diameter are easily detected in high resolution imagery we used these data to validate detection results and quantify omission errors for smaller mounds.

  16. Visual imaging capacity and imagery control in Fine Arts students.

    Science.gov (United States)

    Pérez-Fabello, Maria José; Campos, Alfredo; Gómez-Juncal, Rocío

    2007-06-01

    This study investigated relationships between visual imaging abilities (imaging capacity and imagery control) and academic performance in 146 Fine Arts students (31 men, 115 women). Mean age was 22.3 yr. (SD= 1.9; range 20-26 yr.). All of the participants who volunteered for the experiment regularly attended classes and were first, second, or third year students. For evaluation of imaging abilities, the Spanish versions of the Gordon Test of Visual Imagery Control, the Vividness of Visual Imagery Questionnaire, the Verbalizer-Visualizer Questionnaire, and Betts' Questionnaire Upon Mental Imagery were used. Academic performance was assessed in four areas, Drawing, Painting, Sculpture, and Complementary Subjects, over a three-year period. The results indicate that imagery control was associated with academic performance in Fine Arts. These findings are discussed in the context of previous studies, and new lines of research are proposed.

  17. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    Science.gov (United States)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; hide

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  18. Coastal California Digital Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital ortho-imagery dataset is a survey of coastal California. The project area consists of approximately 3774 square miles. The project design of the digital...

  19. Portable devices for delivering imagery and modelling interventions ...

    African Journals Online (AJOL)

    The main objective of this study was to investigate the effectiveness of portable devices (MP4) and a stationary device (DVD and fixed point stationary computer) in delivering imagery and modelling training among female netball players, examining the effect on imagery adherence, performance, self-efficacy, and the relative ...

  20. Vessel and oil spill early detection using COSMO satellite imagery

    Science.gov (United States)

    Revollo, Natalia V.; Delrieux, Claudio A.

    2017-10-01

    Oil spillage is one of the most common sources of environmental damage in places where coastal wild life is found in natural reservoirs. This is especially the case in the Patagonian coast, with a littoral more than 5000 km long and a surface above a million and half square km. In addition, furtive fishery activities in Argentine waters are depleting the food supplies of several species, altering the ecological equilibrium. For this reason, early oil spills and vessel detection is an imperative surveillance task for environmental and governmental authorities. However, given the huge geographical extension, human assisted monitoring is unfeasible, and therefore real time remote sensing technologies are the only operative and economically feasible solution. In this work we describe the theoretical foundations and implementation details of a system specifically designed to take advantage of the SAR imagery delivered by two satellite constellations (the SAOCOM mission, developed by the Argentine Space Agency, and the COSMO mission, developed by the Italian Space Agency), to provide real-time detection of vessels and oil spills. The core of the system is based on pattern recognition over a statistical characterization of the texture patterns arising in the positive and negative conditions (i.e., vessel, oil, or plain sea surfaces). Training patterns were collected from a large number of previously reported contacts tagged by experts in the National Commission on Space Activities (CONAE). The resulting system performs well above the sensitivity and specificity of other avalilable systems.

  1. Phenomenological Reliving and Visual Imagery During Autobiographical Recall in Alzheimer's Disease.

    Science.gov (United States)

    El Haj, Mohamad; Kapogiannis, Dimitrios; Antoine, Pascal

    2016-03-16

    Multiple studies have shown compromise of autobiographical memory and phenomenological reliving in Alzheimer's disease (AD). We investigated various phenomenological features of autobiographical memory to determine their relative vulnerability in AD. To this aim, participants with early AD and cognitively normal older adult controls were asked to retrieve an autobiographical event and rate on a five-point scale metacognitive judgments (i.e., reliving, back in time, remembering, and realness), component processes (i.e., visual imagery, auditory imagery, language, and emotion), narrative properties (i.e., rehearsal and importance), and spatiotemporal specificity (i.e., spatial details and temporal details). AD participants showed lower general autobiographical recall than controls, and poorer reliving, travel in time, remembering, realness, visual imagery, auditory imagery, language, rehearsal, and spatial detail-a decrease that was especially pronounced for visual imagery. Yet, AD participants showed high rating for emotion and importance. Early AD seems to compromise many phenomenological features, especially visual imagery, but also seems to preserve some other features.

  2. A Neuroscientific Review of Imagery and Observation Use in Sport

    OpenAIRE

    Holmes , Paul; Calmels , Claire

    2008-01-01

    International audience; Imagery and observation are multicomponential, involving individual difference characteristics that modify the processes. The authors propose that both imagery and observation function by offering effective routes to access and reinforce neural networks for skilled performance. The neural isomor-phism with overt behaviors offers a tempting mechanism to explain the beneficial outcomes of the 2 processes. However, several limitations related to imagery indicate the possi...

  3. Kinesthetic but not visual imagery assists in normalizing the CNV in Parkinson's disease.

    Science.gov (United States)

    Lim, Vanessa K; Polych, Melody A; Holländer, Antje; Byblow, Winston D; Kirk, Ian J; Hamm, Jeff P

    2006-10-01

    This study investigated whether kinesthetic and/or visual imagery could alter the contingent negative variation (CNV) for patients with Parkinson's disease (PD). The CNV was recorded in six patients with PD and seven controls before and after a 10min block of imagery. There were two types of imagery employed: kinesthetic and visual, which were evaluated on separate days. The global field power (GFP) of the late CNV did not change after the visual imagery for either group, nor was there a significant difference between the groups. In contrast, kinesthetic imagery resulted in significant group differences pre-, versus post-imagery GFPs, which was not present prior to performing the kinesthetic imagery task. In patients with PD, the CNV amplitudes post-, relative to pre-kinesthetic imagery, increased over the dorsolateral prefrontal regions and decreased in the ipsilateral parietal regions. There were no such changes in controls. A 10-min session of kinesthetic imagery enhanced the GFP amplitude of the late CNV for patients but not for controls. While the study needs to be replicated with a greater number of participants, the results suggest that kinesthetic imagery may be a promising tool for investigations into motor changes, and may potentially be employed therapeutically, in patients with Parkinson's disease.

  4. Studying Action Representation in Children via Motor Imagery

    Science.gov (United States)

    Gabbard, Carl

    2009-01-01

    The use of motor imagery is a widely used experimental paradigm for the study of cognitive aspects of action planning and control in adults. Furthermore, there are indications that motor imagery provides a window into the process of action representation. These notions complement internal model theory suggesting that such representations allow…

  5. Users, uses, and value of Landsat satellite imagery: results from the 2012 survey of users

    Science.gov (United States)

    Miller, Holly M.; Richardson, Leslie A.; Koontz, Stephen R.; Loomis, John; Koontz, Lynne

    2013-01-01

    Landsat satellites have been operating since 1972, providing a continuous global record of the Earth’s land surface. The imagery is currently available at no cost through the U.S. Geological Survey (USGS). Social scientists at the USGS Fort Collins Science Center conducted an extensive survey in early 2012 to explore who uses Landsat imagery, how they use the imagery, and what the value of the imagery is to them. The survey was sent to all users registered with USGS who had accessed Landsat imagery in the year prior to the survey and over 11,000 current Landsat imagery users responded. The results of the survey revealed that respondents from many sectors use Landsat imagery in myriad project locations and scales, as well as application areas. The value of Landsat imagery to these users was demonstrated by the high importance of and dependence on the imagery, the numerous environmental and societal benefits observed from projects using Landsat imagery, the potential negative impacts on users’ work if Landsat imagery was no longer available, and the substantial aggregated annual economic benefit from the imagery. These results represent only the value of Landsat to users registered with USGS; further research would help to determine what the value of the imagery is to a greater segment of the population, such as downstream users of the imagery and imagery-derived products.

  6. VERTICAL ACCURACY COMPARISON OF DIGITAL ELEVATION MODEL FROM LIDAR AND MULTITEMPORAL SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    J. Octariady

    2017-05-01

    Full Text Available Digital elevation model serves to illustrate the appearance of the earth's surface. DEM can be produced from a wide variety of data sources including from radar data, LiDAR data, and stereo satellite imagery. Making the LiDAR DEM conducted using point cloud data from LiDAR sensor. Making a DEM from stereo satellite imagery can be done using same temporal or multitemporal stereo satellite imagery. How much the accuracy of DEM generated from multitemporal stereo stellite imagery and LiDAR data is not known with certainty. The study was conducted using LiDAR DEM data and multitemporal stereo satellite imagery DEM. Multitemporal stereo satellite imagery generated semi-automatically by using 3 scene stereo satellite imagery with acquisition 2013–2014. The high value given each of DEM serve as the basis for calculating high accuracy DEM respectively. The results showed the high value differences in the fraction of the meter between LiDAR DEM and multitemporal stereo satellite imagery DEM.

  7. Acquisition of airborne imagery in support of Deepwater Horizon oil spill recovery assessments

    Science.gov (United States)

    Bostater, Charles R., Jr.; Muller-Karger, Frank E.

    2012-09-01

    Remote sensing imagery was collected from a low flying aircraft along the near coastal waters of the Florida Panhandle and northern Gulf of Mexico and into Barataria Bay, Louisiana, USA, during March 2011. Imagery was acquired from an aircraft that simultaneously collected traditional photogrammetric film imagery, digital video, digital still images, and digital hyperspectral imagery. The original purpose of the project was to collect airborne imagery to support assessment of weathered oil in littoral areas influenced by the Deepwater Horizon oil and gas spill that occurred during the spring and summer of 2010. This paper describes the data acquired and presents information that demonstrates the utility of small spatial scale imagery to detect the presence of weathered oil along littoral areas in the northern Gulf of Mexico. Flight tracks and examples of imagery collected are presented and methods used to plan and acquire the imagery are described. Results suggest weathered oil in littoral areas after the spill was contained at the source.

  8. Enhancements and Evolution of the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.

    2008-12-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  9. 6883 Maintenance Training Simulator Development Utilizing Imagery Techniques.

    Science.gov (United States)

    1980-05-01

    increased motivation (as by its game-like setting), etc. These questions are left for future inquiry. 26 CONCLUSIONS AND RECOMMENDATIONS The imagery training...the output of power supply PS4 ." 46. 46 ; 20b. Read instructions (imagery group only). "To ready the board, take the one drawing that is titled

  10. Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki

    2017-01-01

    Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Solna (Sweden)

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  12. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  13. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2016-08-01

    Full Text Available With the rapid development of spaceborne synthetic aperture radar (SAR and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way.

  14. Imitation and matching of meaningless gestures: distinct involvement from motor and visual imagery.

    Science.gov (United States)

    Lesourd, Mathieu; Navarro, Jordan; Baumard, Josselin; Jarry, Christophe; Le Gall, Didier; Osiurak, François

    2017-05-01

    The aim of the present study was to understand the underlying cognitive processes of imitation and matching of meaningless gestures. Neuropsychological evidence obtained in brain damaged patients, has shown that distinct cognitive processes supported imitation and matching of meaningless gestures. Left-brain damaged (LBD) patients failed to imitate while right-brain damaged (RBD) patients failed to match meaningless gestures. Moreover, other studies with brain damaged patients showed that LBD patients were impaired in motor imagery while RBD patients were impaired in visual imagery. Thus, we hypothesize that imitation of meaningless gestures might rely on motor imagery, whereas matching of meaningless gestures might be based on visual imagery. In a first experiment, using a correlational design, we demonstrated that posture imitation relies on motor imagery but not on visual imagery (Experiment 1a) and that posture matching relies on visual imagery but not on motor imagery (Experiment 1b). In a second experiment, by manipulating directly the body posture of the participants, we demonstrated that such manipulation evokes a difference only in imitation task but not in matching task. In conclusion, the present study provides direct evidence that the way we imitate or we have to compare postures depends on motor imagery or visual imagery, respectively. Our results are discussed in the light of recent findings about underlying mechanisms of meaningful and meaningless gestures.

  15. [Mental Imagery: Neurophysiology and Implications in Psychiatry].

    Science.gov (United States)

    Martínez, Nathalie Tamayo

    2014-03-01

    To provide an explanation about what mental imagery is and some implications in psychiatry. This article is a narrative literature review. There are many terms in which imagery representations are described in different fields of research. They are defined as perceptions in the absence of an external stimulus, and can be created in any sensory modality. Their neurophysiological substrate is almost the same as the one activated during sensory perception. There is no unified theory about its function, but it is possibly the way that our brain uses and manipulates the information to respond to the environment. Mental imagery is an everyday phenomenon, and when it occurs in specific patterns it can be a sign of mental disorders. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  16. Emergency Response Imagery Related to Hurricanes Harvey, Irma, and Maria

    Science.gov (United States)

    Worthem, A. V.; Madore, B.; Imahori, G.; Woolard, J.; Sellars, J.; Halbach, A.; Helmricks, D.; Quarrick, J.

    2017-12-01

    NOAA's National Geodetic Survey (NGS) and Remote Sensing Division acquired and rapidly disseminated emergency response imagery related to the three recent hurricanes Harvey, Irma, and Maria. Aerial imagery was collected using a Trimble Digital Sensor System, a high-resolution digital camera, by means of NOAA's King Air 350ER and DeHavilland Twin Otter (DHC-6) Aircraft. The emergency response images are used to assess the before and after effects of the hurricanes' damage. The imagery aids emergency responders, such as FEMA, Coast Guard, and other state and local governments, in developing recovery strategies and efforts by prioritizing areas most affected and distributing appropriate resources. Collected imagery is also used to provide damage assessment for use in long-term recovery and rebuilding efforts. Additionally, the imagery allows for those evacuated persons to see images of their homes and neighborhoods remotely. Each of the individual images are processed through ortho-rectification and merged into a uniform mosaic image. These remotely sensed datasets are publically available, and often used by web-based map servers as well as, federal, state, and local government agencies. This poster will show the imagery collected for these three hurricanes and the processes involved in getting data quickly into the hands of those that need it most.

  17. Bistatic SAR: Imagery & Image Products.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  18. National Geospatial Data Asset (NGDA) National Agriculture Imagery Program (NAIP) Imagery - 2017 Planned Acquisition

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — NAIP imagery is acquired annually with the total coverage being determined by available funds from FSA and funding partners, considering FSA priorities. The NAIP...

  19. Brain activation profiles during kinesthetic and visual imagery: An fMRI study.

    Science.gov (United States)

    Kilintari, Marina; Narayana, Shalini; Babajani-Feremi, Abbas; Rezaie, Roozbeh; Papanicolaou, Andrew C

    2016-09-01

    The aim of this study was to identify brain regions involved in motor imagery and differentiate two alternative strategies in its implementation: imagining a motor act using kinesthetic or visual imagery. Fourteen adults were precisely instructed and trained on how to imagine themselves or others perform a movement sequence, with the aim of promoting kinesthetic and visual imagery, respectively, in the context of an fMRI experiment using block design. We found that neither modality of motor imagery elicits activation of the primary motor cortex and that each of the two modalities involves activation of the premotor area which is also activated during action execution and action observation conditions, as well as of the supplementary motor area. Interestingly, the visual and the posterior cingulate cortices show reduced BOLD signal during both imagery conditions. Our results indicate that the networks of regions activated in kinesthetic and visual imagery of motor sequences show a substantial, while not complete overlap, and that the two forms of motor imagery lead to a differential suppression of visual areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about 500...

  1. Mental Representation and Motor Imagery Training

    Directory of Open Access Journals (Sweden)

    Thomas eSchack

    2014-05-01

    Full Text Available Research in sports, dance and rehabilitation has shown that Basic Action Concepts (BACs are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, SDA-M (structural dimensional analysis of mental representation, to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.

  2. North-American Conference Highlights the Treatment of Trauma Utilizing Guided Imagery and Music

    DEFF Research Database (Denmark)

    Scott-Montcrieff, Suzannah; Beck, Bolette Daniels; Montgomery, Erin

    2015-01-01

    A report on the 2015 Association for Music and Imagery conference highlights papers that address clinical practice and research using Guided Imagery and Music for the treatment of trauma.......A report on the 2015 Association for Music and Imagery conference highlights papers that address clinical practice and research using Guided Imagery and Music for the treatment of trauma....

  3. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    Science.gov (United States)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  4. Contrast and Strength of Visual Memory and Imagery Differentially Affect Visual Perception

    OpenAIRE

    Saad, Elyana; Silvanto, Juha

    2013-01-01

    Visual short-term memory (VSTM) and visual imagery have been shown to modulate visual perception. However, how the subjective experience of VSTM/imagery and its contrast modulate this process has not been investigated. We addressed this issue by asking participants to detect brief masked targets while they were engaged either in VSTM or visual imagery. Subjective experience of memory/imagery (strength scale), and the visual contrast of the memory/mental image (contrast scale) were assessed on...

  5. Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Bos, B. J.; Ravine, M. A.; Caplinger, M.; Schaffner, J. A.; Ladewig, J. V.; Olds, R. D.; Norman, C. D.; Huish, D.; Hughes, M.; Anderson, S. K.; Lorenz, D. A.; May, A.; Jackman, C. D.; Nelson, D.; Moreau, M.; Kubitschek, D.; Getzandanner, K.; Gordon, K. E.; Eberhardt, A.; Lauretta, D. S.

    2018-02-01

    NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch And Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample, and document asteroid sample stowage. The cameras were designed and constructed by Malin Space Science Systems (MSSS) based on requirements developed by Lockheed Martin and NASA. All three of the cameras are mounted to the spacecraft nadir deck and provide images in the visible part of the spectrum, 400-700 nm. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. Their boresights are aligned in the nadir direction with small angular offsets for operational convenience. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Its boresight is pointed at the OSIRIS-REx sample return capsule located on the spacecraft deck. All three cameras have at their heart a 2592 × 1944 pixel complementary metal oxide semiconductor (CMOS) detector array that provides up to 12-bit pixel depth. All cameras also share the same lens design and a camera field of view of roughly 44° × 32° with a pixel scale of 0.28 mrad/pixel. The StowCam lens is focused to image features on the spacecraft deck, while both NavCam lens focus positions are optimized for imaging at infinity. A brief description of the TAGCAMS instrument and how it is used to support critical OSIRIS-REx operations is provided.

  6. Processing Near-Infrared Imagery of the Orion Heatshield During EFT-1 Hypersonic Reentry

    Science.gov (United States)

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Kennerly, Steve; Osei-Wusu, Kwame; Horvath, Thomas J.; Schwartz, Richard J.; Tack, Steven; Bush, Brett C.; Oliver, A. Brandon

    2016-01-01

    The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged

  7. The effect of motor imagery with specific implement in expert badminton player.

    Science.gov (United States)

    Wang, Z; Wang, S; Shi, F-Y; Guan, Y; Wu, Y; Zhang, L-L; Shen, C; Zeng, Y-W; Wang, D-H; Zhang, J

    2014-09-05

    Motor skill can be improved with mental simulation. Implements are widely used in daily life and in various sports. However, it is unclear whether the utilization of implements enhances the effect of mental simulation. The present study was designed to investigate the different effects of motor imagery in athletes and novices when they handled a specific implement. We hypothesize that athletes have better motor imagery ability than novices when they hold a specific implement for the sport. This is manifested as higher motor cortical excitability in athletes than novices during motor imagery with the specific implement. Sixteen expert badminton players and 16 novices were compared when they held a specific implement such as a badminton racket and a non-specific implement such as a a plastic bar. Motor imagery ability was measured with a self-evaluation questionnaire. Transcranial magnetic stimulation was used to test the motor cortical excitability during motor imagery. Motor-evoked potentials (MEPs) in the first dorsal interosseous (FDI) and extensor carpi radialis muscles were recorded. Athletes reported better motor imagery than novices when they held a specific implement. Athletes exhibited more MEP facilitation than novices in the FDI muscle with the specific implement applied during motor imagery. The MEP facilitation is correlated with motor imagery ability in athletes. We conclude that the effects of motor imagery with a specific implement are enhanced in athletes compared to novices and the difference between two groups is caused by long-term physical training of athletes with the specific implement. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Alcohol imagery on popularly viewed television in the UK.

    Science.gov (United States)

    Lyons, Ailsa; McNeill, Ann; Britton, John

    2014-09-01

    Exposure to alcohol consumption and product imagery in films is associated with increased alcohol consumption among young people, but the extent to which exposure also occurs through television is not clear. We have measured the occurrence of alcohol imagery in prime-time broadcasting on UK free-to-air television channels. Occurrence of alcohol imagery (actual use, implied use, brand appearances or other reference to alcohol) was measured in all broadcasting on the five most popular UK television stations between 6 and 10 p.m. during 3 weeks in 2010, by 1-min interval coding. Alcohol imagery occurred in over 40% of broadcasts, most commonly soap operas, feature films, sport and comedies, and was equally frequent before and after the 9 p.m. watershed. Brand appearances occurred in 21% of programmes, and over half of all sports programmes, a third of soap operas and comedies and a fifth of advertising/trailers. Three brands, Heineken, Budweiser and Carlsberg together accounted for ∼40% of all brand depictions. Young people are exposed to frequent alcohol imagery, including branding, in UK prime-time television. It is likely that this exposure has an important effect on alcohol consumption in young people. © The Author 2013. Published by Oxford University Press on behalf of Faculty of Public Health.

  9. Alcohol imagery on popularly viewed television in the UK

    Science.gov (United States)

    Lyons, Ailsa; McNeill, Ann; Britton, John

    2014-01-01

    Background Exposure to alcohol consumption and product imagery in films is associated with increased alcohol consumption among young people, but the extent to which exposure also occurs through television is not clear. We have measured the occurrence of alcohol imagery in prime-time broadcasting on UK free-to-air television channels. Methods Occurrence of alcohol imagery (actual use, implied use, brand appearances or other reference to alcohol) was measured in all broadcasting on the five most popular UK television stations between 6 and 10 p.m. during 3 weeks in 2010, by 1-min interval coding. Results Alcohol imagery occurred in over 40% of broadcasts, most commonly soap operas, feature films, sport and comedies, and was equally frequent before and after the 9 p.m. watershed. Brand appearances occurred in 21% of programmes, and over half of all sports programmes, a third of soap operas and comedies and a fifth of advertising/trailers. Three brands, Heineken, Budweiser and Carlsberg together accounted for ∼40% of all brand depictions. Conclusions Young people are exposed to frequent alcohol imagery, including branding, in UK prime-time television. It is likely that this exposure has an important effect on alcohol consumption in young people. PMID:23929886

  10. Satellite Imagery Analysis for Automated Global Food Security Forecasting

    Science.gov (United States)

    Moody, D.; Brumby, S. P.; Chartrand, R.; Keisler, R.; Mathis, M.; Beneke, C. M.; Nicholaeff, D.; Skillman, S.; Warren, M. S.; Poehnelt, J.

    2017-12-01

    The recent computing performance revolution has driven improvements in sensor, communication, and storage technology. Multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes/year of daily high-resolution global coverage imagery. Cloud computing and storage, combined with recent advances in machine learning, are enabling understanding of the world at a scale and at a level of detail never before feasible. We present results from an ongoing effort to develop satellite imagery analysis tools that aggregate temporal, spatial, and spectral information and that can scale with the high-rate and dimensionality of imagery being collected. We focus on the problem of monitoring food crop productivity across the Middle East and North Africa, and show how an analysis-ready, multi-sensor data platform enables quick prototyping of satellite imagery analysis algorithms, from land use/land cover classification and natural resource mapping, to yearly and monthly vegetative health change trends at the structural field level.

  11. Combining motor imagery with selective sensation toward a hybrid-modality BCI.

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2014-08-01

    A hybrid modality brain-computer interface (BCI) is proposed in this paper, which combines motor imagery with selective sensation to enhance the discrimination between left and right mental tasks, e.g., the classification between left/ right stimulation sensation and right/ left motor imagery. In this paradigm, wearable vibrotactile rings are used to stimulate both the skin on both wrists. Subjects are required to perform the mental tasks according to the randomly presented cues (i.e., left hand motor imagery, right hand motor imagery, left stimulation sensation or right stimulation sensation). Two-way ANOVA statistical analysis showed a significant group effect (F (2,20) = 7.17, p = 0.0045), and the Benferroni-corrected multiple comparison test (with α = 0.05) showed that the hybrid modality group is 11.13% higher on average than the motor imagery group, and 10.45% higher than the selective sensation group. The hybrid modality experiment exhibits potentially wider spread usage within ten subjects crossed 70% accuracy, followed by four subjects in motor imagery and five subjects in selective sensation. Six subjects showed statistically significant improvement ( Benferroni-corrected) in hybrid modality in comparison with both motor imagery and selective sensation. Furthermore, among subjects having difficulties in both motor imagery and selective sensation, the hybrid modality improves their performance to 90% accuracy. The proposed hybrid modality BCI has demonstrated clear benefits for those poorly performing BCI users. Not only does the requirement of motor and sensory anticipation in this hybrid modality provide basic function of BCI for communication and control, it also has the potential for enhancing the rehabilitation during motor recovery.

  12. Neural basis of music imagery and the effect of musical expertise.

    Science.gov (United States)

    Herholz, Sibylle C; Lappe, Claudia; Knief, Arne; Pantev, Christo

    2008-12-01

    Although the influence of long-term musical training on the processing of heard music has been the subject of many studies, the neural basis of music imagery and the effect of musical expertise remain insufficiently understood. By means of magnetoencephalography (MEG) we compared musicians and nonmusicians in a musical imagery task with familiar melodies. Subjects listened to the beginnings of the melodies, continued them in their imagination and then heard a tone which was either a correct or an incorrect further continuation of the melody. Only in musicians was the imagery of these melodies strong enough to elicit an early preattentive brain response to unexpected incorrect continuations of the imagined melodies; this response, the imagery mismatch negativity (iMMN), peaked approximately 175 ms after tone onset and was right-lateralized. In contrast to previous studies the iMMN was not based on a heard but on a purely imagined memory trace. Our results suggest that in trained musicians imagery and perception rely on similar neuronal correlates, and that the musicians' intense musical training has modified this network to achieve a superior ability for imagery and preattentive processing of music.

