WorldWideScience

Sample records for mirror optical system

  1. Optical systems for synchrotron radiation. Lecture 2. Mirror systems

    Howells, M.R.

    1986-02-01

    The process of reflection of VUV and x-radiation is summarized. The functions of mirrors in synchrotron beamlines are described, which include deflection, filtration, power absorption, formation of a real image, focusing, and collimation. Fabrication of optical surfaces for synchrotron radiation beamlines are described, and include polishing of a near spherical surface as well as bending a cylindrical surface to toroidal shape. The imperfections present in mirrors, aberrations and surface figure inaccuracy, are discussed. Calculation of the thermal load of a mirror in a synchrotron radiation beam and the cooling of the mirror are covered briefly. 50 refs., 7 figs

  2. EUV multilayer mirror, optical system including a multilayer mirror and method of manufacturing a multilayer mirror

    Huang, Qiushi; Louis, Eric; Bijkerk, Frederik; de Boer, Meint J.; von Blanckenhagen, G.

    2016-01-01

    A multilayer mirror (M) reflecting extreme ultraviolet (EUV) radiation from a first wave-length range in a EUV spectral region comprises a substrate (SUB) and a stack of layers (SL) on the substrate, the stack of layers comprising layers comprising a low index material and a high index material, the

  3. Design of an optimized adaptive optics system with a photo-controlled deformable mirror

    Pilař, Jan; Bonora, Stefano; Lucianetti, Antonio; Jelínková, H.; Mocek, Tomáš

    2016-01-01

    Roč. 28, č. 13 (2016), s. 1422-1425 ISSN 1041-1135 Institutional support: RVO:68378271 Keywords : adaptive optics * closed loop systems * deformable mirror Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.375, year: 2016

  4. Development of Slewing Mirror Telescope Optical System for the UFFO-pathfinder

    Jeong, S.; Nam, J.W.; Ahn, K.-B.

    2013-01-01

    The Slewing Mirror Telescope (SMT) is the UV/optical telescope of UFFO-pathfinder. The SMT optical system is a Ritchey-Chrétien (RC) telescope of 100 mm diameter pointed by means of a gimbal-mounted flat mirror in front of the telescope. The RC telescope has a 17 × 17arcmin2 in Field of View and ...

  5. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  6. Mirror systems

    Howells, M.R.

    1985-12-01

    The physics of VUV and x-ray reflection is reviewed. The main functions of mirrors in synchrotron beamlines are stated briefly and include deflection, filtration, power absorption, formation of a real image of the source, focusing, and collimation. Methods of fabrication of optical surfaces are described. Types of imperfections are discussed, including, aberrations, surface figure inaccuracy, roughness, and degradation due to use. Calculation of the photon beam thermal load, including computer modelling, is considered. 50 refs., 7 figs

  7. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  8. Mirror systems.

    Fogassi, Leonardo; Ferrari, Pier Francesco

    2011-01-01

    Mirror neurons are a class of visuomotor neurons, discovered in the monkey premotor cortex and in an anatomically connected area of the inferior parietal lobule, that activate both during action execution and action observation. They constitute a circuit dedicated to match actions made by others with the internal motor representations of the observer. It has been proposed that this matching system enables individuals to understand others' behavior and motor intentions. Here we will describe the main features of mirror neurons in monkeys. Then we will present evidence of the presence of a mirror system in humans and of its involvement in several social-cognitive functions, such as imitation, intention, and emotion understanding. This system may have several implications at a cognitive level and could be linked to specific social deficits in humans such as autism. Recent investigations addressed the issue of the plasticity of the mirror neuron system in both monkeys and humans, suggesting also their possible use in rehabilitation. WIREs Cogn Sci 2011 2 22-38 DOI: 10.1002/wcs.89 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)

    Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff

    2004-01-01

    Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.

  10. Using geometric algebra to understand pattern rotations in multiple mirror optical systems

    Hanlon, J.; Ziock, H.

    1997-01-01

    Geometric Algebra (GA) is a new formulation of Clifford Algebra that includes vector analysis without notation changes. Most applications of Ga have been in theoretical physics, but GA is also a very good analysis tool for engineering. As an example, the authors use GA to study pattern rotation in optical systems with multiple mirror reflections. The common ways to analyze pattern rotations are to use rotation matrices or optical ray trace codes, but these are often inconvenient. The authors use GA to develop a simple expression for pattern rotation that is useful for designing or tolerancing pattern rotations in a multiple mirror optical system by inspection. Pattern rotation is used in many optical engineering systems, but it is not normally covered in optical system engineering texts. Pattern rotation is important in optical systems such as: (1) the 192 beam National ignition Facility (NIF), which uses square laser beams in close packed arrays to cut costs; (2) visual optical systems, which use pattern rotation to present the image to the observer in the appropriate orientation, and (3) the UR90 unstable ring resonator, which uses pattern rotation to fill a rectangular laser gain region and provide a filled-in laser output beam

  11. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  12. Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers

    Xie, Tuqiang; Xie, Huikai; Fedder, Gary K.; Pan, Yingtian

    2003-11-01

    Experimental results of a modified micromachined microelectromechanical systems (MEMS) mirror for substantial enhancement of the transverse laser scanning performance of endoscopic optical coherence tomography (EOCT) are presented. Image distortion due to buckling of MEMS mirror in our previous designs was analyzed and found to be attributed to excessive internal stress of the transverse bimorph meshes. The modified MEMS mirror completely eliminates bimorph stress and the resultant buckling effect, which increases the wobbling-free angular optical actuation to greater than 37°, exceeding the transverse laser scanning requirements for EOCT and confocal endoscopy. The new optical coherence tomography (OCT) endoscope allows for two-dimensional cross-sectional imaging that covers an area of 4.2 mm × 2.8 mm (limited by scope size) and at roughly 5 frames/s instead of the previous area size of 2.9 mm × 2.8 mm and is highly suitable for noninvasive and high-resolution imaging diagnosis of epithelial lesions in vivo. EOCT images of normal rat bladders and rat bladder cancers are compared with the same cross sections acquired with conventional bench-top OCT. The results clearly demonstrate the potential of EOCT for in vivo imaging diagnosis and precise guidance for excisional biopsy of early bladder cancers.

  13. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings

    Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng

    2018-01-01

    We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.

  14. A novel automotive headlight system based on digital micro-mirror devices and diffractive optical elements

    Su, Ping; Song, Yuming; Ma, Jianshe

    2018-01-01

    The DMD (Digital Micro-mirror Device) has the advantages of high refresh rate and high diffraction efficiency, and these make it become an ideal loader of multiple modes illumination. DOEs (Diffractive Optical Element) have the advantages of high degree of freedom, light weight, easy to copy, low cost etc., and can be used to reduce the weight, complexity, cost of optical system. A novel automotive headlamp system using DMD as the light distribution element and a DOE as the light field modulation device is proposed in this paper. The pure phase DOE is obtained by the GS algorithm using Rayleigh-Sommerfeld diffraction integral model. Based on the standard automotive headlamp light intensity distribution in the target plane, the amplitude distribution of DMD is obtained by numerical simulation, and the grayscale diagram loaded on the DMD can be obtained accordingly. Finally, according to simulation result, the light intensity distribution in the target plane is proportional to the national standard, hence verifies the validity of the novel system. The novel illumination system proposed in this paper provides a reliable hardware platform for the intelligent headlamps.

  15. The mirror neuron system.

    Cattaneo, Luigi; Rizzolatti, Giacomo

    2009-05-01

    Mirror neurons are a class of neurons, originally discovered in the premotor cortex of monkeys, that discharge both when individuals perform a given motor act and when they observe others perform that same motor act. Ample evidence demonstrates the existence of a cortical network with the properties of mirror neurons (mirror system) in humans. The human mirror system is involved in understanding others' actions and their intentions behind them, and it underlies mechanisms of observational learning. Herein, we will discuss the clinical implications of the mirror system.

  16. ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror

    Yang, De-Hua; Shao, Liang

    2008-09-01

    The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.

  17. Laser ablation method for cleaning of mirror surfaces for optical diagnostic systems at the ITER

    Aleksandrova, A.S.; Kuznetsov, A.P.; Gubskij, K.L.; Petrovskij, V.N.; Savelov, A.S.; Shtamm, V.G.; Buzhinskij, O.I.

    2012-01-01

    The possibility of cleaning metallic mirrors from films with complex composition by pulsed radiation from a fiber laser has been experimentally examined. It has been shown that the high initial reflection characteristics of optical elements can be recovered by choosing regimes of the action of radiation on the surface with a deposited film [ru

  18. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S. [National Research Nuclear University MEPhI (Russian Federation); Buzhinsky, O. I. [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation); Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V. [National Research Nuclear University MEPhI (Russian Federation); Tugarinov, S. N. [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-12-15

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.

  19. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    Kuznetsov, A. P.; Alexandrova, A. S.; Buzhinsky, O. I.; Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V.; Tugarinov, S. N.

    2015-01-01

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10 7 W/cm 2 . The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant

  20. Fiber optics welder having movable aligning mirror

    Higgins, Robert W.; Robichaud, Roger E.

    1981-01-01

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  1. Measuring the In-Process Figure, Final Prescription, and System Alignment of Large Optics and Segmented Mirrors Using Lidar Metrology

    Ohl, Raymond; Slotwinski, Anthony; Eegholm, Bente; Saif, Babak

    2011-01-01

    The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This technology improves the uncertainty of mirror presc ription measurement to the micron-regime.

  2. Physics of mirror systems

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies

  3. Terahertz adaptive optics with a deformable mirror.

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  4. Scattering-free optical levitation of a cavity mirror.

    Guccione, G; Hosseini, M; Adlong, S; Johnsson, M T; Hope, J; Buchler, B C; Lam, P K

    2013-11-01

    We demonstrate the feasibility of levitating a small mirror using only radiation pressure. In our scheme, the mirror is supported by a tripod where each leg of the tripod is a Fabry-Perot cavity. The macroscopic state of the mirror is coherently coupled to the supporting cavity modes allowing coherent interrogation and manipulation of the mirror motion. The proposed scheme is an extreme example of the optical spring, where a mechanical oscillator is isolated from the environment and its mechanical frequency and macroscopic state can be manipulated solely through optical fields. We model the stability of the system and find a three-dimensional lattice of trapping points where cavity resonances allow for buildup of optical field sufficient to support the weight of the mirror. Our scheme offers a unique platform for studying quantum and classical optomechanics and can potentially be used for precision gravitational field sensing and quantum state generation.

  5. Physics of mirror fusion systems

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  6. Overview of deformable mirror technologies for adaptive optics and astronomy

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  7. Secondary mirror system for the European Solar Telescope (EST)

    Cavaller, L.; Siegel, B.; Prieto, G.; Hernandez, E.; Casalta, J. M.; Mercader, J.; Barriga, J.

    2010-07-01

    The European Solar Telescope (EST) is a European collaborative project to build a 4m class solar telescope in the Canary Islands, which is now in its design study phase. The telescope will provide diffraction limited performance for several instruments observing simultaneously at the Coudé focus at different wavelengths. A multi-conjugated adaptive optics system composed of a tip-tilt mirror and several deformable mirrors will be integrated in the telescope optical path. The secondary mirror system is composed of the mirror itself (Ø800mm), the alignment drives and the cooling system needed to remove the solar heat load from the mirror. During the design study the feasibility to provide fast tip-tilt capabilities at the secondary mirror to work as the adaptive optics tip-tilt mirror is also being evaluated.

  8. Optical Correction Of Space-Based Telescopes Using A Deformable Mirror System

    2016-12-01

    492 DM. The quarter wave plates polarize the light so that as it reflects off the DM, the light is then redirected at the beam splitter to the one...1  II.  SPACE-BASED TELESCOPE DESIGN CONSIDERATIONS .......................3  A.  ADAPTIVE OPTICS...3  B.  DESIGN CONSTRAINTS

  9. Top down viewing of the inductively coupled plasma using a dual grating, direct reading spectrograph and an all mirror optical system

    Apel, C.T.; Duchane, D.V.; Palmer, B.A.

    1980-01-01

    Using an all-mirror optical system, an inductively coupled plasma is viewed top down and the light is directed to a dual grating, direct reading spectrograph. Top down viewing of the plasma, with masking of the image of the argon plasma torus at the spectrograph entrance slit, significantly reduces background signal from the source and permits the use of the depth of field of the optical system to achieve compromise conditions for viewing the plasma. Light from the plasma source is introduced to the optical system by means of a mirror situated directly over the plasma. The system is exhausted in such a way that cool air flowing past the mirror forms a thermal barrier between the mirror and the plasma. Elements such as copper and lead have atomic and ionic lines which tend to exhibit self absorption when viewed top down through the cooler ground state atoms in the plume of the plasma. One of the approaches to this problem is to shear off the plume of the plasma with a jet of air directed across the tip of the plasma. A second approach is to make use of the dual grating, direct reading spectrograph and real-time computer system which easily permits the setting of alternate lines for each element so that self absorption and matrix effects are minimized. The design of the dual-grating, direct-reading spectrograph allows for the mounting of more than 200 13-mm-dia photomultiplier tubes along the focal curves. In an effort to demonstrate the use of fiber optics as a viable technique for the closer placement of exit slits, a red sensitive photomultiplier tube was coupled with a 30-cm fiber-optic ribbon to detect light from the Li 670.784 nm line on the focal curve. It was successful and had the added advantages of absorbing second-order ultraviolet light

  10. Plasma mirrors for ultrahigh-intensity optics

    Thaury, C.; Quere, F.; Levy, A.; Ceccotti, T.; Monot, P.; Bougeard, M.; Reau, F.; D'Oliveira, P.; Martin, PH.; Geindre, J.P.; Audebert, P.; Marjoribanks, R.; Marjoribanks, R.

    2007-01-01

    Specular reflection is one of the most fundamental processes of optics. At moderate light intensities generated by conventional light sources this process is well understood. But at those capable of being produced by modern ultrahigh-intensity lasers, many new and potentially useful phenomena arise. When a pulse from such a laser hits an optically polished surface, it generates a dense plasma that itself acts as a mirror, known as a plasma mirror (PM). PMs do not just reflect the remainder of the incident beam, but can act as active optical elements. Using a set of three consecutive PMs in different regimes, we significantly improve the temporal contrast of femtosecond pulses, and demonstrate that high-order harmonics of the laser frequency can be generated through two distinct mechanisms. A better understanding of these processes should aid the development of laser-driven atto-second sources for use in fields from materials science to molecular biology. (authors)

  11. Plasma mirrors for ultrahigh-intensity optics

    Thaury, C; Quere, F; Levy, A; Ceccotti, T; Monot, P; Bougeard, M; Reau, F; D' Oliveira, P; Martin, PH [CEA, DSM, DRECAM, Serv Photons Atomes and Mol, F-91191 Gif Sur Yvette, (France); Geindre, J P; Audebert, P [Ecole Polytech, CNRS, Lab Utilisat Lasers Inst, F-91128 Palaiseau, (France); Marjoribanks, R [Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, (Canada); Marjoribanks, R [Univ Toronto, Inst Opt Sci, Toronto, ON M5S 1A7, (Canada)

    2007-07-01

    Specular reflection is one of the most fundamental processes of optics. At moderate light intensities generated by conventional light sources this process is well understood. But at those capable of being produced by modern ultrahigh-intensity lasers, many new and potentially useful phenomena arise. When a pulse from such a laser hits an optically polished surface, it generates a dense plasma that itself acts as a mirror, known as a plasma mirror (PM). PMs do not just reflect the remainder of the incident beam, but can act as active optical elements. Using a set of three consecutive PMs in different regimes, we significantly improve the temporal contrast of femtosecond pulses, and demonstrate that high-order harmonics of the laser frequency can be generated through two distinct mechanisms. A better understanding of these processes should aid the development of laser-driven atto-second sources for use in fields from materials science to molecular biology. (authors)

  12. Segmented bimorph mirrors for adaptive optics: morphing strategy.

    Bastaits, Renaud; Alaluf, David; Belloni, Edoardo; Rodrigues, Gonçalo; Preumont, André

    2014-08-01

    This paper discusses the concept of a light weight segmented bimorph mirror for adaptive optics. It focuses on the morphing strategy and addresses the ill-conditioning of the Jacobian of the segments, which are partly outside the optical pupil. Two options are discussed, one based on truncating the singular values and one called damped least squares, which minimizes a combined measure of the sensor error and the voltage vector. A comparison of various configurations of segmented mirrors was conducted; it is shown that segmentation sharply increases the natural frequency of the system with limited deterioration of the image quality.

  13. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible/infrared wide angle viewing system optical design

    Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travère, J. M.; Thellier, C.; Fermé, J. J.; Marot, L.; Buravand, O.; Perrollaz, G.; Zeile, C.

    2012-01-01

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  14. Piezoelectric deformable mirror for intra-cavity laser adaptive optics.

    Long, CS

    2008-03-01

    Full Text Available This paper describes the development of a deformable mirror to be used in conjunction with diffractive optical elements inside a laser cavity. A prototype piezoelectric unimorph adaptive mirror was developed to correct for time dependent phase...

  15. Modeling for deformable mirrors and the adaptive optics optimization program

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-01-01

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language

  16. The mirror-neuron system.

    Rizzolatti, Giacomo; Craighero, Laila

    2004-01-01

    A category of stimuli of great importance for primates, humans in particular, is that formed by actions done by other individuals. If we want to survive, we must understand the actions of others. Furthermore, without action understanding, social organization is impossible. In the case of humans, there is another faculty that depends on the observation of others' actions: imitation learning. Unlike most species, we are able to learn by imitation, and this faculty is at the basis of human culture. In this review we present data on a neurophysiological mechanism--the mirror-neuron mechanism--that appears to play a fundamental role in both action understanding and imitation. We describe first the functional properties of mirror neurons in monkeys. We review next the characteristics of the mirror-neuron system in humans. We stress, in particular, those properties specific to the human mirror-neuron system that might explain the human capacity to learn by imitation. We conclude by discussing the relationship between the mirror-neuron system and language.

  17. Anomalous transport in mirror systems

    Post, R.F.

    1979-01-01

    As now being explored for fusion applications confinement systems based on the mirror principle embody two kinds of plasma regimes. These two regimes are: (a) high-beta plasmas, stabilized against MHD and other low frequency plasma instabilities by magnetic-well fields, but characterized by non-Maxwellian ion distributions; (b) near-Maxwellian plasmas, confined electrostatically (as in the tandem mirror) or in a field-reversed region within the mirror cell. Common to both situations are the questions of anomalous transport owing to high frequency instabilities in the non-maxwellian portions of the plasmas. This report will summarize the status of theory and of experimental data bearing on these questions, with particular reference to the high temperature regimes of interest for fusion power

  18. Mirror Confinement Systems: project summaries

    1980-07-01

    This report contains descriptions of the projects supported by the Mirror Confinement Systems (MCS) Division of the Office of Fusion Energy. The individual project summaries were prepared by the principal investigators, in collaboration with MCS staff office, and include objectives and milestones for each project. In addition to project summaries, statements of Division objectives and budget summaries are also provided

  19. Electrostatic polymer-based microdeformable mirror for adaptive optics

    Zamkotsian, Frederic; Conedera, Veronique; Granier, Hugues; Liotard, Arnaud; Lanzoni, Patrick; Salvagnac, Ludovic; Fabre, Norbert; Camon, Henri

    2007-02-01

    Future adaptive optics (AO) systems require deformable mirrors with very challenging parameters, up to 250 000 actuators and inter-actuator spacing around 500 μm. MOEMS-based devices are promising for the development of a complete generation of new deformable mirrors. Our micro-deformable mirror (MDM) is based on an array of electrostatic actuators with attachments to a continuous mirror on top. The originality of our approach lies in the elaboration of layers made of polymer materials. Mirror layers and active actuators have been demonstrated. Based on the design of this actuator and our polymer process, realization of a complete polymer-MDM has been done using two process flows: the first involves exclusively polymer materials while the second uses SU8 polymer for structural layers and SiO II and sol-gel for sacrificial layers. The latest shows a better capability in order to produce completely released structures. The electrostatic force provides a non-linear actuation, while AO systems are based on linear matrices operations. Then, we have developed a dedicated 14-bit electronics in order to "linearize" the actuation, using a calibration and a sixth-order polynomial fitting strategy. The response is nearly perfect over our 3×3 MDM prototype with a standard deviation of 3.5 nm; the influence function of the central actuator has been measured. First evaluation on the cross non-linarities has also been studied on OKO mirror and a simple look-up table is sufficient for determining the location of each actuator whatever the locations of the neighbor actuators. Electrostatic MDM are particularly well suited for open-loop AO applications.

  20. Beam line optics technologies series (7). Orthopedic treatment of sharp of light (reflecting mirror)

    Uruga, Tomoya; Nomura, Masaharu

    2006-01-01

    A reflecting mirror (mirror) is the most popular light device for orthopedic treatment of the shape of light. The paper explains the kinds of mirror for hard X-ray field and its applications in order to think the objects of mirror and how to adjust it when user experiment on the beam-line. The basic knowledge of reflection of X-ray, a use of mirror, the kinds of condenser mirror, the influence factors on the condenser size, arrangement of mirror in the hard X-ray beam-line, what kinds of mirror are necessary, evaluation of performance of mirror and adjustment, and troubles and measures are described. Layout in optics hutch at BL01B1 at SPring-8, refraction and total reflection of X-rays at surface, reflectivity of Rh and Pt with ideal surface as a function of photon energy, effects of surface roughness on reflectivity of Rh, calculated beam sizes for typical SPring-8 mirror as a function of magnification, schematic drawing of mirror, standard mirror system for vertical deflection in bending magnet beam-line, and observed and calculated reflectivity of Rh double mirror at BL01B1 at SPring-8 are illustrated. (S.Y)

  1. Mirror suspension system for the TAMA SAS

    Takamori, A; Bertolini, A; Cella, G; DeSalvo, R; Fukushima, M; Iida, Y; Jacquier, F; Kawamura, S; Marka, S; Nishi, Y; Numata, K; Sannibale, V; Somiya, K; Takahashi, R; Tariq, H; Tsubono, K; Ugas, J; Viboud, N; Yamamoto, H; Yoda, T; Wang Chen Yang

    2002-01-01

    Several R and D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (-180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SU...

  2. Optical fiber end-facet polymer suspended-mirror devices

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  3. Optical fabrication of lightweighted 3D printed mirrors

    Herzog, Harrison; Segal, Jacob; Smith, Jeremy; Bates, Richard; Calis, Jacob; De La Torre, Alyssa; Kim, Dae Wook; Mici, Joni; Mireles, Jorge; Stubbs, David M.; Wicker, Ryan

    2015-09-01

    Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of Arizona in Tucson. The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface displacement. Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing process with the necessary stiffness to eliminate print-through. Mitigating porosity of the 3D printed mirror blanks was a challenge in the face of reconciling new printing technologies with traditional optical polishing methods. The prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve internal stresses. Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a machine shop when creating an optical quality mirror. This research can lead to an increase in mirror mounting support complexity in the manufacturing of lightweight mirrors and improve overall process efficiency. The project aspired to have many future applications of light weighted 3D printed mirrors, such as spaceflight. This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results.

  4. Poster Presentation: Optical Test of NGST Developmental Mirrors

    Hadaway, James B.; Geary, Joseph; Reardon, Patrick; Peters, Bruce; Keidel, John; Chavers, Greg

    2000-01-01

    An Optical Testing System (OTS) has been developed to measure the figure and radius of curvature of NGST developmental mirrors in the vacuum, cryogenic environment of the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The OTS consists of a WaveScope Shack-Hartmann sensor from Adaptive Optics Associates as the main instrument, a Point Diffraction Interferometer (PDI), a Point Spread Function (PSF) imager, an alignment system, a Leica Disto Pro distance measurement instrument, and a laser source palette (632.8 nm wavelength) that is fiber-coupled to the sensor instruments. All of the instruments except the laser source palette are located on a single breadboard known as the Wavefront Sensor Pallet (WSP). The WSP is located on top of a 5-DOF motion system located at the center of curvature of the test mirror. Two PC's are used to control the OTS. The error in the figure measurement is dominated by the WaveScope's measurement error. An analysis using the absolute wavefront gradient error of 1/50 wave P-V (at 0.6328 microns) provided by the manufacturer leads to a total surface figure measurement error of approximately 1/100 wave rms. This easily meets the requirement of 1/10 wave P-V. The error in radius of curvature is dominated by the Leica's absolute measurement error of VI.5 mm and the focus setting error of Vi.4 mm, giving an overall error of V2 mm. The OTS is currently being used to test the NGST Mirror System Demonstrators (NMSD's) and the Subscale Beryllium Mirror Demonstrator (SBNM).

  5. Analysis of Non-Uniform Gain for Control of a Deformable Mirror in an Adaptive-Optics System

    Vitayaudom, Kevin P

    2008-01-01

    The objective of this research was to develop and experimentally verify the use of spatially varying gain maps on the servo-loop controller of a deformable mirror for improvements in the performance...

  6. The mirror neuron system : New frontiers

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into Studying their location and properties in the human brain. Here we review these original findings and introduce the Main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror

  7. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Intuitive optics: what great apes infer from mirrors and shadows.

    Völter, Christoph J; Call, Josep

    2018-05-02

    There is ongoing debate about the extent to which nonhuman animals, like humans, can go beyond first-order perceptual information to abstract structural information from their environment. To provide more empirical evidence regarding this question, we examined what type of information great apes (chimpanzees, bonobos, and orangutans) gain from optical effects such as shadows and mirror images. In an initial experiment, we investigated whether apes would use mirror images and shadows to locate hidden food. We found that all examined ape species used these cues to find the food. Follow-up experiments showed that apes neither confused these optical effects with the food rewards nor did they merely associate cues with food. First, naïve chimpanzees used the shadow of the hidden food to locate it but they did not learn within the same number of trials to use a perceptually similar rubber patch as indicator of the hidden food reward. Second, apes made use of the mirror images to estimate the distance of the hidden food from their own body. Depending on the distance, apes either pointed into the direction of the food or tried to access the hidden food directly. Third, apes showed some sensitivity to the geometrical relation between mirror orientation and mirrored objects when searching hidden food. Fourth, apes tended to interpret mirror images and pictures of these mirror images differently depending on their prior knowledge. Together, these findings suggest that apes are sensitive to the optical relation between mirror images and shadows and their physical referents.

  9. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  10. Electron optical characteristics of a concave electrostatic electron mirror for a scanning electron microscope

    Hamarat, R.T.; Witzani, J.; Hoerl, E.M.

    1984-08-01

    Numerical computer calculations are used to explore the design characteristics of a concave electrostatic electron mirror for a mirror attachment for a conventional scanning electron microscope or an instrument designed totally as a scanning electron mirror microscope. The electron paths of a number of set-ups are calculated and drawn graphically in order to find the optimum shape and dimensions of the mirror geometry. This optimum configuration turns out to be the transition configuration between two cases of electron path deflection, towards the optical axis of the system and away from it. (Author)

  11. Innovative lightweight substrate for stable optical benches and mirrors

    Rugi Grond, E.; Herren, A.; Mérillat, S.; Fermé, J. J.

    2017-11-01

    High precision space optics, such as spectrometers, relay optics, and filters, require ultra stable, lightweight platforms. These equipped platforms have on one side to survive the launch loads, on the other side they have to maintain their stability also under the varying thermal loads occurring in space. Typically such platforms have their equipment (prisms, etalons, beam expanders, etc.) mounted by means of classical bonding, hydro-catalytic bonding or optical contacting. Therefore such an optical bench requires to provide an excellent flatness, minimal roughness and is usually made of the same material as the equipment it carries (glass, glass ceramics). For space systems, mass is a big penalty, therefore such optical platforms are in most cases light weighted by means of machining features (i.e. pockets). Besides of being not extremely mass efficient, such pockets reduce the load carrying capability of the base material significantly. The challenge for Oerlikon Space, in this context, was to develop, qualify and deliver such optical benches, providing a substantial mass reduction compared to actual light weighted systems, while maintaining most of the full load carrying capacity of the base material. Additionally such a substrate can find an attractive application for mirror substrates. The results of the first development and of the first test results will be presented.

  12. Optical Levitation of a Mirror for Reaching the Standard Quantum Limit

    Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki

    2016-01-01

    We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-P{\\'e}rot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownia...

  13. Optical levitation of a mirror for reaching the standard quantum limit

    Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki

    2017-06-01

    We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-P{\\'e}rot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.

  14. Sensorimotor learning configures the human mirror system.

    Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia

    2007-09-04

    Cells in the "mirror system" fire not only when an individual performs an action but also when one observes the same action performed by another agent [1-4]. The mirror system, found in premotor and parietal cortices of human and monkey brains, is thought to provide the foundation for social understanding and to enable the development of theory of mind and language [5-9]. However, it is unclear how mirror neurons acquire their mirror properties -- how they derive the information necessary to match observed with executed actions [10]. We address this by showing that it is possible to manipulate the selectivity of the human mirror system, and thereby make it operate as a countermirror system, by giving participants training to perform one action while observing another. Before this training, participants showed event-related muscle-specific responses to transcranial magnetic stimulation over motor cortex during observation of little- and index-finger movements [11-13]. After training, this normal mirror effect was reversed. These results indicate that the mirror properties of the mirror system are neither wholly innate [14] nor fixed once acquired; instead they develop through sensorimotor learning [15, 16]. Our findings indicate that the human mirror system is, to some extent, both a product and a process of social interaction.

  15. Worthwhile optical method for free-form mirrors qualification

    Sironi, G.; Canestrari, R.; Toso, G.; Pareschi, G.

    2013-09-01

    We present an optical method for free-form mirrors qualification developed by the Italian National Institute for Astrophysics (INAF) in the context of the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Project which includes, among its items, the design, development and installation of a dual-mirror telescope prototype for the Cherenkov Telescope Array (CTA) observatory. The primary mirror panels of the telescope prototype are free-form concave mirrors with few microns accuracy required on the shape error. The developed technique is based on the synergy between a Ronchi-like optical test performed on the reflecting surface and the image, obtained by means of the TraceIT ray-tracing proprietary code, a perfect optics should generate in the same configuration. This deflectometry test allows the reconstruction of the slope error map that the TraceIT code can process to evaluate the measured mirror optical performance at the telescope focus. The advantages of the proposed method is that it substitutes the use of 3D coordinates measuring machine reducing production time and costs and offering the possibility to evaluate on-site the mirror image quality at the focus. In this paper we report the measuring concept and compare the obtained results to the similar ones obtained processing the shape error acquired by means of a 3D coordinates measuring machine.

  16. All-optical photoacoustic microscopy using a MEMS scanning mirror

    Chen, Sung-Liang; Xie, Zhixing; Ling, Tao; Wei, Xunbin; Guo, L. Jay; Wang, Xueding

    2013-03-01

    It has been studied that a potential marker to obtain prognostic information about bladder cancer is tumor neoangiogenesis, which can be quantified by morphometric characteristics such as microvascular density. Photoacoustic microscopy (PAM) can render sensitive three-dimensional (3D) mapping of microvasculature, providing promise to evaluate the neoangiogenesis that is closely related to the diagnosis of bladder cancer. To ensure good image quality, it is desired to acquire bladder PAM images from its inside via the urethra, like conventional cystoscope. Previously, we demonstrated all-optical PAM systems using polymer microring resonators to detect photoacoustic signals and galvanometer mirrors for laser scanning. In this work, we build a miniature PAM system using a microelectromechanical systems (MEMS) scanning mirror, demonstrating a prototype of an endoscopic PAM head capable of high imaging quality of the bladder. The system has high resolutions of 17.5 μm in lateral direction and 19 μm in the axial direction at a distance of 5.4 mm. Images of printed grids and the 3D structure of microvasculature in animal bladders ex vivo by the system are demonstrated.

  17. Precision Optical Coatings for Large Space Telescope Mirrors

    Sheikh, David

    This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.

  18. Development of reaction-sintered SiC mirror for space-borne optics

    Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio

    2017-11-01

    We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.

  19. Physics issues in mirror and tandem mirror systems

    Post, R.F.

    1984-01-01

    Over the years the study of the confinement of high temperature plasma in magnetic mirror systems has presented researchers with many unusual physics problems. Many of these issues are by now understood theoretically and documented experimentally. With the advent of the tandem mirror idea, some new issues have emerged and are now under intensive study. These include: (1) the generation and control of ambipolar confining potentials and their effect on axial confinement and, (2) the combined influence of nonaxisymmetric magnetic fields (used to ensure MHD stability) and electric magnetic particle drifts on radial transport. Physics considerations associated with these two categories of issues will be reviewed, including concepts for the control of radial transport, under study or proposed

  20. Mirror suspension system for the TAMA SAS

    Takamori, Akiteru; Ando, Masaki; Bertolini, Alessandro; Cella, Giancarlo; DeSalvo, Riccardo; Fukushima, Mitsuhiro; Iida, Yukiyoshi; Jacquier, Florian; Kawamura, Seiji; Marka, Szabolcs; Nishi, Yuhiko; Numata, Kenji; Sannibale, Virginio; Somiya, Kentaro; Takahashi, Ryutaro; Tariq, Hareem; Tsubono, Kimio; Ugas, Jose; Viboud, Nicolas; Yamamoto, Hiroaki; Yoda, Tatsuo; Wang Chenyang

    2002-01-01

    Several R and D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (-180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SUS is equipped with a totally passive magnetic damper to suppress internal resonances without degrading the thermal noise performance. In this paper we discuss the SUS details and present prototype results

  1. Ion optics of a high resolution multipassage mass spectrometer with electrostatic ion mirrors

    Sakurai, T [Osaka Univ. (Japan). Dept. of Physics; Baril, M [Departement de Physique, Faculte des Sciences et de Genie, Universite Laval, Ste-Foy, Quebec G1K 7P4 (Canada)

    1995-09-01

    Ion trajectories in an electrostatic ion mirror are calculated. The interferences of the extended fringing fields of the mirror with finite aperture are studied. The results of the calculations are represented by three transfer matrices, which describe ion trajectories under the effects of a fringing field at the entrances, of an idealized mirror region, and of a fringing field at the exit. The focusing effects and ion-optical properties of mass spectrometers with electrostatic ion mirrors can be evaluated by using these transfer matrices. A high performance multipassage mass spectrometer is designed. The system has one magnet and four electrostatic sector analyzers and two ion mirrors. The double focusing condition and stigmatic focusing condition are achieved in any passage of the system. The mass resolution increases linearly with the number of passages in a magnet. (orig.).

  2. The mirror neuron system: new frontiers.

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into studying their location and properties in the human brain. Here we review these original findings and introduce the main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror system embedded into the mosaic of circuits that compose our brain? How does the mirror system contribute to communication, language and social interaction? Can the principle of mirror neurons be extended to emotions, sensations and thoughts? Papers using a wide range of methods, including single cell recordings, fMRI, TMS, EEG and psychophysics, collected in this special issue, start to give us some impressive answers.

  3. Optical calibration and test of the VLT Deformable Secondary Mirror

    Briguglio, Runa; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Biasi, Roberto; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2013-12-01

    The Deformable Secondary Mirror (DSM) for the VLT (ESO) represents the state-of-art of the large-format deformable mirror technology with its 1170 voice-coil actuators and its internal metrology based on actuator co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the results of the optical characterization of the mirror unit with the ASSIST facility located at ESO-Garching and executed in a collaborative effort by ESO, INAF-Osservatorio Astrofisico di Arcetri and the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.). The main purposes of the tests are the optical characterization of the shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions. The results are used for the optical acceptance of the DSM and to allow the next test phase coupling the DSM with the wave-front sensor modules of the new Adaptive Optics Facility (AOF) of ESO.

  4. Laser-start-up system for magnetic mirror fusion

    Frank, A.M.; Thomas, S.R.; Denhoy, B.S.; Chargin, A.K.

    1976-01-01

    A CO 2 laser system has been developed at LLL to provide hot start-up plasmas for magnetic mirror fusion experiments. A frozen ammonia pellet is irradiated with a laser power density in excess of 10 13 W/cm 2 in a 50-ns pulse. This system uses commercially available laser systems. Optical components were fabricated both by direct machining and standard techniques. The technologies used in this system are directly applicable to reactor scale systems

  5. Four-Mirror Freeform Reflective Imaging Systems

    National Aeronautics and Space Administration — Central Objectives: The research involves a revelation of the solution space for revolutionary families of four-mirror freeform reflective imaging systems. A...

  6. Coating Thin Mirror Segments for Lightweight X-ray Optics

    Chan, Kai-Wing; Sharpe, Marton V.; Zhang, William; Kolosc, Linette; Hong, Melinda; McClelland, Ryan; Hohl, Bruce R.; Saha, Timo; Mazzarellam, James

    2013-01-01

    Next generations lightweight, high resolution, high throughput optics for x-ray astronomy requires integration of very thin mirror segments into a lightweight telescope housing without distortion. Thin glass substrates with linear dimension of 200 mm and thickness as small as 0.4 mm can now be fabricated to a precision of a few arc-seconds for grazing incidence optics. Subsequent implementation requires a distortion-free deposition of metals such as iridium or platinum. These depositions, however, generally have high coating stresses that cause mirror distortion. In this paper, we discuss the coating stress on these thin glass mirrors and the effort to eliminate their induced distortion. It is shown that balancing the coating distortion either by coating films with tensile and compressive stresses, or on both sides of the mirrors is not sufficient. Heating the mirror in a moderately high temperature turns out to relax the coated films reasonably well to a precision of about a second of arc and therefore provide a practical solution to the coating problem.

  7. Tandem Mirror Reactor Systems Code (Version I)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  8. Achromatic nested Kirkpatrick–Baez mirror optics for hard X-ray nanofocusing

    Liu, Wenjun; Ice, Gene E.; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul; Tischler, Jonathan Z.; Choi, J.-Y.

    2011-01-01

    A nested Kirkpatrick–Baez mirror pair has been designed, fabricated and tested for achromatic nanofocusing synchrotron hard X-rays. The prototype system achieved a FWHM focal spot of about 150 nm in both horizontal and vertical directions. The first test of nanoscale-focusing Kirkpatrick–Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway

  9. Mirror Fusion Test Facility magnet system

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  10. Design of control system for piezoelectric deformable mirror based on fuzzy self-adaptive PID control

    Xiao, Nan; Gao, Wei; Song, Zongxi

    2017-10-01

    With the rapid development of adaptive optics technology, it is widely used in the fields of astronomical telescope imaging, laser beam shaping, optical communication and so on. As the key component of adaptive optics systems, the deformable mirror plays a role in wavefront correction. In order to achieve the high speed and high precision of deformable mirror system tracking control, it is necessary to find out the influence of each link on the system performance to model the system and design the controller. This paper presents a method about the piezoelectric deformable mirror driving control system.

  11. A magic mirror - quantum applications of the optical beam splitter

    Bachor, H.A.

    2000-01-01

    Mirrors are some of the simplest optical components, and their use in optical imaging is well known. They have many other applications, such as the control of laser beams or in optical communication. Indeed they can be found in most optical instruments. It is the partially reflecting mirror, better known as the beam splitter, that is of particular interest to us. It lies at the centre of a number of recent scientific discoveries and technical developments that go beyond the limits of classical optics and make use of the quantum properties of light. In this area Australian and New Zealand researchers have made major contributions in the last two decades. In this paper, the author discusses how a mirror modifies the light itself and the information that can be sent by a beam, and summarise the recent scientific achievements. It combines the idea of photons, where the idea of quantisation is immediately obvious, with the idea of modulating continuous laser beams, which is practical and similar to the engineering description of radio communication

  12. Tandem mirror magnet system for the mirror fusion test facility

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  13. Space Active Optics: toward optimized correcting mirrors for future large spaceborne observatories

    Laslandes, Marie; Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard; Liotard, Arnaud

    2011-10-01

    Wave-front correction in optical instruments is often needed, either to compensate Optical Path Differences, off-axis aberrations or mirrors deformations. Active optics techniques are developed to allow efficient corrections with deformable mirrors. In this paper, we will present the conception of particular deformation systems which could be used in space telescopes and instruments in order to improve their performances while allowing relaxing specifications on the global system stability. A first section will be dedicated to the design and performance analysis of an active mirror specifically designed to compensate for aberrations that might appear in future 3m-class space telescopes, due to lightweight primary mirrors, thermal variations or weightless conditions. A second section will be dedicated to a brand new design of active mirror, able to compensate for given combinations of aberrations with a single actuator. If the aberrations to be corrected in an instrument and their evolutions are known in advance, an optimal system geometry can be determined thanks to the elasticity theory and Finite Element Analysis.

  14. Generation of optical vortices with an adaptive helical mirror.

    Ghai, Devinder Pal

    2011-04-01

    Generation of optical vortices using a new design of adaptive helical mirror (AHM) is reported. The new AHM is a reflective device that can generate an optical vortex of any desired topological charge, both positive and negative, within its breakdown limits. The most fascinating feature of the AHM is that the topological charge of the optical vortex generated with it can be changed in real time by varying the excitation voltage. Generation of optical vortices up to topological charge 4 has been demonstrated. The presence of a vortex in the optical field generated with the AHM is confirmed by producing both fork and spiral fringes in an interferometric setup. Various design improvements to further enhance the performance of the reported AHM are discussed. Some of the important applications of AHM are also listed. © 2011 Optical Society of America

  15. Characterizing the Statistics of a Bunch of Optical Pulses Using a Nonlinear Optical Loop Mirror

    Olivier Pottiez

    2015-01-01

    Full Text Available We propose in this work a technique for determining the amplitude distribution of a wave packet containing a large number of short optical pulses with different amplitudes. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM. Under some assumptions, the statistics of the pulses can be determined from the energy transfer characteristic of the packet through the NOLM, which can be measured with a low-frequency detection setup. The statistical distribution is retrieved numerically by approximating the solution of a system of nonlinear algebraic equations using the least squares method. The technique is demonstrated numerically in the case of a packet of solitons.

