WorldWideScience

Sample records for minor alloying additions

  1. Fracture toughness of Al-Cr alloys with minor additions

    International Nuclear Information System (INIS)

    Datta, S.; Banerjee, M.K.

    2000-01-01

    Fracture toughness behavior of aluminium chromium alloys with minor additions is studied to determine its relation with microstructure and ageing conditions. The effect of the minor additions on the fracture toughness property of the alloys is also studied. Fracture toughness of Al-Cr alloys has been improved by selected minor additions. Also, the fracture toughness of the investigated alloys is found to be sensitive to ageing conditions. (author)

  2. Y and Er minor addition effect on glass forming ability of a Ni–Nb–Zr alloy

    International Nuclear Information System (INIS)

    Deo, L.P.; Oliveira, M.F. de

    2015-01-01

    Highlights: • A theoretical selection criterion to predict the GFA was used for Ni–Nb–Zr–RE alloys. • The prediction agrees very well with thermal parameter gm used to evaluate experimentally the GFA. • RE doped alloys showed higher GFA than the base alloy. • Y and Er elements showed similar effects to improve the GFA of the base alloy. - Abstract: Since the discovering of amorphous alloys in 1960, the actual causes of why some alloys can be easily formed into glasses while others cannot, are not clearly known, thus there is no universal theory to predict the glass forming ability in metallic systems. It is well known that the minor amount addition of proper rare-earth elements can greatly enhance the glass forming ability of some glass-forming alloys. In the present study, a selection criterion was successfully used to predict the glass forming ability improvement of Ni 67.3 Nb 28.4 Zr 4.3 alloy with minor additions of Y or Er. The actual glass forming ability of the base alloy and rare-earth doped alloys were evaluated by the thermal parameter γ m and the results agree very well with the tendency predicted by the calculation. The amorphous nature of alloys was mainly analyzed by X-ray diffraction and differential scanning calorimetry. This work also presents a brief and complementary consideration about oxygen contamination quantified by the inert gas fusion method

  3. Age hardening in die-cast Mg–Al–RE alloys due to minor Mn additions

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.M., E-mail: suming.zhu@rmit.edu.au [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia); Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Abbott, T.B. [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia); Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Magontec Limited, Sydney, New South Wales 2000 (Australia); Gibson, M.A. [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia); Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); CSIRO Manufacturing Flagship, Clayton, Victoria 3168 (Australia); Nie, J.F. [Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Easton, M.A. [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia)

    2016-02-22

    Die-cast Mg–Al–rare earth (RE) alloys are normally used in the as-cast condition without the application of heat treatment because it is a common perception that heat treatment will not provide benefit to these alloys. This paper reports, for the first time, that enhanced age hardenability can be achieved in die-cast Mg–Al–RE alloys with minor Mn additions. For example, the yield strength of Mg–4 wt%Al–3 wt%La alloy with 0.32 wt% Mn is increased by ∼34 MPa (∼26%) after ageing at 200 °C for 32 h (T5). The enhanced age hardenability is associated with the precipitation of nanoscale Al–Mn particles during ageing.

  4. Electrical and magnetic properties of Fe-based bulk metallic glass with minor Co and Ni addition

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H.Y. [IFW Dresden, Institute for Complex Materials, D–01069 Dresden (Germany); Stoica, M. [IFW Dresden, Institute for Complex Materials, D–01069 Dresden (Germany); POLITEHNICA University of Timisoara, P-ta Victoriei 2, Timisoara (Romania); Yi, S. [Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 702–701 Daegu (Korea, Republic of); Kim, D.H. [Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, 120–749 Seoul (Korea, Republic of); Eckert, J. [IFW Dresden, Institute for Complex Materials, D–01069 Dresden (Germany); University of Technology Dresden, Institute of Materials Science, D–01062 Dresden (Germany)

    2014-09-01

    The effect of minor Co and Ni alloying on soft magnetic properties and electrical resistivity of Fe{sub 75.5}C{sub 7.0}Si{sub 3.3}B{sub 5.5}P{sub 8.7} (at%) bulk metallic glass has been investigated. Within examined compositional range (Co and Ni up to 4 at%, respectively), the saturation magnetization and electrical resistivity of the alloys continuously decrease with increasing Co or Ni content, while the Curie temperature and initial permeability increase. Comparing the effect of Co and Ni additions, the alloys with Co addition have much higher Curie temperature and saturation magnetization than the alloy with Ni addition. Also, the Co-added alloys show smaller coercivity and larger permeability than the Ni-added alloys. The present results suggest that minor addition of Co can provide better effectiveness to enhance the magnetic softness of Fe-based BMGs than minor Ni addition. - Highlights: • Soft magnetic characteristics of CI-based BMGs can be enhanced with minor Co and Ni alloying. • Minor Co addition can provide better effectiveness to enhance the magnetic softness of CI-based BMG than Ni addition. • Optimum Co addition enlarges atomic packing density and randomness of amorphous structure.

  5. Microstructure-mechanical property relationships for Al-Cu-Li-Zr alloys with minor additions of cadmium, indium or tin

    Science.gov (United States)

    Blackburn, L. B.; Starke, E. A., Jr.

    1989-01-01

    Minor amounts of cadmium, indium or tin were added to a baseline alloy with the nominal composition of Al-2.4Cu-2.4Li-0.15Zr. These elements were added in an attempt to increase the age-hardening response of the material such that high strengths could be achieved through heat-treatment alone, without the need for intermediate mechanical working. The alloy variant containing indium achieved a higher peak hardness in comparison to the other alloy variations, including the baseline material, when aged at temperatures ranging from 160 C to 190 C. Tensile tests on specimens peak-aged at 160 indicated the yield strength of the indium-bearing alloy increased by approximately 15 percent compared to that of the peak-aged baseline alloy. In addition, the yield strength obtained in the indium-bearing alloy was comparable to that reported for similar baseline material subjected to a 6 percent stretch prior to peak-aging at 190 C. The higher strength levels obtaied for the indium-bearing alloy are attributed to increased number densities and homogeneity of both the T1 and theta-prime phases, as determined by TEM studies.

  6. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Directory of Open Access Journals (Sweden)

    Xingjie Jia

    2018-05-01

    Full Text Available Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ∼17.5 nm, and exhibits a high Bs of ∼1.75 T and a low Hc of ∼5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  7. Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition

    Science.gov (United States)

    Jia, Xingjie; Li, Yanhui; Wu, Licheng; Zhang, Wei

    2018-05-01

    Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D) of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc) by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs) is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ˜17.5 nm, and exhibits a high Bs of ˜1.75 T and a low Hc of ˜5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.

  8. The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions

    International Nuclear Information System (INIS)

    Hernandez-Sandoval, J.; Garza-Elizondo, G.H.; Samuel, A.M.; Valtiierra, S.; Samuel, F.H.

    2014-01-01

    Highlights: • Characterization on the precipitation of Ni- and Zr-based intermetallics. • High temperature tensile properties of 354 alloy containing Zr and Ni below 0.5%. • Quality index charts as a function of heat treatment. • Yield strength and ductility color contours as a function of aging temperature and aging time. - Abstract: The principal aim of the present work was to investigate the effects of minor additions of nickel and zirconium on the strength of cast aluminum alloy 354 at ambient and high temperatures. Tensile properties of the as-cast and heat-treated alloys were determined at room temperature and at high temperatures (190 °C, 250 °C, 350 °C). The results show that Zr reacts only with Ti, Si and Al. From the quality index charts constructed for these alloys, the quality index attains minimum and maximum values of 259 MPa and 459 MPa, in the as-cast and solution-treated conditions; also, maximum and minimum values of yield strength are observed at 345 MPa and 80 MPa, respectively, within the series of aging treatments applied. A decrease in tensile properties of ∼10% with the addition of 0.4 wt.% nickel is attributed to a nickel–copper reaction. The reduction in mechanical properties due to addition of different elements is attributed principally to the increase in the percentage of intermetallic phase particles formed during solidification; such particles act as stress concentrators, decreasing the alloy ductility. Tensile test results at ambient temperatures show a slight increase (∼10%) in alloys with Zr and Zr/Ni additions, particularly at aging temperatures above 240 °C. Additions of Zr and Zr + Ni increase the high temperature tensile properties, in particular for the alloy containing 0.2 wt.% Zr + 0.2 wt.% Ni, which exhibits an increase of more than 30% in the tensile properties at 300 °C compared with the base 354 alloy

  9. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    International Nuclear Information System (INIS)

    Qin, Gaowu W.; Ren Yuping; Huang Wei; Li Song; Pei Wenli

    2010-01-01

    Graphical abstract: Display Omitted Research highlights: The ε-AlMn phase acts as the heterogeneous nucleus of α-Mg phase during the solidification of the AZ31 Mg alloy, not the γ-Al 8 Mn 5 phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure ε-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 o C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure ε-AlMn, γ 2 -Al 8 Mn 5 or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the ε-AlMn phase in the Mn-Al alloys, not the γ 2 -Al 8 Mn 5 phase. The grain size of AZ31 Mg alloy is about 91 μm without any addition of Mn-Al alloys, but remarkably decreases to ∼55 μm with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to ∼53 μm, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 o C.

  10. Effects of minor Zr and Sr on as-cast microstructure and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc (wt.%) magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Shen Jia; Wu Lu

    2011-01-01

    Research highlights: → Minor Zr and/or Sr additions can effectively refine the grains of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the tensile properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. - Abstract: The effects of minor Zr and Sr on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc (wt.%) alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding minor Zr and/or Sr to the Mg-3Ce-1.2Mn-0.9Sc alloy does not cause an obvious change in the morphology and distribution of the Mg 12 Ce phase. However, the grains of the Zr and/or Sr-containing alloys are effectively refined. Among the Zr and/or Sr-containing alloys, the grains of the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr are the finest, followed by the alloys with the additions of 0.5 wt.%Zr and 0.1 wt.%Sr, respectively. In addition, small additions of Zr and/or Sr can improve the tensile and creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. Among the Zr and/or Sr-containing alloys, the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr obtains the optimum tensile and creep properties.

  11. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Gaowu W., E-mail: qingw@smm.neu.edu.c [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China); Ren Yuping; Huang Wei; Li Song; Pei Wenli [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China)

    2010-10-08

    Graphical abstract: Display Omitted Research highlights: The {epsilon}-AlMn phase acts as the heterogeneous nucleus of {alpha}-Mg phase during the solidification of the AZ31 Mg alloy, not the {gamma}-Al{sub 8}Mn{sub 5} phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure {epsilon}-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 {sup o}C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure {epsilon}-AlMn, {gamma}{sub 2}-Al{sub 8}Mn{sub 5} or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the {epsilon}-AlMn phase in the Mn-Al alloys, not the {gamma}{sub 2}-Al{sub 8}Mn{sub 5} phase. The grain size of AZ31 Mg alloy is about 91 {mu}m without any addition of Mn-Al alloys, but remarkably decreases to {approx}55 {mu}m with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to {approx}53 {mu}m, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 {sup o}C.

  12. Casting of metallic fuel containing minor actinide additions

    International Nuclear Information System (INIS)

    Trybus, C.L.; Henslee, S.P.; Sanecki, J.E.

    1992-01-01

    A significant attribute of the Integral Fast Reactor (IFR) concept is the transmutation of long-lived minor actinide fission products. These isotopes require isolation for thousands of years, and if they could be removed from the waste, disposal problems would be reduced. The IFR utilizes pyroprocessing of metallic fuel to separate auranium, plutonium, and the minor actinides from nonfissionable constituents. These materials are reintroduced into the fuel and reirradiated. Spent IFR fuel is expected to contain low levels of americium, neptunium, and curium because the hard neutron spectrum should transmute these isotopes as they are produced. This opens the possibility of using an IFR to trnasmute minor actinide waste from conventional light water reactors (LWRs). A standard IFR fuel is based on the alloy U-20% Pu-10% Zr (in weight percent). A metallic fuel system eases the requirements for reprocessing methods and enables the minor actinide metals to be incorporated into the fuel with simple modifications to the basic fuel casting process. In this paper, the authors report the initial casting experience with minor actinide element addition to an IFR U-Pu-Zr metallic fuel

  13. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    International Nuclear Information System (INIS)

    Jiang, L.; Li, J.K.; Liu, G.; Wang, R.H.; Chen, B.A.; Zhang, J.Y.; Sun, J.; Yang, M.X.; Yang, G.; Yang, J.; Cao, X.Z.

    2015-01-01

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al 2 Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al 2 Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al 2 Cu particles were precipitated and intragranular θ′-Al 2 Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying effect and the

  14. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, J.K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, R.H. [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Chen, B.A.; Zhang, J.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun, J., E-mail: junsun@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, M.X.; Yang, G. [Central Iron and Steel Research Institute, Beijing 100081 (China); Yang, J.; Cao, X.Z. [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-18

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al{sub 2}Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al{sub 2}Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al{sub 2}Cu particles were precipitated and intragranular θ′-Al{sub 2}Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying

  15. Effects of minor alloying additions on the strength and swelling behavior of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Gessel, G.R.

    1978-06-01

    A set of 32 alloys consisting of various additions of the elements Mo, W, Al, Ti, Nb, C and Si to an Fe-7.5 Cr-20 Ni alloy were made in order to investigate the effects of these solute additions on alloy swelling and strength. Both single and multiple additions were examined. The influence of various solute elements on the swelling behavior in the range 500 to 730 0 C was investigated using 4 MeV Ni ion bombardment to a dose 170 dpa. It was found that on an atomic percent basis, the elements may be arranged in order of decreasing effectiveness in reducing peak temperature swelling as follows: Ti, C, Nb, Si, and Mo. Small amounts of aluminum enhance swelling. Additions of Si, Ti, or Nb truncate the high temperature swelling regime of the ternary alloy. Mo, W, and C do not have a strong effect on the temperature dependence of swelling. The results may be interpreted in terms of the effect of point defect trapping on void growth rates, and it is suggested that the changes in peak temperature are the result of small changes in the free vacancy formation energy. A method for treating certain multiple additions is proposed. The effect of these alloying additions on short time high temperature strength properties was estimated using hot hardness measurements over the temperature range 22 to 850 0 C. On an atom percent basis Nb and Ti were most effective in conferring solid solution strengthening and Si the least effective. In the regime 22 to approximately 650 0 C, the hardness data was found to fit an equation of the form: H = H 0 + b/T; where H is the hardness, T is the temperature, and H 0 and b are constants for a given alloy. An empirical method was devised to estimate the hot hardness of alloys containing more than one solute addition

  16. Effect of Ternary Addition of Iron on Shape Memory Characteristics of Cu-Al Alloys

    Science.gov (United States)

    Raju, T. N.; Sampath, V.

    2011-07-01

    The effect of alloying Cu-Al alloys with Fe on their transformation temperatures and shape memory properties was investigated by differential scanning calorimetry and bend test. It was found that the minor additions of iron resulted in change of transformation temperatures and led to excellent shape memory properties of the alloys. Since the transformation temperatures are high, they are an ideal choice for high-temperature applications.

  17. Corrosion of Fe-25 Cr Alloy with microconstituent additions of hafnium and platinum

    International Nuclear Information System (INIS)

    Srinivasan, V.

    1989-01-01

    The study reported was performed with a view to understanding the effects of minor additions of Hf and Pt on the corrosion behavior of a model chromia former, Fe-25Cr. Bulk addition of Hf or Pt was made at 1 wt.% level to the base alloy, Fe-25 Cr, and the experimental alloys were made by an ingot metallurgy route. Coupons were machined from the as-cast rods or forged prismatic bars, and metallographically polished to 1 μ alumina. Multiple samples were exposed to an H 2 /H 2 S/H 2 O/Ar gas mixture at 700 degrees C for times up to 192 hrs. Planar and cross-sections of scales formed on the substrate alloys were examined using a scanning electron microscope with an energy dispersive x-ray spectrometer (SEM/EDAX). A uniform chromia scale formed initially. This scale was broken down locally and slowly by the overgrowth of sulfide rich nodules. The effects of minor additions of Hf or Pt on the growth and breakdown of protective chromia scales are discussed in this paper

  18. Effects of Al addition and minor elements on oxidation behaviour of FeCr alloys

    International Nuclear Information System (INIS)

    Herbelin, J.M.; Mantel, M.

    1995-01-01

    It is shown that the addition of aluminium is very effective for the high temperature oxidation resistance of FeCr alloys. 1% aluminium produces a continuous protective Al 2 O 3 oxide for FeCr alloy that contains more than 13% of chromium. However this aluminium content is not enough for the high temperature resistance of thin foils and a 5% aluminium content is needed since the substrate plays the role of an aluminium reserve susceptible to oxidation. Impurity elements such as sulphur are detrimental and give rise to scaling of the oxide layer. Active elements such as Y, Ce, La, Zr are therefore necessary to tie up sulphur and increase the life of the alloys. (orig.)

  19. Effect of Sc addition on microstructure and mechanical properties of 1460 alloy

    Directory of Open Access Journals (Sweden)

    Juan Ma

    2014-02-01

    Full Text Available The effect of minor addition of Sc on microstructure, age hardening behavior, tensile properties and fracture morphology of 1460 alloy have been studied. It is found that Sc content increase from 0.11 wt% to 0.22 wt% is favorable for grain refinement in as-cast alloy but results in a coarsening of Cu-rich particles. The alloy with 0.11 wt% Sc exhibits enhanced mechanical properties and age hardening effect. Transmission electron microscopy (TEM investigations on the alloy with 0.11 wt% Sc have suggested that a large amount of Al3(Sc, Zr particles precipitated at the earlier aging may inhibit recrystallization effectively.

  20. Effect of additional minor elements on accumulation behavior of point defects under electron irradiation in austenitic stainless steels

    International Nuclear Information System (INIS)

    Sekio, Yoshihiro; Yamashita, Shinichiro; Takahashi, Heishichiro; Sakaguchi, Norihito

    2014-01-01

    Addition of minor elements to a base alloy is often applied with the aim of mitigating void swelling by decreasing the vacancy diffusivity and flux which influence vacancy accumulation behavior. However, the comparative evaluations of parameters, such as the diffusivity and flux, between a base alloy and modified alloys with specific additives have not been studied in detail. In this study, type 316 austenitic stainless steel as a base alloy and type 316 austenitic stainless steels modified with vanadium (V) or zirconium (Zr) additions were used to perform evaluations from the changes of widths of the void denuded zone (VDZ) formed near a random grain boundary during electron irradiation because these widths depend on vacancy diffusivity and flux. The formations of VDZs were observed in in-situ observations during electron irradiation at 723 K and the formed VDZ widths were measured from the transmission electron microscopic images after electron irradiation. As a result, the VDZs were formed in both steels without and with V, and respective widths were ∼119 and ∼100 nm. On the other hand, the VDZ formation was not observed clearly in the steel with Zr. From the measured VDZ widths in the steels without and with V addition, the estimated ratio of the vacancy diffusivity in the steel with V to that in the steel without V was about 0.50 and the estimated ratio of the vacancy flux in the steel with V to that in the steel without V was about 0.71. This result suggests that the effect of additional minor elements on vacancy accumulation behaviors under electron irradiation could be estimated from evaluations of the VDZ width changes among steels with and without minor elements. Especially, because void swelling is closely related with the vacancy diffusion process, the VDZ width changes would also be reflected on void swelling behavior. (author)

  1. Effects of minor scandium on as-cast microstructure, mechanical properties and casting fluidity of ZA84 magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Cheng Liang

    2010-01-01

    The effects of minor Sc on the as-cast microstructure, mechanical properties and casting fluidity of the ZA84 magnesium alloy were investigated. The results indicate that the Mg 32 (Al,Zn) 49 phase in the ZA84 alloy is refined with the addition of 0.12-0.35 wt.% Sc, and the formation of the Mg 32 (Al,Zn) 49 phase is suppressed. An increase in Sc amount from 0.12 wt.% to 0.35 wt.% causes the morphology of the Mg 32 (Al,Zn) 49 phase to gradually change from coarse continuous and/or quasi-continuous net to relatively fine quasi-continuous and/or disconnected shapes. In addition, it is shown that the tensile and creep properties of the ZA84 alloy are improved, but the casting fluidity of the alloy is decreased with the addition of 0.12-0.35 wt.% Sc.

  2. Non-destructive identification of unknown minor phases in polycrystalline bulk alloys using three-dimensional X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yiming, E-mail: yangyiming1988@outlook.com [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Liang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Yudan; Du, Guohao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Yang, Sam [Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC 3168 (Australia); Xiao, Tiqiao, E-mail: tqxiao@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-02-15

    Minor phases make considerable contributions to the mechanical and physical properties of metals and alloys. Unfortunately, it is difficult to identify unknown minor phases in a bulk polycrystalline material using conventional metallographic methods. Here, a non-destructive method based on three-dimensional X-ray diffraction (3DXRD) is developed to solve this problem. Simulation results demonstrate that this method is simultaneously able to identify minor phase grains and reveal their positions, orientations and sizes within bulk alloys. According to systematic simulations, the 3DXRD method is practicable for an extensive sample set, including polycrystalline alloys with hexagonal, orthorhombic and cubic minor phases. Experiments were also conducted to confirm the simulation results. The results for a bulk sample of aluminum alloy AA6061 show that the crystal grains of an unexpected γ-Fe (austenite) phase can be identified, three-dimensionally and nondestructively. Therefore, we conclude that the 3DXRD method is a powerful tool for the identification of unknown minor phases in bulk alloys belonging to a variety of crystal systems. This method also has the potential to be used for in situ observations of the effects of minor phases on the crystallographic behaviors of alloys. - Highlights: •A method based on 3DXRD is developed for identification of unknown minor phase. •Grain position, orientation and size, is simultaneously acquired. •A systematic simulation demonstrated the applicability of the proposed method. •Experimental results on a AA6061 sample confirmed the practicability of the method.

  3. Microstructure investigation and first-principle analysis of die-cast AZ91 alloy with calcium addition

    International Nuclear Information System (INIS)

    Lin, L.; Wang, F.; Yang, L.; Chen, L.J.; Liu, Z.; Wang, Y.M.

    2011-01-01

    Highlights: → Die-cast AZ91 with Ca addition was investigated experimentally and theoretically. → Precipitation sequence was confirmed with increasing Ca addition. → Phase stability difference was verified by first-principle calculation. → Valence configurations were associated with alloying effects of Al, Mg and Ca. - Abstract: In order to get improved mechanical properties of die-cast AZ91 alloy under elevated temperatures, Ca element was added as a cost-effective alloying constituent. It appeared that minor Ca addition less than 0.5 wt% would result in no apparent change in microstructure, but the tensile strength at elevated temperatures was improved considerably. When increasing Ca addition to more than 1.0 wt%, Al 2 Ca phase will precipitate during solidification, no Mg 2 Ca phase was discovered. Homogeneous microstructure and high temperature stability in tensile strength of die-cast AZ91 alloy with Ca addition was mainly attributed to the precipitation of Al 2 Ca phase, which considerably refined the bulky β-Mg 17 Al 12 phase distributed originally at the grain boundaries of die-cast AZ91 alloy with no Ca addition. The priority of Al 2 Ca phase compared to Mg 2 Ca phase in precipitation sequence was verified by first-principle calculation of their cohesive energy and formation enthalpy, and can also be associated with more bounding electrons between Al and Ca atoms.

  4. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    Science.gov (United States)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  5. Influence of minor alloying additions on the glass-forming ability of Mg-Ni-La bulk metallic glasses

    International Nuclear Information System (INIS)

    Gonzalez, S.; Figueroa, I.A.; Todd, I.

    2009-01-01

    Bulk metallic glasses of Mg 60 Ni 23.6 Y x La (16.4-x) and Mg 65 Ni 20 Y x LaMM (15-x) with 0 ≤ x ≤ 1 at.% have been produced by injection casting. For the La-containing alloy a maximum amorphous diameter of 4 mm for x = 0.5 and 0.75 was obtained. The LaMM-containing alloy showed a maximum amorphous diameter of 2 mm for x = 0 and 0.25 but decreased to 1 mm with further Y additions. The glass-forming ability of the Mg 60 Ni 23.6 La 16.4 alloy decreased when La is partially substituted by small amounts of small atoms (Si or B) or by large atoms (Y and Si).

  6. Additive Manufacturing of Metastable Beta Titanium Alloys

    Science.gov (United States)

    Yannetta, Christopher J.

    Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.

  7. Effect of minor elements on microstructure evolution in Ni alloys irradiated with neutrons

    International Nuclear Information System (INIS)

    Xu, Q.; Yoshiie, T.

    2001-01-01

    The minor elements, Si (-5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) were chosen to investigate the effects of volume size factor as shown in the parentheses on void swelling in neutron irradiated Ni alloys. Neutron irradiation temperature and dose were changed widely from 473 K to 703 K, and 0.001 dpa to 1 dpa, respectively. Voids were observed by transmission electron microscopy (TEM) in Ni even after a very small irradiation dose of 0.026 dpa at 573 K. With increasing dose, the number density of voids was nearly constant while void size increased. The microstructure evolution in Ni-2 at%Cu and Ni-2 at%Ge alloys was similar to that in Ni. However, in Ni-2 at%Si and Ni-2 at%Sn alloys, no voids were observed by TEM even at 703 K to 1 dpa. The minor elements, Si and Sn, play an important role for the suppression of vacancy clusters. Vacancies are annihilated by mutual recombination with interstitials in Si and Sn added alloys. (orig.)

  8. Formation of the minor phase shell on the surface of hypermonotectic alloy powders

    International Nuclear Information System (INIS)

    Zhao, J.Z.

    2006-01-01

    The microstructure evolution in an atomized hypermonotectic alloy drop is calculated. The results indicate that the formation of the minor phase shell on the surface of the powder is due to the heterogeneous nucleation of the minor phase droplets on the atomized drop surface and the resultant diffusional transfer of solute during the liquid-liquid phase transformation

  9. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  10. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  11. Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bin, E-mail: kongbin@buaa.edu.cn; Jia, Lina, E-mail: jialina@buaa.edu.cn; Su, Linfen, E-mail: sulinfen@mse.buaa.edu.cn; Guan, Kai, E-mail: guankai@mse.buaa.edu.cn; Weng, Junfei, E-mail: wengjf@mse.buaa.edu.cn; Zhang, Hu, E-mail: zhanghu@buaa.edu.cn

    2015-07-15

    Controlling the elements content in the niobium solid solution (Nb{sub SS}) is significant for the better comprehensive performance of Nb-silicide-based alloys. In this paper, the effects of minor Si on the microstructures and room temperature fracture toughness of Nb–(0/0.5/1/2)Si–27.63Ti–12.92Cr–2.07Al–1.12Hf (at%, unless stated otherwise) solid solution alloys were investigated. The alloys were processed by vacuum arc-casting (AC), and then heat treated (HT) at 1425 °C for 10 h. In HT alloys, Nb{sub SS} grains are refined gradually with the increase of Si content. Meanwhile, the volume fraction of Cr{sub 2}Nb and silicides phases precipitates increases. The fracture toughness of HT alloys decreases at first but then increases in the range of 0 to 2% Si, because it is a combinatorial process of positive and negative effects caused by the addition of Si. The refinement of Nb{sub SS} grains displays positive effect on fracture toughness, while the increase of solid solubility of Si in Nb{sub SS} and brittle Cr{sub 2}Nb and Nb-silicides precipitate phases display negative effect.

  12. Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Lin [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Yang, Weiming [School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Haishun, E-mail: liuhaishun@126.com [School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Men, He [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Anding, E-mail: anding@nimte.ac.cn [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Chang, Chuntao [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Shen, Baolong, E-mail: blshen@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-12-01

    Through gradient substitution of Co for Fe, the magnetic properties and microstructures of (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} (x=0.1, 0.2, 0.3, 0.4, 0.5) nanocrystalline alloys were investigated. Because of the strong ferromagnetic exchange coupling between Co and Fe, substantial improvement in saturation magnetization was achieved with proper levels of Co addition. Meanwhile, the Curie temperature increased noticeably with increasing Co addition. After heat treatment, the (Fe{sub 0.9}Co{sub 0.1}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloy showed a refined microstructure with an average grain size of 10–20 nm, exhibiting a comparatively high saturation magnetization of 1.82 T and a lower coercivity of 12 A/m compared to other Hitperm-type alloys with higher Co contents. Additionally, the Curie temperature reached 1150 K upon introduction of Co. As the soft magnetic properties are strengthened by adding a small amount of Co, the combination of fine, soft magnetic properties and low cost make this nanocrystalline alloy a potential magnetic material. - Highlights: • New (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloys are successfully synthesized. • Minor Co addition improves the Curie temperature of (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} alloy system. • (Fe{sub 1−x}Co{sub x}){sub 83}Nb{sub 2}B{sub 14}Cu{sub 1} nanocrystalline alloys exhibit high saturation magnetization above 1.82 T.

  13. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Rupa, E-mail: rupadasgupta@ampri.res.in; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-25

    Highlights: • Cu based SMAs with high transition temperature could be made using LM route. • The properties depend on alloying composition. • Property characterisation establishes feasibility of making SMAs. - Abstract: The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions. The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000 g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200 °C for 2 h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2 h at 920 °C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600 °C maintaining a constant rate of 10 °C/min. Results indicate clear transformation peaks in all the samples which

  14. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    International Nuclear Information System (INIS)

    Dasgupta, Rupa; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-01

    Highlights: • Cu based SMAs with high transition temperature could be made using LM route. • The properties depend on alloying composition. • Property characterisation establishes feasibility of making SMAs. - Abstract: The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions. The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000 g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200 °C for 2 h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2 h at 920 °C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600 °C maintaining a constant rate of 10 °C/min. Results indicate clear transformation peaks in all the samples which

  15. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  16. Laser polishing of additive manufactured Ti alloys

    Science.gov (United States)

    Ma, C. P.; Guan, Y. C.; Zhou, W.

    2017-06-01

    Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 μm could be reduce to less than 1 μm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.

  17. FTIR study of the influence of minor alloying elements on the high temperature oxidation of nickel alloys

    International Nuclear Information System (INIS)

    Lenglet, M.; Delaunay, F.; Lefez, B.

    1997-01-01

    The purpose of this paper is to study the reflectance spectra of the different single oxide layer systems : Cr 2 O 3 /Fe, MnCr 2 O 4 /Fe, TiO 2 /Fe, NiCr 2 O 4 /Fe and NiFe 2 O 4 /Fe and to extend the theoretical calculations to multilayer oxide systems on metallic substrates. The interpretation of the resulting reflectance spectra for these systems is used to explain the initial stages of oxide formation and the influence of minor alloying elements on the high temperature oxidation of three commercial nickel alloys : Incoloy 800, Inconel 600 and X. (orig.)

  18. U-Zr-RE Fuel Alloy with Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong Hwan; Ko, Young Mo; Kim, Ki Hwan; Park, Jeong Yong; Lee, Chan Bock [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Metallic fuels, such as the U-Pu-Zr alloys, have been considered as a nuclear fuel for a sodium-cooled fast reactor (SFR) related to the closed fuel cycle for managing minor actinides and reducing the amount of highly radioactive spent nuclear fuels since the 1980s. Metallic fuels fit well with such a concept owing to their high thermal conductivity, high thermal expansion, compatibility with a pyro-metallurgical reprocessing scheme, and their demonstrated fabrication at engineering scale in a remote hot cell environment. To increase the productivity and efficiency of the fuel fabrication process waste streams must be minimized and fuel losses quantified and reduced to lower levels. In this study, U-Zr alloy system fuel slugs were fabricated by an injection casting method. After casting a considerable number of fuel slugs in the casting furnaces, the fuel loss in the melting chamber, the crucible, and the molds have been evaluated quantitatively.