  13. Automated motion imagery exploitation for surveillance and reconnaissance

    Science.gov (United States)

    Se, Stephen; Laliberte, France; Kotamraju, Vinay; Dutkiewicz, Melanie

    2012-06-01

    Airborne surveillance and reconnaissance are essential for many military missions. Such capabilities are critical for troop protection, situational awareness, mission planning and others, such as post-operation analysis / damage assessment. Motion imagery gathered from both manned and unmanned platforms provides surveillance and reconnaissance information that can be used for pre- and post-operation analysis, but these sensors can gather large amounts of video data. It is extremely labour-intensive for operators to analyse hours of collected data without the aid of automated tools. At MDA Systems Ltd. (MDA), we have previously developed a suite of automated video exploitation tools that can process airborne video, including mosaicking, change detection and 3D reconstruction, within a GIS framework. The mosaicking tool produces a geo-referenced 2D map from the sequence of video frames. The change detection tool identifies differences between two repeat-pass videos taken of the same terrain. The 3D reconstruction tool creates calibrated geo-referenced photo-realistic 3D models. The key objectives of the on-going project are to improve the robustness, accuracy and speed of these tools, and make them more user-friendly to operational users. Robustness and accuracy are essential to provide actionable intelligence, surveillance and reconnaissance information. Speed is important to reduce operator time on data analysis. We are porting some processor-intensive algorithms to run on a Graphics Processing Unit (GPU) in order to improve throughput. Many aspects of video processing are highly parallel and well-suited for optimization on GPUs, which are now commonly available on computers. Moreover, we are extending the tools to handle video data from various airborne platforms and developing the interface to the Coalition Shared Database (CSD). The CSD server enables the dissemination and storage of data from different sensors among NATO countries. The CSD interface allows

  14. Sport Transition of JPSS VIIRS Imagery for Night-time Applications

    Science.gov (United States)

    Fuell, Kevin; LeRoy, Anita; Smith, Matt; Miller, Steve; Kann, Diedre; Bernhardt, David; Reydell, Nezette; Cox, Robert

    2014-01-01

    The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program and NOAA/Cooperative Institute for Research in the Atmosphere (CIRA) work within the NOAA/Joint Polar Satellite System (JPSS) Proving Ground to demonstrate the unique capabilities of the VIIRS instrument. Very similar to MODIS, the VIIRS instrument provides many high-resolution visible and infrared channels in a broad spectrum. In addition, VIIRS is equipped with a low-light sensor that is able to detect light emissions from the land and atmosphere as well as reflected sunlight by the lunar surface. This band is referred to as the Day-Night Band due to the sunlight being used at night to see cloud and topographic features just as one would typically see in day-time visible imagery. NWS forecast offices that collaborate with SPoRT and CIRA have utilized MODIS imagery in operations, but have longed for more frequent passes of polar-orbiting data. The VIIRS instrument enhances SPoRT collaborations with WFOs by providing another day and night-time pass, and at times two additional passes due to its large swath width. This means that multi-spectral, RGB imagery composites are more readily available to prepare users for their use in GOES-R era and high-resolution imagery for use in high-latitudes is more frequently able to supplement standard GOES imagery within the SPoRT Hybrid GEO-LEO product. The transition of VIIRS also introduces the new Day-Night Band capability to forecast operations. An Intensive Evaluation Period (IEP) was conducted in Summer 2013 with a group of "Front Range" NWS offices related to VIIRS night-time imagery. VIIRS single-channel imagery is able to better analyze the specific location of fire hotspots and other land features, as well as provide a more true measurement of various cloud and aerosol properties than geostationary measurements, especially at night. Viewed within the SPoRT Hybrid imagery, the VIIRS data allows forecasters to better interpret the more frequent, but

  15. Effects of Mental Imagery on Muscular Strength in Healthy and Patient Participants: A Systematic Review

    Science.gov (United States)

    Slimani, Maamer; Tod, David; Chaabene, Helmi; Miarka, Bianca; Chamari, Karim

    2016-01-01

    The aims of the present review were to (i) provide a critical overview of the current literature on the effects of mental imagery on muscular strength in healthy participants and patients with immobilization of the upper extremity (i.e., hand) and anterior cruciate ligament (ACL), (ii) identify potential moderators and mediators of the “mental imagery-strength performance” relationship and (iii) determine the relative contribution of electromyography (EMG) and brain activities, neural and physiological adaptations in the mental imagery-strength performance relationship. This paper also discusses the theoretical and practical implications of the contemporary literature and suggests possible directions for future research. Overall, the results reveal that the combination of mental imagery and physical practice is more efficient than, or at least comparable to, physical execution with respect to strength performance. Imagery prevention intervention was also effective in reducing of strength loss after short-term muscle immobilization and ACL. The present review also indicates advantageous effects of internal imagery (range from 2.6 to 136.3%) for strength performance compared with external imagery (range from 4.8 to 23.2%). Typically, mental imagery with muscular activity was higher in active than passive muscles, and imagining “lifting a heavy object” resulted in more EMG activity compared with imagining “lifting a lighter object”. Thus, in samples of students, novices, or youth male and female athletes, internal mental imagery has a greater effect on muscle strength than external mental imagery does. Imagery ability, motivation, and self-efficacy have been shown to be the variables mediating the effect of mental imagery on strength performance. Finally, the greater effects of internal imagery than those of external imagery could be explained in terms of neural adaptations, stronger brain activation, higher muscle excitation, greater somatic and

  16. [A study on the individual differences of the experience of hypnagogic imagery].

    Science.gov (United States)

    Watanabe, T

    1998-02-01

    Having defined the distinction between hypnagogic imagery and dreams, a preliminary study on the individual differences in the experience of visual hypnagogic imagery was conducted. (1) A questionnaire on visual hypnagogic experience was administered to 796 students. The results suggested that previous researches on the incidence of this experience might have suffered from ambiguous definitions. (2) The Scale of Mental Imagery (Hasegawa, 1992) was administered to 330 of the same students, Eysenck Personality Questionnaire to 305 students, and S-A Creativity Test (Sozosei-shinri-kenkyukai, 1969) to 221 students. The frequency of hypnagogic experiences was significantly associated with the scores of "the vividness of mental imagery", "neuroticism", and "creativity". (3) Based on these results, a proposed research problem on hypnagogic imagery was discussed.

  17. Local Imagery, Proverbs and Metaphors in Chinua Achebe's Anthills ...

    African Journals Online (AJOL)

    In many African cultures, a feeling for language, for imagery and for the expression of abstract ideas through compressed and allusive phraseology, comes out particularly clearly in proverbs. The figurative quality of proverbs, local imagery, simile and metaphors are striking. This paper examines some snatches of Chinua ...

  18. Planning, preparation, execution, and imagery of volitional action.

    Science.gov (United States)

    Deecke, L

    1996-03-01

    There are different motor sets, which a human subject can be in or act from: he or she can be in a self-initiated voluntary movement set (action) or in a response set (re-action). Also, imagery sets are available that are necessary for the acquisition and practice of skill. Most important are such imagery sets for rehearsal in theatre, dance, music, sports, combat, etc.

  19. Solving a mental rotation task in congenital hemiparesis: Motor imagery versus visual imagery

    NARCIS (Netherlands)

    Steenbergen, B.; Nimwegen, M.L. van; Crajé, M.C.

    2007-01-01

    A recent study showed that motor imagery was compromised after right congenital hemiparesis. In that study, posture of the displayed stimuli and the actual posture of the hand making the response were incongruent. Ample evidence exists that such an incongruency may negatively influence laterality

  20. STS-61 mission director's post-mission report

    Science.gov (United States)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  1. Imagery and Verbal Counseling Methods in Stress Inoculation Training for Pain Control.

    Science.gov (United States)

    Worthington, Everett L., Jr.; Shumate, Michael

    1981-01-01

    Pleasant imagery relieves pain and may account for much of the effectiveness of stress inoculation training. Women who used imagery controlled their pain better; women who did not use imagery had longer tolerance when they heard pain conceptualized as a multistage process. Self-instruction did not affect pain control. (Author)

  2. Estimating forest characteristics using NAIP imagery and ArcObjects

    Science.gov (United States)

    John S Hogland; Nathaniel M. Anderson; Woodam Chung; Lucas Wells

    2014-01-01

    Detailed, accurate, efficient, and inexpensive methods of estimating basal area, trees, and aboveground biomass per acre across broad extents are needed to effectively manage forests. In this study we present such a methodology using readily available National Agriculture Imagery Program imagery, Forest Inventory Analysis samples, a two stage classification and...

  3. APFO Historical Availability of Imagery

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The APFO Historical Availability ArcGIS Online web map provides an easy to use reference of what historical imagery is available by county from the Aerial...

  4. Image Segmentation of Hyperspectral Imagery

    National Research Council Canada - National Science Library

    Wellman, Mark

    2003-01-01

    .... Army tactical applications. An important tactical application of infrared (IR) hyperspectral imagery is the detection of low-contrast targets, including those targets that may employ camouflage, concealment, and deception (CCD) techniques 1, 2...

  5. The Nasa-Isro SAR Mission Science Data Products and Processing Workflows

    Science.gov (United States)

    Rosen, P. A.; Agram, P. S.; Lavalle, M.; Cohen, J.; Buckley, S.; Kumar, R.; Misra-Ray, A.; Ramanujam, V.; Agarwal, K. M.

    2017-12-01

    The NASA-ISRO SAR (NISAR) Mission is currently in the development phase and in the process of specifying its suite of data products and algorithmic workflows, responding to inputs from the NISAR Science and Applications Team. NISAR will provide raw data (Level 0), full-resolution complex imagery (Level 1), and interferometric and polarimetric image products (Level 2) for the entire data set, in both natural radar and geocoded coordinates. NASA and ISRO are coordinating the formats, meta-data layers, and algorithms for these products, for both the NASA-provided L-band radar and the ISRO-provided S-band radar. Higher level products will be also be generated for the purpose of calibration and validation, over large areas of Earth, including tectonic plate boundaries, ice sheets and sea-ice, and areas of ecosystem disturbance and change. This level of comprehensive product generation has been unprecedented for SAR missions in the past, and leads to storage processing challenges for the production system and the archive center. Further, recognizing the potential to support applications that require low latency product generation and delivery, the NISAR team is optimizing the entire end-to-end ground data system for such response, including exploring the advantages of cloud-based processing, algorithmic acceleration using GPUs, and on-demand processing schemes that minimize computational and transport costs, but allow rapid delivery to science and applications users. This paper will review the current products, workflows, and discuss the scientific and operational trade-space of mission capabilities.

  6. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    Science.gov (United States)

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  7. Guided Imagery and Music Bibliography and GIM/Related Literature Refworks Database

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    2010-01-01

    Bibliografi og database over litteratur om den receptive musikterapimetode Guided Imagery and Music......Bibliografi og database over litteratur om den receptive musikterapimetode Guided Imagery and Music...

  8. Effects of Mental Imagery on Muscular Strength in Healthy and Patient Participants: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Maamer Slimani, David Tod, Helmi Chaabene, Bianca Miarka, Karim Chamari

    2016-09-01

    Full Text Available The aims of the present review were to (i provide a critical overview of the current literature on the effects of mental imagery on muscular strength in healthy participants and patients with immobilization of the upper extremity (i.e., hand and anterior cruciate ligament (ACL, (ii identify potential moderators and mediators of the “mental imagery-strength performance” relationship and (iii determine the relative contribution of electromyography (EMG and brain activities, neural and physiological adaptations in the mental imagery-strength performance relationship. This paper also discusses the theoretical and practical implications of the contemporary literature and suggests possible directions for future research. Overall, the results reveal that the combination of mental imagery and physical practice is more efficient than, or at least comparable to, physical execution with respect to strength performance. Imagery prevention intervention was also effective in reducing of strength loss after short-term muscle immobilization and ACL. The present review also indicates advantageous effects of internal imagery (range from 2.6 to 136.3% for strength performance compared with external imagery (range from 4.8 to 23.2%. Typically, mental imagery with muscular activity was higher in active than passive muscles, and imagining “lifting a heavy object” resulted in more EMG activity compared with imagining “lifting a lighter object”. Thus, in samples of students, novices, or youth male and female athletes, internal mental imagery has a greater effect on muscle strength than external mental imagery does. Imagery ability, motivation, and self-efficacy have been shown to be the variables mediating the effect of mental imagery on strength performance. Finally, the greater effects of internal imagery than those of external imagery could be explained in terms of neural adaptations, stronger brain activation, higher muscle excitation, greater somatic

  9. Relationship between relaxation by guided imagery and performance of working memory.

    Science.gov (United States)

    Hudetz, J A; Hudetz, A G; Klayman, J

    2000-02-01

    This study tested the hypothesis that relaxation by guided imagery improves working-memory performance of healthy participants. 30 volunteers (both sexes, ages 17-56 years) were randomly assigned to one of three groups and administered the WAIS-III Letter-Number Sequencing Test before and after 10-min. treatment with guided imagery or popular music. The control group received no treatment. Groups' test scores were not different before treatment. The mean increased after relaxation by guided imagery but not after music or no treatment. This result supports the hypothesis that working-memory scores on the test are enhanced by guided imagery and implies that human information processing may be enhanced by prior relaxation.

  10. Use of Imagery in Literary Texts as english Teaching Material

    OpenAIRE

    中村, 愛人

    2006-01-01

    Some uses of literature as English teaching material have been discussed to some extent, but imagery which is, in a sense, essence of literature, seldom comes up for discussion. It has been known, however, that there is a close connection between imagery and memory. Then there is also a close connection between memory and learning or acquisition. So it is our aim in this paper to discuss how imagery is effective in learning English, and to study how to make good use of it by examining how it ...

  11. Testing the distinctiveness of visual imagery and motor imagery in a reach paradigm.

    Science.gov (United States)

    Gabbard, Carl; Ammar, Diala; Cordova, Alberto

    2009-01-01

    We examined the distinctiveness of motor imagery (MI) and visual imagery (VI) in the context of perceived reachability. The aim was to explore the notion that the two visual modes have distinctive processing properties tied to the two-visual-system hypothesis. The experiment included an interference tactic whereby participants completed two tasks at the same time: a visual or motor-interference task combined with a MI or VI-reaching task. We expected increased error would occur when the imaged task and the interference task were matched (e.g., MI with the motor task), suggesting an association based on the assumption that the two tasks were in competition for space on the same processing pathway. Alternatively, if there were no differences, dissociation could be inferred. Significant increases in the number of errors were found when the modalities for the imaged (both MI and VI) task and the interference task were matched. Therefore, it appears that MI and VI in the context of perceived reachability recruit different processing mechanisms.

  12. 2015 Southwest Florida RCD30 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain imagery data collected with an RCD30 camera as 8-bit RGBN TIFF images. Imagery was required 1000m seaward of the land/water interface or to laser...

  13. 2015 Florida Panhandle RCD30 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain imagery data collected with an RCD30 camera as 8-bit RGBN TIFF images. Imagery was required 1000m seaward of the land/water interface or to laser...

  14. Vividness of Visual Imagery Depends on the Neural Overlap with Perception in Visual Areas.

    Science.gov (United States)

    Dijkstra, Nadine; Bosch, Sander E; van Gerven, Marcel A J

    2017-02-01

    Research into the neural correlates of individual differences in imagery vividness point to an important role of the early visual cortex. However, there is also great fluctuation of vividness within individuals, such that only looking at differences between people necessarily obscures the picture. In this study, we show that variation in moment-to-moment experienced vividness of visual imagery, within human subjects, depends on the activity of a large network of brain areas, including frontal, parietal, and visual areas. Furthermore, using a novel multivariate analysis technique, we show that the neural overlap between imagery and perception in the entire visual system correlates with experienced imagery vividness. This shows that the neural basis of imagery vividness is much more complicated than studies of individual differences seemed to suggest. Visual imagery is the ability to visualize objects that are not in our direct line of sight: something that is important for memory, spatial reasoning, and many other tasks. It is known that the better people are at visual imagery, the better they can perform these tasks. However, the neural correlates of moment-to-moment variation in visual imagery remain unclear. In this study, we show that the more the neural response during imagery is similar to the neural response during perception, the more vivid or perception-like the imagery experience is. Copyright © 2017 the authors 0270-6474/17/371367-07$15.00/0.

  15. Imagining the Music: Methods for Assessing Musical Imagery Ability

    Science.gov (United States)

    Clark, Terry; Williamon, Aaron

    2012-01-01

    Timing profiles of live and imagined performances were compared with the aim of creating a context-specific measure of musicians' imagery ability. Thirty-two advanced musicians completed imagery use and vividness surveys, and then gave two live and two mental performances of a two-minute musical excerpt, tapping along with the beat of the mental…

  16. Encoding and analyzing aerial imagery using geospatial semantic graphs

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Jean-Paul; Strip, David R.; McLendon, William Clarence,; Parekh, Ojas D.; Diegert, Carl F.; Martin, Shawn Bryan; Rintoul, Mark Daniel

    2014-02-01

    While collection capabilities have yielded an ever-increasing volume of aerial imagery, analytic techniques for identifying patterns in and extracting relevant information from this data have seriously lagged. The vast majority of imagery is never examined, due to a combination of the limited bandwidth of human analysts and limitations of existing analysis tools. In this report, we describe an alternative, novel approach to both encoding and analyzing aerial imagery, using the concept of a geospatial semantic graph. The advantages of our approach are twofold. First, intuitive templates can be easily specified in terms of the domain language in which an analyst converses. These templates can be used to automatically and efficiently search large graph databases, for specific patterns of interest. Second, unsupervised machine learning techniques can be applied to automatically identify patterns in the graph databases, exposing recurring motifs in imagery. We illustrate our approach using real-world data for Anne Arundel County, Maryland, and compare the performance of our approach to that of an expert human analyst.

  17. Crowdsourcing earthquake damage assessment using remote sensing imagery

    Directory of Open Access Journals (Sweden)

    Stuart Gill

    2011-06-01

    Full Text Available This paper describes the evolution of recent work on using crowdsourced analysis of remote sensing imagery, particularly high-resolution aerial imagery, to provide rapid, reliable assessments of damage caused by earthquakes and potentially other disasters. The initial effort examined online imagery taken after the 2008 Wenchuan, China, earthquake. A more recent response to the 2010 Haiti earthquake led to the formation of an international consortium: the Global Earth Observation Catastrophe Assessment Network (GEO-CAN. The success of GEO-CAN in contributing to the official damage assessments made by the Government of Haiti, the United Nations, and the World Bank led to further development of a web-based interface. A current initiative in Christchurch, New Zealand, is underway where remote sensing experts are analyzing satellite imagery, geotechnical engineers are marking liquefaction areas, and structural engineers are identifying building damage. The current site includes online training to improve the accuracy of the assessments and make it possible for even novice users to contribute to the crowdsourced solution. The paper discusses lessons learned from these initiatives and presents a way forward for using crowdsourced remote sensing as a tool for rapid assessment of damage caused by natural disasters around the world.

  18. CEO Sites Mission Management System (SMMS)

    Science.gov (United States)

    Trenchard, Mike

    2014-01-01

    Late in fiscal year 2011, the Crew Earth Observations (CEO) team was tasked to upgrade its science site database management tool, which at the time was integrated with the Automated Mission Planning System (AMPS) originally developed for Earth Observations mission planning in the 1980s. Although AMPS had been adapted and was reliably used by CEO for International Space Station (ISS) payload operations support, the database structure was dated, and the compiler required for modifications would not be supported in the Windows 7 64-bit operating system scheduled for implementation the following year. The Sites Mission Management System (SMMS) is now the tool used by CEO to manage a heritage Structured Query Language (SQL) database of more than 2,000 records for Earth science sites. SMMS is a carefully designed and crafted in-house software package with complete and detailed help files available for the user and meticulous internal documentation for future modifications. It was delivered in February 2012 for test and evaluation. Following acceptance, it was implemented for CEO mission operations support in April 2012. The database spans the period from the earliest systematic requests for astronaut photography during the shuttle era to current ISS mission support of the CEO science payload. Besides logging basic image information (site names, locations, broad application categories, and mission requests), the upgraded database management tool now tracks dates of creation, modification, and activation; imagery acquired in response to requests; the status and location of ancillary site information; and affiliations with studies, their sponsors, and collaborators. SMMS was designed to facilitate overall mission planning in terms of site selection and activation and provide the necessary site parameters for the Satellite Tool Kit (STK) Integrated Message Production List Editor (SIMPLE), which is used by CEO operations to perform daily ISS mission planning. The CEO team

  19. Aerial Photography and Imagery, Ortho-Corrected - 2013 Digital Orthophotos - Liberty County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This metadata describes the digital ortho imagery covering Liberty County, FL. This 1"=200' scale imagery is comprised of 24 bit natural color orthophotography with...

  20. Aerial Photography and Imagery, Ortho-Corrected - 2009 Digital Orthophotos - Bradford County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This metadata describes the digital ortho imagery covering Bradford County, FL. This 1"=200' scale imagery is comprised of natural color orthophotography with a GSD...

  1. Aerial Photography and Imagery, Ortho-Corrected - 2010 Digital Orthophotos - Union County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This metadata describes the digital ortho imagery covering Union County, FL. This 1"=200' scale imagery is comprised of natural color orthophotography with a GSD...

  2. Aerial Photography and Imagery, Ortho-Corrected - 2013 Digital Orthophotos - Calhoun County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This metadata describes the digital ortho imagery covering Calhoun and Gulf Counties, FL. This 1"=200' scale imagery is comprised of natural color orthoimagery with...

  3. Aerial Photography and Imagery, Ortho-Corrected - 2010 Digital Orthophotos - Franklin County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This metadata describes the digital ortho imagery covering Franklin County, FL. This 1"=200' scale imagery is comprised of natural color orthophotography with a GSD...

  4. The Effects of Guided Imagery on Heart Rate Variability in Simulated Spaceflight Emergency Tasks Performers

    Directory of Open Access Journals (Sweden)

    Zhang Yijing

    2015-01-01

    Full Text Available Objectives. The present study aimed to investigate the effects of guided imagery training on heart rate variability in individuals while performing spaceflight emergency tasks. Materials and Methods. Twenty-one student subjects were recruited for the experiment and randomly divided into two groups: imagery group (n=11 and control group (n=10. The imagery group received instructor-guided imagery (session 1 and self-guided imagery training (session 2 consecutively, while the control group only received conventional training. Electrocardiograms of the subjects were recorded during their performance of nine spaceflight emergency tasks after imagery training. Results. In both of the sessions, the root mean square of successive differences (RMSSD, the standard deviation of all normal NN (SDNN, the proportion of NN50 divided by the total number of NNs (PNN50, the very low frequency (VLF, the low frequency (LF, the high frequency (HF, and the total power (TP in the imagery group were significantly higher than those in the control group. Moreover, LF/HF of the subjects after instructor-guided imagery training was lower than that after self-guided imagery training. Conclusions. Guided imagery was an effective regulator for HRV indices and could be a potential stress countermeasure in performing spaceflight tasks.

  5. The Effects of Guided Imagery on Heart Rate Variability in Simulated Spaceflight Emergency Tasks Performers

    Science.gov (United States)

    Yijing, Zhang; Xiaoping, Du; Fang, Liu; Xiaolu, Jing; Bin, Wu

    2015-01-01

    Objectives. The present study aimed to investigate the effects of guided imagery training on heart rate variability in individuals while performing spaceflight emergency tasks. Materials and Methods. Twenty-one student subjects were recruited for the experiment and randomly divided into two groups: imagery group (n = 11) and control group (n = 10). The imagery group received instructor-guided imagery (session 1) and self-guided imagery training (session 2) consecutively, while the control group only received conventional training. Electrocardiograms of the subjects were recorded during their performance of nine spaceflight emergency tasks after imagery training. Results. In both of the sessions, the root mean square of successive differences (RMSSD), the standard deviation of all normal NN (SDNN), the proportion of NN50 divided by the total number of NNs (PNN50), the very low frequency (VLF), the low frequency (LF), the high frequency (HF), and the total power (TP) in the imagery group were significantly higher than those in the control group. Moreover, LF/HF of the subjects after instructor-guided imagery training was lower than that after self-guided imagery training. Conclusions. Guided imagery was an effective regulator for HRV indices and could be a potential stress countermeasure in performing spaceflight tasks. PMID:26137491

  6. Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation.

    Directory of Open Access Journals (Sweden)

    Masahito Mihara

    Full Text Available Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS, two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients.

  7. Contextual memory, psychosis-proneness, and the experience of intrusive imagery.

    Science.gov (United States)

    Glazer, Daniel A; Mason, Oliver; King, John A; Brewin, Chris R

    2013-01-01

    This study tested the hypothesis that the presence and characteristics of naturally occurring involuntary imagery would be related to poorer context-dependent spatial memory and higher levels of proneness to psychotic experiences. Poorer contextual memory was also predicted to be associated with a greater sense of "nowness". Participants completed a virtual environment task that assessed contextual memory through responses that required allocentric and egocentric processing of virtual stimuli. Two questionnaires assessing predisposition to psychotic experiences were employed. Finally, participants completed an interview that required details of recent, naturally occurring involuntary images. Reports of involuntary imagery were associated with greater proneness to psychotic experiences but not with memory. In those participants who reported imagery, however, poorer memory performance was associated with more vivid and detailed intrusive imagery. Poorer contextual memory was specifically associated with a greater sense of "nowness". Possible links between contextual memory and proneness to psychosis are discussed.

  8. Detecting long-duration cloud contamination in hyper-temporal NDVI imagery

    NARCIS (Netherlands)

    Ali, A.; de Bie, C.A.J.M.; Skidmore, A.K.

    2013-01-01

    Cloud contamination impacts on the quality of hyper-temporal NDVI imagery and its subsequent interpretation. Short-duration cloud impacts are easily removed by using quality flags and an upper envelope filter, but long-duration cloud contamination of NDVI imagery remains. In this paper, an approach

  9. The neural correlates of visual imagery: A co-ordinate-based meta-analysis.

    Science.gov (United States)

    Winlove, Crawford I P; Milton, Fraser; Ranson, Jake; Fulford, Jon; MacKisack, Matthew; Macpherson, Fiona; Zeman, Adam

    2018-01-02

    Visual imagery is a form of sensory imagination, involving subjective experiences typically described as similar to perception, but which occur in the absence of corresponding external stimuli. We used the Activation Likelihood Estimation algorithm (ALE) to identify regions consistently activated by visual imagery across 40 neuroimaging studies, the first such meta-analysis. We also employed a recently developed multi-modal parcellation of the human brain to attribute stereotactic co-ordinates to one of 180 anatomical regions, the first time this approach has been combined with the ALE algorithm. We identified a total 634 foci, based on measurements from 464 participants. Our overall comparison identified activation in the superior parietal lobule, particularly in the left hemisphere, consistent with the proposed 'top-down' role for this brain region in imagery. Inferior premotor areas and the inferior frontal sulcus were reliably activated, a finding consistent with the prominent semantic demands made by many visual imagery tasks. We observed bilateral activation in several areas associated with the integration of eye movements and visual information, including the supplementary and cingulate eye fields (SCEFs) and the frontal eye fields (FEFs), suggesting that enactive processes are important in visual imagery. V1 was typically activated during visual imagery, even when participants have their eyes closed, consistent with influential depictive theories of visual imagery. Temporal lobe activation was restricted to area PH and regions of the fusiform gyrus, adjacent to the fusiform face complex (FFC). These results provide a secure foundation for future work to characterise in greater detail the functional contributions of specific areas to visual imagery. Copyright © 2017. Published by Elsevier Ltd.

  10. Media, Mental Imagery, and Memory.

    Science.gov (United States)

    Clark, Robert L.

    1978-01-01

    Thirty-two students at the University of Oregon were tested to determine the effects of media on mental imagery and memory. The model incorporates a dual coding hypothesis, and five single and multiple channel treatments were used. (Author/JEG)

  11. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.

    Science.gov (United States)

    Koo, Bonkon; Lee, Hwan-Gon; Nam, Yunjun; Kang, Hyohyeong; Koh, Chin Su; Shin, Hyung-Cheul; Choi, Seungjin

    2015-04-15

    For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Evaluation of terrestrial photogrammetric point clouds derived from thermal imagery

    Science.gov (United States)

    Metcalf, Jeremy P.; Olsen, Richard C.

    2016-05-01

    Computer vision and photogrammetric techniques have been widely applied to digital imagery producing high density 3D point clouds. Using thermal imagery as input, the same techniques can be applied to infrared data to produce point clouds in 3D space, providing surface temperature information. The work presented here is an evaluation of the accuracy of 3D reconstruction of point clouds produced using thermal imagery. An urban scene was imaged over an area at the Naval Postgraduate School, Monterey, CA, viewing from above as with an airborne system. Terrestrial thermal and RGB imagery were collected from a rooftop overlooking the site using a FLIR SC8200 MWIR camera and a Canon T1i DSLR. In order to spatially align each dataset, ground control points were placed throughout the study area using Trimble R10 GNSS receivers operating in RTK mode. Each image dataset is processed to produce a dense point cloud for 3D evaluation.

  13. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    characterization for mission planning, operations, and sample prioritization, 3) evaluate analytical instruments and tools for providing efficient and meaningful data in advance of sample return and 4) identify science operations that leverage human presence with robotic tools. In the first year of tests (2010), GeoLab examined basic glovebox operations performed by one and two crewmembers and science operations performed by a remote science team. The 2010 tests also examined the efficacy of basic sample characterization [descriptions, microscopic imagery, X-ray fluorescence (XRF) analyses] and feedback to the science team. In year 2 (2011), the GeoLab team tested enhanced software and interfaces for the crew and science team (including Web-based and mobile device displays) and demonstrated laboratory configurability with a new diagnostic instrument (the Multispectral Microscopic Imager from the JPL and Arizona State University). In year 3 (2012), the GeoLab team installed and tested a robotic sample manipulator and evaluated robotic-human interfaces for science operations.