  16. AFOCAL SYSTEMS FORMED BY MIRROR OFF-AXIS PARABOLOID

    N. K. Artiukhina

    2017-01-01

    Full Text Available Mirror systems make it possible to reduce device dimensions and its weight while preserving high input aperture and these systems are characterized by a number of other advantages. Their significant disadvantage is a central screening of an entrance pupil that leads to lower image quality. The paper contains description of the investigations on afocal systems formed by eccentrically cut-out mirror paraboloids (off-axis mirrors where aperture diaphragm is displaced in the meridian plane for a defined value and a central field point is located on the optical axis. The canonic Mersenne systems are accepted as base schemas (modules for these compositions. The paper considers two types of such systems: visible increases – Г > 0 and Г < 0. Algorithms for calculation of centered afocal systems with two and four reflections have been written in the paper and the systems are free from spherical aberration, coma, astigmatism when an input pupil is located in superimposed focal planes of all parabolic mirrors. An aberration in curvature image has been additionally corrected in three-mirror quart-parabolic scheme which is a combination of two classical telescopic Mersenne systems. The paper presents schemes and calculation results. Two-mirror schemes with non-screened input pupil have been studied in the paper and in this case all the system remains centered and an aperture diaphragm is decentered for the distance Cm which is commensurable with the diaphragm size. The paper contains description of the investigated afocal schemes with four reflections from off-axis mirror paraboloids, a prepared algorithm for calculation, the obtained formulas for making combination of canonic afocal systems formed by two mirrors. Computer simulation in software environment Opal and Zemax has been carried out in the paper. Basic description has been prepared while using two alternative methods for the class of decentered systems and aberration characteristics and

  17. Hard X-ray nano-focusing with Montel mirror optics

    Liu Wenjun, E-mail: wjliu@anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Ice, Gene E. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Assoufid, Lahsen; Liu Chian; Shi Bing; Zschack, Paul [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Tischler, Jon [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Qian Jun; Khachartryan, Ruben; Shu Deming [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    Kirkpatrick-Baez mirrors in the Montel (or nested) configuration were tested for hard X-ray nanoscale focusing at a third generation synchrotron beamline. In this scheme, two mirrors, mounted side-by-side and perpendicular to each other, provide for a more compact focusing system and a much higher demagnification and flux than the traditional sequential K-B mirror arrangement. They can accept up to a 120 {mu}mx120 {mu}m incident X-ray beam with a long working distance of 40 mm and broad-bandpass of energies up to {approx}30 keV. Initial test demonstrated a focal spot of about 150 nm in both horizontal and vertical directions with either polychromatic or monochromatic beam. Montel mirror optics is important and very appealing for achromatic X-ray nanoscale focusing in conventional non-extra-long synchrotron beamlines.

  18. Reducing the Surface Performance Requirements of a Primary Mirror by Adding a Deformable Mirror in its Optical Path

    2015-12-01

    data. Of note, the interferometer compensates for the double -pass induced by single reflections off a surface by diving all measurements by 2. However...the interferometer. Since the laser reflects off the CFRP mirror only once, the CFRP wavefront measurements did not require additional double -pass...conducted with a flat mirror in the optical path. Figure 13 presents the measured wavefront error of the CFRP mirror with piston , tip and tip removed and

  19. The deformable secondary mirror of VLT: final electro-mechanical and optical acceptance test results

    Briguglio, Runa; Biasi, Roberto; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Angerer, Gerald; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2014-07-01

    The Deformable Secondary Mirror (DSM) for the VLT ended the stand-alone electro-mechanical and optical acceptance process, entering the test phase as part of the Adaptive Optics Facility (AOF) at the ESO Headquarter (Garching). The VLT-DSM currently represents the most advanced already-built large-format deformable mirror with its 1170 voice-coil actuators and its internal metrology based on co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the final results of the electro-mechanical and optical characterization of the DSM executed in a collaborative effort by the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.), INAF-Osservatorio Astrofisico di Arcetri and ESO. The electro-mechanical acceptance tests have been performed in the company premises and their main purpose was the dynamical characterization of the internal control loop response and the calibration of the system data that are needed for its optimization. The optical acceptance tests have been performed at ESO (Garching) using the ASSIST optical test facility. The main purpose of the tests are the characterization of the optical shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions.

  20. Mirroring

    Wegener, Charlotte; Wegener, Gregers

    2016-01-01

    and metaphorical value of mirroring for creativity theory across two different research fields — neuroscience and learning. We engage in a mutual (possibly creative) exploration of mirroring from ‘mirror neurons’ to mirroring in social learning theory. One of the most fascinating aspects of mirroring...... as a neurobiological and as a learning phenomenon is that it points to the embodied and unconscious aspects of social interaction. Thus, mirroring should not be reduced to the non-creative, mechanical repetition of the original, outstanding creativity. To mirror is a human capability built into our capacity to create......Most definitions of creativity emphasise originality. The creative product is recognised as distinct from other products and the creative person as someone who stands out from the crowd. What tend to be overlooked are acts of mirroring as a crucial element of the creative process. The human ability...

  1. Mirror coatings for large aperture UV optical infrared telescope optics

    Balasubramanian, Kunjithapatham; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Del Hoyo, Javier; Quijada, Manuel

    2017-09-01

    Large space telescope concepts such as LUVOIR and HabEx aiming for observations from far UV to near IR require advanced coating technologies to enable efficient gathering of light with important spectral signatures including those in far UV region down to 90nm. Typical Aluminum mirrors protected with MgF2 fall short of the requirements below 120nm. New and improved coatings are sought to protect aluminum from oxidizing readily in normal environment causing severe absorption and reduction of reflectance in the deep UV. Choice of materials and the process of applying coatings present challenges. Here we present the progress achieved to date with experimental investigations of coatings at JPL and at GSFC and discuss the path forward to achieve high reflectance in the spectral region from 90 to 300nm without degrading performance in the visible and NIR regions taking into account durability concerns when the mirrors are exposed to normal laboratory environment as well as high humidity conditions. Reflectivity uniformity required on these mirrors is also discussed.

  2. High-concentration mirror-based Kohler integrating system for tandem solar cells

    Winston, R.; Benitez, P.; Cvetkovic, A.

    2006-06-01

    A novel two-mirror high concentration nonimaging optic has been designed that shares the advantages of present two mirror aplanatic imaging concentrators but also overcomes their main limitation of trade-off between acceptance angle and irradiance uniformity. A system concept has been defined, and a first prototype in under development.

  3. Machining and metrology systems for free-form laser printer mirrors

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    optical systems were designed and manufactured for the individual laser wavelength to be ... The design objective in utilizing a free-form mirror has resulted in a corresponding ... Since mass production of these free-form mirrors is required, the ...

  4. A primary mirror metrology system for the GMT

    Rakich, A.

    2016-07-01

    The Giant Magellan Telescope (GMT)1 is a 25 m "doubly segmented" telescope composed of seven 8.4 m "unit Gregorian telescopes", on a common mount. Each primary and secondary mirror segment will ideally lie on the geometrical surface of the corresponding rotationally symmetrical full aperture optical element. Therefore, each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and cophased. First light with a subset of four unit telescopes is currently scheduled for 2022. The project is currently considering an important aspect of the assembly, integration and verification (AIV) phase of the project. This paper will discuss a dedicated system to directly characterize the on-sky performance of the M1 segments, independently of the M2 subsystem. A Primary Mirror Metrology System (PMS) is proposed. The main purpose of this system will be to he4lp determine the rotation axis of an instrument rotator (the Gregorian Instrument Rotator or GIR in this case) and then to characterize the deflections and deformations of the M1 segments with respect to this axis as a function of gravity and temperature. The metrology system will incorporate a small (180 mm diameter largest element) prime focus corrector (PFC) that simultaneously feeds a risk reduction during AIV; it allows an on-sky characterization of the primary mirror segments and cells, without the complications of other optical elements. The PMS enables a very useful alignment strategy that constrains each primary mirror segments' optical axes to follow the GIR axis to within a few arc seconds. An additional attractive feature of the incorporation of the PMS into the AIV plan, is that it allows first on-sky telescope operations to occur with a system of considerably less optical and control complexity than the final doubly segmented Gregorian telescope configuration. This paper first discusses the strategic rationale for a PMS. Next the system itself is

  5. Language comprehension warps the mirror neuron system

    Noah eZarr

    2013-12-01

    Full Text Available Is the mirror neuron system (MNS used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but a only for videos of biological motion, and b only when the effector implied by the language (e.g., the hand matched the videos. These findings are signatures of the mirror neuron system.

  6. Examples of electrostatic electron optics: The Farrand and Elektros microscopes and electron mirrors

    Hawkes, P.W.

    2012-01-01

    The role of Gertrude Rempfer in the design of the Farrand and Elektros microscopes is evoked. The study of electron mirror optics, aberration correction using mirrors and the development of microscopes employing electron mirrors are recapitulated, accompanied by a full bibliography, of earlier publications in particular.

  7. The mirror system in human and nonhuman primates.

    Orban, Guy A

    2014-04-01

    The description of the mirror neuron system provided by Cook et al. is incomplete for the macaque, and incorrect for humans. This is relevant to exaptation versus associative learning as the underlying mechanism generating mirror neurons, and to the sensorimotor learning as evidence for the authors' viewpoint. The proposed additional testing of the mirror system in rodents is unrealistic.

  8. Stability design considerations for mirror support systems in ICF lasers

    Tietbohl, G.L.; Sommer, S.C.

    1996-10-01

    Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems

  9. Mirror fusion test facility plasma diagnostics system

    Thomas, S.R. Jr.; Coffield, F.E.; Davis, G.E.; Felker, B.

    1979-01-01

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  10. Mirror System for Collecting Thomson-Scattered Light in a Tangential Direction

    Barth, C. J.; Grobben, B. J. J.; Verhaag, G. C. H. M.

    1994-01-01

    We describe an optical system for collecting Thomson-scattering light in the tangential direction of a tokamak. The key part of the optics is a set of mirrors arranged as a Venetian blind. This system makes it possible to look around the corner of the tokamak vessel. Design considerations and test

  11. Can syntax appear in a mirror (system)?

    Tettamanti, Marco; Moro, Andrea

    2012-07-01

    Converging evidence indicates that the processing of some aspects related to the phonetic and the semantic components of language is tightly associated with both the perceptual and the motor neural systems. It has been suggested that mirror neurons contribute to language understanding by virtue of a neurophysiological response matching perceptual linguistic information onto corresponding motor plans. This proposal has sometimes been extended to advocate that the language competence as a whole, including syntax, may be ascribed to this kind of perceptuo-motor mappings. This position paper examines what kinds of empirical and theoretical challenges such general mirror neuron language accounts need to face in order to proof their validity--challenges that we think have not been adequately addressed yet. We highlight that the most important limitation is constituted by the fact that some core defining properties of human language, at the phonetic, semantic, and especially at the syntactic level, are not transparent to the bodily senses and thus they cannot be the direct source of mirror neuron perceptuo-motor matching. Copyright © 2011 Elsevier Srl. All rights reserved.

  12. Composite cavity based fiber optic Fabry–Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Yuan, Libo; Jin, Wencai; Peng, G D

    2008-01-01

    A composite cavity based fiber optic Fabry–Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry–Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure

  13. Intelligent Optical Systems Using Adaptive Optics

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  14. On the fundamental mode of the optical resonator with toroidal mirrors

    Serednyakov, S.S.; Vinokurov, N.A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1995-12-31

    The fundamental mode of the optical resonator with the toroidal mirrors is investigated. The losses in such resonator with the on-axis holes are low in compare with the case of spherical mirrors. The use of this type of optical resonator is briefly discussed.

  15. Novel tunable optical filter employing a fiber loop mirror for synthesis applications in WDM

    Vázquez García, María Carmen; Vargas Palma, Salvador Elías; Sánchez-Pena, José Manuel

    2001-01-01

    A novel optical filter employing a fiber loop mirror within an amplified ring resonator is presented. The fiber loop mirror allows tuning by changing the coupling factor of a coupler. The device can be used as a building block to synthesize optical filters, as previously reported, saving components. Publicado

  16. Optical constants from mirror reflectivities measured at synchrotrons

    Blake, R.L.; Davis, J.C.; Burbine, T.H.; Graessle, D.E.; Gullikson, E.M.

    1992-01-01

    Improved mirror reflectivity measurement techniques have been introduced to permit more accurate determinations of optical constants δ and β in the complex index of refraction n = 1 - δ-iβ over the energy range 50 to 5000 eV. When the density has been determined by x-ray or other means, one can calculate the real and imaginary parts f' and f double-prime, of the complex atomic scattering factor f = f o + f ' + if double-prime from δ and β. Preliminary results are given for the Ni LIII edge around 852 eV, and the Au M edge region from 2150 to 3500 eV. Since these are the first experimental evaluations of δ for these element edges, they are compared with appropriate reservations to semi-empirical tabulations. There is much potential for this technique applied to synchrotron sources

  17. Parametric systems analysis for tandem mirror hybrids

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U 3 O 8 cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions

  18. Design and simulation of the surface shape control system for membrane mirror

    Zhang, Gengsheng; Tang, Minxue

    2009-11-01

    The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.

  19. Mirror confinement systems: Final technical report

    1988-08-01

    This report contains: (1) A discussion of azimuthal asymmetrics and fluctuations in RFC-XX-M. Both lead to enhanced radial transport in RFC-XX-M, and presumably most other tandem mirror machines as well; A report on four operating modes of RFC-XX-M which were developed and studied as part of the collaboration. These operating modes were the simple tandem mode, the negative (floating) potential mode, the hot electron mode, and the ECH (electron cyclotron heating) mode; A pulsed rf heated discharge cleaning system which was developed for RFC-XX-M. This method of cleaning proved much more effective than normal glow discharge cleaning, and variations of it are currently in use on the GAMMA-10 tandem mirror and the JIPP TII-U tokamak at the Institute for Plasma Physics at Nagoya; Short descriptions of the diagnostics development and improvement done in conjunction with the work on RFC-XX-M; and a compilation of the work performed at the University of Tsukuba on GAMMA-10. Most of the effort on GAMMA-10 involved diagnostics development and improvement. 16 refs., 42 figs., 1 tab

  20. Measurement of the relative motion of two mirrors in presence of an optical spring

    Virgilio, A D

    2008-01-01

    The Low Frequency Facility (LFF) experimental set-up consists of one 1 cm long cavity hanging from a mechanical insulation system, that damps seismic noise transmission to the optical components of the VIRGO interferometer. Radiation pressure generates an opto-mechanical coupling between the two mirrors of the cavity, that we call an optical spring. The measured relative displacement power spectrum is compatible with a system at thermal equilibrium within its environment; the optical spring has a stiffness k opt of the order of 10 4 N/m. An upper limits of 10 -15 m/√Hz at 10 Hz for seismic and thermal noise contamination of the Virgo test masses suspended by a SuperAttenuator is derived from measured data

  1. Assembly and alignment method for optimized spatial resolution of off-axis three-mirror fore optics of hyperspectral imager.

    Kim, Youngsoo; Hong, Jinsuk; Choi, Byungin; Lee, Jong-Ung; Kim, Yeonsoo; Kim, Hyunsook

    2017-08-21

    A fore optics for the hyperspectral spectrometer is designed, manufactured, assembled, and aligned. The optics has a telecentric off-axis three-mirror configuration with a field of view wider than 14 degrees and an f-number as small as 2.3. The primary mirror (M1) and the secondary mirror (M2) are axially symmetric aspheric surfaces to minimize the sensitivity. The tertiary mirror (M3) is a decentered aspheric surface to minimize the coma and astigmatism aberration. The M2 also has a hole for the slit to maintain the optical performance while maximizing the telecentricity. To ensure the spatial resolution performance of the optical system, an alignment procedure is established to assemble and align the entrance slit of the spectrometer to the rear end of the fore optics. It has a great advantage to confirm and maintain the alignment integrity of the fore optics module throughout the alignment procedure. To perform the alignment procedure successfully, the precision movement control requirements are calculated and applied. As a result, the alignment goal of the RMS wave front error (WFE) to be smaller than 90 nm at all fields is achieved.

  2. Mirror system based therapy for autism spectrum disorders

    Wei CHEN; Jing ZHANG; Jun DING

    2008-01-01

    This paper reviews the present theories and empirical research of autisms' cognitive research and mir-ror systems and introduces a new hypothesis about the causes of autism spectrum disorders (ASD): autistic mir-ror neuron dysfunction hypothesis. ASD subjects show obvious lack of the activation of the mirror system during the task of observation or emotional cognition. It is sig-nificant to investigate the mirror system for revealing the causes of autism and it is also helpful for developing new ways to diagnose or treat this disorder.

  3. Language comprehension warps the mirror neuron system.

    Zarr, Noah; Ferguson, Ryan; Glenberg, Arthur M

    2013-01-01

    Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS.

  4. The mirror neuron system and the consequences of its dysfunction.

    Iacoboni, Marco; Dapretto, Mirella

    2006-12-01

    The discovery of premotor and parietal cells known as mirror neurons in the macaque brain that fire not only when the animal is in action, but also when it observes others carrying out the same actions provides a plausible neurophysiological mechanism for a variety of important social behaviours, from imitation to empathy. Recent data also show that dysfunction of the mirror neuron system in humans might be a core deficit in autism, a socially isolating condition. Here, we review the neurophysiology of the mirror neuron system and its role in social cognition and discuss the clinical implications of mirror neuron dysfunction.

  5. The Mirror Neuron System and Action Recognition

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  6. Mirror Objects in the Solar System?

    Silagadze, Z.K.

    2002-01-01

    This talk was given at the Tunguska-2001 international conference but it is not about the Tunguska event. Instead we tried to give some flavor of mirror matter, which is predicted to exist if parity is an unbroken symmetry of nature, to non-experts. The possible connection of the mirror matter ideas to the Tunguska phenomenon was indicated by Foot and Gninenko some time ago and was elaborated by Foot in the separate talk at this conference. If the mirror world interpretation of the Tunguska like events is indeed correct then the most fascinating (but very speculative) possibility is that some well known celestial bodies with strange properties are in fact made mostly from mirror matter, and so maybe the mirror world was discovered long ago and we just have not suspected this. (author)

  7. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  8. Entangling movable mirrors in a double cavity system

    Pinard, Michel; Dantan, Aurelien Romain; Vitali, David

    2005-01-01

    We propose a double-cavity set-up capable of generating a stationary entangled state of two movable mirrors at cryogenic temperatures. The scheme is based on the optimal transfer of squeezing of input optical fields to mechanical vibrational modes of the mirrors, realized by the radiation pressure...... of the intracavity light. We show that the presence of macroscopic entanglement can be demonstrated by an appropriate readout of the output light of the two cavities....

  9. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  10. The Gasdynamic Mirror Fusion Propulsion System -- Revisited

    Kammash, Terry; Tang, Ricky

    2005-01-01

    Many of the previous studies assessing the capability of the gasdynamic mirror (GDM) fusion propulsion system employed analyses that ignored the 'ambipolar' potential. This electrostatic potential arises as a result of the rapid escape of the electrons due to their small mass. As they escape, they leave behind an excess positive charge which manifests itself in an electric field that slows down the electrons while speeding up the ions until their respective axial diffusions are equalized. The indirect effect on the ions is that their confinement time is reduced relative to that of zero potential, and hence the plasma length must be increased to accommodate that change. But as they emerge from the thruster mirror - which serves as a magnetic nozzle - the ions acquire an added energy equal to that of the potential energy, and that in turn manifests itself in increased specific impulse and thrust. We assess the propulsive performance of the GDM thruster, based on the more rigorous theory, by applying it to a round trip Mars mission employing a continuous burn acceleration/deceleration type of trajectory. We find that the length of the device and travel time decrease with increasing plasma density, while the total vehicle mass reaches a minimum at a plasma density of 3 x 1016 cm-3. At such a density, and an initial DT ion temperature of 10 keV, a travel time of 60 days is found to be achievable at GDM propulsion parameters of about 200,000 seconds of specific impulse and approximately 47 kN of thrust

  11. Magnetic mirror fusion systems: Characteristics and distinctive features

    Post, R.F.

    1987-01-01

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power

  12. Laser startup optics for Baseball II and future mirror machines

    Frank, A.M.; Chargin, A.K.; Brown, N.J.

    1975-01-01

    The laser startup system for Baseball II-T uses a 300-J CO 2 laser to hit a 100-μ diameter pellet with a laser power density on the order of 10 13 W/cm 2 . The laser is a 20-cm diameter unstable resonator transversely excited (TEA) oscillator. The beam is split and then focused using off-axis parabolas. The symmetric configuration and central obscuration of the CO 2 beam allow coaxial alignment and pellet detection optics. This experiment primarily uses commercially available systems and components. Optical elements were fabricated both by direct machining and standard polishing techniques. The laser and optical systems are directly scalable to reactor requirements using demonstrated technologies

  13. A two-in-one Faraday rotator mirror exempt of active optical alignment.

    Wan, Qiong; Wan, Zhujun; Liu, Hai; Liu, Deming

    2014-02-10

    A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46 dB/0.50 dB for the two independent ports, respectively.

  14. GMTIFS: the adaptive optics beam steering mirror for the GMT integral-field spectrograph

    Davies, J.; Bloxham, G.; Boz, R.; Bundy, D.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Sharp, R.; Vaccarella, A.; Vest, C.; Young, P. J.

    2016-07-01

    To achieve the high adaptive optics sky coverage necessary to allow the GMT Integral-Field Spectrograph (GMTIFS) to access key scientific targets, the on-instrument adaptive-optics wavefront-sensing (OIWFS) system must patrol the full 180 arcsecond diameter guide field passed to the instrument. The OIWFS uses a diffraction limited guide star as the fundamental pointing reference for the instrument. During an observation the offset between the science target and the guide star will change due to sources such as flexure, differential refraction and non-sidereal tracking rates. GMTIFS uses a beam steering mirror to set the initial offset between science target and guide star and also to correct for changes in offset. In order to reduce image motion from beam steering errors to those comparable to the AO system in the most stringent case, the beam steering mirror is set a requirement of less than 1 milliarcsecond RMS. This corresponds to a dynamic range for both actuators and sensors of better than 1/180,000. The GMTIFS beam steering mirror uses piezo-walk actuators and a combination of eddy current sensors and interferometric sensors to achieve this dynamic range and control. While the sensors are rated for cryogenic operation, the actuators are not. We report on the results of prototype testing of single actuators, with the sensors, on the bench and in a cryogenic environment. Specific failures of the system are explained and suspected reasons for them. A modified test jig is used to investigate the option of heating the actuator and we report the improved results. In addition to individual component testing, we built and tested a complete beam steering mirror assembly. Testing was conducted with a point source microscope, however controlling environmental conditions to less than 1 micron was challenging. The assembly testing investigated acquisition accuracy and if there was any un-sensed hysteresis in the system. Finally we present the revised beam steering mirror

  15. Phase-stepping optical profilometry of atom mirrors

    MacLaren, D A; Goldrein, H T; Holst, B; Allison, W

    2003-01-01

    Electrically deformed single crystal mirrors will be a vital part of a first generation of scanning helium microscope (SHeM). Optimized mirrors will be used to focus thermal energy helium atoms into a surface-sensitive, low-energy probe, with a resolution that depends upon the precise mirror shape. Here, we present surface profilometry measurements of a prototype atom mirror. A temporal phase-stepping Mach-Zender fibre interferometer is used to profile the mirror surface with an accuracy of a few tens of nanometres. Results are compared with the theory of small deflections of an elastic thin plate. Our experiments suggest that relatively simple apparatus can induce the mirror profiles required to demagnify a conventional helium source into a microprobe suitable for a SHeM. Use of elliptical boundary conditions in the clamping mechanism afford biaxial bending in the crystal whilst a simple double-electrode design is demonstrated to be capable of asymmetric control of the mirror deformation

  16. Lateralization of the human mirror neuron system.

    Aziz-Zadeh, Lisa; Koski, Lisa; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco

    2006-03-15

    A cortical network consisting of the inferior frontal, rostral inferior parietal, and posterior superior temporal cortices has been implicated in representing actions in the primate brain and is critical to imitation in humans. This neural circuitry may be an evolutionary precursor of neural systems associated with language. However, language is predominantly lateralized to the left hemisphere, whereas the degree of lateralization of the imitation circuitry in humans is unclear. We conducted a functional magnetic resonance imaging study of imitation of finger movements with lateralized stimuli and responses. During imitation, activity in the inferior frontal and rostral inferior parietal cortex, although fairly bilateral, was stronger in the hemisphere ipsilateral to the visual stimulus and response hand. This ipsilateral pattern is at variance with the typical contralateral activity of primary visual and motor areas. Reliably increased signal in the right superior temporal sulcus (STS) was observed for both left-sided and right-sided imitation tasks, although subthreshold activity was also observed in the left STS. Overall, the data indicate that visual and motor components of the human mirror system are not left-lateralized. The left hemisphere superiority for language, then, must be have been favored by other types of language precursors, perhaps auditory or multimodal action representations.

  17. Non-reciprocal optical mirrors based on spatio-temporal acousto-optic modulation

    Fleury, R.; Sounas, D. L.; Alù, A.

    2018-03-01

    Here, we investigate a scheme to realize free-space isolators and highly non-reciprocal mirrors with weak modulation imparted by an acoustic wave. We propose a strategy to dramatically break time-reversal symmetry by exploiting resonant interactions between a travelling acoustic wave and highly resonant Fabry-Pérot modes, inducing total reflection of an optical beam at a given angle, and no reflection at the negative angle. Different from conventional acousto-optic isolators, which are based on non-resonant frequency conversion and filtering, our proposal operates at the frequency of the optical signal by tailoring the resonant properties of the structure as well as the acoustic wave frequency and intensity, enabling 50 dB isolation with modest modulation requirements. Operation in the reflection mode allows for close-to-zero insertion loss, enabling disruptive opportunities in our ability to control and manipulate photons.

  18. 3D characterization of thin glass x-ray mirrors via optical profilometry

    Civitani, M.; Ghigo, M.; Citterio, O.; Conconi, P.; Spiga, D.; Pareschi, G.; Proserpio, L.

    2010-09-01

    In this paper we present the "Characterization Universal Profilometer" (CUP), a new metrological instrument developed at the Brera Observatory for the 3D surface figure mapping of X-ray segmented mirrors. The CUP working principle is based on the measure of the the distance between the surface under test from a rigid reference dish. This approach is made possible by the coupled use of two sensors, the CHRocodile® optical device and the SIOS triple beam interferometer, mounted onto a proper system of x-y-z stage of translators. In this paper we describe the working principle of the new instrument. We will also present the results of the commissioning performed for a CUP breadboard developed at the Brera Observatory. The CUP offers the possibility to perform an high accuracy metrology of thin glass segments produced via hot slumping, to be used in future segmented X-ray mirrors like those foreseen aboard IXO or other projects that will make use of active X-ray mirrors.

  19. Refractive optics to compensate x-ray mirror shape-errors

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian

    2017-08-01

    Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.

  20. Mirror theory applied to toroidal systems

    Cohen, R.H.

    1987-01-01

    Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, and losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma fetures are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong r.f. heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong r.f. heating and collisions. 37 refs., 3 figs

  1. Mirror theory applied to toroidal systems

    Cohen, R.H.

    1987-01-01

    Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, end losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma features are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong rf heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong rf heating and collisions. 37 refs

  2. Estimating the mirror seeing for a large optical telescope with a numerical method

    Zhang, En-Peng; Cui, Xiang-Qun; Li, Guo-Ping; Zhang, Yong; Shi, Jian-Rong; Zhao, Yong-Heng

    2018-05-01

    It is widely accepted that mirror seeing is caused by turbulent fluctuations in the index of air refraction in the vicinity of a telescope mirror. Computational Fluid Dynamics (CFD) is a useful tool to evaluate the effects of mirror seeing. In this paper, we present a numerical method to estimate the mirror seeing for a large optical telescope (∼ 4 m) in cases of natural convection with the ANSYS ICEPAK software. We get the FWHM of the image for different inclination angles (i) of the mirror and different temperature differences (ΔT) between the mirror and ambient air. Our results show that the mirror seeing depends very weakly on i, which agrees with observational data from the Canada-France-Hawaii Telescope. The numerical model can be used to estimate mirror seeing in the case of natural convection although with some limitations. We can determine ΔT for thermal control of the primary mirror according to the simulation, empirical data and site seeing.

  3. The human mirror neuron system and embodied representations.

    Aziz-Zadeh, Lisa; Ivry, Richard B

    2009-01-01

    Mirror neurons are defined as neurons in the monkey cortex which respond to goal oriented actions, whether the behavior is self-generated or produced by another. Here we briefly review this literature and consider evidence from behavioral, neuropsychological, and brain imaging studies for a similar mirror neuron system in humans. Furthermore, we review functions of this system related to action comprehension and motor imagery, as well as evidence for speculations on the system's ties with conceptual knowledge and language.

  4. An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing

    Zifei Wang

    2018-02-01

    Full Text Available The nonlinear optical loop mirror (NOLM has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.

  5. Active optics and the axisymmetric case: MINITRUST wide-field three-reflection telescopes with mirrors aspherized from tulip and vase forms

    Lemaitre, Gerard R.; Montiel, Pierre; Joulie, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2004-09-01

    Wide-field astronomy requires larger size telescopes. Compared to the catadioptric Schmidt, the optical properties of a three mirror telescope provides significant advantages. (1) The flat field design is anastigmatic at any wavelength, (2) the system is extremely compact -- four times shorter than a Schmidt -- and, (3) compared to a Schmidt with refractive corrector -- requiring the polishing of three optical surfaces --, the presently proposed Modified-Rumsey design uses all of eight available free parameters of a flat fielded anastigmatic three mirror telescope for mirrors generated by active optics methods. Compared to a Rumsey design, these parameters include the additional slope continuity condition at the primary-tertiary link for in-situ stressing and aspherization from a common sphere. Then, active optics allows the polishing of only two spherical surfaces: the combined primary-tertiary mirror and the secondary mirror. All mirrors are spheroids of the hyperboloid type. This compact system is of interest for space and ground-based astronomy and allows to built larger wide-field telescopes such as demonstrated by the design and construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° FOV, consisting of an in-situ stressed double vase form primary-tertiary and of a stress polished tulip form secondary. Optical tests of these telescopes, showing diffraction limited images, are presented.

  6. Optical design of a reaction chamber for weakly absorbed light. II. Parallel mirrors, multitravel

    Devaney, J.J.; Finch, F.T.

    1975-06-01

    This report outlines the possibilities to be found using one or more diffraction-limited high-quality light beams to activate a weakly absorbing gas in a regime where the diffraction spread can be controlled by converging optical devices to within a ratio of √2 of the minimum at the beam waist (corresponding lengths between converging elements are within twice the Rayleigh range). Our designs use plane or cylindrical parallel mirrors down which a light beam is repeatedly reflected. In the first design variation, the beam is re-reflected up the parallel mirrors to the entrance aperture where it can be returned repeatedly for a number of multiply reflecting ''travels'' up and down the parallel mirror reaction chamber. In the second variation, the return of the beam after each multiply reflecting ''travel'' down the chamber is external to the chamber and is achieved by two mirror reflections. For diffraction control the return mirrors can be made converging. For multiple laser excitation, any of the external return mirrors can be replaced by a laser. The advantage of these designs is a high degree of uniformity of chamber illumination with a reasonably high number of passes. Drawbacks of the designs are the large space needed for beam return (many tens of meters for some parameters) and (common to all high optical quality chambers) the figuring and reflectivity demands on the mirrors. (U.S.)

  7. Aluminum Mirror Coatings for UVOIR Telescope Optics Including the Far UV

    Balasubramanian, Kunjithapatha; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Ayala, Michael; Shaklan, Stuart; Scowen, Paul; Del Hoyo, Javier; Quijada, Manuel

    2015-01-01

    NASA Cosmic Origins (COR) Program identified the development of high reflectivity mirror coatings for large astronomical telescopes particularly for the far ultra violet (FUV) part of the spectrum as a key technology requiring significant materials research and process development. In this paper we describe the challenges and accomplishments in producing stable high reflectance aluminum mirror coatings with conventional evaporation and advanced Atomic Layer Deposition (ALD) techniques. We present the current status of process development with reflectance of approx. 55 to 80% in the FUV achieved with little or no degradation over a year. Keywords: Large telescope optics, Aluminum mirror, far UV astrophysics, ALD, coating technology development.

  8. James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

    Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.

    2012-01-01

    In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.

  9. Optical vortices and singularities due to interference in atomic radiation near a mirror.

    Li, Xin; Shu, Jie; Arnoldus, Henk F

    2009-11-15

    We consider radiation emitted by an electric dipole close to a mirror. We have studied the field lines of the Poynting vector, representing the flow lines of the electromagnetic energy, and we show that numerous singularities and subwavelength optical vortices appear in this energy flow pattern. We also show that the field line pattern in the plane of the mirror contains a singular circle across which the field lines change direction.

  10. Chip-To-Chip Optical Interconnection Using MEMS Mirrors

    2009-03-26

    power generated through a resistor is a function of this common current but different resistances, different amounts of heat are generated in the two...Chiu, “Modeling and control of piezo - electric cantilever beam micro mirror and micro laser arrays to reduce image band- ing in electrophotographic

  11. Optimized systems for energy efficient optical tweezing

    Kampmann, R.; Kleindienst, R.; Grewe, A.; Bürger, Elisabeth; Oeder, A.; Sinzinger, S.

    2013-03-01

    Compared to conventional optics like singlet lenses or even microscope objectives advanced optical designs help to develop properties specifically useful for efficient optical tweezers. We present an optical setup providing a customized intensity distribution optimized with respect to large trapping forces. The optical design concept combines a refractive double axicon with a reflective parabolic focusing mirror. The axicon arrangement creates an annular field distribution and thus clears space for additional integrated observation optics in the center of the system. Finally the beam is focused to the desired intensity distribution by a parabolic ring mirror. The compact realization of the system potentially opens new fields of applications for optical tweezers such as in production industries and micro-nano assembly.

  12. Optical zoom lens module using MEMS deformable mirrors for portable device

    Lu, Jia-Shiun; Su, Guo-Dung J.

    2012-10-01

    The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°

  13. Ballooning instabilities in toroidally linked mirror systems

    Hastie, R.J.; Watson, C.J.H.

    1977-01-01

    This paper examines the stability against ballooning modes of plasma equilibria in toroidally linked mirror configurations consisting of a number of quadrupole minimum-B mirrors linked toroidally. On the basis of the Kruskal-Oberman energy principle, a class of displacements is identified which are potentially unstable, and a necessary criterion for stability is derived. The criterion is obtained from the eigenvalues of an ordinary differential equation, which determines the variation of the displacement along a field line. The coefficients in the equation are determined by the configuration, and by inserting various model configurations, estimates are obtained of the maximum value of β consistent with stability. In cases of interest, quite high β-values are obtained. (author)

  14. Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems

    de la Mora, M.B.; Jaramillo, O.A.; Nava, R.; Tagueena-Martinez, J. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, A. P. 34, 62580 Temixco, Morelos (Mexico); del Rio, J.A. [Centro Morelense de Innovacion y Transferencia Tecnologica, CCyTEM Camino Temixco a Emiliano Zapata, Km 0.3, Colonia Emiliano Zapata, 62760 Morelos (Mexico)

    2009-08-15

    In this paper we report the viability of using porous silicon photonic mirrors (PSPM) as secondary reflectors in solar concentration systems. The PSPM were fabricated with nanostructured porous silicon to reflect light from the visible range to the near infrared region (500-2500 nm), although this range could be tuned for specific wavelength applications. Our PSPM are multilayers of two alternated refractive indexes (1.5 and 2.0), where the condition of a quarter wavelength in the optical path was imposed. The PSPM were exposed to high radiation in a solar concentrator equipment. As a result, we observed a significant degradation of the mirrors at an approximated temperature of 900 C. In order to analyze the origin of the degradation of PSPM, we model the samples with a non-linear optical approach and study the effect of a temperature increase. Those theoretical and experimental studies allow us to conclude that the main phenomenon involved in the breakdown of the photonic mirrors is of thermal origin, produced by heterogeneous expansion of each layer. Our next step was to introduce a cooling system into the solar concentrator to keep the mirrors at approximately 70 C, with very good results. As a conclusion we propose the use of PSPM as selective secondary mirrors in solar concentration devices using temperature control to avoid thermal degradation. (author)

  15. The infant mirror neuron system studied with high density EEG.

    Nyström, Pär

    2008-01-01

    The mirror neuron system has been suggested to play a role in many social capabilities such as action understanding, imitation, language and empathy. These are all capabilities that develop during infancy and childhood, but the human mirror neuron system has been poorly studied using neurophysiological measures. This study measured the brain activity of 6-month-old infants and adults using a high-density EEG net with the aim of identifying mirror neuron activity. The subjects viewed both goal-directed movements and non-goal-directed movements. An independent component analysis was used to extract the sources of cognitive processes. The desynchronization of the mu rhythm in adults has been shown to be a marker for activation of the mirror neuron system and was used as a criterion to categorize independent components between subjects. The results showed significant mu desynchronization in the adult group and significantly higher ERP activation in both adults and 6-month-olds for the goal-directed action observation condition. This study demonstrate that infants as young as 6 months display mirror neuron activity and is the first to present a direct ERP measure of the mirror neuron system in infants.

  16. Quantum noise in the mirror-field system: A field theoretic approach

    Hsiang, Jen-Tsung, E-mail: cosmology@gmail.com [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Wu, Tai-Hung [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Lee, Da-Shin, E-mail: dslee@mail.ndhu.edu.tw [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); King, Sun-Kun [Institutes of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan, ROC (China); Wu, Chun-Hsien [Department of Physics, Soochow University, Taipei, Taiwan, ROC (China)

    2013-02-15

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: Black-Right-Pointing-Pointer The quantum noise problem in the mirror-field system is re-visited by a field-theoretic approach. Black-Right-Pointing-Pointer Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. Black-Right-Pointing-Pointer The noise

  17. Experimental and theoretical study of Bragg-Fresnel focalizing optical systems engraved on multi layers interferential mirrors adapted to X and X-UV fields

    Idir, M.

    1995-02-01

    This work concerns the study of a particular type of X-ray focusing optics known as Bragg-Fresnel lenses, formed through ion-etching of multilayered structures. Using the Super-ACO (LURE/Orsay) synchrotron storage ring, we tested several Bragg-Fresnel lenses having either linear or elliptical geometries (producing a line or a point focus, respectively). Diffraction profiles were first obtained for the linear lenses ion-etched on W/Si multilayers of nano-metric period. The experimental results were compared with our theoretical predictions. We next proposed and tested a solution to the problem superposing the different diffraction orders in the focal plane, that of fabricating Bragg-Fresnel lenses with an off-axis configuration, first for the linear and then the elliptical geometry. An experimental application, for an off-axis elliptical lens produced a focused X-ray spot of 5 x 10 microns 2 for the Super-ACO synchrotron source. The same lens also produced a 1/3-size X-ray image of a grid-like object at 1750 eV using the first and third diffraction orders. (author)

  18. Analysis of multichannel optical rotary connectors based on the compensation operating principle with mirror and prismatic optical compensators (Part 1

    V.M. Shapar

    2017-04-01

    Full Text Available Performed in this work is a comprehensive theoretical computer analysis of performances inherent to two types of multichannel optical rotary connectors (ORC of compensation operation based on mirror and prismatic compensators. This analysis relies on exact analytical expressions obtained for light ray paths in ORC models with a mirror compensator made in the form of bilateral mirror placed between two optical hemispheres and with prismatic compensator made in the form of Dove prism placed between two non-aberrational elliptic lenses. Found in ORC with the mirror compensator is the essential deficiency inherent to all these constructions, which is related with considerable rotary oscillations in the value of optical signals in mirror angular positions when the mirror halves the input light beam. In these mirror positions, the amplitude value of optical signal oscillations exceeds 95%, and optical losses are higher than –13 dB, when the rotor turns. One deficiency more in these constructions is also strict technical requirements to the accuracy of making the optical components and mechanisms at the level of 1…2 µm. Concerning the ORC construction with a prismatic compensator as well as collimator and focusing lenses common for all the channels, one should note the inadmissibly high optical losses of the signal value (higher than –30…40 dB in the case of construction with fiber-optic interfaces, and large dimensions and mass in the case of active construction with optoelectronic transducers at the inputs and outputs of ORC. For example, when the number of channels N = 10 the longitudinal dimension of optical transfer channel (prism and lenses exceeds 300 mm, and this dimension increases with increasing the number of channels. When this dimension is lower than 100 mm, the facility can be equipped with only one optical communication channel containing one LED and one photodiode located on the rotation axis. Optical losses in these

  19. The mirror system and its role in social cognition.

    Rizzolatti, Giacomo; Fabbri-Destro, Maddalena

    2008-04-01

    Experiments in monkeys have shown that coding the goal of the motor acts is a fundamental property of the cortical motor system. In area F5, goal-coding motor neurons are also activated by observing motor acts done by others (the 'classical' mirror mechanism); in area F2 and area F1, some motor neurons are activated by the mere observation of goal-directed movements of a cursor displayed on a computer screen (a 'mirror-like' mechanism). Experiments in humans and monkeys have shown that the mirror mechanism enables the observer to understand the intention behind an observed motor act, in addition to the goal of it. Growing evidence shows that a deficit in the mirror mechanism underlies some aspects of autism.

  20. Remote Control System of the TJ-II Microwave Transmission Lines Mirrors

    Lopez Sanchez, A.; Fernandez, A.; Cappa, A.; Gama, J. de la; Olivares, J.; Garcia, R.; Chamorro, M.

    2007-01-01

    The ECRH system of the TJ-II stellarator has two gyrotrons, which deliver a maximum power of 300 kW each at a frequency of 53.2 GHz. Another 28 GHz gyrotron will be used to heat the plasma by electron Bernstein waves (EBWH). The microwave power is transmitted from the gyrotrons to the vacuum chamber by two quasi-optical transmission lines for ECRH and a corrugated waveguide for EBWH. All transmission lines have an internal movable mirror inside the vacuum chamber to focus the beam and to be able to change the launching angle. The control of the beam polarization is very important and the lines have two corrugated mirrors, which actuate as polarizers. In this report the control system of the position of these three internal mirrors and the polarizers of the EBWH transmission line is described. (Author) 20 refs

  1. Enhanced optical alignment of a digital micro mirror device through Bayesian adaptive exploration

    Kevin B. Wynne

    2017-12-01

    Full Text Available As the use of Digital Micro Mirror Devices (DMDs becomes more prevalent in optics research, the ability to precisely locate the Fourier “footprint” of an image beam at the Fourier plane becomes a pressing need. In this approach, Bayesian adaptive exploration techniques were employed to characterize the size and position of the beam on a DMD located at the Fourier plane. It couples a Bayesian inference engine with an inquiry engine to implement the search. The inquiry engine explores the DMD by engaging mirrors and recording light intensity values based on the maximization of the expected information gain. Using the data collected from this exploration, the Bayesian inference engine updates the posterior probability describing the beam’s characteristics. The process is iterated until the beam is located to within the desired precision. This methodology not only locates the center and radius of the beam with remarkable precision but accomplishes the task in far less time than a brute force search. The employed approach has applications to system alignment for both Fourier processing and coded aperture design.

  2. Enhanced optical alignment of a digital micro mirror device through Bayesian adaptive exploration

    Wynne, Kevin B.; Knuth, Kevin H.; Petruccelli, Jonathan

    2017-12-01

    As the use of Digital Micro Mirror Devices (DMDs) becomes more prevalent in optics research, the ability to precisely locate the Fourier "footprint" of an image beam at the Fourier plane becomes a pressing need. In this approach, Bayesian adaptive exploration techniques were employed to characterize the size and position of the beam on a DMD located at the Fourier plane. It couples a Bayesian inference engine with an inquiry engine to implement the search. The inquiry engine explores the DMD by engaging mirrors and recording light intensity values based on the maximization of the expected information gain. Using the data collected from this exploration, the Bayesian inference engine updates the posterior probability describing the beam's characteristics. The process is iterated until the beam is located to within the desired precision. This methodology not only locates the center and radius of the beam with remarkable precision but accomplishes the task in far less time than a brute force search. The employed approach has applications to system alignment for both Fourier processing and coded aperture design.

  3. Compensation of X-ray mirror shape-errors using refractive optics

    Sawhney, Kawal, E-mail: Kawal.sawhney@diamond.ac.uk; Laundy, David; Pape, Ian [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Dhamgaye, Vishal [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore 452012 (India)

    2016-08-01

    Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the size of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.

  4. Advanced MEMS systems for optical communication and imaging

    Horenstein, M N; Sumner, R; Freedman, D S; Datta, M; Kani, N; Miller, P; Stewart, J B; Cornelissen, S

    2011-01-01

    Optical communication and adaptive optics have emerged as two important uses of micro-electromechanical (MEMS) devices based on electrostatic actuation. Each application uses a mirror whose surface is altered by applying voltages of up to 300 V. Previous generations of adaptive-optic mirrors were large (∼1 m) and required the use of piezoelectric transducers. Beginning in the mid-1990s, a new class of small MEMS mirrors (∼1 cm) were developed. These mirrors are now a commercially available, mature technology. This paper describes three advanced applications of MEMS mirrors. The first is a mirror used for corona-graphic imaging, whereby an interferometric telescope blocks the direct light from a distant star so that nearby objects such as planets can be seen. We have developed a key component of the system: a 144-channel, fully-scalable, high-voltage multiplexer that reduces power consumption to only a few hundred milliwatts. In a second application, a MEMS mirror comprises part of a two-way optical communication system in which only one node emits a laser beam. The other node is passive, incorporating a retro-reflective, electrostatic MEMS mirror that digitally encodes the reflected beam. In a third application, the short (∼100-ns) pulses of a commercially-available laser rangefinder are returned by the MEMS mirror as a digital data stream. Suitable low-power drive systems comprise part of the system design.

  5. Construction and Optical Testing of Inflatable Membrane Mirror Using Structured Light Technique

    Felipe Patiño-Jiménez

    2015-01-01

    Full Text Available Construction and characterization of an inflatable mirror prototype made out of flexible polymeric membranes are being presented. Surfaces were curved by imposing a slight excess of air pressure. Lightweighted, lowcost, and commercially available materials were selected in order to produce solar concentration elements at competitive prices. In this sense, large-area, image-forming mirrors with low optical acuity were achieved by concentration purposes. Optical characterization of the mirror’s shape at a given pressure or curvature radius was done by means of a structuredlight technique with a resolution of 0.1 mm finding a conical shape acquired by the inflated mirror as the best approximation. Concentration ratio achieved for a focal length of 5068 mm was of 25.1 suns, making a promising approach for lowering initial investment costs in applications such as hot-water, parabolic dish with Stirling engines, or concentrated photovoltaic electricity generation.

  6. Control system for several rotating mirror camera synchronization operation

    Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji

    1997-05-01

    This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.

  7. Grating exchange system of independent mirror supported by floating rotary stage

    Zhang, Jianhuan; Tao, Jin; Liu, Yan; Nan, Yan

    2015-10-01

    The performance of The Grating Exchange System can satisfy the Thirty Meter Telescope - TMT for astronomical observation WFOS index requirements and satisfy the requirement of accuracy in the grating exchange. It is used to install in the MOBIE and a key device of MOBIE. The Wide Field Optical Spectrograph (WFOS) is one of the three first-light observing capabilities selected by the TMT Science Advisory Committee. The Multi-Object Broadband Imaging Echellette (MOBIE) instrument design concept has been developed to address the WFOS requirements as described in the TMT Science-Based Requirements Document (SRD). The Grating Exchange System uses a new type of separate movement way of three grating devices and a mirror device. Three grating devices with a mirror are able to achieve independence movement. This kind of grating exchange system can effectively solve the problem that the volume of the grating change system is too large and that the installed space of MOBIE instruments is too limit. This system adopts the good stability, high precision of rotary stage - a kind of using air bearing (Air bearing is famous for its ultra-high precision, and can meet the optical accuracy requirement) and rotation positioning feedback gauge turntable to support grating device. And with a kind of device which can carry greater weight bracket fixed on the MOBIE instrument, with two sets of servo motor control rotary stage and the mirror device respectively. And we use the control program to realize the need of exercising of the grating device and the mirror device. Using the stress strain analysis software--SolidWorks for stress and strain analysis of this structure. And then checking the structure of the rationality and feasibility. And prove that this system can realize the positioning precision under different working conditions can meet the requirements of imaging optical grating diffraction efficiency and error by the calculation and optical performance analysis.

  8. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  9. Modulation of the mirror system by social relevance.

    Kilner, James M; Marchant, Jennifer L; Frith, Chris D

    2006-09-01

    When we observe the actions of others, certain areas of the brain are activated in a similar manner as to when we perform the same actions ourselves. This 'mirror system' includes areas in the ventral premotor cortex and the inferior parietal lobule. Experimental studies suggest that action observation automatically elicits activity in the observer, which precisely mirrors the activity observed. In this case we would expect this activity to be independent of observer's viewpoint. Here we use whole-head magnetoencephalography (MEG) to record cortical activity of human subjects whilst they watched a series of videos of an actor making a movement recorded from different viewpoints. We show that one cortical response to action observation (oscillatory activity in the 7-12 Hz frequency range) is modulated by the relationship between the observer and the actor. We suggest that this modulation reflects a mechanism that filters information into the 'mirror system', allowing only socially relevant information to pass.

  10. Rugged optical mirrors for the operation of Fourier-Transform Spectrometers in rough environments

    Feist, Dietrich G.

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC) operate a growing number of Fourier-Transform Spectrometers (FTS) that measure the total column of several atmospheric trace gases. For these measurements, the sun is used as a light source. This is typically achieved by a solar tracker that uses a pair of optical mirrors to guide the sunlight into the instrument. There is a growing demand to operate these instruments in remote locations that fill the gaps in the global observation network. Besides the logistical challenges of running a remote site, the environment at these locations can be very harsh compared to the sheltered environment of the instruments' home institutions. While the FTS itself is usually well protected inside a building or container, the solar tracker and especially its mirrors are exposed to the environment. There they may suffer from - temperature fluctuations - high humidity - sea salt corrosion at coastal sites - dirt and dust - air pollution from anthropogenic sources - deposition from plants or animals The Max Planck Institute for Biogeochemistry (MPI-BGC) operates a TCCON station on Ascension Island, about 200 m from the sea. Under the rough conditions at this site, typical optical mirrors that are made for laboratory conditions are destroyed by sea salt spray within a few weeks. Besides, typical gold-coated mirrors cannot be cleaned as their soft surface is easily scratched or damaged. To overcome these problems, the MPI-BGC has developed optical mirrors that - offer good reflectivity in the near and mid infrared - are highly resistant to salt and chlorine - have a hard surface so that they can be cleaned often and easily - are not affected by organic solvents - last for months in very harsh environments - can be reused after polishing These mirrors could be applied to most TCCON and NDACC sites. This way, the network could be expanded to regions where operation

  11. Cryogenic systems for the Mirror Fusion Test Facility

    Slack, D.S.; Nelson, R.L.; Chronis, W.C.

    1985-08-01

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems

  12. Optical properties of the electrostatic mirror: application to the Orsay project

    Schapira, J.P.

    1983-01-01

    Optical properties: transfer matrix and acceptance of the electrostatic mirror have been calculated for any transit time value. Advantage of this type of inflector for axial injection into a compact cyclotron are discussed. Nevertheless one points out that the use of a mirror implies beam of very good quality, due to large transit time fluctuation related to the geometrical emittance. This is specially relevant to the case of the Orsay project, where one aims at a phase grouping of few R.F. degrees [fr

  13. Design and fabrication of multimode interference couplers based on digital micro-mirror system

    Wu, Sumei; He, Xingdao; Shen, Chenbo

    2008-03-01

    Multimode interference (MMI) couplers, based on the self-imaging effect (SIE), are accepted popularly in integrated optics. According to the importance of MMI devices, in this paper, we present a novel method to design and fabricate MMI couplers. A technology of maskless lithography to make MMI couplers based on a smart digital micro-mirror device (DMD) system is proposed. A 1×4 MMI device is designed as an example, which shows the present method is efficient and cost-effective.

  14. Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons.

    Bonaiuto, James; Arbib, Michael A

    2010-04-01

    A mirror system is active both when an animal executes a class of actions (self-actions) and when it sees another execute an action of that class. Much attention has been given to the possible roles of mirror systems in responding to the actions of others but there has been little attention paid to their role in self-actions. In the companion article (Bonaiuto et al. Biol Cybern 96:9-38, 2007) we presented MNS2, an extension of the Mirror Neuron System model of the monkey mirror system trained to recognize the external appearance of its own actions as a basis for recognizing the actions of other animals when they perform similar actions. Here we further extend the study of the mirror system by introducing the novel hypotheses that a mirror system may additionally help in monitoring the success of a self-action and may also be activated by recognition of one's own apparent actions as well as efference copy from one's intended actions. The framework for this computational demonstration is a model of action sequencing, called augmented competitive queuing, in which action choice is based on the desirability of executable actions. We show how this "what did I just do?" function of mirror neurons can contribute to the learning of both executability and desirability which in certain cases supports rapid reorganization of motor programs in the face of disruptions.

  15. The simplest possible design for a KB microfocus mirror system?

    Collins, S. P., E-mail: steve.collins@diamond.ac.uk; Scott, S. M.; Hawkins, D. M.; Fabrizi, F.; Moser, B.; Nisbet, G.; Sutter, J. P. [Diamond Light Source, Harwell Science & Innovation Campus, Didcot, OX11 0DE (United Kingdom); Harwin, R. C. [Diamond Light Source, Harwell Science & Innovation Campus, Didcot, OX11 0DE (United Kingdom); Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Harwin, W. S. [School of Systems Engineering, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AH (United Kingdom)

    2016-07-27

    We report a design for a Kirkpatrick-Baez (KB) microfocussing mirror system. The main components are described, with emphasis on a ‘tripod’ manipulator, where we outline the required coordinate transformation calculations. The merit of this device lies in its simplicity of design, minimal degrees of freedom, and speed and ease of setup on a beamline. Test results and an example of the mirrors in use on Diamond Beamline I16, showing a high-resolution polar domain map of KTiOPO{sub 4} with a spot size of 1.25 µm × 1.5 µm, are presented.

  16. Plasma surface interactions in Q-enhanced mirror systems

    Post, R.F.

    1978-01-01

    Two approaches to enhancement of the Q (energy gain) factor of mirror systems are under study at Livermore. These include the Tandem Mirror and the Field Reversed Mirror. Both of these new ideas preserve features of conventional mirror systems as far as plasma-wall interactions are concerned. Specifically in both approaches field lines exit from the ends of the system and impinge on walls located at a distance from the confinement chamber. It is possible to predict some aspects of the plasma/surface interactions of TM and FRM systems from experience obtained in the Livermore 2XIIB experiment. In particular, as observed in 2XIIB, effective isolation of the plasma from thermal contact with the ends owing to the development of sheath-like regions is to be expected. Studies presently underway directed toward still further enhancing the decoupling of the plasma from the effects of plasma surface interactions at the walls will be discussed, with particular reference to the problem of minimizing the effects of refluxing secondary electrons produced by plasma impact on the end walls

  17. Acting together in and beyond the mirror neuron system

    Kokal, Idil; Gazzola, Valeria; Keysers, Christian

    2009-01-01

    Moving a set dinner table often takes two people, and doing so without spilling the glasses requires the close coordination of the two agents' actions. It has been argued that the mirror neuron system may be the key neural locus of such coordination. Instead, here we show that such coordination

  18. Cryogenic systems for the Mirror Fusion Test Facility

    Slack, D.S.; Chronis, W.C.; Nelson, R.L.

    1986-01-01

    This paper will include an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem will be discussed to present a basic composite of the entire facility

  19. Empathy and the somatotopic auditory mirror system in humans

    Gazzola, Valeria; Aziz-Zadeh, Lisa; Keysers, Christian

    2006-01-01

    How do we understand the actions of other individuals if we can only hear them? Auditory mirror neurons respond both while monkeys perform hand or mouth actions and while they listen to sounds of similar actions [1, 2]. This system might be critical for auditory action understanding and language

  20. The Mirror Neuron System: Grasping Others' Actions from Birth?

    Lepage, Jean-Francois; Theoret, Hugo

    2007-01-01

    In the adult human brain, the presence of a system matching the observation and the execution of actions is well established. This mechanism is thought to rely primarily on the contribution of so-called "mirror neurons", cells that are active when a specific gesture is executed as well as when it is seen or heard. Despite the wealth of evidence…

  1. On Empathy: The Mirror Neuron System and Art Education

    Jeffers, Carol S.

    2009-01-01

    This paper re/considers empathy and its implications for learning in the art classroom, particularly in light of relevant neuroscientific investigations of the mirror neuron system recently discovered in the human brain. These investigations reinterpret the meaning of perception, resonance, and connection, and point to the fundamental importance…

  2. Mirrors for High Resolution X-Ray Optics---Figure Preserving IR/PT Coating

    Chan, Kai-Wing; Olsen, Lawrence; Sharpe, Marton; Numata, Ai; McClelland, Ryan; Saha, Timo; Zhang, Will

    2016-01-01

    Coating stress of 10 - 20 nm of Ir is sufficiently high to distort the figure of arc-second thin lightweight mirrors. For iridium: --Stress sigma 4 GPa for 15 nm film implies 60 Nm integrated stress-- Need less than 3 N/m (or stress less than 200 MPa) for sub-arcsecond optics. Basic Approaches for Mitigation. A. Annealing the film-- Glass can be heat up to 400 C without distortion. Silicon is even more resistant.-- It was found that recovery is limited by residual thermal stress from taking the mirror down from high T. B. Coating bi-layer films with compressive stress with tensile stress. C. Front-and-back coating with magnetron sputtering or atomic layer deposition-- Sputtering involve spanning of substrates. Geometric difference in setup (convexness/concaveness of curved mirrors) does not permit precise front-and-back matching-- Atomic layer deposition can provide a uniform deposition front and back simultaneously.

  3. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  4. Utilization of Faraday Mirror in Fiber Optic Current Sensors

    P. Fiala

    2008-12-01

    Full Text Available Fiber optic sensors dispose of some advantages in the field of electrical current and magnetic field measurement, like large bandwidth, linearity, light transmission possibilities. Unfortunately, they suffer from some parasitic phenomena. The crucial issue is the presence of induced and latent linear birefringence, which is imposed by the fiber manufacture imperfections as well as mechanical stress by fiber bending. In order to the linear birefringence compensation a promising method was chosen for pulsed current sensor design. The method employs orthogonal polarization conjugation by the back direction propagation of the light wave in the fiber. The Jones calculus analysis presents its propriety. An experimental fiber optic current sensor has been designed and realized. The advantage of the proposed method was proved considering to the sensitivity improvement.

  5. Investigation of aperiodic W/C multi-layer mirror for X-ray optics

    Wang Zhanshan; Cheng Xinbin; Zhu Jingtao; Huang Qiushi; Zhang Zhong; Chen Lingyan

    2011-01-01

    Design, fabrication and characterization of aperiodic tungsten/carbon (W/C) multi-layer mirror were studied. W/C multi-layer was designed as a broad-angle reflective supermirror for Cu-Kα line (λ = 0.154 nm) in the grazing incident angular range (0.9-1.1 deg.) using simulated annealing algorithm. To deposit the W/C depth-graded multi-layer mirror accurately, we introduce an effective layer growth rate as a function of layer thickness. This method greatly improves the reflectivity curve compared to the conventional multi-layer mirror prepared with constant growth rate. The deposited multi-layer mirror exhibits an average reflectivity of 19% over the grazing incident angle range of 0.88-1.08 deg. which mainly coincides with the designed value. Furthermore, the physical mechanisms were discussed and the re-sputtering process of light-atom layers is accounted for the modification of layer thicknesses which leads to the effective growth rates. Using this calibration method, the aperiodic multi-layer mirrors can be better fabricated for X-ray optics.

  6. Using refractive optics to broaden the focus of an X-ray mirror.

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal

    2017-07-01

    X-ray mirrors are widely used at synchrotron radiation sources for focusing X-rays into focal spots of size less than 1 µm. The ability of the beamline optics to change the size of this spot over a range up to tens of micrometres can be an advantage for many experiments such as X-ray microprobe and X-ray diffraction from micrometre-scale crystals. It is a requirement that the beam size change should be reproducible and it is often essential that the change should be rapid, for example taking less than 1 s, in order to allow high data collection rates at modern X-ray sources. In order to provide a controlled broadening of the focused spot of an X-ray mirror, a series of refractive optical elements have been fabricated and installed immediately before the mirror. By translation, a new refractive element is moved into the X-ray beam allowing a variation in the size of the focal spot in the focusing direction. Measurements using a set of prefabricated refractive structures with a test mirror showed that the focused beam size could be varied from less than 1 µm to over 10 µm for X-rays in the energy range 10-20 keV. As the optics is in-line with the X-ray beam, there is no effect on the centroid position of the focus. Accurate positioning of the refractive optics ensures reproducibility in the focused beam profile and no additional re-alignment of the optics is required.

  7. Magnet system of the ''AMBAL'' experimental trap with ambipolar mirrors

    Dimov, G.I.; Lysyanskij, P.B.; Tadber, M.V.; Timoshin, I.Ya.; Shrajner, K.K.

    1982-01-01

    A magnet system of the ''AMBAL'' ambipolar trap under construction is described. The trap magnetic field configuration, geometry of the main coils and diagram of the whole device magnet system are outlined. Drift surface cross sections in the equatorial plane of the ring mirror device, in the median plane and at different distances from the trap median plane are presented. The magnet system design is described in brief

  8. Neutral beam control systems for the Tandem Mirror Experiment

    Ross, R.I.

    1979-01-01

    The Tandem Mirror Experiment (TMX) is presently developing the technology and approaches which will be used in larger fusion systems. This paper describes some of the designs which were used in creating the control system for the TMX neutral beams. To create a system of controls that would work near these large, rapid switching current sources required a mixture of different technologies: fiberoptic data transmission, printed circuit and wirewrap techniques, etc

  9. Magnetic atom optics: mirrors, guides, traps, and chips for atoms

    Hinds, E.A.; Hughes, I.G. [Sussex Centre for Optical and Atomic Physics, University of Sussex, Brighton (United Kingdom)

    1999-09-21

    For the last decade it has been possible to cool atoms to microkelvin temperatures ({approx}1 cm s{sup -1}) using a variety of optical techniques. Light beams provide the very strong frictional forces required to slow atoms from room temperature ({approx}500 m s{sup -1}). However, once the atoms are cold, the relatively weak conservative forces of static electric and magnetic fields play an important role. In our group we have been studying the interaction of cold rubidium atoms with periodically magnetized data storage media. Here we review the underlying principles of the forces acting on atoms above a suitably magnetized substrate or near current-carrying wires. We also summarize the status of experiments. These structures can be used as smooth or corrugated reflectors for controlling the trajectories of cold atoms. Alternatively, they may be used to confine atoms to a plane, a line, or a dot and in some cases to reach the quantum limit of confinement. Atoms levitated above a magnetized surface can be guided electrostatically by wires deposited on the surface. The flow and interaction of atoms in such a structure may form the basis of a new technology, 'integrated atom optics' which might ultimately be capable of realizing a quantum computer. (author)

  10. Research on Measurement Accuracy of Laser Tracking System Based on Spherical Mirror with Rotation Errors of Gimbal Mount Axes

    Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang

    2018-02-01

    This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.

  11. Magnet system for a thermal barrier Tandem Mirror Reactor

    Kim, N.S.; Conn, R.W.

    1981-01-01

    The magnet system for a thermal barrier D-D tandem mirror reactor has been studied as part of the UCLA tandem mirror reactor design study SATYR. Three main considerations in designing the SATYR magnet system are to obtain the desired field strength variation throughout the system, to have proper space for plasma and neutron shielding, and to satisfy the MHD stability to achieve maximum central cell /beta/. Due to the importance and the complexity, the 'internal' field reversal magnet is the main concern in the entire magnet system for SATYR. Two different magnet designs, a non-uniform current density solenoid and a higher-order solenoid, are discussed. Coil levitation for the internal field reversal magnet has been analyzed

  12. BOLDMirror: a global mirror system of DNA barcode data.

    Liu, D; Liu, L; Guo, G; Wang, W; Sun, Q; Parani, M; Ma, J

    2013-11-01

    DNA barcoding is a novel concept for taxonomic identification using short, specific genetic markers and has been applied to study a large number of eukaryotes. The huge amount of data output generated by DNA barcoding requires well-organized information systems. Besides the Barcode of Life Data system (BOLD) established in Canada, the mirror system is also important for the international barcode of life project (iBOL). For this purpose, we developed the BOLDMirror, a global mirror system of DNA barcode data. It is open-sourced and can run on the LAMP (Linux + Apache + MySQL + PHP) environment. BOLDMirror has data synchronization, data representation and statistics modules, and also provides spaces to store user operation history. BOLDMirror can be accessed at http://www.boldmirror.net and several countries have used it to setup their site of DNA barcoding. © 2012 John Wiley & Sons Ltd.

  13. Design and Optimization of Thermophotovoltaic System Cavity with Mirrors

    Tian Zhou

    2016-09-01

    Full Text Available Thermophotovoltaic (TPV systems can convert radiant energy into electrical power. Here we explore the design of the TPV system cavity, which houses the emitter and the photovoltaic (PV cells. Mirrors are utilized in the cavity to modify the spatial and spectral distribution within. After discussing the basic concentric tubular design, two novel cavity configurations are put forward and parametrically studied. The investigated variables include the shape, number, and placement of the mirrors. The optimization objectives are the optimized efficiency and the extended range of application of the TPV system. Through numerical simulations, the relationship between the design parameters and the objectives are revealed. The results show that careful design of the cavity configuration can markedly enhance the performance of the TPV system.

  14. Sign language processing and the mirror neuron system.

    Corina, David P; Knapp, Heather

    2006-05-01

    In this paper we review evidence for frontal and parietal lobe involvement in sign language comprehension and production, and evaluate the extent to which these data can be interpreted within the context of a mirror neuron system for human action observation and execution. We present data from three literatures--aphasia, cortical stimulation, and functional neuroimaging. Generally, we find support for the idea that sign language comprehension and production can be viewed in the context of a broadly-construed frontal-parietal human action observation/execution system. However, sign language data cannot be fully accounted for under a strict interpretation of the mirror neuron system. Additionally, we raise a number of issues concerning the lack of specificity in current accounts of the human action observation/execution system.

  15. Use of a mirror as the first optical component for an undulator beamline at the APS

    Yun, W.; Khounsary, A.; Lai, B.; Gluskin, E.

    1992-09-01

    In the design of Sector II of the Synchrotron Radiation Instrumentation (SRI) CAT, an x-ray mirror with multiple coatings is chosen as the first optical component of the undulator beamline. Two significant advantages of using the mirror are: A significant reduction in the peak radiation heat flux and total power on the downstream monochromator, and (2) availability of the wide-bandpass undulator spectrum between 0--30 key to experimental stations with substantially reduced radiation shielding requirements. The second advantage also allows us to place the monochromator outside the first optics enclosure (FOE) at a large distance from the source to further reduce the peak heat flux on the monochromator. The combined effect is that the inclined crystal monochromator may not be necessary, and a multilayer monochromator can be used because the expected heat fluxes are less than the value that has been demonstrated for those monochromators

  16. Development and investigation of a CPV module with Cassegrain mirror optics

    Dreger, Max; Wiesenfarth, Maike; Kisser, Arne; Schmid, Tobias; Bett, Andreas W.

    2014-09-01

    One approach to concentrate the sunlight in concentrating photovoltaic (CPV) modules is using Cassegrain mirror optics. The advantage is that a passively cooled solar cell can be mounted to a large heat spreader that does not shade the primary optics. In addition, the height of the module, hence weight, can be low. The design was selected on the basis of the results of a design study comparing different CPV module approaches presented in [1]. In this work, we present the development of a new prototype micro dish module. First results of the characterization are shown. Besides of the electrical performance, a machined optics and an injection molded was investigated regarding sensitivity to misalignment errors between the optical elements as well as measurement of the acceptance angle in- and outdoors. The machined optics was used as reference.

  17. Augmented Mirror: Interactive Augmented Reality System Based on Kinect

    Vera , Lucía; Gimeno , Jesús; Coma , Inmaculada; Fernández , Marcos

    2011-01-01

    Part 1: Long and Short Papers; International audience; In this paper we present a virtual character controlled by an actor in real time, who talks with an audience through an augmented mirror. The application, which integrates video images, the avatar and other virtual objects within an Augmented Reality system, has been implemented using a mixture of technologies: two kinect systems for motion capture, depth map and real images, a gyroscope to detect head movements, and control algorithms to...

  18. Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics.

    Morzinski, Katie; Macintosh, Bruce; Gavel, Donald; Dillon, Daren

    2009-03-30

    High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming "extreme" AO instrument. High-order "tweeter" and low-order "woofer" deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the "dark hole" region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-microm-stroke MEMS device was empirically tested with software Kolmogorov-turbulence screens of r(0) =10-15 cm. The MEMS when solitary suffered saturation approximately 4% of the time. Simulating a woofer DM with approximately 5-10 actuators across a 5-m primary mitigated MEMS saturation occurrence to a fraction of a percent. While no adjacent actuators were saturated at opposing positions, mid-to-high-spatial-frequency stroke did saturate more frequently than expected, implying that correlations through the influence functions are important. Analytical models underpredict the stroke requirements, so empirical studies are important.

  19. James Webb Space Telescope Optical Simulation Testbed: Segmented Mirror Phase Retrieval Testing

    Laginja, Iva; Egron, Sylvain; Brady, Greg; Soummer, Remi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Mazoyer, Johan; N’Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2018-01-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator designed to produce JWST-like images. A model of the JWST three mirror anastigmat is realized with three lenses in form of a Cooke Triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module, and an Iris AO segmented mirror with hexagonal elements is standing in for the JWST segmented primary. This setup successfully produces images extremely similar to NIRCam images from cryotesting in terms of the PSF morphology and sampling relative to the diffraction limit.The testbed is used for staff training of the wavefront sensing and control (WFS&C) team and for independent analysis of WFS&C scenarios of the JWST. Algorithms like geometric phase retrieval (GPR) that may be used in flight and potential upgrades to JWST WFS&C will be explored. We report on the current status of the testbed after alignment, implementation of the segmented mirror, and testing of phase retrieval techniques.This optical bench complements other work at the Makidon laboratory at the Space Telescope Science Institute, including the investigation of coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFS&C studies for future large segmented space telescopes such as LUVOIR.

  20. Thermal effects on beryllium mirrors

    Weinswig, S.

    1989-01-01

    Beryllium is probably the most frequently used material for spaceborne system scan mirrors. Beryllium's properties include lightweightedness, high Young's modulus, high stiffness value, high resonance value. As an optical surface, beryllium is usually nickel plated in order to produce a higher quality surface. This process leads to the beryllium mirror acting like a bimetallic device. The mirror's deformation due to the bimetallic property can possibly degrade the performance of the associated optical system. As large space borne systems are designed and as temperature considerations become more crucial in the instruments, the concern about temporal deformation of the scan mirrors becomes a prime consideration. Therefore, two sets of tests have been conducted in order to ascertain the thermal effects on nickel plated beryllium mirrors. These tests are categorized. The purpose of this paper is to present the values of the bimetallic effect on typical nickel plated beryllium mirrors

  1. MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH

    Post, R.F.

    2010-01-01

    This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.

  2. 3-D optical profilometry at micron scale with multi-frequency fringe projection using modified fibre optic Lloyd's mirror technique

    Inanç, Arda; Kösoğlu, Gülşen; Yüksel, Heba; Naci Inci, Mehmet

    2018-06-01

    A new fibre optic Lloyd's mirror method is developed for extracting 3-D height distribution of various objects at the micron scale with a resolution of 4 μm. The fibre optic assembly is elegantly integrated to an optical microscope and a CCD camera. It is demonstrated that the proposed technique is quite suitable and practical to produce an interference pattern with an adjustable frequency. By increasing the distance between the fibre and the mirror with a micrometre stage in the Lloyd's mirror assembly, the separation between the two bright fringes is lowered down to the micron scale without using any additional elements as part of the optical projection unit. A fibre optic cable, whose polymer jacket is partially stripped, and a microfluidic channel are used as test objects to extract their surface topographies. Point by point sensitivity of the method is found to be around 8 μm, changing a couple of microns depending on the fringe frequency and the measured height. A straightforward calibration procedure for the phase to height conversion is also introduced by making use of the vertical moving stage of the optical microscope. The phase analysis of the acquired image is carried out by One Dimensional Continuous Wavelet Transform for which the chosen wavelet is the Morlet wavelet and the carrier removal of the projected fringe patterns is achieved by reference subtraction. Furthermore, flexible multi-frequency property of the proposed method allows measuring discontinuous heights where there are phase ambiguities like 2π by lowering the fringe frequency and eliminating the phase ambiguity.

  3. [The mirror neuron system in motor and sensory rehabilitation].

    Oouchida, Yutaka; Izumi, Shinichi

    2014-06-01

    The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.

  4. Morphological differences in the mirror neuron system in Williams Syndrome

    Ng, Rowena; Brown, Timothy T.; Erhart, Matthew; Järvinen, Anna M.; Korenberg, Julie R.; Bellugi, Ursula; Halgren, Eric

    2015-01-01

    Williams syndrome (WS) is a genetic condition characterized by an overly gregarious personality, including high empathetic concern for others. Although seemingly disparate from the profile of autism spectrum disorder (ASD), both are associated with deficits in social communication/cognition. Notably, the mirror neuron system (MNS) has been implicated in social dysfunction for ASD; yet, the integrity of this network and its association with social functioning in WS remains unknown. Magnetic re...

  5. Optics and multilayer coatings for EUVL systems

    Soufli, R; Bajt, S; Hudyma, R M; Taylor, J S

    2008-03-21

    EUV lithography (EUVL) employs illumination wavelengths around 13.5 nm, and in many aspects it is considered an extension of optical lithography, which is used for the high-volume manufacturing (HVM) of today's microprocessors. The EUV wavelength of illumination dictates the use of reflective optical elements (mirrors) as opposed to the refractive lenses used in conventional lithographic systems. Thus, EUVL tools are based on all-reflective concepts: they use multilayer (ML) coated optics for their illumination and projection systems, and they have a ML-coated reflective mask.

  6. Are mirror neurons the basis of speech perception? Evidence from five cases with damage to the purported human mirror system

    Rogalsky, Corianne; Love, Tracy; Driscoll, David; Anderson, Steven W.; Hickok, Gregory

    2013-01-01

    The discovery of mirror neurons in macaque has led to a resurrection of motor theories of speech perception. Although the majority of lesion and functional imaging studies have associated perception with the temporal lobes, it has also been proposed that the ‘human mirror system’, which prominently includes Broca’s area, is the neurophysiological substrate of speech perception. Although numerous studies have demonstrated a tight link between sensory and motor speech processes, few have directly assessed the critical prediction of mirror neuron theories of speech perception, namely that damage to the human mirror system should cause severe deficits in speech perception. The present study measured speech perception abilities of patients with lesions involving motor regions in the left posterior frontal lobe and/or inferior parietal lobule (i.e., the proposed human ‘mirror system’). Performance was at or near ceiling in patients with fronto-parietal lesions. It is only when the lesion encroaches on auditory regions in the temporal lobe that perceptual deficits are evident. This suggests that ‘mirror system’ damage does not disrupt speech perception, but rather that auditory systems are the primary substrate for speech perception. PMID:21207313

  7. Optical Airborne Tracker System

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  8. Report of the workshop on rf heating in mirror systems

    Price, R.E.; Woo, J.T.

    1980-08-01

    This report is prepared from the proceedings of the Workshop on RF Heating in Magnetic Mirror Systems held at DOE Headquarters in Washington, DC, on March 10-12, 1980. The workshop was organized into four consecutive half-day sessions of prepared talks and one half-day discussion. The first session on tandem mirror concepts and program plans served to identify the opportunities for the application of rf power and the specific approaches that are being pursued. A summary of the ideas presented in this session is given. The following sessions of the workshop were devoted to an exposition of current theoretical and experimental knowledge on the interaction of rf power with magnetically confined, dense, high temperature plasmas at frequencies near the electron cyclotron resonance, lower hybrid resonance and ion cyclotron resonance (including magnetosonic) ranges. The conclusions from these proceedings are presented

  9. Managing Risk on a Technology Development Project/Advanced Mirror System Demonstrator

    Byberg, Alicia; Russell, J. Kevin; Stahl, Phil (Technical Monitor)

    2002-01-01

    The risk management study applied to the Advanced Mirror System Demonstrator (AMSD), a precursor mirror technology development for the Next Generation Space Telescope (NGST) is documented. The AMSD will be developed as a segment of a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. The technology gained from the program will support the risk mitigation strategy for the NGST, as well as other government agency space mirror programs.

  10. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  11. Chiral mirrors

    Plum, Eric; Zheludev, Nikolay I.

    2015-01-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media

  12. Kodak AMSD Mirror Development Program

    Matthews, Gary; Dahl, Roger; Barrett, David; Bottom, John; Russell, Kevin (Technical Monitor)

    2002-01-01

    The Advanced Mirror System Demonstration Program is developing minor technology for the next generation optical systems. Many of these systems will require extremely lightweight and stable optics due to the overall size of the primary mirror. These segmented, deployable systems require new technology that AMSD is developing. The on-going AMSD program is a critical enabler for Next Generation Space Telescope (NGST) which will start in 2002. The status of Kodak's AMSD mirror and future plans will be discussed with respect to the NGST program.

  13. Plasma impact on diagnostic mirrors in JET

    A. Garcia-Carrasco; P. Petersson; M. Rubel; A. Widdowson; E. Fortuna-Zalesna; S. Jachmich; M. Brix; L. Marot

    2017-01-01

    Metallic mirrors will be essential components of all optical systems for plasma diagnosis in ITER. This contribution provides a comprehensive account on plasma impact on diagnostic mirrors in JET with the ITER-Like Wall. Specimens from the First Mirror Test and the lithium-beam diagnostic have been studied by spectrophotometry, ion beam analysis and electron microscopy. Test mirrors made of molybdenum were retrieved from the main chamber and the divertor after exposure to the 2013–2014 experi...

  14. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film

    Zhou Hai-Chun; Yang Guang; Lu Pei-Xiang; Wang Kai; Long Hua

    2012-01-01

    The coupling between two optical Tamm states (OTSs) with the same eigenenergy is numerically investigated in a planar dielectric mirror structure containing a thin metal film. The reflectivity map in this structure at normal incidence is obtained by applying the transfer matrix method. Two splitting branches appear in the photonic bandgap region when both adjacent dielectric layers of metal film are properly set. The splitting energy of two branches strongly depends on the thickness of the metal film. According to the electric field distribution in this structure, it is found that the high-energy branch corresponds to the antisymmetric coupling between two OTSs, while the low-energy branch is associated with the symmetric coupling between two OTSs. Moreover, the optical difference frequency of two branches is located in a broad terahertz region. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-01-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results

  16. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    Idir, Mourad, E-mail: midir@bnl.gov; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken [NSLS-II, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973 (United States); Conley, Ray [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Rennie, Kent; Kahn, Jim; Nethery, Richard [Kaufman & Robinson, Inc., 1330 Blue Spruce Drive, Fort Collins, Colorado 80524 (United States); Zhou, Lin [College of Mechatronics and Automation, National University of Defense Technology, 109 Deya Road, Changsha, Hunan 410073 (China); Hu’nan Key Laboratory of Ultra-precision Machining Technology, Changsha, Hunan 410073 (China)

    2015-10-15

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  17. Six movements measurement system employed for GAIA secondary mirror positioning system vacuum tests at cryogenic temperatures

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Garranzo García-Ibarrola, Daniel; Belenguer Dávila, Tomás

    2008-07-01

    In this work, the optical measurement system employed to evaluate the performance of a 6 degrees of freedom (dof) positioning mechanism under cryogenic conditions is explored. The mechanism, the flight model of three translations and three rotations positioning mechanism, was developed by the Spanish company SENER (for ASTRIUM) to fulfil the high performance requirements from ESA technology preparatory program for the positioning of a secondary mirror within the GAIA Astrometric Mission. Its performance has been evaluated under vacuum and temperature controlled conditions (up to a 10-6mbar and 100K) at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA). After the description of the 'alignment tool' developed to compare a fixed reference with the optical signal corresponding to the movement under evaluation, the optical system that allows measuring the displacements and the rotations in the three space directions is reported on. Two similar bread-boards were defined and mounted for the measurements purpose, one containing two distancemeters, in order to measure the displacements through the corresponding axis, and an autocollimator in order to obtain the rotations on the plane whose normal vector is the axis mentioned before, and other one containing one distancemeter and one autocollimator. Both distancemeter and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions.

  18. X-ray fluorescence analysis and optical emission spectrometry of an roman mirror from Tomis, Romania

    Belc, M.; Bogoi, M.; Ionescu, D.; Guita, D.; Caiteanu, S.; Caiteanu, D.

    2000-01-01

    The miscellaneous population of Roman Empire, their diverse cultural tradition, their ability to assimilate the roman civilization spirits, had determined a permanent reassessment superimposed upon the roman contribution. Analysis was undertaken using optical emission spectrometry and non-destructive X-ray fluorescence. X-ray fluorescence analysis is a well-established method and is often used in archaeometry and other work dealing with valuable objects pertaining to the history of art and civilization. Roman mirror analysed has been found not to be made of speculum (a high tin bronze). (authors)

  19. Optical scanning holography based on compressive sensing using a digital micro-mirror device

    A-qian, Sun; Ding-fu, Zhou; Sheng, Yuan; You-jun, Hu; Peng, Zhang; Jian-ming, Yue; xin, Zhou

    2017-02-01

    Optical scanning holography (OSH) is a distinct digital holography technique, which uses a single two-dimensional (2D) scanning process to record the hologram of a three-dimensional (3D) object. Usually, these 2D scanning processes are in the form of mechanical scanning, and the quality of recorded hologram may be affected due to the limitation of mechanical scanning accuracy and unavoidable vibration of stepper motor's start-stop. In this paper, we propose a new framework, which replaces the 2D mechanical scanning mirrors with a Digital Micro-mirror Device (DMD) to modulate the scanning light field, and we call it OSH based on Compressive Sensing (CS) using a digital micro-mirror device (CS-OSH). CS-OSH can reconstruct the hologram of an object through the use of compressive sensing theory, and then restore the image of object itself. Numerical simulation results confirm this new type OSH can get a reconstructed image with favorable visual quality even under the condition of a low sample rate.

  20. Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts

    Kim, J E; Jung, A; Linder, E V; Na, G W; Lim, H; Nam, J W; Chen, P; Liu, T-C; Brandt, S; Budtz-Jorgensen, C; Castro-Tirado, A J; Choi, H S; Grossan, B; Huang, M A; Jeong, S; Kim, M B; Lee, J; Park, I H; Kim, S-W; Panasyuk, M I

    2013-01-01

    The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its target within a second after triggering by an X-ray coded mask camera, which makes unnecessary a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accomplished by a 10 cm aperture Ritchey-Chrètien telescope and the focal plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200–650 nm in wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of 10 4 –10 6 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340 interline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA). The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of the slewing mirror, the ICCD high voltage adjustments, power distribution, and system monitoring by interfacing to the UFFO-pathfinder. These functions are realized in the FPGA to minimize power consumption and to enhance processing time. The SMT readout electronics are designed and built to meet the spacecraft's constraints of power consumption, mass, and volume. The entire system is integrated with the SMT optics, as is the UFFO-pathfinder. The system has been tested and satisfies the conditions of launch and those of operation in space: those associated with shock and vibration and those associated with thermal and vacuum, respectively. In this paper, we present the SMT readout electronics: the design, construction, and performance, as well as the results of space environment

  1. Mirror neuron system based therapy for emotional disorders.

    Yuan, Ti-Fei; Hoff, Robert

    2008-11-01

    Mirror neuron system (MNS) represents one of the most important discoveries in the area of neuropsychology of past decades. More than 500 papers have been published in this area (PubMed), and the major functions of MNS include action understanding, imitation, empathy, all of which are critical for an individual to be social. Recent studies suggested that MNS can modulate emotion states possibly through the empathy mechanism. Here we propose that MNS-based therapies provide a non-invasive approach in treatments to emotional disorders that were observed in autism patients, post-stroke patients with depression as well as other mood dysregulation conditions.

  2. Development of the measurement system with interferometers for ultraprecise X-ray mirror

    Yamauchi, K; Mimura, H

    2003-01-01

    A figure measurement system with a stitching method has been developed for evaluation and fabrication of the ultraprecise hard X-ray mirror optics. This system was constructed by two interferometers. One is the Michelson-type microscopic interferometer which is improved to keep the focus distance within 0.1 mu m. Another is the Fizeau's interferometer employed to compensate stitching error in the long spatial wavelength range. To estimate the absolute accuracy in this figure measurement system, the reflection X-ray intensity distributions of flat and aspherical mirrors, which are fabricated by us, were predicted by wave-optical simulation based on measured profile an compared with actually observed distributions. As the result, they are in good agreements. These agreements prove that the developed system has sub-nanometer absolute accuracy in all the spatial wavelength range longer than 0.5mm, because sub-nanometer figure error in those spatial wavelength ranges are known to affect reflection X-ray intensity ...

  3. Mirror neuron system: basic findings and clinical applications.

    Iacoboni, Marco; Mazziotta, John C

    2007-09-01

    In primates, ventral premotor and rostral inferior parietal neurons fire during the execution of hand and mouth actions. Some cells (called mirror neurons) also fire when hand and mouth actions are just observed. Mirror neurons provide a simple neural mechanism for understanding the actions of others. In humans, posterior inferior frontal and rostral inferior parietal areas have mirror properties. These human areas are relevant to imitative learning and social behavior. Indeed, the socially isolating condition of autism is associated with a deficit in mirror neuron areas. Strategies inspired by mirror neuron research recently have been used in the treatment of autism and in motor rehabilitation after stroke.

  4. Optimization of plasma mirror reflectivity and optical quality using double laser pulses

    Scott, G G; Clarke, R J; Green, J S; Heathcote, R I; Neely, D; Bagnoud, V; Brabetz, C; Zielbauer, B; Powell, H W; McKenna, P; Arber, T D

    2015-01-01

    We measure a record 96 ±2.5% specularly reflected energy fraction from an interaction with a plasma mirror (PM) surface preionized by a controlled prepulse and find that the optical quality is dependent on the inter pulse time delay. Simulations show that the main pulse reflected energy is a strong function of plasma density scale length, which increases with the time delay and reaches a peak reflectivity for a scale length of 0.3 μm, which is achieved here for a pulse separation time of 3 ps. It is found that the incident laser quasi near field intensity distribution leads to nonuniformities in this plasma expansion and consequent critical surface position distribution. The PM optical quality is found to be governed by the resultant perturbations in the critical surface position, which become larger with inter pulse time delay. (paper)

  5. Calibration of the mirror system in the HERA-B RICH

    Staric, Marko; Krizan, Peter

    2008-01-01

    The mirror system of the HERA-B ring imaging Cherenkov (RICH) counter consists of two spherical and two planar mirrors, composed of altogether 116 mirror segments. Analysis of displacements of the Cherenkov ring center relative to the charged particle track, for given spherical-planar segment pairs, leads to accurate information regarding the orientation of individual mirror segments. The method for mirror calibration is described and the effect of applying the required corrections on the Cherenkov angle resolution of the HERA-B RICH is discussed

  6. Nonlinear optical systems

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  7. Optical system design

    Fischer, Robert F

    2008-01-01

    Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanic...

  8. Studying the Behaviour of Model of Mirror Neuron System in Case of Autism

    Anirban, Shikha; Hanif Ali, Mohammad

    2012-01-01

    Several experiment done by the researchers conducted that autism is caused by the dysfunctional mirror neuron system and the dysfunctions of mirror neuron system is proportional to the symptom severity of autism. In the present work those experiments were studied as well as studying a model of mirror neuron system called MNS2 developed by a research group. This research examined the behavior of the model in case of autism and compared the result with those studies conducting dysfunctions of m...

  9. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  10. Novel electro-hydraulic position control system for primary mirror supporting system

    Xiongbin Peng

    2016-05-01

    Full Text Available In the field of modern large-scale telescope, primary mirror supporting system technology faces the difficulties of theoretically uniform output force request and bias compensation. Therefore, a novel position control system combining hydraulic system with servo motor system is introduced. The novel system ensures uniform output force on supporting points without complicating the mechanical structure. The structures of both primary mirror supporting system and novel position system are described. Then, the mathematical model of novel position control system is derived for controller selection. A proportional–derivative controller is adopted for simulations and experiments of step response and triangle path tracking. The results show that proportional–derivative controller guarantees the system with micrometer-level positioning ability. A modified proportional–derivative controller is utilized to promote system behavior with faster response overshoot. The novel position control system is then applied on primary mirror supporting system. Coupling effect is observed among actuator partitions, and relocation of virtual pivot supporting point is chosen as the decoupling measurement. The position keeping ability of the primary mirror supporting system is verified by rotating the mirror cell at a considerably high rate. The experiment results show that the decoupled system performs better with smaller bias and shorter recovery time.

  11. Robust adaptive optics systems for vision science

    Burns, S. A.; de Castro, A.; Sawides, L.; Luo, T.; Sapoznik, K.

    2018-02-01

    Adaptive Optics (AO) is of growing importance for understanding the impact of retinal and systemic diseases on the retina. While AO retinal imaging in healthy eyes is now routine, AO imaging in older eyes and eyes with optical changes to the anterior eye can be difficult and requires a control and an imaging system that is resilient when there is scattering and occlusion from the cornea and lens, as well as in the presence of irregular and small pupils. Our AO retinal imaging system combines evaluation of local image quality of the pupil, with spatially programmable detection. The wavefront control system uses a woofer tweeter approach, combining an electromagnetic mirror and a MEMS mirror and a single Shack Hartmann sensor. The SH sensor samples an 8 mm exit pupil and the subject is aligned to a region within this larger system pupil using a chin and forehead rest. A spot quality metric is calculated in real time for each lenslet. Individual lenslets that do not meet the quality metric are eliminated from the processing. Mirror shapes are smoothed outside the region of wavefront control when pupils are small. The system allows imaging even with smaller irregular pupils, however because the depth of field increases under these conditions, sectioning performance decreases. A retinal conjugate micromirror array selectively directs mid-range scatter to additional detectors. This improves detection of retinal capillaries even when the confocal image has poorer image quality that includes both photoreceptors and blood vessels.

  12. Tactile interactions activate mirror system regions in the human brain.

    McKyton, Ayelet

    2011-12-07

    Communicating with others is essential for the development of a society. Although types of communications, such as language and visual gestures, were thoroughly investigated in the past, little research has been done to investigate interactions through touch. To study this we used functional magnetic resonance imaging. Twelve participants were scanned with their eyes covered while stroking four kinds of items, representing different somatosensory stimuli: a human hand, a realistic rubber hand, an object, and a simple texture. Although the human and the rubber hands had the same overall shape, in three regions there was significantly more blood oxygen level dependent activation when touching the real hand: the anterior medial prefrontal cortex, the ventral premotor cortex, and the posterior superior temporal cortex. The last two regions are part of the mirror network and are known to be activated through visual interactions such as gestures. Interestingly, in this study, these areas were activated through a somatosensory interaction. A control experiment was performed to eliminate confounds of temperature, texture, and imagery, suggesting that the activation in these areas was correlated with the touch of a human hand. These results reveal the neuronal network working behind human tactile interactions, and highlight the participation of the mirror system in such functions.

  13. Single-axis four-mirror system: large spherical primary and small fields

    Baranne, Andre

    1998-08-01

    A catoptric corrector of modest size can be used for large spherical primaries, easily integrated at the prime focus, this corrector gives back to the system, aspect and properties of 2-mirrors classical telescopes. In the last few years, progress in active and adaptative optics makes possible a lot of things, progress in measuring distances, new ideas on optical coatings, new materials and so on in a near future, all that makes the instrumentalist dreamy It is said that nobody knows today if the size of 3rd millennium telescopes will be limited or not by a theoretical, physical or technical phenomenon, thus let us imagine but with thoughtfulness because our projects will be surely restricted by financial considerations

  14. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems

    Jing Tian

    2016-03-01

    Full Text Available In a charge-coupled device (CCD-based fast steering mirror (FSM tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM to realize the stabilization of the line-of-sight (LOS of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system.

  15. Sensorimotor learning and the ontogeny of the mirror neuron system

    Catmur, C

    2013-01-01

    Mirror neurons, which have now been found in the human and songbird as well as the macaque, respond to both the observation and the performance of the same action. It has been suggested that their matching response properties have evolved as an adaptation for action understanding; alternatively, these properties may arise through sensorimotor experience. Here I review mirror neuron response characteristics from the perspective of ontogeny; I discuss the limited evidence for mirror neurons in ...

  16. Systems and methods for mirror mounting with minimized distortion

    Antonille, Scott R. (Inventor); Wallace, Thomas E. (Inventor); Content, David A. (Inventor); Wake, Shane W. (Inventor)

    2012-01-01

    A method for mounting a mirror for use in a telescope includes attaching the mirror to a plurality of adjustable mounts; determining a distortion in the mirror caused by the plurality adjustable mounts, and, if the distortion is determined to be above a predetermined level: adjusting one or more of the adjustable mounts; and determining the distortion in the mirror caused by the adjustable mounts; and in the event the determined distortion is determined to be at or below the predetermined level, rigidizing the adjustable mounts.

  17. Mirror Neuron System and Mentalizing System connect during online social interaction.

    Sperduti, Marco; Guionnet, Sophie; Fossati, Philippe; Nadel, Jacqueline

    2014-08-01

    Two sets of brain areas are repeatedly reported in neuroimaging studies on social cognition: the Mirror Neuron System and the Mentalizing System. The Mirror System is involved in goal understanding and has been associated with several emotional and cognitive functions central to social interaction, ranging from empathy to gestural communication and imitation. The Mentalizing System is recruited in tasks requiring cognitive processes such as self-reference and understanding of other's intentions. Although theoretical accounts for an interaction between the two systems have been proposed, little is known about their synergy during social exchanges. In order to explore this question, we have recorded brain activity by means of functional MRI during live social exchanges based on reciprocal imitation of hand gestures. Here, we investigate, using the method of psychophysiological interaction, the changes in functional connectivity of the Mirror System due to the conditions of interest (being imitated, imitating) compared with passive observation of hand gestures. We report a strong coupling between the Mirror System and the Mentalizing System during the imitative exchanges. Our findings suggest a complementary role of the two networks during social encounters. The Mirror System would engage in the preparation of own actions and the simulation of other's actions, while the Mentalizing System would engage in the anticipation of the other's intention and thus would participate to the co-regulation of reciprocal actions. Beyond a specific effect of imitation, the design used offers the opportunity to tackle the role of role-switching in an interpersonal account of social cognition.

  18. Gas box control system for Tandem Mirror Experiment-Upgrade

    Bell, H.H. Jr.; Hunt, A.L.; Clower, C.A. Jr.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) uses several methods to feed gas (usually deuterium) at different energies into the plasma region of the machine. One is an arrangement of eight high-speed piezo-electric valves mounted on special manifolds (gas box) that feed cold gas directly to the plasma. This paper describes the electronic valve control and data acquisition portions of the gas box, which are controlled by a desk-top computer. Various flow profiles have been developed and stored in the control computer for ready access by the operator. The system uses two modes of operation, one that exercises and characterizes the valves and one that operates the valves with the rest of the experiment. Both the valve control signals and the pressure transducers data are recorded on the diagnostics computer so that they are available for experiment analysis

  19. Mirror neuron system as the joint from action to language.

    Chen, Wei; Yuan, Ti-Fei

    2008-08-01

    Mirror neuron system (MNS) represents one of the most important discoveries of cognitive neuroscience in the past decade, and it has been found to involve in multiple aspects of brain functions including action understanding, imitation, language understanding, empathy, action prediction and speech evolution. This manuscript reviewed the function of MNS in action understanding as well as language evolution, and specifically assessed its roles as the bridge from body language to fluent speeches. Then we discussed the speech defects of autism patients due to the disruption of MNS. Finally, given that MNS is plastic in adult brain, we proposed MNS targeted therapy provides an efficient rehabilitation approach for brain damages conditions as well as autism patients.

  20. Optical system for trapping particles in air.

    Kampmann, R; Chall, A K; Kleindienst, R; Sinzinger, S

    2014-02-01

    An innovative optical system for trapping particles in air is presented. We demonstrate an optical system specifically optimized for high precision positioning of objects with a size of several micrometers within a nanopositioning and nanomeasuring machine (NPMM). Based on a specification sheet, an initial system design was calculated and optimized in an iterative design process. By combining optical design software with optical force simulation tools, a highly efficient optical system was developed. Both components of the system, which include a refractive double axicon and a parabolic ring mirror, were fabricated by ultra-precision turning. The characterization of the optical elements and the whole system, especially the force simulations based on caustic measurements, represent an important interim result for the subsequently performed trapping experiments. The caustic of the trapping beam produced by the system was visualized with the help of image processing techniques. Finally, we demonstrated the unique efficiency of the configuration by reproducibly trapping fused silica spheres with a diameter of 10 μm at a distance of 2.05 mm from the final optical surface.

  1. A fiber-optic sensor based on no-core fiber and Faraday rotator mirror structure

    Lu, Heng; Wang, Xu; Zhang, Songling; Wang, Fang; Liu, Yufang

    2018-05-01

    An optical fiber sensor based on the single-mode/no-core/single-mode (SNS) core-offset technology along with a Faraday rotator mirror structure has been proposed and experimentally demonstrated. A transverse optical field distribution of self-imaging has been simulated and experimental parameters have been selected under theoretical guidance. Results of the experiments demonstrate that the temperature sensitivity of the sensor is 0.0551 nm/°C for temperatures between 25 and 80 °C, and the correlation coefficient is 0.99582. The concentration sensitivity of the device for sucrose and glucose solutions was found to be as high as 12.5416 and 6.02248 nm/(g/ml), respectively. Curves demonstrating a linear fit between wavelength shift and solution concentration for three different heavy metal solutions have also been derived on the basis of experimental results. The proposed fiber-optic sensor design provides valuable guidance for the measurement of concentration and temperature.

  2. Aplanatic telescopes based on Schwarzschild optical configuration: from grazing incidence Wolter-like x-ray optics to Cherenkov two-mirror normal incidence telescopes

    Sironi, Giorgia

    2017-09-01

    At the beginning of XX century Karl Schwarzschild defined a method to design large-field aplanatic telescopes based on the use of two aspheric mirrors. The approach was then refined by Couder (1926) who, in order to correct for the astigmatic aberration, introduced a curvature of the focal plane. By the way, the realization of normal-incidence telescopes implementing the Schwarzschild aplanatic configuration has been historically limited by the lack of technological solutions to manufacture and test aspheric mirrors. On the other hand, the Schwarzschild solution was recovered for the realization of coma-free X-ray grazing incidence optics. Wolter-like grazing incidence systems are indeed free of spherical aberration, but still suffer from coma and higher order aberrations degrading the imaging capability for off-axis sources. The application of the Schwarzschild's solution to X-ray optics allowed Wolter to define an optical system that exactly obeys the Abbe sine condition, eliminating coma completely. Therefore these systems are named Wolter-Schwarzschild telescopes and have been used to implement wide-field X-ray telescopes like the ROSAT WFC and the SOHO X-ray telescope. Starting from this approach, a new class of X-ray optical system was proposed by Burrows, Burg and Giacconi assuming polynomials numerically optimized to get a flat field of view response and applied by Conconi to the wide field x-ray telescope (WFXT) design. The Schwarzschild-Couder solution has been recently re-discovered for the application to normal-incidence Cherenkov telescopes, thanks to the suggestion by Vassiliev and collaborators. The Italian Institute for Astrophysics (INAF) realized the first Cherenkov telescope based on the polynomial variation of the Schwarzschild configuration (the so-called ASTRI telescope). Its optical qualification was successfully completed in 2016, demonstrating the suitability of the Schwarzschild-like configuration for the Cherenkov astronomy requirements

  3. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror.

    Lu, Chen D; Kraus, Martin F; Potsaid, Benjamin; Liu, Jonathan J; Choi, Woojhon; Jayaraman, Vijaysekhar; Cable, Alex E; Hornegger, Joachim; Duker, Jay S; Fujimoto, James G

    2013-12-20

    We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm(2) and wide field 10 x 10 mm(2) volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine.

  4. Real-time wavefront correction system using a zonal deformable mirror and a Hartmann sensor

    Salmon, J.T.; Bliss, E.S.; Long, T.W.; Orham, E.L.; Presta, R.W.; Swift, C.D.; Ward, R.S.

    1991-07-01

    We have developed an adaptive optics system that corrects up to five waves of 2nd-order and 3rd-order aberrations in a high-power laser beam to less than 1/10th wave RMS. The wavefront sensor is a Hartmann sensor with discrete lenses and position-sensitive photodiodes; the deformable mirror uses piezoelectric actuators with feedback from strain gauges bonded to the stacks. The controller hardware uses a VME bus. The system removes thermally induced aberrations generated in the master-oscillator-power-amplifier chains of a dye laser, as well as aberrations generated in beam combiners and vacuum isolation windows for average output powers exceeding 1 kW. The system bandwidth is 1 Hz, but higher bandwidths are easily attainable

  5. Sensorimotor learning and the ontogeny of the mirror neuron system.

    Catmur, Caroline

    2013-04-12

    Mirror neurons, which have now been found in the human and songbird as well as the macaque, respond to both the observation and the performance of the same action. It has been suggested that their matching response properties have evolved as an adaptation for action understanding; alternatively, these properties may arise through sensorimotor experience. Here I review mirror neuron response characteristics from the perspective of ontogeny; I discuss the limited evidence for mirror neurons in early development; and I describe the growing body of evidence suggesting that mirror neuron responses can be modified through experience, and that sensorimotor experience is the critical type of experience for producing mirror neuron responses. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.

  7. Three-dimensional crossbar interconnection using planar-integrated free-space optics and digital mirror-device

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.

    2011-01-01

    We consider the implementation of a dynamic crossbar interconnect using planar-integrated free-space optics (PIFSO) and a digital mirror-device™ (DMD). Because of the 3D nature of free-space optics, this approach is able to solve geometrical problems with crossings of the signal paths that occur in waveguide optical and electrical interconnection, especially for large number of connections. The DMD device allows one to route the signals dynamically. Due to the large number of individual mirror elements in the DMD, different optical path configurations are possible, thus offering the chance for optimizing the network configuration. The optimization is achieved by using an evolutionary algorithm for finding best values for a skewless parallel interconnection. Here, we present results and experimental examples for the use of the PIFSO/DMD-setup.

  8. Adaptive optics system application for solar telescope

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  9. DESIGN OF MIRRORS AND APODIZATION FUNCTIONS IN PHASE-INDUCED AMPLITUDE APODIZATION SYSTEMS

    Cady, Eric, E-mail: eric.j.cady@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109 (United States)

    2012-08-01

    Phase-induced amplitude apodization (PIAA) coronagraphs are a promising technology for imaging exoplanets, with the potential to detect Earth-like planets around Sun-like stars. A PIAA system nominally consists of a pair of mirrors that reshape incident light without attenuation, coupled with one or more apodizers to mitigate diffraction effects or provide additional beam shaping to produce a desired output profile. We present a set of equations that allow apodizers to be chosen for any given pair of mirrors, or conversely mirror shapes chosen for given apodizers, to produce an arbitrary amplitude profile at the output of the system. We show how classical PIAA systems may be designed by this method and present the design of a novel four-mirror system with higher throughput than a standard two-mirror system. We also discuss the limitations due to diffraction and the design steps that may be taken to mitigate them.

  10. Calibration of the mirror system in the HERA-B RICH

    Starič, Marko; Križan, Peter

    2007-01-01

    The mirror system of the HERA-B RICH consists of two spherical and two planar mirrors, composed of altogether 116 mirror segments. Analysis of displacements of the \\v{C}erenkov ring center relative to the charged particle track, for given spherical-planar segment pairs, leads to accurate information regarding the orientation of individual mirror segments. The method is described and the effect of applying the required corrections on the \\v{C}erenkov angle resolution of the HERA-B RICH is disc...

  11. Polarization and reflectivity changes on mirror based viewing systems during long pulse operation

    Malaquias, A. [Association-Euratom/IST, Instituto Superior Tecnico, Lisboa (Portugal); Von Hellermann, M. [Association-Euratom-FOM, Institute for Plasma Physique Rijnhuizen (Netherlands); Lotte, P. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Tugarinov, S. [SRC Triniti, Troitsk (Russian Federation); Voitsenya, V.S. [Institute of Plasma Physics of the National Science Center, Kharkov Institute of Physics and Technology (Ukraine)

    2003-07-01

    In ITER, long plasma discharges will produce a high flux of energetic particles leading to high erosion rate, as a consequence materials from first wall and divertor i.e. Be and C (or eventually W) will be released and will pile up on slightly-buried surfaces. Particularly affected by this scenario are MSE (motional Stark effect) diagnostic first mirrors. In this work the change in the polarization state of incident light induced by Be and C deposition on Au mirror is calculated. The results show that Be and C deposition on Au mirror will induce changes on light polarization and reflectivity properties as a function of layer thickness. For Be case, all the induced effects are seem to stabilize above 75 nm. This result indicates that the otherwise Au mirror becomes a Be mirror suggesting that the use of Be mirror as first mirror may help to diminish the transitional optical changes from Au to Be. For the case of C deposit, the results show that the polarization induced changes and intensity modulation (interference) are quite marked and much more visible than in the case of Be. In that sense, machines using C components will produce a more undesirable mirror deposit than a BPX with a Be first wall, although, they take advantage of a lower deposition rate. We have no data on Be or C deposition rate for ITER yet, but for the ITER MSE case, control and monitoring of the mirror state shall be included in the optical design. Uncertainties on measuring the polarization angle can be translated on the achievable spatial resolution.

  12. Polarization and reflectivity changes on mirror based viewing systems during long pulse operation

    Malaquias, A.; Von Hellermann, M.; Lotte, P.; Voitsenya, V.S.

    2003-01-01

    In ITER, long plasma discharges will produce a high flux of energetic particles leading to high erosion rate, as a consequence materials from first wall and divertor i.e. Be and C (or eventually W) will be released and will pile up on slightly-buried surfaces. Particularly affected by this scenario are MSE (motional Stark effect) diagnostic first mirrors. In this work the change in the polarization state of incident light induced by Be and C deposition on Au mirror is calculated. The results show that Be and C deposition on Au mirror will induce changes on light polarization and reflectivity properties as a function of layer thickness. For Be case, all the induced effects are seem to stabilize above 75 nm. This result indicates that the otherwise Au mirror becomes a Be mirror suggesting that the use of Be mirror as first mirror may help to diminish the transitional optical changes from Au to Be. For the case of C deposit, the results show that the polarization induced changes and intensity modulation (interference) are quite marked and much more visible than in the case of Be. In that sense, machines using C components will produce a more undesirable mirror deposit than a BPX with a Be first wall, although, they take advantage of a lower deposition rate. We have no data on Be or C deposition rate for ITER yet, but for the ITER MSE case, control and monitoring of the mirror state shall be included in the optical design. Uncertainties on measuring the polarization angle can be translated on the achievable spatial resolution

  13. Optimisation of a polygon mirror-based spectral filter for swept source optical coherence tomography (SS-OCT)

    Everson, Michael; Duma, Virgil-Florin; Dobre, George

    2018-03-01

    Medical imaging using Optical Coherence Tomography (OCT) provides clinicians with 3D, high resolution reconstructions of microscopic structures, in depth. It has been initially developed for ophthalmology, in order to scan the retinas of patients to diagnose illness. The quality of the images depends upon their axial and lateral resolutions and the properties of the light being used. Research using a polygon mirror (PM) as a spectral filter in Swept Source OCT (SS-OCT) has resulted in a variety of different experimental arrangements. Although the application of PM-based SS-OCT sources has been successfully demonstrated, the combination of their components' fundamental properties and the overall impact they have on imaging performance is rarely reported. A more detailed examination of these properties would lead to a full description of their operation and to the best methods to employ if system performance is to be maximised. This work presents our current findings of on-going research into the optimisation of PM-based SS-OCT systems. A swept source spectral filter, consisting of a collimator, a transmission grating, a two-lens telescope and an off-axis PM with an end reflector mirror has been evaluated experimentally and compared with theoretical predictions. The system's performance has been compared for two different fibre collimators. Although the beam width on the grating is different for each of the two collimators, the spot size at the PM facet is made the same by selecting appropriate focal lengths. An improvement in the signal roll-off at the interferometer output of 1.0 dB/mm was obtained when using a 3.4 mm collimator compared to a 1.5 mm collimator.

  14. Effects of the LDEF orbital environment on the reflectance of optical mirror materials

    Herzig, Howard; Fleetwood, Charles, Jr.

    1995-01-01

    Specimens of eight different optical mirror materials were flown in low earth orbit as part of the Long Duration Exposure Facility (LDEF) manifest to determine their ability to withstand exposure to the residual atomic oxygen and other environmental effects at those altitudes. Optical thin films of aluminum, gold, iridium, osmium, platinum, magnesium fluoride-overcoated aluminum and reactively deposited, silicon monoxide-protected aluminum, all of which were vacuum deposited on polished fused silica substrates, were included as part of Experiment S0010, Exposure of Spacecraft Coatings. Two specimens of polished, chemical vapor deposited (CVD) silicon carbide were installed in sites available in Experiment A0114, Interaction of Atomic Oxygen with Solid Surfaces at Orbital Altitudes, which included trays in two of the spacecraft bays, one on the leading edge and the other on the trailing edge. One of the silicon carbide samples was located in each of these trays. This paper will compare specular reflectance data from the preflight and postflight measurements made on each of these samples and attempt to explain the changes in light of the specific environments to which the experiments were exposed.

  15. LLNL Tandem Mirror Experiment (TMX) upgrade vacuum system

    Pickles, W.L.; Chargin, A.K.; Drake, R.P.

    1981-01-01

    TMX Upgrade is a large, tandem, magnetic-mirror fusion experiment with stringent requirements on base pressure (10 -8 torr), low H reflux from the first walls, and peak gas pressure (5 x 10 -7 torr) due to neutral beam gas during plasma operation. The 225 m 3 vacuum vessel is initially evacuated by turbopumps. Cryopumps provide a continuous sink for gases other than helium, deuterium, and hydrogen. The neutral beam system introduces up to 480 l/s of H or D. The hydrogen isotopes are pumped at very high speed by titanium sublimed onto two cylindrical radially separated stainless steel quilted liners with a total surface area of 540 m 2 . These surfaces (when cooled to about 80 0 K) provide a pumping speed of 6 x 10 7 l/s for hydrogen. The titanium getter system is programmable and is used for heating as well as gettering. The inner plasma liner can be operated at elevated temperatures to enhance migration of gases away from the surfaces close to the plasma. Glow discharge cleaning is part of the pumpdown procedure. The design features are discussed in conjunction with the operating procedures developed to manage the dynamic vacuum conditions

  16. Mirror hybrid reactor blanket and power conversion system conceptual design

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  17. Optical properties behavior of three optical filters and a mirror used in the internal optical head of a Raman laser spectrometer after exposed to proton radiation

    Guembe, V.; Alvarado, C. G.; Fernández-Rodriguez, M.; Gallego, P.; Belenguer, T.; Díaz, E.

    2017-11-01

    The Raman Laser Spectrometer is one of the ExoMars Pasteur Rover's payload instruments that is devoted to the analytical analysis of the geochemistry content and elemental composition of the observed minerals provided by the Rover through Raman spectroscopy technique. One subsystem of the RLS instrument is the Internal Optical Head unit (IOH), which is responsible for focusing the light coming from the laser onto the mineral under analysis and for collecting the Raman signal emitted by the excited mineral. The IOH is composed by 4 commercial elements for Raman spectroscopy application; 2 optical filters provided by Iridian Spectral Technologies Company and 1 optical filter and 1 mirror provided by Semrock Company. They have been exposed to proton radiation in order to analyze their optical behaviour due to this hostile space condition. The proton irradiation test was performed following the protocol of LINES lab (INTA). The optical properties have been studied through transmittance, reflectance and optical density measurements, the final results and its influence on optical performances are presented.

  18. FIBER OPTIC LIGHTING SYSTEMS

    Munir BATUR

    2013-01-01

    Full Text Available Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target place. Fiber optic systems, are nowadays widely used in energy transmission control systems, medicine, industry and lighting. The basics of the system is, movement of light from one point to another point in fiber cable with reflections. Fiber optic lighting systems are quite secure than other lighting systems and have flexibility for realizing many different designs. This situation makes fiber optics an alternative for other lighting systems. Fiber optic lighting systems usage is increasing day-by-day in our life. In this article, these systems are discussed in detail.

  19. Stereoscopic optical viewing system

    Tallman, C.S.

    1986-05-02

    An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  20. Multiaperture Optical System Research.

    1987-11-06

    pp. 179-185 (1965). 6. Welford, W. T. and Winston , R., The Optics of Nonimaging Concentrators , P. 3, Academic Press, New York (1978). 7. Schneider, R...Welford and Winston investigated it was a possible concentrator for solar energy. They came up with the "ideal concentrator ", which has walls shaped...MULTIAPZRTURE OPTICAL SYSTEM RESEARCH ." Office of Naval Research Contract Number N00014-85-C-0862 . FINAL REPORT by RTS LABORATORIES, INC. 1663

  1. Optical design for divertor Thomson scattering system for JT-60SA

    Kajita, Shin; Enokuchi, Akito; Hatae, Takaki; Itami, Kiyoshi; Hamano, Takashi; Kado, Shinichiro; Ohno, Noriyasu; Takeyama, Norihide

    2014-01-01

    Highlights: •A detailed designing for collection optical system of divertor Thomson scattering system in JT-60SA is conducted. •The assessment of the density and temperature errors of the measurement system is conducted. •It is shown that the measurement could be done with the temperature error of 50% when the density was 10 20 m −3 . •The availability of the laser transmission mirrors for the measurement system is discussed. •Several guidelines to improve the measurement system are discussed. -- Abstract: Optical design for divertor Thomson scattering system in JT-60SA has been conducted. The measurement system will use a Nd:YAG laser at 1064 nm, and scattered photons are collected by a collection optical system. The collection optics consists of primary mirror, secondary mirror, relay optics, and fiber collection optics. The laser transmission mirror and collection optics were designed to be installed in a slender lower port of JT-60SA. The assessment of the measurement errors in temperature was conducted for the designed collection optical system. Because of spatial limitation, the solid angle from the measurement points would be small especially for the measurement points in high field side, and consequently, the temperature errors in the high field side would be considerably large. The effects of several improvements on the error are discussed. Moreover, an assessment for the in-vessel laser transmission metallic mirrors is conducted for the present design

  2. Morphological differences in the mirror neuron system in Williams syndrome.

    Ng, Rowena; Brown, Timothy T; Erhart, Matthew; Järvinen, Anna M; Korenberg, Julie R; Bellugi, Ursula; Halgren, Eric

    2016-01-01

    Williams syndrome (WS) is a genetic condition characterized by an overly gregarious personality, including high empathetic concern for others. Although seemingly disparate from the profile of autism spectrum disorder (ASD), both are associated with deficits in social communication/cognition. Notably, the mirror neuron system (MNS) has been implicated in social dysfunction for ASD; yet, the integrity of this network and its association with social functioning in WS remains unknown. Magnetic resonance imaging (MRI) methods were used to examine the structural integrity of the MNS of adults with WS versus typically developing (TD) individuals. The Social Responsiveness Scale (SRS), a tool typically used to screen for social features of ASD, was also employed to assess the relationships between social functioning with the MNS morphology in WS participants. WS individuals showed reduced cortical surface area of MNS substrates yet relatively preserved cortical thickness as compared to TD adults. Increased cortical thickness of the inferior parietal lobule (IPL) was associated with increased deficits in social communication, social awareness, social cognition, and autistic mannerisms. However, social motivation was not related to anatomical features of the MNS. Our findings indicate that social deficits typical to both ASD and WS may be attributed to an aberrant MNS, whereas the unusual social drive marked in WS is subserved by substrates distinct from this network.

  3. Mirror neuron system and observational learning: behavioral and neurophysiological evidence.

    Lago-Rodriguez, Angel; Lopez-Alonso, Virginia; Fernández-del-Olmo, Miguel

    2013-07-01

    Three experiments were performed to study observational learning using behavioral, perceptual, and neurophysiological data. Experiment 1 investigated whether observing an execution model, during physical practice of a transitive task that only presented one execution strategy, led to performance improvements compared with physical practice alone. Experiment 2 investigated whether performing an observational learning protocol improves subjects' action perception. In experiment 3 we evaluated whether the type of practice performed determined the activation of the Mirror Neuron System during action observation. Results showed that, compared with physical practice, observing an execution model during a task that only showed one execution strategy does not provide behavioral benefits. However, an observational learning protocol allows subjects to predict more precisely the outcome of the learned task. Finally, intersperse observation of an execution model with physical practice results in changes of primary motor cortex activity during the observation of the motor pattern previously practiced, whereas modulations in the connectivity between primary and non primary motor areas (PMv-M1; PPC-M1) were not affected by the practice protocol performed by the observer. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Associative (not Hebbian) learning and the mirror neuron system.

    Cooper, Richard P; Cook, Richard; Dickinson, Anthony; Heyes, Cecilia M

    2013-04-12

    The associative sequence learning (ASL) hypothesis suggests that sensorimotor experience plays an inductive role in the development of the mirror neuron system, and that it can play this crucial role because its effects are mediated by learning that is sensitive to both contingency and contiguity. The Hebbian hypothesis proposes that sensorimotor experience plays a facilitative role, and that its effects are mediated by learning that is sensitive only to contiguity. We tested the associative and Hebbian accounts by computational modelling of automatic imitation data indicating that MNS responsivity is reduced more by contingent and signalled than by non-contingent sensorimotor training (Cook et al. [7]). Supporting the associative account, we found that the reduction in automatic imitation could be reproduced by an existing interactive activation model of imitative compatibility when augmented with Rescorla-Wagner learning, but not with Hebbian or quasi-Hebbian learning. The work argues for an associative, but against a Hebbian, account of the effect of sensorimotor training on automatic imitation. We argue, by extension, that associative learning is potentially sufficient for MNS development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. 10 and 20 Gb/s all-optical RZ to NRZ modulation format and wavelength converter based on nonlinear optical loop mirror

    Honzátko, Pavel; Karásek, Miroslav

    2010-01-01

    Roč. 283, č. 10 (2010), s. 2061-2065 ISSN 0030-4018 R&D Projects: GA AV ČR 1ET300670502; GA MŠk OE08021; GA ČR GAP102/10/0120 Institutional research plan: CEZ:AV0Z20670512 Keywords : RZ-to-NRZ modulation format conversion * Fiber cross phase modulation * Nonlinear optical loop mirror Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.517, year: 2010

  6. Alignment and Distortion-Free Integration of Lightweight Mirrors into Meta-Shells for High-Resolution Astronomical X-Ray Optics

    Chan, Kai-Wing; Zhang, William W.; Schofield, Mark J.; Numata, Ai; Mazzarella, James R.; Saha, Timo T.; Biskach, Michael P.; McCelland, Ryan S.; Niemeyer, Jason; Sharpe, Marton V.; hide

    2016-01-01

    High-resolution, high throughput optics for x-ray astronomy requires fabrication of well-formed mirror segments and their integration with arc-second level precision. Recently, advances of fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror integration. The new integration scheme takes advantage of the stiffer, more thermally conductive, and lower-CTE silicon, compared to glass, to build a telescope of much lighter weight. In this paper, we address issues of aligning and bonding mirrors with this method. In this preliminary work, we demonstrated the basic viability of such scheme. Using glass mirrors, we demonstrated that alignment error of 1" and bonding error 2" can be achieved for mirrors in a single shell. We will address the immediate plan to demonstrate the bonding reliability and to develop technology to build up a mirror stack and a whole "meta-shell".

  7. Mirrors design, analysis and manufacturing of the 550mm Korsch telescope experimental model

    Huang, Po-Hsuan; Huang, Yi-Kai; Ling, Jer

    2017-08-01

    In 2015, NSPO (National Space Organization) began to develop the sub-meter resolution optical remote sensing instrument of the next generation optical remote sensing satellite which follow-on to FORMOSAT-5. Upgraded from the Ritchey-Chrétien Cassegrain telescope optical system of FORMOSAT-5, the experimental optical system of the advanced optical remote sensing instrument was enhanced to an off-axis Korsch telescope optical system which consists of five mirrors. It contains: (1) M1: 550mm diameter aperture primary mirror, (2) M2: secondary mirror, (3) M3: off-axis tertiary mirror, (4) FM1 and FM2: two folding flat mirrors, for purpose of limiting the overall volume, reducing the mass, and providing a long focal length and excellent optical performance. By the end of 2015, we implemented several important techniques including optical system design, opto-mechanical design, FEM and multi-physics analysis and optimization system in order to do a preliminary study and begin to develop and design these large-size lightweight aspheric mirrors and flat mirrors. The lightweight mirror design and opto-mechanical interface design were completed in August 2016. We then manufactured and polished these experimental model mirrors in Taiwan; all five mirrors ware completed as spherical surfaces by the end of 2016. Aspheric figuring, assembling tests and optical alignment verification of these mirrors will be done with a Korsch telescope experimental structure model in 2018.

  8. Optical Property Retention Methods for the T-170M Space Telescope Mirrors Surface in the Project «Spektr-UF» at the Preflight Preparation Stage

    F L. Chubarov

    2017-01-01

    Full Text Available Astrophysical observations in the ultraviolet band have many advantages. At present, the «Spektr-UF» project is under implementation to create a large space observatory for operation in the ultraviolet spectrum.Requirements for the ultraviolet telescope optics quality are extremely high. Therefore, both to manufacture such a large space telescope as the T-170M and to transport it to the launch complex are rather difficult challenges in terms of technology.When manufacturing optical elements of the telescope T-170M, a combination of Al+MgF2 coatings has been preferred. At the same time, atmospheric oxygen penetrates through the pores in the magnesium fluoride, thereby forming a Al2O3 oxide layer on the sputtered aluminum, which significantly degrades the UV reflectivity of the mirror surface. It is also necessary to fulfill the requirements for surface cleanliness of optical system elements of the telescope during the finished product transportation and its storage and to provide for the autonomous operation of the system that maintains atmosphere control.To solve the set tasks:1    a dust-proof-and-moisture-proof sheath (DPAMPS was designed to prevent the optical system mirror surfaces of the telescope from coming in contact with atmosphere;2    to provide a controlled atmosphere inside the DPAMPS the need is justified to blow gaseous nitrogen of special purity (grade 1 in accordance with GOST 9293-74 with a dew point temperature of -50°С, at most, inside the telescope; calculations have proved that charging with the super-atmospheric pressure of 10 kPa provides the optimal conditions for maintaining the optical properties of the space telescope mirrors surface, and also minimizes the loads on the easily damaging elements of the telescope;3    to ensure the required cleanliness of the optical system elements surfaces of the telescope inside the DPAMPS, a class of purity Class 7 ISO, at worst, is established in accordance with GOST

  9. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs

  10. Optics Supply Planning System

    Gaylord, J.

    2009-01-01

    The purpose of this study is to specify the design for an initial optics supply planning system for NIF, and to present quality assurance and test plans for the construction of the system as specified. The National Ignition Facility (NIF) is a large laser facility that is just starting operations. Thousands of specialized optics are required to operate the laser, and must be exchanged over time based on the laser shot plan and predictions of damage. Careful planning and tracking of optic exchanges is necessary because of the tight inventory of spare optics, and the long lead times for optics procurements and production changes. Automated inventory forecasting and production planning tools are required to replace existing manual processes. The optics groups members who are expected to use the supply planning system are the stakeholders for this project, and are divided into three groups. Each of these groups participated in a requirements specification that was used to develop this design. (1) Optics Management--These are the top level stakeholdersk, and the final decision makers. This group is the interface to shot operations, is ultimately responsible for optics supply, and decides which exchanges will be made. (2) Work Center Managers--This group manages the on site optics processing work centers. They schedule the daily work center operations, and are responsible for developing long term processing, equipment, and staffing plans. (3) Component Engineers--This group manages the vendor contracts for the manufacture of new optics and the off site rework of existing optics. They are responsible for sourcing vendors, negotiating contracts, and managing vendor processes. The scope of this analysis is to describe the structure and design details of a system that will meet all requirements that were described by stakeholders and documented in the analysis model for this project. The design specifies the architecture, components, interfaces, and data stores of the system

  11. Effects of low earth orbit on the optical performance of multi-layer enhanced high reflectance mirrors

    Donovan, Terence; Johnson, Linda; Klemm, Karl; Scheri, Rick; Bennett, Jean; Erickson, Jon; Dibrozolo, Filippo

    1995-01-01

    Two mirror designs developed for space applications were flown along with a standard mid-infrared design on the leading and trailing edges of the Long Duration Exposure Facility (LDEF). Preliminary observations of induced changes in optical performance of ZnS-coated mirrors and impact-related microstructural and microchemical effects are described in the proceedings of the First LDEF Post-Retrieval Symposium. In this paper, effects of the induced environment and meteoroid/debris impacts on mirror performance are described in more detail. Also, an analysis of reflectance spectra using the results of Auger and secondary ion mass spectroscopy (SIMS) profiling measurements are used to identify an optical-degradation mechanism for the ZnS-coated mirrors. Structural damage associated with a high-velocity impact on a (Si/Al2O3)-coated mirror was imaged optically and with scanning electron and atomic force microscopy (SEM and AFM). Scanning Auger and SIMS analysis provided chemical mapping of selected impact sites. The impact data suggest design and fabrication modifications for obtaining improved mechanical performance using a design variation identified in preflight laboratory simulations. Auger surface profile and SIMS imaging data verified the conclusion that secondary impacts are the source of contamination associated with the dendrites grown on the leading-edge ZnS-coated test samples. It was also found that dendrites can be grown in the laboratory by irradiating contaminated sites on a trailing-edge ZnS-coated sample with a rastered electron beam. These results suggest a mechanism for dendrite growth.

  12. Performance of lightweight large C/SiC mirror

    Yui, Yukari Y.; Goto, Ken; Kaneda, Hidehiro; Katayama, Haruyoshi; Kotani, Masaki; Miyamoto, Masashi; Naitoh, Masataka; Nakagawa, Takao; Saruwatari, Hideki; Suganuma, Masahiro; Sugita, Hiroyuki; Tange, Yoshio; Utsunomiya, Shin; Yamamoto, Yasuji; Yamawaki, Toshihiko

    2017-11-01

    Very lightweight mirror will be required in the near future for both astronomical and earth science/observation missions. Silicon carbide is becoming one of the major materials applied especially to large and/or light space-borne optics, such as Herschel, GAIA, and SPICA. On the other hand, the technology of highly accurate optical measurement of large telescopes, especially in visible wavelength or cryogenic circumstances is also indispensable to realize such space-borne telescopes and hence the successful missions. We have manufactured a very lightweight Φ=800mm mirror made of carbon reinforced silicon carbide composite that can be used to evaluate the homogeneity of the mirror substrate and to master and establish the ground testing method and techniques by assembling it as the primary mirror into an optical system. All other parts of the optics model are also made of the same material as the primary mirror. The composite material was assumed to be homogeneous from the mechanical tests of samples cut out from the various areas of the 800mm mirror green-body and the cryogenic optical measurement of the mirror surface deformation of a 160mm sample mirror that is also made from the same green-body as the 800mm mirror. The circumstance and condition of the optical testing facility has been confirmed to be capable for the highly precise optical measurements of large optical systems of horizontal light axis configuration. Stitching measurement method and the algorithm for analysis of the measurement is also under study.

  13. Method for pulse control in a laser including a stimulated brillouin scattering mirror system

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-10-23

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  14. Research on large-aperture primary mirror supporting way of vehicle-mounted laser communication system

    Meng, Lixin; Meng, Lingchen; Zhang, Yiqun; Zhang, Lizhong; Liu, Ming; Li, Xiaoming

    2018-01-01

    In the satellite to earth laser communication link, large-aperture ground laser communication terminals usually are used in order to realize the requirement of high rate and long distance communication and restrain the power fluctuation by atmospheric scintillation. With the increasing of the laser communication terminal caliber, the primary mirror weight should also be increased, and selfweight, thermal deformation and environment will affect the surface accuracy of the primary mirror surface. A high precision vehicular laser communication telescope unit with an effective aperture of 600mm was considered in this paper. The primary mirror is positioned with center hole, which back is supported by 9 floats and the side is supported by a mercury band. The secondary mirror adopts a spherical adjusting mechanism. Through simulation analysis, the system wave difference is better than λ/20 when the primary mirror is in different dip angle, which meets the requirements of laser communication.

  15. Vibratory response of a mirror support/positioning system for the Advanced Photon Source project at Argonne National Laboratory

    Basdogan, I.; Shu, Deming; Kuzay, T.M.; Royston, T.J.; Shabana, A.A.

    1996-01-01

    The vibratory response of a typical mirror support/positioning system used at the experimental station of the Advanced Photon Source (APS) project at Argonne National Laboratory is investigated. Positioning precision and stability are especially critical when the supported mirror directs a high-intensity beam aimed at a distant target. Stability may be compromised by low level, low frequency seismic and facility-originated vibrations traveling through the ground and/or vibrations caused by flow-structure interactions in the mirror cooling system. The example case system has five positioning degrees of freedom through the use of precision actuators and rotary and linear bearings. These linkage devices result in complex, multi-dimensional vibratory behavior that is a function of the range of positioning configurations. A rigorous multibody dynamical approach is used for the development of the system equations. Initial results of the study, including estimates of natural frequencies and mode shapes, as well as limited parametric design studies, are presented. While the results reported here are for a particular system, the developed vibratory analysis approach is applicable to the wide range of high-precision optical positioning systems encountered at the APS and at other comparable facilities

  16. Optical Interference Coatings Design Contest 2013: angle-independent color mirror and shortwave infrared/midwave infrared dichroic beam splitter.

    Hendrix, Karen; Kruschwitz, Jennifer D T; Keck, Jason

    2014-02-01

    An angle-independent color mirror and an infrared dichroic beam splitter were the subjects of a design contest held in conjunction with the 2013 Optical Interference Coatings topical meeting of the Optical Society of America. A total of 17 designers submitted 63 designs, 22 for Problem A and 41 for Problem B. The submissions were created through a wide spectrum of design approaches and optimization strategies. Michael Trubetskov and Weidong Shen won the first contest by submitting color mirror designs with a zero color difference (ΔE00) between normal incidence and all other incidence angles up to 60° as well as the thinnest design. Michael Trubetskov also won the second contest by submitting beam-splitter designs that met the required transmission while having the lowest mechanical coating stress and thinnest design. Fabien Lemarchand received the second-place finish for the beam-splitter design. The submitted designs are described and evaluated.

  17. Performance of the APS optical slope measuring system

    Qian, Jun; Sullivan, Joe; Erdmann, Mark; Khounsary, Ali; Assoufid, Lahsen

    2013-01-01

    An optical slope measuring system (OSMS) was recently brought into operation at the Advanced Photon Source of the Argonne National Laboratory. This system is equipped with a precision autocollimator and a very accurate mirror-based pentaprism on a scanning stage and kept in an environment-controlled enclosure. This system has the capability to measure precision optics with sub-microradian rms slope errors as documented with a series of tests demonstrating accuracy, stability, reliability and repeatability. Measurements of a flat mirror with 0.2 μrad rms slope error are presented which show that the variation of the slope profile measurements with the mirror setting at different locations along the scanning direction is only 60 nrad and the corresponding height error profile has 2 nm rms. -- Highlights: ► This is the first time to present the APS OSMS in publication. ► The APS OSMS is capable to measure flat and near flat mirrors with slope error <100 nrad rms. ► The accuracy of the slope error measurements of a 350 mm long mirror is less than 60 nrad rms

  18. The mirror-neuron system and observational learning: Implications for the effectiveness of dynamic visualizations.

    Van Gog, Tamara; Paas, Fred; Marcus, Nadine; Ayres, Paul; Sweller, John

    2009-01-01

    Van Gog, T., Paas, F., Marcus, N., Ayres, P., & Sweller, J. (2009). The mirror-neuron system and observational learning: Implications for the effectiveness of dynamic visualizations. Educational Psychology Review, 21, 21-30.

  19. Adaptive optics system for the IRSOL solar observatory

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  20. Ultra-high performance mirror systems for the imaging and coherence beamline I13 at the Diamond Light Source

    Wagner, U. H.; Alcock, S.; Ludbrook, G.; Wiatryzk, J.; Rau, C.

    2012-05-01

    I13L is a 250m long hard x-ray beamline (6 keV to 35 keV) currently under construction at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. To minimise the impact of thermal fluctuations and vibrations onto the beamline performance, we are developing a new generation of ultra-stable beamline instrumentation with highly repeatable adjustment mechanisms using low thermal expansion materials like granite and large piezo-driven flexure stages. For minimising the beam distortion we use very high quality optical components like large ion-beam polished mirrors. In this paper we present the first metrology results on a newly designed mirror system following this design philosophy.

  1. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    Downie, John D.; Goodman, Joseph W.

    1989-10-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  2. Optical switching systems using nanostructures

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  3. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment.

    Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning

    2018-03-19

    Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.

  4. 3D phase-shifting fringe projection system on the basis of a tailored free-form mirror.

    Zwick, Susanne; Heist, Stefan; Steinkopf, Ralf; Huber, Sandra; Krause, Sylvio; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther

    2013-05-10

    Phase-shifting fringe projection is an effective method to perform 3D shape measurements. Conventionally, fringe projection systems utilize a digital projector that images fringes into the measurement plane. The performance of such systems is limited to the visible spectral range, as most projectors experience technical limitations in UV or IR spectral ranges. However, for certain applications these spectral ranges are of special interest. We present a wideband fringe projector that has been developed on the basis of a picture generating beamshaping mirror. This mirror generates a sinusoidal fringe pattern in the measurement plane without any additional optical elements. Phase shifting is realized without any mechanical movement by a multichip LED. As the system is based on a single mirror, it is wavelength-independent in a wide spectral range and therefore applicable in UV and IR spectral ranges. We present the design and a realized setup of this fringe projection system and the characterization of the generated intensity distribution. Experimental results of 3D shape measurements are presented.

  5. NASA's OCA Mirroring System: An Application of Multiagent Systems in Mission Control

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron J. J.; Seah, Chin H.; Scott, Michael S.; Nado, Robert A.; Blumenberg, Susan F.; Shafto, Michael G.; Anderson, Brian L.; Bruins, Anthony C.; hide

    2009-01-01

    Orbital Communications Adaptor (OCA) Flight Controllers, in NASA's International Space Station Mission Control Center, use different computer systems to uplink, downlink, mirror, archive, and deliver files to and from the International Space Station (ISS) in real time. The OCA Mirroring System (OCAMS) is a multiagent software system (MAS) that is operational in NASA's Mission Control Center. This paper presents OCAMS and its workings in an operational setting where flight controllers rely on the system 24x7. We also discuss the return on investment, based on a simulation baseline, six months of 24x7 operations at NASA Johnson Space Center in Houston, Texas, and a projection of future capabilities. This paper ends with a discussion of the value of MAS and future planned functionality and capabilities.

  6. Optical transmission of low-level signals with high dynamic range using the optically-coupled current-mirror architecture

    Camin, Daniel V. [Dipartimento di Fisica dell' Universita degli Studi di Milano and INFN, Milan (Italy)]. E-mail: Daniel.Victor.Camin@mi.infn.it; Grassi, Valerio [Dipartimento di Fisica dell' Universita degli Studi di Milano and INFN, Milan (Italy); De Donato, Cinzia [Dipartimento di Fisica dell' Universita degli Studi di Milano and INFN, Milan (Italy)

    2007-03-01

    In this paper we illustrate the application of a novel circuit architecture, the Optically-Coupled Current-Mirror (OCCM), conceived for the linear transmission of analogue signals via fibre optics. We installed 880 OCCMs in the PMTs of the first two telescopes of the cosmic-ray experiment Pierre Auger. The Pierre Auger Observatory (PAO) has been designed to increase the statistics of cosmic-rays with energies above 10{sup 18}eV. Two different techniques have been adopted: the Surface Detector (SD) modules that comprise 1600 tanks spaced each other by 1.5km within an area of 3000km{sup 2}. On the other side there are four buildings, the Optical Stations (OS), in which six telescopes are installed in each one of the four OS, at the periphery of the site, looking inwards. The telescopes are sensitive to the UV light created at the moment a high-energy shower develops in the atmosphere and is within the field-of-view (FOV) of the telescopes. The PAO is located in the Northern Patagonia, not far from the Cordillera de Los Andes, in Argentina. Both detector types, FD telescopes and SD modules, are sensitive to the UV light resulting from the interaction of high-energy particles and the nitrogen molecules in the atmosphere. The UV-sensitive telescopes operate only at night when the sky is completely dark. Otherwise, the light collected by the telescopes may give origin to severe damage in particular if those telescopes point at twilight or to artificial light sources. The duty cycle of the telescope's operation is therefore limited to about 10% or slightly more than that, if data are taken also when there is a partial presence of the Moon. The SD modules establish, independently of the telescopes, the geometry of the event. At the same time a shower reconstruction is performed using the telescope's data, independently of the SD modules. Use of both sets of data, taken by the FD telescopes and by the SD modules, allows the hybrid reconstruction that significantly

  7. Optical transmission of low-level signals with high dynamic range using the optically-coupled current-mirror architecture

    Camin, Daniel V.; Grassi, Valerio; De Donato, Cinzia

    2007-01-01

    In this paper we illustrate the application of a novel circuit architecture, the Optically-Coupled Current-Mirror (OCCM), conceived for the linear transmission of analogue signals via fibre optics. We installed 880 OCCMs in the PMTs of the first two telescopes of the cosmic-ray experiment Pierre Auger. The Pierre Auger Observatory (PAO) has been designed to increase the statistics of cosmic-rays with energies above 10 18 eV. Two different techniques have been adopted: the Surface Detector (SD) modules that comprise 1600 tanks spaced each other by 1.5km within an area of 3000km 2 . On the other side there are four buildings, the Optical Stations (OS), in which six telescopes are installed in each one of the four OS, at the periphery of the site, looking inwards. The telescopes are sensitive to the UV light created at the moment a high-energy shower develops in the atmosphere and is within the field-of-view (FOV) of the telescopes. The PAO is located in the Northern Patagonia, not far from the Cordillera de Los Andes, in Argentina. Both detector types, FD telescopes and SD modules, are sensitive to the UV light resulting from the interaction of high-energy particles and the nitrogen molecules in the atmosphere. The UV-sensitive telescopes operate only at night when the sky is completely dark. Otherwise, the light collected by the telescopes may give origin to severe damage in particular if those telescopes point at twilight or to artificial light sources. The duty cycle of the telescope's operation is therefore limited to about 10% or slightly more than that, if data are taken also when there is a partial presence of the Moon. The SD modules establish, independently of the telescopes, the geometry of the event. At the same time a shower reconstruction is performed using the telescope's data, independently of the SD modules. Use of both sets of data, taken by the FD telescopes and by the SD modules, allows the hybrid reconstruction that significantly improves the data

  8. Aurora laser optical system

    Hanlon, J.A.; McLeod, J.

    1987-01-01

    Aurora is the Los Alamos short-pulse high-power krypton fluoride laser system. It is primarily an end-to-end technology demonstration prototype for large-scale UV laser systems of interest for short-wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and aerial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. A program of high-energy density plasma physics investigations is now planned, and a sophisticated target chamber was constructed. The authors describe the design of the optical system for Aurora and report its status. This optical system was designed and is being constructed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. Installation should be complete, and some performance results should be available. The second phase provides demultiplexing and carries the laser light to target. The complete design is reported

  9. Studying the Behaviour of Model of Mirror Neuron System in Case of Autism

    Shikha Anirban

    2012-04-01

    Full Text Available Several experiment done by the researchers conducted that autism is caused by the dysfunctional mirror neuron system and the dysfunctions of mirror neuron system is proportional to the symptom severity of autism. In the present work those experiments were studied as well as studying a model of mirror neuron system called MNS2 developed by a research group. This research examined the behavior of the model in case of autism and compared the result with those studies conducting dysfunctions of mirror neuron system in autism. To perform this, a neural network employing the model was developed which recognized the three types of grasping (faster, normal and slower. The network was implemented with back propagation through time learning algorithm. The whole grasping process was divided into 30 time steps and different hand and object states at each time step was used as the input of the network. Normally the network successfully recognized all of the three types of grasps. The network required more times as the number of inactive neurons increased. And in case of maximum inactive neurons of the mirror neuron system the network became unable to recognize the types of grasp. As the time to recognize the types of grasp is proportional to the number of inactive neurons, the experiment result supports the hypothesis that dysfunctions of MNS is proportional to the symptom severity of autism. Keywords— Autism, MNS, mirror neuron, neural network, BPTT

  10. OPTICAL WIRELESS COMMUNICATION SYSTEM

    JOSHUA L.Y. CHIENG

    2016-02-01

    Full Text Available The growing demand of bandwidth in this modern internet age has been testing the existing telecommunication infrastructures around the world. With broadband speeds moving towards the region of Gbps and Tbps, many researches have begun on the development of using optical wireless technology as feasible and future methods to the current wireless technology. Unlike the existing radio frequency wireless applications, optical wireless uses electromagnetic spectrums that are unlicensed and free. With that, this project aim to understand and gain better understanding of optical wireless communication system by building an experimental and simulated model. The quality of service and system performance will be investigated and reviewed. This project employs laser diode as the propagation medium and successfully transferred audio signals as far as 15 meters. On its quality of service, results of the project model reveal that the bit error rate increases, signal-to-noise ratio and quality factor decreases as the link distance between the transmitter and receiver increases. OptiSystem was used to build the simulated model and MATLAB was used to assist signal-to-noise ratio calculations. By comparing the simulated and experimental receiver’s power output, the experimental model’s efficiency is at 66.3%. Other than the system’s performance, challenges and factors affecting the system have been investigated and discussed. Such challenges include beam divergence, misalignment and particle absorption.

  11. The optical system of the proposed Chinese 12-m optical/infrared telescope

    Su, Ding-qiang; Liang, Ming; Yuan, Xiangyan; Bai, Hua; Cui, Xiangqun

    2017-08-01

    The lack of a large-aperture optical/infrared telescope has seriously affected the development of astronomy in China. In 2016, the authors published their concept study and suggestions for a 12-m telescope optical system. This article presents the authors' further research and some new results. Considering that this telescope should be a general-purpose telescope for a wide range of scientific goals and could be used for frontier scientific research in the future, the authors studied and designed a variety of 12-m telescope optical systems for comparison and final decision-making. In general, we still adopt our previous configuration, but the Nasmyth and prime-focus corrector systems have been greatly improved. In this article, the adaptive optics is given special attention. Ground-layer adaptive optics (GLAO) is adopted. It has a 14-arcmin field of view. The secondary mirror is used as the adaptive optical deformable mirror. Obviously, not all the optical systems in this telescope configuration will be used or constructed at the same stage. Some will be for the future and some are meant for research rather than for construction.

  12. Modification of the Heating Position Using a Moveable Mirror in the TJ-II ECRH System

    Cappa, A.; Tribaldos, V.; Likin, K.; Fernandez, A.; Martin, R.

    1999-01-01

    During the first stages of operation, start-up and heating of plasmas in TJ-II stellarator are being produced by EC waves. These are launched by two 1/2-MW type gyrotrons at 53.2 GHz and transmitted to the plasma by two quasi-optical transmission lines located at two symmetrical stellarator positions. The last mirror of both lines, placed inside the vacuum vessel, is a moveable mirror allowing for changes in the final direction of the microwave beam and therefore in the heating position. This report is devoted to the calculations describing the movement of this mirror and its influence in the position of the reflected beam. (Author)

  13. Optically pumped laser systems

    DeMaria, A.J.; Mack, M.E.

    1975-01-01

    Laser systems which are pumped by an electric discharge formed in a gas are disclosed. The discharge is in the form of a vortex stabilized electric arc which is triggered with an auxiliary energy source. At high enough repetition rates residual ionization between successive pulses contributes to the pulse stabilization. The arc and the gain medium are positioned inside an optical pumping cavity where light from the arc is coupled directly into the gain medium

  14. Reflective optical imaging system for extreme ultraviolet wavelengths

    Viswanathan, V.K.; Newnam, B.E.

    1993-05-18

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  15. Advanced Optical Metrology for XRAY Replication Mandrels and Mirrors, Phase I

    National Aeronautics and Space Administration — Advanced x-ray observatories such as IXO and GenX will require thousands of thin shell mirror segments produced by replication using convex mandrels. Quality and...

  16. A human mirror neuron system for language: Perspectives from signed languages of the deaf.

    Knapp, Heather Patterson; Corina, David P

    2010-01-01

    Language is proposed to have developed atop the human analog of the macaque mirror neuron system for action perception and production [Arbib M.A. 2005. From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics (with commentaries and author's response). Behavioral and Brain Sciences, 28, 105-167; Arbib M.A. (2008). From grasp to language: Embodied concepts and the challenge of abstraction. Journal de Physiologie Paris 102, 4-20]. Signed languages of the deaf are fully-expressive, natural human languages that are perceived visually and produced manually. We suggest that if a unitary mirror neuron system mediates the observation and production of both language and non-linguistic action, three prediction can be made: (1) damage to the human mirror neuron system should non-selectively disrupt both sign language and non-linguistic action processing; (2) within the domain of sign language, a given mirror neuron locus should mediate both perception and production; and (3) the action-based tuning curves of individual mirror neurons should support the highly circumscribed set of motions that form the "vocabulary of action" for signed languages. In this review we evaluate data from the sign language and mirror neuron literatures and find that these predictions are only partially upheld. 2009 Elsevier Inc. All rights reserved.

  17. Dichroic mirror embedded in a submicrometer waveguide for enhanced resonant nonlinear optical devices.

    Scaccabarozzi, Luigi; Fejer, M M; Huo, Yijie; Fan, Shanhui; Yu, Xiaojun; Harris, James S

    2006-11-15

    We report the design, fabrication and characterization of novel dichroic mirrors embedded in a tightly confining AlGaAs/Al(x)O(y) waveguide. Reflection at the first-harmonic wavelength as high as 93% is achieved, while high transmission is maintained at the second-harmonic wavelength. The measured cavity spectrum is in excellent agreement with finite-difference time-domain simulations. Such a mirror is essential for achieving resonant enhancement of second-harmonic generation.

  18. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  19. Optical design of the adaptive optics laser guide star system

    Bissinger, H. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  20. The mirror neuron system and the strange case of Broca's area.

    Cerri, Gabriella; Cabinio, Monia; Blasi, Valeria; Borroni, Paola; Iadanza, Antonella; Fava, Enrica; Fornia, Luca; Ferpozzi, Valentina; Riva, Marco; Casarotti, Alessandra; Martinelli Boneschi, Filippo; Falini, Andrea; Bello, Lorenzo

    2015-03-01

    Mirror neurons, originally described in the monkey premotor area F5, are embedded in a frontoparietal network for action execution and observation. A similar Mirror Neuron System (MNS) exists in humans, including precentral gyrus, inferior parietal lobule, and superior temporal sulcus. Controversial is the inclusion of Broca's area, as homologous to F5, a relevant issue in light of the mirror hypothesis of language evolution, which postulates a key role of Broca's area in action/speech perception/production. We assess "mirror" properties of this area by combining neuroimaging and intraoperative neurophysiological techniques. Our results show that Broca's area is minimally involved in action observation and has no motor output on hand or phonoarticulatory muscles, challenging its inclusion in the MNS. The presence of these functions in premotor BA6 makes this area the likely homologue of F5 suggesting that the MNS may be involved in the representation of articulatory rather than semantic components of speech. © 2014 Wiley Periodicals, Inc.

  1. Optical fiber inspection system

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  2. LUTE primary mirror materials and design study report

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  3. Design rules for a compact and low-cost optical position sensing of MOEMS tilt mirrors based on a Gaussian-shaped light source

    Baumgart, Marcus; Tortschanoff, Andreas

    2013-05-01

    A tilt mirror's deflection angle tracking setup is examined from a theoretical point of view. The proposed setup is based on a simple optical approach and easily scalable. Thus, the principle is especially of interest for small and fast oscillating MEMS/MOEMS based tilt mirrors. An experimentally established optical scheme is used as a starting point for accurate and fast mirror angle-position detection. This approach uses an additional layer, positioned under the MOEMS mirror's backside, consisting of a light source in the center and two photodetectors positioned symmetrical around the center. The mirror's back surface is illuminated by the light source and the intensity change due to mirror tilting is tracked via the photodiodes. The challenge of this method is to get a linear relation between the measured intensity and the current mirror tilt angle even for larger angles. State-of-the-art MOEMS mirrors achieve angles up to ±30°, which exceeds the linear angle approximations. The use of an LED, small laser diode or VCSEL as a lightsource is appropriate due to their small size and inexpensive price. Those light sources typically emit light with a Gaussian intensity distribution. This makes an analytical prediction of the expected detector signal quite complicated. In this publication an analytical simulation model is developed to evaluate the influence of the main parameters for this optical mirror tilt-sensor design. An easy and fast to calculate value directly linked to the mirror's tilt-angle is the "relative differential intensity" (RDI = (I1 - I2) / (I1 + I2)). Evaluation of its slope and nonlinear error highlights dependencies between the identified parameters for best SNR and linearity. Also the energy amount covering the detector area is taken into account. Design optimizing rules are proposed and discussed based on theoretical considerations.

  4. Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis?

    Eisen, Andrew; Lemon, Roger; Kiernan, Matthew C; Hornberger, Michael; Turner, Martin R

    2015-07-01

    There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. This can include loss of the direct projections from the corticospinal tract, and this is at least part of the explanation for impaired motor control in ALS. Since, in the monkey, corticospinal neurons also show mirror properties, ALS in humans might also affect the mirror neuron system. We speculate that a defective mirror neuron system might contribute to other ALS deficits affecting motor imagery, gesture, language and empathy. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Optical absorption measurement system

    Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

    1989-01-01

    This patent describes a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature

  6. Dynamic coherent backscattering mirror

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  7. Optical components of adaptive systems for improving laser beam quality

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  8. Concept and design of an alignment monitoring system for the CBM RICH mirrors

    Bendarouach, Jordan [Justus Liebig University (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR (Facility for Antiproton and Ion Research) complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. One of the key detector components required for this CBM physics program is the RICH (Ring Imaging CHerenkov) detector, developed for efficient and clean electron identification and pion suppression. The detector consists of about 80 spherical glass mirror tiles, distributed over two sphere parts. An important aspect to guarantee a stable operation of the RICH detector is the alignment of the mirrors. A method originally developed and inspired by the HERA-B experiment uses recorded data to assess mirror alignment of the RICH mirror system. Measurements of Cherenkov distances and angles on the PMT plane may reveal potential misalignments of the considered tile. If mirror misalignment is revealed, it can be subsequently included and rectified by correction routines, which should mostly increase ring reconstruction as well as ring-track matching efficiencies. Results of this alignment method based on simulated events, reproducing potential mirror misalignments, its limits and first correction routines are presented.

  9. Gender differences in the mu rhythm of the human mirror-neuron system.

    Cheng, Yawei; Lee, Po-Lei; Yang, Chia-Yen; Lin, Ching-Po; Hung, Daisy; Decety, Jean

    2008-05-07

    Psychologically, females are usually thought to be superior in interpersonal sensitivity than males. The human mirror-neuron system is considered to provide the basic mechanism for social cognition. However, whether the human mirror-neuron system exhibits gender differences is not yet clear. We measured the electroencephalographic mu rhythm, as a reliable indicator of the human mirror-neuron system activity, when female (N = 20) and male (N = 20) participants watched either hand actions or a moving dot. The display of the hand actions included androgynous, male, and female characteristics. The results demonstrate that females displayed significantly stronger mu suppression than males when watching hand actions. Instead, mu suppression was similar across genders when participants observed the moving dot and between the perceived sex differences (same-sex vs. opposite-sex). In addition, the mu suppressions during the observation of hand actions positively correlated with the personal distress subscale of the interpersonal reactivity index and negatively correlated with the systemizing quotient. The present findings indirectly lend support to the extreme male brain theory put forward by Baron-Cohen (2005), and may cast some light on the mirror-neuron dysfunction in autism spectrum disorders. The mu rhythm in the human mirror-neuron system can be a potential biomarker of empathic mimicry.

  10. Reflecting on the mirror neuron system in autism: a systematic review of current theories.

    Hamilton, Antonia F de C

    2013-01-01

    There is much interest in the claim that dysfunction of the mirror neuron system in individuals with autism spectrum condition causes difficulties in social interaction and communication. This paper systematically reviews all published studies using neuroscience methods (EEG/MEG/TMS/eyetracking/EMG/fMRI) to examine the integrity of the mirror system in autism. 25 suitable papers are reviewed. The review shows that current data are very mixed and that studies using weakly localised measures of the integrity of the mirror system are hard to interpret. The only well localised measure of mirror system function is fMRI. In fMRI studies, those using emotional stimuli have reported group differences, but studies using non-emotional hand action stimuli do not. Overall, there is little evidence for a global dysfunction of the mirror system in autism. Current data can be better understood under an alternative model in which social top-down response modulation is abnormal in autism. The implications of this model and future research directions are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Control of optical systems

    Founds, D.

    1988-01-01

    Some of the current and planned activities at the Air Force Systems Command in structures and controls for optical-type systems are summarized. Many of the activities are contracted to industry; one task is an in-house program which includes a hardware test program. The objective of the in-house program, referred to as the Aluminum Beam Expander Structure (ABES), is to address issues involved in on-orbit system identification. The structure, which appears similar to the LDR backup structure, is about 35 feet tall. The activity to date has been limited to acquisition of about 250 hours of test data. About 30 hours of data per excitation force is gathered in order to obtain sufficient data for a good statistical estimate of the structural parameters. The development of an Integrated Structural Modeling (ISM) computer program is being done by Boeing Aerospace Company. The objective of the contracted effort is to develop a combined optics, structures, thermal, controls, and multibody dynamics simulation code.

  12. Geometrical optics in correlated imaging systems

    Cao Dezhong; Xiong Jun; Wang Kaige

    2005-01-01

    We discuss the geometrical optics of correlated imaging for two kinds of spatial correlations corresponding, respectively, to a classical thermal light source and a quantum two-photon entangled source. Due to the different features in the second-order spatial correlation, the two sources obey different imaging equations. The quantum entangled source behaves as a mirror, whereas the classical thermal source looks like a phase-conjugate mirror in the correlated imaging

  13. The use of x-ray interferometry to investigate the linearity of the NPL Differential Plane Mirror Optical Interferometer

    Yacoot, Andrew; Downs, Michael J.

    2000-08-01

    The x-ray interferometer from the combined optical and x-ray interferometer (COXI) facility at NPL has been used to investigate the performance of the NPL Jamin Differential Plane Mirror Interferometer when it is fitted with stabilized and unstabilized lasers. This Jamin interferometer employs a common path design using a double pass configuration and one fringe is realized by a displacement of 158 nm between its two plane mirror retroreflectors. Displacements over ranges of several optical fringes were measured simultaneously using the COXI x-ray interferometer and the Jamin interferometer and the results were compared. In order to realize the highest measurement accuracy from the Jamin interferometer, the air paths were shielded to prevent effects from air turbulence and electrical signals generated by the photodetectors were analysed and corrected using an optimizing routine in order to subdivide the optical fringes accurately. When an unstabilized laser was used the maximum peak-to-peak difference between the two interferometers was 80 pm, compared with 20 pm when the stabilized laser was used.

  14. Innovative instrumentation for detecting optical transients in the hypothesis of a new improved mirror at solar furnace of Almeria

    Nanni, D.; Bartolini, C.; Cosentino, G.; Guarnieri, A.; Piccioni, A.; Beskin, G.; La Padula, C.

    2002-07-01

    The improvement of the solar Furnace mirror as light collector, with an expected Point Spread Function (PSF) of about less than 0.1 degree centigree, could provide a sufficient image definition for astronomical observations of Optical Transients (OTs). Wide-angle large aperture optics, combined with a finely pixelated imaging camera located in the focal plane 7.50 meters away from the mirrors, could offer a field of view (FOV) of 3 degree centigree diameter (30cm length). All these requirements involve the filling of focal plane by means of light having a spatial resolution of few millimeters and a time-resolution of the imager in the range of 50-1000 frame/s. A realistic approach, with regard to such demanding resolution, could be reached exploring properties of devices alternative to Photo-Multipliers tube (PMT) such as Multi Anode Photomultiplier tubes (MAPMT), semiconductor and hybrid devices (CCD, CMOS, HPD, Amorphous silicon detector etc.). These sensors, that during the last years have had a rapid development triggered by scientific, industrial and medical requirement, used or individually or coupled with optical field de magnifier (e. g. Tapers), present an efficient photon detection and a very high spatial resolution. (Author) 12 refs.

  15. Mathematical Modeling of Radiant Heat Transfer in Mirror Systems Considering Deep Reflecting Surface Defects

    V. V. Leonov

    2014-01-01

    Full Text Available When designing large-sized mirror concentrating systems (MCS for high-temperature solar power plants, one must have at disposal reasonably reliable and economical methods and tools, making it possible to analyze its characteristics, to predict them depending on the operation conditions and accordingly to choose the most suitable system for the solution of particular task.Experimental determination of MCS characteristics requires complicated and expensive experimentation, having significant limitations on interpretation of the results, as well as limitations imposed due to the size of the structure. Therefore it is of particular interest to develop a mathematical model capable of estimating power characteristics of MCS considering the influence of operating conditions, design features, roughness and other surface defects.For efficient solution of the tasks the model must ensure simulation of solar radiant flux as well as simulation of geometrical and optical characteristics of reflection surface and their interaction. In this connection a statistical mathematical model of radiation heat exchange based on use of Monte Carlo methods and Finite Element Method was developed and realized in the software complex, making it possible to determine main characteristics of the MCS.In this paper the main attention is given to definition of MCS radiation characteristics with account for deep reflecting surface defects (cavities, craters. Deep cavities are not typical for MCS, but their occurrence is possible during operation as a result of erosion or any physical damage. For example, for space technology it is primarily micrometeorite erosion.

  16. Simple and robust phase-locking of optical cavities with > 200 KHz servo-bandwidth using a piezo-actuated mirror mounted in soft materials.

    Goldovsky, David; Jouravsky, Valery; Pe'er, Avi

    2016-12-12

    We present an approach to locking of optical cavities with piezoelectric actuated mirrors based on a simple and effective mechanical decoupling of the mirror and actuator from the surrounding mount. Using simple elastic materials (e.g. rubber or soft silicone gel pads) as mechanical dampers between the piezo-mirror compound and the surrounding mount, a firm and stable mounting of a relatively large mirror (8mm diameter) can be maintained that is isolated from external mechanical resonances, and is limited only by the internal piezo-mirror resonance of > 330 KHz. Our piezo lock showed positive servo gain up to 208 KHz, and a temporal response to a step interference within < 3 μs.

  17. Interpersonal motor resonance in autism spectrum disorder: evidence against a global "mirror system" deficit.

    Enticott, Peter G; Kennedy, Hayley A; Rinehart, Nicole J; Bradshaw, John L; Tonge, Bruce J; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2013-01-01

    The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.

  18. High-contrast fluorescence imaging based on the polarization dependence of the fluorescence enhancement using an optical interference mirror slide.

    Yasuda, Mitsuru; Akimoto, Takuo

    2015-01-01

    High-contrast fluorescence imaging using an optical interference mirror (OIM) slide that enhances the fluorescence from a fluorophore located on top of the OIM surface is reported. To enhance the fluorescence and reduce the background light of the OIM, transverse-electric-polarized excitation light was used as incident light, and the transverse-magnetic-polarized fluorescence signal was detected. As a result, an approximate 100-fold improvement in the signal-to-noise ratio was achieved through a 13-fold enhancement of the fluorescence signal and an 8-fold reduction of the background light.

  19. Optimal micro-mirror tilt angle and sync mark design for digital micro-mirror device based collinear holographic data storage system.

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Liu, Jinyan; Huang, Yong; Tan, Xiaodi

    2017-06-01

    The collinear holographic data storage system (CHDSS) is a very promising storage system due to its large storage capacities and high transfer rates in the era of big data. The digital micro-mirror device (DMD) as a spatial light modulator is the key device of the CHDSS due to its high speed, high precision, and broadband working range. To improve the system stability and performance, an optimal micro-mirror tilt angle was theoretically calculated and experimentally confirmed by analyzing the relationship between the tilt angle of the micro-mirror on the DMD and the power profiles of diffraction patterns of the DMD at the Fourier plane. In addition, we proposed a novel chess board sync mark design in the data page to reduce the system bit error rate in circumstances of reduced aperture required to decrease noise and median exposure amount. It will provide practical guidance for future DMD based CHDSS development.

  20. Preliminary conceptual design of the blanket and power conversion system for the Mirror Hybrid Reactor

    Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-01-01

    A conceptual design of a commercial Mirror Hybrid Reactor, optimized for 239 Pu production, has been completed. This design is the product of a joint effort by Lawrence Livermore Laboratory and General Atomic Company, and follows directly from earlier work on the Mirror Hybrid. This paper describes the blanket and power conversion system of the reactor design. Included are descriptions of the prestressed concrete reactor vessel that supports the magnets and contains the blanket and power conversion system components, the blanket module design, the blanket fuel design, and the power conversion system

  1. On the influence of fusion reactor conditions on optical properties of metallic plasma-viewing mirrors

    Voitsenya, V.S.; Gritsyna, V.I.; Konovalov, V.G.; Ruzhitskij, V.V.; Shapoval, A.N.; Orlinskij, D.V.

    1997-01-01

    This paper presents the results of imitation experiments concerning the effects of fusion reactor conditions on the properties of mirrors made of stainless steel, copper and beryllium. The neutron irradiation was imitated using MeV energy range ions. To imitate the effects of charge exchange atoms (CXA) bombardment, keV energy range D + and He + ions were used. From the data obtained it was concluded that not only the reflectivity but also the resistance to CXA sputtering have to be taken into account when choosing the materials for the first mirrors of a fusion reactor. (orig.)

  2. A novel mirror diversity receiver for indoor MIMO visible light communication systems

    Park, Kihong

    2016-12-24

    In this paper, we propose and study a non-imaging receiver design reducing the correlation of channel matrix for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. Contrary to previous works, our proposed mirror diversity receiver (MDR) not only blocks the reception of light on one specific direction but also improves the channel gain on the other direction by receiving the light reflected by a mirror deployed between the photodetectors. We analyze the channel capacity and optimal height of mirror in terms of maximum channel capacity for a 2 × 2 MIMO-VLC system in a 2-dimensional geometric model. We prove that this constructive and destructive effects in channel matrix resulting from our proposed MDR are more beneficial to obtain well-conditioned channel matrix which is suitable for implementing spatial-multiplexing MIMO-VLC systems in order to support high data rate.

  3. Observing complex action sequences: The role of the fronto-parietal mirror neuron system.

    Molnar-Szakacs, Istvan; Kaplan, Jonas; Greenfield, Patricia M; Iacoboni, Marco

    2006-11-15

    A fronto-parietal mirror neuron network in the human brain supports the ability to represent and understand observed actions allowing us to successfully interact with others and our environment. Using functional magnetic resonance imaging (fMRI), we wanted to investigate the response of this network in adults during observation of hierarchically organized action sequences of varying complexity that emerge at different developmental stages. We hypothesized that fronto-parietal systems may play a role in coding the hierarchical structure of object-directed actions. The observation of all action sequences recruited a common bilateral network including the fronto-parietal mirror neuron system and occipito-temporal visual motion areas. Activity in mirror neuron areas varied according to the motoric complexity of the observed actions, but not according to the developmental sequence of action structures, possibly due to the fact that our subjects were all adults. These results suggest that the mirror neuron system provides a fairly accurate simulation process of observed actions, mimicking internally the level of motoric complexity. We also discuss the results in terms of the links between mirror neurons, language development and evolution.

  4. Wave-optical evaluation of interference fringes and wavefront phase in a hard-x-ray beam totally reflected by mirror optics.

    Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo

    2005-11-10

    The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.

  5. Impact of design-parameters on the optical performance of a highpower adaptive mirror

    Koek, W.D.; Nijkerk, M.D.; Smeltink, J.A.; Dool, T.C. van den; Zwet, E.J. van; Baars, G.E. van

    2017-01-01

    TNO is developing a High Power Adaptive Mirror (HPAM) to be used in the CO2 laser beam path of an Extreme Ultra-Violet (EUV) light source for next-generation lithography. In this paper we report on a developed methodology, and the necessary simulation tools, to assess the performance and associated

  6. SIM PlanetQuest: The TOM-3 (Thermo-Optical-Mechanical) Siderostat Mirror Test

    Phillips, Charles J.

    2006-01-01

    This slide presentation reviews the Space Interferometry Mission (SIM) PlanetQuest mission. It describes the mission, shows diagrams of the instrument, the collector bays, the Siderostat mirrors, the COL bay thermal environment, the TOM-3 replicating COL Bay Environment, the thermal hardware for the SID heater control, and the results of the test are shown

  7. Exact solutions to nonlinear symmetron theory: One- and two-mirror systems

    Brax, Philippe; Pitschmann, Mario

    2018-03-01

    We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one- or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, in the case of two parallel mirrors, the equations of motion generically provide not a unique solution but a discrete set of solutions with increasing number of nodes and energies. The solutions obtained herein can be applied to q BOUNCE experiments, neutron interferometry and for the calculation of the symmetron-field-induced "Casimir force" in the CANNEX experiment.

  8. Status of the Tandem Mirror Experiment-Upgrade (TMX-U) diagnostic system

    Coutts, G.W.; Coffield, F.E.; Hornady, R.S.

    1983-01-01

    This paper presents the current status of the Tandem Mirror Experiment-Upgrade (TMX-U) diagnostics system. For the initial instruments active on TMX-U, the expansions or upgrades that have been implemented are outlined. For the newly added systems, more implementation details are presented

  9. Optimization of an Angle-Aided Mirror Diversity Receiver for Indoor MIMO-VLC Systems

    Park, Kihong

    2017-02-07

    In this paper, we investigate the channel correlation problem which affects the performance of indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. More specifically, in order to reduce the high correlation of channel matrix in MIMO-VLC intensity channel, we propose a non-imaging receiver called angle-aided mirror diversity receiver (AMDR) which utilizes not only a mirror placement but also a variation of orientation angle for the photodetector (PD) plane. Deploying a mirror helps reducing the correlation by blocking the reception of the light in one specific direction and by receiving additional light reflected in the mirror in another direction, while orienting the angle of PD plane into specific direction enables the directional reception of light. Applying a zero-forcing decorrelator at the receiver, we analyze the bit error rate (BER) performance for a 2×2 multiplexing MIMO-VLC system using a 2-dimensional geometric model. In particular, we formulate a min-max BER problem and find the optimal height of mirror and elevation angle of PD plane. Some selected numerical results validate our proposed optimal solution to our min-max BER problem and show that the BER performance of our proposed AMDR outperforms that of the previous non-imaging receivers.

  10. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation.

    Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S

    2017-04-01

    Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Optimization of an Angle-Aided Mirror Diversity Receiver for Indoor MIMO-VLC Systems

    Park, Kihong; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we investigate the channel correlation problem which affects the performance of indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. More specifically, in order to reduce the high correlation of channel matrix in MIMO-VLC intensity channel, we propose a non-imaging receiver called angle-aided mirror diversity receiver (AMDR) which utilizes not only a mirror placement but also a variation of orientation angle for the photodetector (PD) plane. Deploying a mirror helps reducing the correlation by blocking the reception of the light in one specific direction and by receiving additional light reflected in the mirror in another direction, while orienting the angle of PD plane into specific direction enables the directional reception of light. Applying a zero-forcing decorrelator at the receiver, we analyze the bit error rate (BER) performance for a 2×2 multiplexing MIMO-VLC system using a 2-dimensional geometric model. In particular, we formulate a min-max BER problem and find the optimal height of mirror and elevation angle of PD plane. Some selected numerical results validate our proposed optimal solution to our min-max BER problem and show that the BER performance of our proposed AMDR outperforms that of the previous non-imaging receivers.

  12. A stand alone computer system to aid the development of mirror fusion test facility RF heating systems

    Thomas, R.A.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) control system architecture requires the Supervisory Control and Diagnostic System (SCDS) to communicate with a LSI-11 Local Control Computer (LCC) that in turn communicates via a fiber optic link to CAMAC based control hardware located near the machine. In many cases, the control hardware is very complex and requires a sizable development effort prior to being integrated into the overall MFTF-B system. One such effort was the development of the Electron Cyclotron Resonance Heating (ECRH) system. It became clear that a stand alone computer system was needed to simulate the functions of SCDS. This paper describes the hardware and software necessary to implement the SCDS Simulation Computer (SSC). It consists of a Digital Equipment Corporation (DEC) LSI-11 computer and a Winchester/Floppy disk operating under the DEC RT-11 operating system. All application software for MFTF-B is programmed in PASCAL, which allowed us to adapt procedures originally written for SCDS to the SSC. This nearly identical software interface means that software written during the equipment development will be useful to the SCDS programmers in the integration phase

  13. All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating.

    Zang, Zhigang

    2013-08-10

    A configuration of all-optical switching based on a Signac loop mirror that incorporates an ytterbium-doped fiber and uniform fiber Bragg grating (FBG) is proposed in this paper. It is found that the transmission spectrum of this structure is the narrow splitting of the reflection spectrum of the FBG. The shift of this ultranarrow transmission spectrum is very sensitive to the intensity of the pump power. Thus, the threshold switching power can be greatly reduced by shifting such narrow transmission spectrum. Compared with the single FBG, the threshold switching power of this configuration is reduced by 4 orders of magnitude. In addition, the results indicate that this optical switching has a high extinction ratio of 20 dB and a ultrafast response time of 3 ns. The operation regime and switching performance under the cross-phase modulation cases are also investigated.

  14. Preparation of RF reactively sputtered indium-tin oxide thin films with optical properties suitable for heat mirrors

    Boyadzhiev, S; Dobrikov, G; Rassovska, M

    2008-01-01

    Technologies are discussed for preparing and characterizing indium-tin oxide (ITO) thin films with properties appropriate for usage as heat mirrors in solar thermal collectors. The samples were prepared by means of radio frequency (RF) reactive sputtering of indium-tin targets in oxygen. The technological parameters were optimized to obtain films with optimal properties for heat mirrors. The optical properties of the films were studied by visible and infra-red (IR) spectrophotometry and laser ellipsometry. The reflectance of the films in the thermal IR range was investigated by a Fourier transform infra-red (FTIR) spectrophotometer. Heating of the substrates during the sputtering and their post deposition annealing in different environments were also studied. The ultimate purpose of the present research being the development of a technological process leading to low-cost ITO thin films with high transparency in the visible and near IR (0.3-2.4 μm) and high reflection in the thermal IR range (2.5-25 μm), we investigated the correlation of the ITO thin films structural and optical properties with the technological process parameters - target composition and heat treatment

  15. Geometric characteristics of aberrations of plane-symmetric optical systems

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  16. Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring?

    Pineda Jaime A

    2008-10-01

    Full Text Available Abstract A core assumption of how humans understand and infer the intentions and beliefs of others is the existence of a functional self-other distinction. At least two neural systems have been proposed to manage such a critical distinction. One system, part of the classic motor system, is specialized for the preparation and execution of motor actions that are self realized and voluntary, while the other appears primarily involved in capturing and understanding the actions of non-self or others. The latter system, of which the mirror neuron system is part, is the canonical action 'resonance' system in the brain that has evolved to share many of the same circuits involved in motor control. Mirroring or 'shared circuit systems' are assumed to be involved in resonating, imitating, and/or simulating the actions of others. A number of researchers have proposed that shared representations of motor actions may form a foundational cornerstone for higher order social processes, such as motor learning, action understanding, imitation, perspective taking, understanding facial emotions, and empathy. However, mirroring systems that evolve from the classic motor system present at least three problems: a development, a correspondence, and a control problem. Developmentally, the question is how does a mirroring system arise? How do humans acquire the ability to simulate through mapping observed onto executed actions? Are mirror neurons innate and therefore genetically programmed? To what extent is learning necessary? In terms of the correspondence problem, the question is how does the observer agent know what the observed agent's resonance activation pattern is? How does the matching of motor activation patterns occur? Finally, in terms of the control problem, the issue is how to efficiently control a mirroring system when it is turned on automatically through observation? Or, as others have stated the problem more succinctly: "Why don't we imitate all the time

  17. Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring?

    Pineda, Jaime A

    2008-01-01

    A core assumption of how humans understand and infer the intentions and beliefs of others is the existence of a functional self-other distinction. At least two neural systems have been proposed to manage such a critical distinction. One system, part of the classic motor system, is specialized for the preparation and execution of motor actions that are self realized and voluntary, while the other appears primarily involved in capturing and understanding the actions of non-self or others. The latter system, of which the mirror neuron system is part, is the canonical action 'resonance' system in the brain that has evolved to share many of the same circuits involved in motor control. Mirroring or 'shared circuit systems' are assumed to be involved in resonating, imitating, and/or simulating the actions of others. A number of researchers have proposed that shared representations of motor actions may form a foundational cornerstone for higher order social processes, such as motor learning, action understanding, imitation, perspective taking, understanding facial emotions, and empathy. However, mirroring systems that evolve from the classic motor system present at least three problems: a development, a correspondence, and a control problem. Developmentally, the question is how does a mirroring system arise? How do humans acquire the ability to simulate through mapping observed onto executed actions? Are mirror neurons innate and therefore genetically programmed? To what extent is learning necessary? In terms of the correspondence problem, the question is how does the observer agent know what the observed agent's resonance activation pattern is? How does the matching of motor activation patterns occur? Finally, in terms of the control problem, the issue is how to efficiently control a mirroring system when it is turned on automatically through observation? Or, as others have stated the problem more succinctly: "Why don't we imitate all the time?" In this review, we argue

  18. A study on multi-point gravity compensation of mirror bending system

    Sun Fuquan; Fu Yuan; Zhu Wanqian; Xue Song

    2011-01-01

    The sag of mirror due to gravity induces unacceptable slope errors in beamline mirror-bending system of a synchrotron radiation facility, and approaches must be found to eliminate the unwanted gravity effect. According to the beam bending theory, the multi-point gravity compensation method is applicable. Taking an example of the bent collimating mirror for the XAFS beam-line (BL14W) at Shanghai Synchrotron Radiation Facility (SSRF), the best position and value of the equilibrant were calculated through minimizing the gravity effect. With two, three and four points gravity compensation, slope errors were 0.179, 0.067 and 0.032 μrad,respectively, i.e.the multi-point gravity compensation is better than the two-point gravity compensation, which is used for the Phase I beamlines of SSRF. The four-point gravity compensation method reduces more slope error and stress due to four support points. (authors)

  19. A real-space renormalization approach to the Kubo-Greenwood formula in mirror Fibonacci systems

    Sanchez, Vicenta; Wang Chumin

    2006-01-01

    An exact real-space renormalization method is developed to address the electronic transport in mirror Fibonacci chains at a macroscopic scale by means of the Kubo-Greenwood formula. The results show that the mirror symmetry induces a large number of transparent states in the dc conductivity spectra, contrary to the simple Fibonacci case. A length scaling analysis over ten orders of magnitude reveals the existence of critically localized states and their ac conduction spectra show a highly oscillating behaviour. For multidimensional quasiperiodic systems, a novel renormalization plus convolution method is proposed. This combined renormalization + convolution method has shown an extremely elevated computing efficiency, being able to calculate electrical conductance of a three-dimensional non-crystalline solid with 10 30 atoms. Finally, the dc and ac conductances of mirror Fibonacci nanowires are also investigated, where a quantized dc-conductance variation with the Fermi energy is found, as observed in gold nanowires

  20. Tunable system for production of mirror and cusp configurations using chassis of permanent magnets

    Hyde, Alexander; Bushmelov, Maxim; Batishchev, Oleg

    2018-03-01

    Compact arrays of permanent magnets have shown promise as replacements for electromagnets in applications requiring magnetic cusps and mirrors. An adjustable system capable of suspending and translating a pair of light, nonmagnetic chassis carrying such sources of magnetic field has been designed and constructed. Using this device to align two cylindrical chassis, strong solenoid-like domains of field, as well as classic biconic cusp and magnetic mirror topologies, are generated. Employing a pair of ring-shaped chassis instead, the superposition of their naturally-emitted cusps is demonstrated to produce sextupolar and octupolar magnetic fields.

  1. Mechanism design of the Thomson scattering diagnostic system for the TMX east mirror plug

    Lang, D.D.; Goodman, R.K.; Jenkins, S.L.; Wilkerson, J.A.; Parkinson, J.L.

    1979-01-01

    This Thomson scattering diagnostic system is used to measure the electron temperature and density of the east mirror plug of the Tandem Mirror Experiment (TMX) at Lawrence Livermore Laboratory. The measurements are made by firing a high-power ruby laser pulse through the plasma where the electrons then re-radiate a small fraction of the light. Because of the velocity of the electrons, the wavelength of the re-radiated light is Doppler shifted. The width of the Doppler-shifted wavelength spectrum is a measure of the temperature of the electrons in the plasma, and the total amount of re-radiated light is proportional to the electron density

  2. Ocean Optics Instrumentation Systems

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  3. What do mirror neurons mirror?

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data

  4. Operation of the cryogenic system for the Mirror Fusion Test Facility

    Chronis, W.C.; Slack, D.S.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory (LLNL) was designed to cool the entire MFTF-B system from ambient to operating temperature in less than 10 days. The system was successfully operated in the recent plant and capital equipment (PACE) acceptance tests, and results from these tests helped us correct problem areas and improve the system

  5. Spatio-temporal dynamics of the mirror neuron system during social intentions.

    Cacioppo, Stephanie; Bolmont, Mylene; Monteleone, George

    2017-10-27

    Previous research has shown that specific goals and intentions influence a person's allocation of social attention. From a neural viewpoint, a growing body of evidence suggests that the inferior fronto-parietal network, including the mirror neuron system, plays a role in the planning and the understanding of motor intentions. However, it is unclear whether and when the mirror neuron system plays a role in social intentions. Combining a behavioral task with electrical neuroimaging in 22 healthy male participants, the current study investigates whether the temporal brain dynamic of the mirror neuron system differs during two types of social intentions i.e., lust vs. romantic intentions. Our results showed that 62% of the stimuli evoking lustful intentions also evoked romantic intentions, and both intentions were sustained by similar activations of the inferior frontal gyrus and the inferior parietal lobule/angular gyrus for the first 432 ms after stimulus onset. Intentions to not love or not lust, on the other hand, were characterized by earlier differential activations of the inferior fronto-parietal network i.e., as early as 244 ms after stimulus onset. These results suggest that the mirror neuron system may not only code for the motor correlates of intentions, but also for the social meaning of intentions and its valence at both early/automatic and later/more elaborative stages of information processing.

  6. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  7. A Human Mirror Neuron System for Language: Perspectives from Signed Languages of the Deaf

    Knapp, Heather Patterson; Corina, David P.

    2010-01-01

    Language is proposed to have developed atop the human analog of the macaque mirror neuron system for action perception and production [Arbib M.A. 2005. From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics (with commentaries and author's response). "Behavioral and Brain Sciences, 28", 105-167; Arbib…

  8. The Mirror Neuron System and Observational Learning: Implications for the Effectiveness of Dynamic Visualizations

    van Gog, Tamara; Paas, Fred; Marcus, Nadine; Ayres, Paul; Sweller, John

    2009-01-01

    Learning by observing and imitating others has long been recognized as constituting a powerful learning strategy for humans. Recent findings from neuroscience research, more specifically on the mirror neuron system, begin to provide insight into the neural bases of learning by observation and imitation. These findings are discussed here, along…

  9. Facial expressions : What the mirror neuron system can and cannot tell us

    van der Gaag, Christiaan; Minderaa, Ruud B.; Keysers, Christian

    2007-01-01

    Facial expressions contain both motor and emotional components. The inferior frontal gyrus (IFG) and posterior parietal cortex have been considered to compose a mirror neuron system (MNS) for the motor components of facial expressions, while the amygdala and insula may represent an "additional" MNS

  10. Development of a Piezoelectric Adaptive Mirror for Laser Beam Control

    Long, CS

    2008-06-01

    Full Text Available piezoelectric disc, providing a small, low-cost deformable mirror for this application. The mirror is required to be able to deform in the shape of each of the lower order Zernike polynomials, which describe aberrations in optical systems. Numerical modelling...

  11. Mirror boxes and mirror mounts for photophysics beamline

    Raja Rao, P.M.; Raja Sekhar, B.N.; Das, N.C.; Khan, H.A.; Bhattacharya, S.S.; Roy, A.P.

    1996-01-01

    Photophysics beamline makes use of one metre Seya-Namioka monochromator and two toroidal mirrors in its fore optics. The first toroidal mirror (pre mirror) focuses light originating from the tangent point of the storage ring onto the entrance slit of the monochromator and second toroidal mirror (post mirror) collects light from the exit slit of the monochromator and focuses light onto the sample placed at a distance of about one metre away from the 2nd mirror. To steer light through monochromator and to focus it on the sample of 1mm x 1mm size require precision rotational and translational motion of the mirrors and this has been achieved with the help of precision mirror mounts. Since Indus-1 operates at pressures less than 10 -9 m.bar, the mirror mounts should be manipulated under similar ultra high vacuum conditions. Considering these requirements, two mirror boxes and two mirror mounts have been designed and fabricated. The coarse movements to the mirrors are imparted from outside the mirror chamber with the help of x-y tables and precision movements to the mirrors are achieved with the help of mirror mounts. The UHV compatibility and performance of the mirror mounts connected to mirror boxes under ultra high vacuum condition is evaluated. The details of the design, fabrication and performance evaluation are discussed in this report. 5 refs., 9 figs., 1 tab

  12. Control Demonstration of a Thin Deformable In-Plane Actuated Mirror

    Peterson, Gina A

    2006-01-01

    .... The primary goal of this research is to demonstrate that an in-plane actuated membrane-like deformable optical mirror can be controlled to optical wavelength tolerances in a closed-loop system...

  13. Discovery Channel Telescope active optics system early integration and test

    Venetiou, Alexander J.; Bida, Thomas A.

    2012-09-01

    The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.

  14. Machine and plasma diagnostic instrumentation systems for the Tandem Mirror Experiment Upgrade

    Coutts, G.W.; Coffield, F.E.; Lang, D.D.; Hornady, R.S.

    1981-01-01

    To evaluate performance of a second generation Tandem Mirror Machine, an extensive instrumentation system is being designed and installed as part of the major device fabrication. The systems listed will be operational during the start-up phase of the TMX Upgrade machine and provide bench marks for future performance data. In addition to plasma diagnostic instrumentation, machine parameter monitoring systems will be installed prior to machine operation. Simultaneous recording of machine parameters will permit evaluation of plasma parameters sensitive to machine conditions

  15. Is the human mirror neuron system plastic? Evidence from a transcranial magnetic stimulation study.

    Mehta, Urvakhsh Meherwan; Waghmare, Avinash V; Thirthalli, Jagadisha; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2015-10-01

    Virtual lesions in the mirror neuron network using inhibitory low-frequency (1Hz) transcranial magnetic stimulation (TMS) have been employed to understand its spatio-functional properties. However, no studies have examined the influence of neuro-enhancement by using excitatory high-frequency (20Hz) repetitive transcranial magnetic stimulation (HF-rTMS) on these networks. We used three forms of TMS stimulation (HF-rTMS, single and paired pulse) to investigate whether the mirror neuron system facilitates the motor system during goal-directed action observation relative to inanimate motion (motor resonance), a marker of putative mirror neuron activity. 31 healthy individuals were randomized to receive single-sessions of true or sham HF-rTMS delivered to the left inferior frontal gyrus - a component of the human mirror system. Motor resonance was assessed before and after HF-rTMS using three TMS cortical reactivity paradigms: (a) 120% of resting motor threshold (RMT), (b) stimulus intensity set to evoke motor evoked potential of 1-millivolt amplitude (SI1mV) and (c) a short latency paired pulse paradigm. Two-way RMANOVA showed a significant group (true versus sham) X occasion (pre- and post-HF-rTMS motor resonance) interaction effect for SI1mV [F(df)=6.26 (1, 29), p=0.018] and 120% RMT stimuli [F(df)=7.01 (1, 29), p=0.013] indicating greater enhancement of motor resonance in the true HF-rTMS group than the sham-group. This suggests that HF-rTMS could adaptively modulate properties of the mirror neuron system. This neuro-enhancement effect is a preliminary step that can open translational avenues for novel brain stimulation therapeutics targeting social-cognition deficits in schizophrenia and autism. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Design and fabrication of optical thin film layers with variable thickness profile for producing variable reflectivity mirrors

    Hamid R fallah

    2006-12-01

    Full Text Available   The design method and fabrication of mirrors with variable reflectivity are presented. To fabricate such a mirror a fixed mask with a circular aperture is used. The circular aperture is considered as an extended source with cosx(θas its diffusion distribution function and is the parameter for the distribution function of the particles through the aperture. The thickness profile of deposited layer is a function of this distribution. In this work, the coating system is calibrated for the materials which are used and then the parameter of the diffusion distribution function of the particles through the circular aperture is defined by experiments. Using these results, a graph is presented which connects the parameter of the circular aperture to the parameters of the thickness profile. It is then possible to deposit any type of variable reflectivity mirror using this graph. Finally, the effect of the uncertainty in measuring layer thicknesses on the phase of reflected wave and transmitted wave is investigated.

  17. A comparative performance study of a photovoltaic concentrator system with discrete mirror and continuos profile for two different absorber shapes

    H, Saiful; Rezau, K.M [University of Dhaka, Dhaka (Bangladesh)

    2000-07-01

    Profiles of parabolic concentrators of discrete mirror and continuos surface mirror have been designed for combined electrical thermal photovoltaic systems. In the design the changes of concentration ratio, effect of reflection, angle of incidence over the absorber have been taken into account for maximum energy collection. The performances of the system are studied for solar cells of modified grid finger for illuminations from 1-10 sun. The local concentration ratio (LCR) distribution over the absorbers for both the concentrator, the optical efficiency, thermal efficiency, electrical and thermal power output and overall efficiency have been evaluated for different values of beam radiation concentration ratio and focal distance. [Spanish] Se han disenado perfiles de concentradores parabolicos de espejo discreto y de superficie continua para sistemas fotovoltaicos combinados electricos y termicos. En el diseno los cambios de la proporcion de concentracion, del efecto de la reflexion, del angulo de incidencia sobre el observador se han tenido en cuenta para una maxima recoleccion de energia. Los rendimientos del sistema se han estudiado para celdas solares de parrilla modificada para iluminaciones solares de 1-10. Han sido evaluados para diferentes valores de la proporcion de la concentracion de la radiacion en el rayo y la distancia focal la proporcion de concentracion local (LCR) de la distribucion en los absorbedores, para el concentrador la eficiencia optica, la eficiencia termica, electrica, la produccion de energia termica y electrica y la eficiencia total.

  18. Magneto-optic current sensor with Faraday mirror for linear birefringence compensation

    Arroyo Breña, Javier; Rodriguez Horche, Paloma; Martín Minguez, Alfredo

    2012-01-01

    Fiber optic sensors have some advantages in subjects related with electrical current and magnetic field measurement. In spite of the optical fiber utilization advantages we have to take into account undesirable effects, which are present in real non-ideal optical fibers. In telecommunication and sensor application fields the presence of inherent and induced birefringence is crucial. The presence of birefringence may cause an undesirable change in the polarization state. In order to compensate...

  19. System for testing optical fibers

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  20. A reflectivity profilometer for the optical characterisation of graded reflectivity mirrors in the 250 nm - 1100 nm spectral region

    Colucci, Alessandro; Nichelatti, Enrico

    1998-04-01

    It's developed the prototype of an instrument that can be used for the optical characterisation of graded reflectivity mirrors at any wavelength in the spectral region from 250 nm to 1100 nm. The instrument utilises a high-pressure Xe arc lamp as light source. Light is spectrally filtered by means of a grating monochromator. The sample is illuminated with an image of the monochromator exit slit. After reflection from the sample, this image is projected onto a 1024-elements charge-coupled device linear array driven by a digital frame board and interfaced with a personal computer. It's tested the instrument accuracy by comparing measurement results with the corresponding ones obtained by means of a laser scanning technique. Measurement Rms repeatability has been estimated to be approximately of 0.8% [it

  1. OPTICAL DATA PROCESSING: Realization of associative memory with the aid of a nonlinear selective stimulated-Brillouin-scattering mirror

    Matveyev, A. Z.; Pasmanik, G. A.

    1993-05-01

    An associative memory using only optical elements has been realized experimentally. The key element of the arrangement is a stimulated-Brillouin-scattering (SBS) selector consisting of a short SBS medium at the focus of a lens. The qualitative advantage of the selector over an SBS mirror is demonstrated experimentally. The response time of the arrangement is ~ 10-8 s and is determined by the duration of the SBS. Estimates show that the SBS selector is capable in practice of distinguishing a signal against background noise when the initial distortion level of the object beam is 10-3. Reliable operation of the SBS selector has been demonstrated for radiative and energy loads reaching 2 GW/cm2 and 2 J, respectively.

  2. Ring mirror fiber laser gyroscope

    Shalaby, Mohamed Y.; Khalil, Kamal; Afifi, Abdelrahman E.; Khalil, Diaa

    2017-02-01

    In this work we present a new architecture for a laser gyroscope based on the use of a Sagnac fiber loop mirror. The proposed system has the unique property that its scale factor can be increased by increasing the gain of the optical amplifier used in the system as demonstrated experimentally using standard single mode fiber and explained physically by the system operation. The proposed gyroscope system is also capable of identifying the direction of rotation. This new structure opens the door for a new category of low cost optical gyroscopes.

  3. Integrated cooling system for the Mirror Fusion Test Facility

    Johnson, B.; Chang, Y.

    1979-01-01

    The MFTF components that require water cooling include the neutral beam dumps, ion dumps, plasma dumps, baffle plates, magnet liners, gas boxes, streaming guns, and the neutral beam injectors. A total heat load of nearly 500 MW for 0.5 s dissipates over 4-min intervals. A steady-flow, closed-loop system is utilized. The design of the cooling system assumes that all components require cooling simultaneously. The cooling system contains process instrumentation for loop control. Alarms and safety interlocks are incorporated for the safe operation of the system

  4. Digital optical correlator x-ray telescope alignment monitoring system

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  5. Mirror fusion test facility magnet system. Final design report

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-01-01

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy

  6. From music making to speaking: Engaging the mirror neuron system in autism

    Wan, Catherine Y.; Demaine, Krystal; Zipse, Lauryn; Norton, Andrea; Schlaug, Gottfried

    2010-01-01

    Individuals with autism show impairments in emotional tuning, social interactions and communication. These are functions that have been attributed to the putative human mirror neuron system (MNS), which contains neurons that respond to the actions of self and others. It has been proposed that a dysfunction of that system underlies some of the characteristics of autism. Here, we review behavioral and imaging studies that implicate the MNS (or a brain network with similar functions) in sensory-...

  7. Holographic optical security systems

    Fagan, William F.

    1990-06-01

    One of the most successful applications of Holography,in recent years,has been its use as an optical security technique.Indeed the general public's awareness of holograms has been greatly enhanced by the incorporation of holographic elements into the VISA and MASTERCHARGE credit cards.Optical techniques related to Holography,are also being used to protect the currencies of several countries against the counterfeiter. The mass production of high quality holographic images is by no means a trivial task as a considerable degree of expertise is required together with an optical laboratory and embossing machinery.This paper will present an overview of the principal holographic and related optical techniques used for security purposes.Worldwide, over thirty companies are involved in the production of security elements utilising holographic and related optical technologies.Counterfeiting of many products is a major criminal activity with severe consequences not only for the manufacturer but for the public in general as defective automobile parts,aircraft components,and pharmaceutical products, to cite only a few of the more prominent examples,have at one time or another been illegally copied.

  8. Mirror distortion of the levels of a compound system

    Khvalchenko, I.I.

    1995-01-01

    The problem of the action of an arbitrary perturbation on a system of two identical atoms in the radiation field is analyzed. For simplicity, only two-level atoms are considered, the field is assumed to be classical, and the spontaneous transitions are ignored. The polarizations are calculated for the open-quotes two atoms + fieldclose quotes and open-quotes two atoms + field + particleclose quotes systems. A comparison of the obtained relationships allows us to clarify the character of the level distortions caused by the external perturbation in the compound system. 10 refs

  9. Topological mirror superconductivity.

    Zhang, Fan; Kane, C L; Mele, E J

    2013-08-02

    We demonstrate the existence of topological superconductors (SCs) protected by mirror and time-reversal symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2(D-1) independent integer topological invariants, which take the form of mirror Berry phases. These invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The parity of total mirror Berry phase is the Z(2) index of a class DIII SC, implying that a DIII topological SC with a mirror line must also be a topological mirror SC but not vice versa and that a DIII SC with a mirror plane is always time-reversal trivial but can be mirror topological. We introduce representative models and suggest experimental signatures in feasible systems. Advances in quantum computing, the case for nodal SCs, the case for class D, and topological SCs protected by rotational symmetries are pointed out.

  10. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror.

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-06-10

    Internal stray radiation is a key factor that influences infrared imaging systems, and its suppression level is an important criterion to evaluate system performance, especially for cryogenic infrared imaging systems, which are highly sensitive to thermal sources. In order to achieve accurate measurement for internal stray radiation, an approach is proposed, which is based on radiometric calibration using a spherical mirror. First of all, the theory of spherical mirror design is introduced. Then, the calibration formula considering the integration time is presented. Following this, the details regarding the measurement method are presented. By placing a spherical mirror in front of the infrared detector, the influence of internal factors of the detector on system output can be obtained. According to the calibration results of the infrared imaging system, the output caused by internal stray radiation can be acquired. Finally, several experiments are performed in a chamber with controllable inside temperatures to validate the theory proposed in this paper. Experimental results show that the measurement results are in good accordance with the theoretical analysis, and demonstrate that the proposed theories are valid and can be employed in practical applications. The proposed method can achieve accurate measurement for internal stray radiation at arbitrary integration time and ambient temperatures. The measurement result can be used to evaluate whether the suppression level meets the system requirement.

  11. Mirror monochromator

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States); Shadman, Khashayar [Electron Optica, Inc., Palo Alto, CA (United States)

    2014-12-02

    energy of 80-120 keV). Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key monochromator components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded into a model describing the key electron-optical parameters of the complete monochromator. The simulations reveal that the mirror monochromator can reduce the energy spread of a Schottky electron source, an established electron emitter used widely in EMs, to 10 meV for practical beam current values and that further reduction of the energy spread down to 3 meV is possible for low current applications with a Cold Field Emitter (an electron source with 10x the brightness of a Schottky source). MirrorChroms can be designed and built to attach to different types of TEMs and SEMs, thus making them suitable for enhancing the study of the structure, composition, and bonding states of new materials at the nanoscale to advance material science research in the field of nanotechnology as well as biomedical research.

  12. Nonimaging optical illumination system

    Winston, R.; Ries, H.

    2000-02-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source, a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t) = k(t) + Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  13. Analysis technique for controlling system wavefront error with active/adaptive optics

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  14. The W. M. Keck Telescope segmented primary mirror active control system software

    Cohen, R.W. (Lawrence Berkeley Lab., CA (USA) California Association for Research in Astronomy, Kamuela, HI (USA)); Andreae, S.; Biocca, A.K.; Jared, R.C.; Llacer, J.; Meng, J.D.; Minor, R.H.; Orayani, M. (Lawrence Berkeley Lab., CA (USA))

    1989-07-01

    The active control system (ACS) uses both parallel and distributed processing techniques to measure and control the positions of the 36 segments of the Keck Observatory Telescope primary mirror. The main function of the software is to maintain the mirror figure; to accomplish this goal the software uses a predictive, feed-forward'' mechanism which effectively increases the system bandwidth for the most important sources of perturbation. The software executes on a set of twelve 68000-family processors under the supervision of a VAX workstation. An array of nine parallel I/O processors collect and process data from 168 displacement sensors and transmit motion commands to 108 actuators. Three additional processors simultaneously compute actuator commands, monitor system performance, compute sensor control parameters and communicate with other observatory computers. The software is highly optimized for speed. 6 refs., 7 figs.

  15. Imaging and image restoration of an on-axis three-mirror Cassegrain system with wavefront coding technology.

    Guo, Xiaohu; Dong, Liquan; Zhao, Yuejin; Jia, Wei; Kong, Lingqin; Wu, Yijian; Li, Bing

    2015-04-01

    Wavefront coding (WFC) technology is adopted in the space optical system to resolve the problem of defocus caused by temperature difference or vibration of satellite motion. According to the theory of WFC, we calculate and optimize the phase mask parameter of the cubic phase mask plate, which is used in an on-axis three-mirror Cassegrain (TMC) telescope system. The simulation analysis and the experimental results indicate that the defocused modulation transfer function curves and the corresponding blurred images have a perfect consistency in the range of 10 times the depth of focus (DOF) of the original TMC system. After digital image processing by a Wiener filter, the spatial resolution of the restored images is up to 57.14 line pairs/mm. The results demonstrate that the WFC technology in the TMC system has superior performance in extending the DOF and less sensitivity to defocus, which has great value in resolving the problem of defocus in the space optical system.

  16. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  17. The fascinating early history of optics! Archaeological optics 2009: our knowledge of the early history of lenses, mirrors, and artificial eyes!

    Enoch, Jay M.

    2009-08-01

    The early history of optics and vision science (older term: physiological optics) is indeed fascinating. The earliest known true lenses have been found in "eyes" of Egyptian statues which contain superb, complex, and well-polished eye-lens units. The oldest ones known are dated circa 2575 BCE = BC, Dynasty IV, Old Kingdom. These eye-lens units induce a fascinating and powerful visual illusion, but they are just too good to have been the first lenses, or even the first lenses of this design! So saying, no earlier dateable lenses have been found in Egypt or elsewhere. Recently, at the Boston Museum of Fine Arts, the writer noted a previously undetected lens in this series (a first in the Western Hemisphere). Oddly, dateable simpler magnifying lenses and burning glasses seem to have appeared later in time (?)! Manufactured mirrors are quite a bit older, dating from circa 6000 BCE in atal Hyk, located in south-central modern-day Turkey. Using these ancient mirrors, the image quality obtained is remarkable! Recently discovered ancient artificial eyes, located, in situ, in exhumed corpses, have been dated circa 3000 BCE (one discovered in Iran) 5000 BCE (one found in Spain). On the 3000 BCE artificial eye, there are drawn light rays (the writer believes these to be the oldest known depiction of light rays!) spreading out from (or passing into) the iris/ pupil border! Added interesting aspects associated with the early development of light-rays are considered. Thus, early optics can be readily traced back to the Neolithic era (the new stone age), and in some cases before that time period. We have deep roots indeed!

  18. Caycedo's Sophrology and Lozanov's Suggestology: Mirror Images of a System.

    Bancroft, W. Jane

    In the 1960's, two medical doctors, Georgi Lozanov and Alfonso Caycedo, discovered independently that certain yogic techniques of physical and mental relaxation could be used to produce not only analgesia but also improved memory and concentration. Systems originally used in medicine and psycho-therapy were applied to education, in particular to…

  19. An augmented reality home-training system based on the mirror training and imagery approach.

    Trojan, Jörg; Diers, Martin; Fuchs, Xaver; Bach, Felix; Bekrater-Bodmann, Robin; Foell, Jens; Kamping, Sandra; Rance, Mariela; Maaß, Heiko; Flor, Herta

    2014-09-01

    Mirror training and movement imagery have been demonstrated to be effective in treating several clinical conditions, such as phantom limb pain, stroke-induced hemiparesis, and complex regional pain syndrome. This article presents an augmented reality home-training system based on the mirror and imagery treatment approaches for hand training. A head-mounted display equipped with cameras captures one hand held in front of the body, mirrors this hand, and displays it in real time in a set of four different training tasks: (1) flexing fingers in a predefined sequence, (2) moving the hand into a posture fitting into a silhouette template, (3) driving a "Snake" video game with the index finger, and (4) grasping and moving a virtual ball. The system records task performance and transfers these data to a central server via the Internet, allowing monitoring of training progress. We evaluated the system by having 7 healthy participants train with it over the course of ten sessions of 15-min duration. No technical problems emerged during this time. Performance indicators showed that the system achieves a good balance between relatively easy and more challenging tasks and that participants improved significantly over the training sessions. This suggests that the system is well suited to maintain motivation in patients, especially when it is used for a prolonged period of time.

  20. A new sensitive system for measurement of thermally and optically stimulated luminescence

    Markey, B.G.; Bøtter-Jensen, L.; Poolton, N.R.J.

    1996-01-01

    optics of the system with a combination of ellipsoidal mirrors and light guides, which also serve to make the system more flexible in choice of excitation source when OSL measurements are required. A variety of new light sources might be employed, adapted to allow the most efficient wavelengths...

  1. Detection of Ammonia-Oxidizing Bacteria (AOB) Using a Porous Silicon Optical Biosensor Based on a Multilayered Double Bragg Mirror Structure.

    Zhang, Hongyan; Lv, Jie; Jia, Zhenhong

    2018-01-01

    We successfully demonstrate a porous silicon (PS) double Bragg mirror by electrochemical etching at room temperature as a deoxyribonucleic acid (DNA) label-free biosensor for detecting ammonia-oxidizing bacteria (AOB). Compared to various other one-dimension photonic crystal configurations of PS, the double Bragg mirror structure is quite easy to prepare and exhibits interesting optical properties. The width of high reflectivity stop band of the PS double Bragg mirror is about 761 nm with a sharp and deep resonance peak at 1328 nm in the reflectance spectrum, which gives a high sensitivity and distinguishability for sensing performance. The detection sensitivity of such a double Bragg mirror structure is illustrated through the investigation of AOB DNA hybridization in the PS pores. The redshifts of the reflectance spectra show a good linear relationship with both complete complementary and partial complementary DNA. The lowest detection limit for complete complementary DNA is 27.1 nM and the detection limit of the biosensor for partial complementary DNA is 35.0 nM, which provides the feasibility and effectiveness for the detection of AOB in a real environment. The PS double Bragg mirror structure is attractive for widespread biosensing applications and provides great potential for the development of optical applications.

  2. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot. PMID:26998923

  3. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

  4. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

    Farhan Dawood

    Full Text Available Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

  5. The Advanced Gamma-ray Imaging System (AGIS): Telescope Optical System Designs

    Vassiliev, Vladimir; Buckley, Jim; Falcone, Abe; Fegan, Steven; Finley, John; Gaurino, Victor; Hanna, David; Kaaret, Philip; Konopelko, Alex; Krawczynski, Henric; Romani, Roger; Weekes, Trevor

    2008-04-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory based on an array of ˜100 imaging atmospheric Cherenkov telescopes (IACTs) with a sensitivity to gamma-rays in the energy range 40 GeV-100 TeV. The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of the IACTs. In this submission we focus on the optical system (OS) of the AGIS telescopes and consider options which include traditional Davies-Cotton and the other prime- focus telescope designs, as well as a novel two-mirror aplanatic OS originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes such as cold and hot glass slumping, cured CFRP, and electroforming provide new opportunities for cost effective solutions for the design of the OS. We evaluate the capabilities of these mirror fabrication methods for the AGIS project.

  6. Adaptive Optical System for Retina Imaging Approaches Clinic Applications

    Ling, N.; Zhang, Y.; Rao, X.; Wang, C.; Hu, Y.; Jiang, W.; Jiang, C.

    We presented "A small adaptive optical system on table for human retinal imaging" at the 3rd Workshop on Adaptive Optics for Industry and Medicine. In this system, a 19 element small deformable mirror was used as wavefront correction element. High resolution images of photo receptors and capillaries of human retina were obtained. In recent two years, at the base of this system a new adaptive optical system for human retina imaging has been developed. The wavefront correction element is a newly developed 37 element deformable mirror. Some modifications have been adopted for easy operation. Experiments for different imaging wavelengths and axial positions were conducted. Mosaic pictures of photoreceptors and capillaries were obtained. 100 normal and abnormal eyes of different ages have been inspected.The first report in the world concerning the most detailed capillary distribution images cover ±3° by ± 3° field around the fovea has been demonstrated. Some preliminary very early diagnosis experiment has been tried in laboratory. This system is being planned to move to the hospital for clinic experiments.

  7. Nonimaging optical illumination system

    Winston, Roland; Ries, Harald

    1996-01-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  8. Modeling, performance analysis and economic feasibility of a mirror-augmented photovoltaic system

    Fortunato, B.; Torresi, M.; Deramo, A.

    2014-01-01

    Highlights: • Mathematical modeling for the energy yield in Mirror Augmented PV systems. • Simplified analytical expression for skyview factor applicable to MAPV. • Economic appraisal of MAPV systems: NPV, DPBP, IRR and LCC. - Abstract: In the last years, solar photovoltaic (PV) systems have had great impetus with research and demonstration projects, both in Italy and other European countries. The main problems with solar PV are the cost of solar electricity, which is still higher compared with other renewables (such as wind or biomass), due to the cost of semi-conductors, and the low conversion efficiency. However, PV panel prices are rapidly decreasing benefiting from favorable economies of scale. For instance, according to the Energy Information Administration (EIA) the US average levelized costs for plants entering service in the 2018 should be 144.3$/MW h for solar PV, whereas 111.0$/MW h for biomass and 86.6$/MW h for wind (Levelized Cost of New Generation Resources in the Annual Energy Outlook, 2013). In order to increase the electric yield of PV modules (which can be even doubled with respect to constant tilt configurations), without significantly increasing the system costs, it was decided to consider the addition of inclined mirrors at both sides of the PV modules, so as to deflect more solar rays towards them, as in Mirror-Augmented Photovoltaic (MAPV) systems. The system preserves its constructive simplicity with commercial flat PV modules even though dual axis tracker must be implemented, since MAPV systems harness mainly the direct radiation. The performance analysis of MAPV systems starts from the calculation of the global irradiation on the surface of the PV module which is a sum of the direct sunlight on it and the irradiation reflected by the mirrors. A mathematical model of a MAPV system is presented, which takes into account not only the increase of direct (or beam) radiation, due to the mirrors, but also the reduction of both the diffuse

  9. Design of mirrors and apodization functions in phase-induced amplitude apodization (PIAA) systems

    Cady, E.

    2012-01-01

    Phase-induced amplitude apodization (PIAA) coronagraphs are a promising technology for imaging exoplanets, with the potential to detect Earth-like planets around Sun-like stars. A PIAA system nominally consists of a pair of mirrors which reshape incident light without attenuation, coupled with one or more apodizers to mitigate diffraction effects or provide additional beam-shaping to produce a desired output profile. We present a set of equations that allow apodizers to be chosen for any give...

  10. Autism and the mirror neuron system: Insights from learning and teaching

    Vivanti, G; Rogers, SJ

    2014-01-01

    Individuals with autism have difficulties in social learning domains which typically involve mirror neuron system (MNS) activation. However, the precise role of the MNS in the development of autism and its relevance to treatment remain unclear. In this paper, we argue that three distinct aspects of social learning are critical for advancing knowledge in this area: (i) the mechanisms that allow for the implicit mapping of and learning from others' behaviour, (ii) the motivation to attend to an...

  11. System model for analysis of the mirror fusion-fission reactor

    Bender, D.J.; Carlson, G.A.

    1977-01-01

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters

  12. Optical and electrical properties of Te doped AlGaAsSb/AlAsSb Bragg mirrors on InP

    Toginho Filho, D. O.; Dias, I. F. L.; Duarte, J. L.; Laureto, E.

    2006-01-01

    We present a comparative study carried out on the optical and electrical characteristics of undoped and Te doped AlGaAsSb/AlAsSb Bragg mirrors with 6.5 pairs of layers and bulk undoped and Te doped AlGaAsSb epilayers alloys lattice matched on InP, grown by molecular beam epitaxy, using SIMS, photoluminescence, reflectivity and IxV techniques. The temperature dependence of PL transitions observed in the Bragg mirrors are similar to that observed in bulk samples and associated with the donor an...

  13. Optical system for UV-laser technological equipment

    Fedosov, Yuri V.; Romanova, Galina E.; Afanasev, Maxim Ya.

    2017-09-01

    Recently there has been an intensive development of intelligent industrial equipment that is highly automated and can be rapidly adjusted for certain details. This equipment can be robotics systems, automatic wrappers and markers, CNC machines and 3D printers. The work equipment considered is the system for selective curing of photopolymers using a UV-laser and UV-radiation in such equipment that leads to additional technical difficulties. In many cases for transporting the radiation from the laser to the point processed, a multi-mirror system is used: however, such systems are usually difficult to adjust. Additionally, such multi-mirror systems are usually used as a part of the equipment for laser cutting of metals using high-power IR-lasers. For the UV-lasers, using many mirrors leads to crucial radiation losses because of many reflections. Therefore, during the development of the optical system for technological equipment using UV-laser we need to solve two main problems: to transfer the radiation for the working point with minimum losses and to include the system for controlling/handling the radiation spot position. We introduce a system for working with UV-lasers with 450mW of power and a wavelength of 0.45 μm based on a fiber system. In our modelling and design, we achieve spot sizes of about 300 μm, and the designed optical and mechanical systems (prototypes) were manufactured and assembled. In this paper, we present the layout of the technological unit, the results of the theoretical modelling of some parts of the system and some experimental results.

  14. A new approach for the verification of optical systems

    Siddique, Umair; Aravantinos, Vincent; Tahar, Sofiène

    2013-09-01

    Optical systems are increasingly used in microsystems, telecommunication, aerospace and laser industry. Due to the complexity and sensitivity of optical systems, their verification poses many challenges to engineers. Tra­ditionally, the analysis of such systems has been carried out by paper-and-pencil based proofs and numerical computations. However, these techniques cannot provide perfectly accurate results due to the risk of human error and inherent approximations of numerical algorithms. In order to overcome these limitations, we propose to use theorem proving (i.e., a computer-based technique that allows to express mathematical expressions and reason about them by taking into account all the details of mathematical reasoning) as an alternative to computational and numerical approaches to improve optical system analysis in a comprehensive framework. In particular, this paper provides a higher-order logic (a language used to express mathematical theories) formalization of ray optics in the HOL Light theorem prover. Based on the multivariate analysis library of HOL Light, we formalize the notion of light ray and optical system (by defining medium interfaces, mirrors, lenses, etc.), i.e., we express these notions mathematically in the software. This allows us to derive general theorems about the behavior of light in such optical systems. In order to demonstrate the practical effectiveness, we present the stability analysis of a Fabry-Perot resonator.

  15. A view in the mirror - Or through the looking glass. [history of development of optical telescopes

    Meinel, A. B.; Meinel, M. P.

    1986-01-01

    The development of optical telescopes from the age of astrology to those of today and the future is discussed. The rationales for changes in the design of telescopes during this time are explored. The cost drivers, and how to reduce them, are also discussed.

  16. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurements

    Moseev, D.; Meo, Fernando; Korsholm, Søren Bang

    2012-01-01

    require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic...

  17. Olfactory bulb dysgenesis, mirror neuron system dysfunction, and autonomic dysregulation as the neural basis for autism.

    Brang, David; Ramachandran, V S

    2010-05-01

    Autism is a disorder characterized by social withdrawal, impoverished language and empathy, and a profound inability to adopt another's viewpoint - a failure to construct a "theory of mind" for interpreting another person's thoughts and intentions. We previously showed that these symptoms might be explained, in part, by a paucity of mirror neurons. Prompted by an MRI report of an individual with autism, we now suggest that there may be, in addition, a congenital aplasia/dysplasia of the olfactory bulbs with consequent reduction of vasopressin and oxytocin receptor binding. There may also be sub-clinical temporal lobe epilepsy affecting the recently discovered third visual system that is rich in "empathy" related mirror neurons (MNS) and projects (via the TOP junction - just below the inferior parietal lobule) to limbic structures that regulate autonomic outflow. This causes deranged autonomic feedback, resulting in additional deficiencies in MNS with loss of emotional empathy and introspection.

  18. EEG study of the mirror neuron system in children with high functioning autism.

    Raymaekers, Ruth; Wiersema, Jan Roelf; Roeyers, Herbert

    2009-12-22

    Individuals with Autism Spectrum Disorder (ASD) are characterised by an impaired imitation, thought to be critical for early affective, social and communicative development. One neurological system proposed to underlie this function is the mirror neuron system (MNS) and previous research has suggested a dysfunctional MNS in ASD. The EEG mu frequency, more precisely the reduction of the mu power, is considered to be an index for mirror neuron functioning. In this work, EEG registrations are used to evaluate the mirror neuron functioning of twenty children with high functioning autism (HFA) between 8 and 13 years. Their mu suppression to self-executed and observed movement is compared to typically developing peers and related to age, intelligence and symptom severity. Both groups show significant mu suppression to both self and observed hand movements. No group differences are found in either condition. These results do not support the hypothesis that HFA is associated with a dysfunctional MNS. The discrepancy with previous research is discussed in light of the heterogeneity of the ASD population.

  19. Optical detection in microfluidic systems

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2009-01-01

    Optical detection schemes continue to be favoured for measurements in microfluidic systems. A selection of the latest progress mainly within the last two years is critically reviewed. Emphasis is on integrated solutions, such as planar waveguides, coupling schemes to the outside world, evanescent...... to ease commercialisation of the devices. This work will hopefully result in more commercial products that benefit from integrated optics, because the impact on commercial devices so far has been modest....

  20. Milestone Report for High NA Optics Development International Sematech Project L1TH 112 Milestone4a: Specification Package for the Polished Mirror Substrate M1

    Taylor, J.S.; Hale, L.

    1999-01-01

    The key task in initiating the fabrication of mirror substrates for the new High NA Camera is in preparing the specification package that details the substrate geometry and the specifications for the optical surface. This specification package has been completed for substrate M1, and the vendor has begun optical fabrication. In addition, mounting hardware has been designed and fabricated, and substrates have been bonded to the kinematic mounts. The design of the secondary substrate, M2, is underway, but will depend upon details of the PO Box actuation system and space constraints. Sufficient details of the M2 design to enable the vendor to procure material will be determined during October, while the final details of the mounting surfaces will be completed prior to the end of Q4 1999. The geometry of the Ml substrate is compatible with our planned approach for fixturing the optic within the PO Box and within metrology tools. The completion of this specification package required detailed consideration of: the mounting approach within the PO Box, degrees of actuation required for PO Box alignment, space constraints imposed by the vendor's metrology, requirements for LLNL metrology, and datum definitions needed for mechanical assembly of the PO Box. In addition, each of the degrees of freedom of the substrate has been properly constrained, and shown to be sufficiently insensitive to disturbance forces for minimizing deformation. An approach to fixturing has been adopted that extends beyond the approach taken for the Engineering Test Stand (ETS). For the ETS, each substrate, including spares, has dedicated mounting hardware that is used exclusively for each element. In exchange for a reduced risk of mounting-induced deformation, this incurred substantial expense and precluded optics from using interchangeable tooling. For the current High NA camera, we have adopted an approach that employs interchangeable mounting hardware that can be used for any of the substrates

  1. Control code for laboratory adaptive optics teaching system

    Jin, Moonseob; Luder, Ryan; Sanchez, Lucas; Hart, Michael

    2017-09-01

    By sensing and compensating wavefront aberration, adaptive optics (AO) systems have proven themselves crucial in large astronomical telescopes, retinal imaging, and holographic coherent imaging. Commercial AO systems for laboratory use are now available in the market. One such is the ThorLabs AO kit built around a Boston Micromachines deformable mirror. However, there are limitations in applying these systems to research and pedagogical projects since the software is written with limited flexibility. In this paper, we describe a MATLAB-based software suite to interface with the ThorLabs AO kit by using the MATLAB Engine API and Visual Studio. The software is designed to offer complete access to the wavefront sensor data, through the various levels of processing, to the command signals to the deformable mirror and fast steering mirror. In this way, through a MATLAB GUI, an operator can experiment with every aspect of the AO system's functioning. This is particularly valuable for tests of new control algorithms as well as to support student engagement in an academic environment. We plan to make the code freely available to the community.

  2. Fiber-optic communication systems

    Agrawal, Govind P

    2010-01-01

    This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All othe

  3. Mirror power reactor magnet coil system: a technically and economically feasible design

    Peterson, M.A.

    1977-01-01

    The design and preliminary engineering analysis of a ''Yin Yang'' coil system utilizing several original design concepts to achieve technical and economic feasibility will be presented. The design analysis is begun with a general description of the constraints and prerequisites which define the problem of designing a satisfactory coil system for a mirror power reactor. This description includes a discussion of the coil conductor geometry required by plasma physics considerations, and also a description of the magnitude and direction of the magnetic force system distributed over the conductor geometry. In addition, the important design constraints which all mirror coil system designs must satisfy if they are to successfully interface with the other reactor components are reviewed. After considering the basic constraints that Yin Yong coil systems must be developed around, a survey of the various design concepts that were developed and explored in search of a satisfactory coil system design is discussed. From this extensive preliminary investigation of potential coil system configurations, a coil system design was developed which appears to offer by far the best combination of technical and economic feasibility of any other coil system design developed thus far

  4. Rise to SUMMIT: the Sydney University Multiple-Mirror Telescope

    Moore, Anna M.; Davis, John

    2000-07-01

    The Sydney University Multiple Mirror Telescope (SUMMIT) is a medium-sized telescope designed specifically for high resolution stellar spectroscopy. Throughout the design emphasis has been placed on high efficiency at low cost. The telescope consists of four 0.46 m diameter mirrors mounted on a single welded steel frame. Specially designed mirror cells support and point each mirror, allowing accurate positioning of the images on optical fibers located at the foci of the mirrors. Four fibers convey the light to the future location of a high resolution spectrograph away from the telescope in a stable environment. An overview of the commissioning of the telescope is presented, including the guidance and automatic mirror alignment and focussing systems. SUMMIT is located alongside the Sydney University Stellar Interferometer at the Paul Wild Observatory, near Narrabri, Northern New South Wales.

  5. OPTICAL COMMUNICATION: Simulation of autosoliton optical pulses in high-speed fibreoptic communication systems

    Latkin, A. I.

    2005-03-01

    The propagation of a pulse in a fibreoptic communication link with periodically included regenerators — nonlinear optical loop mirrors, is studied. The autosoliton propagation regime of the optical pulse is revealed. It is shown that the inclusion of a ring mirror to the communication link leads to a substantial increase in the transmission distance of the pulse at a small negative average dispersion in the link.

  6. Multilayer active shell mirrors for space telescopes

    Steeves, John; Jackson, Kathryn; Pellegrino, Sergio; Redding, David; Wallace, J. Kent; Bradford, Samuel Case; Barbee, Troy

    2016-07-01

    A novel active mirror technology based on carbon fiber reinforced polymer (CFRP) substrates and replication techniques has been developed. Multiple additional layers are implemented into the design serving various functions. Nanolaminate metal films are used to provide a high quality reflective front surface. A backing layer of thin active material is implemented to provide the surface-parallel actuation scheme. Printed electronics are used to create a custom electrode pattern and flexible routing layer. Mirrors of this design are thin (traditional optics. Such mirrors could be used as lightweight primaries for small CubeSat-based telescopes or as meter-class segments for future large aperture observatories. Multiple mirrors can be produced under identical conditions enabling a substantial reduction in manufacturing cost and complexity. An overview of the mirror design and manufacturing processes is presented. Predictions on the actuation performance have been made through finite element simulations demonstrating correctabilities on the order of 250-300× for astigmatic modes with only 41 independent actuators. A description of the custom metrology system used to characterize the active mirrors is also presented. The system is based on a Reverse Hartmann test and can accommodate extremely large deviations in mirror figure (> 100 μm PV) down to sub-micron precision. The system has been validated against several traditional techniques including photogrammetry and interferometry. The mirror performance has been characterized using this system, as well as closed-loop figure correction experiments on 150 mm dia. prototypes. The mirrors have demonstrated post-correction figure accuracies of 200 nm RMS (two dead actuators limiting performance).

  7. PhC-4 new high-speed camera with mirror scanning

    Daragan, A.O.; Belov, B.G.

    1979-01-01

    The description of the optical system and the construction of the high-speed PhC-4 photographic camera with mirror scanning of the continuously operating type is given. The optical system of the camera is based on the foursided rotating mirror, two optical inlets and two working sectors. The PhC-4 camera provides the framing rate up to 600 thousand frames per second. (author)

  8. In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K-edge region.

    Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Mase, Kazuhiko; Amemiya, Kenta

    2015-11-01

    Carbon-free chromium-coated optics are ideal in the carbon K-edge region (280-330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560-660 eV) are significantly suppressed by chromium L-edge and oxygen K-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10(-2) Pa for 1 h under irradiation of non-monochromated synchrotron radiation. The pressure in the chamber recovered to the order of 10(-7) Pa within a few hours. The reflectivity of the chromium-coated mirror of the second-order harmonics in the carbon K-edge region (560-660 eV) was found to be a factor of 0.1-0.48 smaller than that of the gold-coated mirror.

  9. Circular waveguide systems for electron-cyclotron-resonant heating of the tandem mirror experiment-upgrade

    Felker, B.; Calderon, M.O.; Chargin, A.K.

    1983-01-01

    Extensive use of electron cyclotron resonant heating (ECRH) in the Tandem Mirror Experiment-Upgrade (TMX-U) requires continuous development of components to improve efficiency, increase reliability, and deliver power to new locations with respect to the plasma. We have used rectangular waveguide components on the experiment and have developed, tested, and installed circular waveguide components. We replaced the rectangular with the circular components because of the greater transmission efficiency and power-handling capability of the circular ones. Design, fabrication, and testing of all components are complete for all systems. In this paper we describe the design criteria for the system

  10. Tandem-Mirror Experiment-Upgrade neutral pressure measurement diagnostic systems

    Pickles, W.L.; Allen, S.L.; Hill, D.N.; Hunt, A.L.; Simonen, T.C.

    1985-01-01

    The Tandem-Mirror Experiment-Upgrade (TMX-U) has a large and complex system of Bayard--Alpert, magnetron, and Penning gauges, in addition to mass spectrometers (RGA), all of which measure neutral pressures in the many internal regions of TMX-U. These pressure measurements are used as part of the confinement physics data base as well as for management of the TMX-U vacuum system. Dynamic pressures are modeled by a coupled-volumes simulation code, which includes wall reflux, getter pumping, and plasma pumping

  11. A Control and Detecting System of Micro-Near-Infrared Spectrometer Based on a MOEMS Scanning Grating Mirror

    Haitao Liu

    2018-03-01

    Full Text Available Based on the scanning grating mirror we developed, this paper presents a method of the precise control of a scanning grating mirror and of high-speed spectrum data detection. In addition, the system circuit of the scanning grating mirror control and spectrum signal detecting is designed and manufactured in this paper. The mirror control system includes a drive generator module, an amplitude detection module, a feedback control module, and a variable gain amplification (VGA module; the detecting system includes a field programmable gate array (FPGA main control module, a synchronous trigger module, an analog-digital conversion (ADC module, and a universal serial bus (USB interface module. The final results of the experiment show that the control system has successfully realized the precision control of the swing of the scanning grating mirror and that the detecting system has successfully realized the high-speed acquisition and transmission of the spectral signal and the angle signals. The spectrum has been reconstructed according to the mathematical relationship between the wavelength λ and the angle β of the mirror. The resolution of the spectrometer reaches 10 nm in the wavelength range of 800–1800 nm, the signal-to-noise ratio (SNR of the spectrometer is 4562 at full scale, the spectrum data drift is 0.9% in 24 h, and the precision of the closed loop control is 0.06%.

  12. Laboratory testing & measurement on optical imaging systems

    Theron, B

    2013-04-01

    Full Text Available on Optical Imaging Systems Bertus Theron 27 April 2013 presented at SIECPC 2013, Riyadh, Saudi Arabia Overview of Workshop Part 1. Introduction & Context  Some history of Arabic Optics  Context: Global vs Local optical testing... of Arabic Optics 1 See [4]  Arabic records of study of geometrical optics  Traced to Hellenistic (Greek) optics  Translated to Arabic  9th century  Arabic contribution to geometric optics  Not just translation to Arabic  Innovative research...

  13. O-6 Optical Property Degradation of the Hubble Space Telescope's Wide Field Camera-2 Pick Off Mirror

    McNamara, Karen M.; Hughes, D. W.; Lauer, H. V.; Burkett, P. J.; Reed, B. B.

    2011-01-01

    Degradation in the performance of optical components can be greatly affected by exposure to the space environment. Many factors can contribute to such degradation including surface contaminants; outgassing; vacuum, UV, and atomic oxygen exposure; temperature cycling; or combinations of parameters. In-situ observations give important clues to degradation processes, but there are relatively few opportunities to correlate those observations with post-flight ground analyses. The return of instruments from the Hubble Space Telescope (HST) after its final servicing mission in May 2009 provided such an opportunity. Among the instruments returned from HST was the Wide-Field Planetary Camera-2 (WFPC-2), which had been exposed to the space environment for 16 years. This work focuses on the identifying the sources of degradation in the performance of the Pick-off mirror (POM) from WFPC-2. Techniques including surface reflectivity measurements, spectroscopic ellipsometry, FTIR (and ATR-FTIR) analyses, SEM/EDS, X-ray photoelectron spectroscopy (XPS) with and without ion milling, and wet and dry physical surface sampling were performed. Destructive and contact analyses took place only after completion of the non-destructive measurements. Spectroscopic ellipsometry was then repeated to determine the extent of contaminant removal by the destructive techniques, providing insight into the nature and extent of polymerization of the contaminant layer.

  14. Engineering design and analysis of an ITER-like first mirror test assembly on JET

    Vizvary, Z.; Bourdel, B.; Garcia-Carrasco, A.

    2017-01-01

    is underway on JET, under contract to ITER, with primary objective to test if, under realistic plasma and wall material conditions and with ITER-like first mirror aperture geometry, deposits do grow on first mirrors. This paper describes the engineering design and analysis of this mirror test assembly......The ITER first mirrors are the components of optical diagnostic systems closest to the plasma. Deposition may build up on the surfaces of the mirror affecting their ability to fulfil their function. However, physics modelling of this layer growth is fraught with uncertainty. A new experiment...

  15. Plasma impact on diagnostic mirrors in JET

    A. Garcia-Carrasco

    2017-08-01

    Full Text Available Metallic mirrors will be essential components of all optical systems for plasma diagnosis in ITER. This contribution provides a comprehensive account on plasma impact on diagnostic mirrors in JET with the ITER-Like Wall. Specimens from the First Mirror Test and the lithium-beam diagnostic have been studied by spectrophotometry, ion beam analysis and electron microscopy. Test mirrors made of molybdenum were retrieved from the main chamber and the divertor after exposure to the 2013–2014 experimental campaign. In the main chamber, only mirrors located at the entrance of the carrier lost reflectivity (Be deposition, while those located deeper in the carrier were only slightly affected. The performance of mirrors in the JET divertor was strongly degraded by deposition of beryllium, tungsten and other species. Mirrors from the lithium-beam diagnostic have been studied for the first time. Gold coatings were severely damaged by intense arcing. As a consequence, material mixing of the gold layer with the stainless steel substrate occurred. Total reflectivity dropped from over 90% to less than 60%, i.e. to the level typical for stainless steel.

  16. Laser cleaning of ITER's diagnostic mirrors

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.

  17. Effects of irradiation conditions and environment on the reflectivity of different steel mirrors for ITER diagnostics systems

    Hernandez, Teresa; Martin, Piedad; Fernandez, Pilar; Hodgson, Eric R.

    2009-01-01

    In this work possible degradation of the reflectivity for mirrors made from various steels subjected to ionizing radiation, at moderate temperature and in different environments (vacuum, air, or nitrogen) up to a total dose of 9 MGy, has been examined. Mirrors were prepared from conventional austenitic stainless steel (316L) and also reduced activation ferritic/martensitic (RAFM) steels (Eurofer, ODS-Eurofer, F82H), and the reflectivity studied from ultraviolet to near infrared, before and after different treatments. Under all conditions the austenitic steel mirrors only degrade slightly (<10%), however for the reduced activation steels important reflectivity degradation for wavelengths below 1000 nm are observed for the different conditions. Surface morphology and microstructure has been also investigated using scanning electron microscopy (SEM). The production of near surface nitrides is considered to be the possible cause of the optical degradation.

  18. Proposed method of producing large optical mirrors Single-point diamond crushing followed by polishing with a small-area tool

    Wright, G.; Bryan, J. B.

    1986-01-01

    Faster production of large optical mirrors may result from combining single-point diamond crushing of the glass with polishing using a small area tool to smooth the surface and remove the damaged layer. Diamond crushing allows a surface contour accurate to 0.5 microns to be generated, and the small area computer-controlled polishing tool allows the surface roughness to be removed without destroying the initial contour. Final contours with an accuracy of 0.04 microns have been achieved.

  19. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.

    Spiga, D

    2018-01-01

    X-ray mirrors with high focusing performances are commonly used in different sectors of science, such as X-ray astronomy, medical imaging and synchrotron/free-electron laser beamlines. While deformations of the mirror profile may cause degradation of the focus sharpness, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators. The resulting profile can be characterized with suitable metrology tools and correlated with the expected optical quality via a wavefront propagation code or, sometimes, predicted using geometric optics. In the latter case and for the special class of profile deformations with monotonically increasing derivative, i.e. concave upwards, the point spread function (PSF) can even be predicted analytically. Moreover, under these assumptions, the relation can also be reversed: from the desired PSF the required profile deformation can be computed analytically, avoiding the use of trial-and-error search codes. However, the computation has been so far limited to geometric optics, which entailed some limitations: for example, mirror diffraction effects and the size of the coherent X-ray source were not considered. In this paper, the beam-shaping formalism in the framework of physical optics is reviewed, in the limit of small light wavelengths and in the case of Gaussian intensity wavefronts. Some examples of shaped profiles are also shown, aiming at turning a Gaussian intensity distribution into a top-hat one, and checks of the shaping performances computing the at-wavelength PSF by means of the WISE code are made.

  20. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  1. Elevation scanning laser/multi-sensor hazard detection system controller and mirror/mast speed control components. [roving vehicle electromechanical devices

    Craig, J.; Yerazunis, S. W.

    1978-01-01

    The electro-mechanical and electronic systems involved with pointing a laser beam from a roving vehicle along a desired vector are described. A rotating 8 sided mirror, driven by a phase-locked dc motor servo system, and monitored by a precision optical shaft encoder is used. This upper assembly is then rotated about an orthogonal axis to allow scanning into all 360 deg around the vehicle. This axis is also driven by a phase locked dc motor servo-system, and monitored with an optical shaft encoder. The electronics are realized in standard TTL integrated circuits with UV-erasable proms used to store desired coordinates of laser fire. Related topics such as the interface to the existing test vehicle are discussed.

  2. Impact of large field angles on the requirements for deformable mirror in imaging satellites

    Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij

    2018-04-01

    For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.

  3. Applications of small computers for systems control on the Tandem Mirror Experiment-Upgrade

    Bork, R.G.; Kane, R.J.; Moore, T.L.

    1983-01-01

    Desktop computers operating into a CAMAC-based interface are used to control and monitor the operation of the various subsystems on the Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL). These systems include: shot sequencer/master timing, neutral beam control (four consoles), magnet power system control, ion-cyclotron resonant heating (ICRH) control, thermocouple monitoring, getter system control, gas fueling system control, and electron-cyclotron resonant heating (ECRH) monitoring. Two additional computers are used to control the TMX-U neutral beam test stand and provide computer-aided repair/test and development of CAMAC modules. These machines are usually programmed in BASIC, but some codes have been interpreted into assembly language to increase speed. Details of the computer interfaces and system complexity are described as well as the evolution of the systems to their present states

  4. Production of hot electrons in mirror systems associated with ECR heating with longitudinal input of microwaves

    Zhil'tsov, V.A.; Skovoroda, A.A.; Timofeev, A.V.; Kharitonov, K.Yu.; Shcherbakov, A.G.

    1991-01-01

    Almost all experiments on ECR plasma heating are accompanied by the formation of hot electrons (i.e., electrons with energy substantially greater than the average of the bulk population). In mirror systems these electrons may determine the basic energy content (β) of the plasma. In this paper, results are presented from experimental measurements of the hot electron population resulting from ECR heating of the plasma in OGRA-4. A theoretical model is developed which describes the hot electron dynamics and the propagation of electromagnetic oscillations in the plasma self-consistently. The results obtained with this model are in agreement with experimental data

  5. Controls for optical systems; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Breakwell, John

    1992-07-01

    The present conference discusses the control and actuator design for a precision magnetic suspension linear bearing, image-rotation in plane-mirror optical systems, a linear analysis for optomechanical systems, the phasing of a space-based segmented sub-mm wavelength telescope using focal plane measurements, and a fiber-optic-based position sensor immune to temperature variations. Also discussed are the dynamic simulation of precision optical systems, active damping with a reaction-mass actuator, the status of a wide-field integrated beam-control demonstration, an integrated multidisciplinary analysis of segmented reflector telescopes, and spatial filters for shape control.

  6. Performance evaluations of the ATST secondary mirror

    Cho, Myung K.; DeVries, Joseph; Hansen, Eric

    2007-09-01

    The Advanced Technology Solar Telescope (ATST) has a 4.24m off-axis primary mirror designed to deliver diffraction-limited images of the sun. Its baseline secondary mirror (M2) design uses a 0.65m diameter Silicon Carbide mirror mounted kinematically by a bi-pod flexure mechanism at three equally spaced locations. Unlike other common telescopes, the ATST M2 is to be exposed to a significant solar heat loading. A thermal management system will be developed to accommodate the solar loading and minimize "mirror seeing effect" by controlling the temperature difference between the M2 optical surface and the ambient air at the site. Thermo-elastic analyses for steady state thermal behaviors of the ATST secondary mirror was performed using finite element analysis by I-DEAS TM and PCFRINGE TM for the optical analysis. We examined extensive heat transfer simulation cases and their results are discussed. The goal of this study is to evaluate the optical performances of M2 using thermal models and mechanical models. Thermal responses from the models enable us to manipulate time dependent thermal loadings to synthesize the operational environment for the design and development of TMS.

  7. Fiber Optic Augmented Reality System (FOARS)

    National Aeronautics and Space Administration — Innovation: Fiber Optics Augmented Reality System. This system in form of a mobile app interacts real time with the actual FOSS(Fiber Optics Sensing System) data and...

  8. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    Ostrowski, Michael; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2016-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  9. The magnet power control system for the tandem mirror experiment-upgrade

    Bell, H.H.

    1983-01-01

    This paper describes the desktop computer/CAMAC based system that controls the power source for the Tandem Mirror Experiment-Upgrade (TMX-U) magnet power system. Presently it contains 42 dc rectifier power supplies connected to 24 magnet coils arranged in 17 circuits. During each shot, the system delivers 22.6 MW dc to the magnets for about 3 s. The system is presently being changed to add six power supplies, two solenoidal throttle coils, and two reverse C-coils. When complete, the delivered power will increase to 36.9 MW. The closed-loop control system usually provides current (and thus, magnetic field) that is within 1% of the requested current. Achieving this accuracy required using grounding, shielding, and isolation methods to reduce noise and related problems

  10. Review of the Tandem Mirror Experiment-Upgrade (TMX-U) machine-parameter-instrumentation system

    Kane, R.J.; Coffield, F.E.; Coutts, G.W.; Hornady, R.S.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) machine consists of seven major machine subsystems: magnet system, neutral beam system, microwave heating (ECRH), ion heating (ICRH), gas fueling, stream guns, and vacuum system. Satisfactory performance of these subsystems is necessary to achieve the experimental objectives planned for TMX-U operations. Since the performance quality of the subsystem is important and can greatly affect plasma parameters, a 233-channel instrumentation system has been installed. Data from the instrumentation system are acquired and stored with the plasma diagnostic information. Thus, the details of the machine performance are available during post-shot analysis. This paper describes all the machine-parameter-instrumentation hardware, presents some typical data, and outlines how the data are used

  11. The Mirror Fusion Test Facility cryogenic system: Performance, management approach, and present equipment status

    Slack, D.S.; Chronis, W.C.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) is a 14-kW, 4.35-K helium refrigeration system that proved to be highly successful and cost-effective. All operating objectives were met, while remaining within a few percent of initial cost and schedule plans. The management approach used in MFTF allowed decisions to be made quickly and effectively, and it helped keep costs down. Manpower levels, extent and type of industrial participation, key aspects of subcontractor specifications, and subcontractor interactions are reviewed, as well as highlights of the system tests, operation, and present equipment status. Organizations planning large, high-technology systems may benefit from this experience with the MFTF cryogenic system

  12. Effect of imperfect Faraday mirrors on the security of a Faraday–Michelson quantum cryptography system

    Wang, Wei-Long; Gao, Ming; Ma, Zhi

    2013-01-01

    The one-way Faraday–Michelson system is a very useful practical quantum cryptography system where Faraday mirrors (FMs) play an important role. In this paper we analyze the security of this system against imperfect FMs. We consider the security loophole caused by imperfect FMs in Alice’s and Bob’s security zones. Then we implement a passive FM attack in this system. By changing the values of the imperfection parameters of Alice’s FMs, we calculate the quantum bit error rate between Alice and Bob induced by Eve and the probability that Eve obtains outcomes successfully. It is shown that the imperfection of one of Alice’s two FMs makes the system sensitive to an attack. Finally we give a modified key rate as a function of the FM imperfections. The security analysis indicates that both Alice’s and Bob’s imperfect FMs can compromise the secure key. (paper)

  13. Remote Control System of the TJ-II Microwave Transmission Lines Mirrors; Sistema de Control Remoto de los Espejos de las Lineas de Transmision de Microondas del TJ-II

    Lopez Sanchez, A.; Fernandez, A.; Cappa, A.; Gama, J. de la; Olivares, J.; Garcia, R.; Chamorro, M.

    2007-09-27

    The ECRH system of the TJ-II stellarator has two gyrotrons, which deliver a maximum power of 300 kW each at a frequency of 53.2 GHz. Another 28 GHz gyrotron will be used to heat the plasma by electron Bernstein waves (EBWH). The microwave power is transmitted from the gyrotrons to the vacuum chamber by two quasi-optical transmission lines for ECRH and a corrugated waveguide for EBWH. All transmission lines have an internal movable mirror inside the vacuum chamber to focus the beam and to be able to change the launching angle. The control of the beam polarization is very important and the lines have two corrugated mirrors, which actuate as polarizers. In this report the control system of the position of these three internal mirrors and the polarizers of the EBWH transmission line is described. (Author) 20 refs.

  14. Einstein's Mirror

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  15. Supervisory control and diagnostics system for the mirror fusion test facility: overview and status 1980

    McGoldrick, P.R.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is a complex facility requiring a highly-computerized Supervisory Control and Diagnostics System (SCDS) to monitor and provide control over ten subsystems; three of which require true process control. SCDS will provide physicists with a method of studying machine and plasma behavior by acquiring and processing up to four megabytes of plasma diagnostic information every five minutes. A high degree of availability and throughput is provided by a distributed computer system (nine 32-bit minicomputers on shared memory). Data, distributed across SCDS, is managed by a high-bandwidth Distributed Database Management System. The MFTF operators' control room consoles use color television monitors with touch sensitive screens; this is a totally new approach. The method of handling deviations to normal machine operation and how the operator should be notified and assisted in the resolution of problems has been studied and a system designed

  16. Restraint deformation and corrosion protection of gold deposited aluminum mirrors for cold optics of mid-infrared instruments

    Uchiyama, Mizuho; Miyata, Takashi; Sako, Shigeyuki; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Kirino, Okiharu; Nakagawa, Hiroyuki; Okada, Norio; Mitsui, Kenji

    2014-07-01

    We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers. We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.

  17. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  18. A reflectivity profilometer for the optical characterisation of grade reflectivity mirrors in the 250 nm - 1100 nm spectral region

    Colucci, Alessandro; Nichelatti, Enrico [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1998-04-01

    It`s developed the prototype of an instrument that can be used for the optical characterisation of graded reflectivity mirrors at any wavelength in the spectral region from 250 nm to 1100 nm. The instrument utilises a high-pressure Xe arc lamp as light source. Light is spectrally filtered by means of a grating monochromator. The sample is illuminated with an image of the monochromator exit slit. After reflection from the sample, this image is projected onto a 1024-elements charge-coupled device linear array driven by a digital frame board and interfaced with a personal computer. It`s tested the instrument accuracy by comparing measurement results with the corresponding ones obtained by means of a laser scanning technique. Measurement Rms repeatability has been estimated to be approximately of 0.8%. [Italiano] E` stato sviluppato il prototipo di uno strumento per la catatterizzazione ottica di specchi a riflettivita` variabile, operante a qualsiasi lunghezza d`onda nell`intervallo spettrale da 250 nm a 1100 nm. La sorgente dello strumento e` una lampada ad arco allo Xenon ad alta pressione. La luce e` filtrata spettralmente per mezzo di un monocromatore a reticolo. Il campione viene illuminato da un`immagine della fenditura d`uscita del monocromatore. Dopo essere stata riflessa dal campione, questa immagine viene proiettata su un array CCD lineare a 1024 elementi, connesso elettronicamente a una scheda digitale e interfacciato a un personal computer. L`accuratezza dello strumento e` stata verificata confrontando alcune misure con le corrispondenti misure ottenute mediante una tecnica a scansione laser. La ripetibilita` RMS delle misure e` stata stimata essere circa dello 0.8%.

  19. Systems and methods for enhancing optical information

    DeVore, Peter Thomas Setsuda; Chou, Jason T.

    2018-01-02

    An Optical Information Transfer Enhancer System includes a first system for producing an information bearing first optical wave that is impressed with a first information having a first information strength wherein the first optical wave has a first shape. A second system produces a second optical wave. An information strength enhancer module receives the first and said second optical waves and impresses the first optical wave upon the second optical wave via cross-phase modulation (XPM) to produce an information-strength-enhanced second optical wave having a second information strength that is greater than the first information strength of the first optical wave. Following a center-wavelength changer by an Optical Information Transfer Enhancer System improves its performance.

  20. Phase-Modulated Optical Communication Systems

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  1. Development of laser marking system with electro-optic Q-switch

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon.

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs

  2. Development of laser marking system with electro-optic Q-switch

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs.

  3. Learning of Spatial Relationships between Observed and Imitated Actions allows Invariant Inverse Computation in the Frontal Mirror Neuron System

    Oh, Hyuk; Gentili, Rodolphe J.; Reggia, James A.; Contreras-Vidal, José L.

    2014-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator’s frontal mirror neuron system can be trained to provide the motor plans for the imitated actions. PMID:22255261

  4. Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system.

    Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L

    2011-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.

  5. Handbook of camera monitor systems the automotive mirror-replacement technology based on ISO 16505

    2016-01-01

    This handbook offers a comprehensive overview of Camera Monitor Systems (CMS), ranging from the ISO 16505-based development aspects to practical realization concepts. It offers readers a wide-ranging discussion of the science and technology of CMS as well as the human-interface factors of such systems. In addition, it serves as a single reference source with contributions from leading international CMS professionals and academic researchers. In combination with the latest version of UN Regulation No. 46, the normative framework of ISO 16505 permits CMS to replace mandatory rearview mirrors in series production vehicles. The handbook includes scientific and technical background information to further readers’ understanding of both of these regulatory and normative texts. It is a key reference in the field of automotive CMS for system designers, members of standardization and regulation committees, engineers, students and researchers.

  6. Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility

    1979-04-01

    The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how does this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design

  7. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    Cheng Sheng-Yi; Liu Wen-Jin; Chen Shan-Qiu; Dong Li-Zhi; Yang Ping; Xu Bing

    2015-01-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n 2 ) ∼ O(n 3 ) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ∼ (O(n) 3/2 ), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. (paper)

  8. Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing

    Liu Chian; Ice, G.E.; Liu, W.; Assoufid, L.; Qian, J.; Shi, B.; Khachatryan, R.; Wieczorek, M.; Zschack, P.; Tischler, J.Z.

    2012-01-01

    This paper describes fabrication methods used to demonstrate the advantages of nested or Montel optics for micro/nanofocusing of synchrotron X-ray beams. A standard Kirkpatrick-Baez (KB) mirror system uses two separated elliptical mirrors at glancing angles to the X-ray beam and sequentially arranged at 90° to each other to focus X-rays successively in the vertical and horizontal directions. A nested KB mirror system has the two mirrors positioned perpendicular and side-by-side to each other. Compared to a standard KB mirror system, Montel optics can focus a larger divergence and the mirrors can have a shorter focal length. As a result, nested mirrors can be fabricated with improved demagnification factor and ultimately smaller focal spot, than with a standard KB arrangement. The nested system is also more compact with an increased working distance, and is more stable, with reduced complexity of mirror stages. However, although Montel optics is commercially available for laboratory X-ray sources, due to technical difficulties they have not been used to microfocus synchrotron radiation X-rays, where ultra-precise mirror surfaces are essential. The main challenge in adapting nested optics for synchrotron microfocusing is to fabricate mirrors with a precise elliptical surface profile at the very edge where the two mirrors meet and where X-rays scatter. For example, in our application to achieve a sub-micron focus with high efficiency, a surface figure root-mean-square (rms) error on the order of 1 nm is required in the useable area along the X-ray footprint with a ∼0.1 mm-diameter cross section. In this paper we describe promising ways to fabricate precise nested KB mirrors using our profile coating technique and inexpensive flat Si substrates.

  9. Mirror fusion--fission hybrids

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  10. Optical components and systems for synchrotron radiation: an introduction

    Howells, M.R.

    1981-01-01

    A brief description of the nature and origins of synchrotron radiation is given with special reference to its geometrical optical properties and the use of storage rings as light souces. The geographical distribution of SR sources in the world is reviewed and some discussion of the level of experimental activity is given. Estimates of future levels of experimental activity are also made both for existing storage rings and those planned for the future. Calculations of the approximate number of mirrors and gratings that will be required are offered. Some general considerations are outlined showing how synchrotron radiation optical systems couple to the light source and indicating which parameters need to be maximized for best overall performance

  11. Exploring associations between gaze patterns and putative human mirror neuron system activity.

    Donaldson, Peter H; Gurvich, Caroline; Fielding, Joanne; Enticott, Peter G

    2015-01-01

    The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

  12. Exploring associations between gaze patterns and putative human mirror neuron system activity

    Peter Hugh Donaldson

    2015-07-01

    Full Text Available The human mirror neuron system (MNS is hypothesised to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity, healthy right-handed participants aged 18-40 (n = 26 viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation (TMS. Motor-evoked potentials (MEPs recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze (PG and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

  13. Mirror neurons, procedural learning, and the positive new experience: a developmental systems self psychology approach.

    Wolf, N S; Gales, M; Shane, E; Shane, M

    2000-01-01

    In summary, we are impressed with the existence of a mirror neuron system in the prefrontal cortex that serves as part of a complex neural network, including afferent and efferent connections to the limbic system, in particular the amygdala, in addition to the premotor and motor cortex. We think it is possible to arrive at an integration that postulates the mirror neuron system and its many types of associated multimodal neurons as contributing significantly to implicit procedural learning, a process that underlies a range of complex nonconscious, unconscious, preconscious and conscious cognitive activities, from playing musical instruments to character formation and traumatic configurations. This type of brain circuitry may establish an external coherence with developmental systems self psychology which implies that positive new experience is meliorative and that the intentional revival of old-old traumatic relational configurations might enhance maladaptive procedural patterns that would lead to the opposite of the intended beneficial change. When analysts revive traumatic transference patterns for the purpose of clarification and interpretation, they may fail to appreciate that such traumatic transference patterns make interpretation ineffective because, as we have stated above, the patient lacks self-reflection under such traumatic conditions. The continued plasticity and immediacy of the mirror neuron system can contribute to positive new experiences that promote the formation of new, adaptive, implicit-procedural patterns. Perhaps this broadened repertoire in the patient of ways of understanding interrelational events through the psychoanalytic process allows the less adaptive patterns ultimately to become vestigial and the newer, more adaptive patterns to emerge as dominant. Finally, as we have stated, we believe that the intentional transferential revival of trauma (i.e., the old-old relational configuration) may not contribute to therapeutic benefit. In

  14. Development of in situ cleaning techniques for diagnostic mirrors in ITER

    Litnovsky, A.; Laengner, M.; Matveeva, M.; Schulz, Ch.; Marot, L.; Voitsenya, V.S.; Philipps, V.; Biel, W.; Samm, U.

    2011-01-01

    Mirrors will be used in all optical and laser-based diagnostic systems of ITER. In the severe environment, the optical characteristics of mirrors will be degraded, hampering the entire performance of the respective diagnostics. A minute impurity deposition of 20 nm of carbon on the mirror is sufficient to decrease the mirror reflectivity by tens of percent outlining the necessity of the mirror cleaning in ITER. The results of R and D on plasma cleaning of molybdenum diagnostic mirrors are reported. The mirrors contaminated with amorphous carbon films in the laboratory conditions and in the tokamaks were cleaned in steady-state hydrogenic plasmas. The maximum cleaning efficiency of 4.2 nm/min was reached for the laboratory and soft tokamak hydrocarbon films, whereas for the hard tokamak films the carbidization of mirrors drastically decreased the cleaning efficiency down to 0.016 nm/min. This implies the necessity of sputtering cleaning of contaminated mirrors as the only reliable tool to remove the deposits by plasma cleaning. An overview of R and D program on mirror cleaning is provided along with plans for further studies and the recommendations for ITER mirror-based diagnostics.

  15. Theory of aberration fields for general optical systems with freeform surfaces.

    Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P

    2014-11-03

    This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.

  16. Computer control of the titanium getter system on the tandem mirror experiment-upgrade (TMX-U)

    McAlice, A.J.; Bork, R.G.; Clower, C.A.; Moore, T.L.; Lang, D.D.; Pico, R.E.

    1983-01-01

    Gettering has been a standard technique for achieving high-quality vacuum in fusion experiments for some time. On Lawrence Livermore National Laboratory's Tandem Mirror Experiment (TMX-U), an extensive gettering system is utilized with liquid-nitrogen-cooled panels to provide the fast pumping during each physics experiment. The getter wires are a 85% titanium and 15% tantalum alloy directly heated by an electrical current. TMX-U has 162 getter power-supply channels; each channel supplies approximately 106 A of regulated power to each getter for a 60-s cycle. In the vacuum vessel, the getter wires are organized into poles or arrays. On each pole there are six getter wires, each cables to the exterior of the vessel. This arrangement allows the power supplies to be switched from getter wire to getter wire as the individual wires deteriorate after 200 to 300 gettering cycles. To control the getter power suppiles, we will install a computer system to operate the system and document the performance of each getter circuit. This computer system will control the 162 power supplies via a Computer Automated Measurement and Control (CAMAC) architecture with a fiber-optic serial highway. Getter wire history will be stored on the built-in 10 megabyte disc drive with new entries backed up daily on a floppy disc. Overall, this system will allow positive tracking of getter wire condition, document the total gettering performance, and predict getter maintenance/changeover cycles. How we will employ the computer system to enhance the getter system is the subject of this paper

  17. Plasma cleaning of ITER first mirrors

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  18. Optical Manipulation System Using a Plurality of Optical Traps

    2006-01-01

    The present invention relates to an optical manipulation system (10) for generation of a plurality of optical traps for manipulation of micro-objects including nano-objects using electromagnetic radiation forces in a micro-object manipulation volume (14), the system comprising a spatially modulat...

  19. Wave optics modeling of real-time holographic wavefront compensation systems using OSSim

    Carbon, Margarita A.; Guthals, Dennis M.; Logan, Jerry D.

    2005-08-01

    OSSim (Optical System Simulation) is a wave-optics, time-domain simulation toolbox with both optical and data processing components developed for adaptive optics (AO) systems. Diffractive wavefront control elements have recently been added that accurately model optically and electrically addressed spatial light modulators as real time holographic (RTH) devices in diffractive wavefront control systems. The developed RTH toolbox has found multiple applications for a variety of Boeing programs in solving problems of AO system analysis and design. Several complex diffractive wavefront control systems have been modeled for compensation of static and dynamic aberrations such as imperfect segmented primary mirrors and atmospheric and boundary layer turbulence. The results of OSSim simulations of RTH wavefront compensation show very good agreement with available experimental data.

  20. Why is your spouse so predictable? Connecting mirror neuron system and self-expansion model of love.

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2008-12-01

    The simulation theory assumes we understand actions and intentions of others through a direct matching process. This matching process activates a complex brain network involving the mirror neuron system (MNS), which is self-related and active when one does something or observes someone else acting. Because social psychology admits that mutual intention's understanding grows in close relationship as love grows, we hypothesize that mirror mechanisms take place in love relationships. The similarities between the mirror matching process and the mutual intention's understanding that occurs when two persons are in love suggest that exposure to love might affect functional and neural mechanisms, thus facilitating the understanding of the beloved's intentions. Congruent with our hypothesis, our preliminary results from 38 subjects strongly suggest a significant facilitation effect of love on understanding the intentions of the beloved (as opposed to control stimuli). Based on these phenomenological, and neurofunctional findings we suggest that the mirror mechanisms are involved in the facilitation effects of love for understanding intentions, and might further be extended to any types of love (e.g., passionate love, maternal love). Love experiences are important not only to the beloved himself, but also to any societal, cultural, and institutional patterns that relate to love. Yet, concerning its subjective character, love experiences are difficult to access. The modern procedures and techniques of socio-cognitive neuroscience make it possible to understand love and self-related experiences not only by the analysis of subjective self-reported questionnaires, but also by approaching the automatic (non-conscious) mirror experiences of love in healthy subjects, and neurological patients with a brain damage within the mirror neuron system. Although the psychology of love is now well admitted, the systematic study of the automatic facilitation effect of love through mirror

  1. Anatomical differences in the mirror neuron system and social cognition network in autism.

    Hadjikhani, Nouchine; Joseph, Robert M; Snyder, Josh; Tager-Flusberg, Helen

    2006-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with impaired social and emotional skills, the anatomical substrate of which is still unknown. In this study, we compared a group of 14 high-functioning ASD adults with a group of controls matched for sex, age, intelligence quotient, and handedness. We used an automated technique of analysis that accurately measures the thickness of the cerebral cortex and generates cross-subject statistics in a coordinate system based on cortical anatomy. We found local decreases of gray matter in the ASD group in areas belonging to the mirror neuron system (MNS), argued to be the basis of empathic behavior. Cortical thinning of the MNS was correlated with ASD symptom severity. Cortical thinning was also observed in areas involved in emotion recognition and social cognition. These findings suggest that the social and emotional deficits characteristic of autism may reflect abnormal thinning of the MNS and the broader network of cortical areas subserving social cognition.

  2. A design assessment of tritium removal systems for the mirror advanced reactor study

    Sood, S.K.; Kveton, O.K.

    1983-01-01

    This study investigates the available processes for removing tritium from light water, and selects the most appropriate process for recovering tritium from the various tritiated water streams identified in the Mirror Advanced Reactor Study (MARS). A simplified flowsheet is shown for the process and the main process parameters are identified. Previous experience is utilized to predict direct capital costs and power requirement for the Tritiated Water Removal Unit (TWRU). A number of possibilities are discussed for lowering the cost of the TWRU. An estimate is made of the direct capital cost for the Air Detritiation System that has already been selected as the reference design by MARS personnel. The leakage from the MARS coolant loop is estimated, based on the experience obtained with Ontario Hydro's coolant systems. Design targets are identified for tritium levels in the reactor hall atmosphere and in water and air emissions. Tritium levels are predicted for these and are assessed against the previously identified targets

  3. Sustaining neutral beam power supply system for the Mirror Fusion Test Facility

    Eckard, R.D.; Wilson, J.H.; Van Ness, H.W.

    1980-01-01

    In late August 1978, a fixed price procurement contract for $25,000,000 was awarded to Aydin Energy Division, Palo Alto, California, for the design, manufacture, installation and acceptance testing of the Lawrence Livermore National Laboratory Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS). This system of 24 power supply sets will provide the conditioned power for the 24 neutral beam source modules. Each set will provide the accel potential the arc power, the filament power, and the suppressor power for its associated neutral beam source module. The design and development of the SNBPSS has progressed through the final design phase and is now in production. Testing of the major sub-assembly power supply is proceeding at Aydin and the final acceptance testing of the first two power supplies at LLNL is expected to be completed this year

  4. Development and Control of a Three-Axis Satellite Simulator for the Bifocal Relay Mirror Initiative

    Chernesky, Vincent

    2001-01-01

    .... The bifocal relay mirror spacecraft system is composed of two optically coupled telescopes used to redirect the laser light from ground-based, aircraft-based or spacecraft based lasers to distant...

  5. Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis?

    Eisen, Andrew; Lemon, Roger; Kiernan, Matthew C.; Hornberger, Michael; Turner, Martin R.

    2015-01-01

    There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential rele...

  6. U. S. Mirror Program

    Fowler, T.K.

    1978-01-01

    The mirror approach is now the principal alternate to the tokamak in the U.S. magnetic fusion energy program. The program is now focused on two new concepts that can obtain high values of Q, defined as the ratio of fusion power output to the neutral beam power injected to sustain the reaction. These are the tandem mirror and field reversed mirror concepts. Theoretically both concepts should be able to attain Q = 5 or more, as compared with Q approximately 1 in previous mirror designs. Success with either or both of these approaches would point the way toward fusion power plants with many attractive features. The linear geometry of mirror systems offers a distinct alternative to the toroidal tokamak. As a direct consequence of this difference in geometry, it is generally possible to build mirror systems in smaller units of modular construction that can probably be made to operate in steady-state. During the next 5 years the main mirror facilities in the U.S. will be the 2XIIB (renamed Beta II); a tandem mirror experiment caled TMX; and the Mirror Fusion Test Facility (MFTF) scheduled to be completed in 1981 at a cost of $94 million. As a background for discussing this program and mirror reactor concepts in later lectures, the current status of mirror physics will be reviewed by comparing theory and experimental data in four critical areas. These are adiabatic confinement of individual ions, electron heat losses out of the ends of the machine, the achievement of beta values of order unity; and stabilization of ''loss cone'' modes

  7. Modified optical fiber daylighting system with sunlight transportation in free space.

    Vu, Ngoc-Hai; Pham, Thanh-Tuan; Shin, Seoyong

    2016-12-26

    We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

  8. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting

    Ngoc Hai Vu

    2017-10-01

    Full Text Available An essential impact which can improve the indoor environment and save on power consumption for artificial lighting is utilization of daylight. Optical fiber daylighting technology offers a way to use direct daylight for remote spaces in a building. However, the existing paradigm based on the precise orientation of sunlight concentrator toward the Sun is very costly and difficult to install on the roof of buildings. Here, we explore an alternative approach using mirror-coated lens array and planar waveguide to develop a flat optical fiber daylighting system (optical fiber daylighting panel with lateral displacement Sun-tracking mechanism. Sunlight collected and reflected by each mirror-coated lens in a rectangular lens array is coupled into a planar waveguide using cone prisms placed at each lens focus. This geometry yields a thin, flat profile for Sunlight concentrator. Our proposed concentrating panel can be achieved with 35 mm thickness while the concentrator’s width and length are 500 mm × 500 mm. The commercial optical simulation tool (LightToolsTM was used to develop the simulation models and analyze the system performance. Simulation results based on the designed system demonstrated an optical efficiency of 51.4% at a concentration ratio of 125. The system can support utilizing a lateral displacement Sun-tracking system, which allows for replacing bulky and robust conventional rotational Sun-tracking systems. This study shows a feasibility of a compact and inexpensive optical fiber daylighting system to be installed on the roof of buildings.

  9. Motor-Auditory-Visual Integration: The Role of the Human Mirror Neuron System in Communication and Communication Disorders

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…

  10. Avoiding unstable regions in the design space of EUV mirror systems comprising high-order aspheric surfaces

    Marinescu, O.; Bociort, F.; Braat, J.

    2004-01-01

    When Extreme Ultraviolet mirror systems having several high-order aspheric surfaces are optimized, the configurations often enter into highly unstable regions of the parameter space. Small changes of system parameters lead then to large changes in ray paths, and therefore optimization algorithms

  11. Temperature control system for optical elements in astronomical instrumentation

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  12. Thermal performance of the ATST secondary mirror

    Cho, Myung K.; DeVries, Joe; Hansen, Eric

    2007-12-01

    The Advanced Technology Solar Telescope (ATST) has a 4.24m off-axis primary mirror designed to deliver diffractionlimited images of the sun. Its baseline secondary mirror (M2) design uses a 0.65m diameter Silicon Carbide mirror mounted kinematically by a bi-pod flexure mechanism at three equally spaced locations. Unlike other common telescopes, the ATST M2 is to be exposed to a significant solar heat loading. A thermal management system (TMS) will be developed to accommodate the solar loading and minimize "mirror seeing effect" by controlling the temperature difference between the M2 optical surface and the ambient air at the site. Thermo-elastic analyses for steady state thermal behaviors of the ATST secondary mirror was performed using finite element analysis by I-DEAS TM and PCRINGE TM for the optical analysis. We examined extensive heat transfer simulation cases and their results were discussed. The goal of this study is to establish thermal models by I-DEAS for an adequate thermal environment. These thermal models will be useful for estimating segment thermal responses. Current study assumes a few sample time dependent thermal loadings to synthesize the operational environment.

  13. The Advanced Gamma-ray Imaging System (AGIS) Telescope Optical System Designs

    Bugaev, V.; Buckley, J.; Diegel, S.; Falcone, A.; Fegan, S.; Finley, J.; Guarino, V.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Ramsey, B.; Romani, R.; Vassiliev, V.; Weekes, T.

    2008-12-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory operating in the energy range 25 GeV-100 TeV, which is based on an array of ~20-100 imaging atmospheric Cherenkov telescopes (IACTs). The desired improvement in sensitivity, angular resolution, and reliability of operation of AGIS imposes demanding technological and cost requirements on the design of the IACTs. We are considering several options for the optical system (OS) of the AGIS telescopes, which include the traditional Davies-Cotton design as well as novel two-mirror design. Emerging mirror production technologies based on replication processes such as cold and hot glass slumping, cured carbon fiber reinforced plastic (CFRP), and electroforming provide new opportunities for cost-effective solutions for the design of the OS.

  14. New education system for construction of optical holography setup – Tangible learning with Augmented Reality

    Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2013-01-01

    In case of teaching optical system construction, it is difficult to prepare the optical components for the attendance student. However the tangible learning is very important to master the optical system construction. It helps learners understand easily to use an inexpensive learning system that provides optical experiments experiences. Therefore, we propose the new education system for construction of optical setup with the augmented reality. To use the augmented reality, the proposed system can simulate the optical system construction by the direct hand control. Also, this system only requires an inexpensive web camera, printed makers and a personal computer. Since this system does not require the darkroom and the expensive optical equipments, the learners can study anytime, anywhere when they want to do. In this paper, we developed the system that can teach the optical system construction of the Denisyuk hologram and 2-step transmission type hologram. For the tangible learning and the easy understanding, the proposed system displays the CG objects of the optical components on the markers which are controlled by the learner's hands. The proposed system does not only display the CG object, but also display the light beam which is controlled by the optical components. To display the light beam that is hard to be seen directly, the learners can confirm about what is happening by the own manipulation. For the construction of optical holography setup, we arrange a laser, mirrors, a PBS (polarizing beam splitter), lenses, a polarizer, half-wave plates, spatial filters, an optical power meter and a recording plate. After the construction, proposed system can check optical setup correctly. In comparison with the learners who only read a book, the learners who use the system can construct the optical holography setup more quickly and correctly.

  15. Optimization and performance evaluation of a conical mirror based fluorescence molecular tomography imaging system

    Zhao, Yue; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    We performed numerical simulations and phantom experiments with a conical mirror based fluorescence molecular tomography (FMT) imaging system to optimize its performance. With phantom experiments, we have compared three measurement modes in FMT: the whole surface measurement mode, the transmission mode, and the reflection mode. Our results indicated that the whole surface measurement mode performed the best. Then, we applied two different neutral density (ND) filters to improve the measurement's dynamic range. The benefits from ND filters are not as much as predicted. Finally, with numerical simulations, we have compared two laser excitation patterns: line and point. With the same excitation position number, we found that the line laser excitation had slightly better FMT reconstruction results than the point laser excitation. In the future, we will implement Monte Carlo ray tracing simulations to calculate multiple reflection photons, and create a look-up table accordingly for calibration.

  16. Development of a Plasma Streaming System for the Mirror Fusion Test Facility

    Holdsworth, T.; Clark, R.N.; McCotter, R.E.; Rossow, T.L.; Cruz, G.E.

    1979-01-01

    The Plasma Streaming System (PSS) is an essential portion of the Mirror Fusion Test Facility (MFTF), scheduled for completion in October 1981. The PSS will develop a plasma density of at least 2 x 10 12 particles/cm 3 at the MFTF magnet centerline by injecting particles along the field lines. The plasma will have a midplane plasma radius as large as 40 cm with variable plasma particle energy and beam geometry. Minimum amounts of impurities will be injected, with emphasis on minimizing high Z materials. Each of the 60 PSS units will consist of a gun magnet assembly (GMA) and a power supply. Each GMA consists of a plasma streaming gun, a pulse magnet that provides variable beam shaping, and a fast reaction pulse gas valve

  17. A Novel Mirror-Aided Non-imaging Receiver for Indoor 2x2 MIMO Visible Light Communication Systems

    Park, Kihong

    2017-06-07

    Indoor visible light communication (VLC) systems are now possible because of advances in light emitting diode and laser diode technologies. These lighting technologies provide the foundation for multiple-input multiple-output (MIMO) data transmission through visible light. However, the channel matrix can be strongly correlated in indoor MIMO-VLC systems, preventing parallel data streams from being decoded. Here, in $2\\\\times 2$ MIMO-VLC systems, we describe a mirror diversity receiver (MDR) design that reduces the channel correlation by both blocking the reception of light from one specific direction and improving the channel gain from light from another direction by utilizing a double-sided mirror deployed between the receiver\\'s photodetectors. We report on the channel capacity of the MDR system and the optimal height of its mirrors in terms of maximum channel capacity. We also derived analytic results on the effect of rotation on MDR\\'s performance. Based on numerical and experimental results, we show that the double-sided mirror has both constructive and destructive effects on the channel matrix. Our design can be used with previously described non-imaging systems to improve the performance of indoor VLC systems.

  18. Conception and design of a control and monitoring system for the mirror alignment of the CBM RICH detector

    Bendarouach, J

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future Facility for Anti-proton and Ion Research (FAIR) complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures created in A+A collisions. For the SIS100 accelerator, the foreseen beam energy will range up to 11 AGeV for the heaviest nuclei. One of the key detector components required for the CBM physics program is the Ring Imaging CHerenkov (RICH) detector, which is developed for efficient and clean electron identification and pion suppression. An important aspect to guarantee a stable operation of the RICH detector is the alignment of the mirrors. A qualitative alignment control procedure for the mirror system has been implemented in the CBM RICH prototype detector and tested under real conditions at the CERN PS/T9 beamline. Collected data and results of image processing are reviewed and discussed. In parallel a quantitative method using recorded data has also been employed to compute mirror displacements of the RICH mirrors. Results based on simulated events and the limits of the method are presented and discussed as well. If mirror misalignment is detected, it can be subsequently included and rectified by correction routines. A first correction routine is presented and a comparison between misaligned, corrected and ideal geometries is shown. (paper)

  19. Conception and design of a control and monitoring system for the mirror alignment of the CBM RICH detector

    Bendarouach, J.

    2016-08-01

    The Compressed Baryonic Matter (CBM) experiment at the future Facility for Anti-proton and Ion Research (FAIR) complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures created in A+A collisions. For the SIS100 accelerator, the foreseen beam energy will range up to 11 AGeV for the heaviest nuclei. One of the key detector components required for the CBM physics program is the Ring Imaging CHerenkov (RICH) detector, which is developed for efficient and clean electron identification and pion suppression. An important aspect to guarantee a stable operation of the RICH detector is the alignment of the mirrors. A qualitative alignment control procedure for the mirror system has been implemented in the CBM RICH prototype detector and tested under real conditions at the CERN PS/T9 beamline. Collected data and results of image processing are reviewed and discussed. In parallel a quantitative method using recorded data has also been employed to compute mirror displacements of the RICH mirrors. Results based on simulated events and the limits of the method are presented and discussed as well. If mirror misalignment is detected, it can be subsequently included and rectified by correction routines. A first correction routine is presented and a comparison between misaligned, corrected and ideal geometries is shown.

  20. The ANTARES optical beacon system

    Ageron, M.; Aguilar, J.A.; Albert, A.

    2007-01-01

    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three-dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular, when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented

  1. The ANTARES optical beacon system

    Ageron, M. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios de Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain)]. E-mail: J.A.Aguilar@ific.uv.es; Albert, A. [GRPHE - Groupe de Recherche en Physique des Hautes Energies, Universite de Haute Alsace, 61 Rue Albert Camus, 68093 Mulhouse Cedex (France)) (and others)

    2007-08-11

    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three-dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular, when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.

  2. The ANTARES optical beacon system

    Ageron, M.; Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F.; Aslanides, E.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Basa, S.; Battaglieri, M.; Becherini, Y.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bouwhuis, M. C.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Colnard, C.; Compère, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A.-S.; Damy, G.; van Dantzig, R.; de Bonis, G.; de Marzo, C.; de Vita, R.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Destelle, J.-J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J.-F.; Druillole, F.; Durand, D.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferry, S.; Fiorello, C.; Flaminio, V.; Fratini, K.; Fuda, J.-L.; Galeotti, S.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Katz, U.; Keller, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kudryavstev, V. A.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Laschinsky, H.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazure, A.; McMillan, J. E.; Megna, R.; Melissas, M.; Migneco, E.; Milovanovic, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Musumeci, M.; Naumann-Godo, M.; Naumann, C.; Niess, V.; Noble, T.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H.; Perez, A.; Petta, C.; Piattelli, P.; Pillet, R.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; van Rens, B.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Rose, H. J.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Rusydi, G.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J.-P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Terreni, G.; Thompson, L. F.; Urbano, F.; Valdy, P.; Valente, V.; Vallage, B.; Vaudaine, G.; Venekamp, G.; Verlaat, B.; Vernin, P.; de Vries-Uiterweerd, G.; van Wijk, R.; Wijnker, G.; de Witt Huberts, P.; Wobbe, G.; de Wolf, E.; Yao, A.-F.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2007-08-01

    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three-dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular, when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.

  3. Advanced optical manufacturing digital integrated system

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  4. Computer program for optical systems ray tracing

    Ferguson, T. J.; Konn, H.

    1967-01-01

    Program traces rays of light through optical systems consisting of up to 65 different optical surfaces and computes the aberrations. For design purposes, paraxial tracings with astigmation and third order tracings are provided.

  5. Characterization of a confocal three-dimensional micro X-ray fluorescence facility based on polycapillary X-ray optics and Kirkpatrick-Baez mirrors

    Sun Tianxi; Ding Xunliang; Liu Zhiguo; Zhu Guanghua; Li Yude; Wei Xiangjun; Chen Dongliang; Xu Qing; Liu Quanru; Huang Yuying; Lin Xiaoyan; Sun Hongbo

    2008-01-01

    A new confocal three-dimensional micro X-ray fluorescence (3D micro-XRF) facility based on polycapillary X-ray optics in the detection channel and Kirkpatrick-Baez (KB) mirrors in the excitation channel is designed. The lateral resolution (l x , l y ) of this confocal three-dimensional micro-X-ray fluorescence facility is 76.3(l x ) and 53.4(l y ) μm respectively, and its depth resolution d z is 77.1 μm at θ = 90 o . A plant sample (twig of B. microphylla) and airborne particles are analyzed

  6. High pressure fiber optic sensor system

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  7. Automated alignment system for optical wireless communication systems using image recognition.

    Brandl, Paul; Weiss, Alexander; Zimmermann, Horst

    2014-07-01

    In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.

  8. Dysfunction of the Human Mirror Neuron System in Ideomotor Apraxia: Evidence from Mu Suppression.

    Frenkel-Toledo, Silvi; Liebermann, Dario G; Bentin, Shlomo; Soroker, Nachum

    2016-06-01

    Stroke patients with ideomotor apraxia (IMA) have difficulties controlling voluntary motor actions, as clearly seen when asked to imitate simple gestures performed by the examiner. Despite extensive research, the neurophysiological mechanisms underlying failure to imitate gestures in IMA remain controversial. The aim of the current study was to explore the relationship between imitation failure in IMA and mirror neuron system (MNS) functioning. Mirror neurons were found to play a crucial role in movement imitation and in imitation-based motor learning. Their recruitment during movement observation and execution is signaled in EEG recordings by suppression of the lower (8-10 Hz) mu range. We examined the modulation of EEG in this range in stroke patients with left (n = 21) and right (n = 15) hemisphere damage during observation of video clips showing different manual movements. IMA severity was assessed by the DeRenzi standardized diagnostic test. Results showed that failure to imitate observed manual movements correlated with diminished mu suppression in patients with damage to the right inferior parietal lobule and in patients with damage to the right inferior frontal gyrus pars opercularis-areas where major components of the human MNS are assumed to reside. Voxel-based lesion symptom mapping revealed a significant impact on imitation capacity for the left inferior and superior parietal lobules and the left post central gyrus. Both left and right hemisphere damages were associated with imitation failure typical of IMA, yet a clear demonstration of relationship to the MNS was obtained only in the right hemisphere damage group. Suppression of the 8-10 Hz range was stronger in central compared with occipital sites, pointing to a dominant implication of mu rather than alpha rhythms. However, the suppression correlated with De Renzi's apraxia test scores not only in central but also in occipital sites, suggesting a multifactorial mechanism for IMA, with a possible

  9. REFINED MODEL OF THE OPTICAL SYSTEM FOR SPACE MINI-VEHICLES WITH LASER PROPULSION

    M. S. Egorov

    2015-09-01

    Full Text Available Simulation results for on-board optical system of a space mini-vehicle with laser propulsion are presented. This system gives the possibility for receiving theremote laser radiation power independently of a system telescope mutual orientation to the vehicle orbiting direction. The on-board optical system is designed with the use of such optical elements as optical hinges and turrets. The system incorporates the optical switch that is a special optical system adapting optically both receiving telescope and laser propulsion engines. Modeling and numerical simulation of the system have been performed with the use of ZEMAX software (Radiant Ltd. The object matter of calculations lied in size definition of system optical elements, requirements to accuracy of their manufacturing and reciprocal adjusting to achieve an efficient radiation energy delivery to laser propulsion engine. Calculations have been performed with account to the limitations on the mini-vehicle mass, its overall dimensions, and radiation threshold density of the optical elements utilized. The requirements to the laser beam quality at the entrance aperture of laser propulsion engine have been considered too. State-of-the-art optical technologies make it possible to manufacture space reflectors made of CO-115M glassceramics with weight-reducing coefficient of 0.72 and the radiation threshold of 5 J/cm2 for the radiation with a 1.064 microns wavelength at 10-20 ns pulse duration. The optimal diameter of a receiving telescope primary mirror has been 0.5 m when a coordinated transmitting telescope diameter is equal to 1 m. This provides the reception of at least 84% of laser energy. The main losses of radiation energy are caused by improper installation of receiving telescope mirrors and by in-process errors arising at manufacturing the telescope mirrors with a parabolic surface. It is shown that requirements to the in-process admissible errors for the on-board optical system elements

  10. Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology

    Magnozzi, M.; Terreni, S.; Anghinolfi, L.; Uttiya, S.; Carnasciali, M. M.; Gemme, G.; Neri, M.; Principe, M.; Pinto, I.; Kuo, L.-C.; Chao, S.; Canepa, M.

    2018-01-01

    The use of amorphous, SiO2-TiO2 nanolayered coatings has been proposed recently for the mirrors of 3rd-generation interferometric detectors of gravitational waves, to be operated at low temperature. Coatings with a high number of low-high index sub-units pairs with nanoscale thickness were found to preserve the amorphous structure for high annealing temperatures, a key factor to improve the mechanical quality of the mirrors. The optimization of mirror designs based on such coatings requires a detailed knowledge of the optical properties of sub-units at the nm-thick scale. To this aim we have performed a Spectroscopic Ellipsometry (SE) study of amorphous SiO2-TiO2 nanolayered films deposited on Si wafers by Ion Beam Sputtering (IBS). We have analyzed films that are composed of 5 and 19 nanolayers (NL5 and NL19 samples) and have total optical thickness nominally equivalent to a quarter of wavelength at 1064 nm. A set of reference optical properties for the constituent materials was obtained by the analysis of thicker SiO2 and TiO2 homogeneous films (∼ 120 nm) deposited by the same IBS facility. By flanking SE with ancillary techniques, such as TEM and AFM, we built optical models that allowed us to retrieve the broad-band (250-1700 nm) optical properties of the nanolayers in the NL5 and NL19 composite films. In the models which provided the best agreement between simulation and data, the thickness of each sub-unit was fitted within rather narrow bounds determined by the analysis of TEM measurements on witness samples. Regarding the NL5 sample, with thickness of 19.9 nm and 27.1 nm for SiO2 and TiO2 sub-units, respectively, the optical properties presented limited variations with respect to the thin film counterparts. For the NL19 sample, which is composed of ultrathin sub-units (4.4 nm and 8.4 nm for SiO2 and TiO2, respectively) we observed a significant decrease of the IR refraction index for both types of sub-units; this points to a lesser mass density with

  11. Multiplane optical microscope

    Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wang, Yuan; Zhang, Xiang

    2017-11-21

    This disclosure provides systems, methods, and apparatus related to optical microscopy. In one aspect, an apparatus includes a sample holder, a first objective lens, a plurality of optical components, a second objective lens, and a mirror. The apparatus may directly image a cross-section of a sample oblique to or parallel to the optical axis of the first objective lens, without scanning.

  12. Cesic: optomechanical technology last development results and new HBCesic highly light weighted space mirror development including corrective function 7th international conference on space optics, october 2008

    Devilliers, Christophe; Kroedel, Mathias

    2017-11-01

    18 Kg/m2 has been designed, sized and manufactured and is currently under polishing at SESO. The polishing to a micro-roughness of far less than 20 nm RMS without expensive overcoatings has been already validated on mirrors up to 800 mm. This 600 mm mirror will be polished to a WFE of less than 20 nm, and afterwards the mirror will be tested under cryogenic environment to measure the WFE evolution between ambient and cryo. The mirror is equipped with a system for focus and astigmatism modification. During the cryo test this system will be activated at cryo temperature to also demonstrate the function of this system. This correction system is developed for future large mirrors for interferometric nulling or aperture synthesis missions like the Darwin mission . For such missions very large and very lightweight mirrors up to 3,5 m diameter with an areal density of less than 25 Kg/m2 are required and thank to the HBCesictechnology such performance is now feasible.

  13. An adaptive optics imaging system designed for clinical use

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  14. Reduced mu suppression and altered motor resonance in euthymic bipolar disorder: Evidence for a dysfunctional mirror system?

    Andrews, Sophie C; Enticott, Peter G; Hoy, Kate E; Thomson, Richard H; Fitzgerald, Paul B

    2016-01-01

    Social cognitive difficulties are common in the acute phase of bipolar disorder and, to a lesser extent, during the euthymic stage, and imaging studies of social cognition in euthymic bipolar disorder have implicated mirror system brain regions. This study aimed to use a novel multimodal approach (i.e., including both transcranial magnetic stimulation (TMS) and electroencephalogram (EEG)) to investigate mirror systems in bipolar disorder. Fifteen individuals with euthymic bipolar disorder and 16 healthy controls participated in this study. Single-pulse TMS was applied to the optimal site in the primary motor cortex (M1), which stimulates the muscle of interest during the observation of hand movements (goal-directed or interacting) designed to elicit mirror system activity. Single EEG electrodes (C3, CZ, C4) recorded mu rhythm modulation concurrently. Results revealed that the patient group showed significantly less mu suppression compared to healthy controls. Surprisingly, motor resonance was not significantly different overall between groups; however, bipolar disorder participants showed a pattern of reduced reactivity on some conditions. Although preliminary, this study indicates a potential mirror system deficit in euthymic bipolar disorder, which may contribute to the pathophysiology of the disorder.

  15. What neuromodulation and lesion studies tell us about the function of the mirror neuron system and embodied cognition

    Keysers, Christian; Paracampo, Riccardo; Gazzola, V.

    2018-01-01

    We review neuromodulation and lesion studies that address how activations in the mirror neuron system contribute to our perception of observed actions. Past reviews showed disruptions of this parieto-premotor network impair imitation and goal and kinematic processing. Recent studies bring five new

  16. White Matter Microstructure of the Human Mirror Neuron System Is Related to Symptom Severity in Adults with Autism

    Fründt, Odette; Schulz, Robert; Schöttle, Daniel; Cheng, Bastian; Thomalla, Götz; Braaß, Hanna; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K.; Bäumer, Tobias; Münchau, Alexander

    2018-01-01

    Mirror neuron system (MNS) dysfunctions might underlie deficits in autism spectrum disorders (ASD). Diffusion tensor imaging based probabilistic tractography was conducted in 15 adult ASD patients and 13 matched, healthy controls. Fractional anisotropy (FA) was quantified to assess group differences in tract-related white matter microstructure of…

  17. Imitation and Action Understanding in Autistic Spectrum Disorders: How Valid Is the Hypothesis of a Deficit in the Mirror Neuron System?

    Hamilton, Antonia F. de C.; Brindley, Rachel M.; Frith, Uta

    2007-01-01

    The motor mirror neuron system supports imitation and goal understanding in typical adults. Recently, it has been proposed that a deficit in this mirror neuron system might contribute to poor imitation performance in children with autistic spectrum disorders (ASD) and might be a cause of poor social abilities in these children. We aimed to test…

  18. Signal to Noise Ratio (SNR Enhancement Comparison of Impulse-, Coding- and Novel Linear-Frequency-Chirp-Based Optical Time Domain Reflectometry (OTDR for Passive Optical Network (PON Monitoring Based on Unique Combinations of Wavelength Selective Mirrors

    Christopher M. Bentz

    2014-03-01

    Full Text Available We compare optical time domain reflectometry (OTDR techniques based on conventional single impulse, coding and linear frequency chirps concerning their signal to noise ratio (SNR enhancements by measurements in a passive optical network (PON with a maximum one-way attenuation of 36.6 dB. A total of six subscribers, each represented by a unique mirror pair with narrow reflection bandwidths, are installed within a distance of 14 m. The spatial resolution of the OTDR set-up is 3.0 m.

  19. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  20. Distributed sensing signal analysis of deformable plate/membrane mirrors

    Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen

    2017-11-01

    Deformable optical mirrors usually play key roles in aerospace and optical structural systems applied to space telescopes, radars, solar collectors, communication antennas, etc. Limited by the payload capacity of current launch vehicles, the deformable mirrors should be lightweight and are generally made of ultra-thin plates or even membranes. These plate/membrane mirrors are susceptible to external excitations and this may lead to surface inaccuracy and jeopardize relevant working performance. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as sensors. The piezoelectric layer is segmented into infinitesimal elements so that microscopic distributed sensing signals can be explored. In this paper, the deformable mirror is modeled as a pre-tensioned plate and membrane respectively and sensing signal distributions of the two models are compared. Different pre-tensioning forces are also applied to reveal the tension effects on the mode shape and sensing signals of the mirror. Analytical results in this study could be used as guideline of optimal sensor/actuator placement for deformable space mirrors.

  1. Mirror symmetry

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  2. Einstein's Mirror

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  3. MEMS scanner mirror based system for retina scanning and in eye projection

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Dallmann, Hans-Georg; Schelinski, Uwe; Grüger, Heinrich

    2015-02-01

    Many applications could benefit from miniaturized systems to scan blood vessels behind the retina in the human eye, so called "retina scanning". This reaches from access control to sophisticated security applications and medical devices. High volume systems for consumer applications require low cost and a user friendly operation. For example this includes no need for removal of glasses and self-adjustment, in turn guidance of focus and point of attraction by simultaneous projection for the user. A new system has been designed based on the well-known resonantly driven 2-d scanner mirror of Fraunhofer IPMS. A combined NIR and VIS laser system illuminates the eye through an eye piece designed for an operating distance allowing the use of glasses and granting sufficient field of view. This usability feature was considered to be more important than highest miniaturization. The modulated VIS laser facilitates the projection of an image directly onto the retina. The backscattered light from the continuous NIR laser contains the information of the blood vessels and is detected by a highly sensitive photo diode. A demonstrational setup has been realized including readout and driving electronics. The laser power was adjusted to an eye-secure level. Additional security features were integrated. Test measurements revealed promising results. In a first demonstration application the detection of biometric pattern of the blood vessels was evaluated for issues authentication in.

  4. Self-processing and the default mode network: Interactions with the mirror neuron system

    Istvan eMolnar-Szakacs

    2013-09-01

    Full Text Available Recent evidence for the fractionation of the default mode network (DMN into functionally distinguishable subdivisions with unique patterns of connectivity calls for a reconceptualization of the relationship between this network and self-referential processing. Advances in resting-state functional connectivity analyses are beginning to reveal increasingly complex patterns of organization within the key nodes of the DMN - medial prefrontal cortex (MPFC and posterior cingulate cortex (PCC – as well as between these nodes and other brain systems. Here we review recent examinations of the relationships between the DMN and various aspects of self-relevant and social-cognitive processing in light of emerging evidence for heterogeneity within this network. Drawing from a rapidly evolving social cognitive neuroscience literature, we propose that embodied simulation and mentalizing are processes which allow us to gain insight into another's physical and mental state by providing privileged access to our own physical and mental states. Embodiment implies that the same neural systems are engaged for self- and other-understanding through a simulation mechanism, while mentalizing refers to the use of high-level conceptual information to make inferences about the mental states of self and others. These mechanisms work together to provide a coherent representation of the self and by extension, of others. Nodes of the DMN selectively interact with brain systems for embodiment and mentalizing, including the mirror neuron system, to produce appropriate mappings in the service of social cognitive demands.

  5. Adjustable bipod flexures for mounting mirrors in a space telescope.

    Kihm, Hagyong; Yang, Ho-Soon; Moon, Il Kweon; Yeon, Jeong-Heum; Lee, Seung-Hoon; Lee, Yun-Woo

    2012-11-10

    A new mirror mounting technique applicable to the primary mirror in a space telescope is presented. This mounting technique replaces conventional bipod flexures with flexures having mechanical shims so that adjustments can be made to counter the effects of gravitational distortion of the mirror surface while being tested in the horizontal position. Astigmatic aberration due to the gravitational changes is effectively reduced by adjusting the shim thickness, and the relation between the astigmatism and the shim thickness is investigated. We tested the mirror interferometrically at the center of curvature using a null lens. Then we repeated the test after rotating the mirror about its optical axis by 180° in the horizontal setup, and searched for the minimum system error. With the proposed flexure mount, the gravitational stress at the adhesive coupling between the mirror and the mount is reduced by half that of a conventional bipod flexure for better mechanical safety under launch loads. Analytical results using finite element methods are compared with experimental results from the optical interferometer. Vibration tests verified the mechanical safety and optical stability, and qualified their use in space applications.

  6. Design of an Optical System for High Power CO2 Laser Cutting

    de Lange, D.F.; Meijer, J.; Nielsen, Jakob Skov

    2003-01-01

    The results of a design study for the optical system for cutting with high power CO2 lasers (6 kW and up) will be presented. As transparent materials cannot be used for these power levels, mirrors have been applied. A coaxial cutting gas supply has been designed with a laser beam entrance into th...... independent of the entering beam angle or position. manufacturing tolerances have been compensated in a one time adjustment during the assembly of the optical system. Preliminary cutting results in 13 mm thick steel in a shipyard application show a signinficant improvement in the cutting performance....

  7. Design of optical axis jitter control system for multi beam lasers based on FPGA

    Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang

    2018-02-01

    A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.

  8. Compact Low-Power Driver for Deformable Mirror Systems, Phase I

    National Aeronautics and Space Administration — Boston Micromachines Corporation (BMC), a leading developer of unique, high-resolution micromachined deformable mirrors (DMs), will develop a compact, low-power,...

  9. Optically coupled CAMAC analog input output system

    Horie, Katsuzo; Kanazawa, Shuhei; Minehara, Eisuke; Hanashima, Susumu

    1985-08-01

    In an accelerator system, especially in ion sources, signals are exchanged between devices at different potentials. We have four ion sources in the negative ion injector for the JAERI tandem accelerator. Voltage to frequency conversion technic and optical fiber were used in the previous system. When we intended to extend the injector, we decided to revise the system to improve accuracy and reliability. For the purpose, we developed a new CAMAC module. It is an interface device between CAMAC dataway and optical fiber. The module has frequency synthesizers, frequency counters, optical transmitters and optical receivers in it. Accuracy, reliability and maintenability of the system were greatly improved by the module. (author)

  10. Autism, emotion recognition and the mirror neuron system: the case of music.

    Molnar-Szakacs, Istvan; Wang, Martha J; Laugeson, Elizabeth A; Overy, Katie; Wu, Wai-Ling; Piggot, Judith

    2009-11-16

    Understanding emotions is fundamental to our ability to navigate and thrive in a complex world of human social interaction. Individuals with Autism Spectrum Disorders (ASD) are known to experience difficulties with the communication and understanding of emotion, such as the nonverbal expression of emotion and the interpretation of emotions of others from facial expressions and body language. These deficits often lead to loneliness and isolation from peers, and social withdrawal from the environment in general. In the case of music however, there is evidence to suggest that individuals with ASD do not have difficulties recognizing simple emotions. In addition, individuals with ASD have been found to show normal and even superior abilities with specific aspects of music processing, and often show strong preferences towards music. It is possible these varying abilities with different types of expressive communication may be related to a neural system referred to as the mirror neuron system (MNS), which has been proposed as deficient in individuals with autism. Music's power to stimulate emotions and intensify our social experiences might activate the MNS in individuals with ASD, and thus provide a neural foundation for music as an effective therapeutic tool. In this review, we present literature on the ontogeny of emotion processing in typical development and in individuals with ASD, with a focus on the case of music.

  11. From music making to speaking: engaging the mirror neuron system in autism.

    Wan, Catherine Y; Demaine, Krystal; Zipse, Lauryn; Norton, Andrea; Schlaug, Gottfried

    2010-05-31

    Individuals with autism show impairments in emotional tuning, social interactions and communication. These are functions that have been attributed to the putative human mirror neuron system (MNS), which contains neurons that respond to the actions of self and others. It has been proposed that a dysfunction of that system underlies some of the characteristics of autism. Here, we review behavioral and imaging studies that implicate the MNS (or a brain network with similar functions) in sensory-motor integration and speech representation, and review data supporting the hypothesis that MNS activity could be abnormal in autism. In addition, we propose that an intervention designed to engage brain regions that overlap with the MNS may have significant clinical potential. We argue that this engagement could be achieved through forms of music making. Music making with others (e.g., playing instruments or singing) is a multi-modal activity that has been shown to engage brain regions that largely overlap with the human MNS. Furthermore, many children with autism thoroughly enjoy participating in musical activities. Such activities may enhance their ability to focus and interact with others, thereby fostering the development of communication and social skills. Thus, interventions incorporating methods of music making may offer a promising approach for facilitating expressive language in otherwise nonverbal children with autism. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Associative learning alone is insufficient for the evolution and maintenance of the human mirror neuron system.

    Oberman, Lindsay M; Hubbard, Edward M; McCleery, Joseph P

    2014-04-01

    Cook et al. argue that mirror neurons originate from associative learning processes, without evolutionary influence from social-cognitive mechanisms. We disagree with this claim and present arguments based upon cross-species comparisons, EEG findings, and developmental neuroscience that the evolution of mirror neurons is most likely driven simultaneously and interactively by evolutionarily adaptive psychological mechanisms and lower-level biological mechanisms that support them.

  13. Reflective optical system for time-resolved electron bunch measurements at PITZ

    Rosbach, K; Baehr, J [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Roensch-Schulenburg, J [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2011-01-15

    The Photo-Injector Test facility at DESY, Zeuthen site (PITZ), produces pulsed electron beams with low transverse emittance and is equipped with diagnostic devices for measuring various electron bunch properties, including the longitudinal and transverse electron phase space distributions. The longitudinal bunch structure is recorded using a streak camera located outside the accelerator tunnel, connected to the diagnostics in the beam-line stations by an optical system of about 30 m length. This system mainly consists of telescopes of achromatic lenses, which transport the light pulses and image them onto the entrance slit of the streak camera. Due to dispersion in the lenses, the temporal resolution degrades during transport. This article presents general considerations for time-resolving optical systems as well as simulations and measurements of specific candidate systems. It then describes the development of an imaging system based on mirror telescopes which will improve the temporal resolution, with an emphasis on off-axis parabolic mirror systems working at unit magnification. A hybrid system of lenses and mirrors will serve as a proof of principle. (orig.)

  14. A design of optical modulation system with pixel-level modulation accuracy

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  15. Mirror-based broadband scanner with minimized aberration

    Yu, Jiun-Yann; Tzeng, Yu-Yi; Huang, Chen-Han; Chui, Hsiang-Chen; Chu, Shi-Wei

    2009-02-01

    To obtain specific biochemical information in optical scanning microscopy, labeling technique is routinely required. Instead of the complex and invasive sample preparation procedures, incorporating spectral acquisition, which commonly requires a broadband light source, provides another mechanism to enhance molecular contrast. But most current optical scanning system is lens-based and thus the spectral bandwidth is limited to several hundred nanometers due to anti-reflection coating and chromatic aberration. The spectral range of interest in biological research covers ultraviolet to infrared. For example, the absorption peak of water falls around 3 μm, while most proteins exhibit absorption in the UV-visible regime. For imaging purpose, the transmission window of skin and cerebral tissues fall around 1300 and 1800 nm, respectively. Therefore, to extend the spectral bandwidth of an optical scanning system from visible to mid-infrared, we propose a system composed of metallic coated mirrors. A common issue in such a mirror-based system is aberrations induced by oblique incidence. We propose to compensate astigmatism by exchanging the sagittal and tangential planes of the converging spherical mirrors in the scanning system. With the aid of an optical design software, we build a diffraction-limited broadband scanning system with wavefront flatness better than λ/4 at focal plane. Combined with a mirror-based objective this microscopic system will exhibit full spectral capability and will be useful in microscopic imaging and therapeutic applications.

  16. Correction of a Space Telescope Active Primary Mirror Using Adaptive Optics in a Woofer-Tweeter Configuration

    2015-09-01

    zirconium and zirconium/copper to form the laminate foil [21]. The substrate bonds directly to the foil while attached to the mandrel. Figure 5...fabrication process uses a negative shape polished mandrel to form the mirror surface. The manufacturer layers CFRP prepreg over the mandrel and after...thin shell made from CFRP. The reflective 17 layer is a nano- laminate bonded to the front of the CFRP substrate. An active layer is bonded to the

  17. Manufacturability of compact synchrotron mirrors

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  18. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  19. Two-mirror Schwarzschild aplanats. Basic relations

    Terebizh, V. Yu.

    2005-01-01

    It is shown that the theory of aplanatic two-mirror telescopes developed by Karl Schwarzschild in 1905 leads to the unified description both the prefocal and the postfocal systems. The class of surfaces in the ZEMAX optical program has been properly extended to ascertain the image quality in exact Schwarzschild aplanats. A comparison of Schwarzschild aplanats with approximate Ritchey-Chretien and Gregory-Maksutov aplanatic telescopes reveals a noticeable advantage of the former at fast focal ...

  20. Two-Mirror Schwarzschild Aplanats: Basic Relations

    Terebizh, V. Yu.

    2005-02-01

    The theory of aplanatic two-mirror telescopes developed by Karl Schwarzschild in 1905 is shown to lead to a unified description of both prefocal and postfocal systems. The class of surfaces in the ZEMAX optical program has been properly extended to ascertain the image quality in exact Schwarzschild aplanats. A comparison of Schwarzschild aplanats with approximate Ritchey-Chrétien and Gregory-Maksutov aplanatic telescopes reveals a noticeable advantage of the former at the system’s fast focal ratio.