WorldWideScience

Sample records for mirnas mediate translational

  1. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study

    DEFF Research Database (Denmark)

    Lajer, C B; Nielsen, F C; Friis-Hansen, L

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which regulate mRNA translation/decay, and may serve as biomarkers. We characterised the expression of miRNAs in clinically sampled oral and pharyngeal squamous cell carcinoma (OSCC and PSCC) and described the influence of human papilloma virus (HPV)....

  2. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth.

    Science.gov (United States)

    Zhang, Xiaoqian; Li, Kecheng; Xing, Ronge; Liu, Song; Chen, Xiaolin; Yang, Haoyue; Li, Pengcheng

    2018-04-18

    Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.

  3. HTLV-1 Tax mediated downregulation of miRNAs associated with chromatin remodeling factors in T cells with stably integrated viral promoter.

    Directory of Open Access Journals (Sweden)

    Saifur Rahman

    Full Text Available RNA interference (RNAi is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1 transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR using a CD4(+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type.

  4. Lin28 Mediates Cancer Chemotherapy Resistance via Regulation of miRNA Signaling.

    Science.gov (United States)

    Xu, Chaoyang; Xie, Shuduo; Song, Chunjiao; Huang, Liming; Jiang, Zhinong

    2014-06-01

    Chemotherapy resistance is one of the major obstacles limiting the success of cancer drug treatment. Among the mechanisms of resistance to chemotherapy treatment, there are those closely related to P-Glycoprotein, multidrug resistance-related protein, glutathione S-transferase pi and topoisomerase-II. Lin28 is a highly conserved RNA-binding protein, it consists of a cold shock domain and retroviral-type (CCHC) zinc finger motifs. In previous preclinical and clinical studies, positive Lin28 expression in cancer cells was correlated with decreased sensitivity to chemotherapy. And Lin28 could mediate cancer chemotherapy resistance via regulation of miR107 and Let-7 MiRNA. This article reviews current knowledge on predictive value of Lin28 in response to chemotherapy. Better understanding of its role may facilitate patient's selection of therapeutic regimen and lead to optimal clinical outcome.

  5. Investigation of miRNA Biology by Bioinformatic Tools and Impact of miRNAs in Colorectal Cancer: Regulatory Relationship of c-Myc and p53 with miRNAs

    Directory of Open Access Journals (Sweden)

    Yaguang Xi

    2007-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that mediate gene expression at the posttranscriptional and translational levels and have been demonstrated to be involved in diverse biological functions. Mounting evidence in recent years has shown that miRNAs play key roles in tumorigenesis due to abnormal expression of and mutations in miRNAs. High throughput miRNA expression profiling of several major tumor types has identified miRNAs associated with clinical diagnosis and prognosis of cancer treatment. Previously our group has discovered a novel regulatory relationship between tumor suppressor gene p53 with miRNAs expression and a number of miRNA promoters contain putative p53 binding sites. In addition, others have reported that c-myc can mediate a large number of miRNAs expression. In this review, we will emphasize algorithms to identify mRNA targets of miRNAs and the roles of miRNAs in colorectal cancer. In particular, we will discuss a novel regulatory relationship of miRNAs with tumor suppressor p53 and c-myc. miRNAs are becoming promising novel targets and biomarkers for future cancer therapeutic development and clinical molecular diagnosis.

  6. Translation and Culture:Translation as a Cross-cultural Mediation

    Institute of Scientific and Technical Information of China (English)

    叶谋锦

    2013-01-01

    Translation is a complex activity which involves language competence as well as proficiency in multiculturalism. From the perspective of multiculturalism, translation resembles recreation of source text by grasping essential meanings to produce a sub-tle target text which can be clearly perceived by target readers. Ignoring cultural issues can present serious mistranslations in the field of advertising translation. This paper aims to explore the significance of connotation confined by the framework of culture and point out that verbal translation is a dangerous inclination by illustrating three business examples. This paper argues that cross-cultural mediation plays an important role in translation.

  7. Hypothesis: A Role for Fragile X Mental Retardation Protein in Mediating and Relieving MicroRNA-Guided Translational Repression?

    Directory of Open Access Journals (Sweden)

    Isabelle Plante

    2006-01-01

    Full Text Available MicroRNA (miRNA-guided messenger RNA (mRNA translational repression is believed to be mediated by effector miRNA-containing ribonucleoprotein (miRNP complexes harboring fragile X mental retardation protein (FMRP. Recent studies documented the nucleic acid chaperone properties of FMRP and characterized its role and importance in RNA silencing in mammalian cells. We propose a model in which FMRP could facilitate miRNA assembly on target mRNAs in a process involving recognition of G quartet structures. Functioning within a duplex miRNP, FMRP may also mediate mRNA targeting through a strand exchange mechanism, in which the miRNA* of the duplex is swapped for the mRNA. Furthermore, FMRP may contribute to the relief of miRNA-guided mRNA repression through a reverse strand exchange reaction, possibly initiated by a specific cellular signal, that would liberate the mRNA for translation. Suboptimal utilization of miRNAs may thus account for some of themolecular defects in patients with the fragile X syndrome.

  8. miRNA and Degradome Sequencing Reveal miRNA and Their Target Genes That May Mediate Shoot Growth in Spur Type Mutant “Yanfu 6”

    Science.gov (United States)

    Song, Chunhui; Zhang, Dong; Zheng, Liwei; Zhang, Jie; Zhang, Baojuan; Luo, Wenwen; Li, Youmei; Li, Guangfang; Ma, Juanjuan; Han, Mingyu

    2017-01-01

    The spur-type growth habit in apple trees is characterized by short internodes, increased number of fruiting spurs, and compact growth that promotes flowering and facilitates management practices, such as pruning. The molecular mechanisms responsible for regulating spur-type growth have not been elucidated. In the present study, miRNAs and the expression of their potential target genes were evaluated in shoot tips of “Nagafu 2” (CF) and spur-type bud mutation “Yanfu 6” (YF). A total of 700 mature miRNAs were identified, including 202 known apple miRNAs and 498 potential novel miRNA candidates. A comparison of miRNA expression in CF and YF revealed 135 differentially expressed genes, most of which were downregulated in YF. YF also had lower levels of GA, ZR, IAA, and ABA hormones, relative to CF. Exogenous applications of GA promoted YF shoot growth. Based on the obtained results, a regulatory network involving plant hormones, miRNA, and their potential target genes is proposed for the molecular mechanism regulating the growth of YF. miRNA164, miRNA166, miRNA171, and their potential targets, and associated plant hormones, appear to regulate shoot apical meristem (SAM) growth. miRNA159, miRNA167, miRNA396, and their potential targets, and associated plant hormones appear to regulate cell division and internode length. This study provides a foundation for further studies designed to elucidate the mechanism underlying spur-type apple architecture. PMID:28424721

  9. miRNA-148a regulates the expression of the estrogen receptor through DNMT1-mediated DNA methylation in breast cancer cells

    Science.gov (United States)

    Xu, Yurui; Chao, Lin; Wang, Jianyu; Sun, Yonghong

    2017-01-01

    Breast cancer remains the most prevalent cancer among women worldwide. The expression of estrogen receptor-α (ER-α) is an important marker for prognosis. ER-α status may be positive or negative in breast cancer cells, although the cause of negative or positive status is not yet fully characterized. In the present study, the expression of ER-α and miRNA-148a was assessed in two breast cancer cell lines, HCC1937 and MCF7. An association between ER-α and miRNA-148a expression was identified. It was then demonstrated that DNA methyltransferase 1 (DNMT1) is a target of miRNA-148a, which may suppress the expression of ER-α via DNA methylation. Finally, an miRNA-148a mimic or inhibitor was transfected into MCF7 cells; the miRNA-148a mimic increased ER-α expression whereas the miRNA-148a inhibitor decreased ER-α expression. In conclusion, it was identified that miRNA-148a regulates ER-α expression through DNMT1-mediated DNA methylation in breast cancer cells. This may represent a potential miRNA-based strategy to modulate the expression of ER-α and provide a novel perspective for investigating the role of miRNAs in treating breast cancer. PMID:29085474

  10. Translators vs pharmacists as successful interlingual knowledge mediators?

    DEFF Research Database (Denmark)

    Jensen, Matilde Nisbeth

    a contrastive source text/target text linguistic framework focussing on elements such as the use of nominalization, compounds nouns, medical terminology and other formal register. Findings showed significant differences between the two translator groups. My findings revealed that the nature of the translator......Patient Information Leaflets (PILs) were introduced in the EU as mandatory texts accompanying all medication informing users about dosage, side effects, etc. in order to foster informed decision-making and patient empowerment. By its nature, the PIL genre is complex aiming at instructing lay people...... about complex medical content, i.e. mediation of specialized medical knowledge across a knowledge asymmetry. Within the EU, this intralingual translation is further complicated by an interlingual dimension as PILs must be translated from English into all other 23 EU languages. Legally, PILs must...

  11. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma.

    Science.gov (United States)

    Lung, Raymond W-M; Hau, Pok-Man; Yu, Ken H-O; Yip, Kevin Y; Tong, Joanna H-M; Chak, Wing-Po; Chan, Anthony W-H; Lam, Ka-Hei; Lo, Angela Kwok-Fung; Tin, Edith K-Y; Chau, Shuk-Ling; Pang, Jesse C-S; Kwan, Johnny S-H; Busson, Pierre; Young, Lawrence S; Yap, Lee-Fah; Tsao, Sai-Wah; To, Ka-Fai; Lo, Kwok-Wai

    2018-04-01

    Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors

  12. EBV‐encoded miRNAs target ATM‐mediated response in nasopharyngeal carcinoma

    Science.gov (United States)

    Lung, Raymond W‐M; Hau, Pok‐Man; Yu, Ken H‐O; Yip, Kevin Y; Tong, Joanna H‐M; Chak, Wing‐Po; Chan, Anthony W‐H; Lam, Ka‐Hei; Lo, Angela Kwok‐Fung; Tin, Edith K‐Y; Chau, Shuk‐Ling; Pang, Jesse C‐S; Kwan, Johnny S‐H; Busson, Pierre; Young, Lawrence S; Yap, Lee‐Fah; Tsao, Sai‐Wah

    2018-01-01

    Abstract Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein–Barr virus (EBV) infection. In NPC, miR‐BARTs, the EBV‐encoded miRNAs derived from BamH1‐A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV‐encoded miRNAs in a panel of NPC patient‐derived xenografts and an EBV‐positive NPC cell line by small RNA sequencing. Among the 40 miR‐BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV‐miRNAs, BART5‐5p, BART7‐3p, BART9‐3p, and BART14‐3p could negatively regulate the expression of a key DNA double‐strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'‐UTR. Notably, the expression of these four miR‐BARTs represented more than 10% of all EBV‐encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT‐PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5‐5p, BART7‐3p, BART9‐3p, and BART14‐3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR‐BARTs in EBV‐positive NPC cells, we further demonstrated the novel function of miR‐BARTs in inhibiting Zta‐induced lytic reactivation. These findings imply that the four viral miRNAs work co‐operatively to modulate ATM activity in response to DNA damage and to maintain viral latency

  13. Translation initiation mediated by nuclear cap-binding protein complex.

    Science.gov (United States)

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  14. RACK1-mediated translation control promotes liver fibrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Min; Peng, Peike; Wang, Jiajun [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Wang, Lan; Duan, Fangfang [Institute of Biomedical Science, Fudan University, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Ruan, Yuanyuan, E-mail: yuanyuanruan@fudan.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institute of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2015-07-31

    Activation of quiescent hepatic stellate cells (HSCs) is the central event of liver fibrosis. The translational machinery is an optimized molecular network that affects cellular homoeostasis and diseases, whereas the role of protein translation in HSCs activation and liver fibrosis is little defined. Our previous report suggests that up-regulation of receptor for activated C-kinase 1(RACK1) in HSCs is critical for liver fibrogenesis. In this study, we found that RACK1 promoted macrophage conditioned medium (MCM)-induced assembly of eIF4F and phosphorylation of eIF4E in primary HSCs. RACK1 enhanced the translation and expression of pro-fibrogenic factors collagen 1α1, snail and cyclin E1 induced by MCM. Administration of PP242 or knock-down of eIF4E suppressed RACK1-stimulated collagen 1α1 production, proliferation and migration in primary HSCs. In addition, depletion of eIF4E attenuated thioacetamide (TAA)-induced liver fibrosis in vivo. Our data suggest that RACK1-mediated stimulation of cap-dependent translation plays crucial roles in HSCs activation and liver fibrogenesis, and targeting translation initiation could be a promising strategy for the treatment of liver fibrosis. - Highlights: • RACK1 induces the assembly of eIF4F and phosphorylation of eIF4E in primary HSCs. • RACK1 stimulates the translation of collagen 1α1, snail and cyclin E1 in HSCs. • RACK1 promotes HSCs activation via cap-mediated translation. • Depletion of eIF4E suppresses liver fibrogenesis in vivo.

  15. RACK1-mediated translation control promotes liver fibrogenesis

    International Nuclear Information System (INIS)

    Liu, Min; Peng, Peike; Wang, Jiajun; Wang, Lan; Duan, Fangfang; Jia, Dongwei; Ruan, Yuanyuan; Gu, Jianxin

    2015-01-01

    Activation of quiescent hepatic stellate cells (HSCs) is the central event of liver fibrosis. The translational machinery is an optimized molecular network that affects cellular homoeostasis and diseases, whereas the role of protein translation in HSCs activation and liver fibrosis is little defined. Our previous report suggests that up-regulation of receptor for activated C-kinase 1(RACK1) in HSCs is critical for liver fibrogenesis. In this study, we found that RACK1 promoted macrophage conditioned medium (MCM)-induced assembly of eIF4F and phosphorylation of eIF4E in primary HSCs. RACK1 enhanced the translation and expression of pro-fibrogenic factors collagen 1α1, snail and cyclin E1 induced by MCM. Administration of PP242 or knock-down of eIF4E suppressed RACK1-stimulated collagen 1α1 production, proliferation and migration in primary HSCs. In addition, depletion of eIF4E attenuated thioacetamide (TAA)-induced liver fibrosis in vivo. Our data suggest that RACK1-mediated stimulation of cap-dependent translation plays crucial roles in HSCs activation and liver fibrogenesis, and targeting translation initiation could be a promising strategy for the treatment of liver fibrosis. - Highlights: • RACK1 induces the assembly of eIF4F and phosphorylation of eIF4E in primary HSCs. • RACK1 stimulates the translation of collagen 1α1, snail and cyclin E1 in HSCs. • RACK1 promotes HSCs activation via cap-mediated translation. • Depletion of eIF4E suppresses liver fibrogenesis in vivo

  16. MIRNAS in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity

    Directory of Open Access Journals (Sweden)

    Carlos Lafourcade

    2016-01-01

    Full Text Available Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system.

  17. Joint profiling of miRNAs and mRNAs reveals miRNA mediated gene regulation in the Göttingen minipig obesity model

    DEFF Research Database (Denmark)

    Mentzel, Caroline M. Junker; Alkan, Ferhat; Keinicke, Helle

    2016-01-01

    . In contrast, pigs are emerging as an excellent animal model for obesity studies, due to their similarities in their metabolism, their digestive tract and their genetics, when compared to humans. The Göttingen minipig is a small sized easy-to-handle pig breed which has been extensively used for modeling human...... obesity, due to its capacity to develop severe obesity when fed ad libitum. The aim of this study was to identify differentially expressed of protein-coding genes and miRNAs in a Göttingen minipig obesity model. Liver, skeletal muscle and abdominal adipose tissue were sampled from 7 lean and 7 obese...... and skeletal muscle). miRNAs are small non-coding RNA molecules which have important regulatory roles in a wide range of biological processes, including obesity. Rodents are widely used animal models for human diseases including obesity. However, not all research is applicable for human health or diseases...

  18. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate.

    Science.gov (United States)

    Li, Wei; Jiang, Wei; Ding, Yongshun; Wang, Lei

    2015-09-15

    MicroRNAs (miRNAs) play important roles in a variety of biological processes and have been regarded as tumor biomarkers in cancer diagnosis and prognosis. In this work, a single-molecule counting method for miRNA analysis was proposed based on toehold-mediated strand displacement reaction (SDR) and DNA tetrahedron substrate. Firstly, a specially designed DNA tetrahedron was assembled with a hairpin at one of the vertex, which has an overhanging toehold domain. Then, the DNA tetrahedron was immobilized on the epoxy-functional glass slide by epoxy-amine reaction, forming a DNA tetrahedron substrate. Next, the target miRNA perhybridized with the toehold domain and initiated a strand displacement reaction along with the unfolding of the hairpin, realizing the selective recognization of miRNA. Finally, a biotin labeled detection DNA was hybridized with the new emerging single strand and the streptavidin coated QDs were used as fluorescent probes. Fluorescent images were acquired via epi-fluorescence microscopy, the numbers of fluorescence dots were counted one by one for quantification. The detection limit is 5 fM, which displayed an excellent sensitivity. Moreover, the proposed method which can accurately be identified the target miRNA among its family members, demonstrated an admirable selectivity. Furthermore, miRNA analysis in total RNA samples from human lung tissues was performed, suggesting the feasibility of this method for quantitative detection of miRNA in biomedical research and early clinical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Bible Translation and Culture: the theory and practice of intercultural mediation in the translation of John 2.1-12

    NARCIS (Netherlands)

    de Vries, Lourens

    2017-01-01

    The paper presents a theory of Bible translation as intercultural mediation and applies it to the translation of the story of the Cana Miracle in John 2:1-12. The theoretical framework draws on the notions of script, skopos, the ethics of loyalty and the distinction between three domains of

  20. Phage-mediated counting by the naked eye of miRNA molecules at attomolar concentrations in a Petri dish

    Science.gov (United States)

    Zhou, Xin; Cao, Peng; Zhu, Ye; Lu, Wuguang; Gu, Ning; Mao, Chuanbin

    2015-10-01

    The ability to count biomolecules such as cancer-biomarker miRNAs with the naked eye is seemingly impossible in molecular diagnostics. Here, we show an ultrasensitive naked-eye-counting strategy for quantifying miRNAs by employing T7 phage--a bacteria-specific virus nanoparticle--as a surrogate. The phage is genetically engineered to become fluorescent and capable of binding a miRNA-capturing gold nanoparticle (GNP) in a one-to-one manner. Target miRNAs crosslink the resultant phage-GNP couple and miRNA-capturing magnetic microparticles, forming a sandwich complex containing equimolar phage and miRNA. The phage is then released from the complex and developed into one macroscopic fluorescent plaque in a Petri dish by plating it in a host bacterial medium. Counting the plaques by the naked eye enables the quantification of miRNAs with detection limits of ~3 and ~5 aM for single-target and two-target miRNAs, respectively. This approach offers ultrasensitive and convenient quantification of disease biomarkers by the naked eye.

  1. The status of intercultural mediation in translation: Is it an absolute licence?

    Directory of Open Access Journals (Sweden)

    Akbari Alireza

    2017-06-01

    Full Text Available The role of translator as Sprachmittler or intercultural mediator has welcomed much attention since the advent of the “cultural turn” paradigm. The present research paper seeks to figure out how the manifestations of intercultural mediation are achieved via translation in terms of two mediation facets, viz, personal and communicated interpretations. Whereas the former deals with the presence of the translator between the source and target cultures, the latter concerns the role of the reader of the translated text in the target language through several mediational strategies including: expansion, reframing, replacement, eschewing of dispreferred structure, and dispensation to capture the message of the source text. The rationale for focusing on these strategies lies in the fact that translators often utilize transliteration and literal translation strategies when it comes to cultural items and concepts. As far as review of the literature indicates, mediational translation has not received due attention in the Persian language since it differs in comparison with other languages such as English, French etc. In the case of language patterning, such study reveals some novel but applicable cultural translation strategies that highlight the nature of mediation in cultural translation.

  2. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer.

    Science.gov (United States)

    Yang, Wanli; Ma, Jiaojiao; Zhou, Wei; Cao, Bo; Zhou, Xin; Yang, Zhiping; Zhang, Hongwei; Zhao, Qingchuan; Fan, Daiming; Hong, Liu

    2017-11-01

    Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.

  3. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy.

    Science.gov (United States)

    Gao, Shiqian; Tian, Huayu; Guo, Ye; Li, Yuce; Guo, Zhaopei; Zhu, Xiaojuan; Chen, Xuesi

    2015-10-01

    MicroRNA-21 (miR-21) inhibition is a promising biological strategy for breast cancer therapy. However its application is limited by the lack of efficient miRNA inhibitor delivery systems. As a cationic polymer transfection material for nucleic acids, the poly (l-lysine)-modified polyethylenimine (PEI-PLL) copolymer combines the high transfection efficiency of polyethylenimine (PEI) and the good biodegradability of polyllysine (PLL). In this work, PEI-PLL was successfully synthesized and confirmed to transfect plasmid and oligonucleotide more effectively than PEI in MCF-7 cells (human breast cancer cells). In this regard, two kinds of miR-21 inhibitors, miR-21 sponge plasmid DNA (Sponge) and anti-miR-21 oligonucleotide (AMO), were transported into MCF-7 cells by PEI-PLL respectively. The miR-21 expression and the cellular physiology were determined post transfection. Compared with the negative control, PEI-PLL/Sponge or PEI-PLL/AMO groups exhibited lower miR-21 expression and cell viability. The anti-tumor mechanism of PEI-PLL/miR-21 inhibitors was further studied by cell cycle and western blot analyses. The results indicated that the miR-21 inhibition could induce the cell cycle arrest in G1 phase, upregulate the expression of Programmed Cell Death Protein 4 (PDCD4) and thus active the caspase-3 apoptosis pathway. Interestingly, the PEI-PLL/Sponge and PEI-PLL/AMO also sensitized the MCF-7 cells to anti-tumor drugs, doxorubicin (DOX) and cisplatin (CDDP). These results demonstrated that PEI-PLL/Sponge and PEI-PLL/AMO complexes would be two novel and promising gene delivery systems for breast cancer gene therapy based on miR-21 inhibition. This work was a combination of the high transfection efficiency of polyethylenimine (PEI), the good biodegradability of polyllysine (PLL) and the breast cancer-killing effect of miR-21 inhibitors. The poly (l-lysine)-modified polyethylenimine (PEI-PLL) copolymer was employed as the vector of miR-21 sponge plasmid DNA (Sponge) or

  4. Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles.

    Science.gov (United States)

    Mueller, Christian; Tang, Qiushi; Gruntman, Alisha; Blomenkamp, Keith; Teckman, Jeffery; Song, Lina; Zamore, Phillip D; Flotte, Terence R

    2012-03-01

    α-1 antitrypsin (AAT) deficiency can exhibit two pathologic states: a lung disease that is primarily due to the loss of AAT's antiprotease function, and a liver disease resulting from a toxic gain-of-function of the PiZ-AAT (Z-AAT) mutant protein. We have developed several recombinant adeno-associated virus (rAAV) vectors that incorporate microRNA (miRNA) sequences targeting the AAT gene while also driving the expression of miRNA-resistant wild-type AAT-PiM (M-AAT) gene, thus achieving concomitant Z-AAT knockdown in the liver and increased expression of M-AAT. Transgenic mice expressing the human PiZ allele treated with dual-function rAAV9 vectors showed that serum PiZ was stably and persistently reduced by an average of 80%. Treated animals showed knockdown of Z-AAT in liver and serum with concomitant increased serum M-AAT as determined by allele-specific enzyme-linked immunosorbent assays (ELISAs). In addition, decreased globular accumulation of misfolded Z-AAT in hepatocytes and a reduction in inflammatory infiltrates in the liver was observed. Results from microarray studies demonstrate that endogenous miRNAs were minimally affected by this treatment. These data suggests that miRNA mediated knockdown does not saturate the miRNA pathway as has been seen with viral vector expression of short hairpin RNAs (shRNAs). This safe dual-therapy approach can be applied to other disorders such as amyotrophic lateral sclerosis, Huntington disease, cerebral ataxia, and optic atrophies.

  5. The Translator as a Mediator in the Dialogue of Literatures

    Directory of Open Access Journals (Sweden)

    Yuanchun Li

    2017-11-01

    Full Text Available The article raises the issue of translating the works of national literatures through an intermediate language since most of the works of the peoples of Russia find their readers in the world thanks to the Russian language. The urgency of this problem is obvious in modern conditions when the interest in Turkic-speaking literature is growing, and many Russian poets, like in the Soviet era, see themselves as the translators from national languages. On the example of the translation of the poem «tɵshtǝgechǝ bu kɵn – sǝer Һǝm iat …» (“the day is like a dream” of the contemporary poetess Yulduz Minnullina both the strengths and the weaknesses of the modern translation school are considered. The word for word translation can lead to the unification of differences between literatures when the dominant language (the Russian language imposes certain aesthetic principles on the original text. The most important aspect of the topic of interest is the consideration of the role of interlinear translation in the establishment of interliterary dialogue. Through interlinear translation a foreign work, endowed with its special world of ideas, images, national and artistic traditions, serves as the basis for dialogical relations that are indispensable for both the Russian-speaking reader who discovers the “other” literature, and the very work that is included in the dialogue in the “large time”. At the same time, the elimination of differences between literatures occurs when the translator, through the Russian language, by means of line-by-line translation, introduces the features of his own consciousness into a foreign work. In this case, the translation simplifies the content of the literature, equalizes the artistic merits, thereby projecting the life of the work onto communication, rather than dialogue.

  6. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    Science.gov (United States)

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  7. Promotion of Viral IRES-Mediated Translation Initiation under Mild Hypothermia.

    Directory of Open Access Journals (Sweden)

    Maria Licursi

    Full Text Available Internal ribosome entry site (IRES-mediated translation is an essential replication step for certain viruses. As IRES-mediated translation is regulated differently from cap-dependent translation under various cellular conditions, we sought to investigate whether temperature influences efficiency of viral IRES-mediated translation initiation by using bicistronic reporter constructs containing an IRES element of encephalomyocarditis virus (EMCV, foot-and-mouth disease virus (FMDV, hepatitis C virus (HCV, human rhinovirus (HRV or poliovirus (PV. Under mild hypothermic conditions (30 and 35°C, we observed increases in the efficiency of translation initiation by HCV and HRV IRES elements compared to translation initiation at 37°C. The promotion of HRV IRES activity was observed as early as 2 hours after exposure to mild hypothermia. We also confirmed the promotion of translation initiation by HRV IRES under mild hypothermia in multiple cell lines. The expression levels and locations of polypyrimidine tract-binding protein (PTB and upstream of N-Ras (unr, the IRES trans-acting factors (ITAFs of HCV and HRV IRES elements, were not modulated by the temperature shift from 37°C to 30°C. Taken together, this study demonstrates that efficiency of translation initiation by some viral IRES elements is temperature dependent.

  8. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    Science.gov (United States)

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-01-01

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments. PMID:26464441

  9. SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis.

    Science.gov (United States)

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-12-15

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20-24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5', but not 3'-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5' to the cleavage site, but several examples of 3'-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5'-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5'-cleavage fragments. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    2015-01-01

    Full Text Available Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES that is located at the 5′-untranslated region (UTR of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80 has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.

  11. Internal ribosomal entry site-mediated translation is important for rhythmic PERIOD1 expression.

    Directory of Open Access Journals (Sweden)

    Kyung-Ha Lee

    Full Text Available The mouse PERIOD1 (mPER1 plays an important role in the maintenance of circadian rhythm. Translation of mPer1 is directed by both a cap-dependent process and cap-independent translation mediated by an internal ribosomal entry site (IRES in the 5' untranslated region (UTR. Here, we compared mPer1 IRES activity with other cellular IRESs. We also found critical region in mPer1 5'UTR for heterogeneous nuclear ribonucleoprotein Q (HNRNPQ binding. Deletion of HNRNPQ binding region markedly decreased IRES activity and disrupted rhythmicity. A mathematical model also suggests that rhythmic IRES-dependent translation is a key process in mPER1 oscillation. The IRES-mediated translation of mPer1 will help define the post-transcriptional regulation of the core clock genes.

  12. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    International Nuclear Information System (INIS)

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-01-01

    Highlights: ► Sigma1 ligand treatment mediates decrease in tumor cell mass. ► Identification of a Sigma1 ligand with reversible translational repressor actions. ► Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  13. Towards an understanding of miRNA regulation

    DEFF Research Database (Denmark)

    Jensen, Trine Ilsø

    miRNAs are well-known regulators of gene expression. They function post-transcriptionally by binding to complementary sites within the 3´UTR of target mRNAs, which mediates translational repression and destabilization. However, miRNA expression itself is also subjected to regulation. Here, we...... report a new method to investigate and potentially characterize the pri-miRNA transcript. Overexpression of a transdominant Drosha mutant, which is unable to cleave its substrate, enables stabilization of the pri-miRNA transcript. Drosha mutant immunoprecipitation from the nuclear compartment...... is performed followed by high-throughput sequencing (nuclear Drosha Mt2 RIPseq). This method allows for the detection of global pri-miRNA signature and also provides a method to potentially identify new Drosha substrates. Furthermore, data on the identification of a novel endogenous circular RNA sponge (ciRS-7...

  14. Protocol: developing a conceptual framework of patient mediated knowledge translation, systematic review using a realist approach

    OpenAIRE

    Wiljer David; Webster Fiona; Brouwers Melissa C; Légaré France; Gagliardi Anna R; Badley Elizabeth; Straus Sharon

    2011-01-01

    Abstract Background Patient involvement in healthcare represents the means by which to achieve a healthcare system that is responsive to patient needs and values. Characterization and evaluation of strategies for involving patients in their healthcare may benefit from a knowledge translation (KT) approach. The purpose of this knowledge synthesis is to develop a conceptual framework for patient-mediated KT interventions. Methods A preliminary conceptual framework for patient-mediated KT interv...

  15. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways.

    Science.gov (United States)

    Singh, Noopur; Sharma, Ashok

    Turmeric has been used as a therapeutic herb over centuries in traditional medicinal systems due to the presence of several secondary metabolite compounds. microRNAs are known to regulate gene expression at the post-transcriptional level by transcriptional cleavage or translation repression. miRNAs have been demonstrated to play an active role in secondary metabolism regulation. The present work was focused on the identification of the miRNAs involved in the regulation of secondary metabolite and development process of turmeric. Eighteen miRNA families were identified for turmeric. Sixteen miRNA families were observed to regulate 238 target transcripts. LncRNAs targets of the putative miRNA candidates were also predicted. Our results indicated their role in binding, reproduction, stress, and other developmental processes. Gene annotation and pathway analysis illustrated the biological function of the targets regulated by the putative miRNAs. The miRNA-mediated gene regulatory network also revealed co-regulated targets that were regulated by two or more miRNA families. miR156 and miR5015 were observed to be involved in rhizome development. miR5021 showed regulation for terpenoid backbone biosynthesis and isoquinoline alkaloid biosynthesis pathways. The flavonoid biosynthesis pathway was observed to be regulated by miR2919. The analysis revealed the probable involvement of three miRNAs (miR1168.2, miR156b and miR1858) in curcumin biosynthesis. Other miRNAs were found to be involved in the growth and developmental process of turmeric. Phylogenetic analysis of selective miRNAs was also performed. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  16. Reduction of voltage gated sodium channel protein in DRG by vector mediated miRNA reduces pain in rats with painful diabetic neuropathy.

    Science.gov (United States)

    Chattopadhyay, Munmun; Zhou, Zhigang; Hao, Shuanglin; Mata, Marina; Fink, David J

    2012-03-22

    Painful neuropathy is a common complication of diabetes. Previous studies have identified significant increases in the amount of voltage gated sodium channel isoforms Na(V)1.7 and Na(V)1.3 protein in the dorsal root ganglia (DRG) of rats with streptozotocin (STZ)-induced diabetes. We found that gene transfer-mediated release of the inhibitory neurotransmitters enkephalin or gamma amino butyric acid (GABA) from DRG neurons in diabetic animals reduced pain-related behaviors coincident with a reduction in Na(V)1.7 protein levels in DRG in vivo. To further evaluate the role of Na(V)α subunit levels in DRG in the pathogenesis of pain in diabetic neuropathy, we constructed a non-replicating herpes simplex virus (HSV)-based vector expressing a microRNA (miRNA) against Na(V)α subunits. Subcutaneous inoculation of the miRNA-expressing HSV vector into the feet of diabetic rats to transduce DRG resulted in a reduction in Na(V)α subunit levels in DRG neurons, coincident with a reduction in cold allodynia, thermal hyperalgesia and mechanical hyperalgesia. These data support the role of increased Na(V)α protein in DRG in the pathogenesis of pain in diabetic neuropathy, and provide a proof-of-principle demonstration for the development of a novel therapy that could be used to treat intractable pain in patients with diabetic neuropathy.

  17. Patient-mediated knowledge translation (PKT) interventions for clinical encounters: a systematic review

    OpenAIRE

    Gagliardi, Anna R.; L?gar?, France; Brouwers, Melissa C.; Webster, Fiona; Badley, Elizabeth; Straus, Sharon

    2016-01-01

    Background Patient-mediated knowledge translation (PKT) interventions engage patients in their own health care. Insight on which PKT interventions are effective is lacking. We sought to describe the type and impact of PKT interventions. Methods We performed a systematic review of PKT interventions, defined as strategies that inform, educate and engage patients in their own health care. We searched MEDLINE, EMBASE and the Cochrane Library from 2005 to 2014 for English language studies that eva...

  18. Hotair mediates hepatocarcinogenesis through suppressing miRNA-218 expression and activating P14 and P16 signaling.

    Science.gov (United States)

    Fu, Wei-Ming; Zhu, Xiao; Wang, Wei-Mao; Lu, Ying-Fei; Hu, Bao-Guang; Wang, Hua; Liang, Wei-Cheng; Wang, Shan-Shan; Ko, Chun-Hay; Waye, Mary Miu-Yee; Kung, Hsiang-Fu; Li, Gang; Zhang, Jin-Fang

    2015-10-01

    Long non-coding RNA Hotair has been considered as a pro-oncogene in multiple cancers. Although there is emerging evidence that reveals its biological function and the association with clinical prognosis, the precise mechanism remains largely elusive. We investigated the function and mechanism of Hotair in hepatocellular carcinoma (HCC) cell models and a xenograft mouse model. The regulatory network between miR-218 and Hotair was elucidated by RNA immunoprecipitation and luciferase reporter assays. Finally, the correlation between Hotair, miR-218 and the target gene Bmi-1 were evaluated in 52 paired HCC specimens. In this study, we reported that Hotair negatively regulated miR-218 expression in HCC, which might be mediated through an EZH2-targeting-miR-218-2 promoter regulatory axis. Further investigation revealed that Hotair knockdown dramatically inhibited cell viability and induced G1-phase arrest in vitro and suppressed tumorigenicity in vivo by promoting miR-218 expression. Oncogene Bmi-1 was shown to be a functional target of miR-218, and the main downstream targets signaling, P16(Ink4a) and P14(ARF), were activated in Hotair-suppressed tumorigenesis. In primary human HCC specimens, Hotair and Bmi-1 were concordantly upregulated whereas miR-218 was downregulated in these tissues. Furthermore, Hotair was inversely associated with miR-218 expression and positively correlated with Bmi-1 expression in these clinical tissues. Hotair silence activates P16(Ink4a) and P14(ARF) signaling by enhancing miR-218 expression and suppressing Bmi-1 expression, resulting in the suppression of tumorigenesis in HCC. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. DNA methyltransferase 1-targeting miRNA-148aof dairymilk: apotential bioactive modifier of thehumanepigenome

    Directory of Open Access Journals (Sweden)

    Bodo C. Melnik

    2017-09-01

    human and bovine DNMT1 mRNA respectively, which may allow for the strong binding of bovine miRNA-148a to human DNMT1 mRNA. Consequently, we hypothesize that bovine milk miRNA-148a - protected by highly resistant milk exosome membranes - may reach the systemic circulation of the milk consumer targeting and suppressing human DNMT1 mRNA. Attenuated DNMT1 expression associated with reduced CpG promoter methylation upregulates gene expression of developmental genes such as FOXP3 and FTO. Milk-derived miRNA-125b, miRNA-30d, and miRNA-25 via targeting TP53 may downregulate p53, which physically interacts with and stabilizes DNMT1. Enhancement of dairy lactation performance is associated with increased expression of bovine milk miRNA-148a, a modification that may further increase the miRNA-148a load of dairy milk. Conclusions: Translational evidence and comparative functional genomics support our hypothesis that bovine milk miRNA signaling may suppress human DNMT1-mediated epigenetic regulation and p53 signaling, which closely interacts with the epigenetic and transcriptional regulation of growth, metabolism, cell cycle progression, and apoptosis. Human and bovine milk miRNAs are able to target DNMT1 and TP53 mRNAs, share identical seed sequences, and resist pasteurization. Pasteurization and refrigeration of dairy milk conserves the gene regulatory software of milk and allows its unrestricted entry into the human food chain. The continued exposure of modern humans to milk´s epigenetic machinery since the widespread distribution of refrigerators is a novel change of human nutrition which may promote diseases of Western civilization.

  20. miRvestigator: web application to identify miRNAs responsible for co-regulated gene expression patterns discovered through transcriptome profiling.

    Science.gov (United States)

    Plaisier, Christopher L; Bare, J Christopher; Baliga, Nitin S

    2011-07-01

    Transcriptome profiling studies have produced staggering numbers of gene co-expression signatures for a variety of biological systems. A significant fraction of these signatures will be partially or fully explained by miRNA-mediated targeted transcript degradation. miRvestigator takes as input lists of co-expressed genes from Caenorhabditis elegans, Drosophila melanogaster, G. gallus, Homo sapiens, Mus musculus or Rattus norvegicus and identifies the specific miRNAs that are likely to bind to 3' un-translated region (UTR) sequences to mediate the observed co-regulation. The novelty of our approach is the miRvestigator hidden Markov model (HMM) algorithm which systematically computes a similarity P-value for each unique miRNA seed sequence from the miRNA database miRBase to an overrepresented sequence motif identified within the 3'-UTR of the query genes. We have made this miRNA discovery tool accessible to the community by integrating our HMM algorithm with a proven algorithm for de novo discovery of miRNA seed sequences and wrapping these algorithms into a user-friendly interface. Additionally, the miRvestigator web server also produces a list of putative miRNA binding sites within 3'-UTRs of the query transcripts to facilitate the design of validation experiments. The miRvestigator is freely available at http://mirvestigator.systemsbiology.net.

  1. Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination.

    Science.gov (United States)

    Haralambieva, Iana H; Kennedy, Richard B; Simon, Whitney L; Goergen, Krista M; Grill, Diane E; Ovsyannikova, Inna G; Poland, Gregory A

    2018-01-01

    MicroRNAs are important mediators of post-transcriptional regulation of gene expression through RNA degradation and translational repression, and are emerging biomarkers of immune system activation/response after vaccination. We performed Next Generation Sequencing (mRNA-Seq) of intracellular miRNAs in measles virus-stimulated B and CD4+ T cells from high and low antibody responders to measles vaccine. Negative binomial generalized estimating equation (GEE) models were used for miRNA assessment and the DIANA tool was used for gene/target prediction and pathway enrichment analysis. We identified a set of B cell-specific miRNAs (e.g., miR-151a-5p, miR-223, miR-29, miR-15a-5p, miR-199a-3p, miR-103a, and miR-15a/16 cluster) and biological processes/pathways, including regulation of adherens junction proteins, Fc-receptor signaling pathway, phosphatidylinositol-mediated signaling pathway, growth factor signaling pathway/pathways, transcriptional regulation, apoptosis and virus-related processes, significantly associated with neutralizing antibody titers after measles vaccination. No CD4+ T cell-specific miRNA expression differences between high and low antibody responders were found. Our study demonstrates that miRNA expression directly or indirectly influences humoral immunity to measles vaccination and suggests that B cell-specific miRNAs may serve as useful predictive biomarkers of vaccine humoral immune response.

  2. Intracellular kinases mediate increased translation and secretion of netrin-1 from renal tubular epithelial cells.

    Directory of Open Access Journals (Sweden)

    Calpurnia Jayakumar

    Full Text Available BACKGROUND: Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS to determine the signaling pathways that regulate netrin-1 production in response to injury. METHODS AND PRINCIPAL FINDINGS: Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. CONCLUSION: Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells.

  3. Intracellular Kinases Mediate Increased Translation and Secretion of Netrin-1 from Renal Tubular Epithelial Cells

    Science.gov (United States)

    Jayakumar, Calpurnia; Mohamed, Riyaz; Ranganathan, Punithavathi Vilapakkam; Ramesh, Ganesan

    2011-01-01

    Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells. PMID:22046354

  4. Homeotic function of Drosophila Bithorax-Complex miRNAs mediates fertility by restricting multiple Hox genes and TALE cofactors in the central nervous system

    Science.gov (United States)

    Garaulet, Daniel L.; Castellanos, Monica; Bejarano, Fernando; Sanfilippo, Piero; Tyler, David M.; Allan, Douglas W.; Sánchez-Herrero, Ernesto; Lai, Eric C.

    2014-01-01

    The Drosophila Bithorax-Complex (BX-C) Hox cluster contains a bidirectionally-transcribed miRNA locus, and a deletion mutant (∆mir) lays no eggs and is completely sterile. We show these miRNAs are expressed and active in distinct spatial registers along the anterior-posterior axis in the central nervous system. ∆mir larvae derepress a network of direct homeobox gene targets in the posterior ventral nerve cord (VNC), including BX-C genes and their TALE cofactors. These are phenotypically critical targets, since sterility of ∆mir mutants was substantially rescued by heterozygosity of these genes. The posterior VNC contains Ilp7+ oviduct motoneurons, whose innervation and morphology are defective in ∆mir females, and substantially rescued by heterozygosity of ∆mir targets, especially within the BX-C. Collectively, we reveal (1) critical roles for Hox miRNAs that determine segment-specific expression of homeotic genes, which are not masked by transcriptional regulation, and (2) that BX-C miRNAs are essential for neural patterning and reproductive behavior. PMID:24909902

  5. A La autoantigen homologue is required for the internal ribosome entry site mediated translation of giardiavirus.

    Directory of Open Access Journals (Sweden)

    Srinivas Garlapati

    2011-03-01

    Full Text Available Translation of Giardiavirus (GLV mRNA is initiated at an internal ribosome entry site (IRES in the viral transcript. The IRES localizes to a downstream portion of 5' untranslated region (UTR and a part of the early downstream coding region of the transcript. Recent studies indicated that the IRES does not require a pre-initiation complex to initiate translation but may directly recruit the small ribosome subunit with the help of a number of trans-activating protein factors. A La autoantigen homologue in the viral host Giardia lamblia, GlLa, was proposed as one of the potential trans-activating factors based on its specific binding to GLV-IRES in vitro. In this study, we further elucidated the functional role of GlLa in GLV-IRES mediated translation in Giardia by knocking down GlLa with antisense morpholino oligo, which resulted in a reduction of GLV-IRES activity by 40%. An over-expression of GlLa in Giardia moderately stimulated GLV-IRES activity by 20%. A yeast inhibitory RNA (IRNA, known to bind mammalian and yeast La autoantigen and inhibit Poliovirus and Hepatitis C virus IRES activities in vitro and in vivo, was also found to bind to GlLa protein in vitro and inhibited GLV-IRES function in vivo. The C-terminal domain of La autoantigen interferes with the dimerization of La and inhibits its function. An over-expression of the C-terminal domain (200-348aa of GlLa in Giardia showed a dominant-negative effect on GLV-IRES activity, suggesting a potential inhibition of GlLa dimerization. HA tagged GlLa protein was detected mainly in the cytoplasm of Giardia, thus supporting a primary role of GlLa in translation initiation in Giardiavirus.

  6. SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Xiong

    2015-08-01

    Full Text Available microRNAs (miRNAs are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs that contain Argonaute (AGO family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be

  7. Protocol: developing a conceptual framework of patient mediated knowledge translation, systematic review using a realist approach.

    Science.gov (United States)

    Gagliardi, Anna R; Légaré, France; Brouwers, Melissa C; Webster, Fiona; Wiljer, David; Badley, Elizabeth; Straus, Sharon

    2011-03-22

    Patient involvement in healthcare represents the means by which to achieve a healthcare system that is responsive to patient needs and values. Characterization and evaluation of strategies for involving patients in their healthcare may benefit from a knowledge translation (KT) approach. The purpose of this knowledge synthesis is to develop a conceptual framework for patient-mediated KT interventions. A preliminary conceptual framework for patient-mediated KT interventions was compiled to describe intended purpose, recipients, delivery context, intervention, and outcomes. A realist review will be conducted in consultation with stakeholders from the arthritis and cancer fields to explore how these interventions work, for whom, and in what contexts. To identify patient-mediated KT interventions in these fields, we will search MEDLINE, the Cochrane Library, and EMBASE from 1995 to 2010; scan references of all eligible studies; and examine five years of tables of contents for journals likely to publish quantitative or qualitative studies that focus on developing, implementing, or evaluating patient-mediated KT interventions. Screening and data collection will be performed independently by two individuals. The conceptual framework of patient-mediated KT options and outcomes could be used by healthcare providers, managers, educationalists, patient advocates, and policy makers to guide program planning, service delivery, and quality improvement and by us and other researchers to evaluate existing interventions or develop new interventions. By raising awareness of options for involving patients in improving their own care, outcomes based on using a KT approach may lead to greater patient-centred care delivery and improved healthcare outcomes.

  8. Protocol: developing a conceptual framework of patient mediated knowledge translation, systematic review using a realist approach

    Directory of Open Access Journals (Sweden)

    Wiljer David

    2011-03-01

    Full Text Available Abstract Background Patient involvement in healthcare represents the means by which to achieve a healthcare system that is responsive to patient needs and values. Characterization and evaluation of strategies for involving patients in their healthcare may benefit from a knowledge translation (KT approach. The purpose of this knowledge synthesis is to develop a conceptual framework for patient-mediated KT interventions. Methods A preliminary conceptual framework for patient-mediated KT interventions was compiled to describe intended purpose, recipients, delivery context, intervention, and outcomes. A realist review will be conducted in consultation with stakeholders from the arthritis and cancer fields to explore how these interventions work, for whom, and in what contexts. To identify patient-mediated KT interventions in these fields, we will search MEDLINE, the Cochrane Library, and EMBASE from 1995 to 2010; scan references of all eligible studies; and examine five years of tables of contents for journals likely to publish quantitative or qualitative studies that focus on developing, implementing, or evaluating patient-mediated KT interventions. Screening and data collection will be performed independently by two individuals. Conclusions The conceptual framework of patient-mediated KT options and outcomes could be used by healthcare providers, managers, educationalists, patient advocates, and policy makers to guide program planning, service delivery, and quality improvement and by us and other researchers to evaluate existing interventions or develop new interventions. By raising awareness of options for involving patients in improving their own care, outcomes based on using a KT approach may lead to greater patient-centred care delivery and improved healthcare outcomes.

  9. Protocol: developing a conceptual framework of patient mediated knowledge translation, systematic review using a realist approach

    Science.gov (United States)

    2011-01-01

    Background Patient involvement in healthcare represents the means by which to achieve a healthcare system that is responsive to patient needs and values. Characterization and evaluation of strategies for involving patients in their healthcare may benefit from a knowledge translation (KT) approach. The purpose of this knowledge synthesis is to develop a conceptual framework for patient-mediated KT interventions. Methods A preliminary conceptual framework for patient-mediated KT interventions was compiled to describe intended purpose, recipients, delivery context, intervention, and outcomes. A realist review will be conducted in consultation with stakeholders from the arthritis and cancer fields to explore how these interventions work, for whom, and in what contexts. To identify patient-mediated KT interventions in these fields, we will search MEDLINE, the Cochrane Library, and EMBASE from 1995 to 2010; scan references of all eligible studies; and examine five years of tables of contents for journals likely to publish quantitative or qualitative studies that focus on developing, implementing, or evaluating patient-mediated KT interventions. Screening and data collection will be performed independently by two individuals. Conclusions The conceptual framework of patient-mediated KT options and outcomes could be used by healthcare providers, managers, educationalists, patient advocates, and policy makers to guide program planning, service delivery, and quality improvement and by us and other researchers to evaluate existing interventions or develop new interventions. By raising awareness of options for involving patients in improving their own care, outcomes based on using a KT approach may lead to greater patient-centred care delivery and improved healthcare outcomes. PMID:21426573

  10. Dynamics of miRNA biogenesis and nuclear transport

    Directory of Open Access Journals (Sweden)

    Kotipalli Aneesh

    2016-12-01

    Full Text Available MicroRNAs (miRNAs are short noncoding RNA sequences ~22 nucleotides in length that play an important role in gene regulation-transcription and translation. The processing of these miRNAs takes place in both the nucleus and the cytoplasm while the final maturation occurs in the cytoplasm. Some mature miRNAs with nuclear localisation signals (NLS are transported back to the nucleus and some remain in the cytoplasm. The functional roles of these miRNAs are seen in both the nucleus and the cytoplasm. In the nucleus, miRNAs regulate gene expression by binding to the targeted promoter sequences and affect either the transcriptional gene silencing (TGS or transcriptional gene activation (TGA. In the cytoplasm, targeted mRNAs are translationally repressed or cleaved based on the complementarity between the two sequences at the seed region of miRNA and mRNA. The selective transport of mature miRNAs to the nucleus follows the classical nuclear import mechanism. The classical nuclear import mechanism is a highly regulated process, involving exportins and importins. The nuclear pore complex (NPC regulates all these transport events like a gate keeper. The half-life of miRNAs is rather low, so within a short time miRNAs perform their function. Temporal studies of miRNA biogenesis are, therefore, useful. We have carried out simulation studies for important miRNA biogenesis steps and also classical nuclear import mechanism using ordinary differential equation (ODE solver in the Octave software.

  11. miRNAs in Normal and Malignant Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Ryutaro Kotaki

    2017-07-01

    Full Text Available Lineage specification is primarily regulated at the transcriptional level and lineage-specific transcription factors determine cell fates. MicroRNAs (miRNAs are 18–24 nucleotide-long non-coding RNAs that post-transcriptionally decrease the translation of target mRNAs and are essential for many cellular functions. miRNAs also regulate lineage specification during hematopoiesis. This review highlights the roles of miRNAs in B-cell development and malignancies, and discusses how miRNA expression profiles correlate with disease prognoses and phenotypes. We also discuss the potential for miRNAs as therapeutic targets and diagnostic tools for B-cell malignancies.

  12. Sustained miRNA-mediated Knockdown of Mutant AAT With Simultaneous Augmentation of Wild-type AAT Has Minimal Effect on Global Liver miRNA Profiles

    OpenAIRE

    2013-01-01

    α-1 antitrypsin (AAT) deficiency can exhibit two pathologic states: a lung disease that is primarily due to the loss of AAT's antiprotease function, and a liver disease resulting from a toxic gain-of-function of the PiZ-AAT (Z-AAT) mutant protein. We have developed several recombinant adeno-associated virus (rAAV) vectors that incorporate microRNA (miRNA) sequences targeting the AAT gene while also driving the expression of miRNA-resistant wild-type AAT-PiM (M-AAT) gene, thus achieving concom...

  13. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Patrick Baril

    2015-03-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  14. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities.

    Science.gov (United States)

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-03-04

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  15. Base Composition Characteristics of Mammalian miRNAs

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are short RNA sequences that repress protein synthesis by either inhibiting the translation of messenger RNA (mRNA or increasing mRNA degradation. Endogenous miRNAs have been found in various organisms, including animals, plants, and viruses. Mammalian miRNAs are evolutionarily conserved, are scattered throughout chromosomes, and play an important role in the immune response and the onset of cancer. For this study, the author explored the base composition characteristics of miRNA genes from the six mammalian species that contain the largest number of known miRNAs. It was found that mammalian miRNAs are evolutionarily conserved and GU-rich. Interestingly, in the miRNA sequences investigated, A residues are clearly the most frequent occupants of positions 2 and 3 of the 5′ end of miRNAs. Unlike G and U residues that may pair with C/U and A/G, respectively, A residues can only pair with U residues of target mRNAs, which may augment the recognition specificity of the 5′ seed region.

  16. Big endothelin changes the cellular miRNA environment in TMOb osteoblasts and increases mineralization.

    Science.gov (United States)

    Johnson, Michael G; Kristianto, Jasmin; Yuan, Baozhi; Konicke, Kathryn; Blank, Robert

    2014-08-01

    Endothelin (ET1) promotes the growth of osteoblastic breast and prostate cancer metastases. Conversion of big ET1 to mature ET1, catalyzed primarily by endothelin converting enzyme 1 (ECE1), is necessary for ET1's biological activity. We previously identified the Ece1, locus as a positional candidate gene for a pleiotropic quantitative trait locus affecting femoral size, shape, mineralization, and biomechanical performance. We exposed TMOb osteoblasts continuously to 25 ng/ml big ET1. Cells were grown for 6 days in growth medium and then switched to mineralization medium for an additional 15 days with or without big ET1, by which time the TMOb cells form mineralized nodules. We quantified mineralization by alizarin red staining and analyzed levels of miRNAs known to affect osteogenesis. Micro RNA 126-3p was identified by search as a potential regulator of sclerostin (SOST) translation. TMOb cells exposed to big ET1 showed greater mineralization than control cells. Big ET1 repressed miRNAs targeting transcripts of osteogenic proteins. Big ET1 increased expression of miRNAs that target transcripts of proteins that inhibit osteogenesis. Big ET1 increased expression of 126-3p 121-fold versus control. To begin to assess the effect of big ET1 on SOST production we analyzed both SOST transcription and protein production with and without the presence of big ET1 demonstrating that transcription and translation were uncoupled. Our data show that big ET1 signaling promotes mineralization. Moreover, the results suggest that big ET1's osteogenic effects are potentially mediated through changes in miRNA expression, a previously unrecognized big ET1 osteogenic mechanism.

  17. Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation

    NARCIS (Netherlands)

    Fernandez, James; Yaman, Ibrahim; Huang, Charles; Liu, Haiyan; Lopez, Alex B.; Komar, Anton A.; Caprara, Mark G.; Merrick, William C.; Snider, Martin D.; Kaufman, Randal J.; Lamers, Wouter H.; Hatzoglou, Maria

    2005-01-01

    It was previously shown that the mRNA for the cat-1 Arg/Lys transporter is translated from an internal ribosome entry site (IRES) that is regulated by cellular stress. Amino acid starvation stimulated cat-1 translation via a mechanism that requires translation of an ORF in the mRNA leader and

  18. New insights into the interplay between the translation machinery and nonsense-mediated mRNA decay factors.

    Science.gov (United States)

    Raimondeau, Etienne; Bufton, Joshua C; Schaffitzel, Christiane

    2018-06-19

    Faulty mRNAs with a premature stop codon (PTC) are recognized and degraded by nonsense-mediated mRNA decay (NMD). Recognition of a nonsense mRNA depends on translation and on the presence of NMD-enhancing or the absence of NMD-inhibiting factors in the 3'-untranslated region. Our review summarizes our current understanding of the molecular function of the conserved NMD factors UPF3B and UPF1, and of the anti-NMD factor Poly(A)-binding protein, and their interactions with ribosomes translating PTC-containing mRNAs. Our recent discovery that UPF3B interferes with human translation termination and enhances ribosome dissociation in vitro , whereas UPF1 is inactive in these assays, suggests a re-interpretation of previous experiments and modification of prevalent NMD models. Moreover, we discuss recent work suggesting new functions of the key NMD factor UPF1 in ribosome recycling, inhibition of translation re-initiation and nascent chain ubiquitylation. These new findings suggest that the interplay of UPF proteins with the translation machinery is more intricate than previously appreciated, and that this interplay quality-controls the efficiency of termination, ribosome recycling and translation re-initiation. © 2018 The Author(s).

  19. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis

    Science.gov (United States)

    Onouchi, Hitoshi; Nagami, Yoko; Haraguchi, Yuhi; Nakamoto, Mari; Nishimura, Yoshiko; Sakurai, Ryoko; Nagao, Nobuhiro; Kawasaki, Daisuke; Kadokura, Yoshitomo; Naito, Satoshi

    2005-01-01

    Expression of the Arabidopsis CGS1 gene that codes for cystathionine γ-synthase is feedback regulated at the step of mRNA stability in response to S-adenosyl-L-methionine (AdoMet). A short stretch of amino acid sequence, called the MTO1 region, encoded by the first exon of CGS1 itself is involved in this regulation. Here, we demonstrate, using a cell-free system, that AdoMet induces temporal translation elongation arrest at the Ser-94 codon located immediately downstream of the MTO1 region, by analyzing a translation intermediate and performing primer extension inhibition (toeprint) analysis. This translation arrest precedes the formation of a degradation intermediate of CGS1 mRNA, which has its 5′ end points near the 5′ edge of the stalled ribosome. The position of ribosome stalling also suggests that the MTO1 region in nascent peptide resides in the ribosomal exit tunnel when translation elongation is temporarily arrested. In addition to the MTO1 region amino acid sequence, downstream Trp-93 is also important for the AdoMet-induced translation arrest. This is the first example of nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in eukaryotes. Furthermore, our data suggest that the ribosome stalls at the step of translocation rather than at the step of peptidyl transfer. PMID:16027170

  20. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.

    Science.gov (United States)

    Seyhan, Attila A

    2016-01-01

    Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently

  1. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense

    Directory of Open Access Journals (Sweden)

    Sheng-Rui Liu

    2017-09-01

    Full Text Available MicroRNAs (miRNAs are non-coding RNAs of approximately 20–24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant–pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.

  2. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing

    Directory of Open Access Journals (Sweden)

    Chen Shou-Yi

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in higher plants. miRNAs and related target genes have been widely studied in model plants such as Arabidopsis and rice; however, the number of identified miRNAs in soybean (Glycine max is limited, and global identification of the related miRNA targets has not been reported in previous research. Results In our study, a small RNA library and a degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. GO analysis indicated that many of the identified miRNA targets may function in soybean seed development. Additionally, a soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3 (AtSGS3 was detected as a target of the newly identified miRNA Soy_25, suggesting the presence of feedback control of miRNA biogenesis. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library and a degradome library. Our study provides more information about the regulatory network of miRNAs in soybean and advances our understanding of miRNA functions during seed development.

  3. PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer.

    Science.gov (United States)

    Hsu, Jessie Hao-Ru; Hubbell-Engler, Benjamin; Adelmant, Guillaume; Huang, Jialiang; Joyce, Cailin E; Vazquez, Francisca; Weir, Barbara A; Montgomery, Philip; Tsherniak, Aviad; Giacomelli, Andrew O; Perry, Jennifer A; Trowbridge, Jennifer; Fujiwara, Yuko; Cowley, Glenn S; Xie, Huafeng; Kim, Woojin; Novina, Carl D; Hahn, William C; Marto, Jarrod A; Orkin, Stuart H

    2017-09-01

    Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance in vitro and in vivo Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control. In particular, loss of Prmt1 led to a decrease in arginine methylation of the translation initiation complex, thereby disrupting its assembly and inhibiting translation. p53/Rb-null cells were sensitive to p53-induced translation stress, and analysis of human cancer cell line data from Project Achilles further revealed that Prmt1 and translation-associated pathways converged on the same functional networks. We propose that targeted therapy against Prmt1 and its associated translation-related pathways offer a mechanistic rationale for treatment of osteosarcomas and other cancers that exhibit dependencies on translation stress response. Cancer Res; 77(17); 4613-25. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. A mediation model for the translation of radio news texts in a ...

    African Journals Online (AJOL)

    Broadcast journalists in South Africa are media workers, editors and translators simultaneously producing news for bilingual or multilingual audiences. News texts are translated from English into one or more of the other official languages, depending on the target audience of the broadcaster. This article aims to indicate how ...

  5. Identification and target prediction of miRNAs specifically expressed in rat neural tissue

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2009-05-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a large group of RNAs that play important roles in regulating gene expression and protein translation. Several studies have indicated that some miRNAs are specifically expressed in human, mouse and zebrafish tissues. For example, miR-1 and miR-133 are specifically expressed in muscles. Tissue-specific miRNAs may have particular functions. Although previous studies have reported the presence of human, mouse and zebrafish tissue-specific miRNAs, there have been no detailed reports of rat tissue-specific miRNAs. In this study, Home-made rat miRNA microarrays which established in our previous study were used to investigate rat neural tissue-specific miRNAs, and mapped their target genes in rat tissues. This study will provide information for the functional analysis of these miRNAs. Results In order to obtain as complete a picture of specific miRNA expression in rat neural tissues as possible, customized miRNA microarrays with 152 selected miRNAs from miRBase were used to detect miRNA expression in 14 rat tissues. After a general clustering analysis, 14 rat tissues could be clearly classified into neural and non-neural tissues based on the obtained expression profiles with p values Conclusion Our work provides a global view of rat neural tissue-specific miRNA profiles and a target map of miRNAs, which is expected to contribute to future investigations of miRNA regulatory mechanisms in neural systems.

  6. Patient-mediated knowledge translation (PKT) interventions for clinical encounters: a systematic review.

    Science.gov (United States)

    Gagliardi, Anna R; Légaré, France; Brouwers, Melissa C; Webster, Fiona; Badley, Elizabeth; Straus, Sharon

    2016-02-29

    Patient-mediated knowledge translation (PKT) interventions engage patients in their own health care. Insight on which PKT interventions are effective is lacking. We sought to describe the type and impact of PKT interventions. We performed a systematic review of PKT interventions, defined as strategies that inform, educate and engage patients in their own health care. We searched MEDLINE, EMBASE and the Cochrane Library from 2005 to 2014 for English language studies that evaluated PKT interventions delivered immediately before, during or upon conclusion of clinical encounters to individual patients with arthritis or cancer. Data were extracted on study characteristics, PKT intervention (theory, content, delivery, duration, personnel, timing) and outcomes. Interventions were characterized by type of patient engagement (inform, activate, collaborate). We performed content analysis and reported summary statistics. Of 694 retrieved studies, 16 were deemed eligible (5 arthritis, 11 cancer; 12 RCTs, 4 cohort studies; 7 low, 3 uncertain, 6 high risk of bias). PKT interventions included print material in 10 studies (brochures, booklets, variety of print material, list of websites), electronic material in 10 studies (video, computer program, website) and counselling in 2 studies. They were offered before, during and after consultation in 4, 1 and 4 studies, respectively; as single or multifaceted interventions in 10 and 6 studies, respectively; and by clinicians, health educators, researchers or volunteers in 4, 3, 5 and 1 study, respectively. Most interventions informed or activated patients. All studies achieved positive impact in one or more measures of patient knowledge, decision-making, communication and behaviour. This was true regardless of condition, PKT intervention, timing, personnel, type of engagement or delivery (single or multifaceted). No studies assessed patient harms, or interventions for providers to support PKT intervention delivery. Two studies evaluated

  7. PRMT1-Mediated Translation Regulation is a Crucial Vulnerability of Cancer | Office of Cancer Genomics

    Science.gov (United States)

    Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance in vitro and in vivo Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control.

  8. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Science.gov (United States)

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  9. Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor.

    Science.gov (United States)

    Bussiere, Renaud; Lacampagne, Alain; Reiken, Steven; Liu, Xiaoping; Scheuerman, Valerie; Zalk, Ran; Martin, Cécile; Checler, Frederic; Marks, Andrew R; Chami, Mounia

    2017-06-16

    Alteration of ryanodine receptor (RyR)-mediated calcium (Ca 2+ ) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca 2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the β-amyloid precursor protein (βAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca 2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid β (Aβ), β-adrenergic signaling, and altered Ca 2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aβ through a β2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances βAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca 2+ leakage, or blocking the β2-adrenergic signaling cascade reduced βAPP processing and the production of Aβ in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca 2+ leakage may be a therapeutic approach to treat AD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. IRES-mediated translation of foot-and-mouth disease virus (FMDV) in cultured cells derived from FMDV-susceptible and -insusceptible animals.

    Science.gov (United States)

    Kanda, Takehiro; Ozawa, Makoto; Tsukiyama-Kohara, Kyoko

    2016-03-31

    Foot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome. Internal ribosomal entry site (IRES) element exists within its 5' untranslated region (5'UTR) of the viral RNA. Translation of the viral RNA is initiated by internal entry of the 40S ribosome within the IRES element. This process is facilitated by cellular factors known as IRES trans-acting factors (ITAFs). Foot-and-mouth disease (FMD) is host-restricted disease for cloven-hoofed animals such as cattle and pigs, but the factors determining the host range have not been identified yet. Although, ITAFs are known to promote IRES-mediated translation, these findings were confirmed only in cells derived from FMDV-insusceptible animals so far. We evaluated and compared the IRES-mediated translation activities among cell lines derived from four different animal species using bicistronic luciferase reporter plasmid, which possesses an FMDV-IRES element between Renilla and Firefly luciferase genes. Furthermore, we analyzed the effect of the cellular factors on IRES-mediated translation by silencing the cellular factors using siRNA in both FMDV-susceptible and -insusceptible animal cells. Our data indicated that IRES-mediated translational activity was not linked to FMDV host range. ITAF45 promoted IRES-mediated translation in all cell lines, and the effects of poly-pyrimidine tract binding protein (PTB) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were observed only in FMDV-susceptible cells. Thus, PTB and 4E-BP1 may influence the host range of FMDV. IRES-mediated translation activity of FMDV was not predictive of its host range. ITAF45 promoted IRES-mediated translation in all cells, and the effects of PTB and 4E-BP1 were observed only in FMDV-susceptible cells.

  11. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Afelik, Solomon; Jensen, Jan Nygaard

    2013-01-01

    of ducts. On one hand, Ngn3 cell-intrinsically activates endocrine target genes; on the other, Ngn3 cell-extrinsically promotes lateral signaling via the Dll1>Notch>Hes1 pathway which substantially limits its ability to sustain endocrine formation. Prior to endocrine commitment, the Ngn3-mediated...... involves transcriptional repression as previously shown, but also incorporates a novel post-translational mechanism. In addition to its ability to promote endocrine fate, we provide evidence of a competing ability of Ngn3 in the patterning of multipotent progenitor cells in turn controlling the formation...

  12. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism.

    Science.gov (United States)

    Shah, Meera; Su, Dan; Scheliga, Judith S; Pluskal, Tomáš; Boronat, Susanna; Motamedchaboki, Khatereh; Campos, Alexandre Rosa; Qi, Feng; Hidalgo, Elena; Yanagida, Mitsuhiro; Wolf, Dieter A

    2016-08-16

    The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Meera Shah

    2016-08-01

    Full Text Available The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer.

  14. ‘I can’t really think in English’: Translation as literacy mediation in multilingual/multicultural learning contexts

    Directory of Open Access Journals (Sweden)

    Banda, Felix

    2003-12-01

    Full Text Available The article explores some aspects of a study which investigates translation as academic literacy mediation in South Africa’s multilingual/multicultural contexts. The focus is on learners’ translations of academic texts between the L2 and L1, and vice-versa, as a strategy to cope with ESL academic tasks. Using reflection discourse from one-on-one and focus group interviews as well as study group discussion texts, the study uses the New Literacy Studies model of literacy as social practice and aspects of critical discourse analysis to identify some pedagogical implications. One of the conclusions is that although learners are able to ‘translate’ in the sense of swapping labels between the L2 and L1 for the same concept, they are unable to successfully ‘translate’ in the sense of transfer of knowledge/cognitive skills between the L2 and L1, and the reverse. The need for functional use of the L1 and L2, critical cross-cultural awareness and language socialisation, as well as for trained bilingual teachers and literacy mediators, is explored as a way to promote positive difference, and help learners develop strategies to achieve transform/recontextualise knowledge/cognitive skills between the L2 and L1, and vice-versa, in multilingual/multicul-tural contexts.

  15. Translating Genetic Research into Preventive Intervention: The Baseline Target Moderated Mediator Design.

    Science.gov (United States)

    Howe, George W; Beach, Steven R H; Brody, Gene H; Wyman, Peter A

    2015-01-01

    In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM) design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We use simulated data to illustrate a BTMM, and end with a discussion of some of the advantages and limitations of this approach.

  16. Translating genetic research into preventive intervention: The baseline target moderated mediator design

    Directory of Open Access Journals (Sweden)

    George W. Howe

    2016-01-01

    Full Text Available In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We end with a discussion of some of the advantages and limitations of this approach.

  17. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival.

    LENUS (Irish Health Repository)

    Bray, Isabella

    2009-01-01

    MiRNAs regulate gene expression at a post-transcriptional level and their dysregulation can play major roles in the pathogenesis of many different forms of cancer, including neuroblastoma, an often fatal paediatric cancer originating from precursor cells of the sympathetic nervous system. We have analyzed a set of neuroblastoma (n = 145) that is broadly representative of the genetic subtypes of this disease for miRNA expression (430 loci by stem-loop RT qPCR) and for DNA copy number alterations (array CGH) to assess miRNA involvement in disease pathogenesis. The tumors were stratified and then randomly split into a training set (n = 96) and a validation set (n = 49) for data analysis. Thirty-seven miRNAs were significantly over- or under-expressed in MYCN amplified tumors relative to MYCN single copy tumors, indicating a potential role for the MYCN transcription factor in either the direct or indirect dysregulation of these loci. In addition, we also determined that there was a highly significant correlation between miRNA expression levels and DNA copy number, indicating a role for large-scale genomic imbalances in the dysregulation of miRNA expression. In order to directly assess whether miRNA expression was predictive of clinical outcome, we used the Random Forest classifier to identify miRNAs that were most significantly associated with poor overall patient survival and developed a 15 miRNA signature that was predictive of overall survival with 72.7% sensitivity and 86.5% specificity in the validation set of tumors. We conclude that there is widespread dysregulation of miRNA expression in neuroblastoma tumors caused by both over-expression of the MYCN transcription factor and by large-scale chromosomal imbalances. MiRNA expression patterns are also predicative of clinical outcome, highlighting the potential for miRNA mediated diagnostics and therapeutics.

  18. Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica).

    Science.gov (United States)

    Han, Jun; Xie, Hao; Sun, Qingpeng; Wang, Jun; Lu, Min; Wang, Weixiang; Guo, Erhu; Pan, Jinbao

    2014-08-10

    MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5'-RLM-RACE) method. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems.

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies.

  1. Identification, characterization and expression analysis of pigeonpea miRNAs in response to Fusarium wilt.

    Science.gov (United States)

    Hussain, Khalid; Mungikar, Kanak; Kulkarni, Abhijeet; Kamble, Avinash

    2018-05-05

    Upon confrontation with unfavourable conditions, plants invoke a very complex set of biochemical and physiological reactions and alter gene expression patterns to combat the situations. MicroRNAs (miRNAs), a class of small non-coding RNA, contribute extensively in regulation of gene expression through translation inhibition or degradation of their target mRNAs during such conditions. Therefore, identification of miRNAs and their targets holds importance in understanding the regulatory networks triggered during stress. Structure and sequence similarity based in silico prediction of miRNAs in Cajanus cajan L. (Pigeonpea) draft genome sequence has been carried out earlier. These annotations also appear in related GenBank genome sequence entries. However, there are no reports available on context dependent miRNA expression and their targets in pigeonpea. Therefore, in the present study we addressed these questions computationally, using pigeonpea EST sequence information. We identified five novel pigeonpea miRNA precursors, their mature forms and targets. Interestingly, only one of these miRNAs (miR169i-3p) was identified earlier in draft genome sequence. We then validated expression of these miRNAs, experimentally. It was also observed that these miRNAs show differential expression patterns in response to Fusarium inoculation indicating their biotic stress responsive nature. Overall these results will help towards better understanding the regulatory network of defense during pigeonpea -pathogen interactions and role of miRNAs in the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Generation of miRNA sponge constructs

    NARCIS (Netherlands)

    Kluiver, Joost; Slezak-Prochazka, Izabella; Smigielska-Czepiel, Katarzyna; Halsema, Nancy; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are RNA molecules with repeated miRNA antisense sequences that can sequester miRNAs from their endogenous targets and thus serve as a decoy. Stably expressed miRNA sponges are especially valuable for long-term loss-of-function studies and can be used in vitro and in vivo. We

  3. Structural basis for the Nanos-mediated recruitment of the CCR4–NOT complex and translational repression

    Science.gov (United States)

    Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa

    2014-01-01

    The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4–NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1–3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1–3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1–3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4–NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4–NOT complex as the main effector complex for Nanos function. PMID:24736845

  4. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression.

    Science.gov (United States)

    Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa

    2014-04-15

    The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4-NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1-3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1-3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1-3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4-NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4-NOT complex as the main effector complex for Nanos function.

  5. The miRNA biogenesis in marine bivalves

    Directory of Open Access Journals (Sweden)

    Umberto Rosani

    2016-03-01

    Full Text Available Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves.

  6. Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs

    Directory of Open Access Journals (Sweden)

    Juan Carlos Begara-Morales

    2016-02-01

    Full Text Available Nitric oxide (NO is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS, such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs peroxiredoxins (Prx and all the enzymatic components of the ascorbate-glutathione (Asa-GSH cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance.

  7. The mechanism of translation initiation on Aichivirus RNA mediated by a novel type of picornavirus IRES.

    Science.gov (United States)

    Yu, Yingpu; Sweeney, Trevor R; Kafasla, Panagiota; Jackson, Richard J; Pestova, Tatyana V; Hellen, Christopher Ut

    2011-08-26

    Picornavirus mRNAs contain IRESs that sustain their translation during infection, when host protein synthesis is shut off. The major classes of picornavirus IRESs (Types 1 and 2) have distinct structures and sequences, but initiation on both is determined by their specific interaction with eIF4G. We report here that Aichivirus (AV), a member of the Kobuvirus genus of Picornaviridae, contains an IRES that differs structurally from Type 1 and Type 2 IRESs. Its function similarly involves interaction with eIF4G, but its eIF4G-interacting domain is structurally distinct, although it contains an apical eIF4G-interacting motif similar to that in Type 2 IRESs. Like Type 1 and Type 2 IRESs, AV IRES function is enhanced by pyrimidine tract-binding protein (PTB), but the pattern of PTB's interaction with each of these IRESs is distinct. Unlike all known IRESs, the AV IRES is absolutely dependent on DHX29, a requirement imposed by sequestration of its initiation codon in a stable hairpin.

  8. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs.

    Science.gov (United States)

    Hong, Sungki; Freeberg, Mallory A; Han, Ting; Kamath, Avani; Yao, Yao; Fukuda, Tomoko; Suzuki, Tsukasa; Kim, John K; Inoki, Ken

    2017-06-26

    The RNA binding protein, LARP1, has been proposed to function downstream of mTORC1 to regulate the translation of 5'TOP mRNAs such as those encoding ribosome proteins (RP). However, the roles of LARP1 in the translation of 5'TOP mRNAs are controversial and its regulatory roles in mTORC1-mediated translation remain unclear. Here we show that LARP1 is a direct substrate of mTORC1 and Akt/S6K1. Deep sequencing of LARP1-bound mRNAs reveal that non-phosphorylated LARP1 interacts with both 5' and 3'UTRs of RP mRNAs and inhibits their translation. Importantly, phosphorylation of LARP1 by mTORC1 and Akt/S6K1 dissociates it from 5'UTRs and relieves its inhibitory activity on RP mRNA translation. Concomitantly, phosphorylated LARP1 scaffolds mTORC1 on the 3'UTRs of translationally-competent RP mRNAs to facilitate mTORC1-dependent induction of translation initiation. Thus, in response to cellular mTOR activity, LARP1 serves as a phosphorylation-sensitive molecular switch for turning off or on RP mRNA translation and subsequent ribosome biogenesis.

  9. Micromanagement of Immune System: Role of miRNAs in Helminthic Infections.

    Science.gov (United States)

    Arora, Naina; Tripathi, Shweta; Singh, Aloukick K; Mondal, Prosenjit; Mishra, Amit; Prasad, Amit

    2017-01-01

    Helminthic infections fall under neglected tropical diseases, although they inflict severe morbidity to human and causes major economic burden on health care system in many developing countries. There is increased effort to understand their immunopathology in recent days due to their immuno-modulatory capabilities. Immune response is primarily controlled at the transcriptional level, however, microRNA-mediated RNA interference is emerging as important regulatory machinery that works at the translation level. In the past decade, microRNA (miRNA/miR) research has advanced with significant momentum. The result is ever increasing list of curated sequences from a broad panel of organisms including helminths. Several miRNAs had been discovered from trematodes, nematodes and cestodes like let-7, miR155, miR-199, miR-134, miR-223, miR-146, and fhe-mir-125a etc., with potential role in immune modulation. These miRs had been associated with TGF-β, MAPK, Toll-like receptor, PI3K/AKT signaling pathways and insulin growth factor regulation. Thus, controlling the immune cells development, survival, proliferation and death. Apart from micromanagement of immune system, they also express certain unique miRNA also like cis- miR-001, cis- miR-2, cis- miR-6, cis- miR-10, cis- miR-18, cis- miR-19, trs-mir-0001, fhe-miR-01, fhe-miR-07, fhe-miR-08, egr-miR-4988, egr-miR-4989 etc. The specific role played by most of these species specific unique miRs are yet to be discovered. However, these newly discovered miRNAs might serve as novel targets for therapeutic intervention or biomarkers for parasitic infections.

  10. Near-Infrared Ag2S Quantum Dots-Based DNA Logic Gate Platform for miRNA Diagnostics.

    Science.gov (United States)

    Miao, Peng; Tang, Yuguo; Wang, Bidou; Meng, Fanyu

    2016-08-02

    Dysregulation of miRNA expression is correlated with the development and progression of many diseases. These miRNAs are regarded as promising biomarkers. However, it is challenging to measure these low abundant molecules without employing time-consuming radioactive labeling or complex amplification strategies. Here, we present a DNA logic gate platform for miRNA diagnostics with fluorescence outputs from near-infrared (NIR) Ag2S quantum dots (QDs). Carefully designed toehold exchange-mediated strand displacements with different miRNA inputs occur on a solid-state interface, which control QDs release from solid-state interface to solution, responding to multiplex information on initial miRNAs. Excellent fluorescence emission properties of NIR Ag2S QDs certify the great prospect for amplification-free and sensitive miRNA assay. We demonstrate the potential of this platform by achieving femtomolar level miRNA analysis and the versatility of a series of logic circuits computation.

  11. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape.

    Science.gov (United States)

    Codo, Paula; Weller, Michael; Meister, Gunter; Szabo, Emese; Steinle, Alexander; Wolter, Marietta; Reifenberger, Guido; Roth, Patrick

    2014-09-15

    Malignant gliomas are intrinsic brain tumors with a dismal prognosis. They are well-adapted to hypoxic conditions and poorly immunogenic. NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DL). Here we evaluated the impact of miRNA on the expression of NKG2DL in glioma cells including stem-like glioma cells. Three of the candidate miRNA predicted to target NKG2DL were expressed in various glioma cell lines as well as in glioblastomas in vivo: miR-20a, miR-93 and miR-106b. LNA inhibitor-mediated miRNA silencing up-regulated cell surface NKG2DL expression, which translated into increased susceptibility to NK cell-mediated lysis. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced lysis upon miRNA silencing was mediated through the NKG2D system. Hypoxia, a hallmark of glioblastomas in vivo, down-regulated the expression of NKG2DL on glioma cells, associated with reduced susceptibility to NK cell-mediated lysis. This process, however, was not mediated through any of the examined miRNA. Accordingly, both hypoxia and the expression of miRNA targeting NKG2DL may contribute to the immune evasion of glioma cells at the level of the NKG2D recognition pathway. Targeting miRNA may therefore represent a novel approach to increase the immunogenicity of glioblastoma.

  12. Two-Stage Translational Control of Dentate Gyrus LTP Consolidation Is Mediated by Sustained BDNF-TrkB Signaling to MNK

    Directory of Open Access Journals (Sweden)

    Debabrata Panja

    2014-11-01

    Full Text Available BDNF signaling contributes to protein-synthesis-dependent synaptic plasticity, but the dynamics of TrkB signaling and mechanisms of translation have not been defined. Here, we show that long-term potentiation (LTP consolidation in the dentate gyrus of live rodents requires sustained (hours BDNF-TrkB signaling. Surprisingly, this sustained activation maintains an otherwise labile signaling pathway from TrkB to MAP-kinase-interacting kinase (MNK. MNK activity promotes eIF4F translation initiation complex formation and protein synthesis in mechanistically distinct early and late stages. In early-stage translation, MNK triggers release of the CYFIP1/FMRP repressor complex from the 5′-mRNA cap. In late-stage translation, MNK regulates the canonical translational repressor 4E-BP2 in a synapse-compartment-specific manner. This late stage is coupled to MNK-dependent enhanced dendritic mRNA translation. We conclude that LTP consolidation in the dentate gyrus is mediated by sustained BDNF signaling to MNK and MNK-dependent regulation of translation in two functionally and mechanistically distinct stages.

  13. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein.

    Science.gov (United States)

    Lyabin, D N; Ovchinnikov, L P

    2016-03-02

    The Y-box binding protein 1 (YB-1) is a key regulator of gene expression at the level of both translation and transcription. The mode of its action on cellular events depends on its subcellular distribution and the amount in the cell. So far, the regulatory mechanisms of YB-1 synthesis have not been adequately studied. Our previous finding was that selective inhibition of YB-1 mRNA translation was caused by suppression of activity of the mTOR signaling pathway. It was suggested that this event may be mediated by phosphorylation of the 4E-binding protein (4E-BP). Here, we report that 4E-BP alone can only slightly inhibit YB-1 synthesis both in the cell and in vitro, although it essentially decreases binding of the 4F-group translation initiation factors to mRNA. With inhibited mTOR kinase, the level of mRNA binding to the eIF4F-group factors was decreased, while that to 4E-BP1 was increased, as was observed for both mTOR kinase-sensitive mRNAs and those showing low sensitivity. This suggests that selective inhibition of translation of YB-1 mRNA, and probably some other mRNAs as well, by mTOR kinase inhibitors is not mediated by the action of the 4E-binding protein upon functions of the 4F-group translation initiation factors.

  14. 34A, miRNA-944, miRNA-101 and miRNA-218 in cervical cancer

    African Journals Online (AJOL)

    RNAs (21 - 24 nucleotides in length) that are critical for many important processes such as development, ... RNA extraction and reverse transcription. Total RNA was extracted from each of the experimental groups using ... used as an endogenous control to normalize the expression of miRNA-143, miRNA-34A, miRNA-.

  15. Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts.

    Science.gov (United States)

    Lisse, Thomas S; Chun, Rene F; Rieger, Sandra; Adams, John S; Hewison, Martin

    2013-06-01

    When bound to the vitamin D receptor (VDR), the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is a potent regulator of osteoblast transcription. Less clear is the impact of 1,25D on posttranscriptional events in osteoblasts, such as the generation and action of microRNAs (miRNAs). Microarray analysis using replicate (n = 3) primary cultures of human osteoblasts (HOBs) identified human miRNAs that were differentially regulated by >1.5-fold following treatment with 1,25D (10 nM, 6 hours), which included miRNAs 637 and 1228. Quantitative reverse transcription PCR analyses showed that the host gene for miR-1228, low-density lipoprotein receptor-related protein 1 (LRP1), was coinduced with miR-1228 in a dose-dependent fashion following treatment with 1,25D (0.1-10 nM, 6 hours). By contrast, the endogenous host gene for miR-637, death-associated protein kinase 3 (DAPK3), was transcriptionally repressed by following treatment with 1,25D. Analysis of two potential targets for miR-637 and miR-1228 in HOB, type IV collagen (COL4A1) and bone morphogenic protein 2 kinase (BMP2K), respectively, showed that 1,25D-mediates suppression of these targets via distinct mechanisms. In the case of miR-637, suppression of COL4A1 appears to occur via decreased levels of COL4A1 mRNA. By contrast, suppression of BMP2K by miR-1228 appears to occur by inhibition of protein translation. In mature HOBs, small interfering RNA (siRNA) inactivation of miR-1228 alone was sufficient to abrogate 1,25D-mediated downregulation of BMP2K protein expression. This was associated with suppression of prodifferentiation responses to 1,25D in HOB, as represented by parallel decrease in osteocalcin and alkaline phosphatase expression. These data show for the first time that the effects of 1,25D on human bone cells are not restricted to classical VDR-mediated transcriptional responses but also involve miRNA-directed posttranscriptional mechanisms. Copyright © 2013 American Society for Bone and

  16. Steady-state structural fluctuation is a predictor of the necessity of pausing-mediated co-translational folding for small proteins.

    Science.gov (United States)

    Huang, Wenxi; Liu, Wanting; Jin, Jingjie; Xiao, Qilan; Lu, Ruibin; Chen, Wei; Xiong, Sheng; Zhang, Gong

    2018-03-25

    Translational pausing coordinates protein synthesis and co-translational folding. It is a common factor that facilitates the correct folding of large, multi-domain proteins. For small proteins, pausing sites rarely occurs in the gene body, and the 3'-end pausing sites are only essential for the folding of a fraction of proteins. The determinant of the necessity of the pausings remains obscure. In this study, we demonstrated that the steady-state structural fluctuation is a predictor of the necessity of pausing-mediated co-translational folding for small proteins. Validated by experiments with 5 model proteins, we found that the rigid protein structures do not, while the flexible structures do need 3'-end pausings to fold correctly. Therefore, rational optimization of translational pausing can improve soluble expression of small proteins with flexible structures, but not the rigid ones. The rigidity of the structure can be quantitatively estimated in silico using molecular dynamic simulation. Nevertheless, we also found that the translational pausing optimization increases the fitness of the expression host, and thus benefits the recombinant protein production, independent from the soluble expression. These results shed light on the structural basis of the translational pausing and provided a practical tool for industrial protein fermentation. Copyright © 2017. Published by Elsevier Inc.

  17. miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy

    Directory of Open Access Journals (Sweden)

    Naveed Sabir

    2018-03-01

    Full Text Available Tuberculosis (TB is one of the most fatal infectious diseases and a leading cause of mortality, with 95% of these deaths occurring in developing countries. The causative agent, Mycobacterium tuberculosis (Mtb, has a well-established ability to circumvent the host’s immune system for its intracellular survival. microRNAs (miRNAs are small, non-coding RNAs having an important function at the post-transcriptional level and are involved in shaping immunity by regulating the repertoire of genes expressed in immune cells. It has been established in recent studies that the innate immune response against TB is significantly regulated by miRNAs. Moreover, differential expression of miRNA in Mtb infection can reflect the disease progression and may help distinguish between active and latent TB infection (LTBI. These findings encouraged the application of miRNAs as potential biomarkers. Similarly, active participation of miRNAs in modulation of autophagy and apoptosis responses against Mtb opens an exciting avenue for the exploitation of miRNAs as host directed therapy (HDT against TB. Nanoparticles mediated delivery of miRNAs to treat various diseases has been reported and this technology has a great potential to be used in TB. In reality, this exploitation of miRNAs as biomarkers and in HDT is still in its infancy stage, and more studies using animal models mimicking human TB are advocated to assess the role of miRNAs as biomarkers and therapeutic targets. In this review, we attempt to summarize the recent advancements in the role of miRNAs in TB as immune modulator, miRNAs’ capability to distinguish between active and latent TB and, finally, usage of miRNAs as therapeutic targets against TB.

  18. Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis.

    Science.gov (United States)

    Monavar Feshani, Aboozar; Mohammadi, Saeed; Frazier, Taylor P; Abbasi, Abbas; Abedini, Raha; Karimi Farsad, Laleh; Ehya, Farveh; Salekdeh, Ghasem Hosseini; Mardi, Mohsen

    2012-02-10

    MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Using these methods, we successfully identified and characterized 151 potentially conserved miRNAs, belonging to 26 miRNA families, in 11 genus of Asteraceae. EST analysis predicted that the newly identified conserved Asteraceae miRNAs target 130 total protein-coding ESTs in sunflower and safflower, as well as 433 additional target genes in other plant species. We experimentally confirmed the existence of seven predicted miRNAs, (miR156, miR159, miR160, miR162, miR166, miR396, and miR398) in safflower and sunflower seedlings. We also observed that five out of eight miRNAs are differentially expressed during cotyledon development. Our results indicate that miRNAs may be involved in the regulation of gene expression during seed germination and the formation of the cotyledons in the Asteraceae. The findings of this study might ultimately help in the understanding of miRNA-mediated gene regulation in important crop species. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies⋆

    Science.gov (United States)

    Chen, Yunching; Gao, Dong-Yu; Huang, Leaf

    2016-01-01

    MicroRNAs (miRNAs), small non-coding RNAs, can regulate post-transcriptional gene expressions and silence a broad set of target genes. miRNAs, aberrantly expressed in cancer cells, play an important role in modulating gene expressions, thereby regulating downstream signaling pathways and affecting cancer formation and progression. Oncogenes or tumor suppressor genes regulated by miRNAs mediate cell cycle progression, metabolism, cell death, angiogenesis, metastasis and immunosuppression in cancer. Recently, miRNAs have emerged as therapeutic targets or tools and biomarkers for diagnosis and therapy monitoring in cancer. Since miRNAs can regulate multiple cancer-related genes simultaneously, using miRNAs as a therapeutic approach plays an important role in cancer therapy. However, one of the major challenges of miRNA-based cancer therapy is to achieve specific, efficient and safe systemic delivery of therapeutic miRNAs In vivo. This review discusses the key challenges to the development of the carriers for miRNA-based therapy and explores current strategies to systemically deliver miRNAs to cancer without induction of toxicity. PMID:24859533

  20. Systems biology tools to understand the role of host miRNAs in infection: a closer look at HIV

    CSIR Research Space (South Africa)

    Naidoo, J

    2014-06-01

    Full Text Available The discovery of mammalian microRNAs (miRNAs) has greatly enhanced our appreciation for the complexity associated with the regulation of the mammalian transcriptional landscape. Endogenous miRNA pathways mediate the targeted and subtle variations...

  1. Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival

    Science.gov (United States)

    Kozlowski, Elyse; Matsuura, Kori Y.; Ferrari, Joseph D.; Morris, Samantha A.; Powers, John T.; Daley, George Q.; Quinton, Lee J.; Mizgerd, Joseph P.

    2012-01-01

    The Zcchc11 enzyme is implicated in microRNA (miRNA) regulation. It can uridylate let-7 precursors to decrease quantities of the mature miRNA in embryonic stem cell lines, suggested to mediate stem cell maintenance. It can uridylate mature miR-26 to relieve silencing activity without impacting miRNA content in cancer cell lines, suggested to mediate cytokine and growth factor expression. Broader roles of Zcchc11 in shaping or remodeling the miRNome or in directing biological or physiological processes remain entirely speculative. We generated Zcchc11-deficient mice to address these knowledge gaps. Zcchc11 deficiency had no impact on embryogenesis or fetal development, but it significantly decreased survival and growth immediately following birth, indicating a role for this enzyme in early postnatal fitness. Deep sequencing of small RNAs from neonatal livers revealed roles of this enzyme in miRNA sequence diversity. Zcchc11 deficiency diminished the lengths and terminal uridine frequencies for diverse mature miRNAs, but it had no influence on the quantities of any miRNAs. The expression of IGF-1, a liver-derived protein essential to early growth and survival, was enhanced by Zcchc11 expression in vitro, and miRNA silencing of IGF-1 was alleviated by uridylation events observed to be Zcchc11-dependent in the neonatal liver. In neonatal mice, Zcchc11 deficiency significantly decreased IGF-1 mRNA in the liver and IGF-1 protein in the blood. We conclude that the Zcchc11-mediated terminal uridylation of mature miRNAs is pervasive and physiologically significant, especially important in the neonatal period for fostering IGF-1 expression and enhancing postnatal growth and survival. We propose that the miRNA 3′ terminus is a regulatory node upon which multiple enzymes converge to direct silencing activity and tune gene expression. PMID:23209448

  2. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival.

    Directory of Open Access Journals (Sweden)

    Matthew R Jones

    Full Text Available The Zcchc11 enzyme is implicated in microRNA (miRNA regulation. It can uridylate let-7 precursors to decrease quantities of the mature miRNA in embryonic stem cell lines, suggested to mediate stem cell maintenance. It can uridylate mature miR-26 to relieve silencing activity without impacting miRNA content in cancer cell lines, suggested to mediate cytokine and growth factor expression. Broader roles of Zcchc11 in shaping or remodeling the miRNome or in directing biological or physiological processes remain entirely speculative. We generated Zcchc11-deficient mice to address these knowledge gaps. Zcchc11 deficiency had no impact on embryogenesis or fetal development, but it significantly decreased survival and growth immediately following birth, indicating a role for this enzyme in early postnatal fitness. Deep sequencing of small RNAs from neonatal livers revealed roles of this enzyme in miRNA sequence diversity. Zcchc11 deficiency diminished the lengths and terminal uridine frequencies for diverse mature miRNAs, but it had no influence on the quantities of any miRNAs. The expression of IGF-1, a liver-derived protein essential to early growth and survival, was enhanced by Zcchc11 expression in vitro, and miRNA silencing of IGF-1 was alleviated by uridylation events observed to be Zcchc11-dependent in the neonatal liver. In neonatal mice, Zcchc11 deficiency significantly decreased IGF-1 mRNA in the liver and IGF-1 protein in the blood. We conclude that the Zcchc11-mediated terminal uridylation of mature miRNAs is pervasive and physiologically significant, especially important in the neonatal period for fostering IGF-1 expression and enhancing postnatal growth and survival. We propose that the miRNA 3' terminus is a regulatory node upon which multiple enzymes converge to direct silencing activity and tune gene expression.

  3. Reactive Oxygen Species-Mediated Loss of Synaptic Akt1 Signaling Leads to Deficient Activity-Dependent Protein Translation Early in Alzheimer's Disease.

    Science.gov (United States)

    Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A; Ravindranath, Vijayalakshmi

    2017-12-01

    Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APP Swe /PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9-10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269-1280.

  4. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin.

    Science.gov (United States)

    Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei

    2017-03-01

    Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. MiRNA Biogenesis and Intersecting Pathways

    DEFF Research Database (Denmark)

    Ben Chaabane, Samir

    MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Plant miRNAs are critical for plant growth, development and stress response, and are processed in Arabidopsis from primary miRNA transcripts (pri-miRNAs) by the endonuclease activity of the DICER-LIKE1...... questions need to be addressed to establish a valid link, we provide encouraging evidence of the involvement of chromatin remodeling factors FAS1 and FAS2 in miRNA biogenesis. Together, we have expanded our understanding of the intersections between miRNA biogenesis and other pathways....

  6. Autophagy regulated by miRNAs in colorectal cancer progression and resistance

    Directory of Open Access Journals (Sweden)

    Andrew Fesler

    2017-01-01

    Full Text Available The catabolic process of autophagy is an essential cellular function that allows for the breakdown and recycling of cellular macromolecules. In recent years, the impact of epigenetic regulation of autophagy by noncoding miRNAs has been recognized in human cancer. In colorectal cancer, autophagy plays critical roles in cancer progression as well as resistance to chemotherapy, and recent evidence demonstrates that miRNAs are directly involved in mediating these functions. In this review, we focus on the recent advancements in the field of miRNA regulation of autophagy in colorectal cancer.

  7. The role of baculovirus apoptotic suppressors in AcMNPV-mediated translation arrest in Ld652Y cells

    International Nuclear Information System (INIS)

    Thiem, Suzanne M.; Chejanovsky, Nor

    2004-01-01

    Infecting the insect cell line IPLB-Ld652Y with the baculovirus Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) results in global translation arrest, which correlates with the presence of the AcMNPV apoptotic suppressor, p35. In this study, we investigated the role of apoptotic suppression on AcMNPV-induced translation arrest. Infecting cells with AcMNPV bearing nonfunctional mutant p35 did not result in global translation arrest. In contrast, global translation arrest was observed in cells infected with AcMNPV in which p35 was replaced with Opiap, Cpiap, or p49, baculovirus apoptotic suppressors that block apoptosis by different mechanisms than p35. These results indicated that suppressing apoptosis triggered translation arrest in AcMNPV-infected Ld652Y cells. Experiments using the DNA synthesis inhibitor aphidicolin and temperature shift experiments, using the AcMNPV replication mutants ts8 and ts8Δp35, indicated that translation arrest initiated during the early phase of infection, but events during the late phase were required for global translation arrest. Peptide caspase inhibitors could not substitute for baculovirus apoptotic suppressors to induce translation arrest in Ld652Y cells infected with a p35-null virus. However, if the p35-null-AcMNPV also carried hrf-1, a novel baculovirus host range gene, progeny virus was produced and treatment with peptide caspase inhibitors enhanced translation of a late viral gene transcript. Together, these results indicate that translation arrest in AcMNPV-infected Ld652Y cells is due to the anti-apoptotic function of p35, but suggests that rather than simply preventing caspase activation, its activity enhances signaling to a separate translation arrest pathway, possibly by stimulating the late stages of the baculovirus infection cycle

  8. Therapeutic modulation of miRNA for the treatment of proinflammatory lung diseases.

    LENUS (Irish Health Repository)

    Hassan, Tidi

    2012-03-01

    miRNAs are short, nonprotein coding RNAs that regulate target gene expression principally by causing translational repression and\\/or mRNA degradation. miRNAs are involved in most mammalian biological processes and have pivotal roles in controlling the expression of factors involved in basal and stimulus-induced signaling pathways. Considering their central role in the regulation of gene expression, miRNAs represent therapeutic drug targets. Here we describe how miRNAs are involved in the regulation of aspects of innate immunity and inflammation, what happens when this goes awry, such as in the chronic inflammatory lung diseases cystic fibrosis and asthma, and discuss the current state-of-the-art miRNA-targeted therapeutics.

  9. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling.

    Science.gov (United States)

    Yadav, Amita; Khan, Yusuf; Prasad, Manoj

    2016-03-01

    A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post

  10. miRNAs in brain development

    International Nuclear Information System (INIS)

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function

  11. Plant and Animal microRNAs (miRNAs) and Their Potential for Inter-kingdom Communication.

    Science.gov (United States)

    Zhao, Yuhai; Cong, Lin; Lukiw, Walter J

    2018-01-01

    microRNAs (miRNAs) comprise a class of ~18-25 nucleotide (nt) single-stranded non-coding RNAs (sncRNAs) that are the smallest known carriers of gene-encoded, post-transcriptional regulatory information in both plants and animals. There are many fundamental similarities between plant and animal miRNAs-the miRNAs of both kingdoms play essential roles in development, aging and disease, and the shaping of the transcriptome of many cell types. Both plant and animal miRNAs appear to predominantly exert their genetic and transcriptomic influences by regulating gene expression at the level of messenger RNA (mRNA) stability and/or translational inhibition. Certain miRNA species, such as miRNA-155, miRNA-168, and members of the miRNA-854 family may be expressed in both plants and animals, suggesting a common origin and functional selection of specific miRNAs over vast periods of evolution (for example, Arabidopsis thaliana-Homo sapiens divergence ~1.5 billion years). Although there is emerging evidence for cross-kingdom miRNA communication-that plant-enriched miRNAs may enter the diet and play physiological and/or pathophysiological roles in human health and disease-some research reports repudiate this possibility. This research paper highlights some recent, controversial, and remarkable findings in plant- and animal-based miRNA signaling research with emphasis on the intriguing possibility that dietary miRNAs and/or sncRNAs may have potential to contribute to both intra- and inter-kingdom signaling, and in doing so modulate molecular-genetic mechanisms associated with human health and disease.

  12. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases.

    Science.gov (United States)

    Melnik, Bodo C

    2015-12-21

    Single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity-associated) gene are associated with enhanced FTO expression, increased body weight, obesity and type 2 diabetes mellitus (T2DM). The N (6) -methyladenosine (m(6)A) demethylase FTO plays a pivotal regulatory role for postnatal growth and energy expenditure. The purpose of this review is to provide translational evidence that links milk signaling with FTO-activated transcription of the milk recipient. FTO-dependent demethylation of m(6)A regulates mRNA splicing required for adipogenesis, increases the stability of mRNAs, and affects microRNA (miRNA) expression and miRNA biosynthesis. FTO senses branched-chain amino acids (BCAAs) and activates the nutrient sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), which plays a key role in translation. Milk provides abundant BCAAs and glutamine, critical components increasing FTO expression. CpG hypomethylation in the first intron of FTO has recently been associated with T2DM. CpG methylation is generally associated with gene silencing. In contrast, CpG demethylation generally increases transcription. DNA de novo methylation of CpG sites is facilitated by DNA methyltransferases (DNMT) 3A and 3B, whereas DNA maintenance methylation is controlled by DNMT1. MiRNA-29s target all DNMTs and thus reduce DNA CpG methylation. Cow´s milk provides substantial amounts of exosomal miRNA-29s that reach the systemic circulation and target mRNAs of the milk recipient. Via DNMT suppression, milk exosomal miRNA-29s may reduce the magnitude of FTO methylation, thereby epigenetically increasing FTO expression in the milk consumer. High lactation performance with increased milk yield has recently been associated with excessive miRNA-29 expression of dairy cow mammary epithelial cells (DCMECs). Notably, the galactopoietic hormone prolactin upregulates the transcription factor STAT3, which induces miRNA-29 expression. In a retrovirus-like manner

  13. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer.

    Science.gov (United States)

    Pandima Devi, Kasi; Rajavel, Tamilselvam; Daglia, Maria; Nabavi, Seyed Fazel; Bishayee, Anupam; Nabavi, Seyed Mohammad

    2017-10-01

    In the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors. However, after the discovery of microRNA (miRNA), numerous studies have identified that polyphenols, including epigallocatechin-3-gallate, genistein, resveratrol and curcumin exert their anticancer effects by regulating different miRNAs which are implicated in all the stages of cancer. MiRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. However, cancer associated miRNAs has emerged only in recent years to support its applications in cancer therapy. Preclinical experiments have suggested that deregulation of single miRNA is sufficient for neoplastic transformation of cells. Indeed, the widespread deregulation of several miRNA profiles of tumor and healthy tissue samples revealed the involvement of many types of miRNA in the development of numerous cancers. Hence, targeting the miRNAs using polyphenols will be a novel and promising strategy in anticancer chemotherapy. Herein, we have critically reviewed the potential applications of polyphenols on various human miRNAs, especially which are involved in oncogenic and tumor suppressor pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Bioinformatics of cardiovascular miRNA biology.

    Science.gov (United States)

    Kunz, Meik; Xiao, Ke; Liang, Chunguang; Viereck, Janika; Pachel, Christina; Frantz, Stefan; Thum, Thomas; Dandekar, Thomas

    2015-12-01

    MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs and are highly conserved among species. Moreover, miRNAs regulate gene expression of a large number of genes associated with important biological functions and signaling pathways. Recently, several miRNAs have been found to be associated with cardiovascular diseases. Thus, investigating the complex regulatory effect of miRNAs may lead to a better understanding of their functional role in the heart. To achieve this, bioinformatics approaches have to be coupled with validation and screening experiments to understand the complex interactions of miRNAs with the genome. This will boost the subsequent development of diagnostic markers and our understanding of the physiological and therapeutic role of miRNAs in cardiac remodeling. In this review, we focus on and explain different bioinformatics strategies and algorithms for the identification and analysis of miRNAs and their regulatory elements to better understand cardiac miRNA biology. Starting with the biogenesis of miRNAs, we present approaches such as LocARNA and miRBase for combining sequence and structure analysis including phylogenetic comparisons as well as detailed analysis of RNA folding patterns, functional target prediction, signaling pathway as well as functional analysis. We also show how far bioinformatics helps to tackle the unprecedented level of complexity and systemic effects by miRNA, underlining the strong therapeutic potential of miRNA and miRNA target structures in cardiovascular disease. In addition, we discuss drawbacks and limitations of bioinformatics algorithms and the necessity of experimental approaches for miRNA target identification. This article is part of a Special Issue entitled 'Non-coding RNAs'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The triplet repeats of the Sin Nombre hantavirus 5' untranslated region are sufficient in cis for nucleocapsid-mediated translation initiation.

    Science.gov (United States)

    Mir, Mohammad A; Panganiban, Antonito T

    2010-09-01

    Hantavirus nucleocapsid protein (N) can replace the cellular cap-binding complex, eukaryotic initiation factor 4F (eIF4F), to mediate translation initiation. Although N can augment translation initiation of nonviral mRNA, initiation of viral mRNA by N is superior. All members of the Bunyaviridae family, including the species of the hantavirus genus, express either three or four primary mRNAs from their tripartite negative-sense genomes. The 5' ends of the mRNAs contain nonviral heterologous oligonucleotides that originate from endonucleolytic cleavage of cellular mRNA during the process of cap snatching. In the hantaviruses these caps terminate with a 3' G residue followed by nucleotides arising from the viral template. Further, the 5' untranslated region (UTR) of viral mRNA uniformly contains, near the 5' end, either two or three copies of the triplet repeat sequence, UAGUAG or UAGUAGUAG. Through analysis of a panel of mutants with mutations in the viral UTR, we found that the sequence GUAGUAG is sufficient for preferential N-mediated translation initiation and for high-affinity binding of N to the UTR. This heptanucleotide sequence is present in viral mRNA containing either two or three copies of the triplet repeat.

  16. P02.04MICRORNA-MEDIATED DOWN-REGULATION OF NKG2D LIGAND EXPRESSION REDUCES GLIOMA CELL IMMUNOGENICITY

    Science.gov (United States)

    Codo, P.; Weller, M.; Meister, G.; Szabo, E.; Steinle, A.; Wolter, M.; Reifenberger, G.; Roth, P.

    2014-01-01

    Glioblastoma is a primary brain tumor with a dismal prognosis despite comprehensive therapeutic regimens. It is characterized by diffuse infiltration of the surrounding healthy brain tissue, well-adapted to hypoxic conditions and regarded as paradigmatic for tumor-associated immunosuppression. One of the major activating receptors of natural killer (NK) cells is NKG2D. It binds to at least 8 ligands (NKG2DL) which are induced after malignant transformation and cellular stress. Regulation of NKG2DL expression may be affected by endogenous RNA molecules known as microRNA (miRNA). Here, we aimed at characterizing the role of miRNA in the control of NKG2DL expression in glioma cells. We selected 6 miRNA that were described or predicted to target NKG2DL. Three of the miRNA candidates, miR-20a, miR-93 and miR-106b, were expressed in glioma cell lines and were also detected in glioblastoma tissue specimens. Silencing of these miRNA with locked nucleic acid (LNA) molecules resulted in an up-regulation of NKG2DL cell surface levels which translated into increased sensitivity to immune cell killing. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced immune cell lysis upon miRNA silencing was mediated through the NKG2D system. We conclude that the expression of several miRNA may contribute to the immune escape of glioma cells at the level of the NKG2D system. Therapeutic targeting of miRNA that regulate NKG2DL levels may therefore represent a promising approach to allow for more potent immune responses against glioblastoma.

  17. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    Science.gov (United States)

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  18. Hepatitis A virus-encoded miRNAs attenuate the accumulation of viral genomic RNAs in infected cells.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wu, Meini; Hu, Ningzhu; Hu, Yunzhang

    2016-06-01

    The establishment of persistent infection with hepatitis A virus (HAV) is the common result of most HAV/cell culture systems. Previous observations show that the synthesis of viral RNAs is reduced during infection. However, the underlying mechanism is poorly understood. We characterized three HAV-encoded miRNAs in our previous study. In this study, we aim to investigate the impact of these miRNAs on the accumulation of viral RNAs. The results indicated that the synthesis of viral genomic RNAs was dramatically reduced (more than 75 % reduction, P viral miRNA mimics. Conversely, they were significantly increased (more than 3.3-fold addition, P viral miRNA inhibitors. The luciferase reporter assay of miRNA targets showed that viral miRNAs were fully complementary to specific sites of the viral plus or minus strand RNA and strongly inhibited their expressions. Further data showed that the relative abundance of viral genomic RNA fragments that contain miRNA targets was also dramatically reduced (more than 80 % reduction, P viral miRNAs were overexpressed with miRNA mimics. In contrast, they were significantly increased (approximately 2-fold addition, P viral miRNAs were inhibited with miRNA inhibitors. In conclusion, these data suggest a possible mechanism for the reduction of viral RNA synthesis during HAV infection. Thus, we propose that it is likely that RNA virus-derived miRNA could serve as a self-mediated feedback regulator during infection.

  19. Identifying intrinsic and extrinsic determinants that regulate internal initiation of translation mediated by the FMR1 5' leader

    Directory of Open Access Journals (Sweden)

    Timmerman Stephanie

    2008-10-01

    Full Text Available Abstract Background Regulating synthesis of the Fragile X gene (FMR1 product, FMRP alters neural plasticity potentially through its role in the microRNA pathway. Cap-dependent translation of the FMR1 mRNA, a process requiring ribosomal scanning through the 5' leader, is likely impeded by the extensive secondary structure generated by the high guanosine/cytosine nucleotide content including the CGG triplet nucleotide repeats in the 5' leader. An alternative mechanism to initiate translation – internal initiation often utilizes secondary structure to recruit the translational machinery. Consequently, studies were undertaken to confirm and extend a previous observation that the FMR1 5' leader contains an internal ribosomal entry site (IRES. Results Cellular transfection of a dicistronic DNA construct containing the FMR1 5' leader inserted into the intercistronic region yielded significant translation of the second cistron, but the FMR1 5' leader was also found to contain a cryptic promoter possibly confounding interpretation of these results. However, transfection of dicistronic and monocistronic RNA ex vivo or in vitro confirmed that the FMR1 5' leader contains an IRES. Moreover, inhibiting cap-dependent translation ex vivo did not affect the expression level of endogenous FMRP indicating a role for IRES-dependent translation of FMR1 mRNA. Analysis of the FMR1 5' leader revealed that the CGG repeats and the 5' end of the leader were vital for internal initiation. Functionally, exposure to potassium chloride or intracellular acidification and addition of polyinosinic:polycytidylic acid as mimics of neural activity and double stranded RNA, respectively, differentially affected FMR1 IRES activity. Conclusion Our results indicate that multiple stimuli influence IRES-dependent translation of the FMR1 mRNA and suggest a functional role for the CGG nucleotide repeats.

  20. Computational tools for genome-wide miRNA prediction and study

    KAUST Repository

    Malas, T.B.; Ravasi, Timothy

    2012-01-01

    MicroRNAs (miRNAs) are single-stranded non-coding RNA susually of 22 nucleotidesin length that play an important post-transcriptional regulation role in many organisms. MicroRNAs bind a seed sequence to the 3-untranslated region (UTR) region of the target messenger RNA (mRNA), inducing degradation or inhibition of translation and resulting in a reduction in the protein level. This regulatory mechanism is central to many biological processes and perturbation could lead to diseases such as cancer. Given the biological importance, of miRNAs, there is a great need to identify and study their targets and functions. However, miRNAs are very difficult to clone in the lab and this has hindered the identification of novel miRNAs. Next-generation sequencing coupled with new computational tools has recently evolved to help researchers efficiently identify large numbers of novel miRNAs. In this review, we describe recent miRNA prediction tools and discuss their priorities, advantages and disadvantages. Malas and Ravasi.

  1. Computational tools for genome-wide miRNA prediction and study

    KAUST Repository

    Malas, T.B.

    2012-11-02

    MicroRNAs (miRNAs) are single-stranded non-coding RNA susually of 22 nucleotidesin length that play an important post-transcriptional regulation role in many organisms. MicroRNAs bind a seed sequence to the 3-untranslated region (UTR) region of the target messenger RNA (mRNA), inducing degradation or inhibition of translation and resulting in a reduction in the protein level. This regulatory mechanism is central to many biological processes and perturbation could lead to diseases such as cancer. Given the biological importance, of miRNAs, there is a great need to identify and study their targets and functions. However, miRNAs are very difficult to clone in the lab and this has hindered the identification of novel miRNAs. Next-generation sequencing coupled with new computational tools has recently evolved to help researchers efficiently identify large numbers of novel miRNAs. In this review, we describe recent miRNA prediction tools and discuss their priorities, advantages and disadvantages. Malas and Ravasi.

  2. Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers.

    Science.gov (United States)

    Wu, Hua-Hsi; Lin, Wen-chang; Tsai, Kuo-Wang

    2014-01-23

    Carcinoma of the stomach is one of the most prevalent cancer types in the world. Although the incidence of gastric cancer is declining, the outcomes of gastric cancer patients remain dismal because of the lack of effective biomarkers to detect early gastric cancer. Modern biomedical research has explored many potential gastric cancer biomarker genes by utilising serum protein antigens, oncogenic genes or gene families through improving molecular biological technologies, such as microarray, RNA-Seq and the like. Recently, the small noncoding microRNAs (miRNAs) have been suggested to be critical regulators in the oncogenesis pathways and to serve as useful clinical biomarkers. This new class of biomarkers is emerging as a novel molecule for cancer diagnosis and prognosis, including gastric cancer. By translational suppression of target genes, miRNAs play a significant role in the gastric cancer cell physiology and tumour progression. There are potential implications of previously discovered gastric cancer molecular biomarkers and their expression modulations by respective miRNAs. Therefore, many miRNAs are found to play oncogenic roles or tumour-suppressing functions in human cancers. With the surprising stability of miRNAs in tissues, serum or other body fluids, miRNAs have emerged as a new type of cancer biomarker with immeasurable clinical potential.

  3. MIRNA-DISTILLER: a stand-alone application to compile microRNA data from databases

    Directory of Open Access Journals (Sweden)

    Jessica K. Rieger

    2011-07-01

    Full Text Available MicroRNAs (miRNA are small non-coding RNA molecules of ~22 nucleotides which regulate large numbers of genes by binding to seed sequences at the 3’-UTR of target gene transcripts. The target mRNA is then usually degraded or translation is inhibited, although thus resulting in posttranscriptional down regulation of gene expression at the mRNA and/or protein level. Due to the bioinformatic difficulties in predicting functional miRNA binding sites, several publically available databases have been developed that predict miRNA binding sites based on different algorithms. The parallel use of different databases is currently indispensable, but highly uncomfortable and time consuming, especially when working with numerous genes of interest. We have therefore developed a new stand-alone program, termed MIRNA-DISTILLER, which allows to compile miRNA data for given target genes from public databases. Currently implemented are TargetScan, microCosm, and miRDB, which may be queried independently, pairwise, or together to calculate the respective intersections. Data are stored locally for application of further analysis tools including freely definable biological parameter filters, customized output-lists for both miRNAs and target genes, and various graphical facilities. The software, a data example file and a tutorial are freely available at http://www.ikp-stuttgart.de/content/language1/html/10415.asp

  4. MIRNA-DISTILLER: A Stand-Alone Application to Compile microRNA Data from Databases.

    Science.gov (United States)

    Rieger, Jessica K; Bodan, Denis A; Zanger, Ulrich M

    2011-01-01

    MicroRNAs (miRNA) are small non-coding RNA molecules of ∼22 nucleotides which regulate large numbers of genes by binding to seed sequences at the 3'-untranslated region of target gene transcripts. The target mRNA is then usually degraded or translation is inhibited, although thus resulting in posttranscriptional down regulation of gene expression at the mRNA and/or protein level. Due to the bioinformatic difficulties in predicting functional miRNA binding sites, several publically available databases have been developed that predict miRNA binding sites based on different algorithms. The parallel use of different databases is currently indispensable, but highly uncomfortable and time consuming, especially when working with numerous genes of interest. We have therefore developed a new stand-alone program, termed MIRNA-DISTILLER, which allows to compile miRNA data for given target genes from public databases. Currently implemented are TargetScan, microCosm, and miRDB, which may be queried independently, pairwise, or together to calculate the respective intersections. Data are stored locally for application of further analysis tools including freely definable biological parameter filters, customized output-lists for both miRNAs and target genes, and various graphical facilities. The software, a data example file and a tutorial are freely available at http://www.ikp-stuttgart.de/content/language1/html/10415.asp.

  5. Enhancement of internal ribosome entry site-mediated translation and replication of hepatitis C virus by PD98059

    International Nuclear Information System (INIS)

    Murata, Takayuki; Hijikata, Makoto; Shimotohno, Kunitada

    2005-01-01

    Translation initiation of hepatitis C virus (HCV) occurs in an internal ribosome entry site (IRES)-dependent manner. We found that HCV IRES-dependent protein synthesis is enhanced by PD98059, an inhibitor of the extracellular signal-regulated kinase (ERK) signaling pathway, while cellular cap-dependent translation was relatively unaffected by the compound. Treatment of cells with PD98059 allowed for robust HCV replication following cellular incubation with HCV-positive serum. Though the molecular mechanism underlying IRES enhancement remains elusive, PD98059 is a potent accelerator of HCV RNA replication

  6. Role of miRNA-9 in Brain Development

    Directory of Open Access Journals (Sweden)

    Balachandar Radhakrishnan

    2016-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9 is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon, midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2 , and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2 , and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain-hindbrain boundary (MHB. It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain-hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern.

  7. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes.

    Science.gov (United States)

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Qiu, Shuqing; Rollins, Meaghen; Datla, Raju; Gupta, Vidya S; Kadoo, Narendra Y

    2013-04-01

    MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.

  8. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability

    NARCIS (Netherlands)

    Fernandez, J.; Yaman, I.; Mishra, R.; Merrick, W. C.; Snider, M. D.; Lamers, W. H.; Hatzoglou, M.

    2001-01-01

    The cationic amino acid transporter, Cat-1, facilitates the uptake of the essential amino acids arginine and lysine. Amino acid starvation causes accumulation and increased translation of cat-1 mRNA, resulting in a 58-fold increase in protein levels and increased arginine uptake. A bicistronic mRNA

  9. A Broad RNA Virus Survey Reveals Both miRNA Dependence and Functional Sequestration

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Luna, Joseph M; Liniger, Matthias

    2016-01-01

    , critically depended on the interaction of cellular miR-17 and let-7 with the viral 3' UTR. Unlike canonical miRNA interactions, miR-17 and let-7 binding enhanced pestivirus translation and RNA stability. miR-17 sequestration by pestiviruses conferred reduced AGO binding and functional de...... immunoprecipitation (CLIP) of the Argonaute (AGO) proteins to characterize strengths and specificities of miRNA interactions in the context of 15 different RNA virus infections, including several clinically relevant pathogens. Notably, replication of pestiviruses, a major threat to milk and meat industries...

  10. Translation Theory 'Translated'

    DEFF Research Database (Denmark)

    Wæraas, Arild; Nielsen, Jeppe

    2016-01-01

    Translation theory has proved to be a versatile analytical lens used by scholars working from different traditions. On the basis of a systematic literature review, this study adds to our understanding of the ‘translations’ of translation theory by identifying the distinguishing features of the most...... common theoretical approaches to translation within the organization and management discipline: actor-network theory, knowledge-based theory, and Scandinavian institutionalism. Although each of these approaches already has borne much fruit in research, the literature is diverse and somewhat fragmented......, but also overlapping. We discuss the ways in which the three versions of translation theory may be combined and enrich each other so as to inform future research, thereby offering a more complete understanding of translation in and across organizational settings....

  11. An Evaluation of Twenty Years of EU Framework Programme-funded Immune-mediated Inflammatory Translational Research in Non-human Primates

    Directory of Open Access Journals (Sweden)

    Krista Geraldine Haanstra

    2016-11-01

    Full Text Available Ageing western societies are facing an increasing prevalence of chronic inflammatory and degenerative diseases for which often no effective treatments exist, resulting in increasing health care expenditure. Despite high investments in drug development, the number of promising new drug candidates decreases. We propose that preclinical research in non-human primate can help to bridge the gap between drug discovery and drug prescription.Translational research covers various stages of drug development of which pre-clinical efficacy tests in valid animal models is usually the last stage. Pre-clinical research in non-human primates may be essential in the evaluation of new drugs or therapies when a relevant rodent model is not available. Non-human primate models for life-threatening or severely debilitating diseases in humans are available at the Biomedical Primate Research Centre (BPRC. These have been instrumental in translational research for several decades.In order to stimulate European health research and innovation from bench to bedside, the European Commission (EC has invested heavily in access to non-human primate research for more than 20 years. BPRC has hosted European users in a series of transnational access programs covering a wide range of research areas with the common theme being immune-mediated inflammatory disorders. We present an overview of the results and give an account of the studies performed as part of European Union Framework Programme (EU FP-funded translational non-human primate research performed at the BPRC. The data illustrate value of translational non-human primate research for the development of new therapies and emphasize the importance of EU FP funding

  12. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell

    Directory of Open Access Journals (Sweden)

    Hyouta eHimeno

    2014-04-01

    Full Text Available tmRNA (transfer messenger RNA; also known as 10Sa RNA or SsrA RNA is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon-anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of nonfunctional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.

  13. A plasmonic colorimetric strategy for visual miRNA detection based on hybridization chain reaction

    Science.gov (United States)

    Miao, Jie; Wang, Jingsheng; Guo, Jinyang; Gao, Huiguang; Han, Kun; Jiang, Chengmin; Miao, Peng

    2016-08-01

    In this work, a novel colorimetric strategy for miRNA analysis is proposed based on hybridization chain reaction (HCR)-mediated localized surface plasmon resonance (LSPR) variation of silver nanoparticles (AgNPs). miRNA in the sample to be tested is able to release HCR initiator from a solid interface to AgNPs colloid system by toehold exchange-mediated strand displacement, which then triggers the consumption of fuel strands with single-stranded tails for HCR. The final produced long nicked double-stranded DNA loses the ability to protect AgNPs from salt-induced aggregation. The stability variation of the colloid system can then be monitored by recording corresponding UV-vis spectrum and initial miRNA level is thus determined. This sensing system involves only four DNA strands which is quite simple. The practical utility is confirmed to be excellent by employing different biological samples.

  14. About miRNAs, miRNA seeds, target genes and target pathways.

    Science.gov (United States)

    Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-12-05

    miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).

  15. PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation

    OpenAIRE

    Anderson, Grace R.; Wardell, Suzanne E.; Cakir, Merve; Crawford, Lorin; Leeds, Jim C.; Nussbaum, Daniel P.; Shankar, Pallavi S.; Soderquist, Ryan S.; Stein, Elizabeth M.; Tingley, Jennifer P.; Winter, Peter S.; Zieser-Misenheimer, Elizabeth K.; Alley, Holly M.; Yllanes, Alexander; Haney, Victoria

    2016-01-01

    Therapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that the combined inhibition of BCL-XL and the mTOR/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses MCL-1 protein translation only in ...

  16. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.

    Science.gov (United States)

    Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L

    2014-11-19

    regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.

  17. Chemoresistance, Cancer Stem Cells, and miRNA Influences: The Case for Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Alfred Buhagiar

    2015-01-01

    Full Text Available Neuroblastoma is a type of cancer that develops most often in infants and children under the age of five years. Neuroblastoma originates within the peripheral sympathetic ganglia, with 30% of the cases developing within the adrenal medulla, although it can also occur within other regions of the body such as nerve tissue in the spinal cord, neck, chest, abdomen, and pelvis. MicroRNAs (miRNAs regulate cellular pathways, differentiation, apoptosis, and stem cell maintenance. Such miRNAs regulate genes involved in cellular processes. Consequently, they are implicated in the regulation of a spectrum of signaling pathways within the cell. In essence, the role of miRNAs in the development of cancer is of utmost importance for the understanding of dysfunctional cellular pathways that lead to the conversion of normal cells into cancer cells. This review focuses on highlighting the recent, important implications of miRNAs within the context of neuroblastoma basic research efforts, particularly concerning miRNA influences on cancer stem cell pathology and chemoresistance pathology for this condition, together with development of translational medicine approaches for novel diagnostic tools and therapies for this neuroblastoma.

  18. The regulatory epicenter of miRNAs

    Indian Academy of Sciences (India)

    Bioresource Technology, Council of Scientific & Industrial Research, Palampur 176 061, HP, India. *Corresponding .... miRNA stem and loop regions, interacting with Drosha for .... a double-stranded element, having one strand from the 5′.

  19. Ezh2 regulates transcriptional and post-translational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice1

    Science.gov (United States)

    Tong, Qing; He, Shan; Xie, Fang; Mochizuki, Kazuhiro; Liu, Yongnian; Mochizuki, Izumi; Meng, Lijun; Sun, Hongxing; Zhang, Yanyun; Guo, Yajun; Hexner, Elizabeth; Zhang, Yi

    2014-01-01

    Acquired aplastic anemia (AA) is a potentially fatal bone marrow (BM) failure syndrome. IFN-γ-producing T helper (Th)1 CD4+ T cells mediate the immune destruction of hematopoietic cells, and are central to the pathogenesis. However, the molecular events that control the development of BM-destructive Th1 cells remain largely unknown. Ezh2 is a chromatin-modifying enzyme that regulates multiple cellular processes primarily by silencing gene expression. We recently reported that Ezh2 is crucial for inflammatory T cell responses after allogeneic BM transplantation. To elucidate whether Ezh2 mediates pathogenic Th1 responses in AA and the mechanism of Ezh2 action in regulating Th1 cells, we studied the effects of Ezh2 inhibition in CD4+ T cells using a mouse model of human AA. Conditionally deleting Ezh2 in mature T cells dramatically reduced the production of BM-destructive Th1 cells in vivo, decreased BM-infiltrating Th1 cells, and rescued mice from BM failure. Ezh2 inhibition resulted in significant decrease in the expression of Tbx21 and Stat4 (which encode transcription factors T-bet and STAT4, respectively). Introduction of T-bet but not STAT4 into Ezh2-deficient T cells fully rescued their differentiation into Th1 cells mediating AA. Ezh2 bound to the Tbx21 promoter in Th1 cells, and directly activated Tbx21 transcription. Unexpectedly, Ezh2 was also required to prevent proteasome-mediated degradation of T-bet protein in Th1 cells. Our results identify T-bet as the transcriptional and post-translational Ezh2 target that acts together to generate BM-destructive Th1 cells, and highlight the therapeutic potential of Ezh2 inhibition in reducing AA and other autoimmune diseases. PMID:24760151

  20. Post-translational control of RIPK3 and MLKL mediated necroptotic cell death [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    James M. Murphy

    2015-11-01

    Full Text Available Several programmed lytic and necrotic-like cell death mechanisms have now been uncovered, including the recently described receptor interacting protein kinase-3 (RIPK3-mixed lineage kinase domain-like (MLKL-dependent necroptosis pathway. Genetic experiments have shown that programmed necrosis, including necroptosis, can play a pivotal role in regulating host-resistance against microbial infections. Alternatively, excess or unwarranted necroptosis may be pathological in autoimmune and autoinflammatory diseases. This review highlights the recent advances in our understanding of the post-translational control of RIPK3-MLKL necroptotic signaling. We discuss the critical function of phosphorylation in the execution of necroptosis, and highlight the emerging regulatory roles for several ubiquitin ligases and deubiquitinating enzymes. Finally, based on current evidence, we discuss the potential mechanisms by which the essential, and possibly terminal, necroptotic effector, MLKL, triggers the disruption of cellular membranes to cause cell lysis.

  1. Prediction of Host-Derived miRNAs with the Potential to Target PVY in Potato Plants

    Science.gov (United States)

    Iqbal, Muhammad S.; Hafeez, Muhammad N.; Wattoo, Javed I.; Ali, Arfan; Sharif, Muhammad N.; Rashid, Bushra; Tabassum, Bushra; Nasir, Idrees A.

    2016-01-01

    Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe. PVY reduces the yield and quality of potato cultivars. During the last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in the PVY genome. The PVY genome is approximately 9 thousand nucleotides, which transcribes the following 6 genes:CI, NIa, NIb-Pro, HC-Pro, CP, and VPg. A total of 343 mature miRNAs were retrieved from the miRBase database and were examined for their target sequences in PVY genes using the minimum free energy (mfe), minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. The identified potato miRNAs against viral mRNA targets have antiviral activities, leading to translational inhibition by mRNA cleavage and/or mRNA blockage. We found 86 miRNAs targeting the PVY genome at 151 different sites. Moreover, only 36 miRNAs potentially targeted the PVY genome at 101 loci. The CI gene of the PVY genome was targeted by 32 miRNAs followed by the complementarity of 26, 19, 18, 16, and 13 miRNAs. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h, and miR5303d) that could target the CI, NIa, NIb-Pro, HC-Pro, CP, and VPg genes of PVY. The predicted miRNAs can be used for the development of PVY-resistant potato crops in the future. PMID:27683585

  2. Prediction of host-derived miRNAs with the potential to target PVY in potato plants

    Directory of Open Access Journals (Sweden)

    Muhammad Shahzad Iqbal

    2016-09-01

    Full Text Available Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe PVY reduces the yield and quality of potato cultivars. During last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in PVY genome. PVY genome is about 9 thousand nucleotides approximately which transcribes 6 genes CI, NIa, NIb-Pro, HC-Pro, CP and VPg. A total of 343 mature miRNAs were retrieved from miRbase database and searched for their target sequences in PVY genes using minimum free energy (mfe, minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. Identified Potato miRNAs against viral mRNA targets have antiviral activities leading to either translational inhibition by mRNA cleavage/mRNA blockage or both. We have found 86 miRNAs targeting PVY genome at 151 different sites on PVY genome. Moreover, only 36 miRNA potentially targeted the PVY genome at 101 loci. CI gene of PVY genome was targeted by 32 miRNAs followed by complementarity by 26, 19, 18, 16 and 13 miRNAs respectively. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h and miR5303d could target CI, NIa, NIb-Pro, HC-Pro, CP and VPg genes of PVY. The predicted miRNAs can be used for development of PVY resistant potato crops in future.

  3. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest

    Science.gov (United States)

    Arenz, Stefan; Bock, Lars V.; Graf, Michael; Innis, C. Axel; Beckmann, Roland; Grubmüller, Helmut; Vaiana, Andrea C.; Wilson, Daniel N.

    2016-07-01

    Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation.

  4. Pre-clinical Safety and Off-Target Studies to Support Translation of AAV-Mediated RNAi Therapy for FSHD.

    Science.gov (United States)

    Wallace, Lindsay M; Saad, Nizar Y; Pyne, Nettie K; Fowler, Allison M; Eidahl, Jocelyn O; Domire, Jacqueline S; Griffin, Danielle A; Herman, Adam C; Sahenk, Zarife; Rodino-Klapac, Louise R; Harper, Scott Q

    2018-03-16

    RNAi emerged as a prospective molecular therapy nearly 15 years ago. Since then, two major RNAi platforms have been under development: oligonucleotides and gene therapy. Oligonucleotide-based approaches have seen more advancement, with some promising therapies that may soon reach market. In contrast, vector-based approaches for RNAi therapy have remained largely in the pre-clinical realm, with limited clinical safety and efficacy data to date. We are developing a gene therapy approach to treat the autosomal-dominant disorder facioscapulohumeral muscular dystrophy. Our strategy involves silencing the myotoxic gene DUX4 using adeno-associated viral vectors to deliver targeted microRNA expression cassettes (miDUX4s). We previously demonstrated proof of concept for this approach in mice, and we are now taking additional steps here to assess safety issues related to miDUX4 overexpression and sequence-specific off-target silencing. In this study, we describe improvements in vector design and expansion of our miDUX4 sequence repertoire and report differential toxicity elicited by two miDUX4 sequences, of which one was toxic and the other was not. This study provides important data to help advance our goal of translating RNAi gene therapy for facioscapulohumeral muscular dystrophy.

  5. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction...

  6. Understanding Translation

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Gottlieb, Henrik; Klitgård, Ida

    Understanding Translation is designed as a textbook for courses on the theory and practice of translation in general and of particular types of translation - such as interpreting, screen translation and literary translation. The aim of the book is to help you gain an in-depth understanding...... of the phenomenon of translation and to provide you with a conceptual framework for the analysis of various aspects of professional translation. Intended readers are students of translation and languages, but the book will also be relevant for others who are interested in the theory and practice of translation...... - translators, language teachers, translation users and literary, TV and film critics, for instance. Discussions focus on translation between Danish and English....

  7. Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol.

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    Full Text Available Cilostazol, a type-3 phosphodiesterase (PDE3 inhibitor, has become widely used as an antiplatelet drug worldwide. A recent second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF-induced neurite outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP(3 receptors and several common signaling pathways (PLC-γ, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK, and the Ras/Raf/ERK/MAPK significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have therapeutic relevance in diverse conditions with altered neurite outgrowth.

  8. Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Bhavna Chawla

    Full Text Available Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis (VL and is responsible for significant mortality and morbidity. Increasing resistance towards antimonial drugs poses a great challenge in chemotherapy of VL. Paromomycin is an aminoglycosidic antibiotic and is one of the drugs currently being used in the chemotherapy of cutaneous and visceral leishmaniasis. To understand the mode of action of this antibiotic at the molecular level, we have investigated the global proteome differences between the wild type AG83 strain and a paromomycin resistant (PRr strain of L. donovani. Stable isotope labeling of amino acids in cell culture (SILAC followed by quantitative mass spectrometry of the wild type AG83 strain and the paromomycin resistant (PRr strain identified a total of 226 proteins at ≥ 95% confidence. Data analysis revealed upregulation of 29 proteins and down-regulation of 21 proteins in the PRr strain. Comparative proteomic analysis of the wild type and the paromomycin resistant strains showed upregulation of the ribosomal proteins in the resistant strain indicating role in translation. Elevated levels of glycolytic enzymes and stress proteins were also observed in the PRr strain. Most importantly, we observed upregulation of proteins that may have a role in intracellular survival and vesicular trafficking in the PRr strain. Furthermore, ultra-structural analysis by electron microscopy demonstrated increased number of vesicular vacuoles in PRr strain when compared to the wild-type strain. Drug affinity pull-down assay followed by mass spectrometery identified proteins in L. donovani wild type strain that were specifically and covalently bound to paromomycin. These results provide the first comprehensive insight into the mode of action and underlying mechanism of resistance to paromomycin in Leishmania donovani.

  9. Translation Techniques

    OpenAIRE

    Marcia Pinheiro

    2015-01-01

    In this paper, we discuss three translation techniques: literal, cultural, and artistic. Literal translation is a well-known technique, which means that it is quite easy to find sources on the topic. Cultural and artistic translation may be new terms. Whilst cultural translation focuses on matching contexts, artistic translation focuses on matching reactions. Because literal translation matches only words, it is not hard to find situations in which we should not use this technique.  Because a...

  10. Roles of miRNAs in microcystin-LR-induced Sertoli cell toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuan [Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); Wang, Hui [The Centre for Individualized Medication, Linköping University Hospital, Linköping University, Linköping SE-58185 (Sweden); Wang, Cong [Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); Qiu, Xuefeng [Department of Urology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008 (China); Benson, Mikael [The Centre for Individualized Medication, Linköping University Hospital, Linköping University, Linköping SE-58185 (Sweden); Yin, Xiaoqin [Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); Xiang, Zou [Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg (Sweden); Li, Dongmei, E-mail: lidm@nju.edu.cn [Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); and others

    2015-08-15

    Microcystin (MC)-LR, a cyclic heptapeptide, is a potent reproductive system toxin. To understand the molecular mechanisms of MC-induced reproductive system cytotoxicity, we evaluated global changes of miRNA and mRNA expression in mouse Sertoli cells following MC-LR treatment. Our results revealed that the exposure to MC-LR resulted in an altered miRNA expression profile that might be responsible for the modulation of mRNA expression. Bio-functional analysis indicated that the altered genes were involved in specific cellular processes, including cell death and proliferation. Target gene analysis suggested that junction injury in Sertoli cells exposed to MC-LR might be mediated by miRNAs through the regulation of the Sertoli cell-Sertoli cell pathway. Collectively, these findings may enhance our understanding on the modes of action of MC-LR on mouse Sertoli cells as well as the molecular mechanisms underlying the toxicity of MC-LR on the male reproductive system. - Highlights: • miRNAs were altered in Sertoli cells exposed to MC-LR. • Alerted genes were involved in different cell functions including the cell morphology. • MC-LR adversely affected Sertoli cell junction formation through the regulating miRNAs.

  11. Cannabinoid receptor-mediated disruption of sensory gating and neural oscillations: A translational study in rats and humans.

    Science.gov (United States)

    Skosnik, Patrick D; Hajós, Mihály; Cortes-Briones, Jose A; Edwards, Chad R; Pittman, Brian P; Hoffmann, William E; Sewell, Andrew R; D'Souza, Deepak C; Ranganathan, Mohini

    2018-06-01

    Cannabis use has been associated with altered sensory gating and neural oscillations. However, it is unclear which constituent in cannabis is responsible for these effects, or whether these are cannabinoid receptor 1 (CB1R) mediated. Therefore, the present study in humans and rats examined whether cannabinoid administration would disrupt sensory gating and evoked oscillations utilizing electroencephalography (EEG) and local field potentials (LFPs), respectively. Human subjects (n = 15) completed four test days during which they received intravenous delta-9-tetrahydrocannabinol (Δ 9 -THC), cannabidiol (CBD), Δ 9 -THC + CBD, or placebo. Subjects engaged in a dual-click paradigm, and outcome measures included P50 gating ratio (S2/S1) and evoked power to S1 and S2. In order to examine CB1R specificity, rats (n = 6) were administered the CB1R agonist CP-55940, CP-55940+AM-251 (a CB1R antagonist), or vehicle using the same paradigm. LFPs were recorded from CA3 and entorhinal cortex. Both Δ 9 -THC (p < 0.007) and Δ 9 -THC + CBD (p < 0.004) disrupted P50 gating ratio compared to placebo, while CBD alone had no effect. Δ 9 -THC (p < 0.048) and Δ 9 -THC + CBD (p < 0.035) decreased S1 evoked theta power, and in the Δ 9 -THC condition, S1 theta negatively correlated with gating ratios (r = -0.629, p < 0.012 (p < 0.048 adjusted)). In rats, CP-55940 disrupted gating in both brain regions (p < 0.0001), and this was reversed by AM-251. Further, CP-55940 decreased evoked theta (p < 0.0077) and gamma (p < 0.011) power to S1, which was partially blocked by AM-251. These convergent human/animal data suggest that CB1R agonists disrupt sensory gating by altering neural oscillations in the theta-band. Moreover, this suggests that the endocannabinoid system mediates theta oscillations relevant to perception and cognition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A Canonical DREB2-Type Transcription Factor in Lily Is Post-translationally Regulated and Mediates Heat Stress Response

    Directory of Open Access Journals (Sweden)

    Ze Wu

    2018-03-01

    Full Text Available Based on studies of monocot crops and eudicot model plants, the DREB2 class of AP2-type transcription factor has been shown to play crucial roles in various abiotic stresses, especially in the upstream of the heat stress response; however, research on DREB2s has not been reported in non-gramineous monocot plants. Here, we identified a novel DREB2 (LlDREB2B from lily (Lilium longiflorum, which was homologous to AtDREB2A of Arabidopsis, OsDREB2B of rice, and ZmDREB2A of maize. LlDREB2B was induced by heat, cold, salt, and mannitol stress, and its protein had transcriptional activity, was located in the nucleus, was able to bind to the dehydration-responsive element (DRE, and participated in the heat-responsive pathway of HsfA3. Overexpression of LlDREB2B in Arabidopsis activated expression of downstream genes and improved thermotolerance. LlDREB2B was not regulated by alternative splicing; functional transcripts accumulated under either normal or heat-stress conditions. A potential PEST sequence was predicted in LlDREB2B, but the stability of the LlDREB2B protein was not positively affected when the predicated PEST sequence was deleted. Further analysis revealed that the predicated PEST sequence lacked a SBC or SBC-like motif allowing interaction with BPMs and required for negative regulation. Nevertheless, LlDREB2B was still regulated at the post-translational level by interaction with AtDRIP1 and AtDRIP2 of Arabidopsis. In addition, LlDREB2B also interacted with AtRCD1 and LlRCD1 via a potential RIM motif located at amino acids 215–245. Taken together, our results show that LlDREB2B participated in the establishment of thermotolerance, and its regulation was different from that of the orthologs of gramineous and eudicot plants.

  13. A Canonical DREB2-Type Transcription Factor in Lily Is Post-translationally Regulated and Mediates Heat Stress Response.

    Science.gov (United States)

    Wu, Ze; Liang, Jiahui; Zhang, Shuai; Zhang, Bing; Zhao, Qingcui; Li, Guoqing; Yang, Xi; Wang, Chengpeng; He, Junna; Yi, Mingfang

    2018-01-01

    Based on studies of monocot crops and eudicot model plants, the DREB2 class of AP2-type transcription factor has been shown to play crucial roles in various abiotic stresses, especially in the upstream of the heat stress response; however, research on DREB2s has not been reported in non-gramineous monocot plants. Here, we identified a novel DREB2 (LlDREB2B) from lily ( Lilium longiflorum ), which was homologous to AtDREB2A of Arabidopsis, OsDREB2B of rice, and ZmDREB2A of maize. LlDREB2B was induced by heat, cold, salt, and mannitol stress, and its protein had transcriptional activity, was located in the nucleus, was able to bind to the dehydration-responsive element (DRE), and participated in the heat-responsive pathway of HsfA3. Overexpression of LlDREB2B in Arabidopsis activated expression of downstream genes and improved thermotolerance. LlDREB2B was not regulated by alternative splicing; functional transcripts accumulated under either normal or heat-stress conditions. A potential PEST sequence was predicted in LlDREB2B, but the stability of the LlDREB2B protein was not positively affected when the predicated PEST sequence was deleted. Further analysis revealed that the predicated PEST sequence lacked a SBC or SBC-like motif allowing interaction with BPMs and required for negative regulation. Nevertheless, LlDREB2B was still regulated at the post-translational level by interaction with AtDRIP1 and AtDRIP2 of Arabidopsis. In addition, LlDREB2B also interacted with AtRCD1 and LlRCD1 via a potential RIM motif located at amino acids 215-245. Taken together, our results show that LlDREB2B participated in the establishment of thermotolerance, and its regulation was different from that of the orthologs of gramineous and eudicot plants.

  14. Machine Translation Effect on Communication

    DEFF Research Database (Denmark)

    Jensen, Mika Yasuoka; Bjørn, Pernille

    2011-01-01

    Intercultural collaboration facilitated by machine translation has gradually spread in various settings. Still, little is known as for the practice of machine-translation mediated communication. This paper investigates how machine translation affects intercultural communication in practice. Based...... on communication in which multilingual communication system is applied, we identify four communication types and its’ influences on stakeholders’ communication process, especially focusing on establishment and maintenance of common ground. Different from our expectation that quality of machine translation results...

  15. Possible involvement of miRNAs in tropism of Parvovirus B19.

    Science.gov (United States)

    Anbarlou, Azadeh; AkhavanRahnama, Mahshid; Atashi, Amir; Soleimani, Masoud; Arefian, Ehsan; Gallinella, Giorgio

    2016-03-01

    Human Parvovirus B19 (PVB19) is one of the most important pathogens that targets erythroid lineage. Many factors were mentioned for restriction to erythroid progenitor cells (EPCs). Previous studies showed that in non-permissive cells VP1 and VP2 (structural proteins) mRNAs were detected but could not translate to proteins. A bioinformatics study showed that this inhibition might be due to specific microRNAs (miRNAs) present in non-permissive cells but not in permissive EPCs. To confirm the hypothesis, we evaluated the effect of miRNAs on VP expression. CD34(+) HSCs were separated from cord blood. Then, CD34(+) cells were treated with differentiation medium to obtain CD36(+) EPCs. To evaluate the effect of miRNAs on VP expression in MCF7 and HEK-293 cell lines (non-permissive cells) and CD36(+) EPCs, dual luciferase assay was performed in presence of shRNAs against Dicer and Drosha to disrupt miRNA biogenesis. QRT-PCR was performed to check down-regulation of Dicer and Drosha after transfection. All measurements were done in triplicate. Data means were compared using one-way ANOVAs. MicroRNA prediction was done by the online microRNA prediction tools. No significant difference was shown in luciferase activity of CD36(+) EPCs after co-transfection with shRNAs, while it was significant in non-permissive cells. Our study revealed that miRNAs may be involved in inhibition of VP expression in non-permissive cells, although further studies are required to demonstrate which miRNAs exactly are involved in regulation of PVB19 replication.

  16. The First Report of miRNAs from a Thysanopteran Insect, Thrips palmi Karny Using High-Throughput Sequencing.

    Directory of Open Access Journals (Sweden)

    K B Rebijith

    Full Text Available Thrips palmi Karny (Thysanoptera: Thripidae is the sole vector of Watermelon bud necrosis tospovirus, where the crop loss has been estimated to be around USD 50 million annually. Chemical insecticides are of limited use in the management of T. palmi due to the thigmokinetic behaviour and development of high levels of resistance to insecticides. There is an urgent need to find out an effective futuristic management strategy, where the small RNAs especially microRNAs hold great promise as a key player in the growth and development. miRNAs are a class of short non-coding RNAs involved in regulation of gene expression either by mRNA cleavage or by translational repression. We identified and characterized a total of 77 miRNAs from T. palmi using high-throughput deep sequencing. Functional classifications of the targets for these miRNAs revealed that majority of them are involved in the regulation of transcription and translation, nucleotide binding and signal transduction. We have also validated few of these miRNAs employing stem-loop RT-PCR, qRT-PCR and Northern blot. The present study not only provides an in-depth understanding of the biological and physiological roles of miRNAs in governing gene expression but may also lead as an invaluable tool for the management of thysanopteran insects in the future.

  17. A construct with fluorescent indicators for conditional expression of miRNA

    Directory of Open Access Journals (Sweden)

    Xia Xugang

    2008-10-01

    Full Text Available Abstract Background Transgenic RNAi holds promise as a simple, low-cost, and fast method for reverse genetics in mammals. It may be particularly useful for producing animal models for hypomorphic gene function. Inducible RNAi that permits spatially and temporally controllable gene silencing in vivo will enhance the power of transgenic RNAi approach. Furthermore, because microRNA (miRNA targeting specific genes can be expressed simultaneously with protein coding genes, incorporation of fluorescent marker proteins can simplify the screening and analysis of transgenic RNAi animals. Results We sought to optimally express a miRNA simultaneously with a fluorescent marker. We compared two construct designs. One expressed a red fluorescent protein (RFP and a miRNA placed in its 3' untranslated region (UTR. The other expressed the same RFP and miRNA, but the precursor miRNA (pre-miRNA coding sequence was placed in an intron that was inserted into the 3'-UTR. We found that the two constructs expressed comparable levels of miRNA. However, the intron-containing construct expressed a significantly higher level of RFP than the intron-less construct. Further experiments indicate that the 3'-UTR intron enhances RFP expression by its intrinsic gene-expression-enhancing activity and by eliminating the inhibitory effect of the pre-miRNA on the expression of RFP. Based on these findings, we incorporated the intron-embedded pre-miRNA design into a conditional expression construct that employed the Cre-loxP system. This construct initially expressed EGFP gene, which was flanked by loxP sites. After exposure to Cre recombinase, the transgene stopped EGFP expression and began expression of RFP and a miRNA, which silenced the expression of specific cellular genes. Conclusion We have designed and tested a conditional miRNA-expression construct and showed that this construct expresses both the marker genes strongly and can silence the target gene efficiently upon Cre-mediated

  18. Current perspectives in microRNAs (miRNA)

    CERN Document Server

    Ying, Shao-Yao

    2008-01-01

    In this book, many new perspectives of the miRNA research are reviewed and discussed. These new findings provide significant insight into the various mechanisms of miRNAs and offer a great opportunity in developing new therapeutic interventions.

  19. Integration of the Pokeweed miRNA and mRNA Transcriptomes Reveals Targeting of Jasmonic Acid-Responsive Genes

    Directory of Open Access Journals (Sweden)

    Kira C. M. Neller

    2018-05-01

    Full Text Available The American pokeweed plant, Phytolacca americana, displays broad-spectrum resistance to plant viruses and is a heavy metal hyperaccumulator. However, little is known about the regulation of biotic and abiotic stress responses in this non-model plant. To investigate the control of miRNAs in gene expression, we sequenced the small RNA transcriptome of pokeweed treated with jasmonic acid (JA, a hormone that mediates pathogen defense and stress tolerance. We predicted 145 miRNAs responsive to JA, most of which were unique to pokeweed. These miRNAs were low in abundance and condition-specific, with discrete expression change. Integration of paired mRNA-Seq expression data enabled us to identify correlated, novel JA-responsive targets that mediate hormone biosynthesis, signal transduction, and pathogen defense. The expression of approximately half the pairs was positively correlated, an uncommon finding that we functionally validated by mRNA cleavage. Importantly, we report that a pokeweed-specific miRNA targets the transcript of OPR3, novel evidence that a miRNA regulates a JA biosynthesis enzyme. This first large-scale small RNA study of a Phytolaccaceae family member shows that miRNA-mediated control is a significant component of the JA response, associated with widespread changes in expression of genes required for stress adaptation.

  20. DMPD: Translational mini-review series on Toll-like receptors: networks regulated byToll-like receptors mediate innate and adaptive immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17223959 Translational mini-review series on Toll-like receptors: networks regulate...ol. 2007 Feb;147(2):199-207. (.png) (.svg) (.html) (.csml) Show Translational mini-review series on Toll-lik... immunity. PubmedID 17223959 Title Translational mini-review series on Toll-like receptors: networks regulat

  1. Game Localisation as Software-Mediated Cultural Experience: Shedding Light on the Changing Role of Translation in Intercultural Communication in the Digital Age

    Science.gov (United States)

    O'Hagan, Minako

    2015-01-01

    In this rapidly technologising age translation practice has been undergoing formidable changes with the implication that there is a need to expand the disciplinary scope of translation studies. Taking the case of game localisation this article problematises the role of translation as intercultural communication by focusing on cultural elements of…

  2. Clinical and pathological implications of miRNA in bladder cancer

    Directory of Open Access Journals (Sweden)

    Braicu C

    2015-01-01

    Full Text Available Cornelia Braicu,1 Roxana Cojocneanu-Petric,1,2 Sergiu Chira,1 Anamaria Truta,1,3 Alexandru Floares,4 Bogdan Petrut,5,6 Patriciu Achimas-Cadariu,7,8,* Ioana Berindan-Neagoe1,9–11,*1Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 2Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania; 3Department of Medical Genetics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 4Solutions of Artificial Intelligence Applications, Cluj-Napoca, Romania; 5Department of Urology, The Oncology Institute “ Prof Dr. Ion Chiricuta”, Cluj-Napoca, Romania; 6Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 7Department of Surgery, The Oncology Institute “ Prof Dr. Ion Chiricuta”, Cluj-Napoca, Romania; 8Department of Surgical Oncology and Gynaecological Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 9Department of Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 10Department of Functional Genomics and Experimental Pathology, The Oncology Institute “ Prof Dr. Ion Chiricuta”, Cluj-Napoca, Romania; 11Department of Experimental Therapeutics M.D. Anderson Cancer Center Houston, TX, USAAbstract: MicroRNAs (miRNAs are small, noncoding RNA species with a length of 20–22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with

  3. Translational Creativity

    DEFF Research Database (Denmark)

    Nielsen, Sandro

    2010-01-01

    A long-established approach to legal translation focuses on terminological equivalence making translators strictly follow the words of source texts. Recent research suggests that there is room for some creativity allowing translators to deviate from the source texts. However, little attention...... is given to genre conventions in source texts and the ways in which they can best be translated. I propose that translators of statutes with an informative function in expert-to-expert communication may be allowed limited translational creativity when translating specific types of genre convention....... This creativity is a result of translators adopting either a source-language or a target-language oriented strategy and is limited by the pragmatic principle of co-operation. Examples of translation options are provided illustrating the different results in target texts. The use of a target-language oriented...

  4. miRNAs: Small but deadly

    African Journals Online (AJOL)

    Jane

    2011-08-24

    Aug 24, 2011 ... Levels of some miRNAs are found altered in cancers, so we might expect these regulatory ..... males is the prostate cancer (PCa) (Jemal et al., 2008). ..... 1 growth factor receptor family members HER-1, HER-2, and HER-3.

  5. Argonaute Utilization for miRNA Silencing Is Determined by Phosphorylation-Dependent Recruitment of LIM-Domain-Containing Proteins

    Directory of Open Access Journals (Sweden)

    Katherine S. Bridge

    2017-07-01

    Full Text Available As core components of the microRNA-induced silencing complex (miRISC, Argonaute (AGO proteins interact with TNRC6 proteins, recruiting other effectors of translational repression/mRNA destabilization. Here, we show that LIMD1 coordinates the assembly of an AGO-TNRC6 containing miRISC complex by binding both proteins simultaneously at distinct interfaces. Phosphorylation of AGO2 at Ser 387 by Akt3 induces LIMD1 binding, which in turn enables AGO2 to interact with TNRC6A and downstream effector DDX6. Conservation of this serine in AGO1 and 4 indicates this mechanism may be a fundamental requirement for AGO function and miRISC assembly. Upon CRISPR-Cas9-mediated knockout of LIMD1, AGO2 miRNA-silencing function is lost and miRNA silencing becomes dependent on a complex formed by AGO3 and the LIMD1 family member WTIP. The switch to AGO3 utilization occurs due to the presence of a glutamic acid residue (E390 on the interaction interface, which allows AGO3 to bind to LIMD1, AJUBA, and WTIP irrespective of Akt signaling.

  6. Machine Translation

    Indian Academy of Sciences (India)

    Research Mt System Example: The 'Janus' Translating Phone Project. The Janus ... based on laptops, and simultaneous translation of two speakers in a dialogue. For more ..... The current focus in MT research is on using machine learning.

  7. Rapid Detection and Identification of miRNAs by Surface-Enhanced Raman Spectroscopy Using Hollow Au Nanoflowers Substrates

    Directory of Open Access Journals (Sweden)

    Xiaowei Cao

    2017-01-01

    Full Text Available MicroRNAs (miRNAs are recognized as regulators of gene expression during the biological processes of cells as well as biomarkers of many diseases. Development of rapid and sensitive miRNA profiling methods is crucial for evaluating the pattern of miRNA expression related to normal and diseased states. This work presents a novel hollow Au nanoflowers (HAuNFs substrate for rapid detection and identification of miRNAs by surface-enhanced Raman scattering (SERS spectroscopy. We synthesized the HAuNFs by a seed-mediated growth approach. Then, HAuNFs substrates were fabricated by depositing HAuNFs onto the surfaces of (3-aminopropyltriethoxysilane- (APTES- functionalized ITO glass. The result demonstrated that HAuNFs substrates had very good reproducibility, homogeneous SERS activity, and high SERS effect. The substrates enabled us to successfully obtain the SERS spectra of miR-10a-5p, miR-125a-5p, and miR-196a-5p. The difference spectra among the three kinds of miRNAs were studied to better interpret the spectral differences and identify miRNA expression patterns with high accuracy. The principal component analysis (PCA of the SERS spectra was used to distinguish among the three kinds of miRNAs. Considering its time efficiency, being label-free, and its sensitivity, the SERS based on HAuNFs substrates is very promising for miRNA research and plays an important role in early disease detection and prevention.

  8. The Complexity of Indirect Translation

    DEFF Research Database (Denmark)

    Wenjie, L. I.

    2017-01-01

    its complex nature, and thus determined that many facets of ITr remain to be studied. The present article will try to encompass the complexity of ITr by looking into the reasons for translating indirectly, the challenge of finding out mediating texts (MTs), indirectness in both translation...... of which have been translated and interpreted indirectly through major languages like English, will be employed as examples. Hopefully, this study will offer more insights into the nature of translation as a social activity and raise further interests in studying translation as a complex phenomenon....

  9. Epigenetic architecture and miRNA: reciprocal regulators

    DEFF Research Database (Denmark)

    Wiklund, Erik D; Kjems, Jørgen; Clark, Susan J

    2010-01-01

    Deregulation of epigenetic and microRNA (miRNA) pathways are emerging as key events in carcinogenesis. miRNA genes can be epigenetically regulated and miRNAs can themselves repress key enzymes that drive epigenetic remodeling. Epigenetic and miRNA functions are thus tightly interconnected......RNAs) are considered especially promising in clinical applications, and their biogenesis and function is a subject of active research. In this review, the current status of epigenetic miRNA regulation is summarized and future therapeutic prospects in the field are discussed with a focus on cancer....

  10. Where we stand, where we are moving: Surveying computational techniques for identifying miRNA genes and uncovering their regulatory role

    KAUST Repository

    Kleftogiannis, Dimitrios A.; Korfiati, Aigli; Theofilatos, Konstantinos A.; Likothanassis, Spiridon D.; Tsakalidis, Athanasios K.; Mavroudi, Seferina P.

    2013-01-01

    Traditional biology was forced to restate some of its principles when the microRNA (miRNA) genes and their regulatory role were firstly discovered. Typically, miRNAs are small non-coding RNA molecules which have the ability to bind to the 3'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. Existing experimental techniques for their identification and the prediction of the target genes share some important limitations such as low coverage, time consuming experiments and high cost reagents. Hence, many computational methods have been proposed for these tasks to overcome these limitations. Recently, many researchers emphasized on the development of computational approaches to predict the participation of miRNA genes in regulatory networks and to analyze their transcription mechanisms. All these approaches have certain advantages and disadvantages which are going to be described in the present survey. Our work is differentiated from existing review papers by updating the methodologies list and emphasizing on the computational issues that arise from the miRNA data analysis. Furthermore, in the present survey, the various miRNA data analysis steps are treated as an integrated procedure whose aims and scope is to uncover the regulatory role and mechanisms of the miRNA genes. This integrated view of the miRNA data analysis steps may be extremely useful for all researchers even if they work on just a single step. © 2013 Elsevier Inc.

  11. Where we stand, where we are moving: Surveying computational techniques for identifying miRNA genes and uncovering their regulatory role

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2013-06-01

    Traditional biology was forced to restate some of its principles when the microRNA (miRNA) genes and their regulatory role were firstly discovered. Typically, miRNAs are small non-coding RNA molecules which have the ability to bind to the 3\\'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. Existing experimental techniques for their identification and the prediction of the target genes share some important limitations such as low coverage, time consuming experiments and high cost reagents. Hence, many computational methods have been proposed for these tasks to overcome these limitations. Recently, many researchers emphasized on the development of computational approaches to predict the participation of miRNA genes in regulatory networks and to analyze their transcription mechanisms. All these approaches have certain advantages and disadvantages which are going to be described in the present survey. Our work is differentiated from existing review papers by updating the methodologies list and emphasizing on the computational issues that arise from the miRNA data analysis. Furthermore, in the present survey, the various miRNA data analysis steps are treated as an integrated procedure whose aims and scope is to uncover the regulatory role and mechanisms of the miRNA genes. This integrated view of the miRNA data analysis steps may be extremely useful for all researchers even if they work on just a single step. © 2013 Elsevier Inc.

  12. Identification of novel miRNAs and miRNA dependent developmental shifts of gene expression in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shuhua Zhan

    Full Text Available microRNAs (miRNAs are small, endogenous RNAs of 20 approximately 25 nucleotides, processed from stem-loop regions of longer RNA precursors. Plant miRNAs act as negative regulators of target mRNAs predominately by slicing target transcripts, and a number of miRNAs play important roles in development. We analyzed a number of published datasets from Arabidopsis thaliana to characterize novel miRNAs, novel miRNA targets, and miRNA-regulated developmental changes in gene expression. These data include microarray profiling data and small RNA (sRNA deep sequencing data derived from miRNA biogenesis/transport mutants, microarray profiling data of mRNAs in a developmental series, and computational predictions of conserved genomic stem-loop structures. Our conservative analyses identified five novel mature miRNAs and seven miRNA targets, including one novel target gene. Two complementary miRNAs that target distinct mRNAs were encoded by one gene. We found that genes targeted by known miRNAs, and genes up-regulated or down-regulated in miRNA mutant inflorescences, are highly expressed in the wild type inflorescence. In addition, transcripts upregulated within the mutant inflorescences were abundant in wild type leaves and shoot meristems and low in pollen and seed. Downregulated transcripts were abundant in wild type pollen and seed and low in shoot meristems, roots and leaves. Thus, disrupting miRNA function causes the inflorescence transcriptome to resemble the leaf and meristem and to differ from pollen and seed. Applications of our computational approach to other species and the use of more liberal criteria than reported here will further expand the number of identified miRNAs and miRNA targets. Our findings suggest that miRNAs have a global role in promoting vegetative to reproductive transitions in A. thaliana.

  13. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase.

    Science.gov (United States)

    Brown, Michael C; Bryant, Jeffrey D; Dobrikova, Elena Y; Shveygert, Mayya; Bradrick, Shelton S; Chandramohan, Vidyalakshmi; Bigner, Darell D; Gromeier, Matthias

    2014-11-01

    Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Machine translation

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M

    1982-04-01

    Each language has its own structure. In translating one language into another one, language attributes and grammatical interpretation must be defined in an unambiguous form. In order to parse a sentence, it is necessary to recognize its structure. A so-called context-free grammar can help in this respect for machine translation and machine-aided translation. Problems to be solved in studying machine translation are taken up in the paper, which discusses subjects for semantics and for syntactic analysis and translation software. 14 references.

  15. 6-Mercaptopurine attenuates tumor necrosis factor-α production in microglia through Nur77-mediated transrepression and PI3K/Akt/mTOR signaling-mediated translational regulation.

    Science.gov (United States)

    Huang, Hsin-Yi; Chang, Hui-Fen; Tsai, Ming-Jen; Chen, Jhih-Si; Wang, Mei-Jen

    2016-04-13

    , ultimately leading to a decrease in p65/coactivator-mediated transcription of TNF-α gene. Furthermore, 6-MP enhanced orphan nuclear receptor Nur77 expression. Using RNA interference approach, we further demonstrated that Nur77 upregulation contribute to 6-MP-mediated inhibitory effect on TNF-α production. Additionally, 6-MP also impeded TNF-α mRNA translation through prevention of LPS-activated PI3K/Akt/mTOR signaling cascades. These results suggest that 6-MP might have a therapeutic potential in neuroinflammation-related neurodegenerative disorders through downregulation of microglia-mediated inflammatory processes.

  16. Evolutionary relationships between miRNA genes and their activity.

    Science.gov (United States)

    Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue

    2012-12-22

    The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.

  17. History and theory of Scripture Translations | Loba-Mkole | HTS ...

    African Journals Online (AJOL)

    History and theory of Scripture Translations. ... the functional equivalence, relevance, literaryfunctional equivalence and intercultural mediation. ... on Bible translation theories the article aims to focus on the role of Africa in translation history.

  18. Myostatin genotype regulates muscle-specific miRNA expression in mouse pectoralis muscle

    Directory of Open Access Journals (Sweden)

    Cheng Ye

    2010-11-01

    Full Text Available Abstract Background Loss of functional Myostatin results in a dramatic increase in skeletal muscle mass. It is unknown what role miRNAs play in Myostatin mediated repression of skeletal muscle mass. We hypothesized that Myostatin genotype would be associated with the differential expression of miRNAs in skeletal muscle. Findings Loss of functional Myostatin resulted in a significant increase (p .2 on miR-24 expression level. Myostatin genotype did not affect the expression level of MyoD or Myogenin (P > 0.5. Conclusions Myostatin may regulates the expression of miRNAs such as miR-133a, miR-133b, miR-1, and miR-206 in skeletal muscle as it has been observed that the expression of those miRNAs are significantly higher in myostatin null mice compared to wild type and heterozygous mice. In contrast, expression of myogenic factors such as MyoD or Myogenin has not been affected by myostatin in the muscle tissue.

  19. SoMART, a web server for miRNA, tasiRNA and target gene analysis in Solanaceae plants

    Science.gov (United States)

    Plant micro(mi)RNAs and trans-acting small interfering (tasi)RNAs mediate posttranscriptional silencing of genes and play important roles in a variety of biological processes. Although bioinformatics prediction and small (s)RNA cloning are the key approaches used for identification of miRNAs, tasiRN...

  20. miRNA-target chimeras reveal miRNA 3'-end pairing as a major determinant of Argonaute target specificity

    DEFF Research Database (Denmark)

    Moore, Michael J; Scheel, Troels K H; Luna, Joseph M

    2015-01-01

    microRNAs (miRNAs) act as sequence-specific guides for Argonaute (AGO) proteins, which mediate posttranscriptional silencing of target messenger RNAs. Despite their importance in many biological processes, rules governing AGO-miRNA targeting are only partially understood. Here we report a modifie...

  1. miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells

    DEFF Research Database (Denmark)

    Hua, Youjia; Duan, Shiwei; Murmann, Andrea E

    2011-01-01

    have generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation Coefficient (sPCC) that mimics an in silico titration experiment......micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed miRNAs is expected to hold information....... By focusing on the genes that correlate with the expression of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups. This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition (EMT...

  2. Detection and analysis of apoptosis- and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model.

    Science.gov (United States)

    Liu, Kai-Xiong; Chen, Gong-Ping; Lin, Ping-Li; Huang, Jian-Chai; Lin, Xin; Qi, Jia-Chao; Lin, Qi-Chang

    2018-01-15

    Endothelial dysfunction is the main pathogenic mechanism of cardiovascular complications induced by obstructive sleep apnea/hyponea syndrome (OSAHS). Chronic intermittent hypoxia (CIH) is the primary factor of OSAHS-associated endothelial dysfunction. The hypoxia inducible factor (HIF) pathway regulates the expression of downstream target genes and mediates cell apoptosis caused by CIH-induced endothelial injury. miRNAs play extensive and important negative regulatory roles in this process at the post-transcriptional level. However, the regulatory mechanism of miRNAs in CIH tissue models remains unclear. The present study established a mouse aortic endothelial cell model of CIH in an attempt to screen out specific miRNAs by using miRNA chip analysis. It was found that 14 miRNAs were differentially expressed. Of them, 6 were significantly different and verified by quantitative real-time PCR (Q-PCR), of which four were up-regulated and two were down-regulated markedly. To gain an unbiased global perspective on subsequent regulation by altered miRNAs, we established signaling networks by GO to predict the target genes of the 6 miRNAs. It was found that the 6 identified miRNAs were apoptosis- or autophagy-related target genes. Down-regulation of miR-193 inhibits CIH induced endothelial injury and apoptosis- or autophagy-related protein expression. In conclusion, our results showed that CIH could induce differential expression of miRNAs, and alteration in the miRNA expression pattern was associated with the expression of apoptosis- or autophagy-related genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress.

    Science.gov (United States)

    Tamarkin-Ben-Harush, Ana; Vasseur, Jean-Jacques; Debart, Françoise; Ulitsky, Igor; Dikstein, Rivka

    2017-02-08

    Transcription start-site (TSS) selection and alternative promoter (AP) usage contribute to gene expression complexity but little is known about their impact on translation. Here we performed TSS mapping of the translatome following energy stress. Assessing the contribution of cap-proximal TSS nucleotides, we found dramatic effect on translation only upon stress. As eIF4E levels were reduced, we determined its binding to capped-RNAs with different initiating nucleotides and found the lowest affinity to 5'cytidine in correlation with the translational stress-response. In addition, the number of differentially translated APs was elevated following stress. These include novel glucose starvation-induced downstream transcripts for the translation regulators eIF4A and Pabp, which are also translationally-induced despite general translational inhibition. The resultant eIF4A protein is N-terminally truncated and acts as eIF4A inhibitor. The induced Pabp isoform has shorter 5'UTR removing an auto-inhibitory element. Our findings uncovered several levels of coordination of transcription and translation responses to energy stress.

  4. MiRNA-155 and miRNA-132 as potential diagnostic biomarkers for pulmonary tuberculosis: A preliminary study.

    Science.gov (United States)

    Zheng, Meng-Li; Zhou, Nai-Kang; Luo, Cheng-Hua

    2016-11-01

    In our study, we aimed to profile a panel microRNAs (miRNAs) as potential biomarkers for the early diagnosis of pulmonary tuberculosis (PTB) and to illuminate the molecular mechanisms in the development of PTB. Firstly, gene expression profile of E-GEOD-49951 was downloaded from ArrayExpress database, and quantile-adjusted conditional maximum likelihood method was utilized to identify statistical difference between miRNAs of Mycobacterium tuberculosis (MTB)-infected individuals and healthy subjects. Furthermore, in order to assess the performance of our methodology, random forest (RF) classification model was utilized to identify the top 10 miRNAs with better Area Under The Curve (AUC) using 10-fold cross-validation method. Additionally, Monte Carlo Cross-Validation was repeated 50 times to explore the best miRNAs. In order to learn more about the differentially-expressed miRNAs, the target genes of differentially-expressed miRNAs were retrieved from TargetScan database and Ingenuity Pathways Analysis (IPA) was used to screen out biological pathways where target genes were involved. After normalization, a total of 478 miRNAs with higher than 0.25-fold quantile average across all samples were required. Based on the differential expression analysis, 38 differentially expressed miRNAs were identified when the significance was set as false discovery rate (FDR) < 0.01. Among the top 10 differentially expressed miRNAs, miRNA-155 obtained a highest AUC value 0.976, showing a good performance between PTB and control groups. Similarly, miRNA-449a, miRNA-212 and miRNA-132 revealed also a good performance with AUC values 0.947, 0.931 and 0.930, respectively. Moreover, miRNA-155, miRNA-449a, miRNA-29b-1* and miRNA-132 appeared in 50, 49, 49 and 48 bootstraps. Thus, miRNA-155 and miRNA-132 might be important in the progression of PTB and thereby, might present potential signatures for diagnosis of PTB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Large-scale identification and comparative analysis of miRNA expression profile in the respiratory tree of the sea cucumber Apostichopus japonicus during aestivation.

    Science.gov (United States)

    Chen, Muyan; Storey, Kenneth B

    2014-02-01

    The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing its metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|)≥1, FDR (false discovery rate)<0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation. High-throughput sequencing data and microarray data have been submitted to the GEO database with accession number: 16902695. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Translating India

    CERN Document Server

    Kothari, Rita

    2014-01-01

    The cultural universe of urban, English-speaking middle class in India shows signs of growing inclusiveness as far as English is concerned. This phenomenon manifests itself in increasing forms of bilingualism (combination of English and one Indian language) in everyday forms of speech - advertisement jingles, bilingual movies, signboards, and of course conversations. It is also evident in the startling prominence of Indian Writing in English and somewhat less visibly, but steadily rising, activity of English translation from Indian languages. Since the eighties this has led to a frenetic activity around English translation in India's academic and literary circles. Kothari makes this very current phenomenon her chief concern in Translating India.   The study covers aspects such as the production, reception and marketability of English translation. Through an unusually multi-disciplinary approach, this study situates English translation in India amidst local and global debates on translation, representation an...

  7. Translating Inclusion

    DEFF Research Database (Denmark)

    Fallov, Mia Arp; Birk, Rasmus

    2018-01-01

    The purpose of this paper is to explore how practices of translation shape particular paths of inclusion for people living in marginalized residential areas in Denmark. Inclusion, we argue, is not an end-state, but rather something which must be constantly performed. Active citizenship, today......, is not merely a question of participation, but of learning to become active in all spheres of life. The paper draws on empirical examples from a multi-sited field work in 6 different sites of local community work in Denmark, to demonstrate how different dimensions of translation are involved in shaping active...... citizenship. We propose the following different dimensions of translation: translating authority, translating language, translating social problems. The paper takes its theoretical point of departure from assemblage urbanism, arguing that cities are heterogeneous assemblages of socio-material interactions...

  8. The role of exosomes and miRNAs in drug-resistance of cancer cells.

    Science.gov (United States)

    Bach, Duc-Hiep; Hong, Ji-Young; Park, Hyen Joo; Lee, Sang Kook

    2017-07-15

    Chemotherapy, one of the principal approaches for cancer patients, plays a crucial role in controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later become resistant to even chemically unrelated anticancer agents after repeated treatment. The reduced drug accumulation in tumor cells is considered one of the significant mechanisms by decreasing drug permeability and/or increasing active efflux (pumping out) of the drugs across the cell membrane. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated, including drug efflux, which is mediated by extracellular vesicles (EVs). Exosomes, a subset of EVs with a size range of 40-150 nm and a lipid bilayer membrane, can be released by all cell types. They mediate specific cell-to-cell interactions and activate signaling pathways in cells they either fuse with or interact with, including cancer cells. Exosomal RNAs are heterogeneous in size but enriched in small RNAs, such as miRNAs. In the primary tumor microenvironment, cancer-secreted exosomes and miRNAs can be internalized by other cell types. MiRNAs loaded in these exosomes might be transferred to recipient niche cells to exert genome-wide regulation of gene expression. How exosomal miRNAs contribute to the development of drug resistance in the context of the tumor microenvironment has not been fully described. In this review, we will highlight recent studies regarding EV-mediated microRNA delivery in formatting drug resistance. We also suggest the use of EVs as an advancing method in antiresistance treatment. © 2017 UICC.

  9. Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Li, Zhenyi; Xu, Hongyu; Li, Yue; Wan, Xiufu; Ma, Zhao; Cao, Jing; Li, Zhensong; He, Feng; Wang, Yufei; Wan, Liqiang; Tong, Zongyong; Li, Xianglin

    2018-03-01

    The induction of miR399 and miR398 and the inhibition of miR156, miR159, miR160, miR171, miR2111, and miR2643 were observed under Pi deficiency in alfalfa. The miRNA-mediated genes involved in basic metabolic process, root and shoot development, stress response and Pi uptake. Inorganic phosphate (Pi) deficiency is known to be a limiting factor in plant development and growth. However, the underlying miRNAs associated with the Pi deficiency-responsive mechanism in alfalfa are unclear. To elucidate the molecular mechanism at the miRNA level, we constructed four small RNA (sRNA) libraries from the roots and shoots of alfalfa grown under normal or Pi-deficient conditions. In the present study, alfalfa plants showed reductions in biomass, photosynthesis, and Pi content and increases in their root-to-shoot ratio and citric, malic, and succinic acid contents under Pi limitation. Sequencing results identified 47 and 44 differentially expressed miRNAs in the roots and shoots, respectively. Furthermore, 909 potential target genes were predicted, and some targets were validated by RLM-RACE assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed prominent enrichment in signal transducer activity, binding and basic metabolic pathways for carbohydrates, fatty acids and amino acids; cellular response to hormone stimulus and response to auxin pathways were also enriched. qPCR results verified that the differentially expressed miRNA profile was consistent with sequencing results, and putative target genes exhibited opposite expression patterns. In this study, the miRNAs associated with the response to Pi limitation in alfalfa were identified. In addition, there was an enrichment of miRNA-targeted genes involved in biological regulatory processes such as basic metabolic pathways, root and shoot development, stress response, Pi transportation and citric acid secretion.

  10. Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.)

    Science.gov (United States)

    2013-01-01

    Background Alternate bearing is a widespread phenomenon among crop plants, defined as the tendency of certain fruit trees to produce a high-yield crop one year ("on-year"), followed by a low-yield or even no crop the following year ("off-year"). Several factors may affect the balance between such developmental phase-transition processes. Among them are the microRNA (miRNA), being gene-expression regulators that have been found to be involved as key determinants in several physiological processes. Results Six olive (Olea europaea L. cv. Ayvalik variety) small RNA libraries were constructed from fruits (ripe and unripe) and leaves (”on year” and ”off year” leaves in July and in November, respectively) and sequenced by high-throughput Illumina sequencing. The RNA was retrotranscribed and sequenced using the high-throughput Illumina platform. Bioinformatics analyses of 93,526,915 reads identified 135 conserved miRNA, belonging to 22 miRNA families in the olive. In addition, 38 putative novel miRNAs were discovered in the datasets. Expression of olive tree miRNAs varied greatly among the six libraries, indicating the contribution of diverse miRNA in balancing between reproductive and vegetative phases. Predicted targets of miRNA were categorized into 108 process ontology groups with significance abundance. Among those, potential alternate bearing-associated processes were found, such as development, hormone-mediated signaling and organ morphogenesis. The KEGG analyses revealed that the miRNA-targeted genes are involved in seven main pathways, belonging to carbohydrate metabolism and hormone signal-transduction pathways. Conclusion A comprehensive study on olive miRNA related to alternate bearing was performed. Regulation of miRNA under different developmental phases and tissues indicated that control of nutrition and hormone, together with flowering processes had a noteworthy impact on the olive tree alternate bearing. Our results also provide significant data

  11. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    Science.gov (United States)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  12. Identification and characterization of miRNAs in ripening fruit of Lycium barbarum L. using high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Shaohua eZeng

    2015-09-01

    Full Text Available MicroRNAs (miRNAs are master regulators of gene activity documented to play central roles in fruit ripening in model plant species, yet little is known of their roles in Lycium barbarum L. fruits. In this study, miRNA levels in L. barbarum fruit samples at four developmental stages, were assayed using Illumina HiSeqTM2000. This revealed the presence of 50 novel miRNAs and 38 known miRNAs in L. barbarum fruits. Of the novel miRNAs, 36 were specific to L. barbarum fruits compared with L. chinense. A number of stage-specific miRNAs were identified and GO terms were assigned to 194 unigenes targeted by miRNAs. The majority of GO terms of unigenes targeted by differentially expressed miRNAs are ‘intracellular organelle’, ‘binding’, ‘metabolic process’, ‘pigmentation’, and ‘biological regulation’. Enriched KEGG analysis indicated that nucleotide excision repair and ubiquitin mediated proteolysis were over-represented during the initial stage of ripening, with ABC transporters and sulfur metabolism pathways active during the middle stages and ABC transporters and spliceosome enriched in the final stages of ripening. Several miRNAs and their targets serving as potential regulators in L. barbarum fruit ripening were identified using quantitative reverse transcription polymerase chain reaction. The miRNA-target interactions were predicted for L. barbarum ripening regulators including miR156/157 with LbCNR and LbWRKY8, and miR171 with LbGRAS. Additionally, regulatory interactions potentially controlling fruit quality and nutritional value via sugar and secondary metabolite accumulation were identified. These include miR156 targeting of fructokinase and 1-deoxy-D-xylulose-5-phosphate synthase and miR164 targeting of beta-fructofuranosidase. In sum, valuable information revealed by small RNA sequencing in this study will provide a solid foundation for uncovering the miRNA-mediated mechanism of fruit ripening and quality in this

  13. Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    David Guérit

    Full Text Available The aim of this study was to identify new microRNAs (miRNAs that are modulated during the differentiation of mesenchymal stem cells (MSCs toward chondrocytes. Using large scale miRNA arrays, we compared the expression of miRNAs in MSCs (day 0 and at early time points (day 0.5 and 3 after chondrogenesis induction. Transfection of premiRNA or antagomiRNA was performed on MSCs before chondrogenesis induction and expression of miRNAs and chondrocyte markers was evaluated at different time points during differentiation by RT-qPCR. Among miRNAs that were modulated during chondrogenesis, we identified miR-574-3p as an early up-regulated miRNA. We found that miR-574-3p up-regulation is mediated via direct binding of Sox9 to its promoter region and demonstrated by reporter assay that retinoid X receptor (RXRα is one gene specifically targeted by the miRNA. In vitro transfection of MSCs with premiR-574-3p resulted in the inhibition of chondrogenesis demonstrating its role during the commitment of MSCs towards chondrocytes. In vivo, however, both up- and down-regulation of miR-574-3p expression inhibited differentiation toward cartilage and bone in a model of heterotopic ossification. In conclusion, we demonstrated that Sox9-dependent up-regulation of miR-574-3p results in RXRα down-regulation. Manipulating miR-574-3p levels both in vitro and in vivo inhibited chondrogenesis suggesting that miR-574-3p might be required for chondrocyte lineage maintenance but also that of MSC multipotency.

  14. The role of miRNAs in endometrial cancer.

    Science.gov (United States)

    Vasilatou, Diamantina; Sioulas, Vasileios D; Pappa, Vasiliki; Papageorgiou, Sotirios G; Vlahos, Nikolaos F

    2015-01-01

    miRNAs are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Since their discovery, miRNAs have been associated with every cell function including malignant transformation and metastasis. Endometrial cancer is the most common gynecologic malignancy. However, improvement should be made in interobserver agreement on histological typing and individualized therapeutic approaches. This article summarizes the role of miRNAs in endometrial cancer pathogenesis and treatment.

  15. Compositional translation

    NARCIS (Netherlands)

    Appelo, Lisette; Janssen, Theo; Jong, de F.M.G.; Landsbergen, S.P.J.

    1994-01-01

    This book provides an in-depth review of machine translation by discussing in detail a particular method, called compositional translation, and a particular system, Rosetta, which is based on this method. The Rosetta project is a unique combination of fundamental research and large-scale

  16. Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Sylvia eGarza-Manero

    2015-02-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized clinically by the progressive decline of memory and cognition. Histopathologically, two main hallmarks have been identified in AD: amyloid-β peptide extracellular neuritic plaques and neurofibrillary tangles formed by posttranslational modified tau protein. A definitive diagnosis can only be achieved after the post mortem verification of the histological mentioned alterations. Therefore the development of biomarkers that allow an early diagnosis and/or predict disease progression is imperative. The prospect of a blood-based biomarker is possible with the finding of circulating microRNAs (miRNAs, a class of small non-coding RNAs of 22-25 nucleotides length that regulate mRNA translation rate. miRNAs travel through blood and recent studies performed in potential AD cases suggest the possibility of finding pathology-associated differences in circulating miRNA levels that may serve to assist in early diagnosis of the disease. However, these studies analyzed samples at a single time-point, limiting the use of miRNAs as biomarkers in AD progression. In this study we evaluated miRNA levels in plasma samples at different time-points of the evolution of an AD-like pathology in a transgenic mouse model of the disease (3xTg-AD. We performed multiplex qRT-PCR and compared the plasmatic levels of 84 miRNAs previously associated to central nervous system development and disease. No significant differences were detected between WT and transgenic young mice. However, age-related significant changes in miRNA abundance were observed for both WT and transgenic mice, and some of these were specific for the 3xTg-AD. In agreement, variations in the levels of particular miRNAs were identified between WT and transgenic old mice thus suggesting that the age-dependent evolution of the AD-like pathology, rather than the presence and expression of the transgenes, modifies the circulating miRNA levels in

  17. Exploration of miRNA families for hypotheses generation.

    KAUST Repository

    Kamanu, T.K.

    2013-10-15

    Technological improvements have resulted in increased discovery of new microRNAs (miRNAs) and refinement and enrichment of existing miRNA families. miRNA families are important because they suggest a common sequence or structure configuration in sets of genes that hint to a shared function. Exploratory tools to enhance investigation of characteristics of miRNA families and the functions of family-specific miRNA genes are lacking. We have developed, miRNAVISA, a user-friendly web-based tool that allows customized interrogation and comparisons of miRNA families for hypotheses generation, and comparison of per-species chromosomal distribution of miRNA genes in different families. This study illustrates hypothesis generation using miRNAVISA in seven species. Our results unveil a subclass of miRNAs that may be regulated by genomic imprinting, and also suggest that some miRNA families may be species-specific, as well as chromosome- and/or strand-specific.

  18. Isolation and Identification of miRNAs in Jatropha curcas

    Science.gov (United States)

    Wang, Chun Ming; Liu, Peng; Sun, Fei; Li, Lei; Liu, Peng; Ye, Jian; Yue, Gen Hua

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004. PMID:22419887

  19. Exosomes as miRNA Carriers: Formation–Function–Future

    Science.gov (United States)

    Yu, Xiaojie; Odenthal, Margarete; Fries, Jochen W. U.

    2016-01-01

    Exosomes, which are one of the smallest extracellular vesicles released from cells, have been shown to carry different nucleic acids, including microRNAs (miRNAs). miRNAs significantly regulate cell growth and metabolism by posttranscriptional inhibition of gene expression. The rapidly changing understanding of exosomes’ formation and function in delivering miRNAs from cell to cell has prompted us to review current knowledge in exosomal miRNA secretion mechanisms as well as possible therapeutic applications for personalized medicine. PMID:27918449

  20. Exosomes as miRNA Carriers: Formation–Function–Future

    Directory of Open Access Journals (Sweden)

    Xiaojie Yu

    2016-12-01

    Full Text Available Exosomes, which are one of the smallest extracellular vesicles released from cells, have been shown to carry different nucleic acids, including microRNAs (miRNAs. miRNAs significantly regulate cell growth and metabolism by posttranscriptional inhibition of gene expression. The rapidly changing understanding of exosomes’ formation and function in delivering miRNAs from cell to cell has prompted us to review current knowledge in exosomal miRNA secretion mechanisms as well as possible therapeutic applications for personalized medicine.

  1. Methylation of miRNA genes and oncogenesis.

    Science.gov (United States)

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  2. Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation.

    Science.gov (United States)

    Tao, Wenjing; Sun, Lina; Shi, Hongjuan; Cheng, Yunying; Jiang, Dongneng; Fu, Beide; Conte, Matthew A; Gammerdinger, William J; Kocher, Thomas D; Wang, Deshou

    2016-05-04

    MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.

  3. The role of miRNA regulation in cancer progression and drug resistance

    DEFF Research Database (Denmark)

    Joshi, Tejal

    RNAs in the context of cancer biology, drug resistance and disease progression. The first project described in Chapter 6 addresses the problem of tamoxifen resistance, an anti-estrogen drug that is generally highly effective in the treatment of ER-positive breast cancers. The underlying molecular mechanisms...... to the disease transformation. In summary, this thesis focuses on regulatory role of miRNAs in drug resistance and disease progression. The findings provide hints toward various biologically and perhaps therapeutically relevant gene regulatory events. This thesis demonstrates the right choice of data analysis...... for the acquired resistance to tamoxifen are not very well understood. Therefore, with the aid of miRNA and gene expression profiles for MCF7/S0.5 (tamoxifen sensitive) and three MCF7/S0.5 derived tamoxifen resistant cell lines, we obtained several miRNA-mediated regulatory events in the tamoxifen resistant cell...

  4. Predicting human miRNA target genes using a novel evolutionary methodology

    KAUST Repository

    Aigli, Korfiati; Kleftogiannis, Dimitrios A.; Konstantinos, Theofilatos; Spiros, Likothanassis; Athanasios, Tsakalidis; Seferina, Mavroudi

    2012-01-01

    The discovery of miRNAs had great impacts on traditional biology. Typically, miRNAs have the potential to bind to the 3'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. The experimental identification of their targets has many drawbacks including cost, time and low specificity and these are the reasons why many computational approaches have been developed so far. However, existing computational approaches do not include any advanced feature selection technique and they are facing problems concerning their classification performance and their interpretability. In the present paper, we propose a novel hybrid methodology which combines genetic algorithms and support vector machines in order to locate the optimal feature subset while achieving high classification performance. The proposed methodology was compared with two of the most promising existing methodologies in the problem of predicting human miRNA targets. Our approach outperforms existing methodologies in terms of classification performances while selecting a much smaller feature subset. © 2012 Springer-Verlag.

  5. Predicting human miRNA target genes using a novel evolutionary methodology

    KAUST Repository

    Aigli, Korfiati

    2012-01-01

    The discovery of miRNAs had great impacts on traditional biology. Typically, miRNAs have the potential to bind to the 3\\'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. The experimental identification of their targets has many drawbacks including cost, time and low specificity and these are the reasons why many computational approaches have been developed so far. However, existing computational approaches do not include any advanced feature selection technique and they are facing problems concerning their classification performance and their interpretability. In the present paper, we propose a novel hybrid methodology which combines genetic algorithms and support vector machines in order to locate the optimal feature subset while achieving high classification performance. The proposed methodology was compared with two of the most promising existing methodologies in the problem of predicting human miRNA targets. Our approach outperforms existing methodologies in terms of classification performances while selecting a much smaller feature subset. © 2012 Springer-Verlag.

  6. miR-9a mediates the role of Lethal giant larvae as an epithelial growth inhibitor in Drosophila

    Directory of Open Access Journals (Sweden)

    Scott G. Daniel

    2018-01-01

    Full Text Available Drosophila lethal giant larvae (lgl encodes a conserved tumor suppressor with established roles in cell polarity, asymmetric division, and proliferation control. Lgl's human orthologs, HUGL1 and HUGL2, are altered in human cancers, however, its mechanistic role as a tumor suppressor remains poorly understood. Based on a previously established connection between Lgl and Fragile X protein (FMRP, a miRNA-associated translational regulator, we hypothesized that Lgl may exert its role as a tumor suppressor by interacting with the miRNA pathway. Consistent with this model, we found that lgl is a dominant modifier of Argonaute1 overexpression in the eye neuroepithelium. Using microarray profiling we identified a core set of ten miRNAs that are altered throughout tumorigenesis in Drosophila lgl mutants. Among these are several miRNAs previously linked to human cancers including miR-9a, which we found to be downregulated in lgl neuroepithelial tissues. To determine whether miR-9a can act as an effector of Lgl in vivo, we overexpressed it in the context of lgl knock-down by RNAi and found it able to reduce the overgrowth phenotype caused by Lgl loss in epithelia. Furthermore, cross-comparisons between miRNA and mRNA profiling in lgl mutant tissues and human breast cancer cells identified thrombospondin (tsp as a common factor altered in both fly and human breast cancer tumorigenesis models. Our work provides the first evidence of a functional connection between Lgl and the miRNA pathway, demonstrates that miR-9a mediates Lgl's role in restricting epithelial proliferation, and provides novel insights into pathways controlled by Lgl during tumor progression.

  7. miRNA array analysis determines miR-205 is overexpressed in head and neck squamous cell carcinoma and enhances cellular proliferation

    Directory of Open Access Journals (Sweden)

    Howard JD

    2013-08-01

    Full Text Available MicroRNAs (miRNAs play a critical role in cell cycle and pro-survival signal regulation. Consequently, their deregulation can enhance tumorigenesis and cancer progression. In the current investigation, we determined whether cancer- or human papillomavirus (HPV-specific miRNA deregulation could further elucidate signal transduction events unique to head and neck squamous cell carcinoma (HNSCC. Twenty-nine newly diagnosed HNSCC tumors (HPV-positive: 14, HPV-negative: 15 and four normal mucosa samples were analyzed for global miRNA expression. Differential miRNA expression analysis concluded HNSCC is characterized by a general upregulation of miRNAs compared to normal mucosa. Additionally, miR-449a and miR-129-3p were statistically significant miRNAs differentially expressed between HPV-positive and HPV-negative HNSCC. The upregulation of miR-449a was also validated within an independent dataset obtained from TCGA containing 279 HNSCCs and 39 normal adjacent mucosa samples. To gain a better understanding of miRNA-mediated cell cycle deregulation in HNSCC, we functionally evaluated miR-205, a transcript upregulated in our cancer-specific analysis and a putative regulator of E2F1. Modulation of miR-205 with a miRNA mimic and inhibitor revealed miR-205 is capable of regulating E2F1 expression in HNSCC and overexpression of this transcript enhances proliferation. This study demonstrates miRNA expression is highly deregulated in HNSCC and functional evaluations of these miRNAs may reveal novel HPV context dependent mechanisms in this disease.

  8. High-Throughput Sequencing of Small RNA Transcriptomes in Maize Kernel Identifies miRNAs Involved in Embryo and Endosperm Development.

    Science.gov (United States)

    Xing, Lijuan; Zhu, Ming; Zhang, Min; Li, Wenzong; Jiang, Haiyang; Zou, Junjie; Wang, Lei; Xu, Miaoyun

    2017-12-14

    Maize kernel development is a complex biological process that involves the temporal and spatial expression of many genes and fine gene regulation at a transcriptional and post-transcriptional level, and microRNAs (miRNAs) play vital roles during this process. To gain insight into miRNA-mediated regulation of maize kernel development, a deep-sequencing technique was used to investigate the dynamic expression of miRNAs in the embryo and endosperm at three developmental stages in B73. By miRNA transcriptomic analysis, we characterized 132 known miRNAs and six novel miRNAs in developing maize kernel, among which, 15 and 14 miRNAs were commonly differentially expressed between the embryo and endosperm at 9 days after pollination (DAP), 15 DAP and 20 DAP respectively. Conserved miRNA families such as miR159, miR160, miR166, miR390, miR319, miR528 and miR529 were highly expressed in developing embryos; miR164, miR171, miR393 and miR2118 were highly expressed in developing endosperm. Genes targeted by those highly expressed miRNAs were found to be largely related to a regulation category, including the transcription, macromolecule biosynthetic and metabolic process in the embryo as well as the vitamin biosynthetic and metabolic process in the endosperm. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that these miRNAs displayed a negative correlation with the levels of their corresponding target genes. Importantly, our findings revealed that members of the miR169 family were highly and dynamically expressed in the developing kernel, which will help to exploit new players functioning in maize kernel development.

  9. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity

    OpenAIRE

    Wyman, Stacia K.; Knouf, Emily C.; Parkin, Rachael K.; Fritz, Brian R.; Lin, Daniel W.; Dennis, Lucas M.; Krouse, Michael A.; Webster, Philippa J.; Tewari, Muneesh

    2011-01-01

    Modification of microRNA sequences by the 3′ addition of nucleotides to generate so-called “isomiRs” adds to the complexity of miRNA function, with recent reports showing that 3′ modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3′ modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications resul...

  10. miRNA Signatures of Insulin Resistance in Obesity.

    Science.gov (United States)

    Jones, Angela; Danielson, Kirsty M; Benton, Miles C; Ziegler, Olivia; Shah, Ravi; Stubbs, Richard S; Das, Saumya; Macartney-Coxson, Donia

    2017-10-01

    Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R 2  = 0.57, P = 7.5 × 10 -8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity. © 2017 The Obesity Society.

  11. Binary translation using peephole translation rules

    Science.gov (United States)

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  12. History and theory of Scripture translations

    Directory of Open Access Journals (Sweden)

    Jean-Claude Loba-Mkole

    2008-01-01

    Full Text Available This article argues for the importance of Bible translations through its historical achievements and theoretical frames of reference. The missionary expansion of Christianity owes its very being to translations. The early Christian communities knew the Bible through the LXX translations while churches today still continue to use various translations. Translations shape Scripture interpretations, especially when a given interpretation depends on a particular translation. A particular interpretation can also influence a given translation. The article shows how translation theories have been developed to clarify and how the transaction source-target is culturally handled. The articles discuss some of these “theoretical frames”, namely the functional equivalence, relevance, literary functional equivalence and intercultural mediation. By means of a historical overview and a reflection on Bible translation theories the article aims to focus on the role of Africa in translation history.

  13. Precision translator

    Science.gov (United States)

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  14. Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations

    DEFF Research Database (Denmark)

    Zedan, Ahmed Hussein; Blavnsfeldt, Søren Garm; Hansen, Torben Frøstrup

    2017-01-01

    ).RESULTS: Four miRNAs (miRNA-21, miRNA-34a, miRNA-125, and miRNA-126) were significantly upregulated in PCa compared to benign prostatic hyperplasia (BPH), and except for miRNA-21 these miRNAs documented a positive correlation between the expression level in PCa cores and their matched BPH cores, (r > 0......-free survival (p = 0.016).CONCLUSION: The present study documents significant upregulation of the expression of miRNA-21, miRNA-34a, miRNA-125, and miRNA-126 in PCa compared to BPH and suggests a possible prognostic value associated with the expression of miRNA-143. The results, however, document intra...

  15. Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations

    DEFF Research Database (Denmark)

    Zedan, Ahmed Hussein; Blavnsfeldt, Søren Garm; Hansen, Torben Frøstrup

    2017-01-01

    ). RESULTS: Four miRNAs (miRNA-21, miRNA-34a, miRNA-125, and miRNA-126) were significantly upregulated in PCa compared to benign prostatic hyperplasia (BPH), and except for miRNA-21 these miRNAs documented a positive correlation between the expression level in PCa cores and their matched BPH cores, (r > 0......-free survival (p = 0.016). CONCLUSION: The present study documents significant upregulation of the expression of miRNA-21, miRNA-34a, miRNA-125, and miRNA-126 in PCa compared to BPH and suggests a possible prognostic value associated with the expression of miRNA-143. The results, however, document intra...

  16. Comparative profiling of miRNAs and target gene identification in distant-grafting between tomato and Lycium (goji berry

    Directory of Open Access Journals (Sweden)

    A B M Khaldun

    2016-10-01

    Full Text Available Local translocation of small RNAs between cells is proved. Long distance translocation between rootstock and scion is also well documented in the homo-grafting system, but the process in distant-grafting is widely unexplored where rootstock and scion belonging to different genera. Micro RNAs are a class of small, endogenous, noncoding, gene silencing RNAs that regulate target genes of a wide range of important biological pathways in plants. In this study, tomato was grafted onto goji (Lycium chinense Mill. to reveal the insight of miRNAs regulation and expression patterns within a distant-grafting system. Goji is an important traditional Chinese medicinal plant with enriched phytochemicals. Illumina sequencing technology has identified 68 evolutionary known miRNAs of 37 miRNA families. Moreover, 168 putative novel miRNAs were also identified. Compared with control tomato, 43 (11 known and 32 novels and 163 (33 known and 130 novels miRNAs were expressed significantly different in shoot and fruit of grafted tomato, respectively. The fruiting stage was identified as the most responsive in the distant-grafting approach and 123 miRNAs were found as up-regulating in the grafted fruit which is remarkably higher compare to the grafted shoot tip (28. Potential targets of differentially expressed miRNAs were found to be involved in diverse metabolic and regulatory pathways. ADP binding activities, molybdopterin synthase complex and RNA helicase activity were found as enriched terms in GO (Gene Ontology analysis. Additionally, ‘metabolic pathways’ was revealed as the most significant pathway in KEGG (Kyoto Encyclopedia of Genes and Genomes analysis. The information of the small RNA transcriptomes that are obtained from this study might be the first miRNAs elucidation for a distant-grafting system, particularly between goji and tomato. The results from this study will provide the insights into the molecular aspects of miRNA-mediated regulation in the

  17. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.

    Science.gov (United States)

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S

    2015-04-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Viruses and miRNAs: More Friends than Foes.

    Science.gov (United States)

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host-pathogen interaction.

  19. miRNAs in Human Subcutaneous Adipose Tissue

    DEFF Research Database (Denmark)

    Kristensen, Malene M.; Davidsen, Peter K.; Vigelso, Andreas

    2017-01-01

    Objective Obesity is central in the development of insulin resistance. However, the underlying mechanisms still need elucidation. Dysregulated microRNAs (miRNAs; post-transcriptional regulators) in adipose tissue may present an important link. Methods The miRNA expression in subcutaneous adipose ...

  20. Exosomal miRNAs as biomarkers for prostate cancer

    Directory of Open Access Journals (Sweden)

    Nina Pettersen Hessvik

    2013-03-01

    Full Text Available miRNAs are small non-coding RNAs that finely regulate gene expression in cells. Alterations in miRNA expression have been associated with development of cancer, and miRNAs are now being investigated as biomarkers for cancer as well as other diseases. Recently, miRNAs have been found outside cells in body fluids. Extracellular miRNAs exist in different forms - associated with Ago2 proteins, loaded into extracellular vesicles (exosomes, microvesicles or apoptotic bodies or into high density lipoprotein particles. These extracellular miRNAs are probably products of distinct cellular processes, and might therefore play different roles. However, their functions in vivo are currently unknown. In spite of this, they are considered as promising, noninvasive diagnostic and prognostic tools. Prostate cancer is the most common cancer in men in the Western world, but the currently used biomarker (prostate specific antigen has low specificity. Therefore, novel biomarkers are highly needed. In this review we will discuss possible biological functions of extracellular miRNAs, as well as the potential use of miRNAs from extracellular vesicles as biomarkers for prostate cancer.

  1. Exploration of miRNA families for hypotheses generation.

    KAUST Repository

    Kamanu, T.K.; Radovanovic, Aleksandar; Archer, John A.C.; Bajic, Vladimir B.

    2013-01-01

    species. Our results unveil a subclass of miRNAs that may be regulated by genomic imprinting, and also suggest that some miRNA families may be species-specific, as well as chromosome- and/or strand-specific.

  2. IDENTIFICATION AND CHARACTERIZATION OF NEW miRNAs IN ...

    African Journals Online (AJOL)

    Pathmanaban

    2012-09-20

    Sep 20, 2012 ... simplest and rapid method of identification of miRNAs is relied on in silico analysis. ... (NRs), are available for several plant species and can be used for ... Currently, there are 89 miRNAs deposited under. Gossypium at Plant ...

  3. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.

    Science.gov (United States)

    O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-11-07

    and cholesterol metabolic processes, small molecule transport and a range of responses to external stimuli, while similar analysis of the DE protein list identified gene expression/transcription, epigenetic mechanisms, DNA replication, differentiation and translation ontology categories. The DE protein and gene lists were found to share 15 biological processes including for example epithelial cell differentiation [ P value ≤ 1.81613E-08 (protein list); P ≤ 0.000434311 (gene list)] and actin filament bundle assembly [ P value ≤ 0.001582797 (protein list); P ≤ 0.002733714 (gene list)]. Analysis was conducted on the three data streams acquired in parallel to identify targets undergoing potential miRNA translational repression identified 34 proteins, whose respective mRNAs were detected but no change in expression was observed. Of these 34 proteins, 27 proteins downregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 19 unique anti-correlated/upregulated microRNAs and 7 proteins upregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 15 unique anti-correlated/downregulated microRNAs. This first study providing "tri-omics" analysis of the principal intestinal cell line models Caco-2 and HT-29 has identified 34 proteins potentially undergoing miRNA translational repression.

  4. Translational Control of the SigR-Directed Oxidative Stress Response in Streptomyces via IF3-Mediated Repression of a Noncanonical GTC Start Codon.

    Science.gov (United States)

    Feeney, Morgan A; Chandra, Govind; Findlay, Kim C; Paget, Mark S B; Buttner, Mark J

    2017-06-13

    The major oxidative stress response in Streptomyces is controlled by the sigma factor SigR and its cognate antisigma factor RsrA, and SigR activity is tightly controlled through multiple mechanisms at both the transcriptional and posttranslational levels. Here we show that sigR has a highly unusual GTC start codon and that this leads to another level of SigR regulation, in which SigR translation is repressed by translation initiation factor 3 (IF3). Changing the GTC to a canonical start codon causes SigR to be overproduced relative to RsrA, resulting in unregulated and constitutive expression of the SigR regulon. Similarly, introducing IF3* mutations that impair its ability to repress SigR translation has the same effect. Thus, the noncanonical GTC sigR start codon and its repression by IF3 are critical for the correct and proper functioning of the oxidative stress regulatory system. sigR and rsrA are cotranscribed and translationally coupled, and it had therefore been assumed that SigR and RsrA are produced in stoichiometric amounts. Here we show that RsrA can be transcribed and translated independently of SigR, present evidence that RsrA is normally produced in excess of SigR, and describe the factors that determine SigR-RsrA stoichiometry. IMPORTANCE In all sigma factor-antisigma factor regulatory switches, the relative abundance of the two proteins is critical to the proper functioning of the system. Many sigma-antisigma operons are cotranscribed and translationally coupled, leading to a generic assumption that the sigma and antisigma factors are produced in a fixed 1:1 ratio. In the case of sigR - rsrA , we show instead that the antisigma factor is produced in excess over the sigma factor, providing a buffer to prevent spurious release of sigma activity. This excess arises in part because sigR has an extremely rare noncanonical GTC start codon, and as a result, SigR translation initiation is repressed by IF3. This finding highlights the potential significance

  5. Integrating miRNA and mRNA Expression Profiling Uncovers miRNAs Underlying Fat Deposition in Sheep

    Directory of Open Access Journals (Sweden)

    Guangxian Zhou

    2017-01-01

    Full Text Available MicroRNAs (miRNAs are endogenous, noncoding RNAs that regulate various biological processes including adipogenesis and fat metabolism. Here, we adopted a deep sequencing approach to determine the identity and abundance of miRNAs involved in fat deposition in adipose tissues from fat-tailed (Kazakhstan sheep, KS and thin-tailed (Tibetan sheep, TS sheep breeds. By comparing HiSeq data of these two breeds, 539 miRNAs were shared in both breeds, whereas 179 and 97 miRNAs were uniquely expressed in KS and TS, respectively. We also identified 35 miRNAs that are considered to be putative novel miRNAs. The integration of miRNA-mRNA analysis revealed that miRNA-associated targets were mainly involved in the gene ontology (GO biological processes concerning cellular process and metabolic process, and miRNAs play critical roles in fat deposition through their ability to regulate fundamental pathways. These pathways included the MAPK signaling pathway, FoxO and Wnt signaling pathway, and focal adhesion. Taken together, our results define miRNA expression signatures that may contribute to fat deposition and lipid metabolism in sheep.

  6. The role of medicaments, exosomes and miRNA molecules in modulation of macrophage immune activity

    Directory of Open Access Journals (Sweden)

    Katarzyna Nazimek

    2015-01-01

    Full Text Available Macrophages play an important role in innate immunity, in induction and orchestration of acquired immune response as well as in the maintenance of tissue homeostasis. Macrophages as antigen presenting cells induce or inhibit the development of immune response and as effector cells play an important role in innate immunity to infectious agents and in delayed--type hypersensitivity as well. Thus, either up- or down-regulation of their activity leads to the impairment of different biological processes. This often results in the development of immunological diseases or inflammatory response associated with metabolic, cardiovascular or neuroendocrine disorders. Therefore, the possibility of modulation of macrophage function should allow for elaboration of new effective therapeutic strategies. Noteworthy, interaction of medicaments with macrophages may directly mediate their therapeutic activity or is an additional beneficial effect increasing efficacy of treatment. Further, macrophage differentiation is regulated by miRNA-223, while expression of miRNA-146 and miRNA-155 may modulate and/or be a result of the current cell phenotype. Present review is focused on the current knowledge about the action of medicaments, microRNA molecules, exosomes and related vesicles on macrophages leading to modulation of their biological activity.

  7. Machine Translation and Other Translation Technologies.

    Science.gov (United States)

    Melby, Alan

    1996-01-01

    Examines the application of linguistic theory to machine translation and translator tools, discusses the use of machine translation and translator tools in the real world of translation, and addresses the impact of translation technology on conceptions of language and other issues. Findings indicate that the human mind is flexible and linguistic…

  8. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity.

    Science.gov (United States)

    Wyman, Stacia K; Knouf, Emily C; Parkin, Rachael K; Fritz, Brian R; Lin, Daniel W; Dennis, Lucas M; Krouse, Michael A; Webster, Philippa J; Tewari, Muneesh

    2011-09-01

    Modification of microRNA sequences by the 3' addition of nucleotides to generate so-called "isomiRs" adds to the complexity of miRNA function, with recent reports showing that 3' modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3' modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications result predominantly from adenylation and uridylation and are seen across tissue types, disease states, and developmental stages. To quantitatively profile 3' nucleotide additions, we developed and validated a novel assay based on NanoString Technologies' nCounter platform. For certain miRNAs, the frequency of modification was altered by processes such as cell differentiation, indicating that 3' modification is a biologically regulated process. To investigate the mechanism of 3' nucleotide additions, we used RNA interference to screen a panel of eight candidate miRNA nucleotidyl transferases for 3' miRNA modification activity in human cells. Multiple enzymes, including MTPAP, PAPD4, PAPD5, ZCCHC6, ZCCHC11, and TUT1, were found to govern 3' nucleotide addition to miRNAs in a miRNA-specific manner. Three of these enzymes-MTPAP, ZCCHC6, and TUT1-have not previously been known to modify miRNAs. Collectively, our results indicate that 3' modification observed in next-generation small RNA sequencing data is a biologically relevant process, and identify enzymatic mechanisms that may lead to new approaches for modulating miRNA activity in vivo.

  9. Distinct expression profile of HCMV encoded miRNAs in plasma from oral lichen planus patients.

    Science.gov (United States)

    Ding, Meng; Wang, Xiang; Wang, Cheng; Liu, Xiaoshuang; Zen, Ke; Wang, Wenmei; Zhang, Chen-Yu; Zhang, Chunni

    2017-06-07

    Oral lichen planus (OLP) is a T cell-mediated autoimmune disease. The aetiology and molecular mechanisms of OLP remain unclear. Human cytomegalovirus (HCMV) infection is a causal factor in the development of various diseases, but the clinical relevance of HCMV in OLP has not been thoroughly investigated. In the present study, we firstly examined twenty-three HCMV-encoded microRNA (miRNA) expression profiles in plasma from training set that including 21 OLP patients and 18 healthy controls using RT-qPCR technology. Dysregulated miRNAs were subsequently confirmed in another larger cohort refereed as validation set consisting of 40 OLP patients and 33 healthy controls. HCMV DNA in peripheral blood leukocytes (PBLs) was also measured in an additional cohort of 13 OLP patients and 12 control subjects. Furthermore, bioinformatics analyses, luciferase reporter assay and western blotting were also performed to predict and verify the direct potential targets of HCMV-encoded miRNAs. The RT-qPCR results showed that the plasma levels of five HCMV-encoded miRNAs including hcmv-miR-UL112-3p, hcmv-miR-UL22a-5p, hcmv-miR-UL148d, hcmv-miR-UL36-5p and hcmv-miR-UL59 were significantly increased in OLP patients in both training and validation sets. HCMV DNA in PBLs was also significantly higher in OLP patients than in control subjects. Additionally, by using a combination of luciferase reporter assay and western blotting, we demonstrated that cytomegalovirus UL16-binding protein 1, a molecule that mediates the killing of virus-infected cells by natural killer cells, is a direct target of hcmv-miR-UL59. Our results demonstrate a distinct expression pattern of HCMV-encoded miRNAs in OLP patients, which may provide insight into the relationship between HCMV infection and OLP, and warrants additional study in the diagnosis and aetiology of OLP.

  10. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products.

    Science.gov (United States)

    Kurzchalia, T V; Wiedmann, M; Breter, H; Zimmermann, W; Bauschke, E; Rapoport, T A

    1988-03-15

    We have developed a new method for the rapid and sensitive detection of cell-free translation products. Biotinylated lysine is incorporated into newly synthesized proteins by means of lysyl-tRNA that is modified in the epsilon-position. After electrophoresis in a dodecyl sulfate gel and blotting onto nitrocellulose, the translation products can be identified by probing with streptavidin and biotinylated alkaline phosphatase, followed by incubation with a chromogenic enzyme substrate. The non-radioactive labelling by biotin approaches in its sensitivity that obtained by radioactive amino acids. The products are absolutely stable and can be rapidly identified. The new method has been tested with different mRNAs in the cell-free translation systems of wheat germ and reticulocytes. Neither the interaction of secretory proteins with the signal recognition particle nor the in vitro translocation across the endoplasmic reticulum membrane or core glycosylation of nascent polypeptides are prevented by the incorporation of biotinylated lysine residues. The results indicate that both the ribosome and the endoplasmic reticulum membrane permit the passage of polypeptides carrying bulky groups attached to the amino acids (by atomic models it was estimated that the size of the side chain of lysine changes from approximately equal to 0.8 nm to approximately equal to 2 nm after modification.

  11. Entropy-based model for miRNA isoform analysis.

    Directory of Open Access Journals (Sweden)

    Shengqin Wang

    Full Text Available MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test, we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3' isomiR variant, is strongly correlated with Minimum Free Energy (MFE of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5' end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.

  12. Review in Translational Cardiology: MicroRNAs and Myocardial Fibrosis in Aortic Valve Stenosis, a Deep Insight on Left Ventricular Remodeling.

    Science.gov (United States)

    Iacopo, Fabiani; Lorenzo, Conte; Calogero, Enrico; Matteo, Passiatore; Riccardo, Pugliese Nicola; Veronica, Santini; Valentina, Barletta; Riccardo, Liga; Cristian, Scatena; Maria, Mazzanti Chiara; Vitantonio, Di Bello

    2016-01-01

    MicroRNAs (miRNAs) are a huge class of noncoding RNAs that regulate protein-encoding genes (degradation/inhibition of translation). miRNAs are nowadays recognized as regulators of biological processes underneath cardiovascular disorders including hypertrophy, ischemia, arrhythmias, and valvular disease. In particular, circulating miRNAs are promising biomarkers of pathology. This review gives an overview of studies in aortic valve stenosis (AS), exclusively considering myocardial remodeling processes. We searched through literature (till September 2016), all studies and reviews involving miRNAs and AS (myocardial compartment). Although at the beginning of a new era, clear evidences exist on the potential diagnostic and prognostic implementation of miRNAs in the clinical setting. In particular, for AS, miRNAs are modulators of myocardial remodeling and hypertrophy. In our experience, here presented in summary, the principal findings of our research were a confirm of the pathophysiological role in AS of miRNA-21, in particular, the interdependence between textural miRNA-21 and fibrogenic stimulus induced by an abnormal left ventricular pressure overload. Moreover, circulating miRNA-21 (biomarker) levels are able to reflect the presence of significant myocardial fibrosis (MF). Thus, the combined evaluation of miRNA-21, a marker of MF, and hypertrophy, together with advanced echocardiographic imaging (two-dimensional speckle tracking), could fulfill many existing gaps, renewing older guidelines paradigms, also allowing a better risk prognostic and diagnostic strategies.

  13. Translation Competence

    DEFF Research Database (Denmark)

    Vandepitte, Sonia; Mousten, Birthe; Maylath, Bruce

    2014-01-01

    After Kiraly (2000) introduced the collaborative form of translation in classrooms, Pavlovic (2007), Kenny (2008), and Huertas Barros (2011) provided empirical evidence that testifies to the impact of collaborative learning. This chapter sets out to describe the collaborative forms of learning at...

  14. Translating Harbourscapes

    DEFF Research Database (Denmark)

    Diedrich, Lisa Babette

    -specific design are proposed for all actors involved in harbour transformation. The study ends with an invitation to further investigate translation as a powerful metaphor for the way existing qualities of a site can be transformed, rather than erased or rewritten, and to explore how this metaphor can foster new...

  15. Word translation entropy in translation

    DEFF Research Database (Denmark)

    Schaeffer, Moritz; Dragsted, Barbara; Hvelplund, Kristian Tangsgaard

    2016-01-01

    This study reports on an investigation into the relationship between the number of translation alternatives for a single word and eye movements on the source text. In addition, the effect of word order differences between source and target text on eye movements on the source text is studied....... In particular, the current study investigates the effect of these variables on early and late eye movement measures. Early eye movement measures are indicative of processes that are more automatic while late measures are more indicative of conscious processing. Most studies that found evidence of target...... language activation during source text reading in translation, i.e. co-activation of the two linguistic systems, employed late eye movement measures or reaction times. The current study therefore aims to investigate if and to what extent earlier eye movement measures in reading for translation show...

  16. Correlation of mRNA Profiles, miRNA Profiles, and Functional Immune Response in Rainbow Trout (Oncorrhynkus Mykiss) During Infection With Viral Hemorrhagic Septicemia Virus (VHSV) and in Fish Vaccinated With an Anti-VHSV DNA Vaccine

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    fish. Linking mRNA and miRNA profiles with phenotypic, genotypic, and immunological data will provide an integrated view of the mechanisms of resistance and the strong protective immune responses provided by vaccination. This information is important in designing effective strategies to mitigate......-mediated) responses. MRNA and miRNA profiles will be correlated and combined with in vitro work in cell culture to describe target relationships between miRNAs and mRNAs and the effect of this targeting in fish. Vaccinated fish will also be used for mRNA/miRNA profiling and in challenge studies alongside non-vaccinated...

  17. Assay reproducibility in clinical studies of plasma miRNA.

    Directory of Open Access Journals (Sweden)

    Jonathan Rice

    Full Text Available There are increasing reports of plasma miRNAs as biomarkers of human disease but few standards in methodologic reporting, leading to inconsistent data. We systematically reviewed plasma miRNA studies published between July 2013-June 2014 to assess methodology. Six parameters were investigated: time to plasma extraction, methods of RNA extraction, type of miRNA, quantification, cycle threshold (Ct setting, and methods of statistical analysis. We compared these data with a proposed standard methodologic technique. Beginning with initial screening for 380 miRNAs using microfluidic array technology and validation in an additional cohort of patients, we compared 11 miRNAs that exhibited differential expression between 16 patients with benign colorectal neoplasms (advanced adenomas and 16 patients without any neoplasm (controls. Plasma was isolated immediately, 12, 24, 48, or 72 h following phlebotomy. miRNA was extracted using two different techniques (Trizol LS with pre-amplification or modified miRNeasy. We performed Taqman-based RT-PCR assays for the 11 miRNAs with subsequent analyses using a variable Ct setting or a fixed Ct set at 0.01, 0.03, 0.05, or 0.5. Assays were performed in duplicate by two different operators. RNU6 was the internal reference. Systematic review yielded 74 manuscripts meeting inclusion criteria. One manuscript (1.4% documented all 6 methodological parameters, while < 5% of studies listed Ct setting. In our proposed standard technique, plasma extraction ≤12 h provided consistent ΔCt. miRNeasy extraction yielded higher miRNA concentrations and fewer non-expressed miRNAs compared to Trizol LS (1/704 miRNAs [0.14%] vs 109/704 miRNAs [15%], not expressed, respectively. A fixed Ct bar setting of 0.03 yielded the most reproducible data, provided that <10% miRNA were non-expressed. There was no significant intra-operator variability. There was significant inter-operator variation using Trizol LS extraction, while this was

  18. Tissue-dependent paired expression of miRNAs

    OpenAIRE

    Ro, Seungil; Park, Chanjae; Young, David; Sanders, Kenton M.; Yan, Wei

    2007-01-01

    It is believed that depending on the thermodynamic stability of the 5′-strand and the 3′-strand in the stem-loop structure of a precursor microRNA (pre-miRNA), cells preferentially select the less stable one (called the miRNA or guide strand) and destroy the other one (called the miRNA* or passenger strand). However, our expression profiling analyses revealed that both strands could be co-accumulated as miRNA pairs in some tissues while being subjected to strand selection in other tissues. Ou...

  19. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    Science.gov (United States)

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  20. No miRNA were found in Plasmodium and the ones identified in erythrocytes could not be correlated with infection

    Directory of Open Access Journals (Sweden)

    Feng Le

    2008-03-01

    Full Text Available Abstract Background The transcriptional regulation of Plasmodium during its complex life cycle requires sequential activation and/or repression of different genetic programmes. MicroRNAs (miRNAs are a highly conserved class of non-coding RNAs that are important in regulating diverse cellular functions by sequence-specific inhibition of gene expression. What is know about double-stranded RNA-mediated gene silencing (RNAi and posttranscriptional gene silencing (PTGS in Plasmodium parasites entice us to speculate whether miRNAs can also function in Plasmodium-infected RBCs. Results Of 132 small RNA sequences, no Plasmodium-specific miRNAs have been found. However, a human miRNA, miR-451, was highly expressed, comprising approximately one third of the total identified miRNAs. Further analysis of miR-451 expression and malaria infection showed no association between the accumulation of miR-451 in Plasmodium falciparum-iRBCs, the life cycle stage of P. falciparum in the erythrocyte, or of P. berghei in mice. Moreover, treatment with an antisense oligonucleotide to miR-451 had no significant effect on the growth of the erythrocytic-stage P. falciparum. Methods Short RNAs from a mixed-stage of P. falciparum-iRBC were separated in a denaturing polyacrylamide gel and cloned into T vectors to create a cDNA library. Individual clones were then sequenced and further analysed by bioinformatics prediction to discover probable miRNAs in P. falciparum-iRBC. The association between miR-451 expression and the parasite were analysed by Northern blotting and antisense oligonucleotide (ASO of miR-451. Conclusion These results contribute to eliminate the probability of miRNAs in P. falciparum. The absence of miRNA in P. falciparum could be correlated with absence of argonaute/dicer genes. In addition, the miR-451 accumulation in Plasmodium-infected RBCs is independent of parasite infection. Its accumulation might be only the residual of erythroid differentiation or a

  1. SETD1A modulates cell cycle progression through a miRNA network that regulates p53 target genes

    OpenAIRE

    Tajima, Ken; Yae, Toshifumi; Javaid, Sarah; Tam, Oliver; Comaills, Valentine; Morris, Robert; Wittner, Ben S.; Liu, Mingzhu; Engstrom, Amanda; Takahashi, Fumiyuki; Black, Joshua C.; Ramaswamy, Sridhar; Shioda, Toshihiro; Hammell, Molly; Haber, Daniel A.

    2015-01-01

    Expression of the p53-inducible antiproliferative gene BTG2 is suppressed in many cancers in the absence of inactivating gene mutations, suggesting alternative mechanisms of silencing. Using a shRNA screen targeting 43 histone lysine methyltransferases (KMTs), we show that SETD1A suppresses BTG2 expression through its induction of several BTG2-targeting miRNAs. This indirect but highly specific mechanism, by which a chromatin regulator that mediates transcriptional activating marks can lead t...

  2. The Epstein-Barr Virus BART miRNA Cluster of the M81 Strain Modulates Multiple Functions in Primary B Cells

    Science.gov (United States)

    Lin, Xiaochen; Tsai, Ming-Han; Shumilov, Anatoliy; Poirey, Remy; Bannert, Helmut; Middeldorp, Jaap M.; Feederle, Regina; Delecluse, Henri-Jacques

    2015-01-01

    The Epstein-Barr virus (EBV) is a B lymphotropic virus that infects the majority of the human population. All EBV strains transform B lymphocytes, but some strains, such as M81, also induce spontaneous virus replication. EBV encodes 22 microRNAs (miRNAs) that form a cluster within the BART region of the virus and have been previously been found to stimulate tumor cell growth. Here we describe their functions in B cells infected by M81. We found that the BART miRNAs are downregulated in replicating cells, and that exposure of B cells in vitro or in vivo in humanized mice to a BART miRNA knockout virus resulted in an increased proportion of spontaneously replicating cells, relative to wild type virus. The BART miRNAs subcluster 1, and to a lesser extent subcluster 2, prevented expression of BZLF1, the key protein for initiation of lytic replication. Thus, multiple BART miRNAs cooperate to repress lytic replication. The BART miRNAs also downregulated pro- and anti-apoptotic mediators such as caspase 3 and LMP1, and their deletion did not sensitize B-cells to apoptosis. To the contrary, the majority of humanized mice infected with the BART miRNA knockout mutant developed tumors more rapidly, probably due to enhanced LMP1 expression, although deletion of the BART miRNAs did not modify the virus transforming abilities in vitro. This ability to slow cell growth could be confirmed in non-humanized immunocompromized mice. Injection of resting B cells exposed to a virus that lacks the BART miRNAs resulted in accelerated tumor growth, relative to wild type controls. Therefore, we found that the M81 BART miRNAs do not enhance B-cell tumorigenesis but rather repress it. The repressive effects of the BART miRNAs on potentially pathogenic viral functions in infected B cells are likely to facilitate long-term persistence of the virus in the infected host. PMID:26694854

  3. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows.

    Science.gov (United States)

    Paraskevopoulou, Maria D; Georgakilas, Georgios; Kostoulas, Nikos; Vlachos, Ioannis S; Vergoulis, Thanasis; Reczko, Martin; Filippidis, Christos; Dalamagas, Theodore; Hatzigeorgiou, A G

    2013-07-01

    MicroRNAs (miRNAs) are small endogenous RNA molecules that regulate gene expression through mRNA degradation and/or translation repression, affecting many biological processes. DIANA-microT web server (http://www.microrna.gr/webServer) is dedicated to miRNA target prediction/functional analysis, and it is being widely used from the scientific community, since its initial launch in 2009. DIANA-microT v5.0, the new version of the microT server, has been significantly enhanced with an improved target prediction algorithm, DIANA-microT-CDS. It has been updated to incorporate miRBase version 18 and Ensembl version 69. The in silico-predicted miRNA-gene interactions in Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans exceed 11 million in total. The web server was completely redesigned, to host a series of sophisticated workflows, which can be used directly from the on-line web interface, enabling users without the necessary bioinformatics infrastructure to perform advanced multi-step functional miRNA analyses. For instance, one available pipeline performs miRNA target prediction using different thresholds and meta-analysis statistics, followed by pathway enrichment analysis. DIANA-microT web server v5.0 also supports a complete integration with the Taverna Workflow Management System (WMS), using the in-house developed DIANA-Taverna Plug-in. This plug-in provides ready-to-use modules for miRNA target prediction and functional analysis, which can be used to form advanced high-throughput analysis pipelines.

  4. Identification of a novel miRNA from the ovine ovary by a combinatorial approach of bioinformatics and experiments

    Science.gov (United States)

    CHANG, Weihua; WANG, Juanhong; TAO, Dayong; ZHANG, Yong; HE, Jianzhong; SHI, Changqing

    2015-01-01

    MicroRNAs (miRNAs) are a class of short endogenous, single-stranded, non-coding small RNA molecules, about 19–25 nucleotides in length that regulate gene expression at the translation level and influence many physiological process, such apoptosis, metabolism, signal transduction, and occurrence and development of diseases. In this study, we constructed a library from the ovine luteal phase ovary by using next-generation sequencing technology (Solexa high-throughput sequencing technique) and identified 267 novel miRNAs by bioinformatics. One of the novel miRNAs (ovis_aries_ovary-m0033_3p), which expressed in the sheep ovary and testis, was confirmed by real time PCR and northern blot. Ovis_aries_ovary-m0033_3p was 21 nucleotides in length and located on chromosome 12, and it had 100% similarity to hsa-miR-214-3p, mmu-miR-214-3p, dre-miR-214and ssc-miR-214. Meanwhile, the pre-miRNA was 82 nucleotides in length and had a standard hairpin stem-loop structure. From the consistency of the sequence and structure, we speculated that ovis_aries_ovary-m0033_3p had a function similar to hsa-miR-214-3p, which is involved in the fine regulation of cell survival, embryonic development, breeding activities and resistance to ovarian cancer, so we defined it as oar-miR-214-3p. These experimental results will enrich the miRNA database for ovis aries and provide the basis for researching the regulation mechanism of miRNA in relation to breeding activities of seasonal breeding animals. PMID:26268666

  5. eIF2β is critical for eIF5-mediated GDP-dissociation inhibitor activity and translational control.

    Science.gov (United States)

    Jennings, Martin D; Kershaw, Christopher J; White, Christopher; Hoyle, Danielle; Richardson, Jonathan P; Costello, Joseph L; Donaldson, Ian J; Zhou, Yu; Pavitt, Graham D

    2016-11-16

    In protein synthesis translation factor eIF2 binds initiator tRNA to ribosomes and facilitates start codon selection. eIF2 GDP/GTP status is regulated by eIF5 (GAP and GDI functions) and eIF2B (GEF and GDF activities), while eIF2α phosphorylation in response to diverse signals is a major point of translational control. Here we characterize a growth suppressor mutation in eIF2β that prevents eIF5 GDI and alters cellular responses to reduced eIF2B activity, including control of GCN4 translation. By monitoring the binding of fluorescent nucleotides and initiator tRNA to purified eIF2 we show that the eIF2β mutation does not affect intrinsic eIF2 affinities for these ligands, neither does it interfere with eIF2 binding to 43S pre-initiation complex components. Instead we show that the eIF2β mutation prevents eIF5 GDI stabilizing nucleotide binding to eIF2, thereby altering the off-rate of GDP from eIF2•GDP/eIF5 complexes. This enables cells to grow with reduced eIF2B GEF activity but impairs activation of GCN4 targets in response to amino acid starvation. These findings provide support for the importance of eIF5 GDI activity in vivo and demonstrate that eIF2β acts in concert with eIF5 to prevent premature release of GDP from eIF2γ and thereby ensure tight control of protein synthesis initiation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. The same allele of translation initiation factor 4E mediates resistance against two Potyvirus spp. in Pisum sativum

    DEFF Research Database (Denmark)

    Bruun-Rasmussen, M.; Møller, I.S.; Tulinius, G.

    2007-01-01

    to linkage group VI together with other Potyvirus resistances. One of these, sbm1, confers resistance to strains of Pea seedborne mosaic virus and previously has been identified as a mutant allele of the eukaryotic translation initiation factor 4E gene (eIF4E). Sequence comparison of eIF4E from BYMV...... was overcome, and virus from these plants had a codon change causing an Arg to His change at position 116 of the predicted viral genome-linked protein (VPg). Accordingly, plants carrying the wlv resistance gene were infected upon inoculation with BYMV-W derived from cDNA with a His codon at position 116...

  7. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming

    OpenAIRE

    Riz, Irene; Hawley, Teresa S.; Marsal, Jeffrey W.; Hawley, Robert G.

    2016-01-01

    Multiple Myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow, with drug resistance being a major cause of therapeutic failure. We established a carfilzomib-resistant derivative of the LP-1 MM cell line (LP-1/Cfz) and found that the transcription factor NF-E2 p45-related factor 2 (Nrf2; gene symbol NFE2L2) contributes to carfilzomib resistance. The mechanism of Nrf2 activation involved enhanced translation of Nrf2 as well as its posit...

  8. Deep sequencing leads to the identification of eukaryotic translation initiation factor 5A as a key element in Rsv1-mediated lethal systemic hypersensitive response to Soybean mosaic virus infection in soybean.

    Science.gov (United States)

    Chen, Hui; Adam Arsovski, Andrej; Yu, Kangfu; Wang, Aiming

    2017-04-01

    Rsv1, a single dominant resistance locus in soybean, confers extreme resistance to the majority of Soybean mosaic virus (SMV) strains, but is susceptible to the G7 strain. In Rsv1-genotype soybean, G7 infection provokes a lethal systemic hypersensitive response (LSHR), a delayed host defence response. The Rsv1-mediated LSHR signalling pathway remains largely unknown. In this study, we employed a genome-wide investigation to gain an insight into the molecular interplay between SMV G7 and Rsv1-genotype soybean. Small RNA (sRNA), degradome and transcriptome sequencing analyses were used to identify differentially expressed genes (DEGs) and microRNAs (DEMs) in response to G7 infection. A number of DEGs, DEMs and microRNA targets, and the interaction network of DEMs and their target mRNAs responsive to G7 infection, were identified. Knock-down of one of the identified DEGs, the eukaryotic translation initiation factor 5A (eIF5A), diminished the LSHR and enhanced viral accumulation, suggesting the essential role of eIF5A in the G7-induced, Rsv1-mediated LSHR signalling pathway. This work provides an in-depth genome-wide analysis of high-throughput sequencing data, and identifies multiple genes and microRNA signatures that are associated with the Rsv1-mediated LSHR. © 2016 HER MAJESTY THE QUEEN IN RIGHT OF CANADA MOLECULAR PLANT PATHOLOGY © 2016 BSPP AND JOHN WILEY & SONS LTD.

  9. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes

    Science.gov (United States)

    Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen

    2018-03-01

    MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.

  10. Increased level of miRNA 30b-3p in patients with prostatic hyperplasia and testosterone with high-level of prostate-specific antigen

    Directory of Open Access Journals (Sweden)

    Wasnaa Jumaa Mohammad

    2018-01-01

    Full Text Available Background: Prostate cancer (PCa is the most common causing cancer-related in death in men and lack of reliable diagnostic tool. MicroRNAs are small molecules single-stranded RNA that affecting protein expression at the level of translation and dysregulation can dramatically affect cell metabolism. However, the using of circulating miRNAs as diagnostic biomarkers for diagnosis of PCa is still unknown. Methods: Ten patients with prostatic hyperplasia with high-level of PSA and 10 healthy controls were conducted in this study. The reverse transcription of miRNA based on quantitative polymerase chain reaction (qPCR were used for evaluating the dysregulation of miRNA 30b-3p and using of ELISA to evaluate the level of prostate-specific antigen (PSA and testosterone hormone. Results: Circulating miRNA 30b-3p level was increased in patients with prostatic hyperplasia with higher level of PSA as compared with healthy controls. Also, the testosterone hormone was increased in those patients as compared with normal level of testosterone in healthy individuals. Conclusion: The serum miRNA 30b-3p level increased in patients with hyperplasia in prostate and may be one of potential biomarker for diagnosis of PCa.

  11. Translational genomics

    Directory of Open Access Journals (Sweden)

    Martin Kussmann

    2014-09-01

    Full Text Available The term “Translational Genomics” reflects both title and mission of this new journal. “Translational” has traditionally been understood as “applied research” or “development”, different from or even opposed to “basic research”. Recent scientific and societal developments have triggered a re-assessment of the connotation that “translational” and “basic” are either/or activities: translational research nowadays aims at feeding the best science into applications and solutions for human society. We therefore argue here basic science to be challenged and leveraged for its relevance to human health and societal benefits. This more recent approach and attitude are catalyzed by four trends or developments: evidence-based solutions; large-scale, high dimensional data; consumer/patient empowerment; and systems-level understanding.

  12. Beyond Translation

    DEFF Research Database (Denmark)

    Olwig, Mette Fog

    2013-01-01

    This article contributes to the growing scholarship on local development practitioners by re-examining conceptualizations of practitioners as ‘brokers’ strategically translating between ‘travelling’ (development institution) rationalities and ‘placed’ (recipient area) rationalities in relation...... and practice spurred by new challenges deriving from climate change anxiety, the study shows how local practitioners often make local activities fit into travelling development rationalities as a matter of habit, rather than as a conscious strategy. They may therefore cease to ‘translate’ between different...... rationalities. This is shown to have important implications for theory, research and practice concerning disaster risk reduction and climate change adaptation in which such translation is often expected....

  13. Revising Translations

    DEFF Research Database (Denmark)

    Rasmussen, Kirsten Wølch; Schjoldager, Anne

    2011-01-01

    The paper explains the theoretical background and findings of an empirical study of revision policies, using Denmark as a case in point. After an overview of important definitions, types and parameters, the paper explains the methods and data gathered from a questionnaire survey and an interview...... survey. Results clearly show that most translation companies regard both unilingual and comparative revisions as essential components of professional quality assurance. Data indicate that revision is rarely fully comparative, as the preferred procedure seems to be a unilingual revision followed by a more...... or less comparative rereading. Though questionnaire data seem to indicate that translation companies use linguistic correctness and presentation as the only revision parameters, interview data reveal that textual and communicative aspects are also considered. Generally speaking, revision is not carried...

  14. N6-adenosine methylation in MiRNAs.

    Directory of Open Access Journals (Sweden)

    Tea Berulava

    Full Text Available Methylation of N6-adenosine (m6A has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression.

  15. Circulating miRNAs as biomarkers for endocrine disorders.

    Science.gov (United States)

    Butz, H; Kinga, N; Racz, K; Patocs, A

    2016-01-01

    Specific, sensitive and non-invasive biomarkers are always needed in endocrine disorders. miRNAs are short, non-coding RNA molecules with well-known role in gene expression regulation. They are frequently dysregulated in metabolic and endocrine diseases. Recently it has been shown that they are secreted into biofluids by nearly all kind of cell types. As they can be taken up by other cells they may have a role in a new kind of paracrine, cell-to-cell communication. Circulating miRNAs are protected by RNA-binding proteins or microvesicles hence they can be attractive candidates as diagnostic or prognostic biomarkers. In this review, we summarize the characteristics of extracellular miRNA's and our knowledge about their origin and potential roles in endocrine and metabolic diseases. Discussions about the technical challenges occurring during identification and measurement of extracellular miRNAs and future perspectives about their roles are also highlighted.

  16. miRNA delivery for skin wound healing.

    Science.gov (United States)

    Meng, Zhao; Zhou, Dezhong; Gao, Yongsheng; Zeng, Ming; Wang, Wenxin

    2017-12-19

    The wound healing has remained a worldwide challenge as one of significant public health problems. Pathological scars and chronic wounds caused by injury, aging or diabetes lead to impaired tissue repair and regeneration. Due to the unique biological wound environment, the wound healing is a highly complicated process, efficient and targeted treatments are still lacking. Hence, research-driven to discover more efficient therapeutics is a highly urgent demand. Recently, the research results have revealed that microRNA (miRNA) is a promising tool in therapeutic and diagnostic fields because miRNA is an essential regulator in cellular physiology and pathology. Therefore, new technologies for wound healing based on miRNA have been developed and miRNA delivery has become a significant research topic in the field of gene delivery. Copyright © 2017. Published by Elsevier B.V.

  17. Exploring the miRNA regulatory network using evolutionary correlations.

    Directory of Open Access Journals (Sweden)

    Benedikt Obermayer

    2014-10-01

    Full Text Available Post-transcriptional regulation by miRNAs is a widespread and highly conserved phenomenon in metazoans, with several hundreds to thousands of conserved binding sites for each miRNA, and up to two thirds of all genes under miRNA regulation. At the same time, the effect of miRNA regulation on mRNA and protein levels is usually quite modest and associated phenotypes are often weak or subtle. This has given rise to the notion that the highly interconnected miRNA regulatory network exerts its function less through any individual link and more via collective effects that lead to a functional interdependence of network links. We present a Bayesian framework to quantify conservation of miRNA target sites using vertebrate whole-genome alignments. The increased statistical power of our phylogenetic model allows detection of evolutionary correlation in the conservation patterns of site pairs. Such correlations could result from collective functions in the regulatory network. For instance, co-conservation of target site pairs supports a selective benefit of combinatorial regulation by multiple miRNAs. We find that some miRNA families are under pronounced co-targeting constraints, indicating a high connectivity in the regulatory network, while others appear to function in a more isolated way. By analyzing coordinated targeting of different curated gene sets, we observe distinct evolutionary signatures for protein complexes and signaling pathways that could reflect differences in control strategies. Our method is easily scalable to analyze upcoming larger data sets, and readily adaptable to detect high-level selective constraints between other genomic loci. We thus provide a proof-of-principle method to understand regulatory networks from an evolutionary perspective.

  18. MiRNA expression patterns predict survival in glioblastoma

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Belka, Claus; Zehentmayr, Franz; Niemöller, Olivier M; Eigenbrod, Sabina; Kretzschmar, Hans; Osthoff, Klaus-Schulze; Tonn, Jörg-Christian; Atkinson, Mike; Mörtl, Simone

    2011-01-01

    In order to define new prognostic subgroups in patients with glioblastoma a miRNA screen (> 1000 miRNAs) from paraffin tissues followed by a bio-mathematical analysis was performed. 35 glioblastoma patients treated between 7/2005 - 8/2008 at a single institution with surgery and postoperative radio(chemo)therapy were included in this retrospective analysis. For microarray analysis the febit biochip 'Geniom ® Biochip MPEA homo-sapiens' was used. Total RNA was isolated from FFPE tissue sections and 1100 different miRNAs were analyzed. It was possible to define a distinct miRNA expression pattern allowing for a separation of distinct prognostic subgroups. The defined miRNA pattern was significantly associated with early death versus long-term survival (split at 450 days) (p = 0.01). The pattern and the prognostic power were both independent of the MGMT status. At present, this is the first dataset defining a prognostic role of miRNA expression patterns in patients with glioblastoma. Having defined such a pattern, a prospective validation of this observation is required

  19. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells.

    Directory of Open Access Journals (Sweden)

    Emilio Satoshi Hara

    Full Text Available Dental pulp cells (DPCs are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP cells from human DPCs and periodontal ligament cells (PDLCs, and performed a locked nucleic acid (LNA-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs, which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs.

  20. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1α translation.

    Science.gov (United States)

    Zhou, C; Huang, C; Wang, J; Huang, H; Li, J; Xie, Q; Liu, Y; Zhu, J; Li, Y; Zhang, D; Zhu, Q; Huang, C

    2017-07-06

    Long noncoding RNAs (lncRNAs) are emerging as key factors in various fundamental cellular biological processes, and many of them are likely to have functional roles in tumorigenesis. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA, and the decreased MEG3 expression has been reported in multiple cancer tissues. However, nothing is known about the alteration and role of MEG3 in environmental carcinogen-induced lung tumorigenesis. Our present study, for the first time to the best of our knowledge, discovered that environmental carcinogen nickel exposure led to MEG3 downregulation, consequently initiating c-Jun-mediated PHLPP1 transcriptional inhibition and hypoxia-inducible factor-1α (HIF-1α) protein translation upregulation, in turn resulting in malignant transformation of human bronchial epithelial cells. Mechanistically, MEG3 downregulation was attributed to nickel-induced promoter hypermethylation via elevating DNMT3b expression, whereas PHLPP1 transcriptional inhibition was due to the decreasing interaction of MEG3 with its inhibitory transcription factor c-Jun. Moreover, HIF-1α protein translation was upregulated via activating the Akt/p70S6K/S6 axis resultant from PHLPP1 inhibition in nickel responses. Collectively, we uncover that nickel exposure results in DNMT3b induction and MEG3 promoter hypermethylation and expression inhibition, further reduces its binding to c-Jun and in turn increasing c-Jun inhibition of PHLPP1 transcription, leading to the Akt/p70S6K/S6 axis activation, and HIF-1α protein translation, as well as malignant transformation of human bronchial epithelial cells. Our studies provide a significant insight into understanding the alteration and role of MEG3 in nickel-induced lung tumorigenesis.

  1. Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo.

    Science.gov (United States)

    Zeng, Xingruo; Xu, Zhou; Gu, Jiayan; Huang, Haishan; Gao, Guangxun; Zhang, Xiaoru; Li, Jingxia; Jin, Honglei; Jiang, Guosong; Sun, Hong; Huang, Chuanshu

    2016-03-01

    Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0-G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0-G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0-G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0-G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer. ©2016 American Association for Cancer Research.

  2. Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations.

    Directory of Open Access Journals (Sweden)

    Ahmed Hussein Zedan

    Full Text Available In the last decade microRNAs (miRNAs have been widely investigated in prostate cancer (PCa and have shown to be promising biomarkers in diagnostic, prognostic and predictive settings. However, tumor heterogeneity may influence miRNA expression. The aims of this study were to assess the impact of tumor heterogeneity, as demonstrated by a panel of selected miRNAs in PCa, and to correlate miRNA expression with risk profile and patient outcome.Prostatectomy specimens and matched, preoperative needle biopsies from a retrospective cohort of 49 patients, who underwent curatively intended surgery for localized PCa, were investigated with a panel of 6 miRNAs (miRNA-21, miRNA-34a, miRNA-125b, miRNA-126, miRNA-143, and miRNA-145 using tissue micro-array (TMA and in situ hybridization (ISH. Inter- and intra-patient variation was assessed using intra-class correlation (ICC.Four miRNAs (miRNA-21, miRNA-34a, miRNA-125, and miRNA-126 were significantly upregulated in PCa compared to benign prostatic hyperplasia (BPH, and except for miRNA-21 these miRNAs documented a positive correlation between the expression level in PCa cores and their matched BPH cores, (r > 0.72. The ICC varied from 0.451 to 0.764, with miRNA-34a showing an intra-tumoral heterogeneity accounting for less than 50% of the total variation. Regarding clinicopathological outcomes, only miRNA-143 showed potential as a prognostic marker with a higher expression correlating with longer relapse-free survival (p = 0.016.The present study documents significant upregulation of the expression of miRNA-21, miRNA-34a, miRNA-125, and miRNA-126 in PCa compared to BPH and suggests a possible prognostic value associated with the expression of miRNA-143. The results, however, document intra-tumoral heterogeneity in the expression of various miRNAs calling for caution when using these tumor tissue biomarkers in prognostic and predictive settings.

  3. Comparative MiRNA Expressional Profiles and Molecular Networks in Human Small Bowel Tissues of Necrotizing Enterocolitis and Spontaneous Intestinal Perforation.

    Directory of Open Access Journals (Sweden)

    Pak Cheung Ng

    Full Text Available Necrotizing enterocolitis (NEC and spontaneous intestinal perforation (SIP are acute intestinal conditions which could result in mortality and severe morbidity in preterm infants. Our objective was to identify dysregulated micro-RNAs (miRNAs in small bowel tissues of NEC and SIP, and their possible roles in disease pathophysiology.We performed differential miRNA arrays on tissues of NEC (n = 4, SIP (n = 4 and surgical-control (Surg-CTL; n = 4, and validated target miRNAs by qPCR (n = 10 each group. The association of target miRNAs with 52 dysregulated mRNAs was investigated by bioinformatics on functional and base-pair sequence algorithms, and correlation in same tissue samples.We presented the first miRNA profiles of NEC, SIP and Surg-CTL intestinal tissues in preterm infants. Of 28 validated miRNAs, 21 were significantly different between NEC or SIP and Surg-CTL. Limited overlapping in the aberrant expression of miRNAs between NEC and SIP indicated their distinct molecular mechanisms. A proposed network of dysregulated miRNA/mRNA pairs in NEC suggested interaction at bacterial receptor TLR4 (miR-31, miR-451, miR-203, miR-4793-3p, mediated via key transcription factors NFKB2 (miR-203, AP-1/FOSL1 (miR-194-3p, FOXA1 (miR-21-3p, miR-431 and miR-1290 and HIF1A (miR-31, and extended downstream to pathways of angiogenesis, arginine metabolism, cell adhesion and chemotaxis, extracellular matrix remodeling, hypoxia/oxidative stress, inflammation and muscle contraction. In contrast, upregulation of miR-451 and miR-223 in SIP suggested modulation of G-protein-mediated muscle contraction.The robust response of miRNA dysregulation in NEC and SIP, and concerted involvement of specific miRNAs in the molecular networks indicated their crucial roles in mucosa integrity and disease pathophysiology.

  4. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain.

    Science.gov (United States)

    Kumari, Anita; Singh, Padmanabh; Baghel, Meghraj Singh; Thakur, M K

    2016-05-01

    Adverse early life experience is prominent risk factors for numerous psychiatric illnesses, including mood and anxiety disorders. It imposes serious long-term costs on the individual as well as health and social systems. Hence, developing therapies that prevent the long-term consequences of early life stress is of utmost importance, and necessitates a better understanding of the mechanisms by which early life stress triggers long-lasting alterations in gene expression and behavior. Post-weaning isolation rearing of rodents models the behavioral consequences of adverse early life experiences in humans and it is reported to cause anxiety like behavior which is more common in case of females. Therefore, in the present study, we have studied the impact of social isolation of young female mice for 8weeks on the anxiety like behavior and the underlying molecular mechanism. Elevated plus maze and open field test revealed that social isolation caused anxiety like behavior. BDNF, a well-known molecule implicated in the anxiety like behavior, was up-regulated both at the message and protein level in cerebral cortex by social isolation. CREB-1 and CBP, which play a crucial role in BDNF transcription, were up-regulated at mRNA level in cerebral cortex by social isolation. HDAC-2, which negatively regulates BDNF expression, was down-regulated at mRNA and protein level in cerebral cortex by social isolation. Furthermore, BDNF acts in concert with Limk-1, miRNA-132 and miRNA-134 for the regulation of structural and morphological plasticity. Social isolation resulted in up-regulation of Limk-1 mRNA and miRNA-132 expression in the cerebral cortex. MiRNA-134, which inhibits the translation of Limk-1, was decreased in cerebral cortex by social isolation. Taken together, our study suggests that social isolation mediated anxiety like behavior is associated with up-regulation of BDNF expression and concomitant increase in the expression of CBP, CREB-1, Limk-1 and miRNA-132, and decrease

  5. Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L. plants

    Directory of Open Access Journals (Sweden)

    Shijiang eCao

    2013-12-01

    Full Text Available Vegetable oils high in oleic acid are considered to be advantageous because of their better nutritional value and potential industrial applications. The oleic acid content in the classic safflower oil is normally 10-15% while a natural mutant (ol accumulates elevated oleic acid up to 70% in seed oil. As a part of our investigation into the molecular features of the high oleic (HO trait in safflower we have profiled the microRNA (miRNA populations in developing safflower seeds expressing the ol allele in comparison to the wild type high linoleic (HL safflower using deep sequencing technology. The small RNA populations of the mid-maturity developing embryos of homozygous ol HO and wild type HL safflower had a very similar size distribution pattern, however, only ~16.5% of the unique small RNAs were overlapping in these two genotypes. From these two small RNA populations we have found 55 known miRNAs and identified two candidate novel miRNA families to be likely unique to the developing safflower seeds. Target genes with conserved as well as novel functions were predicted for the conserved miRNAs. We have also identified 13 miRNAs differentially expressed between the HO and HL safflower genotypes. The results may lay a foundation for unravelling the miRNA-mediated molecular processes that regulate oleic acid accumulation in the HO safflower mutant and developmental processes in safflower embryos in general.

  6. Translating democracy

    DEFF Research Database (Denmark)

    Doerr, Nicole

    2012-01-01

    Linguistic barriers may pose problems for politicians trying to communicate delicate decisions to a European-wide public, as well as for citizens wishing to protest at the European level. In this article I present a counter-intuitive position on the language question, one that explores how...... Forum (ESF). I compare deliberative practices in the multilingual ESF preparatory meetings with those in monolingual national Social Forum meetings in three Western European countries. My comparison shows that multilingualism does not reduce the inclusivity of democratic deliberation as compared...... in institutionalized habits and norms of deliberation. Addressing democratic theorists, my findings suggest that translation could be a way to think about difference not as a hindrance but as a resource for democracy in linguistically heterogeneous societies and public spaces, without presupposing a shared language...

  7. Translator's preface.

    Science.gov (United States)

    Lamiell, James T

    2013-08-01

    Presents a preface from James T. Lamiell, who translates Wilhelm Wundt's Psychology's Struggle for Existence (Die Psychologie im Kampf ums Dasein), in which Wundt advised against the impending divorce of psychology from philosophy, into English. Lamiell comments that more than a decade into the 21st century, it appears that very few psychologists have any interest at all in work at the interface of psychology and philosophy. He notes that one clear indication of this is that the Society for Theoretical and Philosophical Psychology, which is Division 24 of the American Psychological Association (APA), remains one of the smallest of the APA's nearly 60 divisions. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  8. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Chui Sun; Sinha, Rohit Anthony [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore); Ota, Sho; Katsuki, Masahito [Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Yen, Paul Michael, E-mail: paul.yen@duke-nus.edu.sg [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore)

    2013-11-01

    Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we used a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.

  9. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    and 14-3-3 family genes. Integrating the inferred miRNA-target relationships, we investigated the functional importance of 2 central genes, SNAI2 and FYN, which showed increased expression in TamR cells, while their corresponding regulatory miRNA were downregulated. Using specific chemical inhibitors......Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of miRNA......-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all Tam...

  10. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    KAUST Repository

    Khraiwesh, Basel

    2012-02-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. © 2011 Elsevier B.V.

  11. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation......Due to the growing uptake of translation technology in the language industry and its documented impact on the translation profession, translation students and scholars need in-depth and empirically founded knowledge of the nature and influences of translation technology (e.g. Christensen....../Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...

  12. miRNAs as therapeutic targets in ischemic heart disease.

    Science.gov (United States)

    Frost, Robert J A; van Rooij, Eva

    2010-06-01

    Ischemic heart disease is a form of congestive heart failure that is caused by insufficient blood supply to the heart, resulting in a loss of viable tissue. In response to the injury, the non-ischemic myocardium displays signs of secondary remodeling, like interstitial fibrosis and hypertrophy of cardiac myocytes. This remodeling process further deteriorates pump function and increases susceptibility to arrhythmias. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in a sequence-dependent manner. Recently, several groups identified miRNAs as crucial gene regulators in response to myocardial infarction (MI) and during post-MI remodeling. In this review, we discuss how modulation of these miRNAs represents a promising new therapeutic strategy to improve the clinical outcome in ischemic heart disease.

  13. Surface Enhanced Raman Spectroscopy (SERS) methods for endpoint and real-time quantification of miRNA assays

    Science.gov (United States)

    Restaino, Stephen M.; White, Ian M.

    2017-03-01

    Surface Enhanced Raman spectroscopy (SERS) provides significant improvements over conventional methods for single and multianalyte quantification. Specifically, the spectroscopic fingerprint provided by Raman scattering allows for a direct multiplexing potential far beyond that of fluorescence and colorimetry. Additionally, SERS generates a comparatively low financial and spatial footprint compared with common fluorescence based systems. Despite the advantages of SERS, it has remained largely an academic pursuit. In the field of biosensing, techniques to apply SERS to molecular diagnostics are constantly under development but, most often, assay protocols are redesigned around the use of SERS as a quantification method and ultimately complicate existing protocols. Our group has sought to rethink common SERS methodologies in order to produce translational technologies capable of allowing SERS to compete in the evolving, yet often inflexible biosensing field. This work will discuss the development of two techniques for quantification of microRNA, a promising biomarker for homeostatic and disease conditions ranging from cancer to HIV. First, an inkjet-printed paper SERS sensor has been developed to allow on-demand production of a customizable and multiplexable single-step lateral flow assay for miRNA quantification. Second, as miRNA concentrations commonly exist in relatively low concentrations, amplification methods (e.g. PCR) are therefore required to facilitate quantification. This work presents a novel miRNA assay alongside a novel technique for quantification of nuclease driven nucleic acid amplification strategies that will allow SERS to be used directly with common amplification strategies for quantification of miRNA and other nucleic acid biomarkers.

  14. Embryonic miRNA profiles of normal and ectopic pregnancies.

    Directory of Open Access Journals (Sweden)

    Francisco Dominguez

    Full Text Available Our objective was to investigate the miRNA profile of embryonic tissues in ectopic pregnancies (EPs and controlled abortions (voluntary termination of pregnancy; VTOP. Twenty-three patients suffering from tubal EP and twenty-nine patients with a normal ongoing pregnancy scheduled for a VTOP were recruited. Embryonic tissue samples were analyzed by miRNA microarray and further validated by real time PCR. Microarray studies showed that four miRNAs were differentially downregulated (hsa-mir-196b, hsa-mir-30a, hsa-mir-873, and hsa-mir-337-3p and three upregulated (hsa-mir-1288, hsa-mir-451, and hsa-mir-223 in EP compared to control tissue samples. Hsa-miR-196, hsa-miR-223, and hsa-miR-451 were further validated by real time PCR in a wider population of EP and control samples. We also performed a computational analysis to identify the gene targets and pathways which might be modulated by these three differentially expressed miRNAs. The most significant pathways found were the mucin type O-glycan biosynthesis and the ECM-receptor-interaction pathways. We also checked that the dysregulation of these three miRNAs was able to alter the expression of the gene targets in the embryonic tissues included in these pathways such as GALNT13 and ITGA2 genes. In conclusion, analysis of miRNAs in ectopic and eutopic embryonic tissues shows different expression patterns that could modify pathways which are critical for correct implantation, providing new insights into the understanding of ectopic implantation in humans.

  15. Novel Insights into miRNA in Lung and Heart Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Amit Kishore

    2014-01-01

    Full Text Available MicroRNAs (miRNAs are noncoding regulatory sequences that govern posttranscriptional inhibition of genes through binding mainly at regulatory regions. The regulatory mechanism of miRNAs are influenced by complex crosstalk among single nucleotide polymorphisms (SNPs within miRNA seed region and epigenetic modifications. Circulating miRNAs exhibit potential characteristics as stable biomarker. Functionally, miRNAs are involved in basic regulatory mechanisms of cells including inflammation. Thus, miRNA dysregulation, resulting in aberrant expression of a gene, is suggested to play an important role in disease susceptibility. This review focuses on the role of miRNA as diagnostic marker in pathogenesis of lung inflammatory diseases and in cardiac remodelling events during inflammation. From recent reports, In this context, the information about the models in which miRNAs expression were investigated including types of biological samples, as well as on the methods for miRNA validation and prediction/definition of their gene targets are emphasized in the review. Besides disease pathogenesis, promising role of miRNAs in early disease diagnosis and prognostication is also discussed. However, some miRNAs are also indicated with protective role. Thus, identifications and usage of such potential miRNAs as well as disruption of disease susceptible miRNAs using antagonists, antagomirs, are imperative and may provide a novel therapeutic approach towards combating the disease progression.

  16. Mutation of miRNA target sequences during human evolution

    DEFF Research Database (Denmark)

    Gardner, Paul P; Vinther, Jeppe

    2008-01-01

    It has long-been hypothesized that changes in non-protein-coding genes and the regulatory sequences controlling expression could undergo positive selection. Here we identify 402 putative microRNA (miRNA) target sequences that have been mutated specifically in the human lineage and show that genes...... containing such deletions are more highly expressed than their mouse orthologs. Our findings indicate that some miRNA target mutations are fixed by positive selection and might have been involved in the evolution of human-specific traits....

  17. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  18. TGF-β/Smad2/3 signaling directly regulates several miRNAs in mouse ES cells and early embryos.

    Directory of Open Access Journals (Sweden)

    Nicholas Redshaw

    Full Text Available The Transforming Growth Factor-β (TGF-β signaling pathway is one of the major pathways essential for normal embryonic development and tissue homeostasis, with anti-tumor but also pro-metastatic properties in cancer. This pathway directly regulates several target genes that mediate its downstream functions, however very few microRNAs (miRNAs have been identified as targets. miRNAs are modulators of gene expression with essential roles in development and a clear association with diseases including cancer. Little is known about the transcriptional regulation of the primary transcripts (pri-miRNA, pri-miR from which several mature miRNAs are often derived. Here we present the identification of miRNAs regulated by TGF-β signaling in mouse embryonic stem (ES cells and early embryos. We used an inducible ES cell system to maintain high levels of the TGF-β activated/phosphorylated Smad2/3 effectors, which are the transcription factors of the pathway, and a specific inhibitor that blocks their activation. By performing short RNA deep-sequencing after 12 hours Smad2/3 activation and after 16 hours inhibition, we generated a database of responsive miRNAs. Promoter/enhancer analysis of a subset of these miRNAs revealed that the transcription of pri-miR-181c/d and the pri-miR-341∼3072 cluster were found to depend on activated Smad2/3. Several of these miRNAs are expressed in early mouse embryos, when the pathway is known to play an essential role. Treatment of embryos with TGF-β inhibitor caused a reduction of their levels confirming that they are targets of this pathway in vivo. Furthermore, we showed that pri-miR-341∼3072 transcription also depends on FoxH1, a known Smad2/3 transcription partner during early development. Together, our data show that miRNAs are regulated directly by the TGF-β/Smad2/3 pathway in ES cells and early embryos. As somatic abnormalities in functions known to be regulated by the TGF-β/Smad2/3 pathway underlie tumor

  19. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis.

    Science.gov (United States)

    Wang, Lei; ZengJ, Hou Qing; Song, Jun; Feng, Sheng Jun; Yang, Zhi Min

    2015-09-01

    microRNAs (miRNAs) play an important role in plant adaptation to phosphate (Pi) starvation. Histone methylation can remodel chromatin structure and mediate gene expression. This study identified Arabidopsis miR778, a Pi-responsive miRNA, and its target gene Su(var) 3-9 homologs 6 (SUVH6) encoding a histone H3 lysine 9 (H3K9) methyltransferase. Overexpression of miR778 moderately enhanced primary and lateral root growth, free phosphate accumulation in shoots, and accumulation of anthocyanin under Pi deficient conditions. miR778 overexpression relieved the arrest of columella cell development under Pi starvation. Conversely, transgenic plants overexpressing a miR778-target mimic (35S::MIM778), that act as a sponge and sequesters miR778, showed opposite phenotypes of 35S::miR778 plants under Pi deficiency. Expression of several Pi deficiency-responsive genes such as miR399, Phosphate Transporter (PHT1;4), Low Phosphate-Resistant1 (LPR1) and Production of Anthocyanin Pigment 1 (PAP1) were elevated in the miR778 overexpressing plants, suggesting that both miR778 and SUVH6 are involved in phosphate homeostasis in plants. This study has provided a basis for further investigation on how SUVH6 regulates its downstream genes through chromatin remodeling and DNA methylation in plants stressed by Pi deficiency. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Defining the effect and mediators of two knowledge translation strategies designed to alter knowledge, intent and clinical utilization of rehabilitation outcome measures: a study protocol [NCT00298727

    Directory of Open Access Journals (Sweden)

    Law Mary

    2006-07-01

    Full Text Available Abstract Background A substantial number of valid outcome measures have been developed to measure health in adult musculoskeletal and childhood disability. Regrettably, national initiatives have merely resulted in changes in attitude, while utilization remains unacceptably low. This study will compare the effectiveness and mediators of two different knowledge transfer (KT interventions in terms of their impact on changing knowledge and behavior (utilization and clinical reasoning related to health outcome measures. Method/Design Physical and occupational therapists (n = 144 will be recruited in partnership with the national professional associations to evaluate two different KT interventions with the same curriculum: 1 Stakeholder-Hosted Interactive Problem-Based Seminar (SHIPS, and 2 Online Problem-Based course (e-PBL. SHIPS will consist of face-to-face problem-based learning (PBL for 2 1/2 days with outcome measure developers as facilitators, using six problems generated in consultation with participants. The e-PBL will consist of a 6-week web-based course with six generic problems developed by content experts. SHIPS will be conducted in three urban centers in Canada. Participants will be block-allocated by a minimization procedure to either of the two interventions to minimize any prognostic differences. Trained evaluators at each site will conduct chart audits and chart-stimulated recall. Trained interviewers will conduct semi-structured interviews focused on identifying critical elements in KT and implementing practice changes. Interviews will be transcribed verbatim. Baseline predictors including demographics, knowledge, attitudes/barriers regarding outcome measures, and Readiness to Change will be assessed by self-report. Immediately post-intervention and 6 months later, these will be re-administered. Primary qualitative and quantitative evaluations will be conducted 6-months post-intervention to assess the relative effectiveness of KT

  1. The Role of miRNA in Papillary Thyroid Cancer in the Context of miRNA Let-7 Family

    Directory of Open Access Journals (Sweden)

    Ewelina Perdas

    2016-06-01

    Full Text Available Papillary thyroid carcinoma (PTC is the most common endocrine malignancy. RET/PTC rearrangement is the most common genetic modification identified in this category of cancer, increasing proliferation and dedifferentiation by the activation of the RET/PTC-RAS-BRAF-MAPK-ERK signaling pathway. Recently, let-7 miRNA was found to reduce RAS levels, acting as a tumor suppressor gene. Circulating miRNA profiles of the let-7 family may be used as novel noninvasive diagnostic, prognostic, treatment and surveillance markers for PTC.

  2. Translation on Its Own Terms? Toward Education for Global Culture

    Science.gov (United States)

    Saito, Naoko

    2017-01-01

    Roger Ames' keynote provides a powerful orientation for thinking about translation. Against the background of his outstanding research career as a mediator between East and West, he offers a clear vision of global cultivation through what he calls "cultural translation." Encouraging and insightful as Ames' account of translation is, and…

  3. Translation in South Africa: the politics of transmission 1 | Beukes ...

    African Journals Online (AJOL)

    This article investigates interlingual mediation, i.e. translation and interpreting as a macro-level language-planning goal in contemporary South Africa. The focus of the article is the political dimensions of translation as social practice. The study argues that, in addition to being a pivotal language facilitation tool, translation ...

  4. Quantification of miRNAs by a simple and specific qPCR method

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Busk, Peter K.

    2014-01-01

    MicroRNAs (miRNAs) are powerful regulators of gene expression at posttranscriptional level and play important roles in many biological processes and in disease. The rapid pace of the emerging field of miRNAs has opened new avenues for development of techniques to quantitatively determine mi...... in miRNA quantification. Furthermore, the method is easy to perform with common laboratory reagents, which allows miRNA quantification at low cost....

  5. Aberration of miRNAs Expression in Leukocytes from Sporadic Amyotrophic Lateral Sclerosis

    OpenAIRE

    Chen, YongPing; Wei, QianQian; Chen, XuePing; Li, ChunYu; Cao, Bei; Ou, RuWei; Hadano, Shinji; Shang, Hui-Fang

    2016-01-01

    Background: Accumulating evidence indicates that miRNAs play an important role in the development of amyotrophic lateral sclerosis (ALS). Most of previous studies on miRNA dysregulation in ALS focused on the alterative expression in ALS animal model or in limited samples from European patients with ALS. In the present study, the miRNA expression profiles were investigated in Chinese ALS patients to explore leukocytes miRNAs as a potential biomarker for the diagnosis of ALS. Methods: We ana...

  6. miRNA regulation of LDL-cholesterol metabolism.

    Science.gov (United States)

    Goedeke, Leigh; Wagschal, Alexandre; Fernández-Hernando, Carlos; Näär, Anders M

    2016-12-01

    In the past decade, microRNAs (miRNAs) have emerged as key regulators of circulating levels of lipoproteins. Specifically, recent work has uncovered the role of miRNAs in controlling the levels of atherogenic low-density lipoprotein LDL (LDL)-cholesterol by post-transcriptionally regulating genes involved in very low-density lipoprotein (VLDL) secretion, cholesterol biosynthesis, and hepatic LDL receptor (LDLR) expression. Interestingly, several of these miRNAs are located in genomic loci associated with abnormal levels of circulating lipids in humans. These findings reinforce the interest of targeting this subset of non-coding RNAs as potential therapeutic avenues for regulating plasma cholesterol and triglyceride (TAG) levels. In this review, we will discuss how these new miRNAs represent potential pre-disposition factors for cardiovascular disease (CVD), and putative therapeutic targets in patients with cardiometabolic disorders. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Adverse Intrauterine Environment and Cardiac miRNA Expression

    Directory of Open Access Journals (Sweden)

    Mitchell C. Lock

    2017-12-01

    Full Text Available Placental insufficiency, high altitude pregnancies, maternal obesity/diabetes, maternal undernutrition and stress can result in a poor setting for growth of the developing fetus. These adverse intrauterine environments result in physiological changes to the developing heart that impact how the heart will function in postnatal life. The intrauterine environment plays a key role in the complex interplay between genes and the epigenetic mechanisms that regulate their expression. In this review we describe how an adverse intrauterine environment can influence the expression of miRNAs (a sub-set of non-coding RNAs and how these changes may impact heart development. Potential consequences of altered miRNA expression in the fetal heart include; Hypoxia inducible factor (HIF activation, dysregulation of angiogenesis, mitochondrial abnormalities and altered glucose and fatty acid transport/metabolism. It is important to understand how miRNAs are altered in these adverse environments to identify key pathways that can be targeted using miRNA mimics or inhibitors to condition an improved developmental response.

  8. A bootstrap based analysis pipeline for efficient classification of phylogenetically related animal miRNAs

    Directory of Open Access Journals (Sweden)

    Gu Xun

    2007-03-01

    Full Text Available Abstract Background Phylogenetically related miRNAs (miRNA families convey important information of the function and evolution of miRNAs. Due to the special sequence features of miRNAs, pair-wise sequence identity between miRNA precursors alone is often inadequate for unequivocally judging the phylogenetic relationships between miRNAs. Most of the current methods for miRNA classification rely heavily on manual inspection and lack measurements of the reliability of the results. Results In this study, we designed an analysis pipeline (the Phylogeny-Bootstrap-Cluster (PBC pipeline to identify miRNA families based on branch stability in the bootstrap trees derived from overlapping genome-wide miRNA sequence sets. We tested the PBC analysis pipeline with the miRNAs from six animal species, H. sapiens, M. musculus, G. gallus, D. rerio, D. melanogaster, and C. elegans. The resulting classification was compared with the miRNA families defined in miRBase. The two classifications were largely consistent. Conclusion The PBC analysis pipeline is an efficient method for classifying large numbers of heterogeneous miRNA sequences. It requires minimum human involvement and provides measurements of the reliability of the classification results.

  9. Functional screening identifies miRNAs influencing apoptosis and proliferation in colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Holm, Anja; Rantala, Juha

    2014-01-01

    MicroRNAs (miRNAs) play a critical role in many biological processes and are aberrantly expressed in human cancers. Particular miRNAs function either as tumor suppressors or oncogenes and appear to have diagnostic and prognostic significance. Although numerous miRNAs are dys-regulated in colorect...

  10. miRNA profiles in cerebrospinal fluid from patients with central hypersomnias

    DEFF Research Database (Denmark)

    Holm, Anja; Bang-Berthelsen, Claus Heiner; Knudsen, Stine

    2014-01-01

    addressed whether miRNA levels are altered in the cerebrospinal fluid (CSF) of patients with central hypersomnias. We conducted high-throughput analyses of miRNAs in CSF from patients using quantitative real-time polymerase chain reaction panels. We identified 13, 9, and 11 miRNAs with a more than two...

  11. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture

    DEFF Research Database (Denmark)

    Vinther, Jeppe; Hedegaard, Mads Marquardt; Gardner, Paul Phillip

    2006-01-01

    miRNAs are small noncoding RNAs that regulate gene expression. We have used stable isotope labeling by amino acids in cell culture (SILAC) to investigate the effect of miRNA-1 on the HeLa cell proteome. Expression of 12 out of 504 investigated proteins was repressed by miRNA-1 transfection...

  12. Expression Profile of Stress-responsive Arabidopsis thaliana miRNAs and their Target Genes in Response to Inoculation with Pectobacterium carotovorum subsp. carotovorum.

    Science.gov (United States)

    Djami-Tchatchou, A T; Ntushelo, K

    2017-01-01

    Pectobacterium carotovorum subsp. carotovorum (Pcc) is a soft rot bacterium which upon entry into the plant macerates plant tissues by producing plant cell wall degrading enzymes. It has a wide host range which includes carrot, potato, tomato, leafy greens, squash and other cucurbits, onion, green peppers and cassava. During plant-microbe interactions, one of the ways of plant response to pathogen infection is through the small RNA silencing mechanism. Under pathogen attack the plant utilizes microRNAs to regulate gene expression by means of mediating gene silencing at transcriptional and post-transcriptional level. This study aims to assess for the first time, the expression profile of some stress-responsive miRNA and differential expression pattern of their target genes in Arabidopsis thaliana inoculated with Pcc. Leaves of five weeks old Arabidopsis thaliana plants were infected with Pcc and the quantitative real time-PCR, was used to investigate after 0, 24, 48 and 72 h post infection, the expression profiling of the stress-responsive miRNAs which include: miR156, miR159, miR169, miR393, miR396 miR398, miR399 and miR408 along with their target genes which include: Squamosa promoter-binding-like protein, myb domain protein 101, nuclear factor Y subunit A8, concanavalin A-like lectin protein kinase, growth regulating factor 4, copper superoxide dismutase, ubiquitin-protein ligase and plantacyanin respectively. The findings showed that the overexpression of 6 miRNAs at 24, 48 and 72 h after infection resulted in the repression of their target genes and the expression of 2 miRNAs didn't affect their target genes. These results provide the first indication of the miRNAs role in response to the infection of Pcc in A. thaliana and open new vistas for a better understanding of miRNA regulation of plant response to Pcc.

  13. Potential miRNA involvement in the anti-adipogenic effect of resveratrol and its metabolites.

    Directory of Open Access Journals (Sweden)

    Itziar Eseberri

    Full Text Available Scientific research is constantly striving to find molecules which are effective against excessive body fat and its associated complications. Taking into account the beneficial effects that resveratrol exerts on other pathologies through miRNA, the aim of the present work was to analyze the possible involvement of miRNAs in the regulation of adipogenic transcription factors peroxisome proliferator-activated receptor γ (pparγ, CCAAT enhancer-binding proteins α and β (cebpβ and cebpα induced by resveratrol and its metabolites.3T3-L1 maturing pre-adipocytes were treated during differentiation with 25 μM of trans-resveratrol (RSV, trans-resveratrol-3-O-sulfate (3S, trans-resveratrol-3'-O-glucuronide (3G and trans-resveratrol-4'-O-glucuronide (4G. After computational prediction and bibliographic search of miRNAs targeting pparγ, cebpβ and cebpα, the expression of microRNA-130b-3p (miR-130b-3p, microRNA-155-5p (miR-155-5p, microRNA-27b-3p (miR-27b-3p, microRNA-31-5p (miR-31-5p, microRNA-326-3p (miR-326-3p, microRNA-27a-3p (miR-27a-3p, microRNA-144-3p (miR-144-3p, microRNA-205-5p (miR-205-5p and microRNA-224-3p (miR-224-3p was analyzed. Moreover, other adipogenic mediators such as sterol regulatory element binding transcription factor 1 (srebf1, krüppel-like factor 5 (klf5, liver x receptor α (lxrα and cAMP responding element binding protein 1 (creb1, were measured by Real Time RT-PCR. As a confirmatory assay, cells treated with RSV were transfected with anti-miR-155 in order to measure cebpβ gene and protein expressions.Of the miRNAs analyzed only miR-155 was modified after resveratrol and glucuronide metabolite treatment. In transfected cells with anti-miR-155, RSV did not reduce cebpβ gene and protein expression. 3S decreased gene expression of creb1, klf5, srebf1 and lxrα.While RSV and glucuronide metabolites exert their inhibitory effect on adipogenesis through miR-155 up-regulation, the anti-adipogenic effect of 3S is not mediated

  14. Functional miRNAs in breast cancer drug resistance

    Directory of Open Access Journals (Sweden)

    Hu WZ

    2018-03-01

    Full Text Available Weizi Hu,1–3,* Chunli Tan,1–3,* Yunjie He,4 Guangqin Zhang,2 Yong Xu,3,5 Jinhai Tang1 1Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 2School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 3Nanjing Medical University Affiliated Cancer Hospital, 4The First Clinical School of Nanjing Medical University, 5Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance. Keywords: microRNA, exosome, breast cancer, drug resistance

  15. The Question of Ethics: What Options for the Translator?

    Directory of Open Access Journals (Sweden)

    Abdelkarim El Amari

    2016-12-01

    Full Text Available This paper deals with the process and product of translation from an ethical perspective, using Pym’s theory as opposed to Berman’s theory. Pym’s concern is primarily with the translator as a mediator; while Berman’s places emphasis on the process. They are seemingly contradictory, but, in fact, they complement each other when it comes to translation. This paper discusses the efficiency of the translation process within Berman’s theoretical framework, stressing the task and responsibility of the translator within the translating process wherein the ethics limits are in force to meet the reader/client’s expectations. This paper tries to provide a ground for discussion that might help in clearly setting ethical borders in translation. It also negotiates the impossibility of equivalence between languages, and to this effect, it capitalizes on the role of the translator as a cultural mediator.

  16. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    /Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...... section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation...... technology research as a subdiscipline of TS, and we define and discuss some basic concepts and models of the field that we use in the rest of the paper. Based on a small-scale study of papers published in TS journals between 2006 and 2016, Section 3 attempts to map relevant developments of translation...

  17. Evaluation of the miRNA-146a and miRNA-155 Expression Levels in Patients with Oral Lichen Planus.

    Science.gov (United States)

    Ahmadi-Motamayel, Fatemeh; Bayat, Zeynab; Hajilooi, Mehrdad; Shahryar-Hesami, Soroosh; Mahdavinezhad, Ali; Samie, Lida; Solgi, Ghasem

    2017-12-01

    Oral Lichen Planus (OLP) is a chronic autoimmune disease that could be considered as a potential premalignant status. To evaluate the miRNA-146a and miRNA-155 expression levels in patients with oral Lichen planus lesions compared to healthy subjects with normal oral mucosa. Forty patients with oral lichen planus and 18 healthy age and gender-matched controls were recruited in this case-control study. Oral lichen planus was diagnosed clinically and pathologically. The expression levels of two miRNAs in peripheral blood samples were determined using commercial TaqMan MicroRNA Assays. Relative quantification of gene expression was calculated by the 2-ΔΔct method. The expression levels of miRNA-146a and miRNA-155 in patients with oral Lichen planus were significantly higher than those of healthy controls. Also, a direct but insignificant correlation was found between miRNA-155 and miRNA-146a expression levels among the patient group. Our findings indicate that miRNA-146a and miRNA-155 could be potential biomarkers for the immunopathogenesis of oral lichen planus.

  18. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  19. Dramatic changes in 67 miRNAs during initiation of first wave of spermatogenesis in Mus musculus testis: global regulatory insights generated by miRNA-mRNA network analysis.

    Science.gov (United States)

    Sree, Sreesha; Radhakrishnan, Karthika; Indu, Sivankutty; Kumar, Pradeep G

    2014-09-01

    We mapped global changes in miRNA and mRNA profiles spanning the first wave of spermatogenesis using prepubertal (Postnatal Day 8 [P8]), pubertal (P16), and adolescent (P24) Mus musculus testes and identified the differential expression of 67 miRNAs and 8226 mRNAs. These two data sets were integrated into miRNA-dependent regulatory networks based on miRWalk predictions. In a network representing the P8 to P16 transition, downregulation of four miRNAs and upregulation of 19 miRNAs were linked with 81 upregulated target mRNAs and 228 downregulated target mRNAs, respectively. Furthermore, during the P16 to P24 transition, two miRNAs were downregulated, and eight miRNAs were upregulated, which linked with 64 upregulated mRNAs and 389 downregulated mRNAs, respectively. Only three of the miRNAs present in the network (miR-34b-5p, miR-34c, and miR-449a) showed a progressive increase from P8 through P16 to P24, while the remaining miRNAs in the network showed statistically significant changes in their levels either during the P8 to P16 transition or during the P16 to P24 transition. Analysis of the chromosomal location of these differentially expressed miRNAs showed that 14 out of 25 miRNAs upregulated from P8 to P16, and 18 out of 40 miRNAs upregulated from P8 to P24 were X-linked. This is suggestive of their escape from meiotic sex chromosome inactivation and postmeiotic sex chromatin. This integrated network of miRNA-level and mRNA-level changes in mouse testis during the first wave of spermatogenesis is expected to build a base for evaluating the role of miRNA-mediated gene expression regulation in maturing mammalian testis. © 2014 by the Society for the Study of Reproduction, Inc.

  20. miRNA Repertoires of Demosponges Stylissa carteri and Xestospongia testudinaria

    KAUST Repository

    Liew, Yi Jin

    2016-02-12

    MicroRNAs (miRNAs) are small regulatory RNAs that are involved in many biological process in eukaryotes. They play a crucial role in modulating genetic expression of their targets, which makes them integral components of transcriptional regulatory networks. As sponges (phylum Porifera) are commonly considered the most basal metazoan, the in-depth capture of miRNAs from these organisms provides additional clues to the evolution of miRNA families in metazoans. Here, we identified the core proteins involved in the biogenesis of miRNAs, and obtained evidence for bona fide miRNA sequences for two marine sponges Stylissa carteri and Xestospongia testudinaria (11 and 19 respectively). Our analysis identified several miRNAs that are conserved amongst demosponges, and revealed that all of the novel miRNAs identified in these two species are specific to the class Demospongiae.

  1. miRNA Repertoires of Demosponges Stylissa carteri and Xestospongia testudinaria

    KAUST Repository

    Liew, Yi Jin; Ryu, Tae Woo; Aranda, Manuel; Ravasi, Timothy

    2016-01-01

    MicroRNAs (miRNAs) are small regulatory RNAs that are involved in many biological process in eukaryotes. They play a crucial role in modulating genetic expression of their targets, which makes them integral components of transcriptional regulatory networks. As sponges (phylum Porifera) are commonly considered the most basal metazoan, the in-depth capture of miRNAs from these organisms provides additional clues to the evolution of miRNA families in metazoans. Here, we identified the core proteins involved in the biogenesis of miRNAs, and obtained evidence for bona fide miRNA sequences for two marine sponges Stylissa carteri and Xestospongia testudinaria (11 and 19 respectively). Our analysis identified several miRNAs that are conserved amongst demosponges, and revealed that all of the novel miRNAs identified in these two species are specific to the class Demospongiae.

  2. TmiRUSite and TmiROSite scripts: searching for mRNA fragments with miRNA binding sites with encoded amino acid residues.

    Science.gov (United States)

    Berillo, Olga; Régnier, Mireille; Ivashchenko, Anatoly

    2014-01-01

    microRNAs are small RNA molecules that inhibit the translation of target genes. microRNA binding sites are located in the untranslated regions as well as in the coding domains. We describe TmiRUSite and TmiROSite scripts developed using python as tools for the extraction of nucleotide sequences for miRNA binding sites with their encoded amino acid residue sequences. The scripts allow for retrieving a set of additional sequences at left and at right from the binding site. The scripts presents all received data in table formats that are easy to analyse further. The predicted data finds utility in molecular and evolutionary biology studies. They find use in studying miRNA binding sites in animals and plants. TmiRUSite and TmiROSite scripts are available for free from authors upon request and at https: //sites.google.com/site/malaheenee/downloads for download.

  3. miRNA genes of an invasive vector mosquito, Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Jinbao Gu

    Full Text Available Aedes albopictus, a vector of Dengue and Chikungunya viruses, is a robust invasive species in both tropical and temperate environments. MicroRNAs (miRNAs regulate gene expression and biological processes including embryonic development, innate immunity and infection. While a number of miRNAs have been discovered in some mosquitoes, no comprehensive effort has been made to characterize them from different developmental stages from a single species. Systematic analysis of miRNAs in Ae. albopictus will improve our understanding of its basic biology and inform novel strategies to prevent virus transmission. Between 10-14 million Illumina sequencing reads per sample were obtained from embryos, larvae, pupae, adult males, sugar-fed and blood-fed adult females. A total of 119 miRNA genes represented by 215 miRNA or miRNA star (miRNA* sequences were identified, 15 of which are novel. Eleven, two, and two of the newly-discovered miRNA genes appear specific to Aedes, Culicinae, and Culicidae, respectively. A number of miRNAs accumulate predominantly in one or two developmental stages and the large number that showed differences in abundance following a blood meal likely are important in blood-induced mosquito biology. Gene Ontology (GO analysis of the targets of all Ae. albopictus miRNAs provides a useful starting point for the study of their functions in mosquitoes. This study is the first systematic analysis of miRNAs based on deep-sequencing of small RNA samples of all developmental stages of a mosquito species. A number of miRNAs are related to specific physiological states, most notably, pre- and post-blood feeding. The distribution of lineage-specific miRNAs is consistent with mosquito phylogeny and the presence of a number of Aedes-specific miRNAs likely reflects the divergence between the Aedes and Culex genera.

  4. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    Directory of Open Access Journals (Sweden)

    Nicole Ludwig

    2016-03-01

    Full Text Available Wilms tumor (WT is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT.

  5. MiRNA-21 Expression Decreases from Primary Tumors to Liver Metastases in Colorectal Carcinoma.

    Directory of Open Access Journals (Sweden)

    Fabian Feiersinger

    Full Text Available Metastasis is the major cause of death in colorectal cancer patients. Expression of certain miRNAs in the primary tumors has been shown to be associated with progression of colorectal cancer and the initiation of metastasis. In this study, we compared miRNA expression in primary colorectal cancer and corresponding liver metastases in order to get an idea of the oncogenic importance of the miRNAs in established metastases.We analyzed the expression of miRNA-21, miRNA-31 and miRNA-373 in corresponding formalin-fixed paraffin-embedded (FFPE tissue samples of primary colorectal cancer, liver metastasis and healthy tissues of 29 patients by quantitative real-time PCR.All three miRNAs were significantly up-regulated in the primary tumor tissues as compared to healthy colon mucosa of the respective patients (p < 0.01. MiRNA-21 and miRNA-31 were also higher expressed in liver metastases as compared to healthy liver tissues (p < 0.01. No significant difference of expression of miRNA-31 and miRNA-373 was observed between primary tumors and metastases. Of note, miRNA-21 expression was significantly reduced in liver metastases as compared to the primary colorectal tumors (p < 0.01.In the context of previous studies demonstrating increased miRNA-21 expression in metastatic primary tumors, our findings raise the question whether miRNA-21 might be involved in the initiation but not in the perpetuation and growth of metastases.

  6. On Various Negative Translations

    Directory of Open Access Journals (Sweden)

    Gilda Ferreira

    2011-01-01

    Full Text Available Several proof translations of classical mathematics into intuitionistic mathematics have been proposed in the literature over the past century. These are normally referred to as negative translations or double-negation translations. Among those, the most commonly cited are translations due to Kolmogorov, Godel, Gentzen, Kuroda and Krivine (in chronological order. In this paper we propose a framework for explaining how these different translations are related to each other. More precisely, we define a notion of a (modular simplification starting from Kolmogorov translation, which leads to a partial order between different negative translations. In this derived ordering, Kuroda and Krivine are minimal elements. Two new minimal translations are introduced, with Godel and Gentzen translations sitting in between Kolmogorov and one of these new translations.

  7. Characterization of novel precursor miRNAs using next generation sequencing and prediction of miRNA targets in Atlantic halibut.

    Directory of Open Access Journals (Sweden)

    Teshome Tilahun Bizuayehu

    Full Text Available BACKGROUND: microRNAs (miRNAs are implicated in regulation of many cellular processes. miRNAs are processed to their mature functional form in a step-wise manner by multiple proteins and cofactors in the nucleus and cytoplasm. Many miRNAs are conserved across vertebrates. Mature miRNAs have recently been characterized in Atlantic halibut (Hippoglossus hippoglossus L.. The aim of this study was to identify and characterize precursor miRNA (pre-miRNAs and miRNA targets in this non-model flatfish. Discovery of miRNA precursor forms and targets in non-model organisms is difficult because of limited source information available. Therefore, we have developed a methodology to overcome this limitation. METHODS: Genomic DNA and small transcriptome of Atlantic halibut were sequenced using Roche 454 pyrosequencing and SOLiD next generation sequencing (NGS, respectively. Identified pre- miRNAs were further validated with reverse-transcription PCR. miRNA targets were identified using miRanda and RNAhybrid target prediction tools using sequences from public databases. Some of miRNA targets were also identified using RACE-PCR. miRNA binding sites were validated with luciferase assay using the RTS34st cell line. RESULTS: We obtained more than 1.3 M and 92 M sequence reads from 454 genomic DNA sequencing and SOLiD small RNA sequencing, respectively. We identified 34 known and 9 novel pre-miRNAs. We predicted a number of miRNA target genes involved in various biological pathways. miR-24 binding to kisspeptin 1 receptor-2 (kiss1-r2 was confirmed using luciferase assay. CONCLUSION: This study demonstrates that identification of conserved and novel pre-miRNAs in a non-model vertebrate lacking substantial genomic resources can be performed by combining different next generation sequencing technologies. Our results indicate a wide conservation of miRNA precursors and involvement of miRNA in multiple regulatory pathways, and provide resources for further research on miRNA

  8. Non-secreted clusterin isoforms are translated in rare amounts from distinct human mRNA variants and do not affect Bax-mediated apoptosis or the NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hans Prochnow

    Full Text Available Clusterin, also known as apolipoprotein J, is expressed from a variety of tissues and implicated in pathological disorders such as neurodegenerative diseases, ischemia and cancer. In contrast to secretory clusterin (sCLU, which acts as an extracellular chaperone, the synthesis, subcellular localization and function(s of intracellular CLU isoforms is currently a matter of intense discussion. By investigating human CLU mRNAs we here unravel mechanisms leading to the synthesis of distinct CLU protein isoforms and analyze their subcellular localization and their impact on apoptosis and on NF-κB-activity. Quantitative PCR-analyses revealed the expression of four different stress-inducible CLU mRNA variants in non-cancer and cancer cell lines. In all cell lines variant 1 represents the most abundant mRNA, whereas all other variants collectively account for no more than 0.34% of total CLU mRNA, even under stressed conditions. Overexpression of CLU cDNAs combined with in vitro mutagenesis revealed distinct translational start sites including a so far uncharacterized non-canonical CUG start codon. We show that all exon 2-containing mRNAs encode sCLU and at least three non-glycosylated intracellular isoforms, CLU1‑449, CLU21‑449 and CLU34‑449, which all reside in the cytosol of unstressed and stressed HEK‑293 cells. The latter is the only form expressed from an alternatively spliced mRNA variant lacking exon 2. Functional analysis revealed that none of these cytosolic CLU forms modulate caspase-mediated intrinsic apoptosis or significantly affects TNF-α-induced NF-κB-activity. Therefore our data challenge some of the current ideas regarding the physiological functions of CLU isoforms in pathologies.

  9. Stars and Symbiosis: MicroRNA- and MicroRNA*-Mediated Transcript Cleavage Involved in Arbuscular Mycorrhizal Symbiosis1[W][OA

    Science.gov (United States)

    Devers, Emanuel A.; Branscheid, Anja; May, Patrick; Krajinski, Franziska

    2011-01-01

    The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development. PMID:21571671

  10. Gender issues in translation

    OpenAIRE

    ERGASHEVA G.I.

    2015-01-01

    The following research is done regarding gender in translation dealing specifically with the issue of the translators’ gender identity and its effect on their translations, as well as on how gender itself is translated and produced. We will try to clarify what gender is, how gender manifests itself in the system of language, and what problems translators encounter when translating or producing gender-related materials

  11. Cultural Context and Translation

    Institute of Scientific and Technical Information of China (English)

    张敏

    2009-01-01

    cultural context plays an important role in translation. Because translation is a cross-culture activity, the culture context that influ-ences translating is consisted of both the culture contexts of source language and target language. This article firstly analyzes the concept of context and cultural context, then according to the procedure of translating classifies cultural context into two stages and talks about how they respectively influence translating.

  12. Computational analysis of human miRNAs phylogenetics

    African Journals Online (AJOL)

    User

    2011-05-02

    May 2, 2011 ... Human DNA. 71. 100.00. 1.94E-28. AL138714. Human DNA sequence from clone RP11-. 121J7 on chromosome 13q32.1-32.3. Contains the 3' end of a novel gene, the 5' end of the GPC5 gene for glypican 5, 5 ..... including human, chimpanzee, orangutan, and macaque, and find that miRNAs were ...

  13. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  14. miRNAs in Alzheimer Disease - A Therapeutic Perspective.

    Science.gov (United States)

    Gupta, Priya; Bhattacharjee, Surajit; Sharma, Ashish Ranjan; Sharma, Garima; Lee, Sang-Soo; Chakraborty, Chiranjib

    2017-01-01

    Alzheimer's disease is a neurodegenerative disorder which generally affects people who are more than 60 years of age. The disease is clinically characterised by dementia, loss of cognitive functions and massive neurodegeneration. The presence of neurofibrilary tangles and amyloid plaques in the hippocampal region of the brain are the hallmarks of the disease. Current therapeutic approaches for the treatment of Alzheimer's disease are symptomatic and disease modifying, none of which provide any permanent solution or cure for the disease. Dysregulation of miRNAs is one of the major causes of neurodegeneration. In the present review, the roles of different miRNAs such as miR-9, miR-107, miR-29, miR-34, miR-181, miR-106, miR-146a, miR132, miR124a, miR153 has been discussed in detail in the pathogenesis of various neurodegenerative diseases with special focus on AD. The probability of miRNAs as an alternative and more sensitive approach for detection and management of the AD has also been discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Electrochemical miRNA Biosensors: The Benefits of Nanotechnology

    Directory of Open Access Journals (Sweden)

    Mostafa Azimzadeh

    2017-02-01

    Full Text Available The importance of nanotechnology in medical technologies, especially biomedical diagnostics, is indubitable. By taking advantages of nanomaterials, many medical diagnostics methods have been developed so far, including electrochemical nanobiosensors. They have been used for quantification of different clinical biomarkers for detecting, screening, or follow up a disease. microRNAs (miRNAs are one of the most recent and reliable biomarkers used for biomedical diagnosis of various diseases including different cancer types. In addition, there are many electrochemical nanobiosensors explained in publications, patents, and/or a commercial device which have been fabricated for detection or quantification of valuable miRNAs. The aim of this article is to review the concept of medical diagnostics, biosensors, electrochemical biosensors and to emphasize the role of nanotechnology in nanobiosensor development and performance for application in microRNAs detection for biomedical diagnosis. We have also summarized recent ideas and advancements in the field of electrochemical nanobiosensors for miRNA detection, and the important breakthroughs are also explained.

  16. Writing Through: Practising Translation

    Directory of Open Access Journals (Sweden)

    Joel Scott

    2010-05-01

    Full Text Available This essay exists as a segment in a line of study and writing practice that moves between a critical theory analysis of translation studies conceptions of language, and the practical questions of what those ideas might mean for contemporary translation and writing practice. Although the underlying preoccupation of this essay, and my more general line of inquiry, is translation studies and practice, in many ways translation is merely a way into a discussion on language. For this essay, translation is the threshold of language. But the two trails of the discussion never manage to elude each other, and these concatenations have informed two experimental translation methods, referred to here as Live Translations and Series Translations. Following the essay are a number of poems in translation, all of which come from Blanco Nuclear by the contemporary Spanish poet, Esteban Pujals Gesalí. The first group, the Live Translations consist of transcriptions I made from audio recordings read in a public setting, in which the texts were translated in situ, either off the page of original Spanish-language poems, or through a process very much like that carried out by simultaneous translators, for which readings of the poems were played back to me through headphones at varying speeds to be translated before the audience. The translations collected are imperfect renderings, attesting to a moment in language practice rather than language objects. The second method involves an iterative translation process, by which three versions of any one poem are rendered, with varying levels of fluency, fidelity and servility. All three translations are presented one after the other as a series, with no version asserting itself as the primary translation. These examples, as well as the translation methods themselves, are intended as preliminary experiments within an endlessly divergent continuum of potential methods and translations, and not as a complete representation of

  17. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness.

    Science.gov (United States)

    Burroughs, A Maxwell; Ando, Yoshinari; de Hoon, Michiel J L; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O

    2010-10-01

    Animal microRNA sequences are subject to 3' nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3' adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1-EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3' addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3' adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake.

  18. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness

    Science.gov (United States)

    Burroughs, A. Maxwell; Ando, Yoshinari; de Hoon, Michiel J.L.; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O.

    2010-01-01

    Animal microRNA sequences are subject to 3′ nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3′ adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1–EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3′ addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3′ adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake. PMID:20719920

  19. miRNA profiles in plasma from patients with sleep disorders reveal dysregulation of miRNAs in narcolepsy and other central hypersomnias

    DEFF Research Database (Denmark)

    Holm, Anja; Bang-Berthelsen, Claus Heiner; Knudsen, Stine

    2014-01-01

    STUDY OBJECTIVES: MicroRNAs (miRNAs) have been implicated in the pathogenesis of human diseases including neurological disorders. The aim is to address the involvement of miRNAs in the pathophysiology of central hypersomnias including autoimmune narcolepsy with cataplexy and hypocretin deficiency...

  20. Sensing miRNA: Signal Amplification by Cognate RISC for Intracellular Detection of miRNA in Live Cells.

    Science.gov (United States)

    Kavishwar, Amol; Medarova, Zdravka

    2016-01-01

    The ability to detect miRNA expression in live cells would leave these cells available for further manipulation or culture. Here, we describe the design of a miRNA sensor oligonucleotide whose sequence mimics the target mRNA. The sensor has a fluorescent label on one end of the oligo and a quencher on the other. When inside the cell, the sensor is recognized by its cognate miRNA-RISC and gets cleaved, setting the fluorophore free from its quencher. This results in fluorescence "turn on." Since cleavage by the RISC complex is an enzymatic process, the described approach has a very high level of sensitivity (nM). The rate of nonspecific cleavage of the sensor is very slow permitting the collection of meaningful signal over a long period of time.

  1. Translational control in plant antiviral immunity

    Directory of Open Access Journals (Sweden)

    João Paulo B. Machado

    Full Text Available Abstract Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP-Interacting Kinase1, is discussed in this review.

  2. Towards Clinical Applications of Blood-Borne miRNA Signatures: The Influence of the Anticoagulant EDTA on miRNA Abundance.

    Directory of Open Access Journals (Sweden)

    Petra Leidinger

    Full Text Available Circulating microRNAs (miRNAs from blood are increasingly recognized as biomarker candidates for human diseases. Clinical routine settings frequently include blood sampling in tubes with EDTA as anticoagulant without considering the influence of phlebotomy on the overall miRNA expression pattern. We collected blood samples from six healthy individuals each in an EDTA blood collection tube. Subsequently, the blood was transferred into PAXgeneTM tubes at three different time points, i.e. directly (0 min, 10 min, and 2 h after phlebotomy. As control blood was also directly collected in PAXgeneTM blood RNA tubes that contain a reagent to directly lyse blood cells and stabilize their content. For all six blood donors at the four conditions (24 samples we analyzed the abundance of 1,205 miRNAs by human Agilent miRNA V16 microarrays.While we found generally a homogenous pattern of the miRNA abundance in all 24 samples, the duration of the EDTA treatment appears to influence the miRNA abundance of specific miRNAs. The most significant changes are observed after longer EDTA exposition. Overall, the impact of the different blood sample conditions on the miRNA pattern was substantially lower than intra-individual variations. While samples belonging to one of the six individuals mostly cluster together, there was no comparable clustering for any of the four tested blood sampling conditions. The most affected miRNA was miR-769-3p that was not detected in any of the six PAXgene blood samples, but in all EDTA 2h samples. Accordingly, hsa-miR-769-3p was also the only miRNA that showed a significantly different abundance between the 4 blood sample conditions by an ANOVA analysis (Benjamini-Hochberg adjusted p-value of 0.003. Validation by qRT-PCR confirmed this finding.The pattern of blood-borne miRNA abundance is rather homogenous between the four tested blood sample conditions of six blood donors. There was a clustering between the miRNA profiles that belong

  3. Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-08-01

    Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as "bridges" between the mother and the offspring by affecting the MAPK pathway.

  4. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs.

    Directory of Open Access Journals (Sweden)

    Germán Martínez

    Full Text Available Micro RNAS (miRNAs are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance. Here we report a combined approach of bioinformatics prediction, high-throughput sequencing data and molecular methods to analyze miRNAs populations in cucumber (Cucumis sativus plants. A set of 19 conserved and 6 known but non-conserved miRNA families were found in our cucumber small RNA dataset. We also identified 7 (3 with their miRNA* strand not previously described miRNAs, candidates to be cucumber-specific. To validate their description these new C. sativus miRNAs were detected by northern blot hybridization. Additionally, potential targets for most conserved and new miRNAs were identified in cucumber genome.In summary, in this study we have identified, by first time, conserved, known non-conserved and new miRNAs arising from an agronomically important species such as C. sativus. The detection of this complex population of regulatory small RNAs suggests that similarly to that observe in other plant species, cucumber miRNAs may possibly play an important role in diverse biological and metabolic processes.

  5. miRNAs in lung cancer - Studying complex fingerprints in patient's blood cells by microarray experiments

    Directory of Open Access Journals (Sweden)

    Huwer Hanno

    2009-10-01

    Full Text Available Abstract Background Deregulated miRNAs are found in cancer cells and recently in blood cells of cancer patients. Due to their inherent stability miRNAs may offer themselves for blood based tumor diagnosis. Here we addressed the question whether there is a sufficient number of miRNAs deregulated in blood cells of cancer patients to be able to distinguish between cancer patients and controls. Methods We synthesized 866 human miRNAs and miRNA star sequences as annotated in the Sanger miRBase onto a microarray designed by febit biomed gmbh. Using the fully automated Geniom Real Time Analyzer platform, we analyzed the miRNA expression in 17 blood cell samples of patients with non-small cell lung carcinomas (NSCLC and in 19 blood samples of healthy controls. Results Using t-test, we detected 27 miRNAs significantly deregulated in blood cells of lung cancer patients as compared to the controls. Some of these miRNAs were validated using qRT-PCR. To estimate the value of each deregulated miRNA, we grouped all miRNAs according to their diagnostic information that was measured by Mutual Information. Using a subset of 24 miRNAs, a radial basis function Support Vector Machine allowed for discriminating between blood cellsamples of tumor patients and controls with an accuracy of 95.4% [94.9%-95.9%], a specificity of 98.1% [97.3%-98.8%], and a sensitivity of 92.5% [91.8%-92.5%]. Conclusion Our findings support the idea that neoplasia may lead to a deregulation of miRNA expression in blood cells of cancer patients compared to blood cells of healthy individuals. Furthermore, we provide evidence that miRNA patterns can be used to detect human cancers from blood cells.

  6. Evaluation of circulating miRNAs during late pregnancy in the mare.

    Directory of Open Access Journals (Sweden)

    Shavahn C Loux

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNAs which are produced throughout the body. Individual tissues tend to have a specific expression profile and excrete many of these miRNAs into circulation. These circulating miRNAs may be diagnostically valuable biomarkers for assessing the presence of disease while minimizing invasive testing. In women, numerous circulating miRNAs have been identified which change significantly during pregnancy-related complications (e.g. chorioamnionitis, eclampsia, recurrent pregnancy loss; however, no prior work has been done in this area in the horse. To identify pregnancy-specific miRNAs, we collected serial whole blood samples in pregnant mares at 8, 9, 10 m of gestation and post-partum, as well as from non-pregnant (diestrous mares. In total, we evaluated a panel of 178 miRNAs using qPCR, eventually identifying five miRNAs of interest. One miRNA (miR-374b was differentially regulated through late gestation and four miRNAs (miR-454, miR-133b, miR-486-5p and miR-204b were differentially regulated between the pregnant and non-pregnant samples. We were able to identify putative targets for the differentially regulated miRNAs using two separate target prediction programs, miRDB and Ingenuity Pathway Analysis. The targets for the miRNAs differentially regulated during pregnancy were predicted to be involved in signaling pathways such as the STAT3 pathway and PI3/AKT signaling pathway, as well as more endocrine-based pathways, including the GnRH, prolactin and insulin signaling pathways. In summary, this study provides novel information about the changes occurring in circulating miRNAs during normal pregnancy, as well as attempting to predict the biological effects induced by these miRNAs.

  7. The Roles of Two miRNAs in Regulating the Immune Response of Sea Cucumber.

    Science.gov (United States)

    Zhang, Pengjuan; Li, Chenghua; Zhang, Ran; Zhang, Weiwei; Jin, Chunhua; Wang, Lingling; Song, Linsheng

    2015-12-01

    MicroRNAs (miRNAs) have emerged as key regulators in many pathological processes by suppressing the transcriptional and post-transcriptional expression of target genes. MiR-2008 was previously found to be significantly up-regulated in diseased sea cucumber Apostichopus japonicus by high-through sequencing, whereas the reads of miR-137, a well-documented tumor repressor, displayed no significant change. In the present study, we found that miR-137 expression was slightly attenuated and miR-2008 was significantly enhanced after Vibrio splendidus infection or Lipopolysaccharides application. Further target screening and dual-luciferase reporter assay revealed that the two important miRNAs shared a common target gene of betaine-homocysteine S-methyltransferase (AjBHMT), which exhibited noncorrelated messenger RNA and protein expression patterns after bacterial challenge. In order to fully understand their regulatory mechanisms, we conducted the functional experiments in vitro and in vivo. The overexpression of miR-137 in sea cucumber or primary coelomocytes significantly decreased, whereas the inhibition of miR-137 increased the mRNA and protein expression levels of AjBHMT. In contrast, miR-2008 overexpression and inhibition showed no effect on AjBHMT mRNA levels, but the concentration of AjBHMT protein displayed significant changes both in vitro and in vivo. Consistently, the homocysteine (Hcy) contents were also accordingly altered in the aberrant expression analysis of both miRNAs, consistent with the results of the AjBHMT silencing assay in vitro and in vivo. More importantly, small interfering RNA mediated AjBHMT knockdown and Hcy exposure analyses both significantly increased reactive oxygen species (ROS) production and decreased the number of surviving invasive pathogen in sea cucumber coelomocytes. Taken together, these findings confirmed the differential roles of sea cucumber miR-137 and miR-2008 in regulating the common target AjBHMT to promote ROS production

  8. Circulating miRNAs and miRNA shuttles as biomarkers: Perspective trajectories of healthy and unhealthy aging.

    Science.gov (United States)

    Olivieri, Fabiola; Capri, Miriam; Bonafè, Massimiliano; Morsiani, Cristina; Jung, Hwa Jin; Spazzafumo, Liana; Viña, Jose; Suh, Yousin

    2017-07-01

    Human aging is a lifelong process characterized by a continuous trade-off between pro-and anti-inflammatory responses, where the best-adapted and/or remodeled genetic/epigenetic profile may develop a longevity phenotype. Centenarians and their offspring represent such a phenotype and their comparison to patients with age-related diseases (ARDs) is expected to maximize the chance to unravel the genetic makeup that better associates with healthy aging trajectories. Seemingly, such comparison is expected to allow the discovery of new biomarkers of longevity together with risk factor for the most common ARDs. MicroRNAs (miRNAs) and their shuttles (extracellular vesicles in particular) are currently conceived as those endowed with the strongest ability to provide information about the trajectories of healthy and unhealthy aging. We review the available data on miRNAs in aging and underpin the evidence suggesting that circulating miRNAs (and cognate shuttles), especially those involved in the regulation of inflammation (inflamma-miRs) may constitute biomarkers capable of reliably depicting healthy and unhealthy aging trajectories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing.

    Science.gov (United States)

    Roy, Sribash; Tripathi, Abhinandan Mani; Yadav, Amrita; Mishra, Parneeta; Nautiyal, Chandra Shekhar

    2016-01-01

    miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting 60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna.

  10. Why Translation Is Difficult

    DEFF Research Database (Denmark)

    Carl, Michael; Schaeffer, Moritz Jonas

    2017-01-01

    The paper develops a definition of translation literality that is based on the syntactic and semantic similarity of the source and the target texts. We provide theoretical and empirical evidence that absolute literal translations are easy to produce. Based on a multilingual corpus of alternative...... translations we investigate the effects of cross-lingual syntactic and semantic distance on translation production times and find that non-literality makes from-scratch translation and post-editing difficult. We show that statistical machine translation systems encounter even more difficulties with non-literality....

  11. MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors.

    Directory of Open Access Journals (Sweden)

    Katerina Gkirtzou

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, single stranded RNAs with a key role in post-transcriptional regulation of thousands of genes across numerous species. While several computational methods are currently available for identifying miRNA genes, accurate prediction of the mature miRNA remains a challenge. Existing approaches fall short in predicting the location of mature miRNAs but also in finding the functional strand(s of miRNA precursors. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present a computational tool that incorporates a Naive Bayes classifier to identify mature miRNA candidates based on sequence and secondary structure information of their miRNA precursors. We take into account both positive (true mature miRNAs and negative (same-size non-mature miRNA sequences examples to optimize sensitivity as well as specificity. Our method can accurately predict the start position of experimentally verified mature miRNAs for both human and mouse, achieving a significantly larger (often double performance accuracy compared with two existing methods. Moreover, the method exhibits a very high generalization performance on miRNAs from two other organisms. More importantly, our method provides direct evidence about the features of miRNA precursors which may determine the location of the mature miRNA. We find that the triplet of positions 7, 8 and 9 from the mature miRNA end towards the closest hairpin have the largest discriminatory power, are relatively conserved in terms of sequence composition (mostly contain a Uracil and are located within or in very close proximity to the hairpin loop, suggesting the existence of a possible recognition site for Dicer and associated proteins. CONCLUSIONS: This work describes a novel algorithm for identifying the start position of mature miRNA(s produced by miRNA precursors. Our tool has significantly better (often double performance than two existing approaches and provides new insights about the potential use

  12. miRNA profiling of naive, effector and memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Haoquan Wu

    Full Text Available microRNAs have recently emerged as master regulators of gene expression during development and cell differentiation. Although profound changes in gene expression also occur during antigen-induced T cell differentiation, the role of miRNAs in the process is not known. We compared the miRNA expression profiles between antigen-specific naïve, effector and memory CD8+ T cells using 3 different methods--small RNA cloning, miRNA microarray analysis and real-time PCR. Although many miRNAs were expressed in all the T cell subsets, the frequency of 7 miRNAs (miR-16, miR-21, miR-142-3p, miR-142-5p, miR-150, miR-15b and let-7f alone accounted for approximately 60% of all miRNAs, and their expression was several fold higher than the other expressed miRNAs. Global downregulation of miRNAs (including 6/7 dominantly expressed miRNAs was observed in effector T cells compared to naïve cells and the miRNA expression levels tended to come back up in memory T cells. However, a few miRNAs, notably miR-21 were higher in effector and memory T cells compared to naïve T cells. These results suggest that concomitant with profound changes in gene expression, miRNA profile also changes dynamically during T cell differentiation. Sequence analysis of the cloned mature miRNAs revealed an extensive degree of end polymorphism. While 3'end polymorphisms dominated, heterogeneity at both ends, resembling drosha/dicer processing shift was also seen in miR-142, suggesting a possible novel mechanism to generate new miRNA and/or to diversify miRNA target selection. Overall, our results suggest that dynamic changes in the expression of miRNAs may be important for the regulation of gene expression during antigen-induced T cell differentiation. Our study also suggests possible novel mechanisms for miRNA biogenesis and function.

  13. TargetCompare: A web interface to compare simultaneous miRNAs targets.

    Science.gov (United States)

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-Dos-Santos, André M; Dos Santos, Andrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. http://lghm.ufpa.br/targetcompare.

  14. Determinants of translation ambiguity

    Science.gov (United States)

    Degani, Tamar; Prior, Anat; Eddington, Chelsea M.; Arêas da Luz Fontes, Ana B.; Tokowicz, Natasha

    2016-01-01

    Ambiguity in translation is highly prevalent, and has consequences for second-language learning and for bilingual lexical processing. To better understand this phenomenon, the current study compared the determinants of translation ambiguity across four sets of translation norms from English to Spanish, Dutch, German and Hebrew. The number of translations an English word received was correlated across these different languages, and was also correlated with the number of senses the word has in English, demonstrating that translation ambiguity is partially determined by within-language semantic ambiguity. For semantically-ambiguous English words, the probability of the different translations in Spanish and Hebrew was predicted by the meaning-dominance structure in English, beyond the influence of other lexical and semantic factors, for bilinguals translating from their L1, and translating from their L2. These findings are consistent with models postulating direct access to meaning from L2 words for moderately-proficient bilinguals. PMID:27882188

  15. Translation in ESL Classes

    Directory of Open Access Journals (Sweden)

    Nagy Imola Katalin

    2015-12-01

    Full Text Available The problem of translation in foreign language classes cannot be dealt with unless we attempt to make an overview of what translation meant for language teaching in different periods of language pedagogy. From the translation-oriented grammar-translation method through the complete ban on translation and mother tongue during the times of the audio-lingual approaches, we have come today to reconsider the role and status of translation in ESL classes. This article attempts to advocate for translation as a useful ESL class activity, which can completely fulfil the requirements of communicativeness. We also attempt to identify some activities and games, which rely on translation in some books published in the 1990s and the 2000s.

  16. Translation and Quality Management

    DEFF Research Database (Denmark)

    Petersen, Margrethe

    1996-01-01

    theory which would seem likely to be of interest in this connection and section 2. gives a linguist's introduction to the part of the area of quality management which I consider relevant for present purposes. Section 3. is devoted to the case study of a small translation firm which has been certified......The aim of this article is to consider the issue of quality in translation. Specifically, the question under consideration is whether quality assurance in relation to translation is feasible and, if so, what some of the implications for translation theory, translation practice and the teaching...... of translation would be. To provide a backdrop against which the issue may be discussed, I present an overview of the two areas which seem most likely to hold potential answers, viz., that of translation theory and that of quality management. Section 1. gives a brief outline of some contributions to translation...

  17. Small RNA Sequencing Uncovers New miRNAs and moRNAs Differentially Expressed in Normal and Primary Myelofibrosis CD34+ Cells.

    Directory of Open Access Journals (Sweden)

    Paola Guglielmelli

    Full Text Available Myeloproliferative neoplasms (MPN are chronic myeloid cancers thought to arise at the level of CD34+ hematopoietic stem/progenitor cells. They include essential thrombocythemia (ET, polycythemia vera (PV and primary myelofibrosis (PMF. All can progress to acute leukemia, but PMF carries the worst prognosis. Increasing evidences indicate that deregulation of microRNAs (miRNAs might plays an important role in hematologic malignancies, including MPN. To attain deeper knowledge of short RNAs (sRNAs expression pattern in CD34+ cells and of their possible role in mediating post-transcriptional regulation in PMF, we sequenced with Illumina HiSeq2000 technology CD34+ cells from healthy subjects and PMF patients. We detected the expression of 784 known miRNAs, with a prevalence of miRNA up-regulation in PMF samples, and discovered 34 new miRNAs and 99 new miRNA-offset RNAs (moRNAs, in CD34+ cells. Thirty-seven small RNAs were differentially expressed in PMF patients compared with healthy subjects, according to microRNA sequencing data. Five miRNAs (miR-10b-5p, miR-19b-3p, miR-29a-3p, miR-379-5p, and miR-543 were deregulated also in PMF granulocytes. Moreover, 3'-moR-128-2 resulted consistently downregulated in PMF according to RNA-seq and qRT-PCR data both in CD34+ cells and granulocytes. Target predictions of these validated small RNAs de-regulated in PMF and functional enrichment analyses highlighted many interesting pathways involved in tumor development and progression, such as signaling by FGFR and DAP12 and Oncogene Induced Senescence. As a whole, data obtained in this study deepened the knowledge of miRNAs and moRNAs altered expression in PMF CD34+ cells and allowed to identify and validate a specific small RNA profile that distinguishes PMF granulocytes from those of normal subjects. We thus provided new information regarding the possible role of miRNAs and, specifically, of new moRNAs in this disease.

  18. miRNA-34b is directly involved in the aging of macrophages.

    Science.gov (United States)

    Liang, Wei; Gao, Sheng; Liang, Liu; Huang, Xianing; Hu, Nan; Lu, Xiaoling; Zhao, Yongxiang

    2017-08-01

    MicroRNAs (miRNAs) are a class of short noncoding RNA that play important regulatory roles in living organisms. These RNA molecules are implicated in the development and progression of malignant diseases such as cancer and are closely associated with cell aging. Findings demonstrating that microRNA is associated with aging in macrophages have nevertheless rarely been reported. This study's objective was to investigate if miRNA-34 is linked to aging process of macrophages. We built a cell aging model in mouse RAW264.7 macrophages using D-galactose and determined the expression levels of miRNA-34a, miRNA-34b, and miRNA-34c in aging and normal macrophages by fluorescence quantitative polymerase chain reaction (q-PCR). We predicted a target gene of miRNA-34 using biological information techniques and constructed the recombinant plasmid pGL3-E2f3 for the putative target gene E2f3. The expression level of miRNA-34b was 5.23 times higher in aging macrophages than in normal macrophages. The luciferase activity decreased by nearly 50 % in cells transfected with miRNA-34b mimics, while no significant decrease in luciferase activity was noted in cells transfected with the miRNA-34b inhibitor or unrelated sequences. Our findings provide the groundwork for further research into the molecular mechanisms whereby miRNA-34b regulates the aging of macrophages. miRNA-34b is associated with the aging of RAW264.7 macrophages, and E2f3 is a target gene of miRNA-34b.

  19. New miRNA labeling method for bead-based quantification

    Directory of Open Access Journals (Sweden)

    Lanfranchi Gerolamo

    2010-06-01

    Full Text Available Abstract Background microRNAs (miRNAs are small single-stranded non-coding RNAs that act as crucial regulators of gene expression. Different methods have been developed for miRNA expression profiling in order to better understand gene regulation in normal and pathological conditions. miRNAs expression values obtained from large scale methodologies such as microarrays still need a validation step with alternative technologies. Results Here we have applied with an innovative approach, the Luminex® xMAP™ technology validate expression data of differentially expressed miRNAs obtained from high throughput arrays. We have developed a novel labeling system of small RNA molecules (below 200 nt, optimizing the sensitive cloning method for miRNAs, termed miRNA amplification profiling (mRAP. The Luminex expression patterns of three miRNAs (miR-23a, miR-27a and miR-199a in seven different cell lines have been validated by TaqMan miRNA assay. In all cases, bead-based meas were confirmed by the data obtained by TaqMan and microarray technologies. Conclusions We demonstrate that the measure of individual miRNA by the bead-based method is feasible, high speed, sensitive and low cost. The Luminex® xMAP™ technology also provides flexibility, since the central reaction can be scaled up with additional miRNA capturing beads, allowing validation of many differentially expressed miRNAs obtained from microarrays in a single experiment. We propose this technology as an alternative method to qRT-PCR for validating miRNAs expression data obtained with high-throughput technologies.

  20. Effector and regulatory dendritic cells display distinct patterns of miRNA expression

    OpenAIRE

    Lombardi, Vincent; Luce, Sonia; Moussu, H?l?ne; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet?Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron?Bodo, V?ronique; Moingeon, Philippe

    2017-01-01

    Abstract Introduction MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Method Using specific culture conditions, we differentiated immature human monocyte?derived DCs into DC1, DC2, and DCreg subsets (supp...

  1. Memetics and Translation Studies

    OpenAIRE

    Andrew, Chesterman

    2000-01-01

    Translation Studies is a branch of memetics. This is a claim, a hypothesis. More specifically, it is an interpretive hypothesis: I claim that Translation Studies can be thus interpreted, and that this is a useful thing to do because it offers a new and beneficial way of understanding translation.

  2. Sound Effects in Translation

    DEFF Research Database (Denmark)

    Mees, Inger M.; Dragsted, Barbara; Gorm Hansen, Inge

    2015-01-01

    ), Translog was employed to measure task times. The quality of the products was assessed by three experienced translators, and the number and types of misrecognitions were identified by a phonetician. Results indicate that SR translation provides a potentially useful supplement to written translation...

  3. TmiRUSite and TmiROSite scripts: searching for mRNA fragments with miRNA binding sites with encoded amino acid residues

    OpenAIRE

    Berillo, Olga; Régnier, Mireille; Ivashchenko, Anatoly

    2014-01-01

    microRNAs are small RNA molecules that inhibit the translation of target genes. microRNA binding sites are located in the untranslated regions as well as in the coding domains. We describe TmiRUSite and TmiROSite scripts developed using python as tools for the extraction of nucleotide sequences for miRNA binding sites with their encoded amino acid residue sequences. The scripts allow for retrieving a set of additional sequences at left and at right from the binding site. The scripts presents ...

  4. Reference miRNAs for miRNAome analysis of urothelial carcinomas.

    Directory of Open Access Journals (Sweden)

    Nadine Ratert

    Full Text Available BACKGROUND/OBJECTIVE: Reverse transcription quantitative real-time PCR (RT-qPCR is widely used in microRNA (miRNA expression studies on cancer. To compensate for the analytical variability produced by the multiple steps of the method, relative quantification of the measured miRNAs is required, which is based on normalization to endogenous reference genes. No study has been performed so far on reference miRNAs for normalization of miRNA expression in urothelial carcinoma. The aim of this study was to identify suitable reference miRNAs for miRNA expression studies by RT-qPCR in urothelial carcinoma. METHODS: Candidate reference miRNAs were selected from 24 urothelial carcinoma and normal bladder tissue samples by miRNA microarrays. The usefulness of these candidate reference miRNAs together with the commonly for normalization purposes used small nuclear RNAs RNU6B, RNU48, and Z30 were thereafter validated by RT-qPCR in 58 tissue samples and analyzed by the algorithms geNorm, NormFinder, and BestKeeper. PRINCIPAL FINDINGS: Based on the miRNA microarray data, a total of 16 miRNAs were identified as putative reference genes. After validation by RT-qPCR, miR-101, miR-125a-5p, miR-148b, miR-151-5p, miR-181a, miR-181b, miR-29c, miR-324-3p, miR-424, miR-874, RNU6B, RNU48, and Z30 were used for geNorm, NormFinder, and BestKeeper analyses that gave different combinations of recommended reference genes for normalization. CONCLUSIONS: The present study provided the first systematic analysis for identifying suitable reference miRNAs for miRNA expression studies of urothelial carcinoma by RT-qPCR. Different combinations of reference genes resulted in reliable expression data for both strongly and less strongly altered miRNAs. Notably, RNU6B, which is the most frequently used reference gene for miRNA studies, gave inaccurate normalization. The combination of four (miR-101, miR-125a-5p, miR-148b, and miR-151-5p or three (miR-148b, miR-181b, and miR-874

  5. miRNAs in inflammatory skin diseases and their clinical implications

    DEFF Research Database (Denmark)

    Løvendorf, Marianne B; Skov, Lone

    2015-01-01

    biological processes. The clinical implications of miRNAs are intriguing, both from a diagnostic and a therapeutic perspective. Accordingly, there is emerging evidence for the clinical potential of miRNAs as both biomarkers and possible therapeutic targets in skin diseases. Future studies will hopefully...... incomplete; however, it is known that miRNAs are implicated in various cellular processes of both normal and diseased skin. Some miRNAs appear to be consistently deregulated in several different inflammatory skin diseases, including psoriasis and atopic dermatitis, indicating a common role in fundamental...

  6. Association between the miRNA Signatures in Plasma and Bronchoalveolar Fluid in Respiratory Pathologies

    Directory of Open Access Journals (Sweden)

    Sonia Molina-Pinelo

    2012-01-01

    Full Text Available The identification of new less invasive biomarkers is necessary to improve the detection and prognostic outcome of respiratory pathological processes. The measurement of miRNA expression through less invasive techniques such as plasma and serum have been suggested to analysis of several lung malignancies including lung cancer. These studies are assuming a common deregulated miRNA expression both in blood and lung tissue. The present study aimed to obtain miRNA representative signatures both in plasma and bronchoalveolar cell fraction that could serve as biomarker in respiratory diseases. Ten patients were evaluated to assess the expression levels of 381 miRNAs. We found that around 50% miRNAs were no detected in both plasma and bronchoalveolar cell fraction and only 20% of miRNAs showed similar expression in both samples. These results show a lack of association of miRNA signatures between plasma and bronchoalveolar cytology in the same patient. The profiles are not comparable; however, there is a similarity in the relative expression in a very small subset of miRNAs (miR-17, miR-19b, miR-195 and miR-20b between both biological samples in all patients. This finding supports that the miRNAs profiles obtained from different biological samples have to be carefully validated to link with respiratory diseases.

  7. Reliable reference miRNAs for quantitative gene expression analysis of stress responses in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Podolska, Agnieszka; Pocock, Roger David John

    2014-01-01

    Quantitative real-time PCR (qPCR) has become the "gold standard" for measuring expression levels of individual miRNAs. However, little is known about the validity of reference miRNAs, the improper use of which can result in misleading interpretation of data.......Quantitative real-time PCR (qPCR) has become the "gold standard" for measuring expression levels of individual miRNAs. However, little is known about the validity of reference miRNAs, the improper use of which can result in misleading interpretation of data....

  8. Identifying relevant group of miRNAs in cancer using fuzzy mutual information.

    Science.gov (United States)

    Pal, Jayanta Kumar; Ray, Shubhra Sankar; Pal, Sankar K

    2016-04-01

    MicroRNAs (miRNAs) act as a major biomarker of cancer. All miRNAs in human body are not equally important for cancer identification. We propose a methodology, called FMIMS, which automatically selects the most relevant miRNAs for a particular type of cancer. In FMIMS, miRNAs are initially grouped by using a SVM-based algorithm; then the group with highest relevance is determined and the miRNAs in that group are finally ranked for selection according to their redundancy. Fuzzy mutual information is used in computing the relevance of a group and the redundancy of miRNAs within it. Superiority of the most relevant group to all others, in deciding normal or cancer, is demonstrated on breast, renal, colorectal, lung, melanoma and prostate data. The merit of FMIMS as compared to several existing methods is established. While 12 out of 15 selected miRNAs by FMIMS corroborate with those of biological investigations, three of them viz., "hsa-miR-519," "hsa-miR-431" and "hsa-miR-320c" are possible novel predictions for renal cancer, lung cancer and melanoma, respectively. The selected miRNAs are found to be involved in disease-specific pathways by targeting various genes. The method is also able to detect the responsible miRNAs even at the primary stage of cancer. The related code is available at http://www.jayanta.droppages.com/FMIMS.html .

  9. Differential expression of miRNAs and their relation to active tuberculosis.

    Science.gov (United States)

    Xu, Zhihong; Zhou, Aiping; Ni, Jinjing; Zhang, Qiufen; Wang, Ying; Lu, Jie; Wu, Wenjuan; Karakousis, Petros C; Lu, Shuihua; Yao, Yufeng

    2015-07-01

    The aim of this work was to screen miRNA signatures dysregulated in tuberculosis to improve our understanding of the biological role of miRNAs involved in the disease. Datasets deposited in publically available databases from microarray studies on infectious diseases and malignancies were retrieved, screened, and subjected to further analysis. Effect sizes were combined using the inverse-variance model and between-study heterogeneity was evaluated by the random effects model. 35 miRNAs were differentially expressed (12 up-regulated, 23 down-regulated; p tuberculosis and other infectious diseases. 15 miRNAs were found to be significantly differentially regulated (7 up-regulated, 8 down-regulated; p tuberculosis and malignancies. Most of the miRNA signatures identified in this study were found to be involved in immune responses and metabolism. Expression of these miRNA signatures in serum samples from TB subjects (n = 11) as well as healthy controls (n = 10) was examined by TaqMan miRNA array. Taken together, the results revealed differential expression of miRNAs in TB, but available datasets are limited and these miRNA signatures should be validated in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling

    Directory of Open Access Journals (Sweden)

    Kang Kang

    2012-02-01

    Full Text Available Abstract MicroRNAs (miRNAs are small noncoding RNAs (18-25 nucleotides that regulate gene expression at the post-transcriptional level. Recent studies have demonstrated the presence of miRNAs in the blood circulation. Deregulation of miRNAs in serum or plasma has been associated with many diseases including cancers and cardiovascular diseases, suggesting the possible use of miRNAs as diagnostic biomarkers. However, the detection of the small amount of miRNAs found in serum or plasma requires a method with high sensitivity and accuracy. Therefore, the current study describes polymerase chain reaction (PCR-based methods for measuring circulating miRNAs. Briefly, the procedure involves four major steps: (1 sample collection and preparation; (2 global miRNAs profiling using quantitative real-time PCR (qRT-PCR; (3 data normalization and analysis; and (4 selection and validation of miRNA biomarkers. In conclusion, qRT-PCR is a promising method for profiling of circulating miRNAs as biomarkers.

  11. Elsevier Trophoblast Research Award Lecture: origin, evolution and future of placenta miRNAs.

    Science.gov (United States)

    Morales-Prieto, D M; Ospina-Prieto, S; Schmidt, A; Chaiwangyen, W; Markert, U R

    2014-02-01

    MicroRNAs (miRNAs) regulate the expression of a large number of genes in plants and animals. Placental miRNAs appeared late in evolution and can be found only in mammals. Nevertheless, these miRNAs are constantly under evolutionary pressure. As a consequence, miRNA sequences and their mRNA targets may differ between species, and some miRNAs can only be found in humans. Their expression can be tissue- or cell-specific and can vary time-dependently. Human placenta tissue exhibits a specific miRNA expression pattern that dynamically changes during pregnancy and is reflected in the maternal plasma. Some placental miRNAs are involved in or associated with major pregnancy disorders, such as preeclampsia, intrauterine growth restriction or preterm delivery and, therefore, have a strong potential for usage as sensitive and specific biomarkers. In this review we summarize current knowledge on the origin of placental miRNAs, their expression in humans with special regard to trophoblast cells, interspecies differences, and their future as biomarkers. It can be concluded that animal models for human reproduction have a different panel of miRNAs and targets, and can only partly reflect or predict the situation in humans. Copyright © 2013. Published by Elsevier Ltd.

  12. [MiRNA system in unicellular eukaryotes and its evolutionary implications].

    Science.gov (United States)

    Zhang, Yan-Qiong; Wen, Jian-Fan

    2010-02-01

    microRNAs (miRNAs) in higher multicellular eukaryotes have been extensively studied in recent years. Great progresses have also been achieved for miRNAs in unicellular eukaryotes. All these studies not only enrich our knowledge about the complex expression regulation system in diverse organisms, but also have evolutionary significance for understanding the origin of this system. In this review, Authors summarize the recent advance in the studies of miRNA in unicellular eukaryotes, including that on the most primitive unicellular eukaryote--Giardia. The origin and evolution of miRNA system is also discussed.

  13. Prognostic and Clinical Significance of miRNA-205 in Endometrioid Endometrial Cancer.

    Directory of Open Access Journals (Sweden)

    Milosz Wilczynski

    Full Text Available Endometrial cancer is one of the most common malignancies of the reproductive female tract, with endometrioid endometrial cancer being the most frequent type. Despite the relatively favourable prognosis in cases of endometrial cancer, there is a necessity to evaluate clinical and prognostic utility of new molecular markers. MiRNAs are small, non-coding RNA molecules that take part in RNA silencing and post-transcriptional regulation of gene expression. Altered expression of miRNAs may be associated with cancer initiation, progression and metastatic capabilities. MiRNA-205 seems to be one of the key regulators of gene expression in endometrial cancer. In this study, we investigated clinical and prognostic role of miRNA-205 in endometrioid endometrial cancer. After total RNA extraction from 100 archival formalin-fixed paraffin-embedded tissues, real-time quantitative RT-PCR was used to define miRNA-205 expression levels. The aim of the study was to evaluate miRNA-205 expression levels in regard to patients' clinical and histopathological features, such as: survival rate, recurrence rate, staging, myometrial invasion, grading and lymph nodes involvement. Higher levels of miRNA-205 expression were observed in tumours with less than half of myometrial invasion and non-advanced cancers. Kaplan-Maier analysis revealed that higher levels of miRNA-205 were associated with better overall survival (p = 0,034. These results indicate potential clinical utility of miRNA-205 as a prognostic marker.

  14. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    Science.gov (United States)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  15. Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis

    KAUST Repository

    Baumgarten, Sebastian

    2017-12-08

    Reef-building corals and other cnidarians living in symbiotic relationships with intracellular, photosynthetic dinoflagellates in the genus Symbiodinium undergo transcriptomic changes during infection with the algae and maintenance of the endosymbiont population. However, the precise regulatory mechanisms modulating the host transcriptome are unknown. Here we report apparent post-transcriptional gene regulation by miRNAs in the sea anemone Aiptasia, a model system for cnidarian-dinoflagellate endosymbiosis. Aiptasia encodes mainly species-specific miRNAs, and there appears to have been recent differentiation within the Aiptasia genome of miRNAs that are commonly conserved among anthozoan cnidarians. Analysis of miRNA expression showed that both conserved and species-specific miRNAs are differentially expressed in response to endosymbiont infection. Using cross-linking immunoprecipitation of Argonaute, the central protein of the miRNA-induced silencing complex, we identified miRNA binding sites on a transcriptome-wide scale and found that the targets of the miRNAs regulated in response to symbiosis include genes previously implicated in biological processes related to Symbiodinium infection. Our study shows that cnidarian miRNAs recognize their mRNA targets via high-complementarity target binding and suggests that miRNA-mediated modulations of genes and pathways are important during the onset and maintenance of cnidarian-dinoflagellate endosymbiosis. This article is protected by copyright. All rights reserved.

  16. Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis

    KAUST Repository

    Baumgarten, Sebastian; Cziesielski, Maha J.; Thomas, Ludivine; Michell, Craig; Esherick, Lisl Y.; Pringle, John R.; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    Reef-building corals and other cnidarians living in symbiotic relationships with intracellular, photosynthetic dinoflagellates in the genus Symbiodinium undergo transcriptomic changes during infection with the algae and maintenance of the endosymbiont population. However, the precise regulatory mechanisms modulating the host transcriptome are unknown. Here we report apparent post-transcriptional gene regulation by miRNAs in the sea anemone Aiptasia, a model system for cnidarian-dinoflagellate endosymbiosis. Aiptasia encodes mainly species-specific miRNAs, and there appears to have been recent differentiation within the Aiptasia genome of miRNAs that are commonly conserved among anthozoan cnidarians. Analysis of miRNA expression showed that both conserved and species-specific miRNAs are differentially expressed in response to endosymbiont infection. Using cross-linking immunoprecipitation of Argonaute, the central protein of the miRNA-induced silencing complex, we identified miRNA binding sites on a transcriptome-wide scale and found that the targets of the miRNAs regulated in response to symbiosis include genes previously implicated in biological processes related to Symbiodinium infection. Our study shows that cnidarian miRNAs recognize their mRNA targets via high-complementarity target binding and suggests that miRNA-mediated modulations of genes and pathways are important during the onset and maintenance of cnidarian-dinoflagellate endosymbiosis. This article is protected by copyright. All rights reserved.

  17. The Temple Translator's Workstation Project

    National Research Council Canada - National Science Library

    Vanni, Michelle; Zajac, Remi

    1996-01-01

    .... The Temple Translator's Workstation is incorporated into a Tipster document management architecture and it allows both translator/analysts and monolingual analysts to use the machine- translation...

  18. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    Science.gov (United States)

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  19. Sound Effects in Translation

    DEFF Research Database (Denmark)

    Mees, Inger M.; Dragsted, Barbara; Gorm Hansen, Inge

    2013-01-01

    On the basis of a pilot study using speech recognition (SR) software, this paper attempts to illustrate the benefits of adopting an interdisciplinary approach in translator training. It shows how the collaboration between phoneticians, translators and interpreters can (1) advance research, (2) have......), Translog was employed to measure task times. The quality of the products was assessed by three experienced translators, and the number and types of misrecognitions were identified by a phonetician. Results indicate that SR translation provides a potentially useful supplement to written translation...

  20. Lost in translation

    DEFF Research Database (Denmark)

    Hedegaard, Steffen; Simonsen, Jakob Grue

    2011-01-01

    of translated texts. Our results suggest (i) that frame-based classifiers are usable for author attribution of both translated and untranslated texts; (ii) that framebased classifiers generally perform worse than the baseline classifiers for untranslated texts, but (iii) perform as well as, or superior...... to the baseline classifiers on translated texts; (iv) that—contrary to current belief—naïve classifiers based on lexical markers may perform tolerably on translated texts if the combination of author and translator is present in the training set of a classifier....

  1. Speaking your Translation

    DEFF Research Database (Denmark)

    Dragsted, Barbara; Mees, Inger M.; Gorm Hansen, Inge

    2011-01-01

    In this article we discuss the translation processes and products of 14 MA students who produced translations from Danish (L1) into English (L2) under different working conditions: (1) written translation, (2) sight translation, and (3) sight translation with a speech recognition (SR) tool. Audio......, since students were dictating in their L2, we looked into the number and types of error that occurred when using the SR software. Items that were misrecognised by the program could be divided into three categories: homophones, hesitations, and incorrectly pronounced words. Well over fifty per cent...

  2. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness

    OpenAIRE

    Burroughs, A. Maxwell; Ando, Yoshinari; de Hoon, Michiel J.L.; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O.

    2010-01-01

    Animal microRNA sequences are subject to 3′ nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3′ adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a...

  3. Lost in translation?

    DEFF Research Database (Denmark)

    Granas, Anne Gerd; Nørgaard, Lotte Stig; Sporrong, Sofia Kälvemark

    2014-01-01

    OBJECTIVE: The "Beliefs about Medicines Questionnaire" (BMQ) assess balance of necessity and concern of medicines. The BMQ has been translated from English to many languages. However, the original meaning of statements, such as "My medicine is a mystery to me", may be lost in translation. The aim...... of this study is to compare three Scandinavian translations of the BMQ. (1) How reliable are the translations? (2) Are they still valid after translation? METHODS: Translated Norwegian, Swedish and Danish versions of the BMQ were scrutinized by three native Scandinavian researchers. Linguistic differences...... and ambiguities in the 5-point Likert scale and the BMQ statements were compared. RESULTS: In the Scandinavian translations, the Likert scale expanded beyond the original version at one endpoint (Swedish) or both endpoints (Danish). In the BMQ statements, discrepancies ranged from smaller inaccuracies toward...

  4. What is a translator?

    Directory of Open Access Journals (Sweden)

    Martha Pulido

    2016-08-01

    Full Text Available I copied the title from Foucault’s text, "Qu'est-ce qu'un auteur" in Dits et écrits [1969], Paris, Gallimard, 1994, that I read in French, then in English in Donald F. Bouchard’s and Sherry Simon’s translation, and finally in Spanish in Yturbe Corina’s translation, and applied for the translator some of the analysis that Foucault presents to define the author. Foucault suggests that if we cannot define an author, at least we can see where their function is reflected. My purpose in this paper is to present those surfaces where the function of the translator is reflected or where it can be revealed, and to analyse the categories that could lead us to the elaboration of a suitable definition of a Translator. I dare already give a compound noun for the translator: Translator-Function.

  5. What is a translator?

    Directory of Open Access Journals (Sweden)

    Martha Martha Pulido

    2016-05-01

    Full Text Available I copied the title from Foucault’s text, "Qu'est-ce qu'un auteur" in Dits et écrits [1969], Paris, Gallimard, 1994, that I read in French, then in English in Donald F. Bouchard’s and Sherry Simon’s translation, and finally in Spanish in Yturbe Corina’s translation, and applied for the translator some of the analysis that Foucault presents to define the author. Foucault suggests that if we cannot define an author, at least we can see where their function is reflected. My purpose in this paper is to present those surfaces where the function of the translator is reflected or where it can be revealed, and to analyse the categories that could lead us to the elaboration of a suitable definition of a Translator. I dare already give a compound noun for the translator: Translator-Function.

  6. Epigallocatechin Gallate-Mediated Alteration of the MicroRNA Expression Profile in 5α-Dihydrotestosterone-Treated Human Dermal Papilla Cells.

    Science.gov (United States)

    Shin, Shanghun; Kim, Karam; Lee, Myung Joo; Lee, Jeongju; Choi, Sungjin; Kim, Kyung-Suk; Ko, Jung-Min; Han, Hyunjoo; Kim, Su Young; Youn, Hae Jeong; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Cha, Hwa Jun

    2016-06-01

    Dihydrotestosterone (DHT) induces androgenic alopecia by shortening the hair follicle growth phase, resulting in hair loss. We previously demonstrated how changes in the microRNA (miRNA) expression profile influenced DHT-mediated cell death, cell cycle arrest, cell viability, the generation of reactive oxygen species (ROS), and senescence. Protective effects against DHT have not, however, been elucidated at the genome level. We showed that epigallocatechin gallate (EGCG), a major component of green tea, protects DHT-induced cell death by regulating the cellular miRNA expression profile. We used a miRNA microarray to identify miRNA expression levels in human dermal papilla cells (DPCs). We investigated whether the miRNA expression influenced the protective effects of EGCG against DHT-induced cell death, growth arrest, intracellular ROS levels, and senescence. EGCG protected against the effects of DHT by altering the miRNA expression profile in human DPCs. In addition, EGCG attenuated DHT-mediated cell death and growth arrest and decreased intracellular ROS levels and senescence. A bioinformatics analysis elucidated the relationship between the altered miRNA expression and EGCG-mediated protective effects against DHT. Overall, our results suggest that EGCG ameliorates the negative effects of DHT by altering the miRNA expression profile in human DPCs.

  7. The regulatory effect of miRNAs is a heritable genetic trait in humans

    Directory of Open Access Journals (Sweden)

    Geeleher Paul

    2012-08-01

    Full Text Available Abstract Background microRNAs (miRNAs have been shown to regulate the expression of a large number of genes and play key roles in many biological processes. Several previous studies have quantified the inhibitory effect of a miRNA indirectly by considering the expression levels of genes that are predicted to be targeted by the miRNA and this approach has been shown to be robust to the choice of prediction algorithm. Given a gene expression dataset, Cheng et al. defined the regulatory effect score (RE-score of a miRNA as the difference in the gene expression rank of targets of the miRNA compared to non-targeted genes. Results Using microarray data from parent-offspring trios from the International HapMap project, we show that the RE-score of most miRNAs is correlated between parents and offspring and, thus, inter-individual variation in RE-score has a genetic component in humans. Indeed, the mean RE-score across miRNAs is correlated between parents and offspring, suggesting genetic differences in the overall efficiency of the miRNA biogenesis pathway between individuals. To explore the genetics of this quantitative trait further, we carried out a genome-wide association study of the mean RE-score separately in two HapMap populations (CEU and YRI. No genome-wide significant associations were discovered; however, a SNP rs17409624, in an intron of DROSHA, was significantly associated with mean RE-score in the CEU population following permutation-based control for multiple testing based on all SNPs mapped to the canonical miRNA biogenesis pathway; of 244 individual miRNA RE-scores assessed in the CEU, 214 were associated (p p = 0.04 with mean RE-score in the YRI population. Interestingly, the same SNP was associated with 17 (8.5% of all expressed miRNA expression levels in the CEU. We also show here that the expression of the targets of most miRNAs is more highly correlated with global changes in miRNA regulatory effect than with the expression of

  8. Diet and lifestyle factors associated with miRNA expression in colorectal tissue

    Directory of Open Access Journals (Sweden)

    Slattery ML

    2016-12-01

    Full Text Available Martha L Slattery,1 Jennifer S Herrick,1 Lila E Mullany,1 John R Stevens,2 Roger K Wolff1 1Department of Internal Medicine, The University of Utah, Salt Lake City, 2Department of Mathematics and Statistics, Utah State University, Logan, UT, USA Abstract: MicroRNAs (miRNAs are small non-protein-coding RNA molecules that regulate gene expression. Diet and lifestyle factors have been hypothesized to be involved in the regulation of miRNA expression. In this study it was hypothesized that diet and lifestyle factors are associated with miRNA expression. Data from 1,447 cases of colorectal cancer to evaluate 34 diet and lifestyle variables using miRNA expression in normal colorectal mucosa as well as for differential expression between paired carcinoma and normal tissue were used. miRNA data were obtained using an Agilent platform. Multiple comparisons were adjusted for using the false discovery rate q-value. There were 250 miRNAs differentially expressed between carcinoma and normal colonic tissue by level of carbohydrate intake and 198 miRNAs differentially expressed by the level of sucrose intake. Of these miRNAs, 166 miRNAs were differentially expressed for both carbohydrate intake and sucrose intake. Ninety-nine miRNAs were differentially expressed by the level of whole grain intake in normal colonic mucosa. Level of oxidative balance score was associated with 137 differentially expressed miRNAs between carcinoma and paired normal rectal mucosa. Additionally, 135 miRNAs were differentially expressed in colon tissue based on recent NSAID use. Other dietary factors, body mass index, waist and hip circumference, and long-term physical activity levels did not alter miRNA expression after adjustment for multiple comparisons. These results suggest that diet and lifestyle factors regulate miRNA level. They provide additional support for the influence of carbohydrate, sucrose, whole grains, NSAIDs, and oxidative balance score on colorectal cancer risk

  9. High-throughput miRNA profiling of human melanoma blood samples

    Directory of Open Access Journals (Sweden)

    Rass Knuth

    2010-06-01

    Full Text Available Abstract Background MicroRNA (miRNA signatures are not only found in cancer tissue but also in blood of cancer patients. Specifically, miRNA detection in blood offers the prospect of a non-invasive analysis tool. Methods Using a microarray based approach we screened almost 900 human miRNAs to detect miRNAs that are deregulated in their expression in blood cells of melanoma patients. We analyzed 55 blood samples, including 20 samples of healthy individuals, 24 samples of melanoma patients as test set, and 11 samples of melanoma patients as independent validation set. Results A hypothesis test based approch detected 51 differentially regulated miRNAs, including 21 miRNAs that were downregulated in blood cells of melanoma patients and 30 miRNAs that were upregulated in blood cells of melanoma patients as compared to blood cells of healthy controls. The tets set and the independent validation set of the melanoma samples showed a high correlation of fold changes (0.81. Applying hierarchical clustering and principal component analysis we found that blood samples of melanoma patients and healthy individuals can be well differentiated from each other based on miRNA expression analysis. Using a subset of 16 significant deregulated miRNAs, we were able to reach a classification accuracy of 97.4%, a specificity of 95% and a sensitivity of 98.9% by supervised analysis. MiRNA microarray data were validated by qRT-PCR. Conclusions Our study provides strong evidence for miRNA expression signatures of blood cells as useful biomarkers for melanoma.

  10. Identification of Viscum album L. miRNAs and prediction of their medicinal values.

    Directory of Open Access Journals (Sweden)

    Wenyan Xie

    Full Text Available MicroRNAs (miRNAs are a class of approximately 22 nucleotides single-stranded non-coding RNA molecules that play crucial roles in gene expression. It has been reported that the plant miRNAs might enter mammalian bloodstream and have a functional role in human metabolism, indicating that miRNAs might be one of the hidden bioactive ingredients in medicinal plants. Viscum album L. (Loranthaceae, European mistletoe has been widely used for the treatment of cancer and cardiovascular diseases, but its functional compounds have not been well characterized. We considered that miRNAs might be involved in the pharmacological activities of V. album. High-throughput Illumina sequencing was performed to identify the novel and conserved miRNAs of V. album. The putative human targets were predicted. In total, 699 conserved miRNAs and 1373 novel miRNAs have been identified from V. album. Based on the combined use of TargetScan, miRanda, PITA, and RNAhybrid methods, the intersection of 30697 potential human genes have been predicted as putative targets of 29 novel miRNAs, while 14559 putative targets were highly enriched in 33 KEGG pathways. Interestingly, these highly enriched KEGG pathways were associated with some human diseases, especially cancer, cardiovascular diseases and neurological disorders, which might explain the clinical use as well as folk medicine use of mistletoe. However, further experimental validation is necessary to confirm these human targets of mistletoe miRNAs. Additionally, target genes involved in bioactive components synthesis in V. album were predicted as well. A total of 68 miRNAs were predicted to be involved in terpenoid biosynthesis, while two miRNAs including val-miR152 and miR9738 were predicted to target viscotoxins and lectins, respectively, which increased the knowledge regarding miRNA-based regulation of terpenoid biosynthesis, lectin and viscotoxin expressions in V. album.

  11. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.

    Science.gov (United States)

    Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj

    2014-01-01

    Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna. © The Author(s) 2014. Published by Oxford University Press.

  12. Comparative studies of two methods for miRNA isolation from milk whey.

    Science.gov (United States)

    Jin, Xiao-lu; Wei, Zi-hai; Liu, Lan; Liu, Hong-yun; Liu, Jian-xin

    2015-06-01

    MicroRNAs (miRNAs) from milk whey have been considered for their potential as noninvasive biomarkers for milk quality control and disease diagnosis. However, standard protocols for miRNA isolation and quantification from milk whey are not well established. The objective of this study was to compare two methods for the isolation of miRNAs from milk whey. These two methods were modified phenol-based technique (Trizol LS(®) followed by phenol precipitation, the TP method) and combined phenol and column-based approach (Trizol LS(®) followed by cleanup using the miRNeasy kit, the TM method). Yield and quality of RNA were rigorously measured using a NanoDrop ND-1000 spectrophotometer and then the distribution of RNA was precisely detected in a Bioanalyzer 2100 instrument by microchip gel electrophoresis. Several endogenous miRNAs (bta-miR-141, bta-miR-146a, bta-miR-148a, bta-miR-200c, bta-miR-362, and bta-miR-375) and an exogenous spike-in synthetic control miRNA (cel-miR-39) were quantified by real-time polymerase chain reaction (PCR) to examine the apparent recovery efficiency of milk whey miRNAs. Both methods could successfully isolate sufficient small RNA (whey, and their yields were quite similar. However, the quantification results show that the total miRNA recovery efficiency by the TM method is superior to that by the TP method. The TM method performed better than the TP for recovery of milk whey miRNA due to its consistency and good repeatability in endogenous and spike-in miRNA recovery. Additionally, quantitative recovery analysis of a spike-in miRNA may be more accurate to reflect the milk whey miRNA recovery efficiency than using traditional RNA quality analysis instruments (NanoDrop or Bioanalyzer 2100).

  13. Comparative studies of two methods for miRNA isolation from milk whey*

    Science.gov (United States)

    Jin, Xiao-lu; Wei, Zi-hai; Liu, Lan; Liu, Hong-yun; Liu, Jian-xin

    2015-01-01

    MicroRNAs (miRNAs) from milk whey have been considered for their potential as noninvasive biomarkers for milk quality control and disease diagnosis. However, standard protocols for miRNA isolation and quantification from milk whey are not well established. The objective of this study was to compare two methods for the isolation of miRNAs from milk whey. These two methods were modified phenol-based technique (Trizol LS® followed by phenol precipitation, the TP method) and combined phenol and column-based approach (Trizol LS® followed by cleanup using the miRNeasy kit, the TM method). Yield and quality of RNA were rigorously measured using a NanoDrop ND-1000 spectrophotometer and then the distribution of RNA was precisely detected in a Bioanalyzer 2100 instrument by microchip gel electrophoresis. Several endogenous miRNAs (bta-miR-141, bta-miR-146a, bta-miR-148a, bta-miR-200c, bta-miR-362, and bta-miR-375) and an exogenous spike-in synthetic control miRNA (cel-miR-39) were quantified by real-time polymerase chain reaction (PCR) to examine the apparent recovery efficiency of milk whey miRNAs. Both methods could successfully isolate sufficient small RNA (whey, and their yields were quite similar. However, the quantification results show that the total miRNA recovery efficiency by the TM method is superior to that by the TP method. The TM method performed better than the TP for recovery of milk whey miRNA due to its consistency and good repeatability in endogenous and spike-in miRNA recovery. Additionally, quantitative recovery analysis of a spike-in miRNA may be more accurate to reflect the milk whey miRNA recovery efficiency than using traditional RNA quality analysis instruments (NanoDrop or Bioanalyzer 2100). PMID:26055915

  14. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  15. Translational control of human acetyl-CoA carboxylase 1 mRNA is mediated by an internal ribosome entry site in response to ER stress, serum deprivation or hypoxia mimetic CoCl2.

    Science.gov (United States)

    Damiano, Fabrizio; Testini, Mariangela; Tocci, Romina; Gnoni, Gabriele V; Siculella, Luisa

    2018-04-01

    Acetyl-CoA carboxylase 1 (ACC1) is a cytosolic enzyme catalyzing the rate limiting step in de novo fatty acid biosynthesis. There is mounting evidence showing that ACC1 is susceptible to dysregulation and that it is over-expressed in liver diseases associated with lipid accumulation and in several cancers. In the present study, ACC1 regulation at the translational level is reported. Using several experimental approaches, the presence of an internal ribosome entry site (IRES) has been established in the 5' untranslated region (5' UTR) of the ACC1 mRNA. Transfection experiments with the ACC1 5' UTR inserted in a dicistronic reporter vector show a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. The endoplasmic reticulum (ER) stress condition and the related unfolded protein response (UPR), triggered by treatment with thapsigargin and tunicamycin, cause an increase of the cap-independent translation of ACC1 mRNA in HepG2 cells, despite the overall reduction in global protein synthesis. Other stress conditions, such as serum starvation and incubation with hypoxia mimetic agent CoCl 2 , up-regulate ACC1 expression in HepG2 cells at the translational level. Overall, these findings indicate that the presence of an IRES in the ACC1 5' UTR allows ACC1 mRNA translation in conditions that are inhibitory to cap-dependent translation. A potential involvement of the cap-independent translation of ACC1 in several pathologies, such as obesity and cancer, has been discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10

    International Nuclear Information System (INIS)

    Chen, Yating; Zhang, Hongwei; Ma, Duan; Zhang, Jin; Wang, Huijun; Zhao, Jiayi; Xu, Cheng; Du, Yingying; Luo, Xin; Zheng, Fengyun; Liu, Rui

    2012-01-01

    miRNAs are a group of small RNA molecules regulating target genes by inducing mRNA degradation or translational repression. Aberrant expression of miRNAs correlates with various cancers. Although miR-135a has been implicated in several other cancers, its role in breast cancer is unknown. HOXA10 however, is associated with multiple cancer types and was recently shown to induce p53 expression in breast cancer cells and reduce their invasive ability. Because HOXA10 is a confirmed miR-135a target in more than one tissue, we examined miR-135a levels in relation to breast cancer phenotypes to determine if miR-135a plays role in this cancer type. Expression levels of miR-135a in tissues and cells were determined by poly (A)-RT PCR. The effect of miR-135a on proliferation was evaluated by CCK8 assay, cell migration and invasion were evaluated by transwell migration and invasion assays, and target protein expression was determined by western blotting. GFP and luciferase reporter plasmids were constructed to confirm the action of miR-135a on downstream target genes including HOXA10. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student's t-test. Here we report that miR-135a was highly expressed in metastatic breast tumors. We found that the expression of miR-135a was required for the migration and invasion of breast cancer cells, but not their proliferation. HOXA10, which encodes a transcription factor required for embryonic development and is a metastasis suppressor in breast cancer, was shown to be a direct target of miR-135a in breast cancer cells. Our analysis showed that miR-135a suppressed the expression of HOXA10 both at the mRNA and protein level, and its ability to promote cellular migration and invasion was partially reversed by overexpression of HOXA10. In summary, our results indicate that miR-135a is an onco-miRNA that can promote breast cancer cell migration and invasion. HOXA10 is a target gene for mi

  17. Discourse Analysis in Translator Training

    OpenAIRE

    Gülfidan Ayvaz

    2015-01-01

    Translator training enables students to gain experience in both linguistic parameters and translation practice. Discourse Analysis is one of the strategies that lead to a better translation process and quality in translation. In that regard, this study aims to present DA as a translation strategy for translation practice and a useful tool for translator training. The relationship between DA and Translator Training is not widely studied. Therefore this study aims to define DA and how it can be...

  18. MicroRNAs as putative mediators of treatment response in prostate cancer.

    LENUS (Irish Health Repository)

    O'Kelly, Fardod

    2012-05-22

    MicroRNAs (miRNAs) are an abundant class of noncoding RNAs that function to regulate post-transcriptional gene expression, predominantly by translational repression. In addition to their role in prostate cancer initiation and progression, recent evidence suggests that miRNAs might also participate in treatment response across a range of therapies including radiation treatment, chemotherapy and androgen suppression. The mechanism of this regulation is thought to be multifactorial and is currently poorly understood. To date, only a small number of studies have examined the functional role of miRNAs in response to prostate cancer treatment. Elucidating the role of miRNAs in treatment response following radiotherapy, chemotherapy and androgen suppression will provide new avenues of investigation for the development of novel therapies for the treatment of prostate cancer.

  19. Circulating miRNAs as biomarkers for oral squamous cell carcinoma recurrence in operated patients

    DEFF Research Database (Denmark)

    Yan, Yan; Wang, Xuan; Venø, Morten Trillingsgaard

    2017-01-01

    MicroRNAs (miRNAs) are small regulatory non-coding RNAs for which altered expression in cancers can serve as potential biomarkers for diseases. We here investigated whether circulating miRNAs can serve as biomarkers for predicting post-operational recurrence of oral squamous cell carcinoma (OSCC...

  20. Extensive Degradation and Low Bioavailability of Orally Consumed Corn miRNAs in Mice

    Directory of Open Access Journals (Sweden)

    Haiqiu Huang

    2018-02-01

    Full Text Available The current study seeks to resolve the discrepancy in the literature regarding the cross-kingdom transfer of plant microRNAs (miRNAs into mammals using an improved miRNA processing and detection method. Two studies utilizing C57BL/6 mice were performed. In the first study, mice were fed an AIN-93M diet and gavaged with water, random deoxynucleotide triphosphates (dNTP or isolated corn miRNAs for two weeks (n = 10 per group. In the second study, mice were fed an AIN-93M diet, or the diet supplemented with 3% fresh or autoclaved corn powder for two weeks (n = 10 per group. Corn miRNA levels were analyzed in blood and tissue samples by real-time PCR (RT-PCR following periodate oxidation and β elimination treatments to eliminate artifacts. After removing false positive detections, there were no differences in corn miRNA levels between control and treated groups in cecal, fecal, liver and blood samples. Using an in vitro digestion system, corn miRNAs in AIN-93M diet or in the extracts were found to be extensively degraded. Less than 1% was recovered in the gastrointestinal tract after oral and gastric phases. In conclusion, no evidence of increased levels of corn miRNAs in whole blood or tissues after supplementation of corn miRNAs in the diet was observed in a mouse model.

  1. An integrated expression atlas of miRNAs and their promoters in human and mouse

    DEFF Research Database (Denmark)

    de Rie, Derek; Abugessaisa, Imad; Alam, Tanvir

    2017-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libr...

  2. The role of microRNAs (miRNA) in circadian rhythmicity

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... role of miRNAs in diverse fields related to regulation of gene expression. .... miRNA levels after sleep deprivation in the rat's brain also show modest .... Duffield G. E. 2003 DNA microarray analyses of circadian tim- ing: the ...

  3. The role of miRNAs in human papilloma virus (HPV)-associated cancers

    DEFF Research Database (Denmark)

    Lajer, C B; Garnæs, E; Friis-Hansen, L

    2012-01-01

    Although the role of human papilloma virus (HPV) in cervical squamous cell carcinoma (CSCC) is well established, the role in head and neck SCC (HNSCC) is less clear. MicroRNAs (miRNAs) have a role in the cancer development, and HPV status may affect the miRNA expression pattern in HNSCC. To explore...

  4. The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training

    DEFF Research Database (Denmark)

    Nielsen, Søren; Åkerström, Thorbjörn; Rinnov, Anders

    2014-01-01

    MiRNAs are potent intracellular posttranscriptional regulators and are also selectively secreted into the circulation in a cell-specific fashion. Global changes in miRNA expression in skeletal muscle in response to endurance exercise training have been reported. Therefore, our aim was to establis...

  5. In silico profiling of miRNAs and their target polymorphisms in ...

    African Journals Online (AJOL)

    To assess, whether miRNA target SNPs are implicated in leukemia associated genes, we conducted an in silico approach along with the availability of publicly available web based tools for miRNA prediction and comprehensive genomic databases of SNPs. In this in-depth report, we attempted to use two computational ...

  6. Expression analysis of miRNA and target mRNAs in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X.R. [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, P. [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Mei, J.Z.; Liu, G.J. [Medical Oncology Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Q.X. [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2014-08-01

    We aimed to investigate miRNAs and related mRNAs through a network-based approach in order to learn the crucial role that they play in the biological processes of esophageal cancer. Esophageal squamous-cell carcinoma (ESCC) and adenocarcinoma (EAC)-related miRNA and gene expression data were downloaded from the Gene Expression Omnibus database, and differentially expressed miRNAs and genes were selected. Target genes of differentially expressed miRNAs were predicted and their regulatory networks were constructed. Differentially expressed miRNA analysis selected four miRNAs associated with EAC and ESCC, among which hsa-miR-21 and hsa-miR-202 were shared by both diseases. hsa-miR-202 was reported for the first time to be associated with esophageal cancer in the present study. Differentially expressed miRNA target genes were mainly involved in cancer-related and signal-transduction pathways. Functional categories of these target genes were related to transcriptional regulation. The results may indicate potential target miRNAs and genes for future investigations of esophageal cancer.

  7. Mitochondrial miRNA (MitomiR): a new player in cardiovascular health.

    Science.gov (United States)

    Srinivasan, Hemalatha; Das, Samarjit

    2015-10-01

    Cardiovascular disease is one of the major causes of human morbidity and mortality in the world. MicroRNAs (miRNAs) are small RNAs that regulate gene expression and are known to be involved in the pathogenesis of heart diseases, but the translocation phenomenon and the mode of action in mitochondria are largely unknown. Recent mitochondrial proteome analysis unveiled at least 2000 proteins, of which only 13 are made by the mitochondrial genome. There are numerous studies demonstrating the translocation of proteins into the mitochondria and also translocation of ribosomal RNA (viz., 5S rRNA) into mitochondria. Recent studies have suggested that miRNAs contain sequence elements that affect their subcellular localization, particularly nuclear localization. If there are sequence elements that direct miRNAs to the nucleus, it is also possible that similar sequence elements exist to direct miRNAs to the mitochondria. In this review we have summarized most of the miRNAs that have been shown to play an important role in mitochondrial function, either by regulating mitochondrial genes or by regulating nuclear genes that are known to influence mitochondrial function. While the focus of this review is cardiovascular diseases, we also illustrate the role of mitochondrial miRNA (MitomiR) in the initiation and progression of various diseases, including cardiovascular diseases, metabolic diseases, and cancer. Our goal here is to summarize the miRNAs that are localized to the mitochondrial fraction of cells, and how these miRNAs modulate cardiovascular health.

  8. EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery

    Science.gov (United States)

    Müller, Katharina; Klein, Philipp M.; Heissig, Philipp; Roidl, Andreas; Wagner, Ernst

    2016-11-01

    Antitumoral siRNA and miRNA delivery was demonstrated by epidermal growth factor receptor (EGFR) targeted oligoaminoamide polyplexes. For this purpose, the T-shaped lipo-oligomer 454 was used to complex RNA into a core polyplex, which was subsequently functionalized with the targeting peptide ligand GE11 via a polyethylene glycol (PEG) linker. To this end, free cysteines on the surface of 454 polyplex were coupled with a maleimide-PEG-GE11 reagent (Mal-GE11). Resulting particles with sizes of 120-150 nm showed receptor-mediated uptake into EGFR-positive T24 bladder cancer cells, MDA-MB 231 breast cancer cells and Huh7 liver cancer cells. Furthermore, these formulations led to ligand-dependent gene silencing. RNA interference (RNAi) triggered antitumoral effects were observed for two different therapeutic RNAs, a miRNA-200c mimic or EG5 siRNA. Using polyplexes modified with a ratio of 0.8 molar equivalents of Mal-GE11, treatment of T24 or MDA-MB 231 cancer cells with miR-200c led to the expected decreased proliferation and migration, changes in cell cycle and enhanced sensitivity towards doxorubicin. Delivery of EG5 siRNA into Huh7 cells resulted in antitumoral activity with G2/M arrest, triggered by loss of mitotic spindle separation and formation of mono-astral spindles. These findings demonstrate the potential of GE11 ligand-containing RNAi polyplexes for cancer treatment.

  9. Struggling with Translations

    DEFF Research Database (Denmark)

    Obed Madsen, Søren

    This paper shows empirical how actors have difficulties with translating strategy texts. The paper uses four cases as different examples of what happens, and what might be difficult, when actors translate organizational texts. In order to explore this, it draws on a translation training method from...... translation theory. The study shows that for those who have produced the text, it is difficult to translate a strategy where they have to change the words so others who don’t understand the language in the text can understand it. It also shows that for those who haven’t been a part of the production, it very...... challenge the notion that actors understand all texts and that managers per se can translate a text....

  10. Inference of miRNA targets using evolutionary conservation and pathway analysis

    Directory of Open Access Journals (Sweden)

    van Nimwegen Erik

    2007-03-01

    Full Text Available Abstract Background MicroRNAs have emerged as important regulatory genes in a variety of cellular processes and, in recent years, hundreds of such genes have been discovered in animals. In contrast, functional annotations are available only for a very small fraction of these miRNAs, and even in these cases only partially. Results We developed a general Bayesian method for the inference of miRNA target sites, in which, for each miRNA, we explicitly model the evolution of orthologous target sites in a set of related species. Using this method we predict target sites for all known miRNAs in flies, worms, fish, and mammals. By comparing our predictions in fly with a reference set of experimentally tested miRNA-mRNA interactions we show that our general method performs at least as well as the most accurate methods available to date, including ones specifically tailored for target prediction in fly. An important novel feature of our model is that it explicitly infers the phylogenetic distribution of functional target sites, independently for each miRNA. This allows us to infer species-specific and clade-specific miRNA targeting. We also show that, in long human 3' UTRs, miRNA target sites occur preferentially near the start and near the end of the 3' UTR. To characterize miRNA function beyond the predicted lists of targets we further present a method to infer significant associations between the sets of targets predicted for individual miRNAs and specific biochemical pathways, in particular those of the KEGG pathway database. We show that this approach retrieves several known functional miRNA-mRNA associations, and predicts novel functions for known miRNAs in cell growth and in development. Conclusion We have presented a Bayesian target prediction algorithm without any tunable parameters, that can be applied to sequences from any clade of species. The algorithm automatically infers the phylogenetic distribution of functional sites for each miRNA, and

  11. Comparison of miRNA quantitation by Nanostring in serum and plasma samples.

    Directory of Open Access Journals (Sweden)

    Catherine Foye

    Full Text Available Circulating microRNAs that are associated with specific diseases have garnered much attention for use in diagnostic assays. However, detection of disease-associated miRNA can be affected by several factors such as release of contaminating cellular miRNA during sample collection, variations due to amplification of transcript for detection, or controls used for normalization for accurate quantitation. We analyzed circulating miRNA in serum and plasma samples obtained concurrently from 28 patients, using a Nanostring quantitative assay platform. Total RNA concentration ranged from 32-125 μg/ml from serum and 30-220 μg/ml from plasma. Of 798 miRNAs, 371 miRNAs were not detected in either serum or plasma samples. 427 were detected in either serum or plasma but not both, whereas 151 miRNA were detected in both serum and plasma samples. The diversity of miRNA detected was greater in plasma than in serum samples. In serum samples, the number of detected miRNA ranged from 3 to 82 with a median of 17, whereas in plasma samples, the number of miRNA detected ranged from 25 to 221 with a median of 91. Several miRNA such as miR451a, miR 16-5p, miR-223-3p, and mir25-3p were highly abundant and differentially expressed between serum and plasma. The detection of endogenous and exogenous control miRNAs varied in serum and plasma, with higher levels observed in plasma. Gene expression stability identified candidate invariant microRNA that were highly stable across all samples, and could be used for normalization. In conclusion, there are significant differences in both the number of miRNA detected and the amount of miRNA detected between serum and plasma. Normalization using miRNA with constant expression is essential to minimize the impact of technical variations. Given the challenges involved, ideal candidates for blood based biomarkers would be those that are indifferent to type of body fluid, are detectable and can be reliably quantitated.

  12. Translational ecology for hydrogeology.

    Science.gov (United States)

    Schlesinger, William H

    2013-01-01

    Translational ecology--a special discipline aimed to improve the accessibility of science to policy makers--will help hydrogeologists contribute to the solution of pressing environmental problems. Patterned after translational medicine, translational ecology is a partnership to ensure that the right science gets done in a timely fashion, so that it can be communicated to those who need it. © 2013, National Ground Water Association.

  13. Identification of miRNAs associated with recurrence of stage II colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Tobiasen, Heidi; Schepeler, Troels

    2011-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer deaths. Twenty-five percent of the patients radically treated for a stage II CRC (no lymph node or distant metastasis) later develop recurrence and dies from the disease. MicroRNAs (miRNAs) are aberrantly expressed or mutated in human...... target prediction and transcript profiling. Initially, miRNA over-expression in HCT116 cells was followed by transcriptional profiling of transfected cells using GeneChip Human Exon 1.0 ST Arrays. Three in silico predicted miRNA targets showing differential mRNA expression upon miRNA up-regulation were...... cancers, and function either as tumour suppressors or oncogenes. Additionally, they also appear to have both diagnostic and prognostic significance. The aim of the present study was to identify miRNAs associated with recurrence of stage II CRC, followed up by an investigation of how these potential...

  14. Rapid Detection of miRNA Using Nucleic Acids-templated AgNCs

    DEFF Research Database (Denmark)

    Shah, Pratik

    . In the case of plants, the levels of certain miRNAs can be used as biomarkers to evaluate the physiological status. Specific miRNA levels are influenced by stresses such as drought, salt, cold, heat and pathogenic infestations. In humans, the dysregulation of miRNAs have been highlighted in many diseases...... such as cancer, diabetes, cardiovascular disease and Alzheimer’s disease. MiRNAs, thus, can be useful markers for disease diagnosis, prognosis, and treatment. Because of its attractive optical properties such as brightness, tuneable emission wavelengths and photo-stability, DNA stabilized silver nano......-clusters (AgNCs) has increasingly been used to create nanoscale bio-sensing systems for selective and specific detection of bio-molecules. During the course of my Ph.D., I have focused on developing a novel diagnostic tool for miRNA detection using the fluorescent properties of DNA encapsulated AgNCs (DNA...

  15. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure

    Science.gov (United States)

    Sanders, Alison P; Burris, Heather H; Just, Allan C; Motta, Valeria; Amarasiriwardena, Chitra; Svensson, Katherine; Oken, Emily; Solano-Gonzalez, Maritsa; Mercado-Garcia, Adriana; Pantic, Ivan; Schwartz, Joel; Tellez-Rojo, Martha M; Baccarelli, Andrea A; Wright, Robert O

    2015-01-01

    Aim: Toxic metals including lead and mercury are associated with adverse pregnancy outcomes. This study aimed to assess the association between miRNA expression in the cervix during pregnancy with lead and mercury levels. Materials & methods: We obtained cervical swabs from pregnant women (n = 60) and quantified cervical miRNA expression. Women's blood lead, bone lead and toenail mercury levels were analyzed. We performed linear regression to examine the association between metal levels and expression of 74 miRNAs adjusting for covariates. Results: Seventeen miRNAs were negatively associated with toenail mercury levels, and tibial bone lead levels were associated with decreased expression of miR-575 and miR-4286. Conclusion: The findings highlight miRNAs in the human cervix as novel responders to maternal chemical exposure during pregnancy. PMID:26418635

  16. Treatment-independent miRNA signature in blood of wilms tumor patients

    Directory of Open Access Journals (Sweden)

    Schmitt Jana

    2012-08-01

    Full Text Available Abstract Background Blood-born miRNA signatures have recently been reported for various tumor diseases. Here, we compared the miRNA signature in Wilms tumor patients prior and after preoperative chemotherapy according to SIOP protocol 2001. Results We did not find a significant difference between miRNA signature of both groups. However both, Wilms tumor patients prior and after chemotherapy showed a miRNA signature different from healthy controls. The signature of Wilms tumor patients prior to chemotherapy showed an accuracy of 97.5% and of patients after chemotherapy an accuracy of 97.0%, each as compared to healthy controls. Conclusion Our results provide evidence for a blood-born Wilms tumor miRNA signature largely independent of four weeks preoperative chemotherapy treatment.

  17. Translation and Intertextuality

    Directory of Open Access Journals (Sweden)

    Mohammad Rahimi

    2015-09-01

    Full Text Available This study is intends to describe and Presents a new theory of translation based on the "Intertextuality" unlike the Translation theories that presented to date, what all are based on the principle of "Equivalence". Our theory is based on the examples of Arabic poetry translated into Persian poetry. The major findings of this study show that the Intertextuality can serve as a link between the original text and the target. it can also interact with other texts is the translation result in the target language, Whtich is the book of poetic eloquence is addressed and was mentioned Literary robbery.

  18. Distinctive serum miRNA profile in mouse models of striated muscular pathologies.

    Directory of Open Access Journals (Sweden)

    Nicolas Vignier

    Full Text Available Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD, limb-girdle muscular dystrophy type 2D (LGMD2D, limb-girdle muscular dystrophy type 2C (LGMD2C, Emery-Dreifuss muscular dystrophy (EDMD and hypertrophic cardiomyopathy (HCM. Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

  19. miRNA signature and Dicer requirement during human endometrial stromal decidualization in vitro.

    Directory of Open Access Journals (Sweden)

    Carlos Estella

    Full Text Available Decidualization is a morphological and biochemical transformation of endometrial stromal fibroblast into differentiated decidual cells, which is critical for embryo implantation and pregnancy establishment. The complex regulatory networks have been elucidated at both the transcriptome and the proteome levels, however very little is known about the post-transcriptional regulation of this process. miRNAs regulate multiple physiological pathways and their de-regulation is associated with human disorders including gynaecological conditions such as endometriosis and preeclampsia. In this study we profile the miRNAs expression throughout human endometrial stromal (hESCs decidualization and analyze the requirement of the miRNA biogenesis enzyme Dicer during this process. A total of 26 miRNAs were upregulated and 17 miRNAs downregulated in decidualized hESCs compared to non-decidualized hESCs. Three miRNAs families, miR-181, miR-183 and miR-200, are down-regulated during the decidualization process. Using miRNAs target prediction algorithms we have identified the potential targets and pathways regulated by these miRNAs. The knockdown of Dicer has a minor effect on hESCs during in vitro decidualization. We have analyzed a battery of decidualization markers such as cell morphology, Prolactin, IGFBP-1, MPIF-1 and TIMP-3 secretion as well as HOXA10, COX2, SP1, C/EBPß and FOXO1 expression in decidualized hESCs with decreased Dicer function. We found decreased levels of HOXA10 and altered intracellular organization of actin filaments in Dicer knockdown decidualized hESCs compared to control. Our results provide the miRNA signature of hESC during the decidualization process in vitro. We also provide the first functional characterization of Dicer during human endometrial decidualization although surprisingly we found that Dicer plays a minor role regulating this process suggesting that alternative biogenesis miRNAs pathways must be involved in human

  20. Effector and regulatory dendritic cells display distinct patterns of miRNA expression.

    Science.gov (United States)

    Lombardi, Vincent; Luce, Sonia; Moussu, Hélène; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet-Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron-Bodo, Véronique; Moingeon, Philippe

    2017-09-01

    MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Using specific culture conditions, we differentiated immature human monocyte-derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of T H 1, T H 2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non-allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR-132 and miR-155), was down-regulated compared to non-allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow-up AIT efficacy. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  1. Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity

    Science.gov (United States)

    Casara, Silvia; Sales, Gabriele; Lanfranchi, Gerolamo; Celotti, Lucia; Mognato, Maddalena

    2012-01-01

    Background Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. Methodology/Principal Findings We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of “Response to DNA damage” is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. Conclusions/Significance On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL. PMID:22347458

  2. CpG preconditioning regulates miRNA expression that modulates genomic reprogramming associated with neuroprotection against ischemic injury

    Science.gov (United States)

    Vartanian, Keri B; Mitchell, Hugh D; Stevens, Susan L; Conrad, Valerie K; McDermott, Jason E; Stenzel-Poore, Mary P

    2015-01-01

    Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene responses produced by CpG preconditioning is unknown. We evaluated brain miRNA expression in response to CpG preconditioning before and after stroke using microarray. Importantly, we have data from previous gene microarrays under the same conditions, which allowed integration of miRNA and gene expression data to specifically identify regulated miRNA gene targets. CpG preconditioning did not significantly alter miRNA expression before stroke, indicating that miRNA regulation is not critical for the initiation of preconditioning-induced neuroprotection. However, after stroke, differentially regulated miRNAs between CpG- and saline-treated animals associated with the upregulation of several neuroprotective genes, implicating these miRNAs in genomic reprogramming that increases neuroprotection. Statistical analysis revealed that the miRNA targets were enriched in the gene population regulated in the setting of stroke, implying that miRNAs likely orchestrate this gene expression. These data suggest that miRNAs regulate endogenous responses to stroke and that manipulation of these miRNAs may have the potential to acutely activate novel neuroprotective processes that reduce damage. PMID:25388675

  3. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots.

    Science.gov (United States)

    Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang

    2017-02-06

    Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. 'MAPK cascade'), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway'), reactive oxygen species (ROS) metabolic process (e.g. 'hydrogen peroxide catabolic process') and transcription factors (e.g., 'MYB, ZFP and bZIP') were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment.

  4. Wolbachia-induced aae-miR-12 miRNA negatively regulates the expression of MCT1 and MCM6 genes in Wolbachia-infected mosquito cell line.

    Directory of Open Access Journals (Sweden)

    Solomon Osei-Amo

    Full Text Available BACKGROUND: Best recognized for its role in manipulating host reproduction, the parasitic gram-negative Wolbachia pipientis is known to colonize a wide range of invertebrates. The endosymbiotic bacterium has recently been shown to cause a life-shortening effect as well as inhibiting replication of arboviruses in Aedes aegypti; although the molecular mechanisms behind these effects are largely unknown. MicroRNAs (miRNAs have been determined to have a wide range of roles in regulating gene expression in eukaryotes. A recent study showed that several A. aegypti mosquito miRNAs are differentially expressed when infected with Wolbachia. METHODOLOGY/PRINCIPAL FINDINGS: Based on the prior knowledge that one of these miRNAs, aae-miR-12, is differentially expressed in mosquitoes infected with Wolbachia, we aimed to determine any significance of this mediation. We also set out to characterize the target genes of this miRNA in the A. aegpyti genome. Bioinformatic approaches predicted a list of potential target genes and subsequent functional analyses confirmed that two of these, DNA replication licensing (MCM6 and monocarboxylate transporter (MCT1, are under the regulative control of aae-miR-12. We also demonstrated that aae-miR-12 is critical in the persistence of Wolbachia in the host cell. CONCLUSIONS/SIGNIFICANCE: Our study has identified two target genes of aae-miR-12, a differentially expressed mosquito miRNA in Wolbachia-infected cells, and determined that the miRNA affects Wolbachia density in the host cells.

  5. Lost in Translation?

    NARCIS (Netherlands)

    Jonkers, Peter

    2017-01-01

    Translating sacred scriptures is not only a praxis that is crucial for the fruitful, i.e. non-distorted and unbiased dialogue between different religious traditions, but also raises some fundamental theoretical questions when it comes to translating the sacred texts of the religious other or

  6. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  7. Students' Differentiated Translation Processes

    Science.gov (United States)

    Bossé, Michael J.; Adu-Gyamfi, Kwaku; Chandler, Kayla

    2014-01-01

    Understanding how students translate between mathematical representations is of both practical and theoretical importance. This study examined students' processes in their generation of symbolic and graphic representations of given polynomial functions. The purpose was to investigate how students perform these translations. The result of the study…

  8. Creativity, Culture and Translation

    Science.gov (United States)

    Babaee, Siamak; Wan Yahya, Wan Roselezam; Babaee, Ruzbeh

    2014-01-01

    Some scholars (Bassnett-McGuire, Catford, Brislin) suggest that a good piece of translation should be a strict reflection of the style of the original text while some others (Gui, Newmark, Wilss) consider the original text untranslatable unless it is reproduced. Opposing views by different critics suggest that translation is still a challenging…

  9. Translation as (Global) Writing

    Science.gov (United States)

    Horner, Bruce; Tetreault, Laura

    2016-01-01

    This article explores translation as a useful point of departure and framework for taking a translingual approach to writing engaging globalization. Globalization and the knowledge economy are putting renewed emphasis on translation as a key site of contest between a dominant language ideology of monolingualism aligned with fast capitalist…

  10. Measuring Translation Literality

    DEFF Research Database (Denmark)

    Carl, Michael; Schaeffer, Moritz

    2017-01-01

    Tirkkonen-Condit (2005: 407–408) argues that “It looks as if literal translation is [the result of] a default rendering procedure”. As a corollary, more literal translations should be easier to process, and less literal ones should be associated with more cognitive effort. In order to assess this...

  11. Text Coherence in Translation

    Science.gov (United States)

    Zheng, Yanping

    2009-01-01

    In the thesis a coherent text is defined as a continuity of senses of the outcome of combining concepts and relations into a network composed of knowledge space centered around main topics. And the author maintains that in order to obtain the coherence of a target language text from a source text during the process of translation, a translator can…

  12. TRANSLATING SERVICE TECHNICAL PROSE

    African Journals Online (AJOL)

    language. The Application of Technical Service. Prose. To form a good idea of the appl ication .... cost lives. In this particular domain, translators must have a sound technical ... These semantic ... another language and often, in doing so, changing its meaning. The words ..... He will hand out tasks to each translator and after.

  13. Stimulating translational research

    DEFF Research Database (Denmark)

    Bentires-Alj, Mohamed; Rajan, Abinaya; van Harten, Wim

    2015-01-01

    Translational research leaves no-one indifferent and everyone expects a particular benefit. We as EU-LIFE (www.eu-life.eu), an alliance of 13 research institutes in European life sciences, would like to share our experience in an attempt to identify measures to promote translational research with...... without undermining basic exploratory research and academic freedom....

  14. Translation, Quality and Growth

    DEFF Research Database (Denmark)

    Petersen, Margrethe

    The paper investigates the feasibility and some of the possible consequences of applying quality management to translation. It first gives an introduction to two different schools of translation and to (total) quality management. It then examines whether quality management may, in theory...

  15. Translation, Interpreting and Lexicography

    DEFF Research Database (Denmark)

    Dam, Helle Vrønning; Tarp, Sven

    2018-01-01

    in the sense that their practice fields are typically ‘about something else’. Translators may, for example, be called upon to translate medical texts, and interpreters may be assigned to work on medical speeches. Similarly, practical lexicography may produce medical dictionaries. In this perspective, the three...

  16. Translation between cultures

    Directory of Open Access Journals (Sweden)

    Henrique de Oliveira Lee

    2016-05-01

    Full Text Available This article will question the pertinence of understanding interculturality in terms of translation between cultures. I shall study this hypothesis in two ways : 1 / the cosmopolitan horizon, which the idea of translation may implicate ; 2 / the critique of the premises of unique origin and homogeneity of cultures which this hypothesis makes possible.

  17. Idioms and Back Translation

    Science.gov (United States)

    Griffin, Frank

    2004-01-01

    The challenges of intercultural communication are an integral part of many undergraduate business communication courses. Marketing gaffes clearly illustrate the pitfalls of translation and underscore the importance of a knowledge of the culture with which one is attempting to communicate. A good way to approach the topic of translation pitfalls in…

  18. Translation Ambiguity but Not Word Class Predicts Translation Performance

    Science.gov (United States)

    Prior, Anat; Kroll, Judith F.; Macwhinney, Brian

    2013-01-01

    We investigated the influence of word class and translation ambiguity on cross-linguistic representation and processing. Bilingual speakers of English and Spanish performed translation production and translation recognition tasks on nouns and verbs in both languages. Words either had a single translation or more than one translation. Translation…

  19. Examining English-German Translation Ambiguity Using Primed Translation Recognition

    Science.gov (United States)

    Eddington, Chelsea M.; Tokowicz, Natasha

    2013-01-01

    Many words have more than one translation across languages. Such "translation-ambiguous" words are translated more slowly and less accurately than their unambiguous counterparts. We examine the extent to which word context and translation dominance influence the processing of translation-ambiguous words. We further examine how these factors…

  20. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of mi......+ breast cancer patients receiving adjuvant tamoxifen mono-therapy. Our results provide new insight into the molecular mechanisms of tamoxifen resistance and may form the basis for future medical intervention for the large number of women with tamoxifen-resistant ER+ breast cancer.......RNA-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all Tam...

  1. Proposal for a telehealth concept in the translational research model.

    Science.gov (United States)

    Silva, Angélica Baptista; Morel, Carlos Médicis; Moraes, Ilara Hämmerli Sozzi de

    2014-04-01

    To review the conceptual relationship between telehealth and translational research. Bibliographical search on telehealth was conducted in the Scopus, Cochrane BVS, LILACS and MEDLINE databases to find experiences of telehealth in conjunction with discussion of translational research in health. The search retrieved eight studies based on analysis of models of the five stages of translational research and the multiple strands of public health policy in the context of telehealth in Brazil. The models were applied to telehealth activities concerning the Network of Human Milk Banks, in the Telemedicine University Network. The translational research cycle of human milk collected, stored and distributed presents several integrated telehealth initiatives, such as video conferencing, and software and portals for synthesizing knowledge, composing elements of an information ecosystem, mediated by information and communication technologies in the health system. Telehealth should be composed of a set of activities in a computer mediated network promoting the translation of knowledge between research and health services.

  2. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs.

    Science.gov (United States)

    Akmal, Mohd; Baig, Mirza S; Khan, Jawaid A

    2017-12-10

    in any of the healthy looking transgenic lines. In this study for the first time, efficacy of the host (G. arboreum)-encoded miRNAs against CLCuD symptoms was experimentally demonstrated through overexpression of miR398 and miR2950 in G. hirsutum var. HS6 plants. Computational prediction of miRNAs targeting virus genome and their subsequent implication in translational inhibition or cleavage based suppression of viral mRNA via overexpression could help in generating virus resistant plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Association of MiRNA-146a, MiRNA-499, IRAK1 and PADI4 Polymorphisms with Rheumatoid Arthritis in Egyptian Population

    Directory of Open Access Journals (Sweden)

    Olfat Gamil Shaker

    2018-05-01

    Full Text Available Background/Aims: Rheumatoid arthritis (RA is a systemic autoimmune disease affecting up to 1% of the population worldwide. The aim of the present study was to investigate whether miRNA-146a rs2910164, miRNA-499 rs3746444, IRAK1 rs3027898 and PADI4 rs1748033 polymorphisms are associated with susceptibility to RA in Egyptians and whether they influence disease severity and activity. Methods: The study was performed on 104 unrelated RA patients and 112 healthy subjects. RA patients were further subdivided into active and inactive RA groups. Polymorphisms were genotyped by using real-time polymerase chain reaction with TaqMan allelic discrimination assay. Results: Significant differences in the frequency of miRNA-146a rs2910164, miRNA-499 rs3746444, IRAK1 rs3027898 and PADI4 rs1748033 alleles and genotypes were observed between RA patients and controls. Only CA and AA genotypes of IRAK1 rs3027898 shows a significant difference between active and inactive subgroups. MiRNA-146a rs2910164 and IRAK1 rs3027898 polymorphisms were a risk factor for predisposition to RA in codominant and dominant tested inheritance models, while, the miRNA-499 rs3746444 and PADI4 rs1748033 polymorphisms were a risk factor in codominant and recessive one. CG and GG genotypes of miRNA-146a rs2910164 were associated with positive erosions. CA genotype of IRAK1 rs3027898 was associated with low disease activity and negative erosions, while, the AA genotype was associated with high disease activity. CC genotype of PADI4 rs1748033 was associated with negative rheumatoid factor. Conclusion: The 4 studied SNPs were likely to play an important role in the susceptibility to RA and can influence disease severity and activity in Egyptian population.

  4. Identity approach in translation : sociocultural implications

    Directory of Open Access Journals (Sweden)

    Alicja Żuchelkowska

    2012-01-01

    Full Text Available The objective of this text consists in presenting how it is necessary for contemporary translators and interpreters (both literary and specialised to acquire and develop the ability to recognize elements of identity discourse in translated texts. Nowadays, the need for inter-cultural exchange is inevitably connected with the necessity of establishing harmonious co-existence for numerous cultures and identities. Therefore, it is crucial to educate translators in a way that enables them to pay special attention to identity and cultural perturbations present in translated texts (culture and language hybridisation, multiple identity, cultural dislocation, presence in linguistic and political discourse of minority cultures, regardless of their genre or form. Such a strong emphasis on identity problems in the translation is especially relevant in the European context, where the attention of researchers and politicians directed at identity problems stemming from ethnical and cultural issues sets the framework for a new cultural paradigm that determines the future development of the Eu. Becoming acquainted with this paradigm which emphasises fl uency, identity unmarkedness and the new model of European collectivity is indispensable for a translator aspiring to become a true cultural mediator.

  5. Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti-lung cancer cell invasion.

    Science.gov (United States)

    Zhan, Jian-Wei; Jiao, De-Min; Wang, Yi; Song, Jia; Wu, Jin-Hong; Wu, Li-Jun; Chen, Qing-Yong; Ma, Sheng-Lin

    2017-09-01

    Curcumin (diferuloylmethane) has chemopreventive and therapeutic properties against many types of tumors, both in vitro and in vivo. Previous reports have shown that curcumin exhibits anti-invasive activities, but the mechanisms remain largely unclear. In this study, both microRNA (miRNA) and messenger RNA (mRNA) expression profiles were used to characterize the anti-metastasis mechanisms of curcumin in human non-small cell lung cancer A549 cell line. Microarray analysis revealed that 36 miRNAs were differentially expressed between the curcumin-treated and control groups. miR-330-5p exhibited maximum upregulation, while miR-25-5p exhibited maximum downregulation in the curcumin treatment group. mRNA expression profiles and functional analysis indicated that 226 differentially expressed mRNAs belonged to different functional categories. Significant pathway analysis showed that mitogen-activated protein kinase, transforming growth factor-β, and Wnt signaling pathways were significantly downregulated. At the same time, axon guidance, glioma, and ErbB tyrosine kinase receptor signaling pathways were significantly upregulated. We constructed a miRNA gene network that contributed to the curcumin inhibition of metastasis in lung cancer cells. let-7a-3p, miR-1262, miR-499a-5p, miR-1276, miR-331-5p, and miR-330-5p were identified as key microRNA regulators in the network. Finally, using miR-330-5p as an example, we confirmed the role of miR-330-5p in mediating the anti-migration effect of curcumin, suggesting the importance of miRNAs in the regulation of curcumin biological activity. Our findings provide new insights into the anti-metastasis mechanism of curcumin in lung cancer. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  6. A path-based measurement for human miRNA functional similarities using miRNA-disease associations

    Science.gov (United States)

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-09-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.

  7. miRNAtools: Advanced Training Using the miRNA Web of Knowledge.

    Science.gov (United States)

    Stępień, Ewa Ł; Costa, Marina C; Enguita, Francisco J

    2018-02-16

    Micro-RNAs (miRNAs) are small non-coding RNAs that act as negative regulators of the genomic output. Their intrinsic importance within cell biology and human disease is well known. Their mechanism of action based on the base pairing binding to their cognate targets have helped the development not only of many computer applications for the prediction of miRNA target recognition but also of specific applications for functional assessment and analysis. Learning about miRNA function requires practical training in the use of specific computer and web-based applications that are complementary to wet-lab studies. In order to guide the learning process about miRNAs, we have created miRNAtools (http://mirnatools.eu), a web repository of miRNA tools and tutorials. This article compiles tools with which miRNAs and their regulatory action can be analyzed and that function to collect and organize information dispersed on the web. The miRNAtools website contains a collection of tutorials that can be used by students and tutors engaged in advanced training courses. The tutorials engage in analyses of the functions of selected miRNAs, starting with their nomenclature and genomic localization and finishing with their involvement in specific cellular functions.

  8. Psmir: a database of potential associations between small molecules and miRNAs.

    Science.gov (United States)

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-13

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules' effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/.

  9. Synergic Functions of miRNAs Determine Neuronal Fate of Adult Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Meritxell Pons-Espinal

    2017-04-01

    Full Text Available Summary: Adult neurogenesis requires the precise control of neuronal versus astrocyte lineage determination in neural stem cells. While microRNAs (miRNAs are critically involved in this step during development, their actions in adult hippocampal neural stem cells (aNSCs has been unclear. As entry point to address that question we chose DICER, an endoribonuclease essential for miRNA biogenesis and other RNAi-related processes. By specific ablation of Dicer in aNSCs in vivo and in vitro, we demonstrate that miRNAs are required for the generation of new neurons, but not astrocytes, in the adult murine hippocampus. Moreover, we identify 11 miRNAs, of which 9 have not been previously characterized in neurogenesis, that determine neurogenic lineage fate choice of aNSCs at the expense of astrogliogenesis. Finally, we propose that the 11 miRNAs sustain adult hippocampal neurogenesis through synergistic modulation of 26 putative targets from different pathways. : In this article, the authors demonstrate that Dicer-dependent miRNAs are required for the generation of new neurons, but not astrocytes, in the adult hippocampus in vivo and in vitro. The authors identify a new set of 11 miRNAs that synergistically converge on multiple targets in different pathways to sustain neurogenic lineage fate commitment in aNSCs. Keywords: mouse, hippocampus, neural stem cells, fate choice, adult neurogenesis, astrogliogenesis, DICER, microRNAs, synergy

  10. Multistep Model of Cervical Cancer: Participation of miRNAs and Coding Genes

    Directory of Open Access Journals (Sweden)

    Angelica Judith Granados López

    2014-09-01

    Full Text Available Aberrant miRNA expression is well recognized as an important step in the development of cancer. Close to 70 microRNAs (miRNAs have been implicated in cervical cancer up to now, nevertheless it is unknown if aberrant miRNA expression causes the onset of cervical cancer. One of the best ways to address this issue is through a multistep model of carcinogenesis. In the progression of cervical cancer there are three well-established steps to reach cancer that we used in the model proposed here. The first step of the model comprises the gene changes that occur in normal cells to be transformed into immortal cells (CIN 1, the second comprises immortal cell changes to tumorigenic cells (CIN 2, the third step includes cell changes to increase tumorigenic capacity (CIN 3, and the final step covers tumorigenic changes to carcinogenic cells. Altered miRNAs and their target genes are located in each one of the four steps of the multistep model of carcinogenesis. miRNA expression has shown discrepancies in different works; therefore, in this model we include miRNAs recording similar results in at least two studies. The present model is a useful insight into studying potential prognostic, diagnostic, and therapeutic miRNAs.

  11. Sensitive and label-free detection of miRNA-145 by triplex formation.

    Science.gov (United States)

    Aviñó, Anna; Huertas, César S; Lechuga, Laura M; Eritja, Ramon

    2016-01-01

    The development of new strategies for detecting microRNAs (miRNAs) has become a crucial step in the diagnostic field. miRNA profiles depend greatly on the sample and the analytical platform employed, leading sometimes to contradictory results. In this work, we study the use of modified parallel tail-clamps to detect a miRNA sequence involved in tumor suppression by triplex formation. Thermal denaturing curves and circular dichroism (CD) measurements have been performed to confirm that parallel clamps carrying 8-aminoguanine form the most stable triplex structures with their target miRNA. The modified tail-clamps have been tested as bioreceptors in a surface plasmon resonance (SPR) biosensor for the detection of miRNA-145. The detection limit was improved 2.4 times demonstrating that a stable triplex structure is formed between target miRNA and 8-aminoguanine tail-clamp bioreceptor. This new approach is an essential step toward the label-free and reliable detection of miRNA signatures for diagnostic purposes.

  12. Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome.

    Science.gov (United States)

    Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad

    2010-11-27

    MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs.

  13. Analysis of miRNAs Involved in Mouse Brain Damage upon Enterovirus 71 Infection.

    Science.gov (United States)

    Yang, Xiaoxia; Xie, Jing; Jia, Leili; Liu, Nan; Liang, Yuan; Wu, Fuli; Liang, Beibei; Li, Yongrui; Wang, Jinyan; Sheng, Chunyu; Li, Hao; Liu, Hongbo; Ma, Qiuxia; Yang, Chaojie; Du, Xinying; Qiu, Shaofu; Song, Hongbin

    2017-01-01

    Enterovirus 71 (EV71) infects the central nervous system (CNS) and causes brainstem encephalitis in children. MiRNAs have been found to play various functions in EV71 infection in human cell lines. To identify potential miRNAs involved in the inflammatory injury in CNS, our study, for the first time, performed a miRNA microarray assay in vivo using EV71 infected mice brains. Twenty differentially expressed miRNAs were identified (four up- and 16 down-regulated) and confirmed by qRT-PCR. The target genes of these miRNAs were analyzed using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, revealing that the miRNAs were mainly involved in the regulation of inflammation and neural system function. MiR-150-5p, -3082-5p, -3473a, -468-3p, -669n, -721, -709, and -5107-5p that regulate MAPK and chemokine signaling were all down-regulated, which might result in increased cytokine production. In addition, miR-3473a could also regulate focal adhesion and leukocyte trans-endothelial migration, suggesting a role in virus-induced blood-brain barrier disruption. The miRNAs and pathways identified in this study could help to understand the intricate interactions between EV71 and the brain injury, offering new insight for the future research of the molecular mechanism of EV71 induced brainstem encephalitis.

  14. Decreased neutrophil-associated miRNA and increased B-cell associated miRNA expression during tuberculosis.

    Science.gov (United States)

    van Rensburg, I C; du Toit, L; Walzl, G; du Plessis, N; Loxton, A G

    2018-05-20

    MicroRNAs are short non-coding RNAs that regulate gene expression by binding to, and suppressing the expression of genes. Research show that microRNAs have potential to be used as biomarkers for diagnosis, treatment response and can be used for therapeutic interventions. Furthermore, microRNA expression has effects on immune cell functions, which may lead to disease. Considering the important protective role of neutrophils and B-cells during M.tb infection, we evaluated the expression of microRNAs, known to alter function of these cells, in the context of human TB. We utilised real-time PCR to evaluate the levels of microRNA transcripts in the peripheral blood of TB cases and healthy controls. We found that neutrophil-associated miR-197-3p, miR-99b-5p and miR-191-5p transcript levels were significantly lower in TB cases. Additionally, B-cell-associated miR-320a, miR-204-5p, miR331-3p and other transcript levels were higher in TB cases. The miRNAs differentially expressed in neutrophils are predominantly implicated in signalling pathways leading to cytokine productions. Here, the decreased expression in TB cases may imply a lack of suppression on signalling pathways, which may lead to increased production of pro-inflammatory cytokines such as interferon-gamma. Furthermore, the miRNAs differentially expressed in B-cells are mostly involved in the induction/suppression of apoptosis. Further functional studies are however required to elucidate the significance and functional effects of changes in the expression of these microRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Deciphering the role of a miRNA in rice domestication

    Directory of Open Access Journals (Sweden)

    Swetha Chenna

    2017-10-01

    Full Text Available MicroRNAs (miRNAs are a class of 21 nt non-coding small RNAs (sRNAs produced from endogenously expressed MIR genes. miRNAs are mostly involved in development and disease resistance. We are interested in identifying key miRNAs that are differentially expressed among wild and cultivated rice species. Analysis of sRNA datasets from two wild species (O. nivara and O. rufipogon and one cultivated species of rice (O. sativa var. indica Pusa Basmati-1, revealed a surprisingly higher abundance of small RNAs originating from Chromosome 2 in wild rice species. This locus codes for a novel 22 nt miRNA. This novel miRNA was found to be highly abundant in flag leaf of wild species, a tissue that usually provides 70% of energy required for grain filling. This miRNA targets a group of proteins (Os03g0273200, Os01g0827300, Os01g0850700, Os11g0708100 and Os01g0842500 which are involved in secondary metabolite production, although a functional significance of this interaction has not been understood. The expression of these targets also differs across the species. Typical of 22 nt miRNAs, the identified miRNA also triggers a secondary cascade silencing by producing small interfering RNAs (siRNAs from target mRNAs in O. nivara. These secondary siRNAs are observed only among wild rice species but not in cultivated rice. Currently we are using a range of genetic, biochemical and molecular techniques to understand role of this novel miRNA in domestication of rice.

  16. Role of miRNAs in Epicardial Adipose Tissue in CAD Patients with T2DM

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Background. Epicardial adipose tissue (EAT is identified as an atypical fat depot surrounding the heart with a putative role in the involvement of metabolic disorders, including obesity, type-2 diabetes mellitus, and atherosclerosis. We profiled miRNAs in EAT of metabolic patients with coronary artery disease (CAD and type-2 diabetes mellitus (T2DM versus metabolically healthy patients by microarray. Compared to metabolically healthy patients, we identified forty-two miRNAs that are differentially expressed in patients with CAD and T2DM from Xinjiang, China. Eleven miRNAs were selected as potential novel miRNAs according to P value and fold change. Then the potential novel miRNAs targeted genes were predicted via TargetScan, PicTar, and miRTarbase, and the function of the target genes was predicted via Gene Ontology (GO analysis while the enriched KEGG pathway analyses of the miRNAs targeted genes were performed by bioinformatics software DAVID. Then protein-protein interaction networks of the targeted gene were conducted by online software STRING. Finally, using microarray, bioinformatics approaches revealed the possible molecular mechanisms pathogenesis of CAD and T2DM. A total of 11 differentially expressed miRNAs were identified and among them, hsa-miR-4687-3p drew specific attention. Bioinformatics analysis revealed that insulin signaling pathway is the central way involved in the progression of metabolic disorders. Conclusions. The current findings support the fact that miRNAs are involved in the pathogenesis of metabolic disorders in EAT of CAD patients with T2DM, and validation of the results of these miRNAs by independent and prospective study is certainly warranted.

  17. Evaluation of a new high-dimensional miRNA profiling platform

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2009-08-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of approximately 22 nucleotide long, widely expressed RNA molecules that play important regulatory roles in eukaryotes. To investigate miRNA function, it is essential that methods to quantify their expression levels be available. Methods We evaluated a new miRNA profiling platform that utilizes Illumina's existing robust DASL chemistry as the basis for the assay. Using total RNA from five colon cancer patients and four cell lines, we evaluated the reproducibility of miRNA expression levels across replicates and with varying amounts of input RNA. The beta test version was comprised of 735 miRNA targets of Illumina's miRNA profiling application. Results Reproducibility between sample replicates within a plate was good (Spearman's correlation 0.91 to 0.98 as was the plate-to-plate reproducibility replicates run on different days (Spearman's correlation 0.84 to 0.98. To determine whether quality data could be obtained from a broad range of input RNA, data obtained from amounts ranging from 25 ng to 800 ng were compared to those obtained at 200 ng. No effect across the range of RNA input was observed. Conclusion These results indicate that very small amounts of starting material are sufficient to allow sensitive miRNA profiling using the Illumina miRNA high-dimensional platform. Nonlinear biases were observed between replicates, indicating the need for abundance-dependent normalization. Overall, the performance characteristics of the Illumina miRNA profiling system were excellent.

  18. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Green, Pamela J. [Univ. of Delaware, Newark, DE (United States)

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  19. Splenic marginal zone lymphoma: comprehensive analysis of gene expression and miRNA profiling.

    Science.gov (United States)

    Arribas, Alberto J; Gómez-Abad, Cristina; Sánchez-Beato, Margarita; Martinez, Nerea; Dilisio, Lorena; Casado, Felipe; Cruz, Miguel A; Algara, Patrocinio; Piris, Miguel A; Mollejo, Manuela

    2013-07-01

    Splenic marginal zone lymphoma is a small B-cell neoplasm whose molecular pathogenesis is still essentially unknown and whose differentiation from other small B-cell lymphomas is hampered by the lack of specific markers. We have analyzed the gene expression and miRNA profiles of 31 splenic marginal zone lymphoma cases. For comparison, 7 spleens with reactive lymphoid hyperplasia, 10 spleens infiltrated by chronic lymphocytic leukemia, 12 spleens with follicular lymphoma, 6 spleens infiltrated by mantle cell lymphoma and 15 lymph nodes infiltrated by nodal marginal zone lymphoma were included. The results were validated by qRT-PCR in an independent series including 77 paraffin-embedded splenic marginal zone lymphomas. The splenic marginal zone lymphoma miRNA signature had deregulated expression of 51 miRNAs. The most highly overexpressed miRNAs were miR-155, miR-21, miR-34a, miR-193b and miR-100, while the most repressed miRNAs were miR-377, miR-27b, miR-145, miR-376a and miR-424. MiRNAs located in 14q32-31 were underexpressed in splenic marginal zone lymphoma compared with reactive lymphoid tissues and other B-cell lymphomas. Finally, the gene expression data were integrated with the miRNA profile to identify functional relationships between genes and deregulated miRNAs. Our study reveals miRNAs that are deregulated in splenic marginal zone lymphoma and identifies new candidate diagnostic molecules for splenic marginal zone lymphoma.

  20. miRiadne: a web tool for consistent integration of miRNA nomenclature.

    Science.gov (United States)

    Bonnal, Raoul J P; Rossi, Riccardo L; Carpi, Donatella; Ranzani, Valeria; Abrignani, Sergio; Pagani, Massimiliano

    2015-07-01

    The miRBase is the official miRNA repository which keeps the annotation updated on newly discovered miRNAs: it is also used as a reference for the design of miRNA profiling platforms. Nomenclature ambiguities generated by loosely updated platforms and design errors lead to incompatibilities among platforms, even from the same vendor. Published miRNA lists are thus generated with different profiling platforms that refer to diverse and not updated annotations. This greatly compromises searches, comparisons and analyses that rely on miRNA names only without taking into account the mature sequences, which is particularly critic when such analyses are carried over automatically. In this paper we introduce miRiadne, a web tool to harmonize miRNA nomenclature, which takes into account the original miRBase versions from 10 up to 21, and annotations of 40 common profiling platforms from nine brands that we manually curated. miRiadne uses the miRNA mature sequence to link miRBase versions and/or platforms to prevent nomenclature ambiguities. miRiadne was designed to simplify and support biologists and bioinformaticians in re-annotating their own miRNA lists and/or data sets. As Ariadne helped Theseus in escaping the mythological maze, miRiadne will help the miRNA researcher in escaping the nomenclature maze. miRiadne is freely accessible from the URL http://www.miriadne.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Theory of Test Translation Error

    Science.gov (United States)

    Solano-Flores, Guillermo; Backhoff, Eduardo; Contreras-Nino, Luis Angel

    2009-01-01

    In this article, we present a theory of test translation whose intent is to provide the conceptual foundation for effective, systematic work in the process of test translation and test translation review. According to the theory, translation error is multidimensional; it is not simply the consequence of defective translation but an inevitable fact…

  2. Translational Epidemiology in Psychiatry

    Science.gov (United States)

    Weissman, Myrna M.; Brown, Alan S.; Talati, Ardesheer

    2012-01-01

    Translational research generally refers to the application of knowledge generated by advances in basic sciences research translated into new approaches for diagnosis, prevention, and treatment of disease. This direction is called bench-to-bedside. Psychiatry has similarly emphasized the basic sciences as the starting point of translational research. This article introduces the term translational epidemiology for psychiatry research as a bidirectional concept in which the knowledge generated from the bedside or the population can also be translated to the benches of laboratory science. Epidemiologic studies are primarily observational but can generate representative samples, novel designs, and hypotheses that can be translated into more tractable experimental approaches in the clinical and basic sciences. This bedside-to-bench concept has not been explicated in psychiatry, although there are an increasing number of examples in the research literature. This article describes selected epidemiologic designs, providing examples and opportunities for translational research from community surveys and prospective, birth cohort, and family-based designs. Rapid developments in informatics, emphases on large sample collection for genetic and biomarker studies, and interest in personalized medicine—which requires information on relative and absolute risk factors—make this topic timely. The approach described has implications for providing fresh metaphors to communicate complex issues in interdisciplinary collaborations and for training in epidemiology and other sciences in psychiatry. PMID:21646577

  3. Establishment of Lipofection for Studying miRNA Function in Human Adipocytes

    OpenAIRE

    Enlund, Eveliina; Fischer, Simon; Handrick, René; Otte, Kerstin; Debatin, Klaus-Michael; Wabitsch, Martin; Fischer-Posovszky, Pamela

    2014-01-01

    miRNA dysregulation has recently been linked to human obesity and its related complications such as type 2 diabetes. In order to study miRNA function in human adipocytes, we aimed for the modulation of mature miRNA concentration in these cells. Adipocytes, however, tend to be resistant to transfection and there is often a need to resort to viral transduction or electroporation. Our objective therefore was to identify an efficient, non-viral transfection reagent capable of delivering small RNA...

  4. Aberration of miRNAs Expression in Leukocytes from Sporadic Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Chen, YongPing; Wei, QianQian; Chen, XuePing; Li, ChunYu; Cao, Bei; Ou, RuWei; Hadano, Shinji; Shang, Hui-Fang

    2016-01-01

    Accumulating evidence indicates that miRNAs play an important role in the development of amyotrophic lateral sclerosis (ALS). Most of previous studies on miRNA dysregulation in ALS focused on the alterative expression in ALS animal model or in limited samples from European patients with ALS. In the present study, the miRNA expression profiles were investigated in Chinese ALS patients to explore leukocytes miRNAs as a potential biomarker for the diagnosis of ALS. We analyzed the expression profiles of 1733 human mature miRNAs using microarray technology in leukocytes obtained from 5 patients with sporadic ALS (SALS) and 5 healthy controls. An independent group of 83 SALS patients, 24 Parkinson's disease (PD) patients and 61 controls was used for validation by real-time polymerase chain reaction assay. Area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. In addition, target genes and signaling information of validated differential expression miRNAs were predicted using Bioinformatics. Eleven miRNAs, including four over-expressed and seven under-expressed miRNAs detected in SALS patients compared to healthy controls were selected for validation. Four under-expressed microRNAs, including hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935, were confirmed in validation stage by comparison of 83 SALS patients and 61 HCs. Moreover, we identified a miRNA panel (hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935) having a high diagnostic accuracy of SALS (AUC 0.857 for the validation group). However, only hsa-miR-183 was significantly lower in SALS patients than that in PD patients and in HCs, while no differences were found between PD patients and HCs. By bioinformatics analysis, we obtained a large number of target genes and signaling information that are linked to neurodegeneration. This study provided evidence of abnormal miRNA expression patterns in the peripheral blood leukocytes of SALS patients. Leukocytes

  5. Aberration of miRNAs Expression in leukocytes from sporadic amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Yongping Chen

    2016-08-01

    Full Text Available Background: Accumulating evidence indicates that miRNAs play an important role in the development of amyotrophic lateral sclerosis (ALS. Most of previous studies on miRNA dysregulation in ALS focused on the alterative expression in ALS animal model or in limited samples from European patients with ALS. In the present study, the miRNA expression profiles were investigated in Chinese ALS patients to explore leukocytes miRNAs as a potential biomarker for the diagnosis of ALS.Methods: We analyzed the expression profiles of 1733 human mature miRNAs using microarray technology in leukocytes obtained from 5 patients with sporadic ALS (SALS and 5 healthy controls. An independent group of 83 SALS patients, 24 Parkinson’s disease (PD patients and 61 controls was used for validation by real-time polymerase chain reaction assay. Area under the receiver operating characteristic curve (AUC was used to evaluate diagnostic accuracy. In addition, target genes and signaling information of validated differential expression miRNAs were predicted using Bioinformatics.Results: Eleven miRNAs, including four over-expressed and seven under-expressed miRNAs detected in SALS patients compared to healthy controls were selected for validation. Four under-expressed microRNAs, including hsa-miR-183, hsa-miR-193b, hsa-miR-451 and hsa-miR-3935, were confirmed in validation stage by comparison of 83 SALS patients and 61 HCs. Moreover, we identified a miRNA panel (hsa-miR-183, hsa-miR-193b, hsa-miR-451 and hsa-miR-3935 having a high diagnostic accuracy of SALS (AUC 0.857 for the validation group. However, only hsa-miR-183 was significantly lower in SALS patients than that in PD patients and in HCs, while no differences were found between PD patients and HCs. By bioinformatics analysis, we obtained a large number of target genes and signaling information that are linked to neurodegeneration. Conclusion: This study provided evidence of abnormal miRNA expression patterns in the

  6. Translation, Cultural Translation and the Hegemonic English

    Directory of Open Access Journals (Sweden)

    Roman Horak

    2015-01-01

    Full Text Available This brief chapter problematizes the hegemonic position of the English language in Cultural Studies, which, in the author's view, can be understood as a moment that stands against a true internationalisation of the project. Following an argu-ment referring to the necessary 'translation' process (here seen as 're-articulation', 'transcoding' or 'transculturation' Stuart Hall has put forward almost two decades ago, the essay, firstly, turns to the notion of 'linguistic translations', and deals, secondly, with what has been coined 'cultural translation'. Discussing approaches developed by Walter Benjamin, Umberto Eco and Homi Bhabha, the complex relationship between the two terms is being investigated. Finally, in a modest attempt to throw some light on this hegemonic structure, central aspects of the output of three important journals (European Journal of Cultural Studies, International Journal of Cultural Studies, Cultural Studies, i. e. an analysis of the linguistic and institutional backgrounds of the authors of the ten most-read and most-cited essays, are presented. Based on these findings I argue that it is not simply the addition of the discursive field (language to the academic space (institution that defines the mecha-nism of exclusion and inclusion. Rather, it is the articulation of both moments, i.e. that of language and that of the institution, which - in various contexts (but in their own very definite ways - can help to develop that structure which at present is still hindering a further, more profound internationalisation of the project that is Cultural Studies.

  7. Translation of feminine: Szymborska

    Directory of Open Access Journals (Sweden)

    Olga Donata Guerizoli Kempinska

    2014-07-01

    Full Text Available http://dx.doi.org/10.5007/2175-7968.2014v1n33p35 The paper discusses the problems present in the process of the translation of the feminine, related to the discursive articulations of the gender and to the socio-historical conditions of its construction. The differences between languages make this articulation hard to transpose and such is the case in some of Wisława Szymborska’s poems. An attentive reading of her work and of its translations in different languages reveals that the transposition of its specifically feminine humor is also a challenge for the translator

  8. Learning by Translating: A Contrastive Methodology for ESP Learning and Translation

    Directory of Open Access Journals (Sweden)

    Sara Laviosa

    2015-11-01

    Full Text Available Over the last few years applied linguists have explored the possibility of integrating the insights of second language acquisition theories, contrastive analysis, foreign language teaching methodologies, and translation studies with a view to enhancing current communicative models and techniques for L2 teaching and translator training (see for example Sewell and Higgins 1996; Laviosa-Braithwaite 1997; Campbell 1998; Malmkjær 1998; Laviosa 2000; Colina 2002. We intend to make a contribution to this interdisciplinary orientation by putting forward a translation-based methodology for learning ESP vocabulary and grammar through real life mediating communicative activities. With particular reference to the translation task itself, we endeavour to provide teachers of English for special purposes and translator trainers with a methodology for guiding their students in producing, to the best of their abilities, a target text which meets the quality criteria of terminological accuracy and stylistic fluency, and is also effective in terms of the communicative situation it is intended for. After outlining the rationale and main theoretical approaches underpinning our work, we will illustrate our methodology for learning ESP vocabulary and translation skills from a contrastive perspective, as in our book Learning by Translating (Laviosa and Cleverton 2003.

  9. TEACHING COMMUNICATIVE TRANSLATION: AN ACTIVE RECEPTION ANALYSIS BETWEEN THE TRANSLATION AND READER’S RECEPTION

    Directory of Open Access Journals (Sweden)

    Venny Eka Meidasari

    2014-06-01

    Full Text Available Literary theory sees reception theory from the reader response that emphasizes the reader’s reception of a literary text. It is generally called audience reception in the analysis of communications models. In literary studies, reception theory originated from the work of Hans-Robert Jauss in the late 1960s. Communication only means that the original message will be clearly sent in its equivalent context to the target receptor. Similarly, the main role of translators is to send the message across without any form of distortion or emphasis. It is delivering the genuine context of the message to the language that the active receptor understands. A single mistake in a context translation can result to offensive message that can eventually lead to misunderstandings between active receptors. This paper proposes on the role of translator as the mediator between a writer of the original text and the active target language receptors of translated version in the course of communication which definitely affects the process and result of translation practice. It also reveals the emphasis on the creation text of the translation theories originated from the strategic communication theories, which hopefully leads to a dream of the most equivalence between the text and the translated version.

  10. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  11. Russian translations for Cochrane.

    Science.gov (United States)

    Yudina, E V; Ziganshina, L E

    2015-01-01

    Cochrane collaboration has made a huge contribution to the development of evidence-based medicine; Cochrane work is the international gold standard of independent, credible and reliable high-quality information in medicine. Over the past 20 years the Cochrane Collaboration helped transforming decision-making in health and reforming it significantly, saving lives and contributing to longevity [1]. Until recently, Cochrane evidence were available only in English, which represents a significant barrier to their wider use in non-English speaking countries. To provide access to evidence, obtained from Cochrane Reviews, for health professionals and general public (from non-English-speaking countries), bypassing language barriers, Cochrane collaboration in 2014 initiated an international project of translating Plain language summaries of Cochrane Reviews into other languages [2, 3]. Russian translations of Plain language summaries were started in May 2014 by the team from Kazan Federal University (Department of Basic and Clinical Pharmacology; 2014-2015 as an Affiliated Centre in Tatarstan of the Nordic Cochrane Centre, since August 2015 as Cochrane Russia, a Russian branch of Cochrane Nordic, Head - Liliya Eugenevna Ziganshina) on a voluntary basis. To assess the quality of Russian translations of Cochrane Plain Language Summaries (PLS) and their potential impact on the Russian speaking community through user feedback with the overarching aim of furthering the translations project. We conducted the continuous online survey via Google Docs. We invited respondents through the electronic Russian language discussion forum on Essential Medicines (E-lek), links to survey on the Russian Cochrane.org website, invitations to Cochrane contributors registered in Archie from potential Russian-speaking countries. We set up the survey in Russian and English. The respondents were asked to respond to the questionnaire regarding the relevance and potential impact of the Cochrane Russian

  12. A phased translation function

    International Nuclear Information System (INIS)

    Read, R.J.; Schierbeek, A.J.

    1988-01-01

    A phased translation function, which takes advantage of prior phase information to determine the position of an oriented mulecular replacement model, is examined. The function is the coefficient of correlation between the electron density computed with the prior phases and the electron density of the translated model, evaluated in reciprocal space as a Fourier transform. The correlation coefficient used in this work is closely related to an overlap function devised by Colman, Fehlhammer and Bartels. Tests with two protein structures, one of which was solved with the help of the phased translation function, show that little phase information is required to resolve the translation problem, and that the function is relatively insensitive to misorientation of the model. (orig.)

  13. Translation and Creation

    Directory of Open Access Journals (Sweden)

    Paulo Bezerra

    2012-12-01

    Full Text Available The article begins with the differences betweenscientific and fictional translations, and focus on the second.The fictional translation works with meanings, opens itselfto the plurissignification in the purpose to create a similarity of the dissimilarity; in this process, the translator does nottranslate a language, but what a creative individuality makeswith a language. At last there is an approach to the knowledgeand skills necessaries to a translator of literature: theknowledge of the theories of the literature and of thetranslation, the capacity to preserve the national color ofthe original text and at the same time to respect the arrivallanguage, and the sensibility to his national languagevariations present in the daily and in the literary spheres.

  14. Translation of research outcome

    African Journals Online (AJOL)

    unhcc

    2017-01-03

    Jan 3, 2017 ... we must act”1 - Translation of research outcome for health policy, strategy and ... others iron-out existing gaps on Health Policy .... within the broader framework of global call and ... research: defining the terrain; identifying.

  15. Staging Ethnographic Translation

    DEFF Research Database (Denmark)

    Lundberg, Pia

    2009-01-01

    Objectifying the cultural diversity of visual fieldmethods - and the analysis of balancing the cultural known and unknown through anthropological analysis (aided by the analytical concept translation (Edwin Ardener 1989))...

  16. Translation for language purposes

    DEFF Research Database (Denmark)

    Schjoldager, Anne

    2003-01-01

    The paper describes the background, subjects, assumptions, procedure, and preliminary results of a small-scale experimental study of L2 translation (Danish into English) and picture verbalization in L2 (English)....

  17. Lost in Translation

    Science.gov (United States)

    Lass, Wiebke; Reusswig, Fritz

    2014-05-01

    Lost in Translation? Introducing Planetary Boundaries into Social Systems. Fritz Reusswig, Wiebke Lass Potsdam Institute for Climate Impact Research, Potsdam, Germany Identifying and quantifying planetary boundaries by interdisciplinary science efforts is a challenging task—and a risky one, as the 1972 Limits to Growth publication has shown. Even if we may be assured that scientific understanding of underlying processes of the Earth system has significantly improved since then, the challenge of translating these findings into the social systems of the planet remains crucial for any kind of action, and in many respects far more challenging. We would like to conceptualize what could also be termed a problem of coupling social and natural systems as a nested set of social translation processes, well aware of the limited applicability of the language-related translation metaphor. Societies must, first, perceive these boundaries, and they have to understand their relevance. This includes, among many other things, the organization of transdisciplinary scientific cooperation. They will then have to translate this understood perception into possible actions, i.e. strategies for different local bodies, actors, and institutional settings. This implies a lot of 'internal' translation processes, e.g. from the scientific subsystem to the mass media, the political and the economic subsystem. And it implies to develop subsystem-specific schemes of evaluation for these alternatives, e.g. convincing narratives, cost-benefit analyses, or ethical legitimacy considerations. And, finally, societies do have to translate chosen action alternatives into monitoring and evaluation schemes, e.g. for agricultural production or renewable energies. This process includes the continuation of observing and re-analyzing the planetary boundary concept itself, as a re-adjustment of these boundaries in the light of new scientific insights cannot be excluded. Taken all together, societies may well

  18. Lost in translation?

    DEFF Research Database (Denmark)

    Zethsen, Karen Korning; Askehave, Inger

    2011-01-01

    This article deals with an aspect of patient information that differs somewhat from the traditional scope of this journal; namely the linguistic and translational aspects of Patient Information Leaflets (PILs). During the past decade much work has been dedicated to making the English PILs...... as informative and lay-friendly as possible. However, much of the good work is ruined when the PIL is translated. Why is this so and what can be done about it?...

  19. Machine Translation from Text

    Science.gov (United States)

    Habash, Nizar; Olive, Joseph; Christianson, Caitlin; McCary, John

    Machine translation (MT) from text, the topic of this chapter, is perhaps the heart of the GALE project. Beyond being a well defined application that stands on its own, MT from text is the link between the automatic speech recognition component and the distillation component. The focus of MT in GALE is on translating from Arabic or Chinese to English. The three languages represent a wide range of linguistic diversity and make the GALE MT task rather challenging and exciting.

  20. Jungmann's translation of Paradise Lost

    OpenAIRE

    Janů, Karel

    2014-01-01

    This thesis examines Josef Jungmann's translation of John Milton's Paradise Lost. Josef Jungmann was one of the leading figures of the Czech National Revival and translated Milton 's poem between the years 1800 and 1804. The thesis covers Jungmann's theoretical model of translation and presents Jungmann's motives for translation of Milton's epic poem. The paper also describes the aims Jungmann had with his translation and whether he has achieved them. The reception Jungmann's translation rece...

  1. Translating Alcohol Research

    Science.gov (United States)

    Batman, Angela M.; Miles, Michael F.

    2015-01-01

    Alcohol use disorder (AUD) and its sequelae impose a major burden on the public health of the United States, and adequate long-term control of this disorder has not been achieved. Molecular and behavioral basic science research findings are providing the groundwork for understanding the mechanisms underlying AUD and have identified multiple candidate targets for ongoing clinical trials. However, the translation of basic research or clinical findings into improved therapeutic approaches for AUD must become more efficient. Translational research is a multistage process of streamlining the movement of basic biomedical research findings into clinical research and then to the clinical target populations. This process demands efficient bidirectional communication across basic, applied, and clinical science as well as with clinical practitioners. Ongoing work suggests rapid progress is being made with an evolving translational framework within the alcohol research field. This is helped by multiple interdisciplinary collaborative research structures that have been developed to advance translational work on AUD. Moreover, the integration of systems biology approaches with collaborative clinical studies may yield novel insights for future translational success. Finally, appreciation of genetic variation in pharmacological or behavioral treatment responses and optimal communication from bench to bedside and back may strengthen the success of translational research applications to AUD. PMID:26259085

  2. Efficient Identification of miRNAs for Classification of Tumor Origin

    DEFF Research Database (Denmark)

    Søkilde, Rolf; Vincent, Martin; Møller, Anne K

    2014-01-01

    Carcinomas of unknown primary origin constitute 3% to 5% of all newly diagnosed metastatic cancers, with the primary source difficult to classify with current histological methods. Effective cancer treatment depends on early and accurate identification of the tumor; patients with metastases...... of unknown origin have poor prognosis and short survival. Because miRNA expression is highly tissue specific, the miRNA profile of a metastasis may be used to identify its origin. We therefore evaluated the potential of miRNA profiling to identify the primary tumor of known metastases. Two hundred eight...... formalin-fixed, paraffin-embedded samples, representing 15 different histologies, were profiled on a locked nucleic acid-enhanced microarray platform, which allows for highly sensitive and specific detection of miRNA. On the basis of these data, we developed and cross-validated a novel classification...

  3. miRNAFold: a web server for fast miRNA precursor prediction in genomes.

    Science.gov (United States)

    Tav, Christophe; Tempel, Sébastien; Poligny, Laurent; Tahi, Fariza

    2016-07-08

    Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs. Here we present a web server dedicated for miRNA precursors identification at a large scale in genomes. It is based on an algorithm called miRNAFold that allows predicting miRNA hairpin structures quickly with high sensitivity. miRNAFold is implemented as a web server with an intuitive and user-friendly interface, as well as a standalone version. The web server is freely available at: http://EvryRNA.ibisc.univ-evry.fr/miRNAFold. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. High-throughput identification of miRNAs of Taenia ovis, a cestode threatening sheep industry.

    Science.gov (United States)

    Zheng, Yadong

    2017-07-01

    Taenia ovis is a tapeworm that is mainly transmitted between dogs and sheep or goats and has an adverse effect on sheep industry. miRNAs are short regulatory non-coding RNAs, involved in parasite development and growth as well as parasite infection. The miRNA profile of T. ovis remains to be established. Herein, 33 known miRNAs belonging to 23 different families were identified in T. ovis metacestodes using deep sequencing approach. Of them, expression of some miRNAs such as tov-miR-10 and -let-7 was absolutely predominant. Moreover, comparative analysis revealed the presence of a miR-71/2b/2c cluster in T. ovis, which was also completely conserved in other 6 cestodes. The study provides rich data for further understandings of T. ovis biology. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Study of bantam miRNA expression in brain tumour resulted due to ...

    Indian Academy of Sciences (India)

    ANIMESH BANERJEE

    2017-06-19

    Jun 19, 2017 ... these genes lead to an inappropriate segregation of cell fate determinants ... ground could possibly be a consequence of brain tumour resulting ... Expression of bantam miRNA in Drosophila brain tumour. Figure 1. Bantam is ...

  6. RESEARCH NOTE Study of bantam miRNA expression in brain ...

    Indian Academy of Sciences (India)

    Navya

    Study of bantam miRNA expression in brain tumour resulted due to loss of polarity ... of neuroblasts (neural stem cells) along withtumours in different tissues and .... retains the regeneration capability and a smaller GMC (Ganglion Mother Cell).

  7. A compilation of Web-based research tools for miRNA analysis.

    Science.gov (United States)

    Shukla, Vaibhav; Varghese, Vinay Koshy; Kabekkodu, Shama Prasada; Mallya, Sandeep; Satyamoorthy, Kapaettu

    2017-09-01

    Since the discovery of microRNAs (miRNAs), a class of noncoding RNAs that regulate the gene expression posttranscriptionally in sequence-specific manner, there has been a release of number of tools useful for both basic and advanced applications. This is because of the significance of miRNAs in many pathophysiological conditions including cancer. Numerous bioinformatics tools that have been developed for miRNA analysis have their utility for detection, expression, function, target prediction and many other related features. This review provides a comprehensive assessment of web-based tools for the miRNA analysis that does not require prior knowledge of any computing languages. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. A miRNA expression based diagnostic tool for breast cancer using random forests

    OpenAIRE

    Wenric, Stéphane; Freres, Pierre; Josse, Claire; Bours, Vincent; Jerusalem, Guy

    2013-01-01

    We developed a novel diagnostic tool for breast cancer using circulating miRNA expression levels as features of a supervised machine learning problem. We showed very good results on an independent validation cohort.

  9. Identification and characterization of miRNAs transcriptome in the South African abalone, Haliotis midae.

    Science.gov (United States)

    Picone, Barbara; Rhode, Clint; Roodt-Wilding, Rouvay

    2017-02-01

    Aquatic animal diseases are one of the most important limitations to the growth of aquaculture. miRNAs represent an important class of small ncRNAs able to modulate host immune and stress responses. In Mollusca, a large phylum of invertebrates, miRNAs have been identified in several species. The current preliminary study identified known miRNAs from the South African abalone, Haliotis midae. The economic and ecological importance of abalone makes this species a suitable model for studying and understanding stress response in marine gastropods. Furthermore, the identification of miRNA, represents an alternative and powerful tool to combat infectious disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma.

    Science.gov (United States)

    Gai, Chiara; Camussi, Francesco; Broccoletti, Roberto; Gambino, Alessio; Cabras, Marco; Molinaro, Luca; Carossa, Stefano; Camussi, Giovanni; Arduino, Paolo G

    2018-04-18

    Several studies in the past have investigated the expression of micro RNAs (miRNAs) in saliva as potential biomarkers. Since miRNAs associated with extracellular vesicles (EVs) are known to be protected from enzymatic degradation, we evaluated whether salivary EVs from patients with oral squamous cell carcinoma (OSCC) were enriched with specific subsets of miRNAs. OSCC patients and controls were matched with regards to age, gender and risk factors. Total RNA was extracted from salivary EVs and the differential expression of miRNAs was evaluated by qRT-PCR array and qRT-PCR. The discrimination power of up-regulated miRNAs as biomarkers in OSCC patients versus controls was evaluated by the Receiver Operating Characteristic (ROC) curves. A preliminary qRT-PCR array was performed on samples from 5 OSCC patients and 5 healthy controls whereby a subset of miRNAs were identified that were differentially expressed. On the basis of these results, a cohort of additional 16 patients and 6 controls were analyzed to further confirm the miRNAs that were up-regulated or selectively expressed in the previous pilot study. The following miRNAs: miR-302b-3p and miR-517b-3p were expressed only in EVs from OSCC patients and miR-512-3p and miR-412-3p were up-regulated in salivary EVs from OSCC patients compared to controls with the ROC curve showing a good discrimination power for OSCC diagnosis. The Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis suggested the possible involvement of the miRNAs identified in pathways activated in OSCC. In this work, we suggest that salivary EVs isolated by a simple charge-based precipitation technique can be exploited as a non-invasive source of miRNAs for OSCC diagnosis. Moreover, we have identified a subset of miRNAs selectively enriched in EVs of OSCC patients that could be potential biomarkers.

  11. Differentially regulated miRNAs as prognostic biomarkers in the blood of primary CNS lymphoma patients.

    Science.gov (United States)

    Roth, Patrick; Keller, Andreas; Hoheisel, Jörg D; Codo, Paula; Bauer, Andrea S; Backes, Christina; Leidinger, Petra; Meese, Eckart; Thiel, Eckhard; Korfel, Agnieszka; Weller, Michael

    2015-02-01

    Despite improved therapeutic regimens, primary CNS lymphoma (PCNSL) remains a therapeutic challenge. A prognostic classification of PCNSL patients may represent an important step towards optimised patient-adapted therapy. However, only higher age and low Karnofsky Performance Status (KPS) have repeatedly been reported to be associated with shorter overall survival (OS). Here we characterised microRNA (miRNA) fingerprints in the blood of PCNSL patients with short-term survival (STS) versus long-term survival (LTS) to assess their potential as novel prognostic biomarkers. Blood was collected from patients enrolled in the G-PCNSL-SG1 trial, a phase III study for patients with newly diagnosed PCNSL. miRNAs were extracted from the blood and analysed by next generation sequencing. The STS group comprised 20 patients with a median OS of 3 months and was compared to 20 LTS patients with a median OS of 55 months. The cohorts were balanced for age and KPS. Twelve annotated miRNAs were significantly deregulated between the two groups. Among them, miR-151a-5p and miR-151b exhibited the most prominent differences. Importantly, the combination of several miRNA allowed for a good separation between short- and long-term survivors with maximal Area Under Curve (AUC) above 0.75. Besides the known miRNAs we identified putative novel miRNA candidates with potential regulatory influence of PCNSL. Finally, the differential regulation of the most promising candidate miRNAs was confirmed by real-time polymerase chain reaction (PCR) in a validation cohort consisting of 20 STS and LTS patients. In conclusion, peripheral blood miRNA expression patterns hold promise as a prognostic tool in PCNSL patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A two miRNA classifier differentiates follicular thyroid carcinomas from follicular thyroid adenomas

    DEFF Research Database (Denmark)

    Stokowy, Tomasz; Wojtaś, Bartosz; Krajewska, Jolanta

    2015-01-01

    The inherent diagnostic limitations of thyroid fine needle aspiration (FNA), especially in the "indeterminate" category, can be partially overcome by molecular analyses. We aimed at the identification of miRNAs that could be used to improve the discrimination of indeterminate FNAs. miRNA expression...... in cytology material for its capability to discriminate (mutation negative) indeterminate cytologies and thereby improving the pre-surgical diagnostics of thyroid nodules....

  13. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection.

    Science.gov (United States)

    Kaewkascholkul, Napol; Somboonviwat, Kulwadee; Asakawa, Shuichi; Hirono, Ikuo; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2016-07-01

    MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response. Copyright © 2016. Published by Elsevier Ltd.

  14. Optimizing a massive parallel sequencing workflow for quantitative miRNA expression analysis.

    Directory of Open Access Journals (Sweden)

    Francesca Cordero

    Full Text Available BACKGROUND: Massive Parallel Sequencing methods (MPS can extend and improve the knowledge obtained by conventional microarray technology, both for mRNAs and short non-coding RNAs, e.g. miRNAs. The processing methods used to extract and interpret the information are an important aspect of dealing with the vast amounts of data generated from short read sequencing. Although the number of computational tools for MPS data analysis is constantly growing, their strengths and weaknesses as part of a complex analytical pipe-line have not yet been well investigated. PRIMARY FINDINGS: A benchmark MPS miRNA dataset, resembling a situation in which miRNAs are spiked in biological replication experiments was assembled by merging a publicly available MPS spike-in miRNAs data set with MPS data derived from healthy donor peripheral blood mononuclear cells. Using this data set we observed that short reads counts estimation is strongly under estimated in case of duplicates miRNAs, if whole genome is used as reference. Furthermore, the sensitivity of miRNAs detection is strongly dependent by the primary tool used in the analysis. Within the six aligners tested, specifically devoted to miRNA detection, SHRiMP and MicroRazerS show the highest sensitivity. Differential expression estimation is quite efficient. Within the five tools investigated, two of them (DESseq, baySeq show a very good specificity and sensitivity in the detection of differential expression. CONCLUSIONS: The results provided by our analysis allow the definition of a clear and simple analytical optimized workflow for miRNAs digital quantitative analysis.

  15. Optimizing a massive parallel sequencing workflow for quantitative miRNA expression analysis.

    Science.gov (United States)

    Cordero, Francesca; Beccuti, Marco; Arigoni, Maddalena; Donatelli, Susanna; Calogero, Raffaele A

    2012-01-01

    Massive Parallel Sequencing methods (MPS) can extend and improve the knowledge obtained by conventional microarray technology, both for mRNAs and short non-coding RNAs, e.g. miRNAs. The processing methods used to extract and interpret the information are an important aspect of dealing with the vast amounts of data generated from short read sequencing. Although the number of computational tools for MPS data analysis is constantly growing, their strengths and weaknesses as part of a complex analytical pipe-line have not yet been well investigated. A benchmark MPS miRNA dataset, resembling a situation in which miRNAs are spiked in biological replication experiments was assembled by merging a publicly available MPS spike-in miRNAs data set with MPS data derived from healthy donor peripheral blood mononuclear cells. Using this data set we observed that short reads counts estimation is strongly under estimated in case of duplicates miRNAs, if whole genome is used as reference. Furthermore, the sensitivity of miRNAs detection is strongly dependent by the primary tool used in the analysis. Within the six aligners tested, specifically devoted to miRNA detection, SHRiMP and MicroRazerS show the highest sensitivity. Differential expression estimation is quite efficient. Within the five tools investigated, two of them (DESseq, baySeq) show a very good specificity and sensitivity in the detection of differential expression. The results provided by our analysis allow the definition of a clear and simple analytical optimized workflow for miRNAs digital quantitative analysis.

  16. ARMOUR – A Rice miRNA: mRNA Interaction Resource

    OpenAIRE

    Neeti Sanan-Mishra; Anita Tripathi; Kavita Goswami; Rohit N. Shukla; Madavan Vasudevan; Hitesh Goswami

    2018-01-01

    ARMOUR was developed as ARice miRNA:mRNA interaction resource. This informative and interactive database includes the experimentally validated expression profiles of miRNAs under different developmental and abiotic stress conditions across seven Indian rice cultivars. This comprehensive database covers 689 known and 1664 predicted novel miRNAs and their expression profiles in more than 38 different tissues or conditions along with their predicted/known target transcripts. The understanding of...

  17. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.).

    Science.gov (United States)

    Xing, Libo; Zhang, Dong; Zhao, Caiping; Li, Youmei; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-02-01

    Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs.

    Science.gov (United States)

    Święcicka, Magdalena; Skowron, Waldemar; Cieszyński, Piotr; Dąbrowska-Bronk, Joanna; Matuszkiewicz, Mateusz; Filipecki, Marcin; Koter, Marek Daniel

    2017-04-01

    Potato cyst nematode Globodera rostochiensis is an obligate parasite of solanaceous plants, triggering metabolic and morphological changes in roots which may result in substantial crop yield losses. Previously, we used the cDNA-AFLP to study the transcriptional dynamics in nematode infected tomato roots. Now, we present the rescreening of already published, upregulated transcript-derived fragment dataset using the most current tomato transcriptome sequences. Our reanalysis allowed to add 54 novel genes to 135, already found as upregulated in tomato roots upon G. rostochiensis infection (in total - 189). We also created completely new catalogue of downregulated sequences leading to the discovery of 76 novel genes. Functional classification of candidates showed that the 'wound, stress and defence response' category was enriched in the downregulated genes. We confirmed the transcriptional dynamics of six genes by qRT-PCR. To place our results in a broader context, we compared the tomato data with Arabidopsis thaliana, revealing similar proportions of upregulated and downregulated genes as well as similar enrichment of defence related transcripts in the downregulated group. Since transcript suppression is quite common in plant-nematode interactions, we assessed the possibility of miRNA-mediated inverse correlation on several tomato sequences belonging to NB-LRR and receptor-like kinase families. The qRT-PCR of miRNAs and putative target transcripts showed an opposite expression pattern in 9 cases. These results together with in silico analyses of potential miRNA targeting to the full repertoire of tomato R-genes show that miRNA mediated gene suppression may be a key regulatory mechanism during nematode parasitism. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Circulating microRNA (miRNA Expression Profiling in Plasma of Patients with Gestational Diabetes Mellitus Reveals Upregulation of miRNA miR-330-3p

    Directory of Open Access Journals (Sweden)

    Guido Sebastiani

    2017-12-01

    Full Text Available Gestational diabetes mellitus (GDM is characterized by insulin resistance accompanied by low/absent beta-cell compensatory adaptation to the increased insulin demand. Although the molecular mechanisms and factors acting on beta-cell compensatory response during pregnancy have been partially elucidated and reported, those inducing an impaired beta-cell compensation and function, thus evolving in GDM, have yet to be fully addressed. MicroRNAs (miRNAs are a class of small endogenous non-coding RNAs, which negatively modulate gene expression through their sequence-specific binding to 3′UTR of mRNA target. They have been described as potent modulators of cell survival and proliferation and, furthermore, as orchestrating molecules of beta-cell compensatory response and function in diabetes. Moreover, it has been reported that miRNAs can be actively secreted by cells and found in many biological fluids (e.g., serum/plasma, thus representing both optimal candidate disease biomarkers and mediators of tissues crosstalk(s. Here, we analyzed the expression profiles of circulating miRNAs in plasma samples obtained from n = 21 GDM patients and from n = 10 non-diabetic control pregnant women (24–33 weeks of gestation using TaqMan array microfluidics cards followed by RT-real-time PCR single assay validation. The results highlighted the upregulation of miR-330-3p in plasma of GDM vs non-diabetics. Furthermore, the analysis of miR-330-3p expression levels revealed a bimodally distributed GDM patients group characterized by high or low circulating miR-330 expression and identified as GDM-miR-330high and GDM-miR-330low. Interestingly, GDM-miR-330high subgroup retained lower levels of insulinemia, inversely correlated to miR-330-3p expression levels, and a significant higher rate of primary cesarean sections. Finally, miR-330-3p target genes analysis revealed major modulators of beta-cell proliferation and of insulin secretion, such as the

  20. The Effect of Translators' Emotional Intelligence on Their Translation Quality

    Science.gov (United States)

    Varzande, Mohsen; Jadidi, Esmaeil

    2015-01-01

    Translators differ from each other in many ways in terms of their knowledge, professional and psychological conditions that may directly influence their translation. The present study aimed at investigating the impact of translators' Emotional Intelligence on their translation quality. Following a "causal-comparative study," a sample of…

  1. The Impact of Translators' Academic Experience on Their Translation Quality

    Science.gov (United States)

    Varzande, Mohsen; Jadidi, Esmaeil

    2015-01-01

    Translators differ from each other in many ways in terms of their knowledge and professional conditions that may directly influence their translation. The present study aimed at investigating the impact of translators' academic experience on their translation quality. Following a "causal-comparative study", a sample of 100 male and…

  2. Translating Signs, Producing Subjects

    Directory of Open Access Journals (Sweden)

    Brett Neilson

    2009-08-01

    Full Text Available This paper moves between two streets: Liverpool Road in the Sydney suburb of Ashfield and Via Sarpi in the Italian city of Milan. What connects these streets is that both have become important sites for businesses in the Chinese diaspora. Moreover, both are streets on which locals have expressed desires for Chinese signs to be translated into the national lingua franca. The paper argues that the cultural politics inherent in this demand for translation cannot be fully understood in the context of national debates about diversity and integration. It is also necessary to consider the emergence of the official Chinese Putonghua as global language, which competes with English but also colonizes dialects and minority languages. In the case of these dual language signs, the space between languages can neither be reduced to a contact zone of minority and majority cultures nor celebrated as a ‘third space’ where the power relations implied by such differences are subverted. At stake is rather a space characterised by what Naoki Sakai calls the schema of co-figuration, which allows the representation of translation as the passage between two equivalents that resemble each other and thus makes possible their determination as conceptually different and comparable. Drawing on arguments about translation and citizenship, the paper critically interrogates the ethos of interchangeability implied by this regime of translation. A closing argument is made for a vision of the common that implies neither civilisational harmony nor the translation of all values into a general equivalent. Primary sources include government reports, internet texts and media stories. These are analyzed using techniques of discourse analysis and interpreted with the help of secondary literature concerning globalisation, language and migration. The disciplinary matrix cuts and mixes between cultural studies, translation studies, citizenship studies, globalization studies and

  3. miRNA Regulation Network Analysis in Qianliening Capsule Treatment of Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Liya Liu

    2015-01-01

    Full Text Available Objective. The objective of this study was to evaluate the molecular mechanism by which Qianliening capsule (QC treats benign prostatic hyperplasia (BPH. Methods. Benign prostatic hyperplasia epithelial cell line BPH-1 was treated with 0, 1.25, 2.5, and 5 mg/mL QC for 48 h, respectively. Evaluation of cell viability and observation of morphologic changes of BPH-1 cell gene expression and miRNA expression profiles were analyzed. Real-time quantitative PCR was used to confirm changes in miRNA and gene expression. GO and KEGG pathway-based approaches were used to investigate biological functions and signaling pathways affected by differentially expressed mRNAs. Results. QC inhibited BPH-1 cell proliferation. Differential expression of 19 upregulated and 2 downregulated miRNAs was observed in QC-treated BPH-1 cells compared to untreated control cells. 107 upregulated and 71 downregulated genes were identified between the two groups. Significantly enriched signaling pathways based on deregulated mRNAs were mainly involved in regulation of cell proliferation, apoptosis, and so on. Additionally, miRNA-mRNA network analysis integrated these miRNAs and genes by outlining interactions of miRNA and related genes. Conclusion. The study was the first report of differentially expressed miRNA and mRNA in QC-treated BPH-1 cells.

  4. Re-inspection of small RNA sequence datasets reveals several novel human miRNA genes.

    Directory of Open Access Journals (Sweden)

    Thomas Birkballe Hansen

    Full Text Available BACKGROUND: miRNAs are key players in gene expression regulation. To fully understand the complex nature of cellular differentiation or initiation and progression of disease, it is important to assess the expression patterns of as many miRNAs as possible. Thereby, identifying novel miRNAs is an essential prerequisite to make possible a comprehensive and coherent understanding of cellular biology. METHODOLOGY/PRINCIPAL FINDINGS: Based on two extensive, but previously published, small RNA sequence datasets from human embryonic stem cells and human embroid bodies, respectively [1], we identified 112 novel miRNA-like structures and were able to validate miRNA processing in 12 out of 17 investigated cases. Several miRNA candidates were furthermore substantiated by including additional available small RNA datasets, thereby demonstrating the power of combining datasets to identify miRNAs that otherwise may be assigned as experimental noise. CONCLUSIONS/SIGNIFICANCE: Our analysis highlights that existing datasets are not yet exhaustedly studied and continuous re-analysis of the available data is important to uncover all features of small RNA sequencing.

  5. What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma?

    Science.gov (United States)

    Palmini, Gaia; Marini, Francesca; Brandi, Maria Luisa

    2017-03-07

    Despite the availability of multimodal and aggressive therapies, currently patients with skeletal sarcomas, including osteosarcoma and chondrosarcoma, often have a poor prognosis. In recent decades, advances in sequencing technology have revealed the presence of RNAs without coding potential known as non-coding RNAs (ncRNAs), which provides evidence that protein-coding genes account for only a small percentage of the entire genome. This has suggested the influence of ncRNAs during development, apoptosis and cell proliferation. The discovery of microRNAs (miRNAs) in 1993 underscored the importance of these molecules in pathological diseases such as cancer. Increasing interest in this field has allowed researchers to study the role of miRNAs in cancer progression. Regarding skeletal sarcomas, the research surrounding which miRNAs are involved in the tumourigenesis of osteosarcoma and chondrosarcoma has rapidly gained traction, including the identification of which miRNAs act as tumour suppressors and which act as oncogenes. In this review, we will summarize what is new regarding the roles of miRNAs in chondrosarcoma as well as the latest discoveries of identified miRNAs in osteosarcoma.

  6. The Epstein-Barr virus encoded BART miRNAs potentiate tumor growth in vivo.

    Directory of Open Access Journals (Sweden)

    Jin Qiu

    2015-01-01

    Full Text Available The human herpes virus Epstein-Barr virus (EBV latently infects and drives the proliferation of B lymphocytes in vitro and is associated with several forms of lymphoma and carcinoma in vivo. The virus encodes ~30 miRNAs in the BART region, the function of most of which remains elusive. Here we have used a new mouse xenograft model of EBV driven carcinomagenesis to demonstrate that the BART miRNAs potentiate tumor growth and development in vivo. No effect was seen on invasion or metastasis, and the growth promoting activity was not seen in vitro. In vivo tumor growth was not associated with the expression of specific BART miRNAs but with up regulation of all the BART miRNAs, consistent with previous observations that all the BART miRNAs are highly expressed in all of the EBV associated cancers. Based on these observations, we suggest that deregulated expression of the BART miRNAs potentiates tumor growth and represents a general mechanism behind EBV associated oncogenesis.

  7. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish

    Directory of Open Access Journals (Sweden)

    Hyun-Sik Nam

    2016-01-01

    Full Text Available MicroRNA-122 (miRNA-122, also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM and cell death in larval liver (5 μM at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish.

  8. An integrated computational validation approach for potential novel miRNA prediction

    Directory of Open Access Journals (Sweden)

    Pooja Viswam

    2017-12-01

    Full Text Available MicroRNAs (miRNAs are short, non-coding RNAs between 17bp-24bp length that regulate gene expression by targeting mRNA molecules. The regulatory functions of miRNAs are known to be majorly associated with disease phenotypes such as cancer, cell signaling, cell division, growth and other metabolisms. Novel miRNAs are defined as sequences which does not have any similarity with the existing known sequences and void of any experimental evidences. In recent decades, the advent of next-generation sequencing allows us to capture the small RNA molecules form the cells and developing methods to estimate their expression levels. Several computational algorithms are available to predict the novel miRNAs from the deep sequencing data. In this work, we integrated three novel miRNA prediction programs miRDeep, miRanalyzer and miRPRo to compare and validate their prediction efficiency. The dicer cleavage sites, alignment density, seed conservation, minimum free energy, AU-GC percentage, secondary loop scores, false discovery rates and confidence scores will be considered for comparison and evaluation. Efficiency to identify isomiRs and base pair mismatches in a strand specific manner will also be considered for the computational validation. Further, the criteria and parameters for the identification of the best possible novel miRNA with minimal false positive rates were deduced.

  9. Aberrant Expression of miRNA and mRNAs in Lesioned Tissues of Graves' Disease

    Directory of Open Access Journals (Sweden)

    Qiu Qin

    2015-03-01

    Full Text Available Background and Aims: Abnormal microRNA (miRNA expression is found in many diseases including autoimmune diseases. However, little is known about the role of miRNA regulation in Graves' disease (GD. Here, we simultaneously detected different expressions of miRNA and mRNAs in thyroid tissues via a high-throughput transcriptomics approach, known as microarray, in order to reveal the relationship between aberrant expression of miRNAs and mRNAs spectrum and GD. Methods: Totally 7 specimens of thyroid tissue from 4 GD patients and 3 controls were obtained by surgery for microarray analysis. Then, 30 thyroid specimens (18 GD and 12 controls were also collected for further validation by quantitative real-time PCR ( qRT-PCR . Results: Statistical analysis showed that the expressions of 5 specific miRNA were increased significantly while those of other 18 miRNA were decreased in thyroid tissue of GD patients (FC≥1.3 or≤0.77 and pConclusion: Our study highlights the possibility that miRNA-target gene network may be involved in the pathogenesis of GD and could provide new insights into understanding the pathophysiological mechanisms of GD.

  10. miRNA Expression Profiles in Cerebrospinal Fluid and Blood of Patients with Acute Ischemic Stroke

    DEFF Research Database (Denmark)

    Sørensen, Sofie Sølvsten; Nygaard, Ann-Britt; Nielsen, Ming-Yuan

    2014-01-01

    in the cell-free fractions of CSF and blood were analyzed by a microarray technique (miRCURY LNA™ microRNA Array, Exiqon A/S, Denmark) using a quantitative PCR (qPCR) platform containing 378 miRNA primers. In total, 183 different miRNAs were detected in the CSF, of which two miRNAs (let-7c and miR-221-3p......The aims of the study were (1) to determine whether miRNAs (microRNAs) can be detected in the cerebrospinal fluid (CSF) and blood of patients with ischemic stroke and (2) to compare these miRNA profiles with corresponding profiles from other neurological patients to address whether the mi......RNA profiles of CSF or blood have potential usefulness as diagnostic biomarkers of ischemic stroke. CSF from patients with acute ischemic stroke (n = 10) and patients with other neurological diseases (n = 10) was collected by lumbar puncture. Blood samples were taken immediately after. Expression profiles...

  11. Comparative miRNA Analysis of Urine Extracellular Vesicles Isolated through Five Different Methods

    Directory of Open Access Journals (Sweden)

    Felix Royo

    2016-12-01

    Full Text Available Urine extracellular vesicles are a valuable low-invasive source of information, especially for the cells of the genitourinary tract. In the search for biomarkers, different techniques have been developed to isolate and characterize the cargo of these vesicles. In the present work, we compare five of these different isolation methods (three commercial isolation kits, ultracentrifugation, and lectin-based purification and perform miRNA profiling using a multiplex miRNA assay. The results showed high correlation through all isolation techniques, and 48 out of 68 miRNAs were detected above the detection limit at least 10 times. The results obtained by multiplex assay were validated through Taqman qPCR. In addition, using this technique combined with a clinically friendly extracellular vesicle (uEV-enrichment method, we performed the analysis of selected miRNAs in urine from patients affected with bladder cancer, benign prostate hyperplasia, or prostate cancer. Importantly, we found that those miRNAs could be detected in almost 100% of the samples, and no significant differences were observed between groups. Our results support the feasibility of analyzing exosomes-associated miRNAs using a methodology that requires a small volume of urine and is compatible with a clinical environment and high-throughput analysis.

  12. Exploring miRNA based approaches in cancer diagnostics and therapeutics.

    Science.gov (United States)

    Mishra, Shivangi; Yadav, Tanuja; Rani, Vibha

    2016-02-01

    MicroRNAs (miRNAs), a highly conserved class of tissue specific, small non-protein coding RNAs maintain cell homeostasis by negative gene regulation. Proper controlling of miRNA expression is required for a balanced physiological environment, as these small molecules influence almost every genetic pathway from cell cycle checkpoint, cell proliferation to apoptosis, with a wide range of target genes. Deregulation in miRNAs expression correlates with various cancers by acting as tumor suppressors and oncogenes. Although promising therapies exist to control tumor development and progression, there is a lack of efficient diagnostic and therapeutic approaches for delineating various types of cancer. The molecularly different tumors can be differentiated by specific miRNA profiling as their phenotypic signatures, which can hence be exploited to surmount the diagnostic and therapeutic challenges. Present review discusses the involvement of miRNAs in oncogenesis with the analysis of patented research available on miRNAs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Computational prediction of miRNA genes from small RNA sequencing data

    Directory of Open Access Journals (Sweden)

    Wenjing eKang

    2015-01-01

    Full Text Available Next-generation sequencing now for the first time allows researchers to gauge the depth and variation of entire transcriptomes. However, now as rare transcripts can be detected that are present in cells at single copies, more advanced computational tools are needed to accurately annotate and profile them. miRNAs are 22 nucleotide small RNAs (sRNAs that post-transcriptionally reduce the output of protein coding genes. They have established roles in numerous biological processes, including cancers and other diseases. During miRNA biogenesis, the sRNAs are sequentially cleaved from precursor molecules that have a characteristic hairpin RNA structure. The vast majority of new miRNA genes that are discovered are mined from small RNA sequencing (sRNA-seq, which can detect more than a billion RNAs in a single run. However, given that many of the detected RNAs are degradation products from all types of transcripts, the accurate identification of miRNAs remain a non-trivial computational problem. Here we review the tools available to predict animal miRNAs from sRNA sequencing data. We present tools for generalist and specialist use cases, including prediction from massively pooled data or in species without reference genome. We also present wet-lab methods used to validate predicted miRNAs, and approaches to computationally benchmark prediction accuracy. For each tool, we reference validation experiments and benchmarking efforts. Last, we discuss the future of the field.

  14. Blood miRNAs as sensitive and specific biological indicators of environmental and occupational exposure to volatile organic compound (VOC).

    Science.gov (United States)

    Song, Mi-Kyung; Ryu, Jae-Chun

    2015-10-01

    To date, there is still shortage of highly sensitive and specific minimally invasive biomarkers for assessment of environmental toxicants exposure. Because of the significance of microRNA (miRNA) in various diseases, circulating miRNAs in blood may be unique biomarkers for minimally invasive prediction of toxicants exposure. We identified and validated characteristic miRNA expression profiles of human whole blood in workers exposed to volatile organic compounds (VOCs) and compared the usefulness of miRNA indicator of VOCs with the effectiveness of the already used urinary biomarkers of occupational exposure. Using a microarray based approach we