  14. Utility of multispectral imaging for nuclear classification of routine clinical histopathology imagery

    Directory of Open Access Journals (Sweden)

    Harvey Neal R

    2007-07-01

    Full Text Available Abstract Background We present an analysis of the utility of multispectral versus standard RGB imagery for routine H&E stained histopathology images, in particular for pixel-level classification of nuclei. Our multispectral imagery has 29 spectral bands, spaced 10 nm within the visual range of 420–700 nm. It has been hypothesized that the additional spectral bands contain further information useful for classification as compared to the 3 standard bands of RGB imagery. We present analyses of our data designed to test this hypothesis. Results For classification using all available image bands, we find the best performance (equal tradeoff between detection rate and false alarm rate is obtained from either the multispectral or our "ccd" RGB imagery, with an overall increase in performance of 0.79% compared to the next best performing image type. For classification using single image bands, the single best multispectral band (in the red portion of the spectrum gave a performance increase of 0.57%, compared to performance of the single best RGB band (red. Additionally, red bands had the highest coefficients/preference in our classifiers. Principal components analysis of the multispectral imagery indicates only two significant image bands, which is not surprising given the presence of two stains. Conclusion Our results indicate that multispectral imagery for routine H&E stained histopathology provides minimal additional spectral information for a pixel-level nuclear classification task than would standard RGB imagery.

  15. The sensory strength of voluntary visual imagery predicts visual working memory capacity.

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2014-10-09

    How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.

  16. Visual imagery of famous faces: effects of memory and attention revealed by fMRI.

    Science.gov (United States)

    Ishai, Alumit; Haxby, James V; Ungerleider, Leslie G

    2002-12-01

    Complex pictorial information can be represented and retrieved from memory as mental visual images. Functional brain imaging studies have shown that visual perception and visual imagery share common neural substrates. The type of memory (short- or long-term) that mediates the generation of mental images, however, has not been addressed previously. The purpose of this study was to investigate the neural correlates underlying imagery generated from short- and long-term memory (STM and LTM). We used famous faces to localize the visual response during perception and to compare the responses during visual imagery generated from STM (subjects memorized specific pictures of celebrities before the imagery task) and imagery from LTM (subjects imagined famous faces without seeing specific pictures during the experimental session). We found that visual perception of famous faces activated the inferior occipital gyri, lateral fusiform gyri, the superior temporal sulcus, and the amygdala. Small subsets of these face-selective regions were activated during imagery. Additionally, visual imagery of famous faces activated a network of regions composed of bilateral calcarine, hippocampus, precuneus, intraparietal sulcus (IPS), and the inferior frontal gyrus (IFG). In all these regions, imagery generated from STM evoked more activation than imagery from LTM. Regardless of memory type, focusing attention on features of the imagined faces (e.g., eyes, lips, or nose) resulted in increased activation in the right IPS and right IFG. Our results suggest differential effects of memory and attention during the generation and maintenance of mental images of faces.

  17. Using Imagery Rescripting to Treat Major Depression: Theory and Practice

    Science.gov (United States)

    Wheatley, Jon; Hackmann, Ann

    2011-01-01

    This paper considers the role that intrusive memories may play in maintaining depression and the rationale for using imagery rescripting in order to target these memories. Potential mechanisms of change underlying imagery rescripting are discussed. The relationship between depressive rumination and memories is considered, as well as potential…

  18. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery

    Science.gov (United States)

    Castillo, Jose Alan A.; Apan, Armando A.; Maraseni, Tek N.; Salmo, Severino G.

    2017-12-01

    The recent launch of the Sentinel-1 (SAR) and Sentinel-2 (multispectral) missions offers a new opportunity for land-based biomass mapping and monitoring especially in the tropics where deforestation is highest. Yet, unlike in agriculture and inland land uses, the use of Sentinel imagery has not been evaluated for biomass retrieval in mangrove forest and the non-forest land uses that replaced mangroves. In this study, we evaluated the ability of Sentinel imagery for the retrieval and predictive mapping of above-ground biomass of mangroves and their replacement land uses. We used Sentinel SAR and multispectral imagery to develop biomass prediction models through the conventional linear regression and novel Machine Learning algorithms. We developed models each from SAR raw polarisation backscatter data, multispectral bands, vegetation indices, and canopy biophysical variables. The results show that the model based on biophysical variable Leaf Area Index (LAI) derived from Sentinel-2 was more accurate in predicting the overall above-ground biomass. In contrast, the model which utilised optical bands had the lowest accuracy. However, the SAR-based model was more accurate in predicting the biomass in the usually deficient to low vegetation cover non-forest replacement land uses such as abandoned aquaculture pond, cleared mangrove and abandoned salt pond. These models had 0.82-0.83 correlation/agreement of observed and predicted value, and root mean square error of 27.8-28.5 Mg ha-1. Among the Sentinel-2 multispectral bands, the red and red edge bands (bands 4, 5 and 7), combined with elevation data, were the best variable set combination for biomass prediction. The red edge-based Inverted Red-Edge Chlorophyll Index had the highest prediction accuracy among the vegetation indices. Overall, Sentinel-1 SAR and Sentinel-2 multispectral imagery can provide satisfactory results in the retrieval and predictive mapping of the above-ground biomass of mangroves and the replacement

  19. Information from imagery: ISPRS scientific vision and research agenda

    Science.gov (United States)

    Chen, Jun; Dowman, Ian; Li, Songnian; Li, Zhilin; Madden, Marguerite; Mills, Jon; Paparoditis, Nicolas; Rottensteiner, Franz; Sester, Monika; Toth, Charles; Trinder, John; Heipke, Christian

    2016-05-01

    With the increased availability of very high-resolution satellite imagery, terrain based imaging and participatory sensing, inexpensive platforms, and advanced information and communication technologies, the application of imagery is now ubiquitous, playing an important role in many aspects of life and work today. As a leading organisation in this field, the International Society for Photogrammetry and Remote Sensing (ISPRS) has been devoted to effectively and efficiently obtaining and utilising information from imagery since its foundation in the year 1910. This paper examines the significant challenges currently facing ISPRS and its communities, such as providing high-quality information, enabling advanced geospatial computing, and supporting collaborative problem solving. The state-of-the-art in ISPRS related research and development is reviewed and the trends and topics for future work are identified. By providing an overarching scientific vision and research agenda, we hope to call on and mobilise all ISPRS scientists, practitioners and other stakeholders to continue improving our understanding and capacity on information from imagery and to deliver advanced geospatial knowledge that enables humankind to better deal with the challenges ahead, posed for example by global change, ubiquitous sensing, and a demand for real-time information generation.

  20. Needs, conditions of intervention and staff in medical physics for medical imagery

    International Nuclear Information System (INIS)

    Salvat, Cecile; Dieudonne, Arnaud; Guilhem, Marie-Therese; Le Du, Dominique; Pierrat, Noelle; Isambert, Aurelie; Valero, Marc; Blanchard, Vincent

    2013-04-01

    This guide proposes information on the types and quantification of medical physics tasks to be performed when performing medical imagery using ionizing radiations. It gives recommendations about the commitment of medical physicists (with or without support staff) and the required staff in nuclear medicine and, more generally in imagery (interventional radiology, scanography, conventional radiology). It first gives an overview of the situation in France in 2012 in terms of observations made by the ASN during inspections, and of results of a survey conducted among medical physicists involved in medical imagery. It indicates the current regulatory requirements, and international and national recommendations, and describes the commitment in imagery of medical physicists in three countries (Spain, Belgium and Germany). It analyses and describes the fields of intervention of medical physicists in imagery and identifies associated tasks in France (in equipment purchasing, equipment installation, equipment routine usage, patient care, nuclear medicine or internal vectorized radiotherapy, or staff training). Recommendations of a work-group about sizing criteria are proposed

  1. A cross-modal perspective on the relationships between imagery and working memory

    Directory of Open Access Journals (Sweden)

    Lora T Likova

    2013-01-01

    Full Text Available Mapping the distinctions and interrelationships between imagery and working memory remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and working memory involve a form of internal representation available to our awareness. In working memory, there is a further emphasis on active maintenance and use of this conscious representation to guide voluntary action. Multicomponent working memory models incorporate representational buffers, such as the visuo-spatial sketchpad, plus central executive functions. If there is a visuo-spatial ‘sketchpad’ for working memory, does imagery involve the same representational buffer? Alternatively, does working memory employ an imagery-specific representational mechanism to occupy our awareness? Or do both constructs utilize a more generic ‘projection screen’ of an amodal nature? In a cross-modal fMRI study a novel memory paradigm is introduced based on drawing, which may be conceptualized as a complex behaviour adaptable to learning in the tactile modality. Blindfolded participants were trained to draw complex objects guided purely by the memory of felt tactile images. If this working memory task had been mediated by transfer of the felt spatial configuration to the visual imagery mechanism, the response profile in visual cortex would be predicted to have the ‘top-down’ signature of propagation of the imagery signal downwards through the visual hierarchy. Remarkably, the pattern of cross-modal occipital activation generated by the non-visual memory drawing was essentially the inverse of this typical ‘imagery signature’, with the sole visual hierarchy activation occurring in V1, accompanied by deactivation of the entire extrastriate part of the hierarchy. The implications of these findings for the debate on the interrelationships between the core cognitive constructs of working memory and imagery

  2. Extraction of Rocky Desertification from Disp Imagery: a Case Study of Liupanshui, Guizhou, China

    Science.gov (United States)

    Zhou, G.; Wu, Z.; Wang, W.; Shi, Y.; Mao, G.; Huang, Y.; Jia, B.; Gao, G.; Chen, P.

    2017-09-01

    Karst rocky desertification is a typical type of land degradation in Guizhou Province, China. It causes great ecological and economical implications to the local people. This paper utilized the declassified intelligence satellite photography (DISP) of 1960s to extract the karst rocky desertification area to analyze the early situation of karst rocky desertification in Liupanshui, Guizhou, China. Due to the lack of ground control points and parameters of the satellite, a polynomial orthographic correction model with considering altitude difference correction is proposed for orthorectification of DISP imagery. With the proposed model, the 96 DISP images from four missions are orthorectified. The images are assembled into a seamless image map of the karst area of Guizhou, China. The assembled image map is produced to thematic map of karst rocky desertification by visual interpretation in Liupanshui city. With the assembled image map, extraction of rocky desertification is conducted.

  3. EXTRACTION OF ROCKY DESERTIFICATION FROM DISP IMAGERY: A CASE STUDY OF LIUPANSHUI, GUIZHOU, CHINA

    Directory of Open Access Journals (Sweden)

    G. Zhou

    2017-09-01

    Full Text Available Karst rocky desertification is a typical type of land degradation in Guizhou Province, China. It causes great ecological and economical implications to the local people. This paper utilized the declassified intelligence satellite photography (DISP of 1960s to extract the karst rocky desertification area to analyze the early situation of karst rocky desertification in Liupanshui, Guizhou, China. Due to the lack of ground control points and parameters of the satellite, a polynomial orthographic correction model with considering altitude difference correction is proposed for orthorectification of DISP imagery. With the proposed model, the 96 DISP images from four missions are orthorectified. The images are assembled into a seamless image map of the karst area of Guizhou, China. The assembled image map is produced to thematic map of karst rocky desertification by visual interpretation in Liupanshui city. With the assembled image map, extraction of rocky desertification is conducted.

  4. Sea-Ice Feature Mapping using JERS-1 Imagery

    Science.gov (United States)

    Maslanik, James; Heinrichs, John

    1994-01-01

    JERS-1 SAR and OPS imagery are examined in combination with other data sets to investigate the utility of the JERS-1 sensors for mapping fine-scale sea ice conditions. Combining ERS-1 C band and JERS-1 L band SAR aids in discriminating multiyear and first-year ice. Analysis of OPS imagery for a field site in the Canadian Archipelago highlights the advantages of OPS's high spatial and spectral resolution for mapping ice structure, melt pond distribution, and surface albedo.

  5. Resolution Enhancement of Multilook Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Galbraith, Amy E. [Univ. of Arizona, Tucson, AZ (United States)

    2004-07-01

    This dissertation studies the feasibility of enhancing the spatial resolution of multi-look remotely-sensed imagery using an iterative resolution enhancement algorithm known as Projection Onto Convex Sets (POCS). A multi-angle satellite image modeling tool is implemented, and simulated multi-look imagery is formed to test the resolution enhancement algorithm. Experiments are done to determine the optimal con guration and number of multi-angle low-resolution images needed for a quantitative improvement in the spatial resolution of the high-resolution estimate. The important topic of aliasing is examined in the context of the POCS resolution enhancement algorithm performance. In addition, the extension of the method to multispectral sensor images is discussed and an example is shown using multispectral confocal fluorescence imaging microscope data. Finally, the remote sensing issues of atmospheric path radiance and directional reflectance variations are explored to determine their effect on the resolution enhancement performance.

  6. Association between Social Anxiety and Visual Mental Imagery of Neutral Scenes: The Moderating Role of Effortful Control

    Directory of Open Access Journals (Sweden)

    Jun Moriya

    2018-01-01

    Full Text Available According to cognitive theories, verbal processing attenuates emotional processing, whereas visual imagery enhances emotional processing and contributes to the maintenance of social anxiety. Individuals with social anxiety report negative mental images in social situations. However, the general ability of visual mental imagery of neutral scenes in individuals with social anxiety is still unclear. The present study investigated the general ability of non-emotional mental imagery (vividness, preferences for imagery vs. verbal processing, and object or spatial imagery and the moderating role of effortful control in attenuating social anxiety. The participants (N = 231 completed five questionnaires. The results showed that social anxiety was not necessarily associated with all aspects of mental imagery. As suggested by theories, social anxiety was not associated with a preference for verbal processing. However, social anxiety was positively correlated with the visual imagery scale, especially the object imagery scale, which concerns the ability to construct pictorial images of individual objects. Further, it was negatively correlated with the spatial imagery scale, which concerns the ability to process information about spatial relations between objects. Although object imagery and spatial imagery positively and negatively predicted the degree of social anxiety, respectively, these effects were attenuated when socially anxious individuals had high effortful control. Specifically, in individuals with high effortful control, both object and spatial imagery were not associated with social anxiety. Socially anxious individuals might prefer to construct pictorial images of individual objects in natural scenes through object imagery. However, even in individuals who exhibit these features of mental imagery, effortful control could inhibit the increase in social anxiety.

  7. Association between Social Anxiety and Visual Mental Imagery of Neutral Scenes: The Moderating Role of Effortful Control.

    Science.gov (United States)

    Moriya, Jun

    2017-01-01

    According to cognitive theories, verbal processing attenuates emotional processing, whereas visual imagery enhances emotional processing and contributes to the maintenance of social anxiety. Individuals with social anxiety report negative mental images in social situations. However, the general ability of visual mental imagery of neutral scenes in individuals with social anxiety is still unclear. The present study investigated the general ability of non-emotional mental imagery (vividness, preferences for imagery vs. verbal processing, and object or spatial imagery) and the moderating role of effortful control in attenuating social anxiety. The participants ( N = 231) completed five questionnaires. The results showed that social anxiety was not necessarily associated with all aspects of mental imagery. As suggested by theories, social anxiety was not associated with a preference for verbal processing. However, social anxiety was positively correlated with the visual imagery scale, especially the object imagery scale, which concerns the ability to construct pictorial images of individual objects. Further, it was negatively correlated with the spatial imagery scale, which concerns the ability to process information about spatial relations between objects. Although object imagery and spatial imagery positively and negatively predicted the degree of social anxiety, respectively, these effects were attenuated when socially anxious individuals had high effortful control. Specifically, in individuals with high effortful control, both object and spatial imagery were not associated with social anxiety. Socially anxious individuals might prefer to construct pictorial images of individual objects in natural scenes through object imagery. However, even in individuals who exhibit these features of mental imagery, effortful control could inhibit the increase in social anxiety.

  8. Database of Literature on Guided Imagery and Music and Related Topics

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    2015-01-01

    A March 2015 update of the largest international database on literature on Guided Imagery and Music and related topics.......A March 2015 update of the largest international database on literature on Guided Imagery and Music and related topics....

  9. Effects of hypnagogic imagery on the event-related potential to external tone stimuli.

    Science.gov (United States)

    Michida, Nanae; Hayashi, Mitsuo; Hori, Tadao

    2005-07-01

    The purpose of this study was to examine the influence of hypnagogic imagery on the information processes of external tone stimuli during the sleep onset period with the use of event-related potentials. Event-related potentials to tone stimuli were compared between conditions with and without the experience of hypnagogic imagery. To control the arousal level when the tone was presented, a certain criterion named the electroencephalogram stage was used. Stimuli were presented at electroencephalogram stage 4, which was characterized by the appearance of a vertex sharp wave. Data were collected in the sleep laboratory at Hiroshima University. Eleven healthy university and graduate school students participated in the study. N/A. Experiments were performed at night. Reaction times to tone stimuli were measured, and only trials with shorter reaction times than 5000 milliseconds were analyzed. Electroencephalograms were recorded from Fz, Cz, Pz, Oz, T5 and T6. There were no differences in reaction times and electroencephalogram spectra between the conditions of with and without hypnagogic imagery. These results indicated that the arousal levels were not different between the 2 conditions. On the other hand, the N550 amplitude of the event-related potentials in the imagery condition was lower than in the no-imagery condition. The decrease in the N550 amplitude in the imagery condition showed that experiences of hypnagogic imagery exert some influence on the information processes of external tone stimuli. It is possible that the processing of hypnagogic imagery interferes with the processing of external stimuli, lowering the sensitivity to external stimuli.

  10. Effects of Different Imagery Strategies in the Psychological Treatment of Chronic Headache

    Directory of Open Access Journals (Sweden)

    Gisela Peters

    1998-01-01

    Full Text Available This study investigates the effects of four different imagery techniques: pleasant imagery versus imaginative transformations, and response versus stimulus imagery. One may expect imaginative transformations to be more effective than pleasant imagery. Response imaginative transformations should be more effective than stimulus imaginative transformations, while the pleasant imagery conditions are not expected to have different effects. In a 2x2 design, treatment conditions were compared. Forty patients (33 females, seven males with different types of chronic headache were referred by their physicians and took part in the study. Pain diaries and questionnaires of pain experience and pain behaviour were used as outcome measures. Imaginative transformations - irrespective of response or stimulus orientation - were found to be more effective than pleasant imagery in reducing headache frequency. Reductions remained stable over an eight-month follow-up. There are no significant differences between response and stimulus imagery. Treatment effects were manifested in a reduction of headache frequency, while headache duration and headache intensity did not change. Suffering and avoidance behaviours were reduced in all treatment groups, while the use of distraction strategies was increased. The reductions in suffering were significantly greater in the groups treated with imaginative transformations. In the eight-month follow-up, group differences in reductions in suffering were no longer significant, which is probably due to the reduced sample size. The results support the hypothesis that a cognitive redefinition is responsible for the beneficial treatment effects because only instructions to imagine a change in pain sensations and/or pain responses led to significant improvements.

  11. The neural basis of kinesthetic and visual imagery in sports: an ALE meta - analysis.

    Science.gov (United States)

    Filgueiras, Alberto; Quintas Conde, Erick Francisco; Hall, Craig R

    2017-12-19

    Imagery is a widely spread technique in the sport sciences that entails the mental rehearsal of a given situation to improve an athlete's learning, performance and motivation. Two modalities of imagery are reported to tap into distinct brain structures, but sharing common components: kinesthetic and visual imagery. This study aimed to investigate the neural basis of those types of imagery with Activation Likelihood Estimation algorithm to perform a meta - analysis. A systematic search was used to retrieve only experimental studies with athletes or sportspersons. Altogether, nine studies were selected and an ALE meta - analysis was performed. Results indicated significant activation of the premotor, somatosensory cortex, supplementary motor areas, inferior and superior parietal lobule, caudate, cingulate and cerebellum in both imagery tasks. It was concluded that visual and kinesthetic imagery share similar neural networks which suggests that combined interventions are beneficial to athletes whereas separate use of those two modalities of imagery may seem less efficient from a neuropsychological approach.

  12. Active training paradigm for motor imagery BCI.

    Science.gov (United States)

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis.

  13. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis.

    Science.gov (United States)

    Grabherr, Luzia; Jola, Corinne; Berra, Gilberto; Theiler, Robert; Mast, Fred W

    2015-01-01

    In healthy participants, beneficial effects of motor imagery training on movement execution have been shown for precision, strength, and speed. In the clinical context, it is still debated whether motor imagery provides an effective rehabilitation technique in patients with motor deficits. To compare the effectiveness of two different types of movement training: motor imagery vs. motor execution. Twenty-five patients with hemiparesis were assigned to one of two training groups: the imagery or the execution-training group. Both groups completed a baseline test before they received six training sessions, each of which was followed by a test session. Using a novel and precisely quantifiable test, we assessed how accurately patients performed an upper limb movement. Both training groups improved performance over the six test sessions but the improvement was significantly larger in the imagery group. That is, the imagery group was able to perform more precise movements than the execution group after the sixth training session while there was no difference at the beginning of the training. The results provide evidence for the benefit of motor imagery training in patients with hemiparesis and thus suggest the integration of cognitive training in conventional physiotherapy practice.

  14. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.

    Science.gov (United States)

    Vasilyev, Anatoly; Liburkina, Sofya; Yakovlev, Lev; Perepelkina, Olga; Kaplan, Alexander

    2017-03-01

    Motor imagery (MI) is considered to be a promising cognitive tool for improving motor skills as well as for rehabilitation therapy of movement disorders. It is believed that MI training efficiency could be improved by using the brain-computer interface (BCI) technology providing real-time feedback on person's mental attempts. While BCI is indeed a convenient and motivating tool for practicing MI, it is not clear whether it could be used for predicting or measuring potential positive impact of the training. In this study, we are trying to establish whether the proficiency in BCI control is associated with any of the neurophysiological or psychological correlates of motor imagery, as well as to determine possible interrelations among them. For that purpose, we studied motor imagery in a group of 19 healthy BCI-trained volunteers and performed a correlation analysis across various quantitative assessment metrics. We examined subjects' sensorimotor event-related EEG events, corticospinal excitability changes estimated with single-pulse transcranial magnetic stimulation (TMS), BCI accuracy and self-assessment reports obtained with specially designed questionnaires and interview routine. Our results showed, expectedly, that BCI performance is dependent on the subject's capability to suppress EEG sensorimotor rhythms, which in turn is correlated with the idle state amplitude of those oscillations. Neither BCI accuracy nor the EEG features associated with MI were found to correlate with the level of corticospinal excitability increase during motor imagery, and with assessed imagery vividness. Finally, a significant correlation was found between the level of corticospinal excitability increase and kinesthetic vividness of imagery (KVIQ-20 questionnaire). Our results suggest that two distinct neurophysiological mechanisms might mediate possible effects of motor imagery: the non-specific cortical sensorimotor disinhibition and the focal corticospinal excitability increase

  15. Perceptual training in soccer: An imagery intervention study with elite players

    NARCIS (Netherlands)

    Jordet, G.

    The purpose of this study was to determine whether an ecological imagery intervention program would affect perception (i.e., exploratory activity and prospective control of future actions) in three elite soccer players. The imagery was adjusted to the unique action opportunities typically

  16. Coping with work-related stress through Guided Imagery and Music (GIM)

    DEFF Research Database (Denmark)

    Beck, Bolette Daniels; Hansen, Åse Marie; Gold, Christian

    2015-01-01

    the effects of Guided Imagery and Music (GIM), a psychotherapy intervention including relaxation, music listening, and imagery, on biopsychosocial measures of work-related stress. METHODS: Twenty Danish workers on sick leave were randomized to music therapy versus wait-list control. Data collection...

  17. Guided imagery targeting exercise, food cravings, and stress: a multi-modal randomized feasibility trial.

    Science.gov (United States)

    Giacobbi, Peter; Long, Dustin; Nolan, Richard; Shawley, Samantha; Johnson, Kelsey; Misra, Ranjita

    2018-02-01

    The purpose of this randomized wait-list controlled trial was to test the feasibility and preliminary efficacy of a guided imagery based multi-behavior intervention intended to address psychological stress, food cravings, and physical activity. Personalized guided imagery scripts were created and participants were instructed to practice guided imagery every day for 35 consecutive days. Of 48 women who enrolled, we report comparisons between 16 randomized to treatment with 19 who were wait-listed (overall M age  = 45.50; M bodymassindex  = 31.43). Study completers reported 89% compliance with practicing guided imagery during the intervention. A significant time-by-group interaction was observed with reductions in food cravings and increases in physical activity compared with wait-list controls. Telephone-based multi-behavior interventions that utilize guided imagery to address food cravings and exercise behavior appear to be acceptable for overweight and obese women. Future phone-based guided imagery research testing this skill to address multiple health behaviors is justified.

  18. Comparison of event related potentials with and without hypnagogic imagery.

    Science.gov (United States)

    Michida, N; Hayashi, M; Hori, T

    1998-04-01

    It is hypothesized that when hypnagogic imagery occurs, an appropriate attention may allocate to the imagery, resulting in the allocation of attention to the external tone stimuli being diminished. N3 amplitude of event related potentials (ERP) obtained a significant difference between the conditions with and without imagery. Arousal level of behavior and electroencephalography were not different between the conditions, therefore it is interpreted that the decrease of the N3 amplitude during imagining reflects the diminution of the allocation of attention to the external tone stimuli. Another late component of ERP, P3, did not make clear peaks in this study despite a large time constant (tau=3.2 s) used for EEG records.

  19. [French norms of imagery for pictures, for concrete and abstract words].

    Science.gov (United States)

    Robin, Frédérique

    2006-09-01

    This paper deals with French norms for mental image versus picture agreement for 138 pictures and the imagery value for 138 concrete words and 69 abstract words. The pictures were selected from Snodgrass et Vanderwart's norms (1980). The concrete words correspond to the dominant naming response to the pictorial stimuli. The abstract words were taken from verbal associative norms published by Ferrand (2001). The norms were established according to two variables: 1) mental image vs. picture agreement, and 2) imagery value of words. Three other variables were controlled: 1) picture naming agreement; 2) familiarity of objects referred to in the pictures and the concrete words, and 3) subjective verbal frequency of words. The originality of this work is to provide French imagery norms for the three kinds of stimuli usually compared in research on dual coding. Moreover, these studies focus on figurative and verbal stimuli variations in visual imagery processes.

  20. Dialectical Imagery and Postmodern Research

    Science.gov (United States)

    Davison, Kevin G.

    2006-01-01

    This article suggests utilizing dialectical imagery, as understood by German social philosopher Walter Benjamin, as an additional qualitative data analysis strategy for research into the postmodern condition. The use of images mined from research data may offer epistemological transformative possibilities that will assist in the demystification of…

  1. Landsat Science: 40 Years of Innovation and Opportunity

    Science.gov (United States)

    Cook, Bruce D.; Irons, James R.; Masek, Jeffrey G.; Loveland, Thomas R.

    2012-01-01

    Landsat satellites have provided unparalleled Earth-observing data for nearly 40 years, allowing scientists to describe, monitor and model the global environment during a period of time that has seen dramatic changes in population growth, land use, and climate. The success of the Landsat program can be attributed to well-designed instrument specifications, astute engineering, comprehensive global acquisition and calibration strategies, and innovative scientists who have developed analytical techniques and applications to address a wide range of needs at local to global scales (e.g., crop production, water resource management, human health and environmental quality, urbanization, deforestation and biodiversity). Early Landsat contributions included inventories of natural resources and land cover classification maps, which were initially prepared by a visual interpretation of Landsat imagery. Over time, advances in computer technology facilitated the development of sophisticated image processing algorithms and complex ecosystem modeling, enabling scientists to create accurate, reproducible, and more realistic simulations of biogeochemical processes (e.g., plant production and ecosystem dynamics). Today, the Landsat data archive is freely available for download through the USGS, creating new opportunities for scientists to generate global image datasets, develop new change detection algorithms, and provide products in support of operational programs such as Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD). In particular, the use of dense (approximately annual) time series to characterize both rapid and progressive landscape change has yielded new insights into how the land environment is responding to anthropogenic and natural pressures. The launch of the Landsat Data Continuity Mission (LDCM) satellite in 2012 will continue to propel innovative Landsat science.

  2. The Potential Uses of Commercial Satellite Imagery in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Vannoni, M.G.

    1999-06-08

    It became clear during the workshop that the applicability of commercial satellite imagery to the verification of future regional arms control agreements is limited at this time. Non-traditional security topics such as environmental protection, natural resource management, and the development of infrastructure offer the more promising applications for commercial satellite imagery in the short-term. Many problems and opportunities in these topics are regional, or at least multilateral, in nature. A further advantage is that, unlike arms control and nonproliferation applications, cooperative use of imagery in these topics can be done independently of the formal Middle East Peace Process. The value of commercial satellite imagery to regional arms control and nonproliferation, however, will increase during the next three years as new, more capable satellite systems are launched. Aerial imagery, such as that used in the Open Skies Treaty, can also make significant contributions to both traditional and non-traditional security applications but has the disadvantage of requiring access to national airspace and potentially higher cost. There was general consensus that commercial satellite imagery is under-utilized in the Middle East and resources for remote sensing, both human and institutional, are limited. This relative scarcity, however, provides a natural motivation for collaboration in non-traditional security topics. Collaborations between scientists, businesses, universities, and non-governmental organizations can work at the grass-roots level and yield contributions to confidence building as well as scientific and economic results. Joint analysis projects would benefit the region as well as establish precedents for cooperation.

  3. Effects of music on arousal during imagery in elite shooters: A pilot study.

    Science.gov (United States)

    Kuan, Garry; Morris, Tony; Terry, Peter

    2017-01-01

    Beneficial effects of music on several performance-related aspects of sport have been reported, but the processes involved are not well understood. The purpose of the present study was to investigate effects of relaxing and arousing classical music on physiological indicators and subjective perceptions of arousal during imagery of a sport task. First, appropriate music excerpts were selected. Then, 12 skilled shooters performed shooting imagery while listening to the three preselected music excerpts in randomized order. Participants' galvanic skin response, peripheral temperature, and electromyography were monitored during music played concurrently with imagery. Subjective music ratings and physiological measures showed, as hypothesized, that unfamiliar relaxing music was the most relaxing and unfamiliar arousing music was the most arousing. Researchers should examine the impact of unfamiliar relaxing and arousing music played during imagery on subsequent performance in diverse sports. Practitioners can apply unfamiliar relaxing and arousing music with imagery to manipulate arousal level.

  4. Patterning of pain and power with guided imagery.

    Science.gov (United States)

    Lewandowski, Wendy A

    2004-07-01

    Using Martha Rogers' science of unitary human beings, changes in pain and power among 42 patients were examined in relation to the use of a guided imagery modality. Participants were randomly assigned to treatment and control groups and repeated measures MANCOVA was used to detect differences in pain and power over a 4-day period of time. The treatment group's pain decreased during the last 2 days of the study. No differences in power emerged. Guided imagery appeared to have potential as a useful nursing modality for chronic pain sufferers.

  5. Digital Watermarking of Autonomous Vehicles Imagery and Video Communication

    Science.gov (United States)

    2005-10-01

    Watermarking of Autonomous Vehicles Imagery and Video Communications Executive Summary We have developed, implemented and tested a known-host-state methodology...2005 Final 01-06-2004->31-08-2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Digital Watermarking of Autonomous Vehicles Imagery 5b. GRANTNUMBER and...college of ENGINEERING Center for Advanced VI LLANOVA Communications U N I V E R S I T Y FINAL TECHNICAL REPORT Digital Watermarking of Autonomous

  6. Monitoring Areal Snow Cover Using NASA Satellite Imagery

    Science.gov (United States)

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon

    2011-01-01

    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data

  7. Interactive effects of the affect quality and directional focus of mental imagery on pain analgesia.

    Science.gov (United States)

    Alden, A L; Dale, J A; DeGood, D E

    2001-06-01

    College students (25 men and 25 women) were randomly assigned (within sex) to each of the 4 factorial groups, based on manipulation of affect quality (positive vs. negative) and directional focus (internal vs. external) of mental imagery, and to a control group receiving no manipulation. Both imagery variables had a significant impact on pain tolerance and ratings during a cold-pressor test with positive affect and external imagery producing greater analgesia than their counterpart conditions. Positive affect imagery combined with external imagery resulted in the lowest reported pain amongst the groups. However, self-reported mood descriptors did not consistently parallel the pain tolerance and rating data. Likewise, although heart rate and skin potential responses increased during the cold pressor for the group as a whole, the only significant difference amongst the experimental groups was the relatively higher skin potential reactivity of the positive affect-external imagery group--possibly reflecting greater task engagement for this group. Seemingly, imagery in this situation operates primarily via cognitive, rather than via physiological mediators of the pain experience.

  8. A Study on the Use of Commercial Satellite Imagery for Monitoring of Yongbyon Nuclear Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Hyun; Kim, Min Soo [Korea Institute of Nuclear Nonproliferation and Control Daejeon (Korea, Republic of)

    2014-10-15

    It is particularly useful for the areas that are hard to access, such as the DPRK. On April 2009, North Korea expelled IAEA inspectors and USA disabling team at Yongbyon. Since then, there is not much left except for satellite imagery analysis. In this paper, we focused on the growing role and importance of commercial satellite imagery analysis for detecting and identifying nuclear activities at Yongbyon. For this, we examined monitoring capability of commercial satellite imagery status of commercial satellite imagery analysis to monitor the Yongbyon nuclear site. And we suggested several recommendations for enhancing the monitoring and analyzing capability. Current commercial satellite imagery has proven effective in monitoring for Yongbyon nuclear activities, especially change detection including the new construction activities. But identification and technical analysis of the operation status is still limited. In case of North Korea, operation status of 5 MWe reactor should be clearly identified to assess its plutonium production capability and to set up the negotiation strategy. To enhance the monitoring capability, we need much more thermal infrared imagery and radar imagery.

  9. Effects of music on arousal during imagery in elite shooters: A pilot study.

    Directory of Open Access Journals (Sweden)

    Garry Kuan

    Full Text Available Beneficial effects of music on several performance-related aspects of sport have been reported, but the processes involved are not well understood. The purpose of the present study was to investigate effects of relaxing and arousing classical music on physiological indicators and subjective perceptions of arousal during imagery of a sport task. First, appropriate music excerpts were selected. Then, 12 skilled shooters performed shooting imagery while listening to the three preselected music excerpts in randomized order. Participants' galvanic skin response, peripheral temperature, and electromyography were monitored during music played concurrently with imagery. Subjective music ratings and physiological measures showed, as hypothesized, that unfamiliar relaxing music was the most relaxing and unfamiliar arousing music was the most arousing. Researchers should examine the impact of unfamiliar relaxing and arousing music played during imagery on subsequent performance in diverse sports. Practitioners can apply unfamiliar relaxing and arousing music with imagery to manipulate arousal level.

  10. Illustrating and Designing Quranic Imagery

    Science.gov (United States)

    Almenoar, Lubna

    2009-01-01

    Selected verses from Abdullah Yusuf Ali's English language translation of the meaning of the Quran have been used as a literary text to teach both descriptive and figurative imagery (including similes, metaphors and symbols) to students at the undergraduate level in an Islamic institution. The technique--Illustrating and Designing for teaching…

  11. Short-lived brain state after cued motor imagery in naive subjects

    NARCIS (Netherlands)

    Pfurtscheller, G.; Scherer, R.; Müller-Putz, G.R.; Lopes da Silva, F.H.

    2008-01-01

    Multi-channel electroencephalography recordings have shown that a visual cue, indicating right hand, left hand or foot motor imagery, can induce a short-lived brain state in the order of about 500 ms. In the present study, 10 able-bodied subjects without any motor imagery experience (naive subjects)

  12. Information fusion performance evaluation for motion imagery data using mutual information: initial study

    Science.gov (United States)

    Grieggs, Samuel M.; McLaughlin, Michael J.; Ezekiel, Soundararajan; Blasch, Erik

    2015-06-01

    As technology and internet use grows at an exponential rate, video and imagery data is becoming increasingly important. Various techniques such as Wide Area Motion imagery (WAMI), Full Motion Video (FMV), and Hyperspectral Imaging (HSI) are used to collect motion data and extract relevant information. Detecting and identifying a particular object in imagery data is an important step in understanding visual imagery, such as content-based image retrieval (CBIR). Imagery data is segmented and automatically analyzed and stored in dynamic and robust database. In our system, we seek utilize image fusion methods which require quality metrics. Many Image Fusion (IF) algorithms have been proposed based on different, but only a few metrics, used to evaluate the performance of these algorithms. In this paper, we seek a robust, objective metric to evaluate the performance of IF algorithms which compares the outcome of a given algorithm to ground truth and reports several types of errors. Given the ground truth of a motion imagery data, it will compute detection failure, false alarm, precision and recall metrics, background and foreground regions statistics, as well as split and merge of foreground regions. Using the Structural Similarity Index (SSIM), Mutual Information (MI), and entropy metrics; experimental results demonstrate the effectiveness of the proposed methodology for object detection, activity exploitation, and CBIR.

  13. Can motor imagery and hypnotic susceptibility explain Conversion Disorder with motor symptoms?

    Science.gov (United States)

    Srzich, Alexander J; Byblow, Winston D; Stinear, James W; Cirillo, John; Anson, J Greg

    2016-08-01

    Marked distortions in sense of agency can be induced by hypnosis in susceptible individuals, including alterations in subjective awareness of movement initiation and control. These distortions, with associated disability, are similar to those experienced with Conversion Disorder (CD), an observation that has led to the hypothesis that hypnosis and CD share causal mechanisms. The purpose of this review is to explore the relationships among motor imagery (MI), hypnotic susceptibility, and CD, then to propose how MI ability may contribute to hypnotic responding and CD. Studies employing subjective assessments of mental imagery have found little association between imagery abilities and hypnotic susceptibility. A positive association between imagery abilities and hypnotic susceptibility becomes apparent when objective measures of imagery ability are employed. A candidate mechanism to explain motor responses during hypnosis is kinaesthetic MI, which engages a strategy that involves proprioception or the "feel" of movement when no movement occurs. Motor suppression imagery (MSI), a strategy involving inhibition of movement, may provide an alternate objective measurable phenomenon that underlies both hypnotic susceptibility and CD. Evidence to date supports the idea that there may be a positive association between kinaesthetic MI ability and hypnotic susceptibility. Additional evidence supports a positive association between hypnotic susceptibility and CD. Disturbances in kinaesthetic MI performance in CD patients indicate that MI mechanisms may also underlie CD symptoms. Further investigation of the above relationships is warranted to explain these phenomena, and establish theoretical explanations underlying sense of agency. Copyright © 2016. Published by Elsevier Ltd.

  14. Perceived changes in ordinary autobiographical events' affect and visual imagery colorfulness.

    Science.gov (United States)

    Ritchie, Timothy D; Batteson, Tamzin J

    2013-06-01

    We examined the extent to which the perceived changes in visual imagery colorfulness impact on the affect intensity associated with ordinary autobiographical events across time. We garnered support for the hypothesis that recent events become memorial phenomena via an emotion regulation process such that positive events retained their affective pleasantness longer than negative events retained affective unpleasantness because, in part, across 2 weeks the former retained their imagery colorfulness longer than the latter events did. A similar but distinct model was unsupported. We discuss the significance of imagery colorfulness and affect intensity in the context of memory for everyday autobiographical events. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Landslide detection using very high-resolution satellite imageries

    Science.gov (United States)

    Suga, Yuzo; Konishi, Tomohisa

    2012-10-01

    The heavy rain induced by the 12th typhoon caused landslide disaster at Kii Peninsula in the middle part of Japan. We propose a quick response method for landslide disaster mapping using very high resolution (VHR) satellite imageries. Especially, Synthetic Aperture Radar (SAR) is effective because it has the capability of all weather and day/night observation. In this study, multi-temporal COSMO-SkyMed imageries were used to detect the landslide areas. It was difficult to detect the landslide areas using only backscatter change pattern derived from pre- and post-disaster COSMOSkyMed imageries. Thus, the authors adopted a correlation analysis which the moving window was selected for the correlation coefficient calculation. Low value of the correlation coefficient reflects land cover change between pre- and post-disaster imageries. This analysis is effective for the detection of landslides using SAR data. The detected landslide areas were compared with the area detected by EROS-B high resolution optical image. In addition, we have developed 3D viewing system for geospatial visualizing of the damaged area using these satellite image data with digital elevation model. The 3D viewing system has the performance of geographic measurement with respect to elevation height, area and volume calculation, and cross section drawing including landscape viewing and image layer construction using a mobile personal computer with interactive operation. As the result, it was verified that a quick response for the detection of landslide disaster at the initial stage could be effectively performed using optical and SAR very high resolution satellite data by means of 3D viewing system.

  16. Automatic Mosaicking of Satellite Imagery Considering the Clouds

    Science.gov (United States)

    Kang, Yifei; Pan, Li; Chen, Qi; Zhang, Tong; Zhang, Shasha; Liu, Zhang

    2016-06-01

    With the rapid development of high resolution remote sensing for earth observation technology, satellite imagery is widely used in the fields of resource investigation, environment protection, and agricultural research. Image mosaicking is an important part of satellite imagery production. However, the existence of clouds leads to lots of disadvantages for automatic image mosaicking, mainly in two aspects: 1) Image blurring may be caused during the process of image dodging, 2) Cloudy areas may be passed through by automatically generated seamlines. To address these problems, an automatic mosaicking method is proposed for cloudy satellite imagery in this paper. Firstly, modified Otsu thresholding and morphological processing are employed to extract cloudy areas and obtain the percentage of cloud cover. Then, cloud detection results are used to optimize the process of dodging and mosaicking. Thus, the mosaic image can be combined with more clear-sky areas instead of cloudy areas. Besides, clear-sky areas will be clear and distortionless. The Chinese GF-1 wide-field-of-view orthoimages are employed as experimental data. The performance of the proposed approach is evaluated in four aspects: the effect of cloud detection, the sharpness of clear-sky areas, the rationality of seamlines and efficiency. The evaluation results demonstrated that the mosaic image obtained by our method has fewer clouds, better internal color consistency and better visual clarity compared with that obtained by traditional method. The time consumed by the proposed method for 17 scenes of GF-1 orthoimages is within 4 hours on a desktop computer. The efficiency can meet the general production requirements for massive satellite imagery.

  17. "Data Day" and "Data Night" Definitions - Towards Producing Seamless Global Satellite Imagery

    Science.gov (United States)

    Schmaltz, J. E.

    2017-12-01

    For centuries, the art and science of cartography has struggled with the challenge of mapping the round earth on to a flat page, or a flat computer monitor. Earth observing satellites with continuous monitoring of our planet have added the additional complexity of the time dimension to this procedure. The most common current practice is to segment this data by 24-hour Coordinated Universal Time (UTC) day and then split the day into sun side "Data Day" and shadow side "Data Night" global imagery that spans from dateline to dateline. Due to the nature of satellite orbits, simply binning the data by UTC date produces significant discontinuities at the dateline for day images and at Greenwich for night images. Instead, imagery could be generated in a fashion that follows the spatial and temporal progression of the satellite which would produce seamless imagery everywhere on the globe for all times. This presentation will explore approaches to produce such imagery but will also address some of the practical and logistical difficulties in implementing such changes. Topics will include composites versus granule/orbit based imagery, day/night versus ascending/descending definitions, and polar versus global projections.

  18. A Measurement and Conceptual Investigation of Exercise Imagery Establishing Construct Validity

    Science.gov (United States)

    Giacobbi, Peter R., Jr.; Tuccitto, Daniel E.; Buman, Matthew P.; Munroe-Chandler, Krista

    2010-01-01

    We assessed the factor structure of a revised version of the Exercise Imagery Inventory (EII; Giacobbi, Hausenblas, & Penfield, 2005), second-order interrelationships for cognitive and motivational forms of mental imagery, and associations with exercise behavior and barriers self-efficacy. A convenience sample of 358 (M age = 20.55 years, SD =…

  19. [The mission].

    Science.gov (United States)

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense.

  20. Colors in mind: a novel paradigm to investigate pure color imagery.

    Science.gov (United States)

    Wantz, Andrea L; Borst, Grégoire; Mast, Fred W; Lobmaier, Janek S

    2015-07-01

    Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., "Is a sunflower darker yellow than a lemon"?). Although this approach is widely used in patient studies, differences in the ability to perform such color comparisons might simply reflect participants' general knowledge of object colors rather than their ability to generate accurate visual mental images of the colors of the objects. The aim of the present study was to design a new color imagery paradigm. Participants were asked to visualize a color for 3 s and then to determine a visually presented color by pressing 1 of 6 keys. We reasoned that participants would react faster when the imagined and perceived colors were congruent than when they were incongruent. In Experiment 1, participants were slower in incongruent than congruent trials but only when they were instructed to visualize the colors. The results in Experiment 2 demonstrate that the congruency effect reported in Experiment 1 cannot be attributed to verbalization of the color that had to be visualized. Finally, in Experiment 3, the congruency effect evoked by mental imagery correlated with performance in a perceptual version of the task. We discuss these findings with respect to the mechanisms that underlie mental imagery and patients suffering from color imagery deficits. (c) 2015 APA, all rights reserved.

  1. Wedding Imagery and Public Support for Gay Marriage.

    Science.gov (United States)

    Brewer, Paul R; Wilson, David C; Habegger, Michael

    2016-08-01

    This study uses an experiment embedded in a large, nationally representative survey to test whether exposure to imagery of a gay or lesbian couple's wedding influences support for gay marriage. It also tests whether any such effects depend on the nature of the image (gay or lesbian couple, kissing or not) and viewer characteristics (sex, age, race, education, religion, and ideology). Results show that exposure to imagery of a gay couple kissing reduced support for gay marriage relative to the baseline. Other image treatments (gay couple not kissing, lesbian couple kissing, lesbian couple not kissing) did not significantly influence opinion.

  2. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

    Directory of Open Access Journals (Sweden)

    N. C. Wright

    2018-04-01

    Full Text Available Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.

  3. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

    Science.gov (United States)

    Wright, Nicholas C.; Polashenski, Chris M.

    2018-04-01

    Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.

  4. Prospective mental imagery in patients with major depressive disorder or anxiety disorders

    NARCIS (Netherlands)

    Morina, N.; Deeprose, C.; Pusowski, C.; Schmid, M.; Holmes, E.A.

    2011-01-01

    Prospective negative cognitions are suggested to play an important role in maintaining anxiety disorders and major depressive disorder (MDD). However, little is known about positive prospective mental imagery. This study investigated differences in prospective mental imagery among 27 patients with

  5. Autonomy of imagery and production of original verbal images.

    Science.gov (United States)

    Khatena, J

    1976-08-01

    90 college students (31 men and 59 women) were categorized as moderately autonomous, less autonomous (less highly controlled) and non-autonomous (high controlled) imagers according to the Gordon Test of Visual Imagery Control Moderately autonomous imagers produced significantly more original verbal images than less autonomous and non-autonomous imagers with less autonomous imagers scoring higher than non-autonomous imagers as measured by Onomatopoeia and Images. There were no significant sex main effects of interaction of autonomy of imagery level X sex.

  6. Visual memory and visual mental imagery recruit common control and sensory regions of the brain.

    Science.gov (United States)

    Slotnick, Scott D; Thompson, William L; Kosslyn, Stephen M

    2012-01-01

    Separate lines of research have shown that visual memory and visual mental imagery are mediated by frontal-parietal control regions and can rely on occipital-temporal sensory regions of the brain. We used fMRI to assess the degree to which visual memory and visual mental imagery rely on the same neural substrates. During the familiarization/study phase, participants studied drawings of objects. During the test phase, words corresponding to old and new objects were presented. In the memory test, participants responded "remember," "know," or "new." In the imagery test, participants responded "high vividness," "moderate vividness," or "low vividness." Visual memory (old-remember) and visual imagery (old-high vividness) were commonly associated with activity in frontal-parietal control regions and occipital-temporal sensory regions. In addition, visual memory produced greater activity than visual imagery in parietal and occipital-temporal regions. The present results suggest that visual memory and visual imagery rely on highly similar--but not identical--cognitive processes.

  7. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.

    Science.gov (United States)

    Kim, Jin-Seop; Oh, Duck-Won; Kim, Suhn-Yeop; Choi, Jong-Duk

    2011-02-01

    To compare the effect of visual and kinesthetic locomotor imagery training on walking performance and to determine the clinical feasibility of incorporating auditory step rhythm into the training. Randomized crossover trial. Laboratory of a Department of Physical Therapy. Fifteen subjects with post-stroke hemiparesis. Four locomotor imagery trainings on walking performance: visual locomotor imagery training, kinesthetic locomotor imagery training, visual locomotor imagery training with auditory step rhythm and kinesthetic locomotor imagery training with auditory step rhythm. The timed up-and-go test and electromyographic and kinematic analyses of the affected lower limb during one gait cycle. After the interventions, significant differences were found in the timed up-and-go test results between the visual locomotor imagery training (25.69 ± 16.16 to 23.97 ± 14.30) and the kinesthetic locomotor imagery training with auditory step rhythm (22.68 ± 12.35 to 15.77 ± 8.58) (P kinesthetic locomotor imagery training exhibited significantly increased activation in a greater number of muscles and increased angular displacement of the knee and ankle joints compared with the visual locomotor imagery training, and these effects were more prominent when auditory step rhythm was integrated into each form of locomotor imagery training. The activation of the hamstring during the swing phase and the gastrocnemius during the stance phase, as well as kinematic data of the knee joint, were significantly different for posttest values between the visual locomotor imagery training and the kinesthetic locomotor imagery training with auditory step rhythm (P kinesthetic locomotor imagery training than in the visual locomotor imagery training. The auditory step rhythm together with the locomotor imagery training produces a greater positive effect in improving the walking performance of patients with post-stroke hemiparesis.

  8. Motor imagery enhancement paradigm using moving rubber hand illusion system.

    Science.gov (United States)

    Minsu Song; Jonghyun Kim

    2017-07-01

    Motor imagery (MI) has been widely used in neurorehabilitation and brain computer interface. The size of event-related desynchronization (ERD) is a key parameter for successful motor imaginary rehabilitation and BCI adaptation. Many studies have used visual guidance for enhancement/ amplification of motor imagery ERD amplitude, but their enhancements were not significant. We propose a novel ERD enhancing paradigm using body-ownership illusion, or also known as rubber hand illusion (RHI). The system was made by motorized, moving rubber hand which can simulate wrist extension. The amplifying effects of the proposed RHI paradigm were evaluated by comparing ERD sizes of the proposed paradigm with motor imagery and actual motor execution paradigms. The comparison result shows that the improvement of ERD size due to the proposed paradigm was statistically significant (pparadigms.

  9. Evaluation of radar imagery of the North Louisiana Salt Dome Area

    International Nuclear Information System (INIS)

    Dellwig, L.F.

    1977-01-01

    Radar (SLAR) is basically a reconnaissance tool. It has proved to be most effective in the identification of regional structures, trends or fracture patterns which might be expressed in such a way as to affect (1) the roughness of the target (soil, rock or vegetation), (2) its dielectric properties (chemical composition, moisture content), or (3) its topographic expression. Topographic expression of domes is only poorly to moderately identifiable. Significant associated fractures cannot be detected. Vegetative anomalies are associated with many known domes, and are suggestive of the existence of numerous others. The validity of such anomalies as indicators of domes has yet to be, but should be, determined by field investigations. In the light of the poor to near lack of topographic expression of the domes or associated faults it is obvious that identification of recent movement is not to be expected. Such conclusions apply only to this environment and do not in any way mean to degrade the quality of the imagery. They do, however, point out the importance of understanding energy-target interaction and target and terrain characteristics in the mission planning phase of any further investigations

  10. The Use of LANCE Imagery Products to Investigate Hazards and Disasters

    Science.gov (United States)

    Schmaltz, J. E.; Teague, M.; Conover, H.; Regner, K.; Masuoka, E.; Vollmer, B. E.; Durbin, P.; Murphy, K. J.; Boller, R. A.; Davies, D.; Ilavajhala, S.; Thompson, C. K.; Bingham, A.; Rao, S.

    2011-12-01

    The NASA/GSFC Land Atmospheres Near-real time Capability for EOS (LANCE) has endeavored to integrate a variety of products from the Terra, Aqua, and Aura missions to assist in meeting the needs of the applications user community. This community has a need for imagery products to support the investigation of a wide variety of phenomena including hazards and disasters. The Evjafjallajokull eruption, the tsunamis/flood in Japan, and the Gulf of Mexico oil spill are recent examples of applications benefiting from the timely and synoptic view afforded by LANCE data. Working with the instrument science teams and the applications community, LANCE has identified 14 applications categories and the LANCE products that will support their investigation. The categories are: Smoke Plumes, Ash Plumes, Dust Storms, Pollution, Severe Storms, Shipping hazards, Fishery hazards, Land Transportation, Fires, Floods, Drought, Vegetation, Agriculture, and Oil Spills. Forty products from AMSR-E, MODIS, AIRS, and OMI have been identified to support analyses and investigations of these phenomena. In each case multiple products from two or more instruments are available which gives a more complete picture of the evolving hazard or disaster. All Level 2 (L2) products are available within 2.5 hours of observation at the spacecraft and the daily L3 products are updated incrementally as new data become available. LANCE provides user access to imagery using two systems: a Web Mapping Service (WMS) and a Google Earth-based interface known as the State of the Earth (SOTE). The latter has resulted from a partnership between LANCE and the Physical Oceanography Distributed Active Archive Center (PO DAAC). When the user selects one of the 14 categories, the relevant products are established within the WMS (http://lance2.modaps.eosdis.nasa.gov/wms/). For each application, population density data are available for densities in excess of 100 people/sqkm with user-defined opacity. These data are provided by

  11. Imagery of a moving object: the role of occipital cortex and human MT/V5+.

    Science.gov (United States)

    Kaas, Amanda; Weigelt, Sarah; Roebroeck, Alard; Kohler, Axel; Muckli, Lars

    2010-01-01

    Visual imagery--similar to visual perception--activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral-occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1-3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences.

  12. Efficacy of motor imagery in post-stroke rehabilitation: a systematic review

    Directory of Open Access Journals (Sweden)

    Puhan Milo A

    2008-03-01

    Full Text Available Abstract Background Evaluation of how Motor Imagery and conventional therapy (physiotherapy or occupational therapy compare to conventional therapy only in their effects on clinically relevant outcomes during rehabilitation of persons with stroke. Design Systematic review of the literature Methods We conducted an electronic database search in seven databases in August 2005 and also hand-searched the bibliographies of studies that we selected for the review. Two reviewers independently screened and selected all randomized controlled trials that compare the effects of conventional therapy plus Motor Imagery to those of only conventional therapy on stroke patients. The outcome measurements were: Fugl-Meyer Stroke Assessment upper extremity score (66 points and Action Research Arm Test upper extremity score (57 points. Due to the high variability in the outcomes, we could not pool the data statistically. Results We identified four randomized controlled trials from Asia and North America. The quality of the included studies was poor to moderate. Two different Motor imagery techniques were used (three studies used audiotapes and one study had occupational therapists apply the intervention. Two studies found significant effects of Motor Imagery in the Fugl-Meyer Stroke Assessment: Differences between groups amounted to 11.0 (1.0 to 21.0 and 3.2 (-4 to 10.3 respectively and in the Action Research Arm Test 6.1 (-6.2 to 18.4 and 15.8 (0.5 to 31.0 respectively. One study did not find a significant effect in the Fugl-Meyer Stroke Assessment and Color trail Test (p = 0.28 but in the task-related outcomes (p > 0.001. Conclusion Current evidence suggests that Motor imagery provides additional benefits to conventional physiotherapy or occupational therapy. However, larger and methodologically sounder studies should be conducted to assess the benefits of Motor imagery.

  13. Competence imagery: a case study treating emetophobia.

    Science.gov (United States)

    Moran, Daniel J; O'Brien, Richard M

    2005-06-01

    An emetophobic child is nonresponsive to conventional systematic desensitization and has her anxiety responses counterconditioned by using Competence Imagery instead of physical relaxation responses while progressing through her fear hierarchy.

  14. Body-specific motor imagery of hand actions: neural evidence from right- and left-handers

    Directory of Open Access Journals (Sweden)

    Roel M Willems

    2009-11-01

    Full Text Available If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is ‘body-specific’ (Casasanto, 2009. During mental imagery for complex hand actions, activation of cortical areas involved in motor planning and execution was left-lateralized in right-handers but right-lateralized in left-handers. We conclude that motor imagery involves the generation of an action plan that is grounded in the participant’s motor habits, not just an abstract representation at the level of the action’s goal. People with different patterns of motor experience form correspondingly different neurocognitive representations of imagined actions.

  15. Craving by imagery cue reactivity in opiate dependence following detoxification

    OpenAIRE

    Behera, Debakanta; Goswami, Utpal; Khastgir, Udayan; Kumar, Satindra

    2003-01-01

    Background: Frequent relapses in opioid addiction may be a result of abstinentemergent craving. Exposure to various stimuli associated with drug use (drug cues) may trigger craving as a conditioned response to ?drug cues?. Aims: The present study explored the effects of imagery cue exposure on psychophysiological mechanisms of craving, viz. autonomic arousal, in detoxified opiate addicts. Methodology: Opiate dependent subjects (N=38) following detoxification underwent imagery cue reactivity t...

  16. Neural decoding of visual imagery during sleep.

    Science.gov (United States)

    Horikawa, T; Tamaki, M; Miyawaki, Y; Kamitani, Y

    2013-05-03

    Visual imagery during sleep has long been a topic of persistent speculation, but its private nature has hampered objective analysis. Here we present a neural decoding approach in which machine-learning models predict the contents of visual imagery during the sleep-onset period, given measured brain activity, by discovering links between human functional magnetic resonance imaging patterns and verbal reports with the assistance of lexical and image databases. Decoding models trained on stimulus-induced brain activity in visual cortical areas showed accurate classification, detection, and identification of contents. Our findings demonstrate that specific visual experience during sleep is represented by brain activity patterns shared by stimulus perception, providing a means to uncover subjective contents of dreaming using objective neural measurement.

  17. Reliability and validity of the Polish version of the Movement Imagery Questionnaire-3 (MIQ-3

    Directory of Open Access Journals (Sweden)

    Dagmara Budnik-Przybylska

    2016-10-01

    Full Text Available Background Imagery is often beneficial not only in gaining a psychological advantage when competing but also in building self-esteem and self-confidence. The aim of this study was to examine the reliability and validity of the Polish adaptation of the Movement Imagery Questionnaire-3 (MIQ-3, consisting of 12 questions measuring 3 dimensions: visual internal imagery, visual external imagery and kinesthetic imagery. Participants and procedure A sample of athletes (N = 276 – 102 women, 174 men (M = 21.25, SD = 6.35 of various disciplines (football, volleyball, karate, swimming, etc. with different sport experience (from recreation to the national team filled in the MIQ-3 questionnaire in the Polish language. Results The results of the confirmatory factor analysis (CFA with maximum likelihood confirmed that the established three-factor model reflects well the relationships observed in the respondents’ answers (satisfactory value of RMSEA below the recommended value of .05 (RMSEA = .04 and a high value of the index above .90 CFI (CFI = .93. Reliability indicators (composite reliability – CR observed for individual factors indicated a very high internal consistency (external visual imagery = .75, internal visual imagery = .79 and kinesthetic imagery = .82. The results indicated that good stability and internal consistency were maintained over a 3-week period. In addition, analyses were examined across age, level of experience and gender. Conclusions The results of the present study support the psychometric properties of the Polish adaptation of the MIQ-3.

  18. Corticospinal excitability during observation and imagery of simple and complex hand tasks : Implications for motor rehabilitation

    NARCIS (Netherlands)

    Roosink, Meyke; Zijdewind, Inge

    2010-01-01

    Movement observation and imagery are increasingly propagandized for motor rehabilitation. Both observation and imagery are thought to improve motor function through repeated activation of mental motor representations. However, it is unknown what stimulation parameters or imagery conditions are

  19. Self-Regulatory Imagery and Physical Activity in Middle-Aged and Older Adults: A Social-Cognitive Perspective.

    Science.gov (United States)

    Kosteli, Maria-Christina; Cumming, Jennifer; Williams, Sarah E

    2018-01-01

    Limited research has investigated exercise imagery use in middle-aged and older adults and its relationship with affective and behavioral correlates. The study examined the association between self-regulatory imagery and physical activity (PA) through key social cognitive variables. Middle-aged and older adults (N = 299; M age = 59.73 years, SD = 7.73, range = 50 to 80) completed self-report measures assessing self-regulatory imagery use, self-efficacy, outcome expectations, perceived barriers, self-regulatory behavior, enjoyment, and PA levels. Path analysis supported a model (χ² [14] = 21.76, p = .08, CFI = .99, TLI = .97, SRMR = .03, RMSEA = .04) whereby self-regulatory imagery positively predicted self-efficacy, outcome expectations, and self-regulatory behaviors. Furthermore, self-regulatory imagery indirectly predicted barriers, outcome expectations, self-regulation, enjoyment, and PA. This research highlights self-regulatory imagery as an effective strategy in modifying exercise-related cognitions and behaviors. Incorporating social cognitive constructs into the design of imagery interventions may increase PA engagement.

  20. Integrating satellite imagery with simulation modeling to improve burn severity mapping

    Science.gov (United States)

    Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon

    2014-01-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...

  1. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    Science.gov (United States)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in

  2. Using Google Streetview Panoramic Imagery for Geoscience Education

    Science.gov (United States)

    De Paor, D. G.; Dordevic, M. M.

    2014-12-01

    Google Streetview is a feature of Google Maps and Google Earth that allows viewers to switch from map or satellite view to 360° panoramic imagery recorded close to the ground. Most panoramas are recorded by Google engineers using special cameras mounted on the roofs of cars. Bicycles, snowmobiles, and boats have also been used and sometimes the camera has been mounted on a backpack for off-road use by hikers and skiers or attached to scuba-diving gear for "Underwater Streetview (sic)." Streetview panoramas are linked together so that the viewer can change viewpoint by clicking forward and reverse buttons. They therefore create a 4-D touring effect. As part of the GEODE project ("Google Earth for Onsite and Distance Education"), we are experimenting with the use of Streetview imagery for geoscience education. Our web-based test application allows instructors to select locations for students to study. Students are presented with a set of questions or tasks that they must address by studying the panoramic imagery. Questions include identification of rock types, structures such as faults, and general geological setting. The student view is locked into Streetview mode until they submit their answers, whereupon the map and satellite views become available, allowing students to zoom out and verify their location on Earth. Student learning is scaffolded by automatic computerized feedback. There are lots of existing Streetview panoramas with rich geological content. Additionally, instructors and members of the general public can create panoramas, including 360° Photo Spheres, by stitching images taken with their mobiles devices and submitting them to Google for evaluation and hosting. A multi-thousand-dollar, multi-directional camera and mount can be purchased from DIY-streetview.com. This allows power users to generate their own high-resolution panoramas. A cheaper, 360° video camera is soon to be released according to geonaute.com. Thus there are opportunities for

  3. Working Memory and Auditory Imagery Predict Sensorimotor Synchronization with Expressively Timed Music.

    Science.gov (United States)

    Colley, Ian D; Keller, Peter E; Halpern, Andrea R

    2017-08-11

    Sensorimotor synchronization (SMS) is prevalent and readily studied in musical settings, as most people are able to perceive and synchronize with a beat (e.g. by finger tapping). We took an individual differences approach to understanding SMS to real music characterized by expressive timing (i.e. fluctuating beat regularity). Given the dynamic nature of SMS, we hypothesized that individual differences in working memory and auditory imagery-both fluid cognitive processes-would predict SMS at two levels: 1) mean absolute asynchrony (a measure of synchronization error), and 2) anticipatory timing (i.e. predicting, rather than reacting to beat intervals). In Experiment 1, participants completed two working memory tasks, four auditory imagery tasks, and an SMS-tapping task. Hierarchical regression models were used to predict SMS performance, with results showing dissociations among imagery types in relation to mean absolute asynchrony, and evidence of a role for working memory in anticipatory timing. In Experiment 2, a new sample of participants completed an expressive timing perception task to examine the role of imagery in perception without action. Results suggest that imagery vividness is important for perceiving and control is important for synchronizing with, irregular but ecologically valid musical time series. Working memory is implicated in synchronizing by anticipating events in the series.

  4. Relaxation Therapy with Guided Imagery for Postoperative Pain Management: An Integrative Review.

    Science.gov (United States)

    Felix, Márcia Marques Dos Santos; Ferreira, Maria Beatriz Guimarães; da Cruz, Luciana Falcão; Barbosa, Maria Helena

    2017-12-14

    To identify the evidence in the literature about relaxation therapy with guided imagery for postoperative pain management. Integrative review. PubMed, Lilacs, Cochrane, Embase, Web of Science, Scopus and Cinahl, between August 2006 and December 2016. Descriptors: Postoperative Pain, Imagery (Psychotherapy) and Guided Imagery. original studies published in English, Spanish and Portuguese. 291 studies were identified and eight were selected. Descriptive data analysis, presented in detail, with a summary of the knowledge produced in each study. In the primary studies included, the use of guided imagery associated with other complementary therapies was highlighted: hand and foot "M" technique, education on postoperative pain management with analgesic drugs, relaxation exercises, respiration exercises, meditation, soothing biorhythmic music combined with positive and encouraging assertions and music with nature sounds. The knowledge synthesis resulting from this study indicates that evidence could be identified on the use of guided imagery associated with relaxation therapy as a complementary approach to drug analgesia in postoperative pain control strengthens its indication for nursing practice. This evidence, however, demonstrates that the quality of the use of this therapy is limited, and it is necessary to carry out new randomized clinical studies to fill the existing gaps in this topic. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  5. LSD modulates music-induced imagery via changes in parahippocampal connectivity.

    Science.gov (United States)

    Kaelen, Mendel; Roseman, Leor; Kahan, Joshua; Santos-Ribeiro, Andre; Orban, Csaba; Lorenz, Romy; Barrett, Frederick S; Bolstridge, Mark; Williams, Tim; Williams, Luke; Wall, Matthew B; Feilding, Amanda; Muthukumaraswamy, Suresh; Nutt, David J; Carhart-Harris, Robin

    2016-07-01

    Psychedelic drugs such as lysergic acid diethylamide (LSD) were used extensively in psychiatry in the past and their therapeutic potential is beginning to be re-examined today. Psychedelic psychotherapy typically involves a patient lying with their eyes-closed during peak drug effects, while listening to music and being supervised by trained psychotherapists. In this context, music is considered to be a key element in the therapeutic model; working in synergy with the drug to evoke therapeutically meaningful thoughts, emotions and imagery. The underlying mechanisms involved in this process have, however, never been formally investigated. Here we studied the interaction between LSD and music-listening on eyes-closed imagery by means of a placebo-controlled, functional magnetic resonance imaging (fMRI) study. Twelve healthy volunteers received intravenously administered LSD (75µg) and, on a separate occasion, placebo, before being scanned under eyes-closed resting conditions with and without music-listening. The parahippocampal cortex (PHC) has previously been linked with (1) music-evoked emotion, (2) the action of psychedelics, and (3) mental imagery. Imaging analyses therefore focused on changes in the connectivity profile of this particular structure. Results revealed increased PHC-visual cortex (VC) functional connectivity and PHC to VC information flow in the interaction between music and LSD. This latter result correlated positively with ratings of enhanced eyes-closed visual imagery, including imagery of an autobiographical nature. These findings suggest a plausible mechanism by which LSD works in combination with music listening to enhance certain subjective experiences that may be useful in a therapeutic context. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  6. Mapping the Distribution of Cloud Forests Using MODIS Imagery

    Science.gov (United States)

    Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.

    2007-05-01

    Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable

  7. OrthoImagery submittal for Scott County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  8. OrthoImagery submittal for Switzerland County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  9. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  10. Integration of Synthetic Aperture Radar (SAR) Imagery and Derived Products into Severe Weather Disaster Response

    Science.gov (United States)

    Schultz, L. A.; Molthan, A.; Nicoll, J. B.; Bell, J. R.; Gens, R.; Meyer, F. J.

    2017-12-01

    Disaster response efforts leveraging imagery from NASA, USGS, NOAA, and the European Space Agency (ESA) have continued to expand as satellite imagery and derived products offer an enhanced overview of the affected areas, especially in remote areas where terrain and the scale of the damage can inhibit response efforts. NASA's Short-term Prediction Research and Transition (SPoRT) Center has been supporting the NASA Earth Science Disaster Response Program by providing both optical and SAR imagery products to the NWS and FEMA to assist during domestic response efforts. Although optical imagery has dominated, the availability of ESA's Synthetic Aperture Radar (SAR) data from the Sentinel 1-A/B satellites offers a unique perspective to the damage response community as SAR imagery can be collected regardless of the time of day or the presence of clouds, two major hindrances to the use of satellite optical imagery. Through a partnership with the University of Alaska Fairbanks (UAF) and the collocated Alaska Satellite Facility (ASF), NASA's SAR Distributed Active Archive Center (DAAC), SPoRT has been investigating the use of SAR imagery products to support storm damage surveys conducted by the National Weather Service after any severe weather event. Additionally, products are also being developed and tested for FEMA and the National Guard Bureau. This presentation will describe how SAR data from the Sentinel 1A/B satellites are processed and developed into products. Examples from multiple tornado and hail events will be presented highlighting both the strengths and weaknesses of SAR imagery and how it integrates and compliments more traditional optical imagery collected post-event. Specific case study information from a large hail event in South Dakota and a long track tornado near Clear Lake, Wisconsin will be discussed as well as an overview of the work being done to support FEMA and the National Guard.

  11. Placebo-like analgesia via response imagery

    NARCIS (Netherlands)

    Peerdeman, K.J.; Laarhoven, A.I.M. van; Bartels, D.J.P.; Peters, M.L.; Evers, A.W.M.

    2017-01-01

    BACKGROUND: Placebo effects on pain are reliably observed in the literature. A core mechanism of these effects is response expectancies. Response expectancies can be formed by instructions, prior experiences and observation of others. Whether mental imagery of a response can also induce placebo-like

  12. The impact of ageing and gender on visual mental imagery processes: A study of performance on tasks from the Complete Visual Mental Imagery Battery (CVMIB).

    Science.gov (United States)

    Palermo, Liana; Piccardi, Laura; Nori, Raffaella; Giusberti, Fiorella; Guariglia, Cecilia

    2016-09-01

    In this study we aim to evaluate the impact of ageing and gender on different visual mental imagery processes. Two hundred and fifty-one participants (130 women and 121 men; age range = 18-77 years) were given an extensive neuropsychological battery including tasks probing the generation, maintenance, inspection, and transformation of visual mental images (Complete Visual Mental Imagery Battery, CVMIB). Our results show that all mental imagery processes with the exception of the maintenance are affected by ageing, suggesting that other deficits, such as working memory deficits, could account for this effect. However, the analysis of the transformation process, investigated in terms of mental rotation and mental folding skills, shows a steeper decline in mental rotation, suggesting that age could affect rigid transformations of objects and spare non-rigid transformations. Our study also adds to previous ones in showing gender differences favoring men across the lifespan in the transformation process, and, interestingly, it shows a steeper decline in men than in women in inspecting mental images, which could partially account for the mixed results about the effect of ageing on this specific process. We also discuss the possibility to introduce the CVMIB in clinical assessment in the context of theoretical models of mental imagery.

  13. OrthoImagery Submission for Colfax County NE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the surface of the Earth, collected by a sensor in which object displacement has been removed...

  14. OrthoImagery submittal for Clinton County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth?s surface, collected by a sensor in which object displacement has been removed for...

  15. OrthoImagery submittal for Gibson County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth?s surface, collected by a sensor in which object displacement has been removed for...

  16. OrthoImagery submittal for Allen County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth?s surface, collected by a sensor in which object displacement has been removed for...

  17. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  18. Towards large-scale mapping of urban three-dimensional structure using Landsat imagery and global elevation datasets

    Science.gov (United States)

    Wang, P.; Huang, C.

    2017-12-01

    The three-dimensional (3D) structure of buildings and infrastructures is fundamental to understanding and modelling of the impacts and challenges of urbanization in terms of energy use, carbon emissions, and earthquake vulnerabilities. However, spatially detailed maps of urban 3D structure have been scarce, particularly in fast-changing developing countries. We present here a novel methodology to map the volume of buildings and infrastructures at 30 meter resolution using a synergy of Landsat imagery and openly available global digital surface models (DSMs), including the Shuttle Radar Topography Mission (SRTM), ASTER Global Digital Elevation Map (GDEM), ALOS World 3D - 30m (AW3D30), and the recently released global DSM from the TanDEM-X mission. Our method builds on the concept of object-based height profile to extract height metrics from the DSMs and use a machine learning algorithm to predict height and volume from the height metrics. We have tested this algorithm in the entire England and assessed our result using Lidar measurements in 25 England cities. Our initial assessments achieved a RMSE of 1.4 m (R2 = 0.72) for building height and a RMSE of 1208.7 m3 (R2 = 0.69) for building volume, demonstrating the potential of large-scale applications and fully automated mapping of urban structure.

  19. Mission operations management

    Science.gov (United States)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  20. Determination of turbidity patterns in Lake Chicot from LANDSAT MSS imagery

    Science.gov (United States)

    Lecroy, S. R.

    1982-01-01

    A historical analysis of all the applicable LANDSAT imagery was conducted on the turbidity patterns of Lake Chicot, located in the southeastern corner of Arkansas. By examining the seasonal and regional turbidity patterns, a record of sediment dynamics and possible disposition can be obtained. Sketches were generated from the suitable imagery, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. Additionally, the upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.

  1. Musical Imagery Involves Wernicke's Area in Bilateral and Anti-Correlated Network Interactions in Musicians.

    Science.gov (United States)

    Zhang, Yizhen; Chen, Gang; Wen, Haiguang; Lu, Kun-Han; Liu, Zhongming

    2017-12-06

    Musical imagery is the human experience of imagining music without actually hearing it. The neural basis of this mental ability is unclear, especially for musicians capable of engaging in accurate and vivid musical imagery. Here, we created a visualization of an 8-minute symphony as a silent movie and used it as real-time cue for musicians to continuously imagine the music for repeated and synchronized sessions during functional magnetic resonance imaging (fMRI). The activations and networks evoked by musical imagery were compared with those elicited by the subjects directly listening to the same music. Musical imagery and musical perception resulted in overlapping activations at the anterolateral belt and Wernicke's area, where the responses were correlated with the auditory features of the music. Whereas Wernicke's area interacted within the intrinsic auditory network during musical perception, it was involved in much more complex networks during musical imagery, showing positive correlations with the dorsal attention network and the motor-control network and negative correlations with the default-mode network. Our results highlight the important role of Wernicke's area in forming vivid musical imagery through bilateral and anti-correlated network interactions, challenging the conventional view of segregated and lateralized processing of music versus language.

  2. Collection and corrections of oblique multiangle hyperspectral bidirectional reflectance imagery of the water surface

    Science.gov (United States)

    Bostater, Charles R.; Oney, Taylor S.

    2017-10-01

    Hyperspectral images of coastal waters in urbanized regions were collected from fixed platform locations. Surf zone imagery, images of shallow bays, lagoons and coastal waters are processed to produce bidirectional reflectance factor (BRF) signatures corrected for changing viewing angles. Angular changes as a function of pixel location within a scene are used to estimate changes in pixel size and ground sampling areas. Diffuse calibration targets collected simultaneously from within the image scene provides the necessary information for calculating BRF signatures of the water surface and shorelines. Automated scanning using a pushbroom hyperspectral sensor allows imagery to be collected on the order of one minute or less for different regions of interest. Imagery is then rectified and georeferenced using ground control points within nadir viewing multispectral imagery via image to image registration techniques. This paper demonstrates the above as well as presenting how spectra can be extracted along different directions in the imagery. The extraction of BRF spectra along track lines allows the application of derivative reflectance spectroscopy for estimating chlorophyll-a, dissolved organic matter and suspended matter concentrations at or near the water surface. Imagery is presented demonstrating the techniques to identify subsurface features and targets within the littoral and surf zones.

  3. RADARSAT-1 Image Quality Excellence in the Extended Mission

    National Research Council Canada - National Science Library

    Srivastava, S. K; Cote, S; Le Dantec, P; Hawkins, R. K

    2005-01-01

    ... after its launch on November 4, 1995. Both single beams and ScanSAR imagery are still monitored routinely for radiometric calibration performance based on images of the Amazon Rainforest, and for image quality performance using imagery...

  4. Different performances in static and dynamic imagery and real locomotion. An exploratory trial.

    Directory of Open Access Journals (Sweden)

    Augusto eFusco

    2014-10-01

    Full Text Available Motor imagery is a mental representation of an action without its physical execution. Recently, the simultaneous movement of the body has been added to the mental simulation. This refers to dynamic motor imagery (dMI. This study was aimed at analyzing the temporal features for static and dMI in different locomotor conditions (natural walking, NW, light running, LR, lateral walking, LW, backward walking, BW, and whether these performances were more related to all the given conditions or present only in walking. We have been also evaluated the steps performed in the dMI in comparison with the ones performed by real locomotion. Twenty healthy participants (29.3 ± 5.1 y. old were asked to move towards a visualized target located at 10mt. In dMI, no significant temporal differences respect the actual locomotion were found for all the given tasks (NW: p=0.058, LR: p=0.636, BW: p=0.096; LW: p=0,487. Significant temporal differences between static imagery and actual movements were found for LR (p<0.001 and LW (p<0.001, due to an underestimation of time needed to achieve the target in imagined locomotion. Significant differences in terms of number of steps among tasks were found for LW (p<0.001 and BW (p=0.036, whereas neither in NW (p=0.124 nor LR (p=0.391 between dMI and real locomotion.Our results confirmed that motor imagery is a task-dependent process, with walking being temporally closer than other locomotor conditions. Moreover, the time records of dynamic motor imagery are nearer to the ones of actual locomotion respect than the ones of static motor imagery. Keywords: Walking, dynamic motor imagery, human locomotion, chronometry.

  5. Visualizing Cloud Properties and Satellite Imagery: A Tool for Visualization and Information Integration

    Science.gov (United States)

    Chee, T.; Nguyen, L.; Smith, W. L., Jr.; Spangenberg, D.; Palikonda, R.; Bedka, K. M.; Minnis, P.; Thieman, M. M.; Nordeen, M.

    2017-12-01

    Providing public access to research products including cloud macro and microphysical properties and satellite imagery are a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a web based visualization tool and API that allows end users to easily create customized cloud product and satellite imagery, ground site data and satellite ground track information that is generated dynamically. The tool has two uses, one to visualize the dynamically created imagery and the other to provide access to the dynamically generated imagery directly at a later time. Internally, we leverage our practical experience with large, scalable application practices to develop a system that has the largest potential for scalability as well as the ability to be deployed on the cloud to accommodate scalability issues. We build upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product information, satellite imagery, ground site data and satellite track information accessible and easily searchable. This tool is the culmination of our prior experience with dynamic imagery generation and provides a way to build a "mash-up" of dynamically generated imagery and related kinds of information that are visualized together to add value to disparate but related information. In support of NASA strategic goals, our group aims to make as much scientific knowledge, observations and products available to the citizen science, research and interested communities as well as for automated systems to acquire the same information for data mining or other analytic purposes. This tool and the underlying API's provide a valuable research tool to a wide audience both as a standalone research tool and also as an easily accessed data source that can easily be mined or used with existing tools.

  6. Advances in the Processing of VHR Optical Imagery in Support of Safeguards Verification

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.; Canty, M.

    2015-01-01

    Under the Additional Protocol of the Non-Proliferation Treaty (NPT) complementing the safeguards agreements between States and the International Atomic Energy Agency, commercial satellite imagery, preferably acquired by very high-resolution (VHR) satellite sensors, is an important source of safeguards-relevant information. Satellite imagery can assist in the evaluation of site declarations, design information verification, the detection of undeclared nuclear facilities, and the preparation of inspections or other visits. With the IAEA's Geospatial Exploitation System (GES), satellite imagery and other geospatial information such as site plans of nuclear facilities are available for a broad range of inspectors, analysts and country officers. The demand for spatial information and new tools to analyze this data is growing, together with the rising number of nuclear facilities under safeguards worldwide. Automated computer-driven processing of satellite imagery could therefore add a big value in the safeguards verification process. These could be, for example, satellite imagery pre-processing algorithms specially developed for new sensors, tools for pixel or object-based image analysis, or geoprocessing tools that generate additional safeguards-relevant information. In the last decade procedures for automated (pre-) processing of satellite imagery have considerably evolved. This paper aims at testing some pixel-based and object-based procedures for automated change detection and classification in support of safeguards verification. Taking different nuclear sites as examples, these methods will be evaluated and compared with regard to their suitability to (semi-) automatically extract safeguards-relevant information. (author)

  7. Mission informed needed information: discoverable, available sensing sources (MINI-DASS): the operators and process flows the magic rabbits must negotiate

    Science.gov (United States)

    Kolodny, Michael A.

    2017-05-01

    Today's battlefield space is extremely complex, dealing with an enemy that is neither well-defined nor well-understood. Adversaries are comprised of widely-distributed, loosely-networked groups engaging in nefarious activities. Situational understanding is needed by decision makers; understanding of adversarial capabilities and intent is essential. Information needed at any time is dependent on the mission/task at hand. Information sources potentially providing mission-relevant information are disparate and numerous; they include sensors, social networks, fusion engines, internet, etc. Management of these multi-dimensional informational sources is critical. This paper will present a new approach being undertaken to answer the challenge of enhancing battlefield understanding by optimizing the utilization of available informational sources (means) to required missions/tasks as well as determining the "goodness'" of the information acquired in meeting the capabilities needed. Requirements are usually expressed in terms of a presumed technology solution (e.g., imagery). A metaphor of the "magic rabbits" was conceived to remove presumed technology solutions from requirements by claiming the "required" technology is obsolete. Instead, intelligent "magic rabbits" are used to provide needed information. The question then becomes: "WHAT INFORMATION DO YOU NEED THE RABBITS TO PROVIDE YOU?" This paper will describe a new approach called Mission-Informed Needed Information - Discoverable, Available Sensing Sources (MINI-DASS) that designs a process that builds information acquisition missions and determines what the "magic rabbits" need to provide in a manner that is machine understandable. Also described is the Missions and Means Framework (MMF) model used, the process flow utilized, the approach to developing an ontology of information source means and the approach for determining the value of the information acquired.

  8. Selective Efficacy of Static and Dynamic Imagery in Different States of Physical Fatigue.

    Directory of Open Access Journals (Sweden)

    Thiago Ferreira Dias Kanthack

    Full Text Available There is compelling evidence that motor imagery contributes to improved motor performance, and recent work showed that dynamic motor imagery (dMI might provide additional benefits by comparison with traditional MI practice. However, the efficacy of motor imagery in different states of physical fatigue remains largely unknown, especially as imagery accuracy may be hampered by the physical fatigue states elicited by training. We investigated the effect of static motor imagery (sMI and dMI on free-throw accuracy in 10 high-level basketball athletes, both in a non-fatigued state (Experiment 1 and immediately after an incremental running test completed until exhaustion (20 m shuttle run-test-Experiment 2. We collected perceived exhaustion and heart rate to quantify the subjective experience of fatigue and energy expenditure. We found that dMI brought better shooting performance than sMI, except when athletes were physically exhausted. These findings shed light on the conditions eliciting optimal use of sMI and dMI. In particular, considering that the current physical state affects body representation, performing dMI under fatigue may result in mismatches between actual and predicted body states.

  9. Use Of Imagery And Metaphor In Aravind Adiga’s The White Tiger

    Directory of Open Access Journals (Sweden)

    Sushama Kasbekar

    2011-11-01

    Full Text Available This paper focuses on the use of imagery and metaphors in Arvind Adiga’s The White Tiger (2008. The writer deliberately and skillfully uses animal imagery and other kinds of metaphors to highlight the intrinsic values of his characters and present themes and characters vividly. This paper highlights how this imagery and metaphor has been used by the writer to bring out the thematic rich and poor divide or the servitude of the poor and overbearing opulence of the rich. The metaphors give added value to the themes and the characters and provide an immediate verbal picture.

  10. Use of Movement Imagery in Neurorehabilitation: Researching Effects of a Complex Intervention

    Science.gov (United States)

    Braun, Susy M.; Wade, Derick T.; Beurskens, Anna J. H. M.

    2011-01-01

    Since the beginning of the new millennium, the use of mental practice and movement imagery within several medical professions in rehabilitation and therapy has received an increased attention. Before this introduction in healthcare, the use of movement imagery was mainly researched in sports science. Mental practice is a complex intervention. When…

  11. The effects of imagery on problem-solving ability and autobiographical memory.

    Science.gov (United States)

    Dennis, Ashley A; Astell, Arlene; Dritschel, Barbara

    2012-12-01

    Williams et al. (2006) found that increased imageability of cue words during an autobiographical memory task increased specificity of autobiographical memory (ABM) and improved subsequent social problem-solving (SPS). This study explored whether imagery during SPS improved SPS skill, perceived SPS ability, and the specificity of ABMs retrieved in the process of SPS in dysphoric students. Additionally, this study hypothesised that both memory specificity and perceived SPS ability would positively correlate with SPS skill. Dysphoric and non-dysphoric students solved hypothetical social problems on a modified version of the Means-End Problem-Solving task with a verbal or an imagery focus. Participants also completed a questionnaire about ABMs retrieved during SPS and rated their perceived effectiveness of their solutions. Contrary to Williams et al. (2006), the imagery focus did not improve SPS skill or influence perceived effectiveness. Additionally, in contrast to the hypothesis, the imagery group retrieved more overgeneral memories. Finally, ABM specificity did not correlate with SPS skill. However, dysphoric participants perceived specific memories to be significantly less helpful to SPS whereas non-dysphoric participants perceived specific memories to be helpful potentially supporting work on overgeneral ABM and functional avoidance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Automatic Road Centerline Extraction from Imagery Using Road GPS Data

    Directory of Open Access Journals (Sweden)

    Chuqing Cao

    2014-09-01

    Full Text Available Road centerline extraction from imagery constitutes a key element in numerous geospatial applications, which has been addressed through a variety of approaches. However, most of the existing methods are not capable of dealing with challenges such as different road shapes, complex scenes, and variable resolutions. This paper presents a novel method for road centerline extraction from imagery in a fully automatic approach that addresses the aforementioned challenges by exploiting road GPS data. The proposed method combines road color feature with road GPS data to detect road centerline seed points. After global alignment of road GPS data, a novel road centerline extraction algorithm is developed to extract each individual road centerline in local regions. Through road connection, road centerline network is generated as the final output. Extensive experiments demonstrate that our proposed method can rapidly and accurately extract road centerline from remotely sensed imagery.

  13. On Picturing a Candle: The Prehistory of Imagery Science.

    Science.gov (United States)

    MacKisack, Matthew; Aldworth, Susan; Macpherson, Fiona; Onians, John; Winlove, Crawford; Zeman, Adam

    2016-01-01

    The past 25 years have seen a rapid growth of knowledge about brain mechanisms involved in visual mental imagery. These advances have largely been made independently of the long history of philosophical - and even psychological - reckoning with imagery and its parent concept 'imagination'. We suggest that the view from these empirical findings can be widened by an appreciation of imagination's intellectual history, and we seek to show how that history both created the conditions for - and presents challenges to - the scientific endeavor. We focus on the neuroscientific literature's most commonly used task - imagining a concrete object - and, after sketching what is known of the neurobiological mechanisms involved, we examine the same basic act of imagining from the perspective of several key positions in the history of philosophy and psychology. We present positions that, firstly, contextualize and inform the neuroscientific account, and secondly, pose conceptual and methodological challenges to the scientific analysis of imagery. We conclude by reflecting on the intellectual history of visualization in the light of contemporary science, and the extent to which such science may resolve long-standing theoretical debates.

  14. Aerial Photography and Imagery, Ortho-Corrected, Historic 1958 black and white aerial photography for Wicomico County, Maryland. Imagery was scanned from historic hard copy images and georeferenced to current imagery. This data is available via map service., Published in 2010, 1:12000 (1in=1000ft) scale, Eastern Shore Regional GIS Cooperative.

    Data.gov (United States)

    NSGIC Regional | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2010. Historic 1958 black and white aerial photography for Wicomico County, Maryland. Imagery...

  15. Effect of biased feedback on motor imagery learning in BCI-teleoperation system

    Directory of Open Access Journals (Sweden)

    Maryam eAlimardani

    2014-04-01

    Full Text Available Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users’ BC performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects’ performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects’ BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects’ online performance, evaluation of brain activity patterns revealed that subjects’ self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects’ motor imagery skills.

  16. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Monica Rivas Casado

    2015-11-01

    Full Text Available European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.

  17. Integration of RGB "Dust" Imagery to Operations at the Albuquerque Forecast Office

    Science.gov (United States)

    Fuell, Kevin; Guyer, Brian

    2014-01-01

    The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program has been providing unique Red-Green-Blue (RGB) composite imagery to its operational partners since 2005. In the early years of activity these RGB products were related to a True Color RGB, showing what one's own eyes would see if looking down at earth from space, as well as a Snow-Cloud RGB (i.e. False Color), separating clouds from snow on the ground. More recently SPoRT has used the EUMETSAT Best Practices standards for RGB composites to transition a wide array of imagery for multiple uses. A "Dust" RGB product has had particular use at the Albuquerque, New Mexico WFO. Several cases have occurred where users were able to isolate dust plume locations for mesoscale and microscale events during day and night time conditions. In addition the "Dust" RGB can be used for more than just detection of dust as it is sensitive to the changes in density due to atmospheric moisture content. Hence low-level dry boundaries can often be discriminated. This type of imagery is a large change from the single channel imagery typically used by operational forecast staff and hence, can be a challenge to interpret. This presentation aims to discuss the integration of such new imagery into operational use as well as the benefits assessed by the Albuquerque WFO over several documented events.

  18. Integration of RGB "Dust" Imagery to Operations at the Albuqueque Forecast Office

    Science.gov (United States)

    Fuell, Kevin; Guyer, Brian

    2014-01-01

    The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program has been providing unique Red-Green-Blue (RGB) composite imagery to its operational partners since 2005. In the early years of activity these RGB products were related to a True Color RGB, showing what one's own eyes would see if looking down at earth from space, as well as a Snow-Cloud RGB (i.e. False Color), separating clouds from snow on the ground. More recently SPoRT has used the EUMETSAT Best Practices standards for RGB composites to transition a wide array of imagery for multiple uses. A "Dust" RGB product has had particular use at the Albuquerque, New Mexico WFO. Several cases have occurred where users were able to isolate dust plume locations for mesoscale and microscale events during day and night time conditions. In addition the "Dust" RGB can be used for more than just detection of dust as it is sensitive to the changes in density due to atmospheric moisture content. Hence low-level dry boundaries can often be discriminated. This type of imagery is a large change from the single channel imagery typically used by operational forecast staff and hence, can be a challenge to interpret. This presentation aims to discuss the integration of such new imagery into operational use as well as the benefits assessed by the Albuquerque WFO over several documented events.

  19. Looking on the bright side in social anxiety: the potential benefit of promoting positive mental imagery.

    Directory of Open Access Journals (Sweden)

    Arnaud ePictet

    2014-02-01

    Full Text Available Current cognitive models of social phobia converge on the view that negative imagery is a key factor in the development and maintenance of the disorder. Research to date has predominantly focussed on the detrimental impact of negative imagery on cognitive bias and anxiety symptoms, while the potential benefit of promoting positive imagery has been relatively unexplored. Emerging evidence suggests however that positive imagery could have multiple benefits such as improving positive affect, self-esteem and positive interpretation bias, and enhancing social performance. The present article defends the view that combining bias induction with a repeated practice in generating positive imagery in a cognitive bias modification procedure could represent a promising area for future research and clinical innovation in social anxiety disorder.

  20. 2012 Oconee County, Georgia ADS80 Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — All imagery was collected during the 2012 Spring flying season during leaf-off conditions for deciduous vegetation in the State of Georgia. The sun angle was at...

  1. OrthoImagery Submission for Laurens County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  2. OrthoImagery Submission for Jefferson County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  3. OrthoImagery Submission for Wilcox County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  4. OrthoImagery Submission for Tattnall County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  5. OrthoImagery Submission for Wheeler County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  6. OrthoImagery Submission for Cedar County, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  7. OrthoImagery Submission for Telfair County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  8. OrthoImagery Submission for Johnson County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  9. OrthoImagery Submission for Montgomery County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  10. OrthoImagery Submission for Dodge County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  11. OrthoImagery Submission for Burke County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  12. OrthoImagery Submission for Bulloch County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  13. OrthoImagery Submission for Glascock County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  14. OrthoImagery Submission for Freeborn County, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  15. OrthoImagery Submission for Franklin County, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  16. OrthoImagery Submission for Emanuel County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  17. OrthoImagery Submission for Screven County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  18. OrthoImagery Submission for Mower County, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  19. OrthoImagery Submission for Lanier County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  20. OrthoImagery Submission for Tift County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  1. OrthoImagery Submission for Bacon County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  2. OrthoImagery Submission for TREUTLEN County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  3. OrthoImagery Submission for Candler County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  4. OrthoImagery Submission for Evans County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  5. The development of a land use inventory for regional planning using satellite imagery

    Science.gov (United States)

    Hessling, A. H.; Mara, T. G.

    1975-01-01

    Water quality planning in Ohio, Kentucky, and Indiana is reviewed in terms of use of land use data and satellite imagery. A land use inventory applicable to water quality planning and developed through computer processing of LANDSAT-1 imagery is described.

  6. Observer perspective imagery with stuttering.

    Science.gov (United States)

    Lowe, Robyn; Menzies, Ross; Packman, Ann; O'Brian, Sue; Onslow, Mark

    2015-01-01

    Adults who stutter are at risk of developing a range of psychological conditions. Social anxiety disorder is the most common anxiety disorder associated with stuttering. Observer perspective imagery is one cognitive process involved in the maintenance of some anxiety disorders. This involves viewing images as if looking at the self from the perspective of another. In contrast, the field perspective involves looking out from the self at the surrounding environment. The purpose of this study was to assess the presence of observer perspective imagery with stuttering. The authors administered the Hackmann, Surawy and Clark (1998) semi-structured interview to 30 adults who stutter and 30 controls. Group images and impressions were compared for frequency, perspective recalled and emotional valence. The stuttering group was significantly more likely than controls to recall images and impressions from an observer rather than a field perspective for anxious situations. It is possible the present results could reflect the same attentional processing bias that occurs with anxiety disorders in the non-stuttering population. These preliminary results provide an explanation for the persistence of conditions such as social anxiety disorder with stuttering. Clinical implications are discussed.

  7. The Effect of Movement Imagery Training on Learning Forearm Pass in Volleyball

    Science.gov (United States)

    Ay, Khitam Mousa; Halaweh, Rami Saleh; Al-Taieb, Mohammad Abu

    2013-01-01

    This study investigates the effect of movement imagery on learning the forearm pass in volleyball. Twenty four mail students from Physical Education Factuly at Jordan University (19 ± 0.5) years of age. After Completed the Movement Imagery Questionnaire-Revised (MIQ-R; Hall & Martin, 1997) the subjects randomly divided into two groups,…

  8. Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics

    Science.gov (United States)

    Brinley Buckley, Emma M.; Allen, Craig R.; Forsberg, Michael; Farrell, Michael; Caven, Andrew J.

    2017-01-01

    We investigate the scientific and communicative value of time-lapse imagery by exploring applications for data collection and visualization. Time-lapse imagery has a myriad of possible applications to study and depict ecosystems and can operate at unique temporal and spatial scales to bridge the gap between large-scale satellite imagery projects and observational field research. Time-lapse data sequences, linking time-lapse imagery with data visualization, have the ability to make data come alive for a wider audience by connecting abstract numbers to images that root data in time and place. Utilizing imagery from the Platte Basin Timelapse Project, water inundation and vegetation phenology metrics are quantified via image analysis and then paired with passive monitoring data, including streamflow and water chemistry. Dynamic and interactive time-lapse data sequences elucidate the visible and invisible ecological dynamics of a significantly altered yet internationally important river system in central Nebraska.

  9. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  10. Processing OMEGA/Mars Express hyperspectral imagery from radiance-at-sensor to surface reflectance

    NARCIS (Netherlands)

    Bakker, W.H.; Ruitenbeek, F.J.A. van; Werff, H.M.A. van der; Zegers, T.E.; Oosthoek, J.H.P.; Marsh, S.H.; Meer, F.D. van der

    2014-01-01

    OMEGA/Mars Express hyperspectral imagery is an excellent source of data for exploring the surface composition of the planet Mars. Compared to terrestrial hyperspectral imagery, the data are challenging to work with; scene-specific transmission models are lacking, spectral features are shallow making

  11. Employing airborne multispectral digital imagery to map Brazilian pepper infestation in south Texas.

    Science.gov (United States)

    A study was conducted in south Texas to determine the feasibility of using airborne multispectral digital imagery for differentiating the invasive plant Brazilian pepper (Schinus terebinthifolius) from other cover types. Imagery obtained in the visible, near infrared, and mid infrared regions of th...

  12. Developing Affective Mental Imagery Stimuli with Multidimensional Scaling

    Directory of Open Access Journals (Sweden)

    Matthew J. Facciani

    2015-06-01

    Full Text Available The goal of this paper is to provide an example of how multidimensional scaling (MDS can be used for stimuli development. The study described in this paper illustrates this process by developing affective mental imagery stimuli using the circumplex model of affect as a guide. The circumplex model of affect argues that all emotions can be described in terms of two underlying primary dimensions: valence and arousal (Russel, 1980. We used MDS to determine if affective mental imagery stimuli obtained from verbal prompts could be separated by arousal and valence to create four distinct categories (high –positive, low-positive, high-negative, and low-negative as seen in other stimuli. 60 students from the University of South Carolina participated in the first experiment to evaluate three sets of stimuli. After being analyzed using MDS, selected stimuli were then assessed again in a second experiment to validate their robust valence and arousal distinctions. The second experiment was conducted with 34 subjects to validate 40 of the best stimuli from experiment 1. It was found that mental imagery stimuli can produce a reliable affective response for the dimensions of valence and arousal and that MDS can be an effective tool for stimuli development.

  13. SAR Imagery Simulation of Ship Based on Electromagnetic Calculations and Sea Clutter Modelling for Classification Applications

    International Nuclear Information System (INIS)

    Ji, K F; Zhao, Z; Xing, X W; Zou, H X; Zhou, S L

    2014-01-01

    Ship detection and classification with space-borne SAR has many potential applications within the maritime surveillance, fishery activity management, monitoring ship traffic, and military security. While ship detection techniques with SAR imagery are well established, ship classification is still an open issue. One of the main reasons may be ascribed to the difficulties on acquiring the required quantities of real data of vessels under different observation and environmental conditions with precise ground truth. Therefore, simulation of SAR images with high scenario flexibility and reasonable computation costs is compulsory for ship classification algorithms development. However, the simulation of SAR imagery of ship over sea surface is challenging. Though great efforts have been devoted to tackle this difficult problem, it is far from being conquered. This paper proposes a novel scheme for SAR imagery simulation of ship over sea surface. The simulation is implemented based on high frequency electromagnetic calculations methods of PO, MEC, PTD and GO. SAR imagery of sea clutter is modelled by the representative K-distribution clutter model. Then, the simulated SAR imagery of ship can be produced by inserting the simulated SAR imagery chips of ship into the SAR imagery of sea clutter. The proposed scheme has been validated with canonical and complex ship targets over a typical sea scene

  14. Adults and children with high imagery show more pronounced perceptual priming effect.

    Science.gov (United States)

    Hatakeyama, T

    1997-06-01

    36 children in Grade 5 and 59 university students, all native speakers of Japanese, studied three types of priming stimuli in a mixed list: words written in hiragana (Japanese syllabary used in writing), words written in kanji (Chinese characters also used in writing), and pictures. They were then given a task involving completion of hiragana-word fragments: the task involved studied and nonstudied items. For both children and university students, words in hiragana produced the largest priming effects, that is, the words that had appeared in hiragana in the preceding study phase were generated more often in the test phase of word completion than the other two types of priming stimuli. This confirms that the perceptual priming effect depends much on data-driven processing. For both age groups, words in kanji produced nearly half the priming effects seen for hiragana-words. On the other hand, pictures had no priming effect for children but they had a similar effect to kanji-words for students. The discrepancy between kanji-words and pictures for children suggests that the former force the subject to read the words, which, possibly, activates the hiragana-words, while the latter do not necessarily force labelling the pictures. Among three kinds of imagery tests, the Verbalizer-Visualizer Questionnaire predicted priming scores for children and the Questionnaire upon Mental Imagery did so for students, but the Test of Visual Imagery Control did not predict the scores for either age group. This shows that children reporting habitual use of imagery and adults reporting vivid imagery have more pronounced perceptual priming effects. We conclude that the imagery ability based on self-judgments reflects real characteristics of the perceptual representation system of Tulving and Schacter (1990).

  15. Informing a hydrological model of the Ogooué with multi-mission remote sensing data

    Science.gov (United States)

    Kittel, Cecile M. M.; Nielsen, Karina; Tøttrup, Christian; Bauer-Gottwein, Peter

    2018-02-01

    Remote sensing provides a unique opportunity to inform and constrain a hydrological model and to increase its value as a decision-support tool. In this study, we applied a multi-mission approach to force, calibrate and validate a hydrological model of the ungauged Ogooué river basin in Africa with publicly available and free remote sensing observations. We used a rainfall-runoff model based on the Budyko framework coupled with a Muskingum routing approach. We parametrized the model using the Shuttle Radar Topography Mission digital elevation model (SRTM DEM) and forced it using precipitation from two satellite-based rainfall estimates, FEWS-RFE (Famine Early Warning System rainfall estimate) and the Tropical Rainfall Measuring Mission (TRMM) 3B42 v.7, and temperature from ECMWF ERA-Interim. We combined three different datasets to calibrate the model using an aggregated objective function with contributions from (1) historical in situ discharge observations from the period 1953-1984 at six locations in the basin, (2) radar altimetry measurements of river stages by Envisat and Jason-2 at 12 locations in the basin and (3) GRACE (Gravity Recovery and Climate Experiment) total water storage change (TWSC). Additionally, we extracted CryoSat-2 observations throughout the basin using a Sentinel-1 SAR (synthetic aperture radar) imagery water mask and used the observations for validation of the model. The use of new satellite missions, including Sentinel-1 and CryoSat-2, increased the spatial characterization of river stage. Throughout the basin, we achieved good agreement between observed and simulated discharge and the river stage, with an RMSD between simulated and observed water amplitudes at virtual stations of 0.74 m for the TRMM-forced model and 0.87 m for the FEWS-RFE-forced model. The hydrological model also captures overall total water storage change patterns, although the amplitude of storage change is generally underestimated. By combining hydrological modeling

  16. RADIOMETRIC CALIBRATION OF MARS HiRISE HIGH RESOLUTION IMAGERY BASED ON FPGA

    Directory of Open Access Journals (Sweden)

    Y. Hou

    2016-06-01

    Full Text Available Due to the large data amount of HiRISE imagery, traditional radiometric calibration method is not able to meet the fast processing requirements. To solve this problem, a radiometric calibration system of HiRISE imagery based on field program gate array (FPGA is designed. The montage gap between two channels caused by gray inconsistency is removed through histogram matching. The calibration system is composed of FPGA and DSP, which makes full use of the parallel processing ability of FPGA and fast computation as well as flexible control characteristic of DSP. Experimental results show that the designed system consumes less hardware resources and the real-time processing ability of radiometric calibration of HiRISE imagery is improved.

  17. Detection of Hail Storms in Radar Imagery Using Deep Learning

    Science.gov (United States)

    Pullman, Melinda; Gurung, Iksha; Ramachandran, Rahul; Maskey, Manil

    2017-01-01

    In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest weather phenomenon in the United States. In an effort to improve hail-prediction techniques and reduce the societal impacts associated with hail storms, we propose a deep learning technique that leverages radar imagery for automatic detection of hail storms. The technique is applied to radar imagery from 2011 to 2016 for the contiguous United States and achieved a precision of 0.848. Hail storms are primarily detected through the visual interpretation of radar imagery (Mrozet al., 2017). With radars providing data every two minutes, the detection of hail storms has become a big data task. As a result, scientists have turned to neural networks that employ computer vision to identify hail-bearing storms (Marzbanet al., 2001). In this study, we propose a deep Convolutional Neural Network (ConvNet) to understand the spatial features and patterns of radar echoes for detecting hailstorms.

  18. Evolution of Orion Mission Design for Exploration Mission 1 and 2

    Science.gov (United States)

    Gutkowski, Jeffrey P.; Dawn, Timothy F.; Jedrey, Richard M.

    2016-01-01

    The evolving mission design and concepts of NASA’s next steps have shaped Orion into the spacecraft that it is today. Since the initial inception of Orion, through the Constellation Program, and now in the Exploration Mission frame-work with the Space Launch System (SLS), each mission design concept and pro-gram goal have left Orion with a set of capabilities that can be utilized in many different mission types. Exploration Missions 1 and 2 (EM-1 and EM-2) have now been at the forefront of the mission design focus for the last several years. During that time, different Design Reference Missions (DRMs) were built, analyzed, and modified to solve or mitigate enterprise level design trades to ensure a viable mission from launch to landing. The resulting DRMs for EM-1 and EM-2 were then expanded into multi-year trajectory scans to characterize vehicle performance as affected by variations in Earth-Moon geometry. This provides Orion’s subsystems with stressing reference trajectories to help design their system. Now that Orion has progressed through the Preliminary and Critical Design Reviews (PDR and CDR), there is a general shift in the focus of mission design from aiding the vehicle design to providing mission specific products needed for pre-flight and real time operations. Some of the mission specific products needed include, large quantities of nominal trajectories for multiple monthly launch periods and abort options at any point in the mission for each valid trajectory in the launch window.

  19. Everyday imagery

    DEFF Research Database (Denmark)

    Peters, Chris; Allan, Stuart

    2016-01-01

    the gradual disappearance of media from personal consciousness in a digital age. If ceaselessness is a defining characteristic of the current era, our analysis reveals that the use of smartphone cameras is indicative of people affectively and self-consciously deploying the technology to try to arrest......User-based research into the lived experiences associated with smartphone camera practices – in particular, the taking, storing, curating, and sharing of personal imagery in the digital media sphere – remains scarce, especially in contrast to their increasing ubiquity. Accordingly, this article...... social bonds, and encompass a future-oriented perspective. Relatedly, in terms of photographic composition, visual content tends to circulate around the social presence of others, boundedness of event, perceived aesthetic value, and intended shareability. Our findings question certain formulations about...

  20. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.

    Science.gov (United States)

    Huang, Huasheng; Deng, Jizhong; Lan, Yubin; Yang, Aqing; Deng, Xiaoling; Zhang, Lei

    2018-01-01

    Appropriate Site Specific Weed Management (SSWM) is crucial to ensure the crop yields. Within SSWM of large-scale area, remote sensing is a key technology to provide accurate weed distribution information. Compared with satellite and piloted aircraft remote sensing, unmanned aerial vehicle (UAV) is capable of capturing high spatial resolution imagery, which will provide more detailed information for weed mapping. The objective of this paper is to generate an accurate weed cover map based on UAV imagery. The UAV RGB imagery was collected in 2017 October over the rice field located in South China. The Fully Convolutional Network (FCN) method was proposed for weed mapping of the collected imagery. Transfer learning was used to improve generalization capability, and skip architecture was applied to increase the prediction accuracy. After that, the performance of FCN architecture was compared with Patch_based CNN algorithm and Pixel_based CNN method. Experimental results showed that our FCN method outperformed others, both in terms of accuracy and efficiency. The overall accuracy of the FCN approach was up to 0.935 and the accuracy for weed recognition was 0.883, which means that this algorithm is capable of generating accurate weed cover maps for the evaluated UAV imagery.

  1. Exploring the functional nature of synaesthetic colour: Dissociations from colour perception and imagery.

    Science.gov (United States)

    Chiou, Rocco; Rich, Anina N; Rogers, Sebastian; Pearson, Joel

    2018-08-01

    Individuals with grapheme-colour synaesthesia experience anomalous colours when reading achromatic text. These unusual experiences have been said to resemble 'normal' colour perception or colour imagery, but studying the nature of synaesthesia remains difficult. In the present study, we report novel evidence that synaesthetic colour impacts conscious vision in a way that is different from both colour perception and imagery. Presenting 'normal' colour prior to binocular rivalry induces a location-dependent suppressive bias reflecting local habituation. By contrast, a grapheme that evokes synaesthetic colour induces a facilitatory bias reflecting priming that is not constrained to the inducing grapheme's location. This priming does not occur in non-synaesthetes and does not result from response bias. It is sensitive to diversion of visual attention away from the grapheme, but resistant to sensory perturbation, reflecting a reliance on cognitive rather than sensory mechanisms. Whereas colour imagery in non-synaesthetes causes local priming that relies on the locus of imagined colour, imagery in synaesthetes caused global priming not dependent on the locus of imagery. These data suggest a unique psychophysical profile of high-level colour processing in synaesthetes. Our novel findings and method will be critical to testing theories of synaesthesia and visual awareness. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  3. Predictors of Adherence to Relaxation Guided Imagery During Pregnancy in Women with Preterm Labor.

    Science.gov (United States)

    Chuang, Li-Lan; Liu, Shu-Chen; Chen, Yi-Heng; Lin, Li-Chan

    2015-09-01

    To examine adherence to relaxation guided imagery in women experiencing preterm labor as well as predictors influencing adherence. This study used a longitudinal follow-up approach. Each of the 57 participating women received a mini-MP3 player containing a 13-minute relaxation guided imagery audio program that they were instructed to follow daily until giving birth. Follow-up interviews were conducted weekly. A generalized estimating equation was used to predict adherence. The total adherence rate was 58%. Higher adherence was predicted by the presence of at least a college degree (p=0.006), greater perceived stress (p=0.006), a higher risk of preterm delivery (pguided imagery. For women with a lower adherence to relaxation guided imagery, health care professionals may consider individual preferences regarding relaxation techniques.

  4. Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics

    Directory of Open Access Journals (Sweden)

    Emma M. Brinley Buckley

    2017-09-01

    Full Text Available We investigate the scientific and communicative value of time-lapse imagery by exploring applications for data collection and visualization. Time-lapse imagery has a myriad of possible applications to study and depict ecosystems and can operate at unique temporal and spatial scales to bridge the gap between large-scale satellite imagery projects and observational field research. Time-lapse data sequences, linking time-lapse imagery with data visualization, have the ability to make data come alive for a wider audience by connecting abstract numbers to images that root data in time and place. Utilizing imagery from the Platte Basin Timelapse Project, water inundation and vegetation phenology metrics are quantified via image analysis and then paired with passive monitoring data, including streamflow and water chemistry. Dynamic and interactive time-lapse data sequences elucidate the visible and invisible ecological dynamics of a significantly altered yet internationally important river system in central Nebraska.

  5. ESTIMATION OF SEAGRASS COVERAGE BY DEPTH INVARIANT INDICES ON QUICKBIRD IMAGERY

    Directory of Open Access Journals (Sweden)

    Muhammad Anshar Amran

    2010-01-01

    Full Text Available Management of seagrass ecosystem requires availability of information on the actual condition of seagrass coverage. Remote sensing technology for seagrass mapping has been used to detect the presence of seagrass coverage, but so far no information on the condition of seagrass could be obtained. Therefore, a research is required using remote sensing imagery to obtain information on the condition of seagrass coverage.The aim of this research is to formulate mathematical relationship between seagrass coverage and depth invariant indices on Quickbird imagery. Transformation was done on multispectral bands which could detect sea floor objects that are in the region of blue, green and red bands.The study areas covered are the seas around Barranglompo Island and Barrangcaddi Island, westward of Makassar city, Indonesia. Various seagrass coverages were detected within the region under study.Mathematical relationship between seagrass coverage and depth invariant indices was obtained by multiple linear regression method. Percentage of seagrass coverage (C was obtained by transformation of depth invariant indices (Xij on Quickbird imagery, with transformation equation as follows:C = 19.934 – 63.347 X12 + 23.239 X23.A good accuracy of 75% for the seagrass coverage was obtained by transformation of depth invariant indices (Xij on Quickbird imagery.

  6. ESIAC: A data products system for ERTS imagery (time-lapse viewing and measuring)

    Science.gov (United States)

    Evans, W. E.; Serebreny, S. M.

    1974-01-01

    An Electronic Satellite Image Analysis Console (ESIAC) has been developed for visual analysis and objective measurement of earth resources imagery. The system is being employed to process imagery for use by USGS investigators in several different disciplines studying dynamic hydrologic conditions. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The unique feature of the system is the capability to time-lapse the ERTS imagery and/or analytic displays of the imagery. Data products have included quantitative measurements of distances and areas, brightness profiles, and movie loops of selected themes. The applications of these data products are identified and include such diverse problem areas as measurement of snowfield extent, sediment plumes from estuary dicharge, playa inventory, phreatophyte and other vegetation changes. A comparative ranking of the electronic system in terms of accuracy, cost effectiveness and data output shows it to be a viable means of data analysis.

  7. Cultural Artifact Detection in Long Wave Infrared Imagery.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dylan Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Craven, Julia M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ramon, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    Detection of cultural artifacts from airborne remotely sensed data is an important task in the context of on-site inspections. Airborne artifact detection can reduce the size of the search area the ground based inspection team must visit, thereby improving the efficiency of the inspection process. This report details two algorithms for detection of cultural artifacts in aerial long wave infrared imagery. The first algorithm creates an explicit model for cultural artifacts, and finds data that fits the model. The second algorithm creates a model of the background and finds data that does not fit the model. Both algorithms are applied to orthomosaic imagery generated as part of the MSFE13 data collection campaign under the spectral technology evaluation project.

  8. Aerial Photography and Imagery, Oblique, This data set was acquired through a federal grant with Pictometry International. The imagery is either 4" or 9" resolution., Published in 2011, Not Applicable scale, Chippewa County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Aerial Photography and Imagery, Oblique dataset current as of 2011. This data set was acquired through a federal grant with Pictometry International. The imagery is...

  9. The National Agriculture Imagery Program Change 2002-2017

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The National Agriculture Imagery Program Change 2002-2017 is a web mapping application hosted on the ArcGIS online FSA Organizational Subscription. This web...

  10. Electrophysiological potentials reveal cortical mechanisms for mental imagery, mental simulation, and grounded (embodied cognition

    Directory of Open Access Journals (Sweden)

    Haline E. Schendan

    2012-09-01

    Full Text Available Grounded cognition theory proposes that cognition, including meaning, is grounded in sensorimotor processing. The mechanism for grounding cognition is mental simulation, which is a type of mental imagery that re-enacts modal processing. To reveal top-down, cortical mechanisms for mental simulation of shape, event-related potentials were recorded to face and object pictures preceded by mental imagery of a picture. Mental imagery of the identical face or object (congruous condition facilitated not only categorical perception (VPP/N170 but also later visual knowledge (N3[00] complex and linguistic knowledge (N400 for faces more than objects, and strategic semantic analysis (late positive complex between 200 and 700 ms. The later effects resembled semantic congruity effects with pictures. Mental imagery also facilitated category decisions, as a P3(00 peaked earlier for congruous than incongruous (other category pictures, resembling the case when identical pictures repeat immediately. Thus mental imagery mimics semantic congruity and immediate repetition priming processes with pictures. Perception control results showed the opposite for faces and were in the same direction for objects: Perceptual repetition adapts (and so impairs processing of perceived faces from categorical perception onwards, but primes processing of objects during categorical perception, visual knowledge processes, and strategic semantic analysis. For both imagery and perception, differences between faces and objects support domain-specificity and indicate that cognition is grounded in modal processing. Altogether, this direct neural evidence reveals that top-down processes of mental imagery sustain an imagistic representation that mimics perception well enough to prime subsequent perception and cognition. This also suggests that automatic mental simulation of the visual shape of faces and objects operates between 200 and 400 ms, and strategic mental simulation operates between

  11. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    Directory of Open Access Journals (Sweden)

    Teresa eSollfrank

    2015-08-01

    Full Text Available A repetitive movement practice by motor imagery (MI can influence motor cortical excitability in the electroencephalogram (EEG. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007. This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during motor imagery. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronisation (ERD of the upper alpha band (10-12 Hz over the sensorimotor cortices thereby potentially improving MI based BCI protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb motor imagery present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (2D vs. 3D. The largest upper alpha band power decrease was obtained during motor imagery after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D visualization modality group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during MI. Realistic visual feedback, consistent with the participant’s motor imagery, might be helpful for accomplishing successful motor imagery and the use of such feedback may assist in making BCI a more natural interface for motor imagery based BCI rehabilitation.

  12. Imagery Rescripting in Posttraumatic Stress Disorder

    Science.gov (United States)

    Hackmann, Anne

    2011-01-01

    This article provides an overview of methods of working with imagery to change meanings and ameliorate posttraumatic stress disorder (PTSD). It opens with a description of phenomenology in this disorder, usually characterized by a small number of recurrent images of the trauma, each representing a moment that warned of a threat to the physical or…

  13. MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY

    International Nuclear Information System (INIS)

    Garrett, A.; Kurzeja, R.; Villa-Aleman, E.; Tuckfield, C.; Pendergast, M.

    2009-01-01

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper (1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions

  14. Three-dimensional imagery by encoding sources of X rays

    International Nuclear Information System (INIS)

    Magnin, Isabelle

    1987-01-01

    This research thesis addresses the theoretical and practical study of X ray coded sources, and thus notably aims at exploring whether it would be possible to transform a standard digital radiography apparatus (as those operated in radiology hospital departments) into a low cost three-dimensional imagery system. The author first recalls the principle of conventional tomography and improvement attempts, and describes imagery techniques based on the use of encoding openings and source encoding. She reports the modelling of an imagery system based on encoded sources of X ray, and addresses the original notion of three-dimensional response for such a system. The author then addresses the reconstruction method by considering the reconstruction of a plane object, of a multi-plane object, and of real three-dimensional object. The frequency properties and the tomographic capacities of various types of source codes are analysed. She describes a prototype tomography apparatus, and presents and discusses three-dimensional actual phantom reconstructions. She finally introduces a new principle of dynamic three-dimensional radiography which implements an acquisition technique by 'gating code'. The acquisition principle should allow the reconstruction of volumes animated by periodic deformations, such as the heart for example [fr

  15. THE INFLUENCE OF PRODUCT PRESENTATION ON HOTELWEBSITE REVISIT INTENTIONS: THE MEDIATING ROLE OFMENTAL IMAGERY

    Directory of Open Access Journals (Sweden)

    Nobukhosi Dlodlo

    2018-01-01

    Full Text Available The research on mental imagery in South Africa is nascent,thereby profferingfertile ground for understanding how sensory experiences and conative reactionstowards hotel websites could be enhanced.This consequence steered the adoptionof a unique cognitive epochin this work, wherein the influence of mental imageryon therevisit intentions of hotel clienteleis investigated. In this vein, this studyasserts that selected website atmospheric elements are responsible for activatingmental imagery among potential hotel guests. While using a self-administeredsurvey instrument on a sample of372South African consumers, a structuralequation modelling methodology was applied. The results of the study establishedthat aesthetics ( #946;=+0.650; p #706;0.01, symbolism ( #946;=+0.276;p #706;0.01 andplayfulness ( #946;=+0.252;p #706;0.01 are the three website stimuli that promote thedevelopment of mental imagery among consumers who visit hotel websites.Furthermore, mental imagery was found to have a positive and significant influenceon the revisit intentions of hotel guests( #946;=+0.703;p #706;0.01. The results of thisstudyshednovellight on extant online retailing literaturethat seeks to advancethemental imagery perspective. The study provides practical information to guidetourismmarketers with regard to the pivotal cues to look out for upon designinghotel websites.

  16. Characteristics of autobiographical memories and prospective imagery across a spectrum of hypomanic personality traits.

    Science.gov (United States)

    McGill, Brittany; Moulds, Michelle L

    2014-01-01

    Evidence of a strong causal relationship between mental imagery and emotion has informed psychological conceptualisations of disordered positive mood states (i.e., mania). Holmes et al.'s cognitive model of bipolar disorder asserts a prominent role for intrusive and affect-laden positive imagery of the past and the future in the amplification and maintenance of positive mood and associated manic behaviours. The aims of the current study were two-fold: (1) to test aspects of this model in a non-clinical population sampled for hypomanic personality traits and (2) to examine the phenomenological characteristics of positive autobiographical memories and imagery of the future. Undergraduate students (N = 80) completed a battery of self-report questionnaires and rated their positive and negative memories and images of the future on a number of dimensions. We found significant positive correlations between hypomanic tendencies and the (1) everyday experience and use of mental imagery, (2) experience of intrusive mental imagery of future events, (3) emotional intensity and sensory detail of positive but not negative autobiographical memories. Results are discussed in the context of their theoretical and clinical implications, and directions for future research are considered.

  17. Identification of High-Variation Fields based on Open Satellite Imagery

    DEFF Research Database (Denmark)

    Jeppesen, Jacob Høxbroe; Jacobsen, Rune Hylsberg; Nyholm Jørgensen, Rasmus

    2017-01-01

    . The categorization is based on vegetation indices derived from Sentinel-2 satellite imagery. A case study on 7678 winter wheat fields is presented, which employs open data and open source software to analyze the satellite imagery. Furthermore, the method can be automated to deliver categorizations at every update......This paper proposes a simple method for categorizing fields on a regional level, with respect to intra-field variations. It aims to identify fields where the potential benefits of applying precision agricultural practices are highest from an economic and environmental perspective...

  18. OrthoImagery Submission for Christian County, Illinois, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has beeen removed for...

  19. OrthoImagery Submission for Moultrie County, Illinois, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has beeen removed for...

  20. OrthoImagery Submission for Monmouth County, New Jersey

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  1. OrthoImagery Submission for Douglas County, Illinois, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has beeen removed for...

  2. OrthoImagery Submission for Albany County, New York

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  3. OrthoImagery Submission for Putnam County, New York

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  4. Mental imagery affects subsequent automatic defense responses

    Directory of Open Access Journals (Sweden)

    Muriel A Hagenaars

    2015-06-01

    Full Text Available Automatic defense responses promote survival and appropriate action under threat. They have also been associated with the development of threat-related psychiatric syndromes. Targeting such automatic responses during threat may be useful in populations with frequent threat exposure. Here, two experiments explored whether mental imagery as a pre-trauma manipulation could influence fear bradycardia (a core characteristic of freezing during subsequent analogue trauma (affective picture viewing. Image-based interventions have proven successful in the treatment of threat-related disorders, and are easily applicable. In Experiment 1 43 healthy participants were randomly assigned to an imagery script condition. Participants executed a passive viewing task with blocks of neutral, pleasant and unpleasant pictures after listening to an auditory script that was either related (with a positive or a negative outcome or unrelated to the unpleasant pictures from the passive viewing task. Heart rate was assessed during script listening and during passive viewing. Imagining negative related scripts resulted in greater bradycardia (neutral-unpleasant contrast than imagining positive scripts, especially unrelated. This effect was replicated in Experiment 2 (N = 51, again in the neutral-unpleasant contrast. An extra no-script condition showed that bradycardia was not induced by the negative related script, but rather that a positive script attenuated bradycardia. These preliminary results might indicate reduced vigilance after unrelated positive events. Future research should replicate these findings using a larger sample. Either way, the findings show that highly automatic defense behavior can be influenced by relatively simple mental imagery manipulations.

  5. Meteor Beliefs Project: Meteoric imagery associated with the death of John Brown in 1859

    Science.gov (United States)

    Drobnock, G. J.; McBeath, A.; Gheorghe, A. D.

    2009-12-01

    An examination is made of metaphorical meteor imagery used in conjunction with the death of American anti-slavery activist John Brown, who was executed in December 1859. Such imagery continues to be used in this regard into the 21st century.

  6. [Myanmar mission].

    Science.gov (United States)

    Alfandari, B; Persichetti, P; Pelissier, P; Martin, D; Baudet, J

    2004-06-01

    The authors report the accomplishment of humanitarian missions in plastic surgery performed by a small team in town practice in Yangon, about their 3 years experience in Myanmar with 300 consultations and 120 surgery cases. They underline the interest of this type of mission and provide us their reflexion about team training, the type of relation with the country where the mission is conducted and the type of right team.

  7. The influence of motor imagery on postural sway: Differential effects of type of body movement and person perspective

    NARCIS (Netherlands)

    Stins, J.F.; Schneider, I.K.; Koole, S.L.; Beek, P.J.

    2015-01-01

    The present study examined the differential effects of kinesthetic imagery (first person perspective) and visual imagery (third person perspective) on postural sway during quiet standing. Based on an embodied cognition perspective, the authors predicted that kinesthetic imagery would lead to

  8. Changes of hypnagogic imagery and EEG stages

    OpenAIRE

    Hayashi, Mitsuo; Katoh, Kohichi; Hori, Tadao

    1998-01-01

    The aim of this study is to investigate the relationships between hypnagogic imagery and EEG stages. According to Hori, et al. (1994), the hypnagogic EEGs was classified into 9 stages, those were 1) alpha wave train, 2) alpha wave intermittent (>50%), 3) alpha wave intermittent (

  9. Understanding and treating amotivation in people with psychosis: An experimental study of the role of guided imagery.

    Science.gov (United States)

    Cox, Charlotte; Jolley, Suzanne; Johns, Louise

    2016-12-30

    Psychological models propose that the amotivational negative symptoms (ANS) of psychosis are influenced by expectations of future events; both anticipatory success (believing one can achieve something, AS) and anticipatory pleasure (mentally pre-creating potential future experiences of enjoyment, AP). Mental imagery manipulations have been shown to change expectations across a range of settings, and may therefore enhance psychological interventions for ANS in people with psychosis. We set out to investigate the impact of a guided imagery manipulation on AS and AP in this group. Forty-two participants with psychosis and ANS completed measures of ANS severity, before random allocation to either a positive or neutral imagery manipulation. AS and AP towards a dart-throwing task were measured before and after the manipulation. Greater ANS severity was associated with lower levels of AS, but not of AP, irrespective of task performance. AS, but not AP, improved during both positive and neutral imagery manipulations, with no effect of imagery type. Anticipatory success is a candidate psychological factor influencing the severity of ANS in psychosis that may be changed by guided imagery manipulation. Imagery interventions are feasible and acceptable for this group: further investigation is needed of their mechanism of action and potential to improve functioning. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Social imagery, tobacco independence, and the truthsm campaign.

    Science.gov (United States)

    Evans, W Douglas; Price, Simani; Blahut, Steven; Hersey, James; Niederdeppe, Jeffrey; Ray, Sarah

    2004-01-01

    This study investigated relationships among exposure to the truthsm campaign, differences in social imagery about not smoking and related measures, and smoking behavior. We asked, "How does truthsm work? Through what psychological mechanisms does it affect smoking behavior?" We developed a framework to explain how receptivity to truthsm ads might influence youth cognitive states and subsequent effects on progression to established smoking. The main hypotheses were that social imagery about not smoking and related beliefs and attitudes about tobacco use mediate the relationship between truthsm exposure and smoking status. The study was based on data from the Legacy Media Tracking Survey (LMTS), waves I-III, which were conducted at three time points from 1999 through 2001. A nationally representative sample of 20,058 respondents aged 12-24 from the three time points was used in the analysis. We developed a structural equation model (SEM) based on constructs drawn from the LMTS. We investigated the model and tested our hypotheses about the psychological and behavioral effects of campaign exposure. We tested our constructs and model using a two-stage structural equation modeling approach. We first conducted a confirmatory factor analysis (CFA) to test the measurement model. Our model achieved satisfactory fit, and we conducted the SEM to test our hypotheses. We found that social imagery and perceived tobacco independence mediate the relationship between truthsm exposure and smoking status. We found meaningful differences between paths for segmented samples based on age, gender, and race/ethnicity subgroups and over time. The truthsm campaign operates through individuals'sense of tobacco independence and social imagery about not smoking. This study indicates that the campaign's strategy has worked as predicted and represents an effective model for social marketing to change youth risk behaviors. Future studies should further investigate subgroup differences in campaign

  11. Vehicle classification in WAMI imagery using deep network

    Science.gov (United States)

    Yi, Meng; Yang, Fan; Blasch, Erik; Sheaff, Carolyn; Liu, Kui; Chen, Genshe; Ling, Haibin

    2016-05-01

    Humans have always had a keen interest in understanding activities and the surrounding environment for mobility, communication, and survival. Thanks to recent progress in photography and breakthroughs in aviation, we are now able to capture tens of megapixels of ground imagery, namely Wide Area Motion Imagery (WAMI), at multiple frames per second from unmanned aerial vehicles (UAVs). WAMI serves as a great source for many applications, including security, urban planning and route planning. These applications require fast and accurate image understanding which is time consuming for humans, due to the large data volume and city-scale area coverage. Therefore, automatic processing and understanding of WAMI imagery has been gaining attention in both industry and the research community. This paper focuses on an essential step in WAMI imagery analysis, namely vehicle classification. That is, deciding whether a certain image patch contains a vehicle or not. We collect a set of positive and negative sample image patches, for training and testing the detector. Positive samples are 64 × 64 image patches centered on annotated vehicles. We generate two sets of negative images. The first set is generated from positive images with some location shift. The second set of negative patches is generated from randomly sampled patches. We also discard those patches if a vehicle accidentally locates at the center. Both positive and negative samples are randomly divided into 9000 training images and 3000 testing images. We propose to train a deep convolution network for classifying these patches. The classifier is based on a pre-trained AlexNet Model in the Caffe library, with an adapted loss function for vehicle classification. The performance of our classifier is compared to several traditional image classifier methods using Support Vector Machine (SVM) and Histogram of Oriented Gradient (HOG) features. While the SVM+HOG method achieves an accuracy of 91.2%, the accuracy of our deep

  12. Landsat imagery: a unique resource

    Science.gov (United States)

    Miller, H.; Sexton, N.; Koontz, L.

    2011-01-01

    Landsat satellites provide high-quality, multi-spectral imagery of the surface of the Earth. These moderate-resolution, remotely sensed images are not just pictures, but contain many layers of data collected at different points along the visible and invisible light spectrum. These data can be manipulated to reveal what the Earth’s surface looks like, including what types of vegetation are present or how a natural disaster has impacted an area (Fig. 1).

  13. Human Exploration Science Office (KX) Overview

    Science.gov (United States)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides

  14. 2014 Metro, Oregon 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are LiDAR orthorectified aerial photographs (8-bit GeoTIFF format) within the Oregon Lidar Consortium Portland project area. The imagery coverage is...

  15. Business analysis: The commercial mission of the International Asteroid Mission

    Science.gov (United States)

    The mission of the International Asteroid Mission (IAM) is providing asteroidal resources to support activities in space. The short term goal is to initiate IAM by mining a near-Earth, hydrous carbonaceous chondrite asteroid to service the nearer-term market of providing cryogenic rocket fuel in low lunar orbit (LLO). The IAM will develop and contract for the building of the transportation vehicles and equipment necessary for this undertaking. The long-term goal is to expand operations by exploiting asteroids in other manners, as these options become commercially viable. The primary business issues are what revenue can be generated from the baseline mission, how much will the mission cost, and how funding for this mission can be raised. These issues are addressed.

  16. A COMPARISON OF LIDAR REFLECTANCE AND RADIOMETRICALLY CALIBRATED HYPERSPECTRAL IMAGERY

    Directory of Open Access Journals (Sweden)

    A. Roncat

    2016-06-01

    Full Text Available In order to retrieve results comparable under different flight parameters and among different flight campaigns, passive remote sensing data such as hyperspectral imagery need to undergo a radiometric calibration. While this calibration, aiming at the derivation of physically meaningful surface attributes such as a reflectance value, is quite cumbersome for passively sensed data and relies on a number of external parameters, the situation is by far less complicated for active remote sensing techniques such as lidar. This fact motivates the investigation of the suitability of full-waveform lidar as a “single-wavelength reflectometer” to support radiometric calibration of hyperspectral imagery. In this paper, this suitability was investigated by means of an airborne hyperspectral imagery campaign and an airborne lidar campaign recorded over the same area. Criteria are given to assess diffuse reflectance behaviour; the distribution of reflectance derived by the two techniques were found comparable in four test areas where these criteria were met. This is a promising result especially in the context of current developments of multi-spectral lidar systems.

  17. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning.

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-01-01

    Brain computer interfaces (BCIs) have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery) and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects' performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android's hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training.

  18. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning.

    Directory of Open Access Journals (Sweden)

    Maryam Alimardani

    Full Text Available Brain computer interfaces (BCIs have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects' performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android's hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training.

  19. The Use of Guided Imagery as an Intervention in Addressing Nonsuicidal Self-Injury

    Science.gov (United States)

    Kress, Victoria E.; Adamson, Nicole; DeMarco, Carrie; Paylo, Matthew J.; Zoldan, Chelsey A.

    2013-01-01

    This article presents guided imagery as an intervention that can be used to address clients' nonsuicidal self-injurious behaviors. Guided imagery is a behavioral therapy technique that involves the use of positive thoughts or images to regulate negative emotional experiences, and it can be used to prevent and manage impulses to self-injure.…

  20. A mission to Mercury and a mission to the moons of Mars

    Science.gov (United States)

    1993-07-01

    Two Advanced Design Projects were completed this academic year at Penn State - a mission to the planet Mercury and a mission to the moons of Mars (Phobos and Deimos). At the beginning of the fall semester the students were organized into six groups and given their choice of missions. Once a mission was chosen, the students developed conceptual designs. These designs were then evaluated at the end of the fall semester and combined into two separate mission scenarios. To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form two mission teams. An integration team consisting of two members from each group was formed for each mission team so that communication and exchange of information would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Lewis Research Center Advanced Projects Office. Robotic planetary missions throughout the solar system can be considered valuable precursors to human visits and test beds for innovative technology. For example, by studying the composition of the Martian moons, scientists may be able to determine if their resources may be used or synthesized for consumption during a first human visit.

  1. Landsat and agriculture—Case studies on the uses and benefits of Landsat imagery in agricultural monitoring and production

    Science.gov (United States)

    Leslie, Colin R.; Serbina, Larisa O.; Miller, Holly M.

    2017-03-29

    Executive SummaryThe use of Landsat satellite imagery for global agricultural monitoring began almost immediately after the launch of Landsat 1 in 1972, making agricultural monitoring one of the longest-standing operational applications for the Landsat program. More recently, Landsat imagery has been used in domestic agricultural applications as an input for field-level production management. The enactment of the U.S. Geological Survey’s free and open data policy in 2008 and the launch of Landsat 8 in 2013 have both influenced agricultural applications. This report presents two primary sets of case studies on the applications and benefits of Landsat imagery use in agriculture. The first set examines several operational applications within the U.S. Department of Agriculture (USDA) and the second focuses on private sector applications for agronomic management.  Information on the USDA applications is provided in the U.S. Department of Agriculture Uses of Landsat Imagery for Global and Domestic Agricultural Monitoring section of the report in the following subsections:Estimating Crop Production.—Provides an overview of how Landsat satellite imagery is used to estimate crop production, including the spectral bands most frequently utilized in this application.Monitoring Consumptive Water Use.—Highlights the role of Landsat imagery in monitoring consumptive water use for agricultural production. Globally, a significant amount of agricultural production relies on irrigation, so monitoring water resources is a critical component of agricultural monitoring. National Agricultural Statistics Service—Cropland Data Layer.—Highlights the use of Landsat imagery in developing the annual Cropland Data Layer, a crop-specific land cover classification product that provides information on more than 100 crop categories grown in the United States. Foreign Agricultural Service—Global Agricultural Monitoring.—Highlights Landsat’s role in monitoring global agricultural

  2. Facilitating the exploitation of ERTS imagery using snow enhancement techniques

    Science.gov (United States)

    Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.

    1973-01-01

    The author has identified the following significant results. Detection and analysis of fracture systems can be more effectively conducted utilizing snow cover as an enhancement tool. From analysis within the Great Barrington Test Site it appears that the use of aeromagnetic data effectively supplements lineament data acquired using ERTS imagery. Coincidence of lineaments derived from aeromagnetics with lineaments interpreted from ERTS imagery apparently indicate the presence of mineralized fracture systems and dikes. Utilizing both tools can increase the speed and efficiency of mineral exploration and geological mapping in areas where bedrock is obscured by a thick unconsolidated sediment cover.

  3. Worry, problem elaboration and suppression of imagery: the role of concreteness.

    Science.gov (United States)

    Stöber, J

    1998-01-01

    Both lay concept and scientific theory claim that worry may be helpful for defining and analyzing problems. Recent studies, however, indicate that worrisome problem elaborations are less concrete than worry-free problem elaborations. This challenges the problem solving view of worry because abstract problem analyses are unlikely to lead to concrete problem solutions. Instead the findings support the avoidance theory of worry which claims that worry suppresses aversive imagery. Following research findings in the dual-coding framework [Paivio, A. (1971). Imagery and verbal processes. New York: Holt, Rhinehart and Winston; Paivio, A. (1986). Mental representations: a dual coding approach. New York: Oxford University Press.], the present article proposes that reduced concreteness may play a central role in the understanding of worry. First, reduced concreteness can explain how worry reduces imagery. Second, it offers an explanation why worrisome problem analyses are unlikely to arrive at solutions. Third, it provides a key for the understanding of worry maintenance.

  4. Facilitating the exploitation of ERTS-1 imagery utilizing snow enhancement techniques

    Science.gov (United States)

    Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.

    1973-01-01

    The author has identified the following significant results. Snow cover in combination with low angle solar illumination has been found to provide increased tonal contrast of surface feature and is useful in the detection of bedrock fractures. Identical fracture systems were not as readily detectable in the fall due to the lack of a contrasting surface medium (snow) and a relatively high sun angle. Low angle solar illumination emphasizes topographic expressions not as apparent on imagery acquired with a higher sun angle. A strong correlation exists between the major fracture-lineament directions interpreted from multi-sensor imagery (including snow-free and snow cover ERTS) and the strike of bedrock joints recorded in the field indicating the structural origin of interpreted fracture-lineaments. A fracture-annotated ERTS-1 photo base map (1:250,000 scale) is being prepared for western Massachusetts. The map will document the utilization of ERTS-1 imagery for geological analysis in comparative snow-free and snow-covered terrain.

  5. Bomber Deterrence Missions: Criteria To Evaluate Mission Effectiveness

    Science.gov (United States)

    2016-02-16

    international security, the practice of general deterrence usually occurs when nations feel insecure , suspicious or even hostility towards them but...both a deterrence and assurance mission even though it was not planned or advertised as such. Since the intent of this mission was partly perceived

  6. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  7. D Surface Generation from Aerial Thermal Imagery

    Science.gov (United States)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  8. Rehabilitation of the elbow extension with motor imagery in a patient with quadriplegia after tendon transfer.

    Science.gov (United States)

    Grangeon, Murielle; Guillot, Aymeric; Sancho, Pierre-Olivier; Picot, Marion; Revol, Patrice; Rode, Gilles; Collet, Christian

    2010-07-01

    To test the effect of a postsurgical motor imagery program in the rehabilitation of a patient with quadriplegia. Crossover design with kinematic analysis. Rehabilitation Hospital of Lyon. Study approved by the local Human Research Ethics Committee. C6-level injured patient (American Spinal Injury Association Impairment Scale grade A) with no voluntary elbow extension (triceps brachialis score 1). The surgical procedure was to transfer the distal insertion of the biceps brachii onto the triceps tendon of both arms. The postsurgical intervention on the left arm included 10 sessions of physical rehabilitation followed by 10 motor imagery sessions of 30 minutes each. The patient underwent 5 sessions a week during 2 consecutive weeks. The motor imagery content included mental representations based on elbow extension involved in goal-directed movements. The rehabilitation period of the right arm was reversed, with motor imagery performed first, followed by physical therapy. The kinematics of upper-limb movements was recorded (movement time and variability) before and after each type of rehabilitation period. A long-term retention test was performed 1 month later. Motor imagery training enhanced motor recovery by reducing hand trajectory variability-that is, improving smoothness. Motor performance then remained stable over 1 month. Motor imagery improved motor recovery when associated with physical therapy, with motor performance remaining stable over the 1-month period. We concluded that motor imagery should be successfully associated with classic rehabilitation procedure after tendon transfer. Physical sessions may thus be shortened if too stressful or painful. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. The Impact of Mission Duration on a Mars Orbital Mission

    Science.gov (United States)

    Arney, Dale; Earle, Kevin; Cirillo, Bill; Jones, Christopher; Klovstad, Jordan; Grande, Melanie; Stromgren, Chel

    2017-01-01

    Performance alone is insufficient to assess the total impact of changing mission parameters on a space mission concept, architecture, or campaign; the benefit, cost, and risk must also be understood. This paper examines the impact to benefit, cost, and risk of changing the total mission duration of a human Mars orbital mission. The changes in the sizing of the crew habitat, including consumables and spares, was assessed as a function of duration, including trades of different life support strategies; this was used to assess the impact on transportation system requirements. The impact to benefit is minimal, while the impact on cost is dominated by the increases in transportation costs to achieve shorter total durations. The risk is expected to be reduced by decreasing total mission duration; however, large uncertainty exists around the magnitude of that reduction.

  10. The employment of weather satellite imagery in an effort to identify and locate the forest-tundra ecotone in Canada

    Science.gov (United States)

    Aldrich, S. A.; Aldrich, F. T.; Rudd, R. D.

    1969-01-01

    Weather satellite imagery provides the only routinely available orbital imagery depicting the high latitudes. Although resolution is low on this imagery, it is believed that a major natural feature, notably linear in expression, should be mappable on it. The transition zone from forest to tundra, the ecotone, is such a feature. Locational correlation is herein established between a linear signature on the imagery and several ground truth positions of the ecotone in Canada.

  11. TONE AND IMAGERY IN TENNYSON‟S „TITHONUS‟

    Directory of Open Access Journals (Sweden)

    Muhammad Rifqi

    2017-04-01

    Full Text Available Studying poetry is considered the most difficult by most of the students in my classes in EFL context. This can be understood since poetry in general has a unique form different from other types of literary works. With very limited lines and space provided in poetry, poets are able to put forward their ideas. Such reality enables readers to explore the most possible and acceptable meaning of poetry. However, it seems impossible for readers to find out the poets‘ exact intended meaning through their writings. So, it is notthe readers‘ job to get the poets‘ exact intended meaning but to explore the possible and acceptable meaning by using the clues presented within the poem. In interpreting the poem‘s meaning, readers should consider any poetic devices applied by the poet in expressing his/her ideas. Poets are very intelligent in playing with figures of speech. They use figurative languages more freshly and vividly than common writers. Through this article, I intend to investigate how the tone and imagery are applied in the poem ―Tithonus‖ written by Lord Alfred Tennyson (1809-1892, the most popular poet of Victorian Era. This poem is very rich of imagery. Afterward, the tone will also be scrutinized. As all poetic devices work complementarily and so do tone and imagery to support each other.I will also show how they work intertwiningly together in creating the whole meaning of the poem.

  12. Conventional Microscopy vs. Computer Imagery in Chiropractic Education.

    Science.gov (United States)

    Cunningham, Christine M; Larzelere, Elizabeth D; Arar, Ilija

    2008-01-01

    As human tissue pathology slides become increasingly difficult to obtain, other methods of teaching microscopy in educational laboratories must be considered. The purpose of this study was to evaluate our students' satisfaction with newly implemented computer imagery based laboratory instruction and to obtain input from their perspective on the advantages and disadvantages of computerized vs. traditional microscope laboratories. This undertaking involved the creation of a new computer laboratory. Robbins and Cotran Pathologic Basis of Disease, 7(th)ed, was chosen as the required text which gave students access to the Robbins Pathology website, including complete content of text, Interactive Case Study Companion, and Virtual Microscope. Students had experience with traditional microscopes in their histology and microbiology laboratory courses. Student satisfaction with computer based learning was assessed using a 28 question survey which was administered to three successive trimesters of pathology students (n=193) using the computer survey website Zoomerang. Answers were given on a scale of 1-5 and statistically analyzed using weighted averages. The survey data indicated that students were satisfied with computer based learning activities during pathology laboratory instruction. The most favorable aspect to computer imagery was 24-7 availability (weighted avg. 4.16), followed by clarification offered by accompanying text and captions (weighted avg. 4.08). Although advantages and disadvantages exist in using conventional microscopy and computer imagery, current pathology teaching environments warrant investigation of replacing traditional microscope exercises with computer applications. Chiropractic students supported the adoption of computer-assisted instruction in pathology laboratories.

  13. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  14. Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks

    Science.gov (United States)

    Rathee, Dheeraj; Cecotti, Hubert; Prasad, Girijesh

    2017-10-01

    Objective. The majority of the current approaches of connectivity based brain-computer interface (BCI) systems focus on distinguishing between different motor imagery (MI) tasks. Brain regions associated with MI are anatomically close to each other, hence these BCI systems suffer from low performances. Our objective is to introduce single-trial connectivity feature based BCI system for cognition imagery (CI) based tasks wherein the associated brain regions are located relatively far away as compared to those for MI. Approach. We implemented time-domain partial Granger causality (PGC) for the estimation of the connectivity features in a BCI setting. The proposed hypothesis has been verified with two publically available datasets involving MI and CI tasks. Main results. The results support the conclusion that connectivity based features can provide a better performance than a classical signal processing framework based on bandpass features coupled with spatial filtering for CI tasks, including word generation, subtraction, and spatial navigation. These results show for the first time that connectivity features can provide a reliable performance for imagery-based BCI system. Significance. We show that single-trial connectivity features for mixed imagery tasks (i.e. combination of CI and MI) can outperform the features obtained by current state-of-the-art method and hence can be successfully applied for BCI applications.

  15. Intense imagery movements: a common and distinct paediatric subgroup of motor stereotypies.

    Science.gov (United States)

    Robinson, Sally; Woods, Martin; Cardona, Francesco; Baglioni, Valentina; Hedderly, Tammy

    2014-12-01

    The aim of this article is to describe a subgroup of children who presented with stereotyped movements in the context of episodes of intense imagery. This is of relevance to current discussions regarding the clinical usefulness of diagnosing motor stereotypies during development. The sample consisted of 10 children (nine males, one female; mean age 8y 6mo [SD 2y 5mo], range 6-15y). Referrals were from acute paediatricians, neurologists, and tertiary epilepsy services. Children were assessed by multidisciplinary teams with expertise in paediatric movement disorders. Stereotypies presented as paroxysmal complex movements involving upper and lower limbs. Imagery themes typically included computer games (60%), cartoons/films (40%), and fantasy scenes (30%). Comorbid developmental difficulties were reported for 80% of children. Brain imaging and electrophysiological investigations had been conducted for 50% of the children before referral to the clinic. The descriptive term 'intense imagery movements' (IIM) was applied if (after interview) the children reported engaging in acts of imagery while performing stereotyped movements. We believe these children may form a common and discrete stereotypy subgroup, with the concept of IIM being clinically useful to ensure the accurate diagnosis and clinical management of this paediatric movement disorder. © 2014 Mac Keith Press.

  16. Retrieval and Mapping of Heavy Metal Concentration in Soil Using Time Series Landsat 8 Imagery

    Science.gov (United States)

    Fang, Y.; Xu, L.; Peng, J.; Wang, H.; Wong, A.; Clausi, D. A.

    2018-04-01

    Heavy metal pollution is a critical global environmental problem which has always been a concern. Traditional approach to obtain heavy metal concentration relying on field sampling and lab testing is expensive and time consuming. Although many related studies use spectrometers data to build relational model between heavy metal concentration and spectra information, and then use the model to perform prediction using the hyperspectral imagery, this manner can hardly quickly and accurately map soil metal concentration of an area due to the discrepancies between spectrometers data and remote sensing imagery. Taking the advantage of easy accessibility of Landsat 8 data, this study utilizes Landsat 8 imagery to retrieve soil Cu concentration and mapping its distribution in the study area. To enlarge the spectral information for more accurate retrieval and mapping, 11 single date Landsat 8 imagery from 2013-2017 are selected to form a time series imagery. Three regression methods, partial least square regression (PLSR), artificial neural network (ANN) and support vector regression (SVR) are used to model construction. By comparing these models unbiasedly, the best model are selected to mapping Cu concentration distribution. The produced distribution map shows a good spatial autocorrelation and consistency with the mining area locations.

  17. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  18. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration.

    Science.gov (United States)

    Shibata, E; Kaneko, F

    2013-04-29

    The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. THE ORTHOPAEDIC REHABILITATION OF BALANCE: AN EXPERIMENTAL STUDY ON THE ROLE OF MENTAL IMAGERY AND EMOTIONAL VARIABLES.

    Directory of Open Access Journals (Sweden)

    Santo F. Di Nuovo

    2015-05-01

    Full Text Available Mental Imagery (i.e., processing of objects’ properties and spatial relations, including the ability of mentally rotating and manipulating objects in the space, is relevant for movement and its development, and particularly for rehabilitation of motor skills. Few studies aimed at assessing  the efficacy of imagery training used objective scores of Mental Imagery skills, preferring self-evaluations of these abilities reported by the subjects themselves. The aim of the paper was to explore the relevance of Mental Imagery, assessed by objective tests, in predicting the improvement of balance skills, after a standard rehabilitative training in orthopaedic settings; taking into account also emotional variables as anxiety and depression. A controlled study was conducted assessing the changes in balance skills after rehabilitative training. The sample was composed of 30 orthopaedic inpatients (females 66.7%, age range 47-91 years. To measure the dependent variable for pre-post assessment, B-scale from Performance-oriented mobility assessment test (POMA was used. Independent variables were measured using Mental Imagery Test, Mini-Mental State Examination, Hamilton Depression Rating Scale and Hamilton Anxiety Rating Scales. The best predictor of improvement in balance after rehabilitation is the Mental Imagery test, followed by age and mental efficiency. Anxiety predicts negatively the improvement, while education and depression appear to influence less the rehabilitation process. In conclusion, the study demonstrates that mental imagery is relevant in helping balance rehabilitation. A training of this function could be essential for clinical practice; the trainers should assess preliminarily the subject's attitude and ability to use mental imagery, with the aim of optimizing the rehabilitative process.

  20. Assessing Greater Sage-Grouse Selection of Brood-Rearing Habitat Using Remotely-Sensed Imagery: Can Readily Available High-Resolution Imagery Be Used to Identify Brood-Rearing Habitat Across a Broad Landscape?

    Science.gov (United States)

    Westover, Matthew; Baxter, Jared; Baxter, Rick; Day, Casey; Jensen, Ryan; Petersen, Steve; Larsen, Randy

    2016-01-01

    Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined which characteristics of brood-rearing habitat could be used in widely available, high resolution imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of these explanatory variables at three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each spatial extent were represented in our top model with the majority being associated with the larger (795 meter) spatial extent. When applied to our study area, our top model predicted 75% of naïve brood locations suggesting reasonable success using this method and widely available NAIP imagery. We encourage application of our methodology to other sage-grouse populations and species of conservation concern.

  1. Aerial Photography and Imagery, Ortho-Corrected - USAAIR 2003 Orthophotography

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — USA Airphoto Imagery (http://www.airphotousa.com). Used with the Photomapper Application (http://www.airphotousa.com/Products/PhotoMapper/index.html). April, 2003 -...

  2. Aerial Photography and Imagery, Ortho-Corrected - USAAIR 2005 Orthophotography

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — USA Airphoto Imagery (http://www.airphotousa.com). Used with the Photomapper Application (http://www.airphotousa.com/Products/PhotoMapper/index.html). March, 2005 -...

  3. A Cross-Modal Perspective on the Relationships between Imagery and Working Memory

    OpenAIRE

    Likova, Lora T.

    2013-01-01

    Mapping the distinctions and interrelationships between imagery and working memory (WM) remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and WM involve a form of internal representation available to our awareness. In WM, there is a further emphasis on goal-oriented, active maintenance, and use of this conscious representation to guide voluntary action. Multicomponent WM models incorporat...

  4. The Effects of Progressive Muscle Relaxation and Guided Imagery on gestational hypertension

    OpenAIRE

    Ranjkesh F

    2017-01-01

    Introduction: Hypertension is a common disorder in pregnancy. Although this disorder is accompanied by many difficulties in pregnancy, no effective therapy has still been found to treat it. One of the main methods in the treatment of hypertension is stress reducing programs such as relaxation and Guided Imagery. This study is aimed to evaluate the effects of progressive muscle relaxation and guided imagery on the gestational hypertension. Methods: The present study is a randomized clinical...

  5. The use of color infrared imagery for the study of marsh buggy tracks

    Science.gov (United States)

    Whitehurst, C. A.; Doiron, L. N.

    1974-01-01

    Color infrared imagery is used to determine the location of buggy routes and to quantify the extent of tracks in a selected area where the marsh is seriously dissected. The imagery is used to show successive stages of destruction. It is recommended that alternate routes be identified in the operating area to eliminate continuous use of the same route and facilitate faster revegetation.

  6. The Role of Imagery and Experiences in the Construction of a Tourism Destination Image

    Directory of Open Access Journals (Sweden)

    Nelson Matos

    2015-06-01

    Full Text Available This paper addresses the role of imagery and tourism experiences (TEs in the construction of tourism destination image (TDI. It highlights the importance of the construct imagery at all stages of consumption, because of the intangibility that characterizes tourism and services in general. This aspect gains importance since it is impossible for tourists to experience the desired holidays prior to visitation, leading the way for imagery to become an essential element to inspire and to influence them during the decision-making process, and consumption before, during and after the experience. A conceptual model resulting from the literature review and the potential theoretical contribution of the model are discussed.

  7. Optimized Motor Imagery Paradigm Based on Imagining Chinese Characters Writing Movement.

    Science.gov (United States)

    Qiu, Zhaoyang; Allison, Brendan Z; Jin, Jing; Zhang, Yu; Wang, Xingyu; Li, Wei; Cichocki, Andrzej

    2017-07-01

    motor imagery (MI) is a mental representation of motor behavior. The MI-based brain computer interfaces (BCIs) can provide communication for the physically impaired. The performance of MI-based BCI mainly depends on the subject's ability to self-modulate electroencephalogram signals. Proper training can help naive subjects learn to modulate brain activity proficiently. However, training subjects typically involve abstract motor tasks and are time-consuming. to improve the performance of naive subjects during motor imagery, a novel paradigm was presented that would guide naive subjects to modulate brain activity effectively. In this new paradigm, pictures of the left or right hand were used as cues for subjects to finish the motor imagery task. Fourteen healthy subjects (11 male, aged 22-25 years, and mean 23.6±1.16) participated in this study. The task was to imagine writing a Chinese character. Specifically, subjects could imagine hand movements corresponding to the sequence of writing strokes in the Chinese character. This paradigm was meant to find an effective and familiar action for most Chinese people, to provide them with a specific, extensively practiced task and help them modulate brain activity. results showed that the writing task paradigm yielded significantly better performance than the traditional arrow paradigm (p paradigm was easier. the proposed new motor imagery paradigm could guide subjects to help them modulate brain activity effectively. Results showed that there were significant improvements using new paradigm, both in classification accuracy and usability.

  8. The influence of motor imagery on the learning of a fine hand motor skill

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; Verwey, Willem B.; van der Lubbe, Rob

    2017-01-01

    Motor imagery has been argued to affect the acquisition of motor skills. The present study examined the specificity of motor imagery on the learning of a fine hand motor skill by employing a modified discrete sequence production task: the Go/NoGo DSP task. After an informative cue, a response

  9. The users, uses, and value of Landsat and other moderate-resolution satellite imagery in the United States-Executive report

    Science.gov (United States)

    Miller, Holly M.; Sexton, Natalie R.; Koontz, Lynne; Loomis, John; Koontz, Stephen R.; Hermans, Caroline

    2011-01-01

    Moderate-resolution imagery (MRI), such as that provided by the Landsat satellites, provides unique spatial information for use by many people both within and outside of the United States (U.S.). However, exactly who these users are, how they use the imagery, and the value and benefits derived from the information are, to a large extent, unknown. To explore these issues, social scientists at the USGS Fort Collins Science Center conducted a study of U.S.-based MRI users from 2008 through 2010 in two parts: 1) a user identification and 2) a user survey. The objectives for this study were to: 1) identify and classify U.S.-based users of this imagery; 2) better understand how and why MRI, and specifically Landsat, is being used; and 3) qualitatively and quantitatively measure the value and societal benefits of MRI (focusing on Landsat specifically). The results of the survey revealed that respondents from multiple sectors use Landsat imagery in many different ways, as demonstrated by the breadth of project locations and scales, as well as application areas. The value of Landsat imagery to these users was demonstrated by the high importance placed on the imagery, the numerous benefits received from projects using Landsat imagery, the negative impacts if Landsat imagery was no longer available, and the substantial willingness to pay for replacement imagery in the event of a data gap. The survey collected information from users who are both part of and apart from the known user community. The diversity of the sample delivered results that provide a baseline of knowledge about the users, uses, and value of Landsat imagery. While the results supply a wealth of information on their own, they can also be built upon through further research to generate a more complete picture of the population of Landsat users as a whole.

  10. Benchmarking flood models from space in near real-time: accommodating SRTM height measurement errors with low resolution flood imagery

    Science.gov (United States)

    Schumann, G.; di Baldassarre, G.; Alsdorf, D.; Bates, P. D.

    2009-04-01

    In February 2000, the Shuttle Radar Topography Mission (SRTM) measured the elevation of most of the Earth's surface with spatially continuous sampling and an absolute vertical accuracy greater than 9 m. The vertical error has been shown to change with topographic complexity, being less important over flat terrain. This allows water surface slopes to be measured and associated discharge volumes to be estimated for open channels in large basins, such as the Amazon. Building on these capabilities, this paper demonstrates that near real-time coarse resolution radar imagery of a recent flood event on a 98 km reach of the River Po (Northern Italy) combined with SRTM terrain height data leads to a water slope remarkably similar to that derived by combining the radar image with highly accurate airborne laser altimetry. Moreover, it is shown that this space-borne flood wave approximation compares well to a hydraulic model and thus allows the performance of the latter, calibrated on a previous event, to be assessed when applied to an event of different magnitude in near real-time. These results are not only of great importance to real-time flood management and flood forecasting but also support the upcoming Surface Water and Ocean Topography (SWOT) mission that will routinely provide water levels and slopes with higher precision around the globe.

  11. Toward automated face detection in thermal and polarimetric thermal imagery

    Science.gov (United States)

    Gordon, Christopher; Acosta, Mark; Short, Nathan; Hu, Shuowen; Chan, Alex L.

    2016-05-01

    Visible spectrum face detection algorithms perform pretty reliably under controlled lighting conditions. However, variations in illumination and application of cosmetics can distort the features used by common face detectors, thereby degrade their detection performance. Thermal and polarimetric thermal facial imaging are relatively invariant to illumination and robust to the application of makeup, due to their measurement of emitted radiation instead of reflected light signals. The objective of this work is to evaluate a government off-the-shelf wavelet based naïve-Bayes face detection algorithm and a commercial off-the-shelf Viola-Jones cascade face detection algorithm on face imagery acquired in different spectral bands. New classifiers were trained using the Viola-Jones cascade object detection framework with preprocessed facial imagery. Preprocessing using Difference of Gaussians (DoG) filtering reduces the modality gap between facial signatures across the different spectral bands, thus enabling more correlated histogram of oriented gradients (HOG) features to be extracted from the preprocessed thermal and visible face images. Since the availability of training data is much more limited in the thermal spectrum than in the visible spectrum, it is not feasible to train a robust multi-modal face detector using thermal imagery alone. A large training dataset was constituted with DoG filtered visible and thermal imagery, which was subsequently used to generate a custom trained Viola-Jones detector. A 40% increase in face detection rate was achieved on a testing dataset, as compared to the performance of a pre-trained/baseline face detector. Insights gained in this research are valuable in the development of more robust multi-modal face detectors.

  12. Crop Type Classification Using Vegetation Indices of RapidEye Imagery

    Science.gov (United States)

    Ustuner, M.; Sanli, F. B.; Abdikan, S.; Esetlili, M. T.; Kurucu, Y.

    2014-09-01

    Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.

  13. Reliability and Validity of Digital Imagery Methodology for Measuring Starting Portions and Plate Waste from School Salad Bars.

    Science.gov (United States)

    Bean, Melanie K; Raynor, Hollie A; Thornton, Laura M; Sova, Alexandra; Dunne Stewart, Mary; Mazzeo, Suzanne E

    2018-04-12

    Scientifically sound methods for investigating dietary consumption patterns from self-serve salad bars are needed to inform school policies and programs. To examine the reliability and validity of digital imagery for determining starting portions and plate waste of self-serve salad bar vegetables (which have variable starting portions) compared with manual weights. In a laboratory setting, 30 mock salads with 73 vegetables were made, and consumption was simulated. Each component (initial and removed portion) was weighed; photographs of weighed reference portions and pre- and post-consumption mock salads were taken. Seven trained independent raters visually assessed images to estimate starting portions to the nearest ¼ cup and percentage consumed in 20% increments. These values were converted to grams for comparison with weighed values. Intraclass correlations between weighed and digital imagery-assessed portions and plate waste were used to assess interrater reliability and validity. Pearson's correlations between weights and digital imagery assessments were also examined. Paired samples t tests were used to evaluate mean differences (in grams) between digital imagery-assessed portions and measured weights. Interrater reliabilities were excellent for starting portions and plate waste with digital imagery. For accuracy, intraclass correlations were moderate, with lower accuracy for determining starting portions of leafy greens compared with other vegetables. However, accuracy of digital imagery-assessed plate waste was excellent. Digital imagery assessments were not significantly different from measured weights for estimating overall vegetable starting portions or waste; however, digital imagery assessments slightly underestimated starting portions (by 3.5 g) and waste (by 2.1 g) of leafy greens. This investigation provides preliminary support for use of digital imagery in estimating starting portions and plate waste from school salad bars. Results might inform

  14. Automated Sargassum Detection for Landsat Imagery

    Science.gov (United States)

    McCarthy, S.; Gallegos, S. C.; Armstrong, D.

    2016-02-01

    We implemented a system to automatically detect Sargassum, a floating seaweed, in 30-meter LANDSAT-8 Operational Land Imager (OLI) imagery. Our algorithm for Sargassum detection is an extended form of Hu's approach to derive a floating algae index (FAI) [1]. Hu's algorithm was developed for Moderate Resolution Imaging Spectroradiometer (MODIS) data, but we extended it for use with the OLI bands centered at 655, 865, and 1609 nm, which are comparable to the MODIS bands located at 645, 859, and 1640 nm. We also developed a high resolution true color product to mask cloud pixels in the OLI scene by applying a threshold to top of the atmosphere (TOA) radiances in the red (655 nm), green (561 nm), and blue (443 nm) wavelengths, as well as a method for removing false positive identifications of Sargassum in the imagery. Hu's algorithm derives a FAI for each Sargassum identified pixel. Our algorithm is currently set to only flag the presence of Sargassum in an OLI pixel by classifying any pixel with a FAI > 0.0 as Sargassum. Additionally, our system geo-locates the flagged Sargassum pixels identified in the OLI imagery into the U.S. Navy Global HYCOM model grid. One element of the model grid covers an area 0.125 degrees of latitude by 0.125 degrees of longitude. To resolve the differences in spatial coverage between Landsat and HYCOM, a scheme was developed to calculate the percentage of pixels flagged within the grid element and if above a threshold, it will be flagged as Sargassum. This work is a part of a larger system, sponsored by NASA/Applied Science and Technology Project at J.C. Stennis Space Center, to forecast when and where Sargassum will land on shore. The focus area of this work is currently the Texas coast. Plans call for extending our efforts into the Caribbean. References: [1] Hu, Chuanmin. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment 113 (2009) 2118-2129.

  15. High resolution radar satellite imagery analysis for safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Christian; Eineder, Michael [German Aerospace Center, Remote Sensing Technology Institute, Department of SAR Signal Processing, Wessling, (Germany); Rezniczek, Arnold [UBA GmbH, Herzogenrath, (Germany); Niemeyer, Irmgard [Forschungszentrum Juelich, Institue of Energy and Climate Research, IEK-6: Nuclear Waste Management and Reactor Safety, Juelich, (Germany)

    2011-12-15

    For monitoring nuclear sites, the use of Synthetic Aperture Radar (SAR) imagery shows essential promises. Unlike optical remote sensing instruments, radar sensors operate under almost all weather conditions and independently of the sunlight, i.e. time of the day. Such technical specifications are required both for continuous and for ad-hoc, timed surveillance tasks. With Cosmo-Skymed, TerraSARX and Radarsat-2, high-resolution SAR imagery with a spatial resolution up to 1m has recently become available. Our work therefore aims to investigate the potential of high-resolution TerraSAR data for nuclear monitoring. This paper focuses on exploiting amplitude of a single acquisition, assessing amplitude changes and phase differences between two acquisitions, and PS-InSAR processing of an image stack.

  16. Paul’s use of slavery imagery in the Hagar allegory

    Directory of Open Access Journals (Sweden)

    P. Balla

    2009-07-01

    Full Text Available In this article it is examined how Paul used slavery imagery in Galatians 4 when dealing with the theme of God’s “children”. The use of words related to the semantic field of slavery in Galatians is briefly discussed. Paul uses these words both with their literal meaning and in a figurative sense. This is also true for the main passage to be discussed in this article – the Hagar allegory. In Galatians 4, Paul first speaks about a real slave wo- man, and then uses this imagery to describe those who do not accept God’s promises to have been fulfilled in Jesus. The way Paul uses the term “allegorise” is examined. It is argued that in Galatians 4 Paul uses the slavery imagery in order to speak about aspects of one’s relationship to God. The background of his use of the Hagar allegory is his “salvation historical” view concerning God’s covenantal relationship to his people. He uses allusions to Old Testament texts to express his view re- garding who belongs to God’s people in the era of the new covenant.

  17. Robot-Aided Upper-Limb Rehabilitation Based on Motor Imagery EEG

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2011-09-01

    Full Text Available Stroke is a leading cause of disability worldwide. In this paper, a novel robot-assisted rehabilitation system based on motor imagery electroencephalography (EEG is developed for regular training of neurological rehabilitation for upper limb stroke patients. Firstly, three-dimensional animation was used to guide the patient image the upper limb movement and EEG signals were acquired by EEG amplifier. Secondly, eigenvectors were extracted by harmonic wavelet transform (HWT and linear discriminant analysis (LDA classifier was utilized to classify the pattern of the left and right upper limb motor imagery EEG signals. Finally, PC triggered the upper limb rehabilitation robot to perform motor therapy and gave the virtual feedback. Using this robot-assisted upper limb rehabilitation system, the patient's EEG of upper limb movement imagination is translated to control rehabilitation robot directly. Consequently, the proposed rehabilitation system can fully explore the patient's motivation and attention and directly facilitate upper limb post-stroke rehabilitation therapy. Experimental results on unimpaired participants were presented to demonstrate the feasibility of the rehabilitation system. Combining robot-assisted training with motor imagery-based BCI will make future rehabilitation therapy more effective. Clinical testing is still required for further proving this assumption.

  18. Aerial Photography and Imagery, Ortho-Corrected - VOLUSIA 2006 Orthophotography

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — 2006, 6 inch Pixel Color Orthophotography - - Panchromatic, red, green, blue and near infrared imagery was acquired using the Leica ADS40 multi-spectral scanner (see...

  19. Aerial Photography and Imagery, Ortho-Corrected - FDOT 2006 Orthophotography

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — This Imagery was provided by Florida Department of Transportation to the Volusia County Property Appraiser. The photography was acquired Dec 2005 through Feb 2006. 1...

  20. NAIP Aerial Imagery (Resampled), Salton Sea - 2005 [ds425

    Data.gov (United States)

    California Natural Resource Agency — NAIP 2005 aerial imagery that has been resampled from 1-meter source resolution to approximately 30-meter resolution. This is a mosaic composed from several NAIP...