  19. Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel during Hot Dip Galvanizing

    Science.gov (United States)

    Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2014-09-01

    The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.

  20. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Directory of Open Access Journals (Sweden)

    Yee Mei Leong

    2016-06-01

    Full Text Available Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag content solder SAC105 (Sn-1.0Ag-0.5Cu because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al addition (0.1–0.5 wt.% to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.

  1. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Science.gov (United States)

    Leong, Yee Mei; Haseeb, A.S.M.A.

    2016-01-01

    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1–0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface. PMID:28773645

  2. Effects of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy

    Directory of Open Access Journals (Sweden)

    Xiang Qingchun

    2011-02-01

    Full Text Available The influences of minor scandium and zirconium combination alloying on the as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy have been experimentally investigated. The experimental results show that when the minor elements of scandium and zirconium are simultaneously added into the Al-4Cu-1.5Mg alloy, the as-cast microstructure of the alloy is effectively modified and the grains of the alloy are greatly refined. The coarse dendrites in the microstructure of the alloy without Sc and Zr additions are refined to the uniform and fine equiaxed grains. As the additions of Sc and Zr are 0.4% and 0.2%, respectively, the tensile strength, yield strength and elongation of the alloy are relatively better, which are 275.0 MPa, 176.0 MPa and 8.0% respectively. The tensile strength is increased by 55.3%, and the elongation is nearly raised three times, compared with those of the alloy without Sc and Zr additions.

  3. Effect of cerium addition on microstructures of carbon-alloyed iron ...

    Indian Academy of Sciences (India)

    All the alloys exhibited a typical two-phase microstructure consisting of Fe3AlC carbides in an iron aluminide matrix. In the alloy without Ce addition, large bulky carbides were equally distributed throughout the matrix with many smaller precipitates interspersed in between. In the alloy with Ce addition, the carbide grain sizes ...

  4. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    OpenAIRE

    J. Kozana; St. Rzadkosz; M. Piękoś

    2010-01-01

    Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation ...

  5. Influence of minor elements additions on microstructure and ...

    Indian Academy of Sciences (India)

    WINTEC

    without Re additions to 99⋅5%, 8⋅6%, 1161⋅2 MPa with 1⋅0 wt.% Re addition, respectively ... content from 0–1⋅0 wt.%, the tensile strength, relative density and elongation of 93W–Ni–Fe alloy .... The W-grain size was esti- mated by average ...

  6. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  7. Additive Manufacturing of Magnesium (Mg) Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work is to investigate additive manufacturing techniques for Mg alloys.  It will leverage off research being conducted at University of Florida and...

  8. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    Directory of Open Access Journals (Sweden)

    J. Kozana

    2010-01-01

    Full Text Available Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation will be the subject of further examinations.

  9. The effect of small 4th element alloying additions on the calculated phase stability in the Fe-Cr-Ni system

    International Nuclear Information System (INIS)

    Watkin, J.S.

    1979-01-01

    Recent studies into the void swelling of Fe-Cr-Ni alloys have revealed that the magnitude of swelling depends upon alloy constitution and this together with the fact that minor element additions also play a major role in swelling necessitate a detailed knowledge of the influence of small 4th element additions on phase stability. In this paper the effects of additions of Nb, Ti, Al, Mo, Co and C to the Fe-Cr-Ni ternary are assessed by calculation. They confirm the ferritising tendencies of Nb, Ti and Al and the strong austenitising effect of C. Confirmation is also found for the scaling factors in the equivalent Ni and Cr equations in common usage and the paper presents Fe-Cr-Ni ternary sections at 400, 550 and 700 0 C modified for 1 at.% addition of each of the above elements. (orig.) [de

  10. The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: An ab initio study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Chandra, Sharat; Sundar, C.S.; Raj, Baldev

    2010-01-01

    Nanostructured ferritic alloys derive their strength from the dispersion of oxide nanoclusters in the ferritic matrix. We have explored the relative role of minor alloying elements like Ti and Zr on the stability of nanoclusters of vacancy-Y-Ti-O by density functional theory calculations and shown that the binding energy of these clusters increases when we replace Ti with Zr. This could imply faster nucleation of the nanoclusters which, in turn, may lead to finer dispersion of nanoclusters resulting in improved performance of ferritic alloys. Further, we show a core/shell structure for these nanoclusters in which the core is enriched in Y, O, Ti while the shell is enriched in Cr.

  11. Crystallisation and microstructure of low-silicon silumins with alloy additions

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2011-07-01

    Full Text Available The paper presents the results of the analysis of crystallisation and microstructure of non-alloy silumins that contain: 2,0÷6,0% of Si and alloy additions, approximately: 4,0% Ni, 4,0% of Cu and 0,5% of Mg, the knowledge of which is still very little. It has been proven that in non-alloy silumins, the increase of silicone concentration causes extending of crystallisation time of the eutectic mixture α+and refinement of α phase dendrites. It also causes the increase of the temperature of crystallisation of the eutectic mixture α+ . Alloy additions: Ni, Cu and Mg decrease by approximately 30 C the liquidus and solidus temperatures of silumins and extend the time of their crystallisation by around 100 sec. in comparison with non-alloy silumins. It is caused by crystallisation of additional phases Al3NiCu, Mg2Si and Al2Cu. Nickel, copper and magnesium refine the microstructure of castings.

  12. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  13. Effect of Refiner Addition Level on Zirconium-Containing Aluminium Alloys

    International Nuclear Information System (INIS)

    Jaradeh, M M R; Carlberg, T

    2012-01-01

    It is well known that in aluminium alloys containing Zr, grain refiner additions do not function as desired, producing an effect often referred to as nuclei poisoning. This paper investigates the structure of direct chill-cast ingots of commercial AA3003 aluminium alloys, with and without Zr, at various addition levels of Al5Ti1B master alloy. In Bridgman experiments simulating ingot solidification, Zr-containing alloys were studied after the addition of various amounts of Ti. It could be demonstrated, in both ingot casting and simulation experiments, that Zr poisoning can be compensated for by adding more Ti and/or Al5Ti1B. The results confirm better refinement behaviour with the addition of Ti + B than of only Ti. The various combinations of Zr and Ti also influenced the formation of AlFeMn phases, and the precipitation of large Al 6 (Mn,Fe) particles was revealed. AlZrTiSi intermetallic compounds were also detected.

  14. Effect of Refiner Addition Level on Zirconium-Containing Aluminium Alloys

    Science.gov (United States)

    Jaradeh, M. M. R.; Carlberg, T.

    2012-01-01

    It is well known that in aluminium alloys containing Zr, grain refiner additions do not function as desired, producing an effect often referred to as nuclei poisoning. This paper investigates the structure of direct chill-cast ingots of commercial AA3003 aluminium alloys, with and without Zr, at various addition levels of Al5Ti1B master alloy. In Bridgman experiments simulating ingot solidification, Zr-containing alloys were studied after the addition of various amounts of Ti. It could be demonstrated, in both ingot casting and simulation experiments, that Zr poisoning can be compensated for by adding more Ti and/or Al5Ti1B. The results confirm better refinement behaviour with the addition of Ti + B than of only Ti. The various combinations of Zr and Ti also influenced the formation of AlFeMn phases, and the precipitation of large Al6(Mn,Fe) particles was revealed. AlZrTiSi intermetallic compounds were also detected.

  15. New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys

    Science.gov (United States)

    Baker, Andrew H.; Collins, Peter C.; Williams, James C.

    2017-07-01

    The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.

  16. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NARCIS (Netherlands)

    Ocelik, V.; Janssen, Niels; Smith, Stefan; De Hosson, J. Th M.

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with

  17. Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Brice, Craig, E-mail: craig.a.brice@lmco.com [NASA Langley Research Center, Hampton, VA 23681 (United States); Shenoy, Ravi [Northrop Grumman Corporation Technical Services, Hampton, VA 23681 (United States); Kral, Milo; Buchannan, Karl [University of Canterbury, Christchurch (New Zealand)

    2015-11-11

    Additive manufacturing (AM) is an emerging technology capable of producing near net shape structures in a variety of materials directly from a computer model. Standard metallic alloys that were developed for cast or wrought processing have largely been adopted for AM feedstock. In many applications, these legacy alloys are quite acceptable. In the aluminum alloy family, however, there is a significant performance gap between the casting alloys currently being used in AM processes and the high strength/toughness capability available in certain wrought alloys. The precipitation hardenable alloys, most often used in high performance structures, present challenges for processing by AM. The near net shape nature of AM processes does not allow for mechanical work prior to the heat treatment that is often necessary to develop a uniform distribution of precipitates and give peak mechanical performance. This paper examines the aluminum (Al) alloy 2139, a composition that is strengthened by homogeneous precipitation of Ω (Al{sub 2}Cu) plates and thus ideally suited for near net shape processes like AM. Transmission electron microscopy, microhardness, and tensile testing determined that, with proper processing conditions, Al 2139 can be additively manufactured and subsequently heat treated to strength levels comparable to those of peak aged wrought Al 2139.

  18. Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing

    International Nuclear Information System (INIS)

    Brice, Craig; Shenoy, Ravi; Kral, Milo; Buchannan, Karl

    2015-01-01

    Additive manufacturing (AM) is an emerging technology capable of producing near net shape structures in a variety of materials directly from a computer model. Standard metallic alloys that were developed for cast or wrought processing have largely been adopted for AM feedstock. In many applications, these legacy alloys are quite acceptable. In the aluminum alloy family, however, there is a significant performance gap between the casting alloys currently being used in AM processes and the high strength/toughness capability available in certain wrought alloys. The precipitation hardenable alloys, most often used in high performance structures, present challenges for processing by AM. The near net shape nature of AM processes does not allow for mechanical work prior to the heat treatment that is often necessary to develop a uniform distribution of precipitates and give peak mechanical performance. This paper examines the aluminum (Al) alloy 2139, a composition that is strengthened by homogeneous precipitation of Ω (Al_2Cu) plates and thus ideally suited for near net shape processes like AM. Transmission electron microscopy, microhardness, and tensile testing determined that, with proper processing conditions, Al 2139 can be additively manufactured and subsequently heat treated to strength levels comparable to those of peak aged wrought Al 2139.

  19. Effect of hydrogen addition on the microstructure of TC21 alloy

    International Nuclear Information System (INIS)

    Zhu Tangkui; Li Miaoquan

    2010-01-01

    Research highlights: → The aim of this paper is to study the effect of hydrogen content (0-0.887 wt.%H) on microstructure, phase composition, microhardness and β transus temperature of TC21 alloy. The results show that, with increasing hydrogen content, the β phase increases, the α/β interfaces of lamellar transformed β phase disappear, the lattice parameter of β phase increases and the β transus temperature decreases for the hydrogenated TC21 alloy. In comparison to the as-received TC21 alloy, the contrasts of primary α phase and transformed β phase under optical microscope in the TC21 alloy with high hydrogen content are reversed completely. Furthermore, the γ and δ hydrides are detected in the hydrogenated TC21 alloy. In addition, the variations of phase compositions for the hydrogenated TC21 alloy have influence on microhardness and β transus temperature. → In conclusion, this paper shows some significant rules about the influence of hydrogen on TC21 alloy. - Abstract: TC21 alloy was hydrogenated at 750 deg. C with different hydrogen contents ranging from 0 to 0.873 wt.%H, and its microstructural evolution and phase transformations were investigated by optical microscopy (OM) and X-ray diffraction (XRD). The microhardness and the β transus temperature for the hydrogenated TC21 alloy were determined by microhardness testing and metallographical approach, respectively. The results show that, hydrogen addition has a noticeable influence on microstructure, phase composition, microhardness and β transus temperature of TC21 alloy. With increasing hydrogen content, the β phase increases, the α/β interfaces of lamellar transformed β phase disappear, the lattice parameter of β phase increases and the β transus temperature decreases for the hydrogenated TC21 alloy. In comparison to the as-received TC21 alloy, the contrasts of primary α phase and transformed β phase under optical microscope in the hydrogenated TC21 alloy with high hydrogen

  20. Site preference and elastic properties of ternary alloying additions in B2 YAg alloys by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yurong, E-mail: winwyr@126.com [College of Electromechanical Engineering, Hunan University of Science and Technology, Xiantang 411201 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China); Xu Longshan [Department of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China)

    2012-09-15

    First-principles calculations were preformed to study the site preference behavior and elastic properties of 3d (Ti-Cu) transition-metal elements in B2 ductility YAg alloy. In YAg, Ti is found to occupy the Y sublattice whereas V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag sublattice. Due to the addition of 3d transition metals, the lattice parameters of YAg is decreased in the order: Valloy, and Fe is the most effective element to improve the ductility of YAg, while Ti, Ni and V alloying elements can reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni alloying elements can increase the hardness of YAg alloy, and Y{sub 8}Ag{sub 7}V is harder than Y{sub 8}Ag{sub 7}Ni.

  1. Effect of Solidification Rate and Rare Earth Metal Addition on the Microstructural Characteristics and Porosity Formation in A356 Alloy

    Directory of Open Access Journals (Sweden)

    M. G. Mahmoud

    2017-01-01

    Full Text Available The present study was performed on A356 alloy with the main aim of investigating the effects of La and Ce additions to 356 alloys (with and without 100 ppm Sr on the microstructure and porosity formation in these alloys. Measured amounts of La, Ce, and Sr were added to the molten alloy. The results showed that, in the absence of Sr, addition of La and Ce leads to an increase in the nucleation temperature of the α-Al dendritic network with a decrease in the temperature of the eutectic Si precipitation, resulting in increasing the freezing range. Addition of 100 ppm Sr results in neutralizing these effects. The presence of La or Ce in the casting has a minor effect on eutectic Si modification, in spite of the observed depression in the eutectic temperature. It should be noted that Ce is more effective than La as an alternate modifying agent. According to the atomic radius ratio, rLa/rSi is 1.604 and rCe/rSi is 1.559, theoretically, which shows that Ce is relatively more effective than La. The present findings confirm that Sr is the most dominating modification agent. Interaction between rare earth (RE metals and Sr would reduce the effectiveness of Sr. Although modification with Sr causes the formation of shrinkage porosity, it also reacts with RE-rich intermetallics, resulting in their fragmentation.

  2. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  3. Structure and mechanical properties of TiZr binary alloy after Al addition

    International Nuclear Information System (INIS)

    Jiang, X.J.; Jing, R.; Liu, C.Y.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Microstructure and mechanical properties of hot-rolled TiZrAl alloys were studied. The results showed that the microstructure of all alloys mainly consisted of lamellar α phase. The thickness of the lamellar α phase gradually increased with increasing aluminum content. Moreover, large numbers of stacking faults was observed in Ti–25Zr–15Al (at%) alloy. The aluminum addition strongly affected the mechanical properties of the TiZrAl alloys. With increased aluminum contents, the strength increased evidently, whereas, the elongation decreased. Ti–25Zr–15Al (at%) with the highest aluminum contents in all alloys, possessed the highest tensile strength (σ b =1319 MPa), i.e. strengthened by 41% compared with Ti–25Zr (at%) alloy, and still retained the elongation of 5.5%. According to the classical size and/or modulus misfits model, the effect of aluminum addition was significant in TiZr alloys because of the considerable misfits between aluminum and zirconium

  4. Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity

    Science.gov (United States)

    Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA

    2018-03-01

    The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.

  5. Quantitative determination of major and minor elements in alloys by emission spectroscopy using Grimm glow discharge lamps

    International Nuclear Information System (INIS)

    Fonseca, T.C.O. da.

    1987-01-01

    A rapid and simple analytical method for the determination of major, minor and trace elements in alloys, using the Grimm glow discharge lamp as spectroscopic excitation source is studied. Alloys of copper, aluminium, stainless and carbon steel, including the determination of the elements: Cu, Fe, Al, Ni, Cr, Mn, Nb, Si, Mo, Ti, V, Zn, Mg and Co are analyzed. Some parameters as optimal entrance slit position, pre-burning time and integration time of the analytical signal, current, argon pressure, tension pulse and applied power are studied. (M.J.C.) [pt

  6. Additional materials for welding of the EP99 heat resisting alloy with the EI868 alloy and 12Kh18N9T steel

    International Nuclear Information System (INIS)

    Sorokin, L.I.; Filippova, S.P.; Petrova, L.A.

    1978-01-01

    Presented are the results of the studies aimed at selecting an additive material for argon-arc welding process involving heat-resistant nickel EP99 alloy to be welded to the EI868 alloy and 12Kh18N9T steel. As the additive material use was made of wire made of nickel-chromium alloys and covered electrodes made of the EP367 alloy with additions of tungsten. It has been established that in order to improve the resistance of metal to hot-crack formation during argon arc welding of the EP99 alloy with the EI868 alloy, it is advisable to use an additive material of the EP533 alloy, and while welding the same alloy with the 12Kh18N9T steel, filler wire of the EP367 alloy is recommended

  7. Influence of hydrogen additions on high-temperature superplasticity of titanium alloys

    International Nuclear Information System (INIS)

    Lederich, R.J.; Sastry, S.M.L.

    1982-01-01

    The effects of the addition of up to 1.0 wt pct hydrogen as a transient alloying element on the superplastic formability (SPF) of fine-grained, equiaxed Ti-6Al-4V (Ti-64) and duplex-annealed Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) were determined. Small amounts of internal hydrogen greatly improve the SPF of the alloys. Formability at 720-900 C was evaluated by an instrumented cone-forming test with continuous monitoring of strain with time. Argon/1 pct hydrogen and argon/4 pct hydrogen gas mixtures were used for charging the alloys with hydrogen as well as for superplastic forming. Hydrogen additions lower the beta-transus temperature of alpha-beta titanium alloys, and the proportions of the alpha and beta phases required for optimum superplasticity can thus be obtained at lower temperatures in hydrogen-modified alloys than in standard alloys. The increased amount of beta phase in the hydrogen-modified titanium alloys reduces the grain growth rates at forming temperature, thus reducing the time-dependent decrease in superplastic strain rate at constant stress or the increase in flow stress at constant strain rate. Process parameters for superplastic forming of Ti-64 and Ti-6242 using argon-hydrogen gas mixtures were determined. 8 references

  8. Enhanced bake-hardening response of an Al–Mg–Si–Cu alloy with Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, M.X., E-mail: mingxingguo@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Sha, G., E-mail: gang.sha@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Jiangsu 210094 (China); Cao, L.Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liu, W.Q. [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Zhang, J.S.; Zhuang, L.Z. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-07-15

    This study reports that Zn addition greatly enhances the bake-hardening response of an Al–Mg–Si–Cu alloy. The pre-aged alloy exhibits a high strength increment of 135 MPa after paint baking. Differential scanning calorimetry, atom probe tomography and high-resolution transmission electron microscopy reveal that Zn addition and pre-aging have significant effects on the solute nanostructure formation. Zn atoms partition into solute clusters/GP zones, and reduce the activation energy of β” precipitation in the alloy. - Highlights: • Zn addition can improve the bake-hardening response of an Al–Mg–Si–Cu alloy. • Zn addition can stabilize the solute clusters/GP zones from dissolution. • Zn addition can reduce the size of clusters formed in the pre-aging treatment. • Zn partitioned into solute clusters/GP zones and β” in the Zn-containing Al alloy.

  9. Microstructures and Grain Refinement of Additive-Manufactured Ti- xW Alloys

    Science.gov (United States)

    Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian W.; Rolchigo, Matt R.; LeSar, Richard; Collins, Peter C.

    2017-07-01

    It is necessary to better understand the composition-processing-microstructure relationships that exist for materials produced by additive manufacturing. To this end, Laser Engineered Net Shaping (LENS™), a type of additive manufacturing, was used to produce a compositionally graded titanium binary model alloy system (Ti- xW specimen (0 ≤ x ≤ 30 wt pct), so that relationships could be made between composition, processing, and the prior beta grain size. Importantly, the thermophysical properties of the Ti- xW, specifically its supercooling parameter ( P) and growth restriction factor ( Q), are such that grain refinement is expected and was observed. The systematic, combinatorial study of this binary system provides an opportunity to assess the mechanisms by which grain refinement occurs in Ti-based alloys in general, and for additive manufacturing in particular. The operating mechanisms that govern the relationship between composition and grain size are interpreted using a model originally developed for aluminum and magnesium alloys and subsequently applied for titanium alloys. The prior beta grain factor observed and the interpretations of their correlations indicate that tungsten is a good grain refiner and such models are valid to explain the grain-refinement process. By extension, other binary elements or higher order alloy systems with similar thermophysical properties should exhibit similar grain refinement.

  10. New corrosion resistant alloys on the base of titanium and high-chromium steels

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Chernova, G.P.

    1975-01-01

    It is shown that stability of titanium alloys, with α-structure (OT-4, AT3,AT6) and high-strength α+β or pure β-structure (BT-14; BT-15), in hydrochloric acid solutions may be significantly improved due to additional alloying by minor additions of Pd(0,2%) similar to pure titanium. Additions of 0,2% Pd also significantly improve acid resistance of alloys of the Fe-Cr system. The highest corrosion resistance has Fe,40%Cr,0,2%Pd alloy. This alloy is stable in 20-40%H 2 SO 4 and 1% HCl at 100 deg C

  11. Viscosity of Industrially Important Zn-Al Alloys Part II: Alloys with Higher Contents of Al and Si

    Science.gov (United States)

    Nunes, V. M. B.; Queirós, C. S. G. P.; Lourenço, M. J. V.; Santos, F. J. V.; Nieto de Castro, C. A.

    2018-05-01

    The viscosity of Zn-Al alloys melts, with industrial interest, was measured for temperatures between 693 K and 915 K, with an oscillating cup viscometer, and estimated expanded uncertainties between 3 and 5 %, depending on the alloy. The influence of minor components, such as Si, Mg and Ce + La, on the viscosity of the alloys is discussed. An increase in the amount of Mg triggers complex melt/solidification processes while the addition of Ce and La renders alloys viscosity almost temperature independent. Furthermore, increases in Al and Si contents decrease melts viscosity and lead to an Arrhenius type behavior. This paper complements a previous study describing the viscosity of Zn-Al alloys with quasi-eutectic compositions.

  12. Effect of V or Zr addition on the mechanical properties of the mechanically alloyed Al-8wt%Ti alloys

    International Nuclear Information System (INIS)

    Moon, I.H.; Lee, J.H.; Lee, K.M.; Kim, Y.D.

    1995-01-01

    Mechanical alloying (MA) of Al-Ti alloy, being a solid state process, offers the unique advantage of producing homogeneous and fine dispersions of thermally stable Al 3 Ti phase, where the formation of the fine Al 3 Ti phase by the other method is restricted from the thermodynamic viewpoint. The MA Al-Ti alloys show substantially higher strength than the conventional Al alloys at the elevated temperature due to the presence of Al 3 Ti as well as Al 4 C 3 and Al 2 O 3 , of which the last two phases were introduced during MA process. The addition of V or Zr to Al-Ti alloy was known to decrease the lattice mismatch between the intermetallic compound and the aluminum matrix, and such decrease in lattice mismatching can influence positively the high temperature mechanical strength of the MA Al-Ti by increasing the resistance to dispersoid coarsening at the elevated temperature. In the present study, therefore, the mechanical behavior of the MA Al-Ti-V and Al-Ti-Zr alloys were investigated in order to evaluate the effect of V or Zr addition on the mechanical properties of the MA Al-8Ti alloy at high temperature

  13. Superplasticity behaviors of Al-Zn-Mg-Zr cold-rolled alloy sheet with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, H. [School of Materials Science and Engineering, Central South University (Light Alloy Research Institute, Central South University), Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083 (China); Pan, Q.L., E-mail: pql2016@126.com [School of Materials Science and Engineering, Central South University (Light Alloy Research Institute, Central South University), Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083 (China); Yu, X.H.; Huang, X.; Sun, X.; Wang, X.D.; Li, M.J.; Yin, Z.M. [School of Materials Science and Engineering, Central South University (Light Alloy Research Institute, Central South University), Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083 (China)

    2016-10-31

    A refined microstructure of Al-Zn-Mg-Sc-Zr alloy sheet was produced by simple hot and cold rolling to an average grain size of 3 µm. Experiments were completed in electro-fluid servo-fatigue tester and results were investigated by means of optical microscope (OM), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Superplastic deformation was conducted and superplastic ductility of ≥200% was achieved at a testing temperature range from 425 ºC to 500 ºC and relative high strain rate range of 1×10{sup −3} s{sup −1}~1×10{sup −1} s{sup −1}. The maximum elongation of 539% was obtained at 500 ºC and 1×10{sup −2} s{sup −1}. In addition, the scanning electron microscopy (SEM) and transmission electron microscope (TEM) analyses showed that the presence of Al{sub 3} (Sc, Zr) particles in pinning grain boundaries and dislocations had a great influence on the superplastic deformation. The analyses of superplastic test data calculated out the coherent strain rates sensitivity parameter of 0.43 and the average activation energy of 143.762 kJ/mol. The data interpreted that the dominant deformation mechanism was grain boundary sliding controlled by lattice self-diffusion.

  14. Effect of cerium addition on the corrosion behaviour of carbon-alloyed iron aluminides

    International Nuclear Information System (INIS)

    Sriram, S.; Balasubramaniam, R.; Mungole, M.N.; Bharagava, S.; Baligidad, R.G.

    2006-01-01

    The effect of Ce addition on the microstructure and corrosion behavior of carbon-alloyed iron aluminides Fe-20.0Al-2.0C, Fe-18.5Al-3.6C and Fe-19.2Al-3.3C-0.07Ce (in at.%) has been studied. The potentiodynamic polarization behaviour of the alloys was evaluated in freely aerated 0.25 mol/l H 2 SO 4 . A 0.05% C steel was used for comparison purposes. All the alloys exhibited active-passive behaviour in the acidic solution. The addition of Ce destroyed passivity as indicated by lower breakdown potentials in polarization studies. This has been related to the finer distribution of the carbides in the microstructure. Corrosion rates were evaluated by immersion testing. The iron aluminide with Ce addition exhibited a lower corrosion rate compared to the aluminides without Ce addition. This has been attributed to modifications in surface film with Ce addition. Scanning electron microscopy of corroded surfaces indicated that the carbon-alloyed intermetallics were susceptible to localized galvanic corrosion due to the presence of carbides in the microstructure

  15. Tem Observation Of Precipitate Structures In Al-Zn-Mg Alloys With Additions Of Cu/Ag

    Directory of Open Access Journals (Sweden)

    Watanabe K.

    2015-06-01

    Full Text Available Al-Zn-Mg alloy has been known as one of the aluminum alloys with the good age-hardening ability and the high strength among commercial aluminum alloys. The mechanical property of the limited ductility, however, is required to further improvement. In this work, three alloys, which were added Cu or Ag into the Al-Zn-Mg alloy, were prepared to compare the effect of the additional elements on the aging behavior. The content of Ag and Cu were 0.2at.% and the same as, respectively. Ag or Cu added alloy showed higher maximum hardness than base alloy. The particle shape and rod shape precipitates were observed in all alloys peak-aged at 423K. According to addition of Ag or Cu, the number density of the precipitates increased higher than that of base alloy.

  16. Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chubin [Chongqing University, College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloy, Chongqing (China); Gannan Normal University, Jiangxi Provincial Engineering Research Center for Magnesium Alloy, Ganzhou (China); Pan, Fusheng; Chen, Xianhua [Chongqing University, College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloy, Chongqing (China); Luo, Ning [Gannan Normal University, Jiangxi Provincial Engineering Research Center for Magnesium Alloy, Ganzhou (China)

    2017-06-15

    The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement. (orig.)

  17. Effect of B addition to hypereutectic Ti-based alloys

    International Nuclear Information System (INIS)

    Louzguina-Luzgina, Larissa V.; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2009-01-01

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 β-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied

  18. Microstructural characterisation of Al-Si cast alloys containing rare earth additions

    Science.gov (United States)

    Elgallad, E. M.; Ibrahim, M. F.; Doty, H. W.; Samuel, F. H.

    2018-05-01

    This paper presents a thorough study on the effect of rare earth elements, specifically La and Ce, on the microstructure characteristics of non-modified and Sr-modified A356 and A413 alloys. Several alloys were prepared by adding 1% La and 1% Ce either individually or in combination. Microstructural characterisation was carried out using optical microscopy, scanning electron microscopy and electron probe microanalysis as well as differential scanning calorimetry (DSC) analysis. The results showed that the individual and combined additions of La and Ce did not bring about any modification or even refinement in the eutectic Si structure. Moreover, these additions were found to negate the modification effect of Sr, particularly in the presence of La. The A356 and A413 alloys containing La and/or Ce displayed high phase volume fractions owing to the formation of Al-Si-La/Ce/(La,Ce) and Al-Ti-La/Ce intermetallic phases. DSC analysis revealed that the formation temperatures of these phases varied from 560 to 568 °C and 568 to 574 °C, respectively. This analysis also showed that the addition of La and Ce whether individually or in combination resulted in a depression in the eutectic temperature and a considerable increase in the solidification range, particularly for the A413 alloy.

  19. Research on hardness and tensile properties of A390 alloy with tin addition

    Science.gov (United States)

    Si, Yi

    2018-03-01

    The effect of tin content on hardness and tensile properties of A390 alloys has been discussed. The microstructure of the A390 alloy with tin addition has been surveyed by OM and investigated by SEM. Research showed that β-Sn in the alloy precipitation forms were mainly small blocks and thin strips, particles within the Al2Cu network or large blocks consisting of β-Sn and Al2Cu on Al/Si interfaces or α-Al grain boundaries. Spheroidization of the primary and eutectic silicon was improved due to Sn accretion. With the augment of element tin, hardness of casting alloy is much higher than that of alloy after heat treatment. The elongation and ultimate tensile strength (UTS) were increased in Sn addition from 0 to 1%, which is attributed to the multiple action of Sn.

  20. Improvement of magnetocaloric properties of Gd-Ge-Si alloys by alloying with iron

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available The influence of annealing of Gd5Ge2Si2Fex alloys at 1200°C and of alloying with various amount of iron on structure as well as thermal and magnetocaloric properties is investigated. It was found that annealing for 1 to 10 hours improves the entropy change, but reduces the temperature of maximum magnetocaloric effect by up to 50 K. Prolonged annealing of the Gd5Ge2Si2 alloy results in the decrease of entropy change due to the reduction of Gd5Ge2Si2 phase content. Addition of iron to the ternary alloy enhances the magnetocaloric effect, if x = 0.4 – 0.6, especially if alloying is combined with annealing at 1200°C: the peak value of the isothermal entropy change from 0 to 2 T increases from 3.5 to 11 J/kgK. Simultaneously, the temperature of maximum magnetocaloric effect drops to 250 K. The changes in magnetocaloric properties are related to the change in phase transformation from the second order for arc molten ternary alloy to first order in the case of annealed and/or alloyed with iron. The results of this study indicate that the minor addition of iron and heat treatment to Gd-Ge-Si alloys may be useful in improving the materials’ magnetocaloric properties..

  1. Additive Manufacturing of Shape Memory Alloys

    Science.gov (United States)

    Van Humbeeck, Jan

    2018-04-01

    Selective Laser Melting (SLM) is an additive manufacturing production process, also called 3D printing, in which functional, complex parts are produced by selectively melting patterns in consecutive layers of powder with a laser beam. The pattern the laser beam is following is controlled by software that calculates the pattern by slicing a 3D CAD model of the part to be constructed. Apart from SLM, also other additive manufacturing techniques such as EBM (Electron Beam Melting), FDM (Fused Deposition Modelling), WAAM (Wire Arc Additive Manufacturing), LENS (Laser Engineered Net Shaping such as Laser Cladding) and binder jetting allow to construct complete parts layer upon layer. But since more experience of AM of shape memory alloys is collected by SLM, this paper will overview the potentials, limits and problems of producing NiTi parts by SLM.

  2. Compatibility of Anti-Wear Additives with Non-Ferrous Engine Bearing Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    Investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected non-ferrous engine bearing alloys, specifically aluminum and bronze alloys that are commonly used in connecting rod end journal bearings and bushings, to gain fundamental understanding to guide future development of engine lubricants

  3. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al-Zn-Mg-Cu-Zr alloy.

    Science.gov (United States)

    Wang, Ming; Huang, Lanping; Chen, Kanghua; Liu, Wensheng

    2018-01-01

    This work focuses on controlling grain boundary structure in an ultra-high strength Al-8.6Zn-2.5Mg-2.2Cu-0.16Zr (wt.%) alloy by the combined addition of trace Cr (0.1wt.%) and Pr (0.14wt.%), and evaluating mechanical properties and localized corrosion behaviors of the alloy in the peak aged condition. The introduction of trace Cr and Pr leads to the formation of nanoscale Cr, Pr-containing Al 3 Zr and Zr-containing PrCr 2 Al 20 dispersoids which can obviously inhibit the recrystallization and sub-grain growth of the super-high strength Al-Zn-Mg-Cu alloys, and retain the deformation-recovery microstructure dominated by low-angle grain boundaries. The nearly ellipsoidal dispersoids with a size of 10-35nm are discretely distributed and precipitate free zones are hardly formed in low-angle grain boundaries. This new alloy composition exhibits better combined properties, higher resistance to stress corrosion, exfoliation corrosion and inter-granular corrosion with the undamaged strength, ductility and fracture toughness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Glass forming ability of Al–Ni–La alloys with Si addition

    International Nuclear Information System (INIS)

    Yi, J.J.; Xiong, X.Z.; Inoue, A.; Kong, L.T.; Li, J.F.

    2015-01-01

    (Al_8_5_._5Ni_9_._5La_5)_1_0_0_−_xSi_x, (Al_8_6Ni_9La_5)_1_0_0_−_xSi_x, (Al_8_6Ni_9_._5La_4_._5)_1_0_0_−_xSi_x, (Al_8_6Ni_1_0La_4)_1_0_0_−_xSi_x and (Al_8_6Ni_1_0_._5La_3_._5)_1_0_0_−_xSi_x alloys, where x = 0.0, 0.2, 0.5, 1.0, 1.5 and 2.0, were cast under the same suction casting conditions into a wedge-shaped copper mold for investigating the effect of Si addition on the glass-forming ability (GFA). The GFA of the Al–Ni–La base alloys, except for the optimal glass former (Al_8_5_._5Ni_9_._5La_5), is enhanced when a proper content of Si is added. The largest content of Si up to which GFA can be enhanced changes in the following order of the base alloys: Al_8_6Ni_9La_5, Al_8_6Ni_9_._5La_4_._5, Al_8_6Ni_1_0La_4 and Al_8_6Ni_1_0_._5La_3_._5. The enhancement of GFA due to Si addition becomes more significant as the La content decreases. This is presumably because more free Al atoms are present in the base alloy. - Highlights: • 0.2–2.0 at. % Si was added to each ternary base alloy. • Wedge-shaped samples were suction cast to obtain the glass-forming ability (GFA). • The GFA of the ternary non-optimal glass formers can be enhanced by Si addition. • The number of free-Al atoms dominates the best Si addition.

  5. Effect of nano-additives on microstructure, mechanical properties and wear behaviour of Fe–Cr–B hardfacing alloy

    International Nuclear Information System (INIS)

    Gou, Junfeng; Lu, Pengpeng; Wang, You; Liu, Saiyue; Zou, Zhiwei

    2016-01-01

    Graphical abstract: Wear rate of the hardfacing layers with different nano-additives content and the counterpart GCr15 steel balls under conditions: normal load = 15 N, rotating speed = 400 rpm, total sliding time = 20 min. - Highlights: • Nano-additives remarkably improved the microstructure of hardfacing layers. • The hardness of hardfacing layers increased linearly with the increase of nano-additives. • The wear rate of the hardfacing layer with 0.65 wt.% nano-additives decreased about 88% than that of the hardfacing layer without nano-additives. • According to observation of wear tracks of hardfacing layers, the main wear mechanism was adhesion wear. - Abstract: Fe–Cr–B hardfacing alloys with different nano-additives content were investigated. The effects of nano-additives on the microstructures of hardfacing alloy were studied by using optical microscope, scanning electron microscope, X-ray diffractometer. The hardness and the fracture toughness of hardfacing alloys were measured, respectively. The sliding wear tests were carried out using a ball-on-disc tribometer. The experimental results showed that primary carbide of hardfacing alloys was refined and its distribution became uniform with content of nano-additives increased. The hardfacing alloys are composed of Cr_7C_3, Fe_7C_3, α-Fe and Fe_2B according to the results of X-ray diffraction. The hardness of hardfacing alloys increased linearly with the increase of nano-additives. The hardness of the hardfacing alloy with 1.5 wt.% nano-additives increased 54.8% than that of the hardfacing alloy without nano-additives and reached to 1011HV. The K_I_C of the hardfacing alloy with 0.65 wt.% nano-additives was 15.4 MPam"1"/"2, which reached a maximum. The value increased 57.1% than that of the hardfacing alloy without nano-additives. The wear rates of the hardfacing layer with 0.65 wt.% and 1.0 wt.% nano-additives decreased about 88% than that of the hardfacing layer without nano-additives. The main

  6. Effect of Ce addition on the mechanical and electrochemical properties of a lithium battery shell alloy

    International Nuclear Information System (INIS)

    Zhang, Junchao; Ding, Dongyan; Xu, Xinglong; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Huang, Yuanwei; Tang, Jinsong

    2014-01-01

    Highlights: • Fabrication of Ce-free and Ce-containing Al–Cu–Mn–Fe–Mg alloy. • TEM, tensile and electrochemical characterization of the alloys. • Ce element greatly affects the precipitation of the alloy. • Ce element had great impact on the tensile strength and corrosion potential of the alloys. - Abstract: Due to severe application environment lithium battery shell of new-energy automotives requires increasing demands for using high performance aluminum alloys. In the present work, effect of Ce addition on the microstructure, tensile and electrochemical properties of an Al–Cu–Mn–Mg–Fe alloy were investigated through using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), tensile tests and electrochemical tests. The experimental results indicated that the addition of Ce element could promote the precipitation of second phases. With addition of 0.36% Ce, high melting point Al 8 Cu 4 Ce phase and many Al 20 Cu 2 Mn 3 particles could be found. In addition, the precipitation of conventionally dominant phase of Al 2 Cu could be suppressed in alloy. The Ce addition was found to result in enhanced tensile strength and improved corrosion resistance

  7. Effect of Ce addition on the mechanical and electrochemical properties of a lithium battery shell alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junchao [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Dongyan, E-mail: dyding@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Xinglong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua [Huafon NLM Al Co., Ltd, Shanghai 201506 (China); Huang, Yuanwei; Tang, Jinsong [Shanghai Huafon Materials Technology Institute, Shanghai 201203 (China)

    2014-12-25

    Highlights: • Fabrication of Ce-free and Ce-containing Al–Cu–Mn–Fe–Mg alloy. • TEM, tensile and electrochemical characterization of the alloys. • Ce element greatly affects the precipitation of the alloy. • Ce element had great impact on the tensile strength and corrosion potential of the alloys. - Abstract: Due to severe application environment lithium battery shell of new-energy automotives requires increasing demands for using high performance aluminum alloys. In the present work, effect of Ce addition on the microstructure, tensile and electrochemical properties of an Al–Cu–Mn–Mg–Fe alloy were investigated through using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), tensile tests and electrochemical tests. The experimental results indicated that the addition of Ce element could promote the precipitation of second phases. With addition of 0.36% Ce, high melting point Al{sub 8}Cu{sub 4}Ce phase and many Al{sub 20}Cu{sub 2}Mn{sub 3} particles could be found. In addition, the precipitation of conventionally dominant phase of Al{sub 2}Cu could be suppressed in alloy. The Ce addition was found to result in enhanced tensile strength and improved corrosion resistance.

  8. Characterization and Computational Modeling of Minor Phases in Alloy LSHR

    Science.gov (United States)

    Jou, Herng-Jeng; Olson, Gregory; Gabb, Timothy; Garg, Anita; Miller, Derek

    2012-01-01

    The minor phases of powder metallurgy disk superalloy LSHR were studied. Samples were consistently heat treated at three different temperatures for long times to approach equilibrium. Additional heat treatments were also performed for shorter times, to assess minor phase kinetics in non-equilibrium conditions. Minor phases including MC carbides, M23C6 carbides, M3B2 borides, and sigma were identified. Their average sizes and total area fractions were determined. CALPHAD thermodynamics databases and PrecipiCalc(TradeMark), a computational precipitation modeling tool, were employed with Ni-base thermodynamics and diffusion databases to model and simulate the phase microstructural evolution observed in the experiments with an objective to identify the model limitations and the directions of model enhancement.

  9. Effects of alloying elements on thermal desorption of helium in Ni alloys

    International Nuclear Information System (INIS)

    Xu, Q.; Cao, X.Z.; Sato, K.; Yoshiie, T.

    2012-01-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni–Si, and Ni–Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni–Si and Ni–Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni–Sn alloy.

  10. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Cao, X.Z.; Sato, K.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2012-12-15

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  11. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Science.gov (United States)

    Xu, Q.; Cao, X. Z.; Sato, K.; Yoshiie, T.

    2012-12-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  12. Effect of the addition of Al-Ti-C master alloy on the microstructure and microhardness of a cast Al-10Mg alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure and microhardness of a cast Al-10wt%Mg (henceforth Al-l0Mg) alloy with 0.2wt% addition of Al-5Ti-0.25C master alloy were compared with those of a refiner-free alloy of similar chemical composition.It was found that this level of the master alloy addition not only caused an effective grain refinement, but also caused a significant increase in the microhardness of the Al-10Mg alloy.Microchemical analysis revealed that TiC particles existed in the grain center.The relationship between the holding time and grain size was also studied.It shows that the grain refining efficiency is faded observably with the holding time.This is explained in terms of the instability of TiC particles.

  13. Microstructural characterization aluminium alloys from the addition of boron

    International Nuclear Information System (INIS)

    Nunes, A.G.P.; Pipano, T.F.; Mota, M.A.; Mariano, N.A.; Ramos, E.C.T.

    2014-01-01

    In the electrical industry, the aluminum becomes attractive because it has excellent characteristics for transmitting electricity. The liquid aluminum has in its composition transition elements (zirconium, titanium, vanadium and chromium) that interfere negatively on the quality of the product. The addition of aluminum-boron alloys have been used to remove transition metals through the formation of borides, enabling an increase in electrical conductivity. However, no detailed reports of reactions between boron, transition metals and primary aluminum engines. However, the objective is to determine the stoichiometric composition that enables an increase in electrical conductivity of an aluminum alloy. Samples with different concentrations of boron were characterized by optical emission spectrometry, electrical conductivity and X-ray diffraction. The addition of boron in excess reduces the time in the formation of borides, and enable an increase in electrical conductivity. (author)

  14. Dry sliding wear behaviour of Al-12Si-4Mg alloy with cerium addition

    International Nuclear Information System (INIS)

    Anasyida, A.S.; Daud, A.R.; Ghazali, M.J.

    2010-01-01

    The purpose of this work is to understand the effect of cerium addition on wear resistance behaviour of as-cast alloys. Al-12Si-4 Mg alloys with 1-5 wt% cerium addition were prepared using the casting technique. A sliding wear test was carried out under applied loads of 10 N, 30 N and 50 N at a fixed sliding speed of 1 m/s using a pin-on-disc configuration. The wear test was conducted in dry conditions at room temperature of ∼25 o C. Detailed analysis of the microstructure, worn surface, collected debris and microhardness was undertaken in order to investigate the differences between the as-cast alloys with different levels of cerium addition. The addition of 1-5 wt% cerium was found to lead to the precipitation of intermetallic phases (Al-Ce), resulting a needle-like structures. Increasing cerium content up to 2 wt% improved both wear resistance and microhardness of as-cast alloys. Addition of more than 2 wt% cerium, however, led to a decrease in microhardness, resulting in lower wear resistance of the alloys. Moderate wear was observed at all loads, with specific wear rates (K') ranging from 6.82 x 10 -5 with 2 wt% Ce at applied load of 50 N to 21.48 x 10 -5 mm 3 /N m without added Ce at an applied load of 10 N. Based on K' ranges, the as-cast alloys exhibited moderate wear regimes, and the mechanism of wear is a combination of abrasion and adhesion. Alloy containing 2 wt% Ce, with the highest hardness and lowest K' value, showed the greatest wear resistance.

  15. The effects of minor alloy modifications and heat treatment on the microstructure and creep rupture behavior of 2.25Cr-1Mo Steel

    International Nuclear Information System (INIS)

    Todd, J.A.; Chung, D.W.; Parker, E.R.

    1983-01-01

    The effects of alloy additions on the microstructure of simulated cooled and tempered 2.25Cr-1Mo steels have been studied using transmission electron microscopy. Carbide precipitation sequences have been identified in the modification 3Cr-1Mo-1Mn-1Ni and compared to those in 2.25Cr-1Mo steels modified with Mn and Ni and also with Ti, V and B. The influence of minor compositional changes on the creep rupture behavior of 2.25Cr-1Mo steel has been studied at 500 C, 560 C, and 600 C. The most significant effect of alloy modifications on creep properties resulted from additions of Mn and Cr. Preliminary studies show that 1% Mn and 0.5Mn + 1Ni + 0.75Cr additions significantly reduce creep strength at all three temperatures for tests up to 2000 hours duration. The 3Cr-1Mo-1Mn-1Ni steel showed improvements in rupture ductility at all temperatures when compared with the base 2.25Cr-1Mo steel and the manganese-nickel modifications. Plots of the Larson-Miller parameter for both these modifications lay within the scatter band for commercial 2.25Cr-1Mo steels

  16. Effect of a Minor Sr Modifier on the Microstructures and Mechanical Properties of 7075 T6 Al Alloys

    Directory of Open Access Journals (Sweden)

    Shaoming Ma

    2017-01-01

    Full Text Available The influence of a minor strontium (Sr modifier on the microstructures and mechanical properties of 7075 Al alloys was investigated in this paper. The grain size of cast 7075 Al alloys was refined from 157 μm to 115 μm, 108 μm, and 105 μm after adding 0.05 wt. %, 0.1 wt. %, and 0.2 wt. % Sr, respectively. The extruded 7075 Al alloys was refined with different degrees of Sr modifier. The mechanical properties were optimum when adding 0.1 wt. % Sr. The ultimate tensile strength (σb increased from 573 to 598 MPa and the elongation-to-failure (δf was raised from 19.5% to 24.9%. The microhardness increased from 182 to 195 Hv. The tensile fracture surface via scanning electron microscopy (SEM revealed a transition from brittle fracture to ductile fracture as Sr increased from 0 wt. % to 0.2 wt. %. The result in this paper proved that the modifier can improve the properties of 7075 Al alloy.

  17. Effect on strength of ternary alloying additions in L12 intermetallics

    International Nuclear Information System (INIS)

    Wu Yuanpang.

    1991-01-01

    The thermodynamic properties of {111} antiphase boundaries (APBs) as well as the site preference of ternary additions in an A 3 B intermetallic with L1 2 structure are studied, using a thermodynamic model. A survey of the results from a variety of ternary alloying additions to Ni 3 Al has shown that there is a conflict in the actual role which solid solution strengthening plays in the athermal increment of yield strength. For instance, a good quantitative agreement with linear concentration law is observed only in alloys with stoichiometric compositions but not in the general case of non-stoichiometric alloys. In the light of the possibility that micro-segregation could explain the experimental discrepancy, the author extends the binary solid solution strengthening theory to the ternary system in an L1 2 structure for the four real systems of Ni-Al-Si, Ni-Al-Ti, Ni-Al-Hf, and Ni-Al-V. It is found that ternary site preference plays an important role in the ternary solid solution strengthening theory with L1 2 structure. Good quantitative agreement was found between the calculated and experimentally measured strength for both stoichiometric and nonstoichiometric alloys

  18. The Properties of 7xxx Series Alloys Formed by Alloying Additions

    Directory of Open Access Journals (Sweden)

    Kwak Z.

    2015-06-01

    Full Text Available Currently there is a constant development in the field of aluminium alloys engineering. This results from, i.a., better understanding of the mechanisms that direct strengthening of these alloys and the role of microalloying. Now it is microalloying in aluminum alloys that is receiving a lot of attention. It affects substantially the macro- and microstructure and kinetics of phase transformation influencing the properties during production and its exploitation. 7xxx series aluminum alloys, based on the Al-Zn-Mg-Cu system, are high-strength alloys, moreover, the presence of Zr and Sr further increases their strength and improves resistance to cracking.

  19. Modification of anomalous deposition of Zn-Ni alloy by using tin additions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zeyang; O`Keefe, T.J. [Missouri Univ., Rolla, MO (United States). Dept. of Metallurgical Engineering

    1997-11-25

    One of the common examples of anomalous deposition in electrolytic processing is the Zn-Ni alloy coating system. These alloys, in the range 10-15% Ni, are also of commercial interest in electrogalvanizing for protecting steel from corrosion while retaining good formability, weldability and paintability. The primary objective of this research was to obtain a better fundamental understanding of anomalous deposition and to identify ways to modify its influence. Specifically, the effects of tin additions on the composition, structure and surface morphology of Zn-Ni alloy deposits from electrolyte containing 80 g l{sup -1} Zn and 10 g l{sup -1} Ni were studied. Previous work had shown that low concentrations (parts per million) of cations such as antimony and arsenic were very effective in countering the anomalous deposition and increasing the relative nickel content of the deposits. Unfortunately, the morphology and current efficiency were adversely affected by use of these additives. It was found that the addition of tin also appreciably increased the nickel content of the alloy deposit, as well as giving smooth, dense deposits with a current efficiency of about 90%. The surface morphology of the deposits was correlated with the amount of tin added. The limited electrochemical impedance spectroscopy tests conducted showed that the low concentrations of tin did lower the charge transfer resistance of the reaction. Overall, the results were promising but considerably more research is needed to elucidate the basic factors that influence zinc alloy electrocrystallization mechanisms. (orig.) 27 refs.

  20. Fe-15Ni-13Cr austenitic stainless steels for fission and fusion reactor applications. I. Effects of minor alloying elements on precipitate phases in melt products and implication in alloy fabrication

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.

    2000-01-01

    In an effort to develop alloys for fission and fusion reactor applications, 28Fe-15Ni-13Cr base alloys were fabricated by adding various combinations of the minor alloying elements, Mo, Ti, C, Si, P, Nb, and B. The results showed that a significant fraction of undesirable residual oxygen was removed as oxides when Ti, C, and Si were added. Accordingly, the concentrations of the latter three essential alloying elements were reduced also. Among these elements, Ti was the strongest oxide former, but the largest oxygen removal (over 80%) was observed when carbon was added alone without Ti, since gaseous CO boiled off during melting. This paper recommends an alloy melting procedure to mitigate solute losses while reducing the undesirable residual oxygen. In this work, 14 different types of precipitate phases were identified. Compositions of precipitate phases and their crystallographic data are documented. Finally, stability of precipitate phases was examined in view of Gibbs free energy of formation

  1. The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Man, Jin; Jing, Li; Jie, Shao Guang

    2007-01-01

    The effects of Cu addition on the microstructure and thermal stability of 6082 Al-Mg-Si alloys were investigated. The results show the Q' precipitates are formed when aged at 170 o C for 4 h in 6082 alloy with 0.6% Cu addition. The hardness value of the alloy with 0.6% Cu is always distinctly higher than that of the alloy without Cu during isothermal treatment at 250 o C. Based on the TEM and three-dimensional atom probe (3DAP) results, the thermal stability of the 6082 alloys with Cu addition is discussed with respect to the distribution of Cu

  2. Glass forming ability of Al–Ni–La alloys with Si addition

    Energy Technology Data Exchange (ETDEWEB)

    Yi, J.J.; Xiong, X.Z. [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Inoue, A. [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); WPI-Advanced Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Kong, L.T. [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, J.F., E-mail: jfli@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-25

    (Al{sub 85.5}Ni{sub 9.5}La{sub 5}){sub 100−x}Si{sub x}, (Al{sub 86}Ni{sub 9}La{sub 5}){sub 100−x}Si{sub x}, (Al{sub 86}Ni{sub 9.5}La{sub 4.5}){sub 100−x}Si{sub x}, (Al{sub 86}Ni{sub 10}La{sub 4}){sub 100−x}Si{sub x} and (Al{sub 86}Ni{sub 10.5}La{sub 3.5}){sub 100−x}Si{sub x} alloys, where x = 0.0, 0.2, 0.5, 1.0, 1.5 and 2.0, were cast under the same suction casting conditions into a wedge-shaped copper mold for investigating the effect of Si addition on the glass-forming ability (GFA). The GFA of the Al–Ni–La base alloys, except for the optimal glass former (Al{sub 85.5}Ni{sub 9.5}La{sub 5}), is enhanced when a proper content of Si is added. The largest content of Si up to which GFA can be enhanced changes in the following order of the base alloys: Al{sub 86}Ni{sub 9}La{sub 5}, Al{sub 86}Ni{sub 9.5}La{sub 4.5}, Al{sub 86}Ni{sub 10}La{sub 4} and Al{sub 86}Ni{sub 10.5}La{sub 3.5}. The enhancement of GFA due to Si addition becomes more significant as the La content decreases. This is presumably because more free Al atoms are present in the base alloy. - Highlights: • 0.2–2.0 at. % Si was added to each ternary base alloy. • Wedge-shaped samples were suction cast to obtain the glass-forming ability (GFA). • The GFA of the ternary non-optimal glass formers can be enhanced by Si addition. • The number of free-Al atoms dominates the best Si addition.

  3. Hardening mechanisms of spray formed Al-Zn-Mg-Cu alloys with scandium and other elemental additions

    International Nuclear Information System (INIS)

    Sharma, M.M.; Amateau, M.F.; Eden, T.J.

    2006-01-01

    The hardening mechanisms in spray formed Al-Zn-Mg-Cu alloys with additions of chromium, zinc and scandium were studied. The microstructure of the spray formed alloys was analyzed by transmission electron microscopy. A range of tensile strengths were achieved, and varied based on elemental additions, and second phase particle strengthening. To explain the significantly higher strength in one alloy with scandium, theoretical results due to the yield stress of Al-Zn-Mg-Cu alloys as a function of volume fraction and precipitate particle size, were compared to experimental data. Both the possibilities of coherency and order strengthening are examined. The significant additional hardening achieved in the alloy with scandium is attributed to small ordered particles of Al 3 Sc, which precipitated during aging

  4. Effects of Sn addition on the microstructure and tensile properties of AX55 alloys

    Science.gov (United States)

    Qiu, K. Q.; Huang, P.

    2018-04-01

    The microstructures and tensile properties at both room and elevated temperatures for both the as-cast and as-aged Mg-5Al-5Ca (AX55) alloy with 0–2 wt% Sn addition were studied. The results indicate that the α-Mg dendrite is gradually refined and the interdendritic Al2Ca and Mg2Ca intermetallics become more connected with Sn addition. The as-cast AX55-1Sn alloy shows optimal ultimate tensile strength (UTS) at testing temperature from 25 to 225 °C. After T61 and T62 heat treatment, the eutectic-lamellar microstructure of the as-cast alloys tends to be spheroidized and distributed uniformly along the grain boundaries. While the alloys with higher Sn content show higher density of granulated and needle-shaped Al2Ca phases precipitated into α-Mg matrix, which results in the increase of UTS, yield strength (YS), elongation and microhardness with Sn addition. The morphology of CaMgSn phase can be improved by T62 treatment, which makes as-aged AX55-2.0Sn alloy exhibit a smaller decrease rate of the UTS at temperature up to 225 °C. The heat resistance of different heat-resistant magnesium alloys were compared and discussed by using the decrease rate of the UTS.

  5. The development of additive manufacturing technique for nickel-base alloys: A review

    Science.gov (United States)

    Zadi-Maad, Ahmad; Basuki, Arif

    2018-04-01

    Nickel-base alloys are an attractive alloy due to its excellent mechanical properties, a high resistance to creep deformation, corrosion, and oxidation. However, it is a hard task to control performance when casting or forging for this material. In recent years, additive manufacturing (AM) process has been implemented to replace the conventional directional solidification process for the production of nickel-base alloys. Due to its potentially lower cost and flexibility manufacturing process, AM is considered as a substitute technique for the existing. This paper provides a comprehensive review of the previous work related to the AM techniques for Ni-base alloys while highlighting current challenges and methods to solving them. The properties of conventionally manufactured Ni-base alloys are also compared with the AM fabricated alloys. The mechanical properties obtained from tension, hardness and fatigue test are included, along with discussions of the effect of post-treatment process. Recommendations for further work are also provided.

  6. Microstructures and Properties Evolution of Al-Cu-Mn Alloy with Addition of Vanadium

    Directory of Open Access Journals (Sweden)

    Fansheng Meng

    2016-12-01

    Full Text Available The effect of the vanadium addition on the microstructure, the precipitation behavior, and the mechanical properties of the Al-5.0Cu-0.4Mn alloy has been studied. The as-cast Al-5.0Cu-0.4Mn alloy was produced by squeeze casting and the heat treatment was carried out following the standard T6 treatment. It is shown that, with the addition of V, grain refinement of aluminum occurred. During heat treatment, the addition of V accelerates the precipitation kinetics of θ′ (Al2Cu phase along the grain boundaries, and promotes the growth rate of the θ′ in the α(Al matrix. Meanwhile, the addition of V retards the precipitation of T (Al20Cu2Mn3 phase. The tensile strength of the Al-5.0Cu-0.4Mn alloy increases with the increase of V content, which can be explained by combined effects of the solid solution strengthening and precipitate strengthening. However, excessively high V addition deteriorates the mechanical properties by forming brittle coarse intermetallic phases.

  7. Effect of Pr addition on microstructure and mechanical properties of AZ61 magnesium alloy

    Directory of Open Access Journals (Sweden)

    You Zhiyong

    2014-03-01

    Full Text Available To improve the strength, hardness and heat resistance of Mg-6Al-1Zn (AZ61 alloy, the effects of Pr addition on the as-cast microstructure and mechanical properties of AZ61 alloy were investigated at room and elevated temperatures by means of Brinell hardness measurement, optical microscope (OM, scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, X-ray diffractometer (XRD and DNS100 electronic universal testing machine. The results show that the microstructures of Pr-containing AZ61 alloys were refined, with primary β-Mg17Al12 phase distributed homogeneously. When the addition of Pr is up to 1.2wt.%, the β phase becomes finer, and new needle-like or short-rod shaped Al11Pr3 phase and blocky AlPr phase appear. As a result, optimal tensile properties are obtained. However, greater than 1.2wt.% Pr addition leads to poorer mechanical properties due to the aggregation of the needle-like phase and large size of grains. The present research findings provide a new way for strengthening of magnesium alloys at room and elevated temperatures, and a method of producing thermally-stable AZ61 magnesium alloy.

  8. Mechanical properties of Fe3Al-based alloys with addition of carbon, niobium and titanium

    International Nuclear Information System (INIS)

    Zhang Zhengrong; Liu Wenxi

    2006-01-01

    Several Fe 3 Al-based iron aluminides with the addition of alloying elements carbon, niobium and titanium were produced by vacuum induction melting (VIM) and hot spinning forging. Analytic techniques including transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used in studying the microstructure and fracture manner of these alloys. The results show that due to the addition of alloying elements, the superlattice dislocations tend towards multiple slipping, leaving behind on their slip plane ribbons of square-shaped slip-induced antiphase boundaries. The elongation of Fe 3 Al in tension at room temperature increased to about 10% by the addition of suitable alloying elements, the usage of thermo-mechanical processing that has the function of refining grains and substructures, and subsequent annealing

  9. Effect of Zn addition on microstructure and mechanical properties of an Al–Mg–Si alloy

    Directory of Open Access Journals (Sweden)

    Lizhen Yan

    2014-04-01

    Full Text Available In the present work, an Al–0.66Mg–0.85Si–0.2Cu alloy with Zn addition was investigated by electron back scattering diffraction (EBSD, high resolution electron microscopy (HREM, tensile and Erichsen tests. The mechanical properties of the alloy after pre-aging met the standards of sheet forming. After paint baking, the yield strength of the alloy was improved apparently. GP(II zones and ηʹ phases were formed during aging process due to Zn addition. With the precipitation of GP zones, β″ phases, GP(II zones and ηʹ phases, the alloys displayed excellent mechanical properties.

  10. Influence of boron addition on the grain refinement and mechanical properties of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Suresh, M.; Srinivasan, A.; Ravi, K.R.; Pillai, U.T.S.; Pai, B.C.

    2009-01-01

    This article reports the effect of boron addition on the grain refinement efficiency and mechanical properties of AZ91 magnesium alloy. The results show that the addition of boron in the form of Al-4B master alloy, significantly refines the grain size of AZ91 alloy. This refinement is due to the presence of AlB 2 particles, which act as potential nucleants for Mg grains. Improved mechanical properties are obtained with the addition of boron due to the finer grains.

  11. Correlative change of corrosion behavior with the microstructure of AZ91 Mg alloy modified with Y additions

    International Nuclear Information System (INIS)

    Jia, Ruiling; Zhang, Ming; Zhang, Lina; Zhang, Wei; Guo, Feng

    2015-01-01

    Highlights: • The effect of Y addition into the AZ91 Mg alloys was investigated. • Initial stage of corrosion was studied by in-situ 3D digital microscopy observation. • The potential difference was investigated by Kelvin probe force microscopy. • The effect of Y addition on the corrosion mechanisms of AZ91 alloy was studied. - Abstract: Microstructure characterization of the AZ91 magnesium alloys with or without rare earth element yttrium (Y) has been revealed by SEM, EDS and EPMA. Some Y-rich phases can be found in the magnesium alloys with Y additions. The fraction of β-Mg 17 Al 12 phase obvious decreases and turns into granular distribution with the increase of Y addition instead of original wet distribution along grain boundaries. The results of the potentiodynamic polarization tests show that the corrosion resistance of AZ91 alloy is improved with appropriate Y additions. But an in-situ observation of 3D digital microscopy for the initial stage of corrosion of the magnesium alloy with 0.9%Y addition shows that Y-rich phases act as cathodic effect and the α phases in the vicinity of them acting as anode are corroded. So the additions of Y have a beneficial effect that can depress the overall corrosion of AZ91 alloy, whereas its harmful effect is related to Y-rich phases because they present the highest Volta potential difference from the adjacent matrix and they can drive galvanic corrosion

  12. Correlative change of corrosion behavior with the microstructure of AZ91 Mg alloy modified with Y additions

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Ruiling, E-mail: jrl014014@163.com [College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051 (China); Zhang, Ming; Zhang, Lina [College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051 (China); Zhang, Wei [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China); Guo, Feng [College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051 (China)

    2015-06-15

    Highlights: • The effect of Y addition into the AZ91 Mg alloys was investigated. • Initial stage of corrosion was studied by in-situ 3D digital microscopy observation. • The potential difference was investigated by Kelvin probe force microscopy. • The effect of Y addition on the corrosion mechanisms of AZ91 alloy was studied. - Abstract: Microstructure characterization of the AZ91 magnesium alloys with or without rare earth element yttrium (Y) has been revealed by SEM, EDS and EPMA. Some Y-rich phases can be found in the magnesium alloys with Y additions. The fraction of β-Mg{sub 17}Al{sub 12} phase obvious decreases and turns into granular distribution with the increase of Y addition instead of original wet distribution along grain boundaries. The results of the potentiodynamic polarization tests show that the corrosion resistance of AZ91 alloy is improved with appropriate Y additions. But an in-situ observation of 3D digital microscopy for the initial stage of corrosion of the magnesium alloy with 0.9%Y addition shows that Y-rich phases act as cathodic effect and the α phases in the vicinity of them acting as anode are corroded. So the additions of Y have a beneficial effect that can depress the overall corrosion of AZ91 alloy, whereas its harmful effect is related to Y-rich phases because they present the highest Volta potential difference from the adjacent matrix and they can drive galvanic corrosion.

  13. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effect of La addition on the microstructure and mechanical properties of Mg–6 wt% Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yuzhou, E-mail: duyuzhou@xaut.edu.cn [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, Mingyi, E-mail: zhenghe@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Qiao, Xiaoguang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Peng, Wenqiang [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999 (China); Jiang, Bailing [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China)

    2016-09-15

    The Mg–6 wt% Zn alloys microalloyed with different amounts of La were cast and extruded. The second phase in the as-cast Mg–Zn alloy is Mg{sub 4}Zn{sub 7}, which was replaced by Mg–Zn–La intermetallics with orthorhombic structure after La addition. Microalloying with La refined the grain size of dynamic recrystallization slightly, which was due to La solute atom in α-Mg alloy. Addition of La weakened the texture and gave rise to the formation of non-basal texture component, attributing to the existence of La in the form of solute atoms in matrix. The ductility was enhanced significantly by adding La to Mg–6 wt% Zn alloy, while the strength was reduced. Such phenomenon was related to the weakening texture of the La containing alloys. The Mg–6Zn–0.2La (wt%) alloy exhibited a superior ductility with the elongation-to-fracture up to 35%. However, with further increasing of La content to 1 wt%, the strength of the as-extruded Mg–Zn–La alloys was not improved but the ductility was reduced, suggesting that small addition of La is preferred for the improvement of mechanical properties.

  15. Effect of Ca and Y additions on oxidation behavior of magnesium alloys at high temperatures

    Institute of Scientific and Technical Information of China (English)

    FAN Jianfeng; YANG Changlin; XU Bingshe

    2012-01-01

    Oxidation and ignition of magnesium alloys at elevated temperature were successfully retarded by additions of Y and Ca.which could be melted at 1173 K in air without any protection.Thermogravimetric measurements in dry air revealed that the oxidation dynamics curves of Mg-2.5Ca alloy and Mg-3.5Y-0.79Ca alloy at high temperatures followed the parabolic-line law or the ubic-line law.X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis indicated that the oxide film on the surface of Mg-3.5Y-0.79Ca and Mg-2.5Ca alloys exhibited a duplex structure.which agreed with the results of thermodynamic analysis.By comparison,the ignition-proof effect of the combination addition of Y and Ca was better than that of the single addition of Ca.

  16. Influence of niobium addition on the high temperature mechanical properties of a centrifugally cast HP alloy

    International Nuclear Information System (INIS)

    Andrade, A.R.; Bolfarini, C.; Ferreira, L.A.M.; Vilar, A.A.A.; Souza Filho, C.D.; Bonazzi, L.H.C.

    2015-01-01

    The influence of niobium addition on the mechanical properties at high temperature of HP alloy has been investigated. Two HP alloys were centrifugally cast with a similar chemical composition differing only in the niobium content. Low strain rate high temperature tensile tests and creep-rupture tests were performed in the range of 900–1100 °C, and the results compared between the alloys. According to the results, the high temperature mechanical behavior of both alloys is controlled by several factors like solid solution, network of eutectic carbides, intradendritic precipitation and dendrite spacing. A significant increase in the mechanical properties for the HP alloy with niobium addition was found within the temperature range of 900–1050 °C. Beyond this temperature the mechanical behavior of both alloys is basically the same

  17. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  18. Continuous Solidification of Immiscible Alloys and Microstructure Control

    Science.gov (United States)

    Jiang, Hongxiang; Zhao, Jiuzhou

    2018-05-01

    Immiscible alloys have aroused considerable interest in last few decades due to their excellent physical and mechanical characteristics as well as potential industrial applications. Up to date, plenty of researches have been carried out to investigate the solidification of immiscible alloys on the ground or in space and great progress has been made. It is demonstrated that the continuous solidification technique have great future in the manufacturing of immiscible alloys, it also indicates that the addition of surface active micro-alloying or inoculants for the nucleation of the minority phase droplets and proper application of external fields, e.g., static magnetic field, electric current, microgravity field, etc. may promote the formation of immiscible alloys with an expected microstructure. The objective of this article is to review the research work in this field.

  19. Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al–4.5 wt.%Mn–x wt.%Be (x = 0, 1, 3, 5) alloys

    International Nuclear Information System (INIS)

    Öz, Turan; Karaköse, Ercan; Keskin, Mustafa

    2013-01-01

    Highlights: • Thermal and mechanical properties of Al–Mn–Be alloys were investigated. • IQC Al–Mn–Be alloys were synthesized by the CS and MS techniques. • The volume fraction of IQC increases continuously with Be content. • The melting points of the QC i-phase were determined between 652 °C and 675 °C. • The maximum H V and σ values were found to be 124 kg/mm 2 and 458 MPa with the addition of 5% Be. - Abstract: The influence of beryllium (Be) addition on the quasicrystal-forming ability, thermal and mechanical properties of Al–4.5 wt.%Mn–x wt.%Be (x = 0, 1, 3, 5) alloys was investigated in this study. Quasicrystalline Al–Mn–Be alloys were synthesized by the conventionally casting and melt spinning techniques. The microstructures of the samples were characterized by scanning electron microscopy (SEM) and the phase composition was identified by X-ray diffractometry (XRD). The phase transition during the solidification process was studied by differential scanning calorimetry (DSC) and differential thermal analysis (DTA) under an Ar atmosphere. The mechanical properties of the conventionally solidified (CS) and melt-spun (MS) samples were measured by a Vickers micro-hardness indenter and tensile-strength tests. The Al–4.5 wt.%Mn alloy has a hexagonal structure and minor dendritic icosahedral quasicrystalline phase (IQC) precipitates surrounded by an α-Al matrix. Addition of Be into the Al–4.5 wt.%Mn alloy generates intermetallic Be 4 AlMn and IQC phases with the extinction of the hexagonal phase, and the fraction of IQC increases continuously with the increase in Be content. A considerable improvement in microhardness and tensile strength values was observed due to the addition of Be in different percentages into the composition

  20. Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy

    International Nuclear Information System (INIS)

    Sarkar, R.; Ghosal, P.; Muraleedharan, K.; Nandy, T.K.; Ray, K.K.

    2011-01-01

    Highlights: → Development of β Ti alloys with B and C addition for improved mechanical properties. → Detailed characterization of microstructural constituents using electron microscopy. → Microstructure-mechanical property correlation in this new class of alloys. → Strengthening mechanism in β Ti alloy in the presence of hard and non-deformable phases. - Abstract: A detailed microstructure-mechanical property correlation was carried out in beta titanium alloys (Ti-15V-3Al-3Sn-3Cr) with boron and carbon additions. The alloys were prepared by non-consumable vacuum arc melting followed by hot rolling. Microstructural characterization was carried out using an optical microscope, a scanning electron microscope (SEM), a transmission electron microscope (TEM) and a high resolution TEM (HRTEM). Addition of boron and carbon resulted in the precipitation of TiB and TiC, respectively, and these phases acted as reinforcements. Evaluation of mechanical properties in solution treated and solution treated plus aged condition showed strengthening in the boron and carbon containing alloy with respect to the base. Strengthening in solution treated condition was attributed to a synergistic effect of grain refinement and load transfer in the presence of non-deformable phases. On the other hand, higher strength in boron and carbon containing alloys on aging was ascribed to the presence of finer aged microstructures.

  1. Microstructural discovery of Al addition on Sn–0.5Cu-based Pb-free solder design

    International Nuclear Information System (INIS)

    Koo, Jahyun; Lee, Changsoo; Hong, Sung Jea; Kim, Keun-Soo; Lee, Hyuck Mo

    2015-01-01

    It is important to develop Pb-free solder alloys suitable for automotive use instead of traditional Sn–Pb solder due to environmental regulations (e.g., Restriction of Hazardous Substances (RoHS)). Al addition has been spotlighted to enhance solder properties. In this study, we investigated the microstructural change of Sn–0.5Cu wt.% based Pb-free solder alloys with Al addition (0.01–0.05 wt.%). The small amount of Al addition caused a remarkable microstructural change. The Al was favored to form Cu–Al intermetallic compounds inside the solder matrix. We identified the Cu–Al intermetallic compound as Cu_3_3Al_1_7, which has a rhombohedral structure, using EPMA and TEM analyses. This resulted in refined Cu_6Sn_5 networks in the Sn–0.5Cu based solder alloy. In addition, we conducted thermal analysis to confirm its stability at a high temperature of approximately 230 °C, which is the necessary temperature range for automotive applications. The solidification results were substantiated thermodynamically using the Scheil solidification model. We can provide criteria for the minimum aluminum content to modify the microstructure of Pb-free solder alloys. - Graphical abstract: The minor Al additions refined eutectic Cu_6Sn_5 IMC networks on the Sn–0.5Cu based solder alloys. The microstructure was dramatically changed with the minor Al addition. - Highlights: • We observed dramatic microstructure-change with Al additions. • We defined Cu_3_3Al_1_7 IMC with Al additions using TEM analysis. • We investigated grain refinement with Al additions using EBSD. • We discussed the refinement based on Scheil solidification model.

  2. Microstructural discovery of Al addition on Sn–0.5Cu-based Pb-free solder design

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jahyun; Lee, Changsoo [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Hong, Sung Jea [MK Electron Co., Ltd., Yongin Cheoin-gu 316-2 (Korea, Republic of); Kim, Keun-Soo, E-mail: keunsookim@hoseo.edu [Department of Display Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-11-25

    It is important to develop Pb-free solder alloys suitable for automotive use instead of traditional Sn–Pb solder due to environmental regulations (e.g., Restriction of Hazardous Substances (RoHS)). Al addition has been spotlighted to enhance solder properties. In this study, we investigated the microstructural change of Sn–0.5Cu wt.% based Pb-free solder alloys with Al addition (0.01–0.05 wt.%). The small amount of Al addition caused a remarkable microstructural change. The Al was favored to form Cu–Al intermetallic compounds inside the solder matrix. We identified the Cu–Al intermetallic compound as Cu{sub 33}Al{sub 17}, which has a rhombohedral structure, using EPMA and TEM analyses. This resulted in refined Cu{sub 6}Sn{sub 5} networks in the Sn–0.5Cu based solder alloy. In addition, we conducted thermal analysis to confirm its stability at a high temperature of approximately 230 °C, which is the necessary temperature range for automotive applications. The solidification results were substantiated thermodynamically using the Scheil solidification model. We can provide criteria for the minimum aluminum content to modify the microstructure of Pb-free solder alloys. - Graphical abstract: The minor Al additions refined eutectic Cu{sub 6}Sn{sub 5} IMC networks on the Sn–0.5Cu based solder alloys. The microstructure was dramatically changed with the minor Al addition. - Highlights: • We observed dramatic microstructure-change with Al additions. • We defined Cu{sub 33}Al{sub 17} IMC with Al additions using TEM analysis. • We investigated grain refinement with Al additions using EBSD. • We discussed the refinement based on Scheil solidification model.

  3. Effect of Cu addition on microstructure and corrosion behavior of spray-deposited Zn–30Al alloy

    International Nuclear Information System (INIS)

    Wang Feng; Xiong Baiqing; Zhang Yongan; Liu Hongwei; Li Zhihui; Li Xiwu; Qu Chu

    2012-01-01

    Highlights: ► Zn–30Al–xCu alloys were synthesized by the spray atomization and deposition technique. ► Immersion test and electrochemical measurements have been used to estimate the corrosion rate and the behavior. ► The result indicates that the 1 wt.% Cu addition displays superior corrosion resistance. - Abstract: In this study, one binary Zn–30Al and three ternary Zn–30Al–Cu alloys were synthesized by the spray atomization and deposition technique. The microstructures of the spray-deposited alloys were investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD). Immersion test, potentiodynamic polarization and electrochemical impedance measurements have been used to estimate the corrosion rate and the behavior. The results indicate that the 1 wt.% Cu addition to spray-deposited Zn–30Al alloy does not make significant change in microstructure. However, with the 2, 4 wt.% Cu additions to the alloy, some ε-CuZn 4 compounds with particle or irregular shapes were observed on the grain boundaries in the microstructures. Immersion test and electrochemical measurements confirmed that the 1 wt.% Cu addition displays superior corrosion resistance, whereas the 2, 4 wt.% Cu additions have a baneful effect on the corrosion behavior.

  4. SCC susceptibility of cold-worked stainless steel with minor element additions

    International Nuclear Information System (INIS)

    Nakano, Junichi; Nemoto, Yoshiyuki; Tsukada, Takashi; Uchimoto, Tetsuya

    2011-01-01

    To examine the effects of minor elements on stress corrosion cracking (SCC) susceptibility of low carbon stainless steels with a work hardened layer, a high purity type 304 stainless steel was fabricated and minor elements, Si, S, P, C or Ti, were added. A work hardened layer was introduced by shaving on the surface of stainless steels. The specimens were exposed to a boiling 42% MgCl 2 solution for 20 h and the number and the length of initiated cracks were examined. SCC susceptibility of the specimen with P was the highest and that of the specimen with C was the lowest in all specimens. By magnetic force microscope examination, a magnetic phase expected to be a martensitic phase was detected near the surface. Since corrosion resistance of martensite is lower than that of austenite, the minor elements additions would affect SCC susceptibility through the amount of the transformed martensite.

  5. SCC susceptibility of cold-worked stainless steel with minor element additions

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Junichi, E-mail: nakano.junnichi@jaea.go.jp [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Nemoto, Yoshiyuki, E-mail: yoshiyuki.nemoto@oecd.org [OECD Nuclear Energy Agency, Le Seine St-Germain, 12, boulevard des Iles, F-92130 Issy-les-Moulineaux (France); Tsukada, Takashi, E-mail: tsukada.takashi@jaea.go.jp [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Uchimoto, Tetsuya, E-mail: uchimoto@ifs.tohoku.ac.jp [Tohoku University, Aoba-ku, Sendai-shi, Miyagi-ken 980-8577 (Japan)

    2011-10-01

    To examine the effects of minor elements on stress corrosion cracking (SCC) susceptibility of low carbon stainless steels with a work hardened layer, a high purity type 304 stainless steel was fabricated and minor elements, Si, S, P, C or Ti, were added. A work hardened layer was introduced by shaving on the surface of stainless steels. The specimens were exposed to a boiling 42% MgCl{sub 2} solution for 20 h and the number and the length of initiated cracks were examined. SCC susceptibility of the specimen with P was the highest and that of the specimen with C was the lowest in all specimens. By magnetic force microscope examination, a magnetic phase expected to be a martensitic phase was detected near the surface. Since corrosion resistance of martensite is lower than that of austenite, the minor elements additions would affect SCC susceptibility through the amount of the transformed martensite.

  6. Effects of Sm addition on microstructure and mechanical properties of a Mg-10Y alloy

    Directory of Open Access Journals (Sweden)

    Li Quanan

    2014-01-01

    Full Text Available To further increase the mechanical properties, 0.5wt.% Sm was introduced to a Mg-10Y alloy in this study. The effects of Sm addition on the microstructures and mechanical properties of the Mg-10Y alloy, especially the aged Mg-10Y alloy, were investigated. The microstructure observation and tensile tests were performed by using an optical microscopy, a scanning electron microscopy and a universal material testing machine, respectively. The phase analysis was performed using X-ray diffractometer. The results show that the 0.5wt.% Sm addition can not only promote the formation of fine and dispersed Mg24Y5 phases, but also improve their morphology and distribution; it also increases the thermal stability of Mg24Y5 phases. Sm addition is seen to increase the ultimate tensile strength of Mg-10Y alloy at elevated temperatures (200, 250, 300 and 350 ℃, while decrease the elongation. But the elongation is still up to 7.5% even at 350 ℃. In the range of 250 ℃ to 300℃, the ultimate tensile strength of the alloy reaches its maximum (with a range average of 235 MPa and is not sensitive to the temperature change, which is very useful to the application of heat-resistant magnesium alloys. Even at 350 ℃, the ultimate tensile strength of Mg-10Y-0.5Sm is still up to 155 MPa. Considering both of the ultimate tensile strength and elongation, the maximum application temperature of the Mg-10Y-0.5Sm alloy can be up to 300 ℃. The strengthening mechanisms of Mg-10Y-0.5Sm alloy are mainly attributed to dispersion strengthening of Mg24Y5 phase particles with a certain solubility of Sm and grain refinement strengthening of α-Mg matrix.

  7. Effect of phosphorus additions on hot pressing temperature and some properties of WC-Co hard alloys

    International Nuclear Information System (INIS)

    Dotsenko, V.M.; Simkina, Eh.S.; Tsypin, N.V.

    1977-01-01

    Results of studies on the effect of phosphorus additions on hot pressing temperature and some properties of VK6 and VK15 hard alloys are given. It is shown that alloying of hard alloys with 3-6 wt % phosphorus gives opportunity to lower substantially (for 200-300 deg) their hot pressing temperature. Hardness and density of alloys with phosphorus do not practically change. Some decrease of strength and wear-resistance characteristics is observed which is obviously connected with irregular distribution of phosphorus in the alloy

  8. Microstructural evolution and tensile mechanical properties of thixoformed AZ91D magnesium alloy with the addition of yttrium

    International Nuclear Information System (INIS)

    Zhao Zude; Chen Qiang; Kang Feng; Shu Dayu

    2009-01-01

    The microstructure evolution of AZ91D magnesium alloy in the semi-solid state has been proposed or reported in previous literature. However, no detailed investigation has been conducted regarding the relationship between the microstructure and tensile mechanical properties of the thixoformed AZ91D magnesium alloy. In this paper, the microstructure of AZ91D alloy with the addition of yttrium was produced by the semi-solid thermal transformation (SSTT) route and the strain-induced melt activation (SIMA) route, respectively. Isothermal holding experiments investigated grain coarsening and the degree of spheroidization as a function of holding time in the semi-solid state. The SSTT route and the SIMA route were used to obtain the semi-solid feedstock for thixoforming. The results show that solid particles of the SSTT alloy are spheroidized to some extent but the previous irregular shape is still obvious in some of them. While the SIMA alloy exhibits ideal, fine microstructure, in which completely spheroidized solid particles contain little entrapped liquid. The microstructure of the SSTT alloy is less spheroidized compared with the SIMA alloy under the similar isothermal holding condition. As the holding time increases, the mean solid particle size of the SSTT alloy decreases initially, then increases, while the mean solid particle size of the SIMA alloy increases monotonously at 560 deg. C. Compared with the SSTT alloy, the SIMA alloy obtains finer grains under the similar isothermal holding condition. The mechanical properties of the thixoformed AZ91D alloy with the addition of yttrium produced by the SIMA route are better than those of the thixoformed alloy produced by the SSTT route. The ultimate tensile strength, yield strength and elongation for the thixoformed alloy produced by the SIMA route are 303.1 MPa, 147.6 MPa and 13.27%, respectively. The tensile properties for the AZ91D alloy with the addition of yttrium thixoformed from starting material produced by

  9. Effect of addition of V and C on strain recovery characteristics in Fe-Mn-Si alloy

    International Nuclear Information System (INIS)

    Lin Chengxin; Wang Guixin; Wu Yandong; Liu Qingsuo; Zhang Jianjun

    2006-01-01

    Shape recoverable strain, recovery stress and low-temperature stress relaxation characteristics in an Fe-17Mn-5Si-10Cr-4Ni (0.08C) alloy and an Fe-17Mn-2Cr-5Si-2Ni-1V (0.23C) alloy have been studied by means of X-ray diffraction, transmission electron microscopy and measurement of recoverable strain and recovery stress. The amount of stress-induced ε martensite under tensile deformation at room temperature, recoverable strain and recovery stress are increased obviously with addition V and C in Fe-Mn-Si alloy, which is owing to the influence of addition V and C on strengthening austenitic matrix. Addition of V and C in Fe-Mn-Si alloy is evidently effective to reduce the degree of low-temperature stress relaxation, for the dispersed VC particles 50-180 nm in size precipitated during annealing restrain the stress induced martensitic transformation

  10. Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions

    International Nuclear Information System (INIS)

    Karamouz, Mostafa; Azarbarmas, Mortaza; Emamy, Masoud; Alipour, Mohammad

    2013-01-01

    In this work, the effects of lithium (Li) on the microstructure, hardness and mechanical properties of A380 aluminum alloy have been investigated. The alloy was produced by conventional casting. Microstructures of the samples were investigated using the optical and scanning electron microscopy. The results showed that with increase of Li content up to 0.1%, the morphology of β-Al 5 FeSi and eutectic Si phases changed from intersected and branched coarse platelets into fine and independent ones. Li decreased hardness values of the alloy. Also, it was revealed from tensile tests that with addition of 0.6% Li, the ultimate tensile strength (UTS) and elongation values increased from 274 to 300 MPa and 3.8% to 6%, respectively. Fractographic examination of the fracture surfaces indicated that the alloys with Li addition had more ductile dimple and fewer brittle cleavage surfaces

  11. Effects of La and Ce Addition on the Modification of Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Emad M. Elgallad

    2016-01-01

    Full Text Available This study focuses on the effects of the addition of rare earth metals (mainly lanthanum and cerium on the eutectic Si characteristics in Al-Si based alloys. Based on the solidification curves and microstructural examination of the corresponding alloys, it was found that addition of La or Ce increases the alloy melting temperature and the Al-Si eutectic temperature, with an Al-Si recalescence of 2-3°C, and the appearance of post-α-Al peaks attributed to precipitation of rare earth intermetallics. Addition of La or Ce to Al-(7–13% Si causes only partial modification of the eutectic Si particles. Lanthanum has a high affinity to react with Sr, which weakens the modification efficiency of the latter. Cerium, however, has a high affinity for Ti, forming a large amount of sludge. Due to the large difference in the length of the eutectic Si particles in the same sample, the normal use of standard deviation in this case is meaningless.

  12. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  13. The synergistic effect of Li addition on microstructure, texture and mechanical properties of extruded Al–Mg–Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ud Din, Shamas; Kamran, J. [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 (Pakistan); Tariq, N.H., E-mail: naeem421@hotmail.com [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 (Pakistan); Hasan, B.A. [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 (Pakistan); Petrov, R.H.; Bliznuk, V. [Ghent University, Department of Materials Science and Engineering, Technologiepark 903, Gent (Belgium); Uz Zuha, Shamas [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 (Pakistan)

    2016-05-01

    In the present work, 0, 1, 2 and 3 wt.% Li was added to conventional Al-0.9Mg-0.5Si alloy. The samples were extruded and aged to investigate the effect of Li addition on microstructure, texture and mechanical properties. The density of conventional alloy was reduced up to 7.8% while the ultimate tensile strength (UTS) increased by 62% with 3% Li addition. Electron backscatter diffraction (EBSD) revealed that Li addition effectively refined the grain size of the modified alloys. TEM/EDX and XRD analysis revealed the synergistic effect of Li addition which promoted the formation of nano-sized δ′(Al{sub 3}Li) precipitates when Li content is higher then 1%. The ageing trend first decreased for 1 wt.% Li addition and then increased with increasing Li content from 2 to 3 wt.% at the expense of ductility. The intensity of texture increased with the gradual increase in Li content from alloy-1 to 4. - Highlights: • Study of 0, 1, 2 and 3 wt.% Li on Al–Mg–Si alloys in extruded and T6 condition. • Density reduced to 7.8% with UTS increased by 62% for 3% Li addition. • Texture intensity increased with increase in Li content from alloy-1 to 4. • Property enhancement attributed to a refinement of δ′ (Al{sub 3}Li) precipitates.

  14. Effects of Ce Addition and Isothermal Aging on the Elevated Temperature Tensile Properties of Mechanically Alloyed Al-Ti Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JunKi; Oh, YoungMin; Kim, YongDeog; Kim, SeonJin [Hanyang Univ., Seoul (Korea, Republic of); Kim, ByungChul [KOREA ATOMIC RESEARCH INSTITUTE, TAEJON (Korea, Republic of)

    1997-05-01

    The room and elevated temperature tensile strength of mechanically alloyed Al-8wt%. Ti alloy increased by substituting Ce for Ti up to 25at.%. However, further substitution of Ce for Ti decreased the tensile strength. It was considered to be due to the decrease of volume fraction of Ce contained dispersoid. In the meantime, the decrease of tensile strength due to the isothermal aging was effectively reduced by the addition of Ce at 400 deg. C but not 510 deg. C. The activation energies for the deformation of Al-80wt.%(Ti+Ce)alloys measured at the temperature between 300 deg. C{approx}510 deg. C were about 1.3{approx}1.9 times higher than that for pure Al self-diffusion(142 kJ/mole). Thus, it was considered that the elevated temperature deformation of Al-8wt.%(Ti+Ce)alloys was governed by Orowan mechanism (author). 9 refs. 6 figs.

  15. Effect of Cu addition on the microstructure and mechanical properties of Al–30 wt% Zn alloy

    International Nuclear Information System (INIS)

    Abd El-Rehim, A.F.; Sakr, M.S.; El-Sayed, M.M.; Abd El-Hafez, M.

    2014-01-01

    Highlights: • This paper describes a novel work on the effect of Cu addition on the Al–30 wt% Zn alloy. • The 1 wt% Cu alloy revealed the best hardness of the alloys. • The results indicated two deformation temperature regions (below and above 548 K). - Abstract: The effect of 0.5, 1, 1.5 and 2 wt% Cu addition on the microstructure and mechanical properties of Al–30 wt% Zn alloy has been investigated by stress–strain tests carried out in the temperature range from 508 to 608 K. The work-hardening parameters of the test alloys decreased with increasing the deformation temperature and exhibited discontinuity at 548 K, resulting two deformation temperature regions, the low-temperature region (below 548 K) and high-temperature region (above 548 K). The activation energy of fracture mechanisms has been calculated and found to be 19.6 and 33.2 kJ/mol at the low and high temperature regions respectively. The operating mechanisms of work-hardening of the test alloys were confirmed by the analysis of X-ray diffraction patterns

  16. Effect of Trace Be and Sc Additions on the Mechanical Properties of A357 Alloys

    Directory of Open Access Journals (Sweden)

    Yu-Chih Tzeng

    2018-03-01

    Full Text Available The effect of the addition of Be and Sc on the microstructure and mechanical properties of A357 alloy were systematically investigated. The results show that the addition of small amounts of Be and Sc could change the acicular structure of iron-bearing intermetallic compounds to harmless compact Al-Fe-Si and Sc-Fe iron-bearing intermetallic compounds. Compact iron-bearing intermetallic compounds could improve fluidity, causing a reduction in interdendritic shrinkage during solidification. The addition of 0.05 wt % Be enhanced the quality index of the A357 alloy by 11% and increased the notch-yield ratio of fracture toughness by 4.5%. In contrast, the addition of 0.05 wt % Sc increased the quality index and the notch to yield ratio of fracture toughness up to 17% and 9%, respectively. Therefore, the microstructure and mechanical properties of the A357 alloy could be improved by substituting Be with Sc.

  17. Microstructure and age-hardening effects of aluminium alloys with additions of scandium and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Mordike, B.L. [Inst. fuer Werkstoffkunde und Werkstofftechnik, Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany); Maiwald, T.; Smola, B. [Zentrum fuer Funktionswerkstoffe GmbH, Clausthal-Zellerfeld (Germany); Mergen, R.; Manner, M.; Uitz, W. [Miba Gleitlager GmbH, Laakirchen (Australia)

    2004-12-01

    The aim of the work presented in this report was to produce age-hardenable aluminium alloys containing scandium and zirconium by a casting process with similar cooling conditions like an industrial casting process. Microstructure, precipitation structure and age-hardening response of different alloys with up to 0.4 wt.% Sc and Zr were investigated. Age-hardening experiments from the as-cast condition without solution annealing showed a significant increase of hardness of about 100% for Sc-rich alloys and of 50% for Zr-rich alloys compared to the as-cast condition. TEM investigations revealed the formation of precipitates of ternary Al{sub 3}(Sc{sub x}Zr{sub 1-x}) phases with a cubic cP4 crystal structure. In addition to the strengthening effect, a high thermal stability especially of the precipitates in Zr-rich alloys up to 400 C let these alloys look very promising for high-temperature applications. (orig.)

  18. Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition

    Science.gov (United States)

    Ahmad, R.; Asmael, M. B. A.; Shahizan, N. R.; Gandouz, S.

    2017-01-01

    The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA‒CCTA). The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, Δ t s, and low solidification temperature, Δ T S, whereas 0.1wt% Ce resulted in a fast solidification time, Δ t a-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index ( Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.

  19. Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions

    Energy Technology Data Exchange (ETDEWEB)

    Karamouz, Mostafa [Research Center of Materials engineering, University of Kerman Industrial Graduate, Kerman (Iran, Islamic Republic of); Research Center of Materials engineering, University of Kerman Industrial Graduate, Kerman (Iran, Islamic Republic of); Azarbarmas, Mortaza, E-mail: mazarbarmas@ut.ac.ir [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Emamy, Masoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Alipour, Mohammad [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-10-10

    In this work, the effects of lithium (Li) on the microstructure, hardness and mechanical properties of A380 aluminum alloy have been investigated. The alloy was produced by conventional casting. Microstructures of the samples were investigated using the optical and scanning electron microscopy. The results showed that with increase of Li content up to 0.1%, the morphology of β-Al{sub 5}FeSi and eutectic Si phases changed from intersected and branched coarse platelets into fine and independent ones. Li decreased hardness values of the alloy. Also, it was revealed from tensile tests that with addition of 0.6% Li, the ultimate tensile strength (UTS) and elongation values increased from 274 to 300 MPa and 3.8% to 6%, respectively. Fractographic examination of the fracture surfaces indicated that the alloys with Li addition had more ductile dimple and fewer brittle cleavage surfaces.

  20. Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

    Science.gov (United States)

    Chen, B.; Moon, S. K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K.

    2018-02-01

    The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

  1. Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments

    Energy Technology Data Exchange (ETDEWEB)

    Arrabal, R., E-mail: raularrabal@quim.ucm.es [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain); Matykina, E.; Pardo, A.; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain); Paucar, K. [Gabinete de Corrosion, Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Cod. Postal 25, Lima (Peru); Mohedano, M.; Casajus, P. [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Mg alloys with additions of Nd and Gd were exposed to high humidity atmosphere. Black-Right-Pointing-Pointer The increase of Nd or Gd diminished the effect of micro-galvanic couples. Black-Right-Pointing-Pointer Corrosion resistance of the AM50 alloy improved with the addition of Nd or Gd by 43%. Black-Right-Pointing-Pointer Nd and Gd had no significant effect on the corrosion resistance of the AZ91D alloy. - Abstract: AM50 and AZ91D alloys modified with rare earths (RE) were evaluated under atmospheric conditions. Nd and Gd additions resulted in formation of Al{sub 2}RE and Al-Mn-RE compounds and reduction of the fraction of {beta}-phase. According to surface potential maps, RE-containing intermetallics were more noble than the {beta}-phase, but less than Al-Mn inclusions. As a result, the action of micro-galvanic couples depended on the added amount of RE and the initial alloy microstructure. Nd or Gd additions improved the corrosion resistance of the AM50 alloy by up to 43%, but had no significant effect on the corrosion resistance of the AZ91D alloy.

  2. Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments

    International Nuclear Information System (INIS)

    Arrabal, R.; Matykina, E.; Pardo, A.; Merino, M.C.; Paucar, K.; Mohedano, M.; Casajús, P.

    2012-01-01

    Highlights: ► Mg alloys with additions of Nd and Gd were exposed to high humidity atmosphere. ► The increase of Nd or Gd diminished the effect of micro-galvanic couples. ► Corrosion resistance of the AM50 alloy improved with the addition of Nd or Gd by 43%. ► Nd and Gd had no significant effect on the corrosion resistance of the AZ91D alloy. - Abstract: AM50 and AZ91D alloys modified with rare earths (RE) were evaluated under atmospheric conditions. Nd and Gd additions resulted in formation of Al 2 RE and Al–Mn–RE compounds and reduction of the fraction of β-phase. According to surface potential maps, RE-containing intermetallics were more noble than the β-phase, but less than Al–Mn inclusions. As a result, the action of micro-galvanic couples depended on the added amount of RE and the initial alloy microstructure. Nd or Gd additions improved the corrosion resistance of the AM50 alloy by up to 43%, but had no significant effect on the corrosion resistance of the AZ91D alloy.

  3. Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG)

    Science.gov (United States)

    Beaucamp, Anthony T.; Namba, Yoshiharu; Charlton, Phillip; Jain, Samyak; Graziano, Arthur A.

    2015-06-01

    In recent years, rapid prototyping of titanium alloy components for medical and aeronautics application has become viable thanks to advances in technologies such as electron beam melting (EBM) and selective laser sintering (SLS). However, for many applications the high surface roughness generated by additive manufacturing techniques demands a post-finishing operation to improve the surface quality prior to usage. In this paper, the novel shape adaptive grinding process has been applied to finishing titanium alloy (Ti6Al4V) additively manufactured by EBM and SLS. It is shown that the micro-structured surface layer resulting from the melting process can be removed, and the surface can then be smoothed down to less than 10 nm Ra (starting from 4-5 μm Ra) using only three different diamond grit sizes. This paper also demonstrates application of the technology to freeform shapes, and documents the dimensional accuracy of finished artifacts.

  4. Oxidation performance of a Fe-13Cr alloy with additions of rare earth elements

    International Nuclear Information System (INIS)

    Martinez-Villafane, A.; Chacon-Nava, J.G.; Gaona-Tiburcio, C.; Almeraya-Calderon, F.; Dominguez-Patino, G.; Gonzalez-Rodriguez, J.G.

    2003-01-01

    The influence of rare earth elements (REE's) i.e. Neodymium (Nd) and Praseodymium (Pr) on the oxidation behavior of a Fe-13Cr alloy has been studied, and its role on the oxidation rate and oxide morphology and formation is discussed. Specimens were isothermally oxidized in oxygen at 800 deg. C for 24 h. It was found that a small addition (≤0.03 wt.%) of either Nd or Pr, reduced the oxidation rate of the Fe-13Cr base alloy. Moreover, the simultaneous addition of both elements to the alloy produced a dramatic reduction in the oxidation kinetics. Analysis by scanning electronic microscope (SEM) revealed that the morphology of oxides formed on Fe-13Cr specimens with and without REE's specimens was very different. In fact, a fine-grained oxide morphology was observed for alloys with REE's addition. For these alloys only, chromium enrichment at the metal/scale interface was observed. From transmission electronic microscope (TEM) analysis, it was found the following: at the early stages of oxide formation, after 0.25 h, Cr 2 O 3 , Fe 3 O 4 , α-Fe 2 O 3 and γ-Fe 2 O 3 were formed; at 6 h, Cr 2 O 3 , FeCr 2 O 4 and α-Fe 2 O 3 were identified and, for exposure times greater than 6 h, Cr 2 O 3 , α-Fe 2 O 3 and a spinel which was presumably transformed into a solid solution (Fe 2 O 3 ·Cr 2 O 3 ) were found

  5. Fabrication of U-Pu-Zr metallic fuel containing minor actinides

    International Nuclear Information System (INIS)

    Kurata, Masaki; Sasahara, Akihiro; Inoue, Tadashi; Betti, M.; Babelot, J.F.; Spirlet, J.C.; Koch, L.

    1997-01-01

    Rods of UPuZr alloy containing 5% minor actinides, 2% minor actinides and 2% rare-earth elements, and 5% minor actinides and 5% rare-earth elements have been fabricated by casting in yttria molds. Parts of the ingots were cut off for quantitative analysis and the rods characterized to the required extent, which included measurement of length, weight, diameter, and bending. For selected samples, metallographic study was carried out to examine the dispersion of the various phases contained in the alloy. Finally, the rods were encapsulated in stainless steel pin with the UPuZr reference after sodium bonding for the irradiation study. (author)

  6. Improvement of the oxidation resistance of Tribaloy T-800 alloy by the additions of yttrium and aluminium

    International Nuclear Information System (INIS)

    Zhang, Y.-D.; Zhang, C.; Lan, H.; Hou, P.Y.; Yang, Z.-G.

    2011-01-01

    Research highlights: → The additions of yttrium (Y) reduced the oxidation rate of Tribaloy T-800 alloy. → Y promoted selective oxidation of Cr due to refinement of alloy phase size. → The oxidation rate was further reduced by Y plus Al with a protective Al 2 O 3 scale. → The positive effect of Y and Al being more pronounced at the higher temperature. - Abstract: The microstructures and oxidation behaviour of the modified Tribaloy T-800 alloys by additions of yttrium and yttrium plus aluminium have been studied. At the presence of yttrium alone, the oxidation rate decreased, and the selective oxidation of chromium was promoted, which was related to the refinement of alloy phase size. The addition of yttrium plus aluminium further reduced the oxidation rate. The selective oxidation of chromium and aluminium were both promoted significantly. The benefits were especially pronounced at 1000 o C, with the formation of protective alumina external layer and no internal oxides, which may be detrimental to the alloy mechanical property.

  7. Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys

    International Nuclear Information System (INIS)

    Min, X.H.; Emura, S.; Zhang, L.; Tsuzaki, K.

    2008-01-01

    The effect of 1% Fe and/or 5% Zr (mass%) additions on ω phase formation was investigated for the Ti-15Mo alloy by means of X-ray diffraction analysis and hardness testing. Upon water quenching following solution treatment in the β phase region, the athermal ω phase formation could not be observed in all the alloys, regardless of Fe and Zr additions. The lattice parameter of the β phase decreases with Fe addition, while it increases with Zr addition. Solid solution strengthening by Fe and Zr is not recognized for the β phase. The isothermal ω phase formed after aging at 723 K and 773 K for 3.6 ks, which results in a decrease in the lattice parameter of the β phase and an increase in the hardness. The isothermal ω phase formation is suppressed with Fe and/or Zr additions. This is interpreted as the consequence of the increase in the average value of the bond order (Bo) for the Ti-15Mo-5Zr and Ti-15Mo-5Zr-1Fe alloys, and of the decrease in the average value of the metal d-orbital energy level (Md) for the Ti-15Mo-1Fe alloy. In addition, the degree of the suppression of isothermal ω phase can be predicted by the average values of Bo and Md

  8. Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy

    Science.gov (United States)

    Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar

    2018-03-01

    In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.

  9. Improvement of corrosion resistance of vanadium alloys in high-temperature pressurized water

    International Nuclear Information System (INIS)

    Fujiwara, Mitsuhiro; Sakamoto, Toshiya; Satou, Manabu; Hasegawa, Akira; Abe, Katsunori; Kaiuchi, Kazuo; Furuya, Takemi

    2005-01-01

    Corrosion tests in pressurized and vaporized water were conducted for V-based high Cr and Ti alloys and V-4Cr-4Ti type alloys containing minor elements such as Si, Al and Y. Weight losses were observed for every alloy after corrosion tests in pressurized water. It was apparent that addition of Cr effectively reduced the weight change in pressurized water. The weight loss of V-4Cr-4Ti type alloys in corrosion tests in vaporized water was also reduced as Cr content increased. The V-20Cr-4Ti alloy had a slight weight gain, almost same as that of SUS316, which had the best corrosion properties in the tested alloys. The elongation of alloys with in excess of 10% Cr was reduced as Cr content increased. The elongations of the V-12Cr-4Ti and the V-15Cr-4Ti alloys were significantly reduced by corrosion and cleavage fracture was observed reflecting hydrogen embrittlement. The reduced elongations of the alloys of the alloys were recovered to the same level of as annealed conditions after hydrogen degassing. After corrosion, the V-15Cr-4Ti-0.5Y alloy still kept enough elongation, suggesting that the addition of Y is effective to reduce the hydrogen embrittlement. (author)

  10. Effect of molybdenum and chromium additions on the mechanical properties of Fe3Al-based alloys

    International Nuclear Information System (INIS)

    Sun Yangshan; Xue Feng; Mei Jianping; Yu Xingquan; Zhang Lining

    1995-01-01

    Iron aluminides based on Fe 3 Al offer excellent oxidation and sulfidation resistance, with lower material cost and density than stainless steels. However, their potential use as structural material has been hindered by limited ductility and a sharp drop in strength above 600 C. Recent development efforts have indicated that adequate engineering ductility of 10--20% and tensile yield strength of as high as 500 MPa can be achieved through control of composition and microstructure. These improved tensile properties make Fe 3 Al-based alloys more competitive against conventional austenic and ferritic steels. The improvement of high temperature mechanical properties has been achieved mainly by alloying processes. Molybdenum has been found to be one of the most important alloying elements for strengthening Fe 3 Al-based alloys at high temperatures. However, the RT(room temperature) ductility decreases with the increase of a molybdenum addition. On the other hand, a chromium addition to Fe 3 Al-based alloys is very efficient for improving RT ductility but not beneficial to yield strength at temperatures to 800 C. The purpose of the present paper is to report the effects of combined additions of molybdenum and chromium on mechanical properties at ambient temperature and high temperature of 600 C

  11. Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG)

    International Nuclear Information System (INIS)

    Beaucamp, Anthony T; Namba, Yoshiharu; Charlton, Phillip; Jain, Samyak; Graziano, Arthur A

    2015-01-01

    In recent years, rapid prototyping of titanium alloy components for medical and aeronautics application has become viable thanks to advances in technologies such as electron beam melting (EBM) and selective laser sintering (SLS). However, for many applications the high surface roughness generated by additive manufacturing techniques demands a post-finishing operation to improve the surface quality prior to usage. In this paper, the novel shape adaptive grinding process has been applied to finishing titanium alloy (Ti6Al4V) additively manufactured by EBM and SLS. It is shown that the micro-structured surface layer resulting from the melting process can be removed, and the surface can then be smoothed down to less than 10 nm Ra (starting from 4–5 μm Ra) using only three different diamond grit sizes. This paper also demonstrates application of the technology to freeform shapes, and documents the dimensional accuracy of finished artifacts. (paper)

  12. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Qingqiang Chen

    2018-02-01

    Full Text Available In this study, the effects of cerium (Ce addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  13. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    International Nuclear Information System (INIS)

    Du, Jiandi; Ding, Dongyan; Xu, Zhou; Zhang, Junchao; Zhang, Wenlong; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-01-01

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al 8 Cu 4 Ce phase, Al 6 Cu 6 La phase and Al 6 (Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  14. Formation of AlFeSi phase in AlSi12 alloy with Ce addition

    Directory of Open Access Journals (Sweden)

    S. Kores

    2012-04-01

    Full Text Available The influence of cerium addition on the solidification sequence and microstructure constituents of the Al-Si alloys with 12,6 mass % Si was examined. The solidification was analyzed by a simple thermal analysis. The microstructures were examined with conventional light and scanning electron microscopy. Ternary AlSiCe phase was formed in the Al-Si alloys with added cerium during the solidification process. AlSiCe and β-AlFeSi phases solidified together in the region that solidified the last. Cerium addition influenced on the morphology of the α-AlFeSi phase solidification.

  15. Super ODS steel R and D for fuel cladding of next generation nuclear systems. 2) Effect of minor alloying elements

    International Nuclear Information System (INIS)

    Ohnuki, S.; Hashimoto, N.; Ukai, S.; Kimura, A.; Inoue, Masaki; Kaito, Takeji; Fujisawa, T.; Okuda, T.; Abe, F.

    2009-01-01

    For development of advanced ferritic ODS steels including high concentration of Cr and Al, the effect of minor alloying elements on fine dispersion of oxide particle was investigated. Microstructural analysis for Fe-16Cr-4Al-mY 2 O 3 -nZr or mHf due to TEM indicated that 0.3Zr or 0.6Hf are the optimum concentration. The mechanism of nano-sized oxide formation was also discussed. (author)

  16. The effect of additional elements on the magnetic properties of hot-rolled Nd-Fe-B alloys

    International Nuclear Information System (INIS)

    Chang, W.C.; Nakamura, H.; Paik, C.R.; Sugimoto, S.; Okada, M.; Homma, M.

    1992-01-01

    The magnetic properties of hot-rolled Nd 16 Fe bal. B 6 M 1.5 (M = Cu, Ga and Al) and Nd 16 Fe 76 B 5.5 Ga 1.5 Al 1 alloys were investigated, in order to study the role of additive elements in improving the magnetic properties in the Nd-Fe-B system. It is found that the original grain size of Cu, Ga or Ga-Al added alloys is much finer than that of the ternary and Al added alloys. But the grain size is almost identical for all the alloys after hot-rolling at 1000degC with 90% reduction in thickness. The coercivity of hot-rolled alloys with Cu, Ga or Ga-Al addition is not improved as was expected, because Nd-rich liquid phase in these alloys is very easily squeezed out during high-reduction-ratio rolling. Less quantity and nonuniform distribution of Nd-rich phase between distributed grains are believed to be the main reasons to depress the effect on the grain boundary smoothing. This effect is not the same as those observed in the Pr-Fe-B system. The highest magnetic properties achieved in this study are B r = 10 kG, i H c = 8.2 kOe, (BH) max = 18.5 MGOe for the Nd 16 Fe 76.5 B 6 Al 1.5 alloy. (orig.)

  17. Microstructure and tensile properties of Fe-40 at. pct Al alloys with C, Zr, Hf, and B additions

    Science.gov (United States)

    Gaydosh, D. J.; Draper, S. L.; Nathal, M. V.

    1989-01-01

    The influence of small additions of C, Zr, and Hf, alone or in combination with B, on the microstructure and tensile behavior of substoichiometric FeAl was investigated. Tensile properties were determined from 300 to 1100 K on powder which was consolidated by hot extrusion. All materials possessed some ductility at room temperature, although ternary additions generally reduced ductility compared to the binary alloy. Adding B to the C- and Zr-containing alloys changed the fracture mode from intergranular to transgranular and restored the ductility to approximately 5 percent elongation. Additions of Zr and Hf increased strength up to about 900 K. Fe6Al6Zr and Fe6Al6Hf precipitates, both with identical body-centered tetragonal structures, were identified as the principal second phase in these alloys. Strength decreased steadily as temperature increased above 700 K, as diffusion-assisted mechanisms became operative. Although all alloys had similar strengths at 1100 K, Hf additions significantly improved high-temperature ductility by suppressing cavitation.

  18. B2-ordered iron-aluminium alloys strengthening. Influence of additions (Ni and B) and microstructure

    International Nuclear Information System (INIS)

    Colas, David

    2004-01-01

    We study the effects of additions (Ni and B) and microstructure on the mechanical behaviour of 40 at. % Al iron-aluminium alloys. From a macroscopic point of view, we show that nickel reinforces FeAl alloys over the whole temperature range, but that it simultaneously leads to emphasize the room temperature brittleness of these alloys through a cleavage stress decrease. We confirm powder metallurgy grain refining interest to enhance yield stress as well as fracture resistance. We show that nickel-induced yield stress effect is additive to 'Hall-Petch' one. Also, we point out that the strengthening phenomena (nickel or grain size) cause the yield stress anomaly, which these alloys usually present, to be hidden. Through a dislocation structures analysis of deformed materials we precise that low temperature nickel-induced solid solution hardening (SSH) cannot be explained on the basis of classical SSH theories but more probably through nickel influence upon the Peierls stress. Moreover, we show that the APB tubes dragging model may be compatible with our microscopic and macroscopic results about the anomaly. Eventually, we put into relation a dynamic super-dislocations multiplication process observation (in situ transmission microscopy) with the nickel-containing alloys tendency to cleavage. (author) [fr

  19. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiandi [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Dongyan, E-mail: dyding@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Zhou; Zhang, Junchao; Zhang, Wenlong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua [Huafon NLM Al Co., Ltd, Shanghai 201506 (China); Chen, Renzong; Huang, Yuanwei; Tang, Jinsong [Shanghai Huafon Materials Technology Institute, Shanghai 201203 (China)

    2017-01-15

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  20. Microstructure and high temperature stability of age hardenable AA2219 aluminium alloy modified by Sc, Mg and Zr additions

    Energy Technology Data Exchange (ETDEWEB)

    Naga Raju, P. [Metallurgical and Materials Engineering Department, IIT-Madras, Chennai 600036 (India)], E-mail: puvvala_nagaraju@yahoo.com; Srinivasa Rao, K. [Metallurgical Engineering Department, Andhra University, Visakapatnam 530003 (India); Reddy, G.M. [Defence Metallurgical Research Laboratory, Hyderabad 500258 (India); Kamaraj, M.; Prasad Rao, K. [Metallurgical and Materials Engineering Department, IIT-Madras, Chennai 600036 (India)

    2007-08-25

    The present work pertains to the improvement of high temperature stability of age hardenable AA2219 aluminium-copper (6.3%) alloy. Addition of scandium, magnesium and zirconium to the base metal AA2219 was adopted to improve this high temperature stability. These additions were systematically varied by preparing alloys of different composition using gas tungsten arc melting. Long time ageing studies and impression creep technique were used to study the high temperature stability of the alloys. These modified compositions of the alloy resulted in fine equiaxed grains, refined eutectics, large number of high temperature stable and finer precipitates. Among all the compositions, 0.8% Sc + 0.45% Mg + 0.2% Zr addition was found to be significant in improving the high temperature stability of AA2219 alloy. This may be attributed to the possible microstructural changes, solute enrichment of the matrix and pinning of the grain boundaries by the finer precipitates.

  1. Role of samarium additions on the shape memory behavior of iron based alloys

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad; Kang, Kisuk

    2011-01-01

    Research highlights: → The effect of samarium contents on shape memory behavior has been studied. → Addition of samarium increases the strength, c/a ratio and ε (hcp martensite). → Addition of samarium retards the nucleation of α (bcc martensite). → Improvement in shape memory effect with the increase in samarium contents. - Abstract: The effect of samarium contents on shape memory behavior of iron based shape memory alloys has been studied. It is found that the strength of the alloys increases with the increase in samarium contents. This effect can be attributed to the solid solution strengthening of austenite by samarium addition. It is also noticed that the shape memory effect increases with the increase in samarium contents. This improvement in shape memory effect presumably can be regarded as the effect of improvement in strength, increase in c/a ratio and obstruction of nucleation of α in the microstructure.

  2. Inhibition of stress corrosion cracking of alloy AA8090 T-8171 by addition of rare earth salts

    International Nuclear Information System (INIS)

    Davo, B.; Conde, A.; Damborenea, J.J. de

    2005-01-01

    Aluminium-lithium alloys are suitable for aeronautical purposes because of their good mechanical properties and high damage tolerance. Although these alloys are less susceptible to stress corrosion cracking than conventional alloys, Al-Li-Cu-Mg alloy (8090-T8171) still experiences this problem in a NaCl + H 2 O 2 solution. In this work it has been demonstrated that the addition of 10,000 ppm of CeCl 3 to the medium inhibits the stress corrosion cracking of 8090 alloy by precipitation of cerium oxides/hydroxides. The deposition of these compounds on the alloy surface decreases the pit density and slows the crack growth through the grain boundaries by hindering the anodic dissolution of T phases

  3. Industrialization of nanocrystalline Fe–Si–B–P–Cu alloys for high magnetic flux density cores

    International Nuclear Information System (INIS)

    Takenaka, Kana; Setyawan, Albertus D.; Sharma, Parmanand; Nishiyama, Nobuyuki; Makino, Akihiro

    2016-01-01

    Nanocrystalline Fe–Si–B–P–Cu alloys exhibit high saturation magnetic flux density (B s ) and extremely low magnetic core loss (W), simultaneously. Low amorphous-forming ability of these alloys hinders their application potential in power transformers and motors. Here we report a solution to this problem. Minor addition of C is found to be effective in increasing the amorphous-forming ability of Fe–Si–B–P–Cu alloys. It allows fabrication of 120 mm wide ribbons (which was limited to less than 40 mm) without noticeable degradation in magnetic properties. The nanocrystalline (Fe 85.7 Si 0.5 B 9.5 P 3.5 Cu 0.8 ) 99 C 1 ribbons exhibit low coercivity (H c )~4.5 A/m, high B s ~1.83 T and low W~0.27 W/kg (@ 1.5 T and 50 Hz). Success in fabrication of long (60–100 m) and wide (~120 mm) ribbons, which are made up of low cost elements is promising for mass production of energy efficient high power transformers and motors - Highlights: • Minor addition of C in FeSiBPCu alloy increases amorphous-forming ability. • The FeSiBPCuC alloy exhibits B s close to Si-steel and Core loss lower than it. • Excellent soft magnetic properties were obtained for 120 mm wide ribbons. • Nanocrystalline FeSiBPCuC alloy can be produced at industrial scale with low cost. • The alloy is suitable for making low energy loss power transformers and motors.

  4. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  5. Role of cerium, lanthanum, and strontium additions in an Al-Si-Mg (A356) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nabawy, Ahmed M.; Samuel, Agnes M.; Samuel, Fawzy H. [Universite du Quebec, Chicoutimi (Canada). Dept. des Sciences Appliquees; Alkahtani, Saleh A.; Abuhasel, Khaled A. [Salman Bin Abdulaziz Univ., Riyadh (Saudi Arabia). Mechanical Engineering Dept.

    2016-05-15

    The effects of individual and combined additions of cerium (Ce), lanthanum (La), and strontium (Sr) on the eutectic modification and solidification characteristics of an Al-Si-Mg (A356) aluminum alloy were investigated using optical microscopy and thermal analysis techniques. Addition of Ce, La, and Sr resulted in different depression levels of the eutectic nucleation temperature and eutectic growth undercooling, generating modified eutectic structures exhibiting different levels of modification. Microstructural results showed that the best modification levels using individual additions were achieved by Sr which produced a fine fibrous eutectic structure, followed by La, which produced a refined lamellar structure, with Ce providing the lowest level of modification. On the other hand, a combined addition of Ce and Sr provided the highest modification level, with the production of a very fine fibrous eutectic silicon structure. In general, the addition of Sr helped to further increase the refinement obtained in the alloys containing La or Ce + La additions. In the latter alloy, the main intermetallic phases observed were La(Al,Si){sub 2} and Al{sub 20}(La,Ce)Ti{sub 2}Si. The improved modification levels were found to be proportional to the depression in the eutectic nucleation temperature and the eutectic growth undercooling. A high cooling rate also improved the modification level by at least one level.

  6. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  7. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    Directory of Open Access Journals (Sweden)

    J.J.S. Dilip

    2017-04-01

    Full Text Available The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti–6Al–4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

  8. The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product

    Science.gov (United States)

    Felicia, Dian M.; Rochiem, R.; Laia, Standley M.

    2018-04-01

    Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.

  9. Microstructure control of Zr-Nb-Sn alloy with Mo addition for HWR pressure tube application

    International Nuclear Information System (INIS)

    Hwang, S. K.; Kim, M. H.; Kim, J. H.; Kwon, S. I.; Kim, Y. S.

    1997-01-01

    As a basic research to develop the material for heavy water reactor pressure tube application the effect of Mo addition to Zr-Nb-Sn alloy was studied for the purpose of minimizing the amount of cold working while maintaining a high strength. To select the target alloy system we first designed various alloy compositions and chose Zr-Nb-Sn and Zr-Nb-Mo through multi-regression analysis of the relationship between the basic properties and the compositions. Plasma arc melting was used to produce the alloys and the microstructure change introduced by the processing steps including hot forging, beta-heat treatment, hot rolling, cold rolling and recrystallization heat treatment was investigated. Recrystallization of Zr-Nb-Sn was retarded by adding Mo and this resulted in a fine grain structure in Zr-Nb-Sn-Mo alloy. Beside the retarding effect recrystallization, Mo increased the amount of residual beta phase and showed an indication of precipitation hardening, which added up to the possibility of applying the alloy for the desired usage. (author)

  10. Structure and microhardness of alloy VT22 granules additionally doped with carbon and boron

    International Nuclear Information System (INIS)

    Sysoeva, N.V.; Polyakova, I.G.; Karpova, I.G.

    1996-01-01

    Aimed to improve heat resistance and strength of titanium base alloys due to carbon and boron additions (up to 0.3%) a study was made into regularities of phase decomposition in VT22 alloy during its rapid quenching from a liquid state on manufacturing granules 100-400 μm in size. Cooling rates on quenching were found to be sufficiently high to prevent precipitating carbides and borides. Subsequent annealing of granules promotes homogeneous precipitation of strengthening phases in the form of titanium carbides and borides, a reasonable amount of carbon and boron remaining in solid solution. An increase in microhardness of annealed granules reaches 20-25% compared to the standard alloy. 6 refs.; 2 figs.; 2 tabs

  11. The effect of trace additions of Zn on the precipitation behavior of alloy 8090 during artificial aging

    Science.gov (United States)

    Kilmer, R. J.; Stoner, G. E.

    1991-01-01

    The effect(s) of trace additions of Zn to the artificial aging behavior of alloy 8090 (Al-Li-Cu-Mg-Zr) was investigated in the approximate composition range 0-1 wt-pct Zn. Trace Zn additions were found to delay aging and under equivalent aging treatments (100 hrs at 160 C) the alloy without Zn and the 1.07 wt-pct Zn alloy developed delta-prime-free zones along subgrain boundaries, while the alloys of 0.21 and 0.58 wt-pct Zn did not. DSC analysis indicated that Zn was being incorporated into the delta-prime, shifting it's exotherm to higher temperatures, while having little if any effect on its associated endotherm making it unlikely that it is an artifact of a solvus shift. In the 8090 + 1.07 wt-pct Zn alloy, coarse precipitates were found to reside on subgrain boundaries and EDS indicated that they were rich in Cu and Zn. It was also noted that in the Zn containing 8090 varients, the S prime precipitates were more coarse in size than the baseline 8090.

  12. Effect of Cooling Rate on the Microstructure of Al-Zn Alloys with Addition of Silicon as Nanocomposite

    Directory of Open Access Journals (Sweden)

    S. García-Villarreal

    2013-01-01

    Full Text Available Al-43.5Zn-1.5Si (wt% alloys are widely used as coatings on steel substrates. This kind of coatings is manufactured by hot-dip process, in which Si is added as solid particles or master alloy. The role of Si during formation of the coating is to control the metallurgical reactions between solid steel and liquid Al-Zn-Si alloy initially forming an AlZnFeSi intermetallic layer and next the excess of Si forms intermetallic compounds, which grows over this alloy layer, segregates into the Zn rich interdendritic regions, and solidifies as eutectic reaction product as massive particles with needle like morphology. Therefore, during the experimental procedure is very difficult to control the final morphology and distribution of the silicon phase. The acicular morphology of this phase greatly affects the mechanical properties of the alloy because it acts as stress concentrators. When the coated steel sheet is subjected to bending, the coating presents huge cracks due to the presence of silicon phase. Therefore, the aim of the paper was to propose a new methodology to control the silicon phase through its addition to Al-Zn alloy as nanocomposite and additionally determine the effect of cooling rate (between 10 and 50°Cs−1 on the solidification microstructure and mechanical properties of Al-Zn alloy.

  13. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.P., E-mail: thpfys@126.com [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L. [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Qian, M., E-mail: ma.qian@rmit.edu.au [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacturing, Melbourne, VIC 3001 (Australia)

    2015-06-11

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways.

  14. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    International Nuclear Information System (INIS)

    Tang, H.P.; Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L.; Qian, M.

    2015-01-01

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways

  15. Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing

    Science.gov (United States)

    Petráčková, K.; Kondás, J.; Guagliano, M.

    2017-12-01

    Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate's surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating's fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy.

  16. Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium

    Science.gov (United States)

    Yang, Tai; Li, Qiang; Liu, Ning; Liang, Chunyong; Yin, Fuxing; Zhang, Yanghuan

    2018-02-01

    Yttrium (Y) is selected to modify the microstructure of magnesium (Mg) to improve the hydrogen storage performance. Thereby, binary alloys with the nominal compositions of Mg24Yx (x = 1-5) are fabricated by inexpensive casting technique. Their microstructure and phase transformation during hydriding and dehydriding process are characterized by using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy analysis. The isothermal hydrogen absorption and desorption kinetics are also measured by a Sievert's-type apparatus at various temperatures. Typical multiphase structures of binary alloy can be clearly observed. All of these alloys can reversibly absorb and desorb large amount of hydrogen at proper temperatures. The addition of Y markedly promotes the hydrogen absorption kinetics. However, it results in a reduction of reversible hydrogen storage capacity. A maximum value of dehydrogenation rate is observed with the increase of Y content. The Mg24Y3 alloy has the optimal desorption kinetic performance, and it can desorb about 5.4 wt% of hydrogen at 380 °C within 12 min. Combining Johnson-Mehl-Avrami kinetic model and Arrhenius equation, the dehydrogenation activation energy of the alloys are evaluated. The Mg24Y3 alloy also has the lowest dehydrogenation activation energy (119 kJ mol-1).

  17. The oxidation resistance and ignition temperature of AZ31 magnesium alloy with additions of La2O3 and La

    International Nuclear Information System (INIS)

    Zhao, Shizhe; Zhou, Hong; Zhou, Ti; Zhang, Zhihui; Lin, Pengyu; Ren, Luquan

    2013-01-01

    Highlights: ► Using lanthanum and lanthanum oxide (La 2 O 3 ) can improve oxidation resistance of magnesium alloy. ► La 2 O 3 is as effective as La in affecting both alloy microstructure and oxidation resistance. ► The optimum La concentration in alloy is ∼0.7 wt.%. ► We analyzed the oxidation kinetics of AZ31 alloy with both additions. - Abstract: We investigate the oxidation resistance of AZ31 magnesium alloy with additions of La and La oxide (La 2 O 3 ). The contributor is the practical La content in alloy. Both La and La 2 O 3 are effective in improving the oxidation resistance of Mg alloys. The samples with La content of ∼ 0.7 wt.% possess the best resistance to oxidation of all. Oxide scale, ignition temperature and oxidation kinetics are analyzed. However, higher La content is detrimental to the oxidation resistance.

  18. Effects of Zn additions to highly magnetoelastic FeGa alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lograsso, Thomas A., E-mail: lograsso@ameslab.gov [Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States); Jones, Nicholas J.; Wun-Fogle, Marilyn; Restorff, James B. [Metallurgy and Fasteners Branch, Naval Surface Warfare Center, Carderock Division, Maryland 20817 (United States); Schlagel, Deborah L. [Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Petculescu, Gabriela [University of Louisiana at Lafayette, Louisiana 70504 (United States); Clark, Arthur E. [Clark Associates, Adelphi, Maryland 20783 (United States); Hathaway, Kristl B. [Spectrum Technology Group, Inc., Gaithersburg, Maryland 20877 (United States)

    2015-05-07

    Fe{sub 1−x}M{sub x} (M = Ga, Ge, Si, Al, Mo and x ∼ 0.18) alloys offer an extraordinary combination of magnetoelasticity and mechanical properties. They are rare-earth-free, can be processed using conventional deformation techniques, have high magnetic permeability, low hysteresis, and low magnetic saturation fields, making them attractive for device applications such as actuators and energy harvesters. Starting with Fe-Ga as a reference and using a rigid-band-filling argument, Zhang et al. predicted that lowering the Fermi level by reducing the total number of electrons could enhance magnetoelasticity. To provide a direct experimental validation for Zhang's hypothesis, elemental additions with lower-than-Ga valence are needed. Of the possible candidates, only Be and Zn have sufficient solubility. Single crystals of bcc Fe-Ga-Zn have been grown with up to 4.6 at. % Zn in a Bridgman furnace under elevated pressure (15 bars) in order to overcome the high vapor pressure of Zn and obtain homogeneous crystals. Single-crystal measurements of magnetostriction and elastic constants allow for the direct comparison of the magnetoelastic coupling constants of Fe-Ga-Zn with those of other magnetoelastic alloys in its class. The partial substitution of Ga with Zn yields values for the magnetoelastic coupling factor, −b{sub 1}, comparable to those of the binary Fe-Ga alloy.

  19. Effect of Dy addition on mechanical and magnetic properties of Mn-rich Ni–Mn–Ga ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Gao, L.; Dong, G.F.; Gao, Z.Y.; Cai, W.

    2012-01-01

    Highlights: ► The Dy addition significantly improves the compressive properties of Ni–Mn–Ga alloy. ► The mechanism of the improved mechanical properties by adding Dy is discussed. ► Dy doping results in a change of the fracture type of Ni–Mn–Ga alloy. ► Curie temperature almost remained unchanged at low Dy content and then decreases. - Abstract: The effects of partial substitution of rare earth Dy for Ga on the mechanical and magnetic properties of Mn-rich Ni 50 Mn 29 Ga 21−x Dy x (0 ≤ x ≤ 5) ferromagnetic shape memory alloys were investigated in detail. The results show that an appropriate amount of Dy addition significantly improves the mechanical properties of Ni–Mn–Ga alloy. With an increase in Dy content, the compressive strength enhances rapidly at first and then becomes stable when the Dy content is more than 1 at.%. However, the compressive strain increases dramatically and reaches a maximum value with 1 at.% Dy addition. Further increase in Dy content makes the compressive strain of the alloys decrease gradually. The mechanism of the improved mechanical properties is also discussed. Moreover, Dy doping changes the fracture type from intergranular fracture of Ni–Mn–Ga alloy to transgranular cleavage fracture of Ni–Mn–Ga–Dy alloys. The Curie temperature remains almost unchanged at low Dy content and subsequently decreases.

  20. Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pramod, S.L. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Ravikirana [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Physics and Nanotechnology, SRM University, Chennai 603203 (India); Rao, A.K. Prasada [College of Engineering and Design, Alliance University, Bengaluru 562106 (India); Murty, B.S., E-mail: murty@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Bakshi, Srinivasa R., E-mail: sbakshi@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-09-30

    Effect of Sc addition and T6 aging treatment on the secondary dendritic arm spacing (SDAS), modification of eutectic Si morphology, β-Al{sub 5}FeSiand π-Al{sub 8}Mg{sub 3}Si{sub 6}Fe{sub 1} phases and its effect on mechanical properties in A356 alloy has been investigated. Addition of 0.4 wt%Sc in A356 alloy resulted in a 50%reduction in the secondary dendritic arm spacing (SDAS). Sc addition changed the morphology of eutectic Si from plate like to fibrous and globular. The needle like morphology of β-Al{sub 5}FeSi phase in A356 alloy changed to Al{sub 5}Fe(Si,Sc) phase having smaller size and irregular morphology. Transmission electron microscopy (TEM) diffraction pattern and Energy dispersive spectroscopy (EDS) analysis revealed the presence of β-Al{sub 5}FeSiand π-Al{sub 8}Mg{sub 3}Si{sub 6}Fe{sub 1} phases in A356 alloy which changed to β-Al{sub 5}Fe(Si,Sc), π-Al{sub 8}Mg{sub 3}(Si,Sc){sub 6}Fe{sub 1} and additional V-AlSi{sub 2}Sc{sub 2}phase was observed in Sc containing alloys. Addition of 0.4 wt%Sc to A356 alloy improved its Vickers hardness, Ultimate tensile strength (UTS), Yield strength (YS) and ductility by 20%, 25%, 20% and 30% respectively. Artificial aging treatment resulted in significant improvement in the tensile properties for both A356 and Sc added A356 alloys.

  1. Amorphization and crystallization of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys during mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yan [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, 73 Jingshi Road, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Chen Xiuxiu [School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Geng Haoran [School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China)], E-mail: mse_wangy@ujn.edu.cn; Yang Zhongxi [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, 73 Jingshi Road, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China)

    2009-04-17

    In the present paper, the effect of Nb and different rotation speeds on the amorphization and crystallization of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys during mechanical alloying has been investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The results show that the minor addition of Nb can shorten the start time of the amorphization reaction, improve the glass forming ability of Zr-Cu alloys, but cannot promote the formation of a single amorphous phase at a lower rotation speed of 200 rpm. The glass forming ability of the Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys increases with increasing Nb additions. At a higher rotation speed of 350 rpm, a single amorphous phase of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) can be successfully fabricated. Moreover, the Nb addition into Zr-Cu alloys can accelerate the amorphization process and improve the stability of the amorphous phase against the mechanically induced crystallization. Furthermore, the amorphous Zr{sub 66.7}Cu{sub 33.3} phase gradually transforms into a metastable fcc-Zr{sub 2}Cu phase with increasing milling time.

  2. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  3. Effects of boron additions and solutionizing treatments on microstructures and ductility of forged Ti–6Al–4V alloys

    International Nuclear Information System (INIS)

    Luan, J.H.; Jiao, Z.B.; Chen, G.; Liu, C.T.

    2015-01-01

    Highlights: • Proper boron additions and heat-treatments improve the ductility of Ti64 alloys. • Coarse TiB precipitates embrittle the Ti64 alloys causing ductility loss. • Modified Ti64 forged alloys with high strength and high ductility are developed. - Abstract: The effects of boron additions on the microstructure and mechanical properties of forged Ti–6Al–4V alloys in different heat-treatment conditions have been characterized by both experimental studies and thermodynamic calculations. The results indicate a combination of proper post-forging treatments and B additions are helpful for control of the prior-β grain size and the volume fraction of α phase, thereby tuning the ductility of the forged Ti–6Al–4V alloys. However, the B-containing alloys exhibit a significant drop in ductility if the solutionizing temperature is too high, and this embrittlement is mainly due to the coarsening of brittle TiB borides. The mechanism in this case is due to the cleavage fracture of TiB rather than its debonding with the matrix, as indicated by the observation of the aligned TiB borides on the matching areas of both halves of the fracture surfaces. Thus, the TiB size and orientation, the prior-β grain size, and the volume fraction of the α phase all play important roles in controlling the mechanical properties of the forged Ti–6Al–4V alloys. The current findings shed light on the composition–microstructure–ductility relationship in the forged Ti–6Al–4V alloys

  4. Effects of boron additions and solutionizing treatments on microstructures and ductility of forged Ti–6Al–4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Luan, J.H.; Jiao, Z.B. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong (China); Chen, G. [Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong (China)

    2015-03-05

    Highlights: • Proper boron additions and heat-treatments improve the ductility of Ti64 alloys. • Coarse TiB precipitates embrittle the Ti64 alloys causing ductility loss. • Modified Ti64 forged alloys with high strength and high ductility are developed. - Abstract: The effects of boron additions on the microstructure and mechanical properties of forged Ti–6Al–4V alloys in different heat-treatment conditions have been characterized by both experimental studies and thermodynamic calculations. The results indicate a combination of proper post-forging treatments and B additions are helpful for control of the prior-β grain size and the volume fraction of α phase, thereby tuning the ductility of the forged Ti–6Al–4V alloys. However, the B-containing alloys exhibit a significant drop in ductility if the solutionizing temperature is too high, and this embrittlement is mainly due to the coarsening of brittle TiB borides. The mechanism in this case is due to the cleavage fracture of TiB rather than its debonding with the matrix, as indicated by the observation of the aligned TiB borides on the matching areas of both halves of the fracture surfaces. Thus, the TiB size and orientation, the prior-β grain size, and the volume fraction of the α phase all play important roles in controlling the mechanical properties of the forged Ti–6Al–4V alloys. The current findings shed light on the composition–microstructure–ductility relationship in the forged Ti–6Al–4V alloys.

  5. Effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Sanchez-Alarcos, V.; Recarte, V.; Perez-Landazabal, J.I.; Gonzalez, M.A.; Rodriguez-Velamazan, J.A.

    2009-01-01

    The effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys is investigated. In particular, a complete characterization of the influence of the partial substitution of Fe by Mn has been performed on Fe 69.4-x Pd 30.6 Mn x (x = 0, 1, 2.5 and 5) alloys. The substitution of 1% Fe by Mn fully inhibits the undesirable irreversible face-centered tetragonal to body-centered tetragonal transformation without decreasing the face-centered cubic to face-centered tetragonal temperature. In addition, the substitution of 2.5% Fe by Mn gives rise to the highest thermoelastic transformation temperature observed to date in the Fe-Pd system, probably due to an increase in the valence electron concentration. The magnetocaloric effect has been evaluated in this alloy system for the first time. Nevertheless, the low values obtained suggest that the Fe-Pd alloys are not good candidates for magnetic refrigeration applications.

  6. Additional Minor Diterpene Glycosides from Stevia rebaudiana Bertoni

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2013-10-01

    Full Text Available Two additional novel minor diterpene glycosides were isolated from the commercial extract of the leaves of Stevia rebaudiana Bertoni. The structures of the new compounds were identified as 13-{β-D-glucopyranosyl-(1→2-O-[β-D-glucopyranosyl-(1→3-β-D-glucopyranosyl-oxy} ent-kaur-16-en-19-oic acid {β-D-xylopyranosyl-(1→2-O-[β-D-glucopyranosyl-(1→3]-O-β-D-glucupyranosyl-ester} (1, and 13-{β-D-6-deoxy-glucopyranosyl-(1→2-O-[β-D-glucopyranosyl-(1→3-β-D-glucopyranosyl-oxy} ent-kaur-16-en-19-oic acid {β-D-glucopyranosyl-(1→2-O-[β-D-glucopyranosyl-(1→3-β-D-gluco-pyranosyl-ester} (2, on the basis of extensive 1D (1H- and 13C- 2D NMR (COSY, HSQC and HMBC and MS spectroscopic data as well as chemical studies.

  7. Prevention of microcracking by REM addition to alloy 690 filler metal in laser clad welds

    International Nuclear Information System (INIS)

    Okauchi, Hironori; Saida, Kazuyoshi; Nishimoto, Kazutoshi

    2011-01-01

    Effect of REM addition to alloy 690 filler metal on microcracking prevention was verified in laser clad welding. Laser clad welding on alloy 132 weld metal or type 316L stainless steel was conducted using the five different filler metals of alloy 690 varying the La content. Ductility-dip crack occurred in laser clad welding when La-free alloy 690 filler metal was applied. Solidification and liquation cracks occurred contrarily in the laser cladding weld metal when the 0.07mass%La containing filler metal was applied. In case of laser clad welding on alloy 132 weld metal and type 316L stainless steel, the ductility-dip cracking susceptibility decreased, and solidification/liquation cracking susceptibilities increased with increasing the La content in the weld metal. The relation among the microcracking susceptibility, the (P+S) and La contents in every weld pass of the laser clad welding was investigated. Ductility-dip cracks occurred in the compositional range (atomic ratio) of La/(P+S) 0.99(on alloy 132 weld metal), >0.90 (on type 316L stainless steel), while any cracks did not occur at La/(P+S) being between 0.21-0.99 (on alloy 132 weld metal) 0.10-0.90 (on type 316L stainless steel). Laser clad welding test on type 316L stainless steel using alloy 690 filler metal containing the optimum La content verified that any microcracks did not occurred in the laser clad welding metal. (author)

  8. The effect of scandium addition on microstructure and mechanical properties of Al–Si–Mg alloy: A multi-refinement modifier

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Cong, E-mail: xucong55555@gmail.com [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Xiao, Wenlong, E-mail: wlxiao@buaa.edu.cn [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Hanada, Shuji [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamagata, Hiroshi [Center for Advanced Die Engineering and Technology, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1193 (Japan); Ma, Chaoli [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-12-15

    Effect of scandium (Sc) additions on the microstructure, mechanical properties and fracture behavior of Al–Si–Mg casting alloy (F357) were systematically investigated. It was found that Sc addition caused a multi-refining efficiency on the microstructure of as-cast F357 alloy, including refinement of grains and secondary dendrite arm spacing (SDAS), modification of eutectic Si and harmless disposal of β-Al{sub 5}FeSi phase. Subsequent T6 heat treatment had further induced the complete spheroidization of eutectic Si and precipitation of fine secondary Al{sub 3}Sc dispersoids in the Sc modified alloys. Thus the mechanical properties, especially the ductility, were significantly enhanced by the addition of Sc combined with the heat treatment. The highest ultimate tensile strength, yield strength and elongation were achieved in 0.8 wt.% Sc modified F357 alloy combined with T6 heat treatment. Furthermore, fractographic examinations indicated that the ductile fracture mechanism served as a dominate role in the modified alloys due to the formation of fine, deep and uniformly distributed dimples. - Highlights: • Detailed characterization of the multi-refining microstructure of Sc modified F357 alloy was performed. • The multi-refinement was proposed to refine grain and SDAS, modify eutectic Si and β-phase. • Sc modifier combined with T6 treatment is effective in improving tensile properties. • Modification of eutectic Si in F357 alloy with Sc is consistent with the IIT mechanism.

  9. Effects of ageing treatment on microstructures and properties of Mg-Gd-Y-Zr alloys with and without Zn additions

    International Nuclear Information System (INIS)

    Liu, X.B.; Chen, R.S.; Han, E.H.

    2008-01-01

    Mg-10Gd-3Y-0.5Zr alloys with and without 1% Zn additions have been investigated using optical microscopy, scanning electron microscope and X-ray diffraction. The microstructures, ageing hardening behaviors and mechanical properties of the two alloys are compared. The extruded-T5 specimens exhibit remarkable age hardening responses during ageing from 200 to 250 deg. C. The highest peak hardness and strength of the two alloys are obtained when they are aged at 200 deg. C. Addition of 1% Zn to Mg-10Gd-3Y-0.5Zr alloy results in the greater magnitude ageing effect and better mechanical properties as well as better heat resistance. Furthermore, secondary ageing is carried out at 200 deg. C following preliminary ageing at 250 deg. C for both Mg-10Gd-3Y-0.5Zr and Mg-10Gd-3Y-1Zn-0.5Zr alloys. The ultimate tensile strength values after secondary ageing are slightly lower compared with the highest strength of the two alloys, but secondary ageing offers a better combination of high strength and ductility

  10. Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings

    Energy Technology Data Exchange (ETDEWEB)

    Detrois, Martin [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Jablonski, Paul D. [National Energy Technology Lab. (NETL), Albany, OR (United States);

    2017-10-23

    Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficial to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.

  11. Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy

    Science.gov (United States)

    Girelli, L.; Tocci, M.; Montesano, L.; Gelfi, M.; Pola, A.

    2017-11-01

    Additive manufacturing of metals is a production process developed in the last few years to realize net shape components with complex geometry and high performance. AlSi10Mg is one of the most widely used aluminium alloys, both in this field and in conventional foundry processes, for its significant mechanical properties combined with good corrosion resistance. In this paper the effect of heat treatment on AlSi10Mg alloy was investigated. Solution and ageing treatments were carried out with different temperatures and times on samples obtained by direct metal laser sintering and gravity casting in order to compare their performance. Microstructural analyses and hardness tests were performed to investigate the effectiveness of the heat treatment. The results were correlated to the sample microstructure and porosity, analysed by means of optical microscopy and density measurements. It was found that, in the additive manufactured samples, the heat treatment can reduce significantly the performance of the alloy also because of the increase of porosity due to entrapped gas during the deposition technique and that the higher the solution temperature the higher the increase of such defects. A so remarkable effect was not found in the conventional cast alloy.

  12. The Influence of Nickel and Tin Additives on the Microstructural and Mechanical Properties of Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Haider T. Naeem

    2014-01-01

    Full Text Available The effects of nickel and nickel combined tin additions on mechanical properties and microstructural evolutions of aluminum-zinc-magnesium-copper alloys were investigated. Aluminum alloys containing Ni and Sn additives were homogenized at different temperatures conditions and then aged at 120°C for 24 h (T6 and retrogressed at 180°C for 30 min and then reaged at 120°C for 24 h (RRA. Comparison of the ultimate tensile strength (UTS of as-quenched Al-Zn-Mg-Cu-Ni and Al-Zn-Mg-Cu-Ni-Sn alloys with that of similar alloys which underwent aging treatment at T6 temper showed that gains in tensile strengths by 385 MPa and 370 MPa were attained, respectively. These improvements are attributed to the precipitation hardening effects of the alloying element within the base alloy and the formation of nickel/tin-rich dispersoid compounds. These intermetallic compounds retard the grain growth, lead to grain refinement, and result in further strengthening effects. The outcomes of the retrogression and reaging processes which were carried on aluminum alloys indicate that the mechanical strength and Vickers hardness have been enhanced much better than under the aging at T6 temper.

  13. Low alloy additions of iron, silicon, and aluminum to uranium: a literature survey

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1980-01-01

    A survey of the literature has been made on the experimental results of small additions of iron, silicon, and aluminum to uranium. Information is also included on the constitution, mechanical properties, heat treatment, and deformation of various binary and ternary alloys. 42 references, 24 figures, 13 tables

  14. Corrosion properties and corrosion evolution of as-cast AZ91 alloy with rare earth yttrium

    International Nuclear Information System (INIS)

    Luo, T.J.; Yang, Y.S.

    2011-01-01

    Highlights: → Minor addition of Y will increase the corrosion resistance of AZ91 alloy, and 0.3 wt.% Y is the optimum addition. → A film composed of Mg(OH) 2 , MgCO 3 , Al(OH) 3 and Al 2 O 3 is formed on the surface of AZ91 alloy with rare earth Y free. → The film of AZ91 alloy with 0.3 wt.% Y is mainly composed of Mg(OH) 2 and MgCO 3 without any Al(OH) 3 and Al 2 O 3 . → The relative quantity of MgCO 3 in the surface film of AZ91 + 0.3 wt.% Y is bigger than that of AZ91 alloy with Y free. → Y 2 O 3 phase is found in the surface film of alloy III, which benefits to stabilize the surface film. -- Abstract: The corrosion resistance property and the corrosion evolution of as-cast AZ91 alloy with rare earth Y addition are investigated by using immersion tests, electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). The results show that the proper amount of Y in the alloys can improve the corrosion resistance of AZ91 alloys effectively. With the increment of Y, the corrosion rate of the modified AZ91 alloys by Y addition was markedly less than that of AZ91 alloy. The corrosion rate of AZ91 alloy with 0.3 wt.% Y was the slightest, but further addition of Y content over 0.3 wt.% make the corrosion heavier. The XPS analysis suggests that the compound film of AZ91 alloy with 0.3 wt.% Y is mainly composed of Mg(OH) 2 and MgCO 3 without any Al(OH) 3 and Al 2 O 3 , in addition, Y 2 O 3 phase is found in the compound film of AZ91 alloy with 0.3 wt.% Y, which benefits to stabilize the surface film.

  15. Mechanical properties of tungsten alloys with Y2O3 and titanium additions

    International Nuclear Information System (INIS)

    Aguirre, M.V.; Martin, A.; Pastor, J.Y.; LLorca, J.; Monge, M.A.; Pareja, R.

    2011-01-01

    In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti-0.47 wt.% Y 2 O 3 and 4 wt.% Ti-0.5 wt.% Y 2 O 3 ) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 deg. C to 1000 deg. C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y 2 O 3 , is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y 2 O 3 and Ti permits to obtain materials with low pores presence.

  16. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Yoon, Jae Hong; Cho, Tong Yul; Zhu He, Yi; Lee, Chan Gyu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1) by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  17. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Directory of Open Access Journals (Sweden)

    Shi Hong Zhang et al

    2008-01-01

    Full Text Available Micron-size Ni-base alloy (NBA powders were mixed with both 1.5 wt.% (hereinafter % micron-size CeO2 (m-CeO2 and also 1.5% and 3.0% nano-size CeO2 (n- CeO2 powders. These mixtures were coated on low-carbon steel (Q235 by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1 by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  18. Developing precipitation hardenable high entropy alloys

    Science.gov (United States)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates

  19. Effects of rare-earths additions on the breakdown of protective oxide scales in the presence of sulfur

    International Nuclear Information System (INIS)

    Srinivasan, V.; Goodman, D.E.

    1989-01-01

    Minor additions of rare-earths improve oxide scale adhesion in simple oxidation at high temperatures. The efficacy of such improvements and the role of such additions are not well understood in the presence of sulfur at 500-700 degrees C. Therefore, mixed gas corrosion tests were performed on model Fe-based alloys, with minor additions of rare-earths in an H 2 /H 2 S/H 2 O/Ar gas mixture at 700 degrees C up to 192 hours. The scale breakdown mechanisms were studied on preoxidized samples. The scales and the substrates were characterized by SEM/EDS, and scanning Auger microscopy (AES). The results are discussed

  20. Stochastic simulation of nucleation in binary alloys

    Science.gov (United States)

    L’vov, P. E.; Svetukhin, V. V.

    2018-06-01

    In this study, we simulate nucleation in binary alloys with respect to thermal fluctuations of the alloy composition. The simulation is based on the Cahn–Hilliard–Cook equation. We have considered the influence of some fluctuation parameters (wave vector cutoff and noise amplitude) on the kinetics of nucleation and growth of minority phase precipitates. The obtained results are validated by the example of iron–chromium alloys.

  1. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    Science.gov (United States)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  2. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  3. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Masaki [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Nam, Tae-hyun [School of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); School of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2010-10-15

    Research highlights: In this study, the effects of composition and annealing temperature on microstructure, shape memory effect and superelastic properties were investigated in Ti-Nb-4Zr-2Ta-N alloys by measuring stress-strain curves at various temperatures and using transmission electron microscopy. Dissolution of {alpha} phase increases M{sub s} and decreases the critical stress for slip for the Ti-22Nb-4Zr-2Ta alloy while it causes the decrease of M{sub s} and the increase of the critical stress for slip for the Ti-20Nb-4Zr-2Ta-0.6N alloy. The different effect of dissolution of {alpha} phase can be attributed to the fact that N is absorbed in {alpha} phase. - Abstract: The composition dependence of the mechanical properties and martensitic transformation behavior of Ti-Nb-4Zr-2Ta-N alloys is investigated. The effect of annealing temperature on the microstructural evolution and superelastic properties in the N-added and N-free alloys is compared. The addition of N decreases M{sub s} of Ti-Nb-4Zr-2Ta alloys by about 200 K per 1 at.%N and improves the superelastic properties of Ti-Nb-4Zr-2Ta alloys. The dissolution of {alpha} phase increases the martensitic transformation start temperature and decreases the superelastic recovery strain for the N-free alloy, whereas it causes opposite effects for the N-added alloy. The different annealing temperature dependences of superelastic properties are discussed on the basis of microstructure observation.

  4. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Hosoda, Hideki; Nam, Tae-hyun; Miyazaki, Shuichi

    2010-01-01

    Research highlights: In this study, the effects of composition and annealing temperature on microstructure, shape memory effect and superelastic properties were investigated in Ti-Nb-4Zr-2Ta-N alloys by measuring stress-strain curves at various temperatures and using transmission electron microscopy. Dissolution of α phase increases M s and decreases the critical stress for slip for the Ti-22Nb-4Zr-2Ta alloy while it causes the decrease of M s and the increase of the critical stress for slip for the Ti-20Nb-4Zr-2Ta-0.6N alloy. The different effect of dissolution of α phase can be attributed to the fact that N is absorbed in α phase. - Abstract: The composition dependence of the mechanical properties and martensitic transformation behavior of Ti-Nb-4Zr-2Ta-N alloys is investigated. The effect of annealing temperature on the microstructural evolution and superelastic properties in the N-added and N-free alloys is compared. The addition of N decreases M s of Ti-Nb-4Zr-2Ta alloys by about 200 K per 1 at.%N and improves the superelastic properties of Ti-Nb-4Zr-2Ta alloys. The dissolution of α phase increases the martensitic transformation start temperature and decreases the superelastic recovery strain for the N-free alloy, whereas it causes opposite effects for the N-added alloy. The different annealing temperature dependences of superelastic properties are discussed on the basis of microstructure observation.

  5. Enhancing the Oxidation Performance of Wrought Ni-Base Superalloy by Minor Additions of Active Elements

    Science.gov (United States)

    Tawancy, H. M.

    2016-12-01

    We show that the oxidation performance of Cr2O3-forming superalloy based upon the Ni-Cr-W system is significantly improved by the presence of minor concentrations of La, Si and Mn, which outweigh the detrimental effect of high W concentration in the alloy. Although Cr2O3 is known to transform into volatile CrO3 at temperatures ≥950 °C, the respective protection is extended to temperatures reaching 1150 °C, which has also been correlated with the beneficial effects of La, Si and Mn. During high-temperature oxidation, an inner protective La- and Si-modified layer of α-Cr2O3 in contact with the superalloy substrate is developed and shielded by an outermost layer of MnCr2O4. The distribution of La and Si in the inner oxide layer has been characterized down to the scale of transmission electron microscopy, and the possible mechanisms underlying their beneficial effects are elucidated.

  6. An analytical approach to elucidate the mechanism of grain refinement in calcium added Mg-Al alloys

    International Nuclear Information System (INIS)

    Nagasivamuni, B.; Ravi, K.R.

    2015-01-01

    Highlights: • Minor additions of Ca (<0.2%) refines the grain structure in Mg-(3, 6 and 9)Al alloys. • Analytical model elucidate that nucleation potency is enhanced after Ca addition. • Ternary Mg-Al-xCa growth restriction values (Q t ) are computed using Scheil equations. • Grain size predictions elucidate that nucleation events dominate grain refinement. • Growth restriction due to the higher Ca addition on grain refinement is not significant. - Abstract: The present study investigates the grain refinement of Mg-3Al, Mg-6Al and Mg-9Al alloys by calcium addition. The maximum reduction in grain size has been observed at 0.2% Ca addition in Mg-Al alloys, in which any further addition (up to 0.4%) has marginal improvement in grain refinement. The mechanism associated with the grain refinement of Mg-Al alloys by Ca addition is discussed in terms of growth restriction factor (Q) and constitutional undercooling (ΔT CS ) using analytical model. The influence of growth restriction factor (Q) on the final grain size of Ca-added Mg-Al alloys are calculated with the help analytical model by assuming that the number of nucleant particles is not altered through Ca addition. For accurate grain size calculations, the value of Q has been estimated with reliable thermodynamic database using Scheil solidification simulation. The comparison of predicted and experimental grain size results indicate that constitutional undercooling activation of nucleation events plays dominant role in grain refinement in Mg-Al alloys by calcium addition, whereas the increase in growth restriction value has negligible effect

  7. The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lipeng [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Zhang, Zhiqing; Sanders, Robert E.; Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Yang, Guang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Centre for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-03-11

    The natural aging and artificial aging behaviours of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions were investigated using Vickers microhardness measurements, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM) characterisation. Excess Si and Cu additions enhanced the alloy hardening ability during natural (NA) and artificial aging (AA). Alloys with low Cu and high Si contents exhibited higher precipitation hardening than alloys rich in Mg during artificial aging. In contrast, the alloys with high amounts of Cu were less dependent on the Mg/Si ratio during precipitation hardening due to their similar aging kinetics. The main precipitate phases that contributed to the peak-aging hardness were the L, Q′ and β″ phases. In the over-aging conditions, the alloys rich in Mg and Cu had finer and more numerous precipitates than their Si-rich equivalents due to the preferential precipitation of the L phase. The combination of excess Mg and high Cu resulted in an alloy with a relatively low hardness in T4 temper and a relatively higher hardness after the paint baking cycle. Thus, this alloy has good potential for use in auto body panel applications.

  8. Mechanical and wear properties of pre-alloyed molybdenum P/M steels with nickel addition

    Directory of Open Access Journals (Sweden)

    Yamanoglu R.

    2012-01-01

    Full Text Available The aim of this study is to understand the effect of nickel addition on mechanical and wear properties of molybdenum and copper alloyed P/M steel. Specimens with three different nickel contents were pressed under 400 MPa and sintered at 1120ºC for 30 minutes then rapidly cooled. Microstructures and mechanical properties (bending strength, hardness and wear properties of the sintered specimens were investigated in detail. Metallographical investigations showed that the microstructures of consolidated specimens consist of tempered martensite, bainite, retained austenite and pores. It is also reported that the amount of pores varies depending on the nickel concentration of the alloys. Hardness of the alloys increases with increasing nickel content. Specimens containing 2% nickel showed minimum pore quantity and maximum wear resistance. The wear mechanism changed from abrasive wear at low nickel content to adhesive wear at higher nickel content.

  9. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Michael S.; Goyel, Sonalika; Rios, Orlando [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States); Cupid, Damian M. [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States); Freiberg University of Mining and Technology, Institute of Materials Science, Freiberg (Germany); Seifert, Hans J. [Freiberg University of Mining and Technology, Institute of Materials Science, Freiberg (Germany); Ebrahimi, Fereshteh, E-mail: febra@mse.ufl.edu [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States)

    2010-05-15

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 deg. C to 1600 deg. C. Both alloys solidified as single {beta}-phase and transformed to {gamma} + {sigma} phases upon slow cooling. The addition of Cr did not affect the {beta} {yields} {gamma} transformation temperature upon slow cooling. In contrast, the temperature, at which the {sigma}-phase formed, was reduced noticeably. Upon heating, the temperature at which the {beta}-phase evolves from the {gamma} + {sigma} microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the {gamma}-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the {beta}-phase to room temperature. These results are explained by the partitioning of Cr into the {beta}-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  10. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Michael [University of Florida, Gainesville; Goyel, Sonalika [University of Florida, Gainesville; Rios, Orlando [ORNL; Cupid, Damian M [Freiberg University of Mining and Technology; Seifert, Hans J [Freiberg University of Mining and Technology; Ebrahimi, Fereshteh [University of Florida, Gainesville

    2010-01-01

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 C to 1600 C. Both alloys solidified as single {beta}-phase and transformed to {gamma} + {sigma} phases upon slow cooling. The addition of Cr did not affect the {beta} {yields} {gamma} transformation temperature upon slow cooling. In contrast, the temperature, at which the {sigma}-phase formed, was reduced noticeably. Upon heating, the temperature at which the {beta}-phase evolves from the {gamma} + {sigma} microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the {gamma}-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the {beta}-phase to room temperature. These results are explained by the partitioning of Cr into the {beta}-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  11. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    International Nuclear Information System (INIS)

    Kesler, Michael S.; Goyel, Sonalika; Rios, Orlando; Cupid, Damian M.; Seifert, Hans J.; Ebrahimi, Fereshteh

    2010-01-01

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 deg. C to 1600 deg. C. Both alloys solidified as single β-phase and transformed to γ + σ phases upon slow cooling. The addition of Cr did not affect the β → γ transformation temperature upon slow cooling. In contrast, the temperature, at which the σ-phase formed, was reduced noticeably. Upon heating, the temperature at which the β-phase evolves from the γ + σ microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the γ-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the β-phase to room temperature. These results are explained by the partitioning of Cr into the β-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  12. Effect of trace addition of al on microstructure, texture and tensile ductility of Mg-6Zn-0.5Er alloy

    Directory of Open Access Journals (Sweden)

    Xiaobing Zheng

    2016-06-01

    Full Text Available The effects of trace addition of Al on the microstructure and mechanical properties of the as-extruded Mg-6Zn-0.5Er alloy were investigated in the present investigation. The results showed that the trace addition of Al affected the mechanical properties significantly. The elongation of the extruded alloy was improved markedly from 17 to 25% with the trace addition of Al. It is suggested that the improvement of ductility was mainly attributed to the modification of basal texture of the as-extruded alloy, resulting from the complete dynamic recrystallization due to the trace addition of Al. In addition, the existence of the complete dynamic recrystallization led to an obvious increase in the number fraction of high angle grain boundaries, the average misorientation angle and Schmid factors for the (0001 〈112¯0〉 slip, which also have contributed to the improvement of ductility.

  13. Effects of Ce and Zr addition on microstructure and hardness of Al-Si-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Bevilaqua, William Lemos; Reguly, Afonso; Froehlich, Andre Ronaldo; Stadtlander, Antonio Ricardo

    2016-01-01

    The effects of cerium and zirconium contents (0.3%-0.16%Zr; 0.3%-0.27%Zr e 0.3%-0.36%Zr) to aluminum alloy 354.0 was investigated by microstructural analysis and hardness measurements in as-cast and heat-treated conditions. The macrostructure show an excellent grain refinement for all Ce and Zr contents used. Additionally, the Cu-Ce reaction during solidification changes significantly the age hardening process of modified alloys. (author)

  14. Mechanical and functional properties of two-phase Ni53Mn22Co6Ga19 high-temperature shape memory alloy with the addition of Dy

    International Nuclear Information System (INIS)

    Yang, S Y; Wang, C P; Liu, X J

    2013-01-01

    The effects of Dy addition on microstructure, martensitic transformation, mechanical and shape memory properties of the two-phase Ni 53 Mn 22 Co 6 Ga 19 high-temperature shape memory alloy were investigated. It is found that a small Dy addition results in the refinement of grain size, which can effectively improve the tensile ductility and strength of the two-phase Ni 53 Mn 22 Co 6 Ga 19 alloy. However, a Dy(Ni,Mn) 4 Ga precipitate forms in the alloys with the Dy addition, and its amount increases with an increase in the Dy addition. This change causes the ductility of the alloys to decrease when the Dy addition is further increased to 0.3 at.%. The results further show that the changes in the martensitic transformation temperature of the studied alloys can be attributed to the combined effects of the tetragonality (c/a) and electron concentration (e/a) of martensite. Additionally, the shape memory effects of the alloys are closely related to the refinement of grain size and the alloy strength. In this study, the (Ni 53 Mn 22 Co 6 Ga 19 ) 99.8 Dy 0.2 alloy exhibits a variety of good properties, including a high martensitic transformation starting temperature of 385.7 °C, a tensile ductility of 10.3% and a shape memory effect of 2.8%. (paper)

  15. Effect of Gd–Ca combined additions on the microstructure and creep properties of Mg–7Al–1Si alloys

    International Nuclear Information System (INIS)

    Liu, Jian; Wang, Wuxiao; Zhang, Sha; Zhang, Dongjie; Zhang, Haiyan

    2015-01-01

    Highlights: • The effect of compound addition of Ca and Gd on the microstructure and creep properties of Mg–7Al–1Si alloys was investigated. • After adding 1 wt.% of (Ca + Gd), the creep strain and steady-state creep rate were reduced by about 80% and 84%, respectively. • After adding 1 wt.% of (Ca + Gd), the creep properties of Mg–7Al–1Si alloys were superior to that containing single Gd additive. • The improvement of creep properties after compound addition of Gd and Ca is a result of multiple factors. - Abstract: The microstructure and creep properties of Mg–7Al–1Si alloys with combined additions of alkaline earth element Ca and rare earth element (RE) Gd were investigated using scanning electron microscope (SEM), optical microscope, energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and compressive creep tests. It was found that the combined additions of Ca and Gd contributed to grain refinement, modification of the morphology of coarse Chinese script Mg 2 Si phase, and reduction of β-Mg 17 Al 12 content. Mg–7Al–1Si alloys containing 1 wt.% compound modifier (0.5 wt.% Gd + 0.5 wt.% Ca) exhibited the minimal steady-state creep rate, and were even superior to Mg–7Al–1Si alloys containing single Gd addition. The great improvement of creep properties is mainly attributed to the reduction in the amount and continuity of eutectic β-Mg 17 Al 12 phase, morphology modification of Mg 2 Si phase, solution strengthening of Gd, as well as the formation of thermally stable intermetallic Al 2 Gd, which acted as an effective barrier against grain boundary sliding and dislocation movement

  16. Grain refinement of Ca addition in a twin-roll-cast Mg-3Al-1Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Bin, E-mail: jiangbinrong@cqu.edu.cn [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400030 (China); College of Materials Science and Engineering, Chongqing University, Chongqing 400030 (China); Liu Wenjun [College of Materials Science and Engineering, Chongqing University, Chongqing 400030 (China); Qiu Dong; Zhang Mingxing [Division of Materials, School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Pan Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400030 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Grain refinement of Ca addition in a twin-roll-cast Mg-3Al-1Zn alloy was investigated. Black-Right-Pointing-Pointer Addition of 0.08 wt% Ca into Mg melts can significantly reduce the grain size to 30 {mu}m from 100 {mu}m. Black-Right-Pointing-Pointer Al{sub 2}Ca intermetallic particles have high potency to act as heterogeneous nucleation sites for {alpha}-Mg. - Abstract: Addition of 0.08 wt% Ca into AZ31 melts significantly reduces the average grain size of thin strips produced by twin-roll-cast to 30 {mu}m from 100 {mu}m. Like Zr, due to the high chemical activity, the Ca added into the melts reacts with Al and forms Al{sub 2}Ca intermetallic compound. X-ray diffraction result approves the existence of Al{sub 2}Ca in the thin strips, which formed in the melts. Crystallographic examination of relationship between Al{sub 2}Ca and Mg using the edge-to-edge matching model indicates that Al{sub 2}Ca particles are effective inoculants for heterogeneous nucleation of Mg. It is considered that Al{sub 2}Ca is a potential and effective grain refiner for Mg alloys and the grain refinement through addition of Ca in the AZ31 alloy is attributed to the inoculation effect of Al{sub 2}Ca particles formed in the melts.

  17. Influence of scandium addition on the high-temperature grain size stabilization of oxide-dispersion-strengthened (ODS) ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu, E-mail: lli18@ncsu.edu; Xu, Weizong; Saber, Mostafa; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2015-06-11

    The influence of 1–4 at% Sc addition on the thermal stability of mechanically alloyed ODS ferritic alloy was studied in this work. Sc addition was found to significantly stabilize grain size and microhardness at high temperatures. Grain sizes of samples with 1 and 4 at% Sc was found maintained in the nanoscale range at temperatures up to 1000 °C with hardness maintained at 5.6 and 6.7 GPa, respectively. The detailed microstructure was also investigated from EDS elemental mapping, where nanofeatures [ScTiO] were observed, while nanosized [YTiO] particles were rarely seen. This is probably due to the concentration difference between Sc and Y, leading to the formation of [ScTiO] favoring that of [YTiO]. Precipitation was considered as the major source for the observed high temperature stabilization. In addition, 14YT–Sc alloys without large second phases such as Ti-oxide can exhibit better performance compared to conventional ODS materials.

  18. Food additives, contaminants and other minor components: effects on human gut microbiota-a review.

    Science.gov (United States)

    Roca-Saavedra, Paula; Mendez-Vilabrille, Veronica; Miranda, Jose Manuel; Nebot, Carolina; Cardelle-Cobas, Alejandra; Franco, Carlos M; Cepeda, Alberto

    2018-02-01

    Gut bacteria play an important role in several metabolic processes and human diseases, such as obesity and accompanying co-morbidities, such as fatty liver disease, insulin resistance/diabetes, and cardiovascular events. Among other factors, dietary patterns, probiotics, prebiotics, synbiotics, antibiotics, and non-dietary factors, such as stress, age, exercise, and climatic conditions, can dramatically impact the human gut microbiota equilibrium and diversity. However, the effect of minor food constituents, including food additives and trace contaminants, on human gut microbiota has received less attention. Consequently, the present review aimed to provide an objective perspective of the current knowledge regarding the impacts of minor food constituents on human gut microbiota and consequently, on human health.

  19. Room Temperature Mechanical Properties of A356 Alloy with Ni Additions from 0.5 Wt to 2 Wt %

    Directory of Open Access Journals (Sweden)

    Lucia Lattanzi

    2018-03-01

    Full Text Available In recent years, the influence of Ni on high-temperature mechanical properties of casting Al alloys has been extensively examined in the literature. In the present study, room temperature mechanical properties of an A356 alloy with Ni additions from 0.5 to 2 wt % were investigated. The role of Ni-based compounds and eutectic Si particles in reinforcing the Al matrix was studied with image analysis and was then related to tensile properties and microhardness. In the as-cast condition, the formation of the 3D network is not sufficient to determine an increase of mechanical properties of the alloys since fracture propagates by cleavage through eutectic Si particles and Ni aluminides or by the debonding of brittle phases from the aluminum matrix. After T6 heat treatment the increasing amount of Ni aluminides, due to further addition of Ni to the alloy, together with their brittle behavior, leads to a decrease of yield strength, ultimate tensile strength, and Vickers microhardness. Despite the fact that Ni addition up to 2 wt % hinders spheroidization of eutectic Si particles during T6 heat treatment, it also promotes the formation of a higher number of brittle Ni-based compounds that easily promote fracture propagation.

  20. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    Directory of Open Access Journals (Sweden)

    Cui S.

    2018-01-01

    Full Text Available Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed. Phase fraction diagrams at 500 °C were mapped in the composition range of 0-1.1 wt.% Mg and 0-0.7 wt.% Si to investigate the as-homogenized microstructure. In addition, phase fraction diagram of Mg2Si at 177 °C was mapped to understand the microstructure after final annealing of 6xxx Al alloy. Based on the calculated diagrams, the design strategy of 6xxx Al alloy to produce highest strength due to Mg2Si is discussed.

  1. Effects of the sp element additions on the microstructure and mechanical properties of NiCoFeCr based high entropy alloys

    International Nuclear Information System (INIS)

    Vida, Adam; Varga, Lajos K.; Chinh, Nguyen Quang; Molnar, David; Huang, Shuo; Vitos, Levente

    2016-01-01

    The effects of the sp (Al, Ga, Ge, Sn) element additions on the microstructure and mechanical properties of equimolar NiCoFeCr High Entropy Alloys (HEAs) are investigated. The results of X-ray diffraction measurements combined with scanning electron microscopy SEM investigations, as well as the results of nanoindentation test revealed that while the structure of the basic alloy is full FCC, the addition of sp elements has changed it to a multiphase containing both FCC and BCC components, but in different scales. Accordingly, the addition of sp elements strongly increases the strength of the basic state, especially in the case of alloys where the BCC phase is dominant in the microstructure. The physical properties as the Young’s- and shear moduli of the investigated HEAs were also determined using ultrasound methods. The correlation between these two moduli suggests a general relationship for metallic alloys.

  2. The effect of Ag and Ca additions on the age hardening response of Mg–Zn alloys

    International Nuclear Information System (INIS)

    Bhattacharjee, T.; Mendis, C.L.; Oh-ishi, K.; Ohkubo, T.; Hono, K.

    2013-01-01

    The effect of sole and combined additions of Ag and Ca in enhancing the age hardening response in a Mg–2.4Zn (at%) alloy have been studied by systematic microstructure investigations using transmission electron microscopy (TEM) and three dimensional atom probe (3DAP). In the early aging stage of a Mg–2.4Zn–0.1Ag–0.1Ca (at%) alloy at 160 °C, Zn-rich Guinier Preston (G.P.) zones form with Ag and Ca enrichment. Further aging lead to the formation of fine β′ 1 precipitates with Ag and Ca enrichment. We confirmed that the G.P. zones do not form in the Mg–2.4Zn (at%) binary alloy at 160 °C, but form after a prolonged aging at 70 °C. This suggests that the combined addition of Ag and Ca shifts the metastable solvus for the G.P. zones to a higher temperature, thereby making it possible to form G.P. zones even at the artificial aging temperature of 160 °C. Since G.P. zones act as nucleation sites for the β′ 1 precipitates, the peak-aged microstructure is refined substantially by the addition of Ag and Ca

  3. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications

    International Nuclear Information System (INIS)

    Fischer, M.; Laheurte, P.; Acquier, P.; Joguet, D.; Peltier, L.; Petithory, T.; Anselme, K.; Mille, P.

    2017-01-01

    Biocompatible beta-titanium alloys such as Ti-27.5(at.%)Nb are good candidates for implantology and arthroplasty applications as their particular mechanical properties, including low Young's modulus, could significantly reduce the stress-shielding phenomenon usually occurring after surgery. The CLAD® process is a powder blown additive manufacturing process that allows the manufacture of patient specific (i.e. custom) implants. Thus, the use of Ti-27.5(at.%)Nb alloy formed by CLAD® process for biomedical applications as a mean to increase cytocompatibility and mechanical biocompatibility was investigated in this study. The microstructural properties of the CLAD-deposited alloy were studied with optical microscopy and electron back-scattered diffraction (EBSD) analysis. The conservation of the mechanical properties of the Ti-27.5Nb material after the transformation steps (ingot-powder atomisation-CLAD) were verified with tensile tests and appear to remain close to those of reference material. Cytocompatibility of the material and subsequent cell viability tests showed that no cytotoxic elements are released in the medium and that viable cells proliferated well. - Highlights: • Biomimetic implants can be provided from additive manufacturing with beta-titanium alloys. • We studied the properties of a Ti-Nb alloy elaborated with a laser deposition process. • TiNb alloy processed by LMD consists of only beta phase due to rapid cooling. • No preferential crystallographic texture is observed with EBSD analyses. • TiNb samples showed a combination of high strength and low Young's modulus.

  4. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M. [LEM3, Université de Lorraine, Ile du Saulcy, 57045 Metz (France); Laheurte, P., E-mail: pascal.laheurte@univ-lorraine.fr [LEM3, Université de Lorraine, Ile du Saulcy, 57045 Metz (France); Acquier, P. [IREPA Laser, Institut Carnot Mica, Parc d' Innovation, 67400 Illkirch (France); Joguet, D. [LERMPS, Université de Technologie de Belfort Montbéliard, Sevenans, 90010 Belfort (France); Peltier, L. [LEM3, Ecole Nationale Supérieure d' Arts et Métiers, 57078 Metz (France); Petithory, T.; Anselme, K. [IS2M, CNRS UMR7361, Université de Haute-Alsace, 68057 Mulhouse (France); Mille, P. [LGECO Institut National des Sciences Appliquées, 67000 Strasbourg (France)

    2017-06-01

    Biocompatible beta-titanium alloys such as Ti-27.5(at.%)Nb are good candidates for implantology and arthroplasty applications as their particular mechanical properties, including low Young's modulus, could significantly reduce the stress-shielding phenomenon usually occurring after surgery. The CLAD® process is a powder blown additive manufacturing process that allows the manufacture of patient specific (i.e. custom) implants. Thus, the use of Ti-27.5(at.%)Nb alloy formed by CLAD® process for biomedical applications as a mean to increase cytocompatibility and mechanical biocompatibility was investigated in this study. The microstructural properties of the CLAD-deposited alloy were studied with optical microscopy and electron back-scattered diffraction (EBSD) analysis. The conservation of the mechanical properties of the Ti-27.5Nb material after the transformation steps (ingot-powder atomisation-CLAD) were verified with tensile tests and appear to remain close to those of reference material. Cytocompatibility of the material and subsequent cell viability tests showed that no cytotoxic elements are released in the medium and that viable cells proliferated well. - Highlights: • Biomimetic implants can be provided from additive manufacturing with beta-titanium alloys. • We studied the properties of a Ti-Nb alloy elaborated with a laser deposition process. • TiNb alloy processed by LMD consists of only beta phase due to rapid cooling. • No preferential crystallographic texture is observed with EBSD analyses. • TiNb samples showed a combination of high strength and low Young's modulus.

  5. The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Pinghuai [Fusion Reactor & Materials Division, Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Miao, Yinbin [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Li, Shaofu; Wang, Man [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Liu, Xiang [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Gong, Mengqiang [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2015-11-05

    In this study, a 9Cr oxide-dispersion strengthened (ODS) alloy with additional corrosion resistant element Al was fabricated by mechanical alloying (MA) and hot pressing (HP) to explore the impact of Al on the microstructure and mechanical property of a 9Cr ODS alloy. It is found that the Al completely dissolved into the Fe–Cr matrix after milling for 30 h. The minor phases in the Al-containing 9Cr ODS ferritic alloy were investigated by a high-energy X-ray, and were identified to be orthorhombic-YAlO{sub 3} (YAP), bcc-Y{sub 3}Al{sub 5}O{sub 12} (YAG), monoclinic-Al{sub 2}Y{sub 4}O{sub 9} (YAM), and hexagonal-YAlO{sub 3} (YAH). These phases were further confirmed by selected area diffraction pattern (SADP), energy dispersive spectroscopy (EDS), and high resolution transmission electron microscopy (HRTEM). In addition, their volume fractions were also calculated from the integrated intensities. According to the analysis of the particles and their formation sequences, the larger particles (greater than 100 nm) are identified as mainly YAG and Al{sub 2}O{sub 3} particles, while the particles with small size (less than 30 nm) are likely primarily YAM, YAH, and YAP particles. The yielding strength (YS) and ultimate tensile strength (UTS) at RT are 563 MPa and 744 MPa, respectively, while the YS and UTS at 700 °C are 245 MPa and 276 MPa, respectively. Although the addition Al in ODS alloys decreases the strength at RT, the values at high temperature are similar to those obtained for 9Cr ODS alloys strengthened by fine Y–Ti–O particles. - Graphical abstract: Synchrotron X-ray diffraction line profile of the 9CrAl ODS alloy; (Ferrite matrix phases, along with minor phases, orthorhombic YAlO{sub 3} (yttrium aluminum perovskite, YAP), bcc Y{sub 3}Al{sub 5}O{sub 12} (yttrium aluminum garnet, YAG), monoclinic Al{sub 2}Y{sub 4}O{sub 9} (yttrium aluminum monoclinic, YAM), and hexagonal YAlO{sub 3} (yttium aluminum hexagonal, YAH) were recognized.). - Highlights: • The

  6. Cu-based shape memory alloys with enhanced thermal stability and mechanical properties

    International Nuclear Information System (INIS)

    Chung, C.Y.; Lam, C.W.H.

    1999-01-01

    Cu-based shape memory alloys were developed in the 1960s. They show excellent thermoelastic martensitic transformation. However the problems in mechanical properties and thermal instability have inhibited them from becoming promising engineering alloys. A new Cu-Zn-Al-Mn-Zr Cu-based shape memory alloy has been developed. With the addition of Mn and Zr, the martensitic transformation behaviour and the grain size ca be better controlled. The new alloys demonstrates good mechanical properties with ultimate tensile strenght and ductility, being 460 MPa and 9%, respectively. Experimental results revealed that the alloy has better thermal stability, i.e. martensite stabilisation is less serious. In ordinary Cu-Zn-Al alloys, martensite stabilisation usually occurs at room temperature. The new alloy shows better thermal stability even at elevated temperature (∝150 C, >A f =80 C). A limited small amount of martensite stabilisation was observed upon ageing of the direct quenched samples as well as the step quenched samples. This implies that the thermal stability of the new alloy is less dependent on the quenching procedure. Furthermore, such minor martensite stabilisation can be removed by subsequent suitable parent phase ageing. The new alloy is ideal for engineering applications because of its better thermal stability and better mechanical properties. (orig.)

  7. Influence of rare earth additions on the oxidation resistance of chromia forming alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    1995-01-01

    The addition of rare earths to alloys, either in elemental form or as surface coatings reduces the oxidation rate of chromia forming alloys. The rare earths either act as nucleation sites for surface oxides or get incorporates into the surface oxide and diffuse to oxide grain boundaries. If the latter occurs, a change in the defect structure close to the grain boundaries, probably takes place. In this manner, the rare earths inhibits the movement of chromium ions to the oxide/gas interface. The influence of rare earth additions to AISI 316, AISI 316L and Ni-20 Cr on their oxidation behavior has been studied., AISI 316+Ce, AISI 316+Y, Ni-20 Cr and Ni-20 Cr-2 Al-1 Ce were prepared by melting and AISI 316L, AISI 316L+Ce O 2 and AISI 316L+Y 2 O 3 by powder compaction. The effect of superficial deposits of rare earth oxides was also studied. The alloys were coated with rare earth oxides by high temperature conversion of the respective rare earth nitrates. Isothermal oxidation tests were carried out at 900-1100 deg C and the cyclic oxidation tests consisted of 6 cycles of 2 hours each at 900 deg C, followed by cooling to room temperature. All the tests were carried out in air. Oxidation behavior was evaluated gravimetrically. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis and X-ray diffraction techniques were used to identify oxide constituents. Overall, it has been observed that with the addition of rare earths, oxidation resistance increases by decreasing oxidation rates and increasing oxide adhesion. Addition of rare earths to AISI 316 prepared by melting resulted in rapid formation of a chromium rich oxide layered near the metal/oxide interface which reduced overall oxidation rate. The addition of Ce O 2 to AISI 316L was found to improve oxidation behavior after 10 hours at 1100 deg C and also inhibit the formation of volatile Cr O 3 . The isothermal oxidation behavior of rare earth oxide covered Ni-20 Cr at 900 deg C

  8. Effect of boron addition on the magnetic properties of the Fe-Nd-Al alloys prepared by suction casting

    International Nuclear Information System (INIS)

    Bai, Q.; Xu, H.; Tan, X.H.; Zhang, S.Y.

    2007-01-01

    The microstructure and magnetic properties of the Fe-Nd-Al alloys prepared by suction casting with boron addition have been investigated. The increasing boron content in the Fe-Nd-Al alloys significantly increases the intrinsic coercivity ( i H c ) and decreases the proportion of the amorphous phase. The magnetization at the maximum applied field (σ ' s ) of the Fe-Nd-Al-B alloys decreases, while the coercivity increases markedly after annealing. The high intrinsic coercivity is due to the presence of the Nd 2 Fe 14 B phase

  9. Effect of zirconium addition on the ductility and toughness of cast zinc-aluminum alloy5, zamak5, grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Adnan, I.O.

    2007-01-01

    Zinc-aluminum casting alloys are frequently employed in design. They are inexpensive and have mechanical properties in many respects superior to aluminum and copper alloys. Common applications of zinc-aluminum alloys are in the automobile industry for manufacturing carburetors bodies, fuel pump bodies, driving wheels and door handles. They are mainly used for die casting due to their low melting points which ranges from 375 to 487 degree C, good fluidity, pollution free melting in addition to their high corrosion resistance. Against these advantages there exists the deficiency as these alloys solidify in a coarse dentititic structure which tends to deteriorate the mechanical properties and impact strength. It was found that addition of some rare earth materials e.g. titanium or titanium plus boron results in modifying its structure into a petal-like or nodular type. The available literature reveals that most of the published work is directed towards the metallurgical aspects and little or no work is published on the effect of those elements on its mechanical strength, ductility, toughness and impact strength. In this paper, the effect of addition of Zirconium on the microstructure, mechanical behavior, hardness, ductility and impact strength of zinc-aluminum alloy5, Zamak5, is investigated. It was found that addition of Ti+B or Zr or Ti+B+Zr resulted in modifying the coarse dentritic structure of the Zamak5 alloy into a fine nodular one. Further more, addition of any of these elements alone or together resulted in enhancement of the mechanical strength, hardness, ductility, toughness and impact strength of this alloy, for example an increase of 11% in hardness was achieved in case of Zr addition and 100% increase of ductility and 12.5% increase in impact strength were achieved in case of Ti+B addition. (author)

  10. Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys

    International Nuclear Information System (INIS)

    Qiu, Hongxu; Yan, Hong; Hu, Zhi

    2013-01-01

    Highlights: •Sm affected the secondary dendrite arm spacing of Al–7Si–0.7Mg alloy. •The coarse plate-like eutectic silicon was fully modified into a fine branched and particle structure when 0.6 wt.% Sm added. •The tensile properties were enhanced by the addition of Sm. •Sm has marked effects on eutectic temperature and the latent heat ΔH R on remelting behavior. •The morphology and chemical composition of Sm-rich intermetallics were studied. -- Abstract: The effects of samarium (Sm) additions (0–0.9 wt.%) on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys have been studied in this article. The microstructures of the as-cast samples were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The experimental results indicated that the rare earth Sm affected the secondary dendrite arm spacing (SDAS) of Al–7Si–0.7Mg alloy. And it was found that Sm had great modification effects on the microstructures of eutectic silicon. When 0.6 wt.% Sm was added to the alloy, the coarse plate-like eutectic silicon was fully modified into a fine fibrous structure; the dendrites of Al–7Si–0.7Mg alloy was best refined. The mechanical properties were investigated by tensile test. The findings indicate that the tensile properties and elongation were improved by the addition of Sm. And a good combination of ultimate tensile strength (215 MPa) and elongation (3.3%) was obtained when the Sm addition was up to 0.6 wt.%. Furthermore the results of thermal analysis reveal that Sm addition had marked effects on eutectic temperature and the latent heat ΔH R on remelting behavior

  11. Stabilization effect of Zr and Ti additions on the ageing characteristics of Al-1 wt% Si alloy through a creep study

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Beshai, M.H.N.; Abd El Khalek, A.M.; Graiss, G. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Kenawy, M.A. [Ain Shams Univ., Cairo (Egypt). Womens Coll.

    1997-12-31

    Al-1 wt% Si and Al-1 wt% Si-0.1 wt% Zr-0.1 wt% Ti alloys were used to trace the effect of Zr and Ti additions on the behaviour of the steady state creep. After solid solution treatment specimens of both alloys were aged at 623, 673, 723 and 773 K and creep tests were performed at room temperature by applying stresses of 60.0, 62.4, 64.7 and 67.1 MPa. The results showed a sound stabilization effect of Zr and Ti on the ageing characteristics of binary Al-1 wt% Si alloy. Values of the applied stress sensitivity parameter, m, obtained were in the range of (20-34) for Al-Si alloy and (14-19) for Al-Si-Zr-Ti alloy. Time to rupture was found to be strongly increased by Zr and Ti additions. The activation energies of the precipitation process involved were found to be 81.9 kJ/mole and 33.7 kJ/mole of the Al-Si and Al-Si-Zr-Ti alloys respectively. (orig.) 17 refs.

  12. Effect of Sn additive on the structure and crystallization kinetics in Ge–Se alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrahman, M.I., E-mail: mostafaia11@yahoo.com; Hafiz, M.M.; Abdelraheem, A.M.; Abu-Sehly, A.A.

    2016-08-05

    The structure of Ge{sub 20}Se{sub 80−x}Snx glassy alloys and crystallization phases are identified using the X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The glass transition kinetics and the crystallization mechanism of the system are studied using Differential Scanning Calorimeter (DSC) under non-isothermal condition. The results reveal that glass transition temperature (Tg) increases with increasing Sn content which is attributed to the increase in the coordination number. The increase of the glass transition activation energy (Eg) with increasing Sn content is attributed to the decrease in the internal energy of the system as Sn increases. The compositional dependence of both glass forming ability and thermal stability are studied. From the experimental data, the thermal stability parameter (S) is found to be maximum for Ge{sub 20}Se{sub 78}Sn{sub 2} alloy, which indicates that this alloy is thermally more stable in the composition range under investigation. The effect of composition on the crystallization mechanism is discussed using different kinetic models. The crystallization activation energy (Ec) decreases with increasing Sn. This is attributed to the addition of Sn increases the tendency of crystallization. The calculated values of Avrami exponent (n) indicates the crystallization process occurs in one-and two dimensions for Sn is less than or equals 12 at%, respectively. - Highlights: • Glass and crystallization transitions in Ge{sub 20}Se{sub 80−x}Sn{sub x} candidate for devices. • The addition of Sn increases the tendency of Ge-Se alloy to crystallization. • The glass forming ability and thermal stability increase as Sn decreases. • The dimension of the crystals growth is one or two depending on the Sn content.

  13. The Effects of Antimony Addition on the Microstructural, Mechanical, and Thermal Properties of Sn-3.0Ag-0.5Cu Solder Alloy

    Science.gov (United States)

    Sungkhaphaitoon, Phairote; Plookphol, Thawatchai

    2018-02-01

    In this study, we investigated the effects produced by the addition of antimony (Sb) to Sn-3.0Ag-0.5Cu-based solder alloys. Our focus was the alloys' microstructural, mechanical, and thermal properties. We evaluated the effects by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), and a universal testing machine (UTM). The results showed that a part of the Sb was dissolved in the Sn matrix phase, and the remaining one participated in the formation of intermetallic compounds (IMCs) of Ag3(Sn,Sb) and Cu6(Sn,Sb)5. In the alloy containing the highest wt pct Sb, the added component resulted in the formation of SnSb compound and small particle pinning of Ag3(Sn,Sb) along the grain boundary of the IMCs. Our tests of the Sn-3.0Ag-0.5Cu solder alloys' mechanical properties showed that the effects produced by the addition of Sb varied as a function of the wt pct Sb content. The ultimate tensile strength (UTS) increased from 29.21 to a maximum value of 40.44 MPa, but the pct elongation (pct EL) decreased from 48.0 to a minimum 25.43 pct. Principally, the alloys containing Sb had higher UTS and lower pct EL than Sb-free solder alloys due to the strengthening effects of solid solution and second-phase dispersion. Thermal analysis showed that the alloys containing Sb had a slightly higher melting point and that the addition amount ranging from 0.5 to 3.0 wt pct Sb did not significantly change the solidus and liquidus temperatures compared with the Sb-free solder alloys. Thus, the optimal concentration of Sb in the alloys was 3.0 wt pct because the microstructure and the ultimate tensile strength of the SAC305 solder alloys were improved.

  14. Ostwald ripening of Pb nanocrystalline phase in mechanically milled Al-Pb alloys and the influence of Cu additive

    International Nuclear Information System (INIS)

    Wu, Z.F.; Zeng, M.Q.; Ouyang, L.Z.; Zhang, X.P.; Zhu, M.

    2005-01-01

    The coarsening behavior of nanosized Pb phase in both Al-10%Pb and Al-10%Pb-4.5%Cu alloys has been studied by X-ray diffraction and transmission electron microscopy analysis. The coarsening of Pb nanophase in Al-Pb alloys still follows the classical ripening theory (the LSW theory) and the addition of Cu decreases the coarsening rate of Pb nanophase

  15. Effects of boron on the fracture behavior and ductility of cast Ti–6Al–4V alloys

    International Nuclear Information System (INIS)

    Luan, J.H.; Jiao, Z.B.; Heatherly, L.; George, E.P.; Chen, G.; Liu, C.T.

    2015-01-01

    Minor amounts of boron additions have been found to greatly enhance the ductility of cast Ti–6Al–4V alloys, which was considered to be due to the grain-size refinement. In this paper, we report our interesting finding that the beneficial effect of boron on the ductility of the cast titanium alloys is due not only to the grain-size refinement but the enhancement of the prior-β grain-boundary cohesion by boron segregation at the grain boundaries, as evidenced by Auger electron microscopy

  16. Additive Manufacturing of NiTiHf High Temperature Shape Memory Alloy

    Science.gov (United States)

    Benafan, Othmane; Bigelow, Glen S.; Elahinia, Mohammad; Moghaddam, Narges Shayesteh; Amerinatanzi, Amirhesam; Saedi, Soheil; Toker, Guher Pelin; Karaca, Haluk

    2017-01-01

    Additive manufacturing of a NiTi-20Hf high temperature shape memory alloy (HTSMA) was investigated. A selective laser melting (SLM) process by Phenix3D Systems was used to develop components from NiTiHf powder (of approximately 25-75 m particle fractions), and the thermomechanical response was compared to the conventionally vacuum induction skull melted counterpart. Transformation temperatures of the SLM material were found to be slightly lower due to the additional oxygen pick up from the gas atomization and melting process. The shape memory response in compression was measured for stresses up to 500 MPa, and transformation strains were found to be very comparable (Up to 1.26 for the as-extruded; up to 1.52 for SLM).

  17. Effect of nitrogen addition on superelasticity of Ti-Zr-Nb alloys

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Miyazaki, Shuichi; Inamura, Tomonari; Hosoda, Hideki

    2008-01-01

    Recently, the Ti-Zr-Nb alloys have been developed as Ni-free shape memory and superelastic alloys. In this study, the effect of Nb and nitrogen (N) contents on martensitic transformation behavior, shape memory effect and superelasticity in Ti-18Zr-(12-16)Nb-(0-1.0)N (at%) alloys were investigated using tensile tests, optical microscopy and X-ray diffraction. Shape memory effect was observed in Ti-18Zr-(12-13)Nb and Ti-18Zr-12Nb-0.5N alloys at room temperature. The superelastic behavior appeared by the increase of Nb or N content. The Ti-18Zr-(14-15)Nb, Ti-18Zr-(13-14)Nb-0.5N and Ti-18Zr-(12-14)Nb-1.0N alloys exhibited the superelasticity at room temperature. The martensitic transformation start temperature (M s ) decreased by 75 K with 1 at% increase of N content for Ti-18Zr-13Nb alloy. The critical stress for slip deformation and the stress for inducing the martensitic transformation increased with increasing N content. The superelastic recovery strain was also increased by adding N. The maximum recovery strain of 5.0% was obtained in the Ti-18Zr-14Nb-0.5N alloy. (author)

  18. Influence of Co addition on the magnetocaloric effect of FeCoSiAlGaPCB amorphous alloys

    OpenAIRE

    Franco García, Victorino; Borrego Moro, Josefa María; Conde Amiano, Alejandro

    2006-01-01

    The FeCoSiAlGaPCB alloys can be prepared as bulk amorphous materials, with outstanding mechanical properties and increased electrical resistivity. These features can be beneficial for their application as a magnetic refrigerant. The influence of Co addition on the magnetic entropy change of the alloy has been studied. This compositional modification displaces the temperature of the peak entropy change closer to room temperature, but reduces the refrigerant capacity of the material...

  19. Effect of structure and alloying elements on void formation in austenitic steels and nickel alloys

    International Nuclear Information System (INIS)

    Levy, V.; Azam, N.; Le Naour, L.; Didout, G.; Delaplace, J.

    1977-01-01

    In the development of the fast breeder reactors the phenomenon of metal swelling due to the formation of radiation induced voids is a large problem. In the complex alloys small fluctuations in composition can have a considerable effect on swelling and a great deal of investigation on the effect of both major and minor alloying elements is needed to be able to predict swelling. To provide more insight a research program involving irradiation of both commercial or specially cast alloys by 500 keV Ni + ions or 1 MeV electrons has been developed. The major results are presented

  20. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    International Nuclear Information System (INIS)

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-01-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr_2O_3, CrO_2, WO_3, Cu_2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;

  1. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanjin; Zhao, Chaoqian [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Guo, Sai; Gan, Yiliang [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Wu, Songquan; Lin, Junjie; Huang, Tingting [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Lin, Jinxin, E-mail: franklin@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China)

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr{sub 2}O{sub 3}, CrO{sub 2}, WO{sub 3}, Cu{sub 2}O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;.

  2. Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints

    International Nuclear Information System (INIS)

    Dongxia, Yang; Xiaoyan, Li; Dingyong, He; Hui, Huang

    2013-01-01

    Samples of Al–Mg–Mn and Al–Mg–Mn–Er–Zr alloys were welded using the method of laser welding. The influence of Er and Zr on microstructure, microhardness and mechanical properties of the Al–Mg–Mn alloy welded joints were investigated. It has been found that addition of Er and Zr refines the grain size in the fusion zone, due to the formation of primary Al 3 Zr and Al 3 Er. Fine equiaxed grains are dominated near the fusion boundary of the Al–Mg–Mn–Er–Zr alloy joint, which is contrary with the columnar crystal in the Al–Mg–Mn alloy joint. Microhardness of the center of the fusion zone rises from 74HV 0.1 to 84HV 0.1 owing to the grain refinement by Er and Zr. The tensile test result shows that the ultimate tensile strength and yield strength are improved by adding Er and Zr. The main reason for this is related to grain refining strengthening.

  3. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa, Inc, Pittsburgh, PA (United States)

    2017-06-30

    The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation and phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.

  4. Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Ł., E-mail: l.rogal@imim.pl [Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); Dutkiewicz, J. [Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); Atkinson, H.V. [The University of Leicester, Department of Engineering University Road, Leicester, LE1 7RH (United Kingdom); Lityńska-Dobrzyńska, L.; Czeppe, T. [Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); Modigell, M. [RWTH Aachen—Department of Mechanical Process Engineering, 55 Templergraben St., Aachen (Germany)

    2013-09-15

    For thixoforming (semi-solid processing) it is necessary to have a fine globular microstructure in a semi-solid range. Here this has been obtained for 7075 aluminium alloy by addition of modifying agents: 0.5 weight % of scandium and zirconium. The thixoforming process was carried out at 632 °C which gave about 23 volume % of liquid phase. The microstructure of the thixo-formed part (a rotor) consisted of globular grains surrounded by precipitates of secondary phase. The average hardness of thixo-formed parts was 105 HV{sub 5} and the tensile strength 300 MPa. T6 heat treatments were performed with solutionisation at 450 °C for 30 min and 10 h. In both cases the ageing time was set as 18 h at 120 °C. The heat treatments led to an increase in average tensile strength up to 495 MPa. Transmission Electron Microscopy (TEM) analysis enabled the identification of precipitates of the metastable dispersoids of L1{sub 2}–Al{sub 3} (Zr, Sc) and η′ (MgZn{sub 2}) phases in the alloy after the thixoforming and T6 treatment. The measurements of rheological properties of 7075Al alloy with Sc and Zr additions in the semi-solid range indicated an increase of particle size and spheroidization leading to an observable decrease of viscosity during isothermal shearing. A shear rate jump experiment showed that with increasing shear rate the viscosity rapidly falls.

  5. The influence of small SO2 additions on the corrosion behaviour of NiCrAl alloys at 1000-1100deg C

    International Nuclear Information System (INIS)

    Wasserfuhr, C.H.; Quadakkers, W.J.; Schuster, H.; Nickel, H.

    1990-06-01

    The corrosion behaviour of NiCrAl alloys in air containing small amounts of SO 2 has been investigated. The alloys containing 9-20 wt.% chromium and 6-10 wt% aluminium were oxidized in air and in air containing 1 vol% SO 2 . In addition to long term tests, the initial stages of oxidation were examined using various surface analysis techniques. The results have shown that small SO 2 additions to the test atmosphere cause a much higher oxidation rate, especially for cast alloys of low chromium and high aluminium contents. The mechanism of the deleterious effect of SO 2 on the oxidation rate was studied in two ways: measurement of the gas-metal reaction kinetics using gas chromatographical analysis of the test gas, investigation of trace amounts of sulphur in the alloy. On the basis of the results obtained, it can be shown that the high oxidation rates caused by the presence of SO 2 in the test atmosphere can be significantly reduced by increasing the chromium content of the alloy, by adding yttrium to the alloy, and by ensuring a fine-grained microstructure. (orig.) [de

  6. Semisolid slurry of 7A04 aluminum alloy prepared by electromagnetic stirring and Sc, Zr additions

    Directory of Open Access Journals (Sweden)

    Jun-wen Zhao

    2017-05-01

    Full Text Available Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring (EMS and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.

  7. MICROSTRUCTURE AND TENSILE PROPERTIES OF Fe3Al-BASED ALLOYS WITH VC AND TiC ADDITIONS

    Institute of Scientific and Technical Information of China (English)

    W.L.Xu; Y.S.Sun; S.S.Ding

    2001-01-01

    Microstructure and tensile properties of Fe3Al-based alloys with additions of TiC andVC particles have been investigated.Results show that the formation of TiC particlesresults in the refinement of the macrostructure of as-cast ingots.Although the additionof VC particles does not cause significant change of the as-cast microstructure,themicrostructure of the alloy after hot-working and recrystallization has been found tobe refined.The formation of both VC and TiC particles results in the increase of yieldstrength,especially at high temperature of 600℃.

  8. Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Zhou Wei; Aung, Naing Naing; Sun Yangshan

    2009-01-01

    This study investigated the effect of antimony, bismuth and calcium addition on the corrosion and electrochemical behaviour of AZ91 magnesium alloy in 3.5% NaCl solution. Techniques including constant immersion, electrochemical potentiodynamic polarisation, scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) were used to characterise electrochemical and corrosion properties and surface topography. It was found that corrosion attack occurred preferentially on Mg 3 Bi 2 and Mg 3 Sb 2 particles while Mg 17 Al 8 Ca 0.5 and Mg 2 Ca phases showed no detrimental effect on corrosion. Combined addition of small amounts of bismuth and antimony to the AZ91 alloy resulted in significant increase in corrosion rate

  9. Additive Manufacturing of Hierarchical Multi-Phase High-Entropy Alloys for Nuclear Component

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-10

    In recent years, high entropy alloys (HEAs), composed of four or more metallic elements mixed in equal or near equal atomic percent, have attracted significant attention due to their excellent mechanical properties and good corrosion resistance. They show significant promise as candidates for high temperature fission and fusion structural applications. However, the conventional synthesis methods are unlikely to present an industrially suitable route for the production and use of HEAs. Recognizing rapidly evolving additive manufacturing (AM) techniques, the goal of this proposal is to optimize the AM process to fabricate HEAs with predesigned chemical compositions and phase morphologies for nuclear components. For this project, two HEAs FeCrNiMn and FeCrNiMnAl have been successfully synthesized. Correlated mechanical response has been systematically characterized under a variety of laser processing and ion irradiations. Both high entropy alloys are found to present comparable swelling and extraordinary irradiation tolerance (limited voids and stabilized phase structure under high irradiation dose). In addition, the microstructure and radiation-induced hardening can be tailored by laser processing under additive manufacturing. And we have assembled at LANL a unique database of HEAs containing a total of 674 compositions with Phase Stability information. Based on this, the machine learning and Artificial Intelligence capability now are established to predict the microstructure of casted HEAs by given chemical compositions. This unique integration will lead to an optimal AM recipe for fabricating radiation tolerant HEAs. The development of both modeling models and experimental capability will also benefit other programs at LANL.

  10. Comparison of the irradiation effects on swelling and microstructure in commercial alloy A-286 and a simple Fe--25 Ni--15Cr gamma prime hardened alloy

    International Nuclear Information System (INIS)

    Chickering, R.W.; Bajaj, R.; Lally, J.S.

    1977-01-01

    The irradiation behaviors of alloy A-286 as well as experimental gamma prime hardened alloys are being studied in the National Alloy Development Program for application of gamma prime hardened alloys in the liquid metal fast breeder reactor. The principal direction of the studies concerns the high temperature strength and swelling resistance of the alloys. Minor element compositions may affect the phase stability and void swelling. A high Ti to Al ratio indicates a tendency for the gamma prime Ni 3 (Ti,Al) to transform into eta phase (Ni 3 Ti) after long term thermal aging and irradiation enhances the tendency for transformation. Another minor element, Si, as a constituent of G-phase, and irradiation may enhance G-phase formation. The Ti, Al, and Si contents affect the swelling of Fe-Cr-Ni alloys. The swelling resistance generally increases with increasing amounts of these three elements in the matrix. In the study the effects of Ti to Al ratio, Ti content, Al content, and Si content on swelling and phase stability were analyzed after Ni-ion irradiation

  11. Determination of trace impurities in iron-based alloy using neutron activation analysis

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Waheed, S.; Ahmad, S.

    2000-01-01

    A radiochemical neutron activation analysis procedure has been developed and applied to investigate 40 major, minor, and trace impurities in iron-based alloy. A comparison of RNAA and INAA indicated a significant improvement in the detection limits. The extensive use of these alloys in the heavy mechanical industry, manufacturing of aircraft engines, nuclear applications, medical devices and chemical equipment requires their precise characterization. The concentration of iron in the iron-based alloy was found to be 86.7%, whereas Ca, Cr, K, Mg, Mn, V and W were the other constituents of the alloy, which constituted to around 12.89%. The rest of the elements were present in minor or trace levels. Most of the rare earth elements were also present in trace amounts. (orig.)

  12. Influence of small additions of Sc and Zr on structure and mechanical properties of Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Kajgorodova, L.I.; Sel'nikhina, E.I.; Tkachenko, E.A.; Senatorova, O.G.

    1996-01-01

    A study was made into Sc and Zr addition effects on grain structure formation, supersaturated solid solution decomposition and mechanical properties of Al-7%Zn-2%Mg-1.2%Cu alloy. It is shown that grain structure is determined by volume fraction and distribution character of disperse particles of Al 3 Sc and Al 3 (Sc 1-x Zr x ). The reason for additives influence on decomposition kinetics during natural and artificial ageing are revealed. The structural factors responsible for the enhancement of mechanical properties on alloying are discussed. 17 refs.; 5 figs.; 2 tabs

  13. Effect of Rapid Solidification and Addition of Cu3P on the Mechanical Properties of Hypereutectic Al-Si Alloys

    OpenAIRE

    Suárez-Rosales,Miguel Ángel; Pinto-Segura,Raúl; Palacios-Beas,Elia Guadalupe; Hernández-Herrera,Alfredo; Chávez-Alcalá,José Federico

    2016-01-01

    The combined processes; rapid solidification, addition of Cu3P compound and heat treatments to improve the mechanical properties of the hypereutectic Al-13Si, Al-20Si and Al-20Si-1.5Fe-0.7Mn alloys (in wt. %) was studied. Optical microscopy and scanning electron microscopy were used to characterize the microstructures. The mechanical properties were evaluated by tensile tests. It was found that the cooling rate (20-50°C/s) used to solidify the alloys plus the addition of Cu3P compound favored...

  14. Influence of yttria surface modification on high temperature corrosion of porous Ni22Cr alloy

    DEFF Research Database (Denmark)

    Karczewski, Jakub; Dunst, Katarzyna; Jasinski, Piotr

    2017-01-01

    Protective coatings for porous alloys for high temperature use are relatively new materials. Their main drawback is high temperature corrosion. In this work protective coatings based the on Y-precursor infiltrated into the sintered Ni22Cr alloys are studied at 700°C. Effects of the amount...... of the protective phase on the resulting corrosion properties are evaluated in air and humidified hydrogen. Weight gain of the samples, their open porosities and microstructures are analyzed and compared. Results show, that by the addition of even a minor amount of the Y-precursor corrosion rates can be decreased...

  15. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    Science.gov (United States)

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  16. Additive manufacturing of titanium alloys state of the art, challenges and opportunities

    CERN Document Server

    Dutta, Bhaskar

    2016-01-01

    Additive Manufacturing of Titanium Alloys: State of the Art, Challenges and Opportunities provides alternative methods to the conventional approach for the fabrication of the majority of titanium components produced via the cast and wrought technique, a process which involves a considerable amount of expensive machining. In contrast, the Additive Manufacturing (AM) approach allows very close to final part configuration to be directly fabricated minimizing machining cost, while achieving mechanical properties at least at cast and wrought levels. In addition, the book offers the benefit of significant savings through better material utilization for parts with high buy-to-fly ratios (ratio of initial stock mass to final part mass before and after manufacturing). As titanium additive manufacturing has attracted considerable attention from both academicians and technologists, and has already led to many applications in aerospace and terrestrial systems, as well as in the medical industry, this book explores the un...

  17. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    International Nuclear Information System (INIS)

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-01

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: ► The microstructure of Cu-Al alloy is modified in the Ag presence. ► (α + γ) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. ► Ag-rich phase modifies the magnetic characteristics of Cu–Al–Mn alloy.

  18. Multiscale model of metal alloy oxidation at grain boundaries

    International Nuclear Information System (INIS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr 2 O 3 . This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl 2 O 4 . Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr 2 O 3 has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl 2 O 4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional

  19. Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al–Cu–Mn casting alloy

    International Nuclear Information System (INIS)

    Chen Zhongwei; Chen Pei; Li Shishun

    2012-01-01

    Highlights: ► Rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 twin phase in an Al–Cu–Mn casting alloy. ► Patterns of the particles of the Al 20 Cu 2 Mn 3 phase in Al–Cu–Mn free Ce alloy are more diverse. ► The symmetry of neighboring components of twins is characterized by glide reflection and reflection. ► The twins of Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn casting alloys. - Abstract: Effects of Ce addition on microstructure of Al 20 Cu 2 Mn 3 twin phase and mechanical properties of an Al–Cu–Mn casting alloy were investigated by transmission electron microscopy, selected area electron diffraction, high resolution transmission electron microscopy and tensile test. The results show that rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn alloy. Compared with the Ce containing alloy, patterns of particles of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn free Ce alloy are more diverse. The symmetry of neighboring components of twins is characterized by glide reflection and reflection. In addition, twins of the Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn alloy.

  20. Weld metal grain refinement of aluminium alloy 5083 through controlled additions of Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, Philipp; Rethmeier, Michael [Federal Institute for Materials Research and Testing BAM, Berlin (Germany). Div. ' ' Safety of Joined Components' ' ; Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany). Dept. ' ' Joining and Coating Technology' ' ; Schwenk, Christopher; Cross, Carl Edward [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    The refinement of the weld metal grain structure may lead to a significant change in its mechanical properties and in the weldability of the base metal. One possibility to achieve weld metal grain refinement is the inoculation of the weld pool. In this study, it is shown how additions of titanium and boron influence the weld metal grain structure of GTA welds of the aluminium alloy 5083 (Al Mg4.5Mn0.7). For this purpose, inserts consisting of base metal and additions of the master alloy Al Ti5B1 have been cast, deposited in the base metal and fused in a GTA welding process. The increase of the Ti and B content led to a significant decrease of the weld metal mean grain size and to a change in grain shape. The results provide a basis for a more precise definition of the chemical composition of commercial filler wires and rods for aluminium arc welding. (orig.)

  1. Influence of strontium as additive on corrosive-electrochemical behavior of alloy Al +6% lithium in NaCI electrolyte medium

    International Nuclear Information System (INIS)

    Ganiev, I.N.; Norova, M.T.; Nazarov, Kh.M.; Nikitin, V.I.; Karieva, Z.M.

    2005-01-01

    At various voltages, strontium settles down ahead of hydrogen, and the standard electrode potential equals -2,89B. Thus, in relation to aluminum- lithium an alloy Al-Li (6 % lithium) at electrode potential -1,020B, strontium is the anode. Taking into account anodic properties of strontium as additional and its solubility in aluminum-lithium a firm solution is formed, we have selected the following ratio of concentration of an alloying component, 0.01; 0.05; 0.1; 0.5 (mass %). It has perilously been shown, that potential of free corrosion in time, alloys alloyed by strontium, are exposed a little bit faster passivity, than not alloyed. The similar tendency has been observed in all three investigated medium: with the increase in concentration of strontium, the potential of free corrosion is displaced in positive area. Results potentiodynamic researches of alloys in the medium of electrolyte NaCI of various concentration of chlorines -ions the potential of corrosion is displaced in negative area that testifies to decrease of corrosion stability of allays, with growth of aggression of the corrosion medium. It proves to be true accounting speeds of corrosion of alloys from a catholic branch potentiodynamic curves. (author)

  2. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys

    International Nuclear Information System (INIS)

    Costa, S.; Puga, H.; Barbosa, J.; Pinto, A.M.P.

    2012-01-01

    Highlights: ► The Sc effect on the microstructure and ageing behaviour of Al–Sc alloys is studied. ► Cast into copper mould allows the elimination of solution heat treatment. ► Directly aged as cast alloys exhibits higher hardness and precipitation kinetics. ► Sc addition and optimised ageing result in an increase in Al–Sc mechanical properties. -- Abstract: The grain refinement effect and the ageing behaviour of Al–0.5 wt.% Sc, Al–0.7 wt.% Sc, and Al–1 wt.% Sc alloys are studied on the basis of optic microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) observations and hardness measurements. In Al–Sc alloys the higher grain refinement is observed for Sc contents greater than 0.5 wt.% accompanied by a notorious morphology modification, from coarse columnar grains to a fine perfect equiaxed structure. The as cast structures are characterised by a rich supersaturated solid solution in Sc, that promotes a great age hardening response at 250 °C and 300 °C. The age hardening curves also demonstrate a low overageing kinetics for all the alloys. Although the higher Sc content in solid solution for the alloys with 0.7 and 1 wt.% Sc, the age hardening response of all the Al–Sc alloys remains similar. The direct age hardening response of the as cast Al–0.5 wt.% Sc is shown to be greater than the solutionised and age hardened alloy.

  3. High-temperature grain size stabilization of nanocrystalline Fe–Cr alloys with Hf additions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu, E-mail: lli18@ncsu.edu; Saber, Mostafa; Xu, Weizong; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2014-09-08

    The influence of 1–4 at% Hf additions on the thermal stability of mechanically alloyed nanocrystalline Fe–14Cr alloys was studied in this work. XRD-calculated grain size and microhardness results were reported versus isochronal annealing treatments up to 1100 °C. Microstructural evolution was investigated using channeling contrast FIB imaging and TEM. Grain size of samples with 4 at% Hf was found to be maintained in the nanoscale range at temperatures up to 1000 °C. Zener pinning was considered as a major source of high temperature grain size stabilization. By comparing the Orowan strengthening contribution to the total hardness, the deviation of grain size predictions from the actual grain size in Fe–14Cr–4Hf suggests the presence of thermodynamic stabilization by the solute segregation to grain boundaries (GBs). A predictive thermodynamic model indicates that the thermodynamic stabilization can be expected.

  4. Effect of minor Er and Zr on microstructure and mechanical properties of Al-Mg-Mn alloy (5083) welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Dongxia, Yang, E-mail: yangdongxia116@emails.bjut.edu.cn [Department of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Xiaoyan, Li; Dingyong, He; Hui, Huang [Department of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2013-01-20

    Samples of Al-Mg-Mn and Al-Mg-Mn-Er-Zr alloys were welded using the method of laser welding. The influence of Er and Zr on microstructure, microhardness and mechanical properties of the Al-Mg-Mn alloy welded joints were investigated. It has been found that addition of Er and Zr refines the grain size in the fusion zone, due to the formation of primary Al{sub 3}Zr and Al{sub 3}Er. Fine equiaxed grains are dominated near the fusion boundary of the Al-Mg-Mn-Er-Zr alloy joint, which is contrary with the columnar crystal in the Al-Mg-Mn alloy joint. Microhardness of the center of the fusion zone rises from 74HV{sub 0.1} to 84HV{sub 0.1} owing to the grain refinement by Er and Zr. The tensile test result shows that the ultimate tensile strength and yield strength are improved by adding Er and Zr. The main reason for this is related to grain refining strengthening.

  5. Effects of LaB{sub 6} additions on the microstructure and mechanical properties of a sintered and hot worked P/M Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Jia; Gabbitas, Brian, E-mail: briang@waikato.ac.nz; Yang, Fei; Raynova, Stella; Lu, Huiyang

    2016-07-25

    A trace amount of LaB{sub 6} powder was added to P/M Ti and Ti–6Al–4V alloy to improve mechanical properties and refine the microstructure. After sintering, TiB whiskers and La{sub 2}O{sub 3} dispersoids had formed in the microstructure. In a CP Ti alloy, the generation of secondary phases leads to a much refined microstructure, but the alignment of TiB whiskers led to a variation in mechanical properties. Open die forging (ODF) or powder compact extrusion (PCE) was carried out on sintered Ti–6Al–4V alloy to further improve the mechanical properties. This caused severe deformation and re-alignment of the TiB whiskers. Comparing the properties of hot worked Ti–6Al–4V alloy and Ti–6Al–4V alloy with boron additions, an addition of LaB{sub 6} leads to slightly lower strength but gives significant better ductility. - Highlights: • LaB{sub 6} powder was added to sintered and hot worked Ti and Ti–6Al–4V alloy. • TiB whiskers and La{sub 2}O{sub 3} dispersoids formed in the microstructure. • Different alignments of TiB{sub w} led to a variation in mechanical properties. • Hot working caused severe deformation and re-alignment of TiB{sub w}. • An addition of LaB{sub 6} is better than pure boron additions.

  6. Effects of trace Be and Sc addition on the thermal stability of Al–7Si–0.6Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Yu-Chih [Department of Mechanical Engineering, National Central University, Jhongli, Taiwan (China); Wu, Chih-Ting [Department of Vehicle Engineering, Army Academy R.O.C., Jhongli, Taiwan (China); Yang, Cheng-Hsien [Institute of Materials Science and Engineering, National Central University, Jhongli, Taiwan (China); Lee, Sheng-Long, E-mail: shenglon@cc.ncu.edu.tw [Department of Mechanical Engineering, National Central University, Jhongli, Taiwan (China)

    2014-09-22

    In the present study, the effects of trace amounts of beryllium (Be, 0.05 wt%) and scandium (Sc, 0.04 wt%) addition on the microstructures and thermal stability of Al–7Si–0.6Mg alloys were investigated. The results show that traces of Be and Sc significantly reduce the amount of the iron-bearing phase and the interdendritic shrinkage. Be transformed the acicular iron-bearing phases into the nodular Al–Fe–Si iron-bearing phase, which is less harmful to ductility. Moreover, the addition of Be increased the Mg content of the solid solution within the matrix, prompting greater precipitation of the metastable Mg{sub 2}Si phase after T6 heat treatment and effectively enhancing the mechanical properties of the alloy. However, during the following thermal exposure at 250 °C for 100 h, the metastable Mg{sub 2}Si phase grew into the coarse β-Mg{sub 2}Si equilibrium phase, resulting in a decrease in the mechanical strength of the alloy. Meanwhile, the addition of Sc had insignificant effect on the amount of metastable Mg{sub 2}Si phase that precipitated. However, here, the iron-bearing phase was a nodular Al{sub 12}Si{sub 6}Fe{sub 2}(Mg,Sc){sub 5} phase, which significantly enhanced the density of the castings. After the same thermal exposure procedure, it was remarkably found that the precipitation of fine Al{sub 3}Sc particles effectively inhibited grain growth and hindered the movement of dislocations. These factors led to the Sc-containing alloy having better mechanical properties (strength and ductility) than the alloys without Sc or with Be during the following thermal exposure at 250 °C.

  7. The influence of combined addition of phosphorus and titanium on void swelling of austenitic Fe-Cr-Ni alloys at 646-700 K

    International Nuclear Information System (INIS)

    Watanabe, H.; Muroga, T.; Yoshida, N.

    1994-01-01

    The influence of combined addition of phosphorus and titanium on void swelling of model Fe-Cr-Ni austenitic alloys at 646 to 700 K under fast neutron irradiation has been investigated, in comparison with that of a complex austenitic alloy (JPCA-2). In the model alloys, void swelling decreased with increasing phosphorus content. Void average size and density of JPCA-2 were comparable to those of the 0.024P alloy. The fact that these two alloys have the same phosphorus level suggests the void swelling of the model alloys would be strongly suppressed by increasing the phosphorus concentration and/or coaddition of phosphorus and titanium. The present study demonstrated that the phosphorus level is the strongest determinant of void swelling of both model and complex austenitic alloys. ((orig.))

  8. Effect of Ni Addition on the Wear and Corrosion Resistance of Fe-20Cr-1.7C-1Si Hardfacing Alloy

    International Nuclear Information System (INIS)

    Lee, Sung Hoon; Kim, Ki Nam; Kim, Seon Jin

    2011-01-01

    In order to improve the corrosion resistance of Fe-20Cr-1.7C-1Si hardfacing alloy without a loss of wear resistance, the effect of Ni addition was investigated. As expected, the corrosion resistance of the alloy increased with increasing Ni concentration. The wear resistance of the alloy did not decrease, even though the hardness decreased, up to Ni concentration of 5 wt.%. This was attributed to the fact that the decrease in hardness was counterbalanced by the strain-induced martensitic transformation. The wear resistance of the alloy, however, decreased abruptly with increases of the Ni concentration over 5 wt.%.

  9. Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions

    Energy Technology Data Exchange (ETDEWEB)

    Langelier, B., E-mail: langelb@mcmaster.ca [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Korinek, A. [Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Donnadieu, P. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Esmaeili, S. [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada)

    2016-10-15

    The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. It has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.

  10. Effect of Sr addition on microstructure and elevated temperature mechanical properties of Mg–3Zn–1Y alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junwei [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Peng, Xiaodong, E-mail: pxd@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing 400044 (China); Li, Mengluan; Wei, Guobing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Xie, Weidong [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing 400044 (China); Yang, Yan [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-08

    The effects of Sr addition on the microstructure and elevated temperature mechanical behavior of Mg–3Zn–1Y alloys have been investigated in this research. The results show that α-Mg, W-phase and S-phase are found in the Sr-containing alloys. The S-phase has a higher thermal stability than W-phase, which significantly improves the elevated temperature mechanical properties of the alloy. To further confirm the crystal structure of the S-phase, high resolution transmission electron microscopy analysis was performed and the phase was confirmed to be Mg{sub 6}Zn{sub 2}Sr{sub 1}. With increasing content of Sr, the elevated temperature mechanical properties of the Mg–3Zn–1Y are improved. When the Sr content reached to 0.9 wt%, the alloy shows a much higher ultimate tensile strength of 204 MPa and yield strength of 171 MPa at 250 °C.

  11. Long range ordered alloys modified by addition of niobium and cerium

    International Nuclear Information System (INIS)

    Liu, C.T.

    1987-01-01

    A long range ordered alloy composition is described consisting essentially of iron, nickel, cobalt, vanadium and a ductility enhancing metal, having the nominal composition (Fe, Ni,Co)/sub 3/(V,M) where M is the ductility enhancing metal selected from the group Ti, Zr, Hf and mixtures thereof. Effective amounts of creep property enhance elements selected from the group cerium, niobium and mixtures thereof sufficient to enhance creep properties in the resulting alloy without adversely affecting the fabrication of the alloy

  12. The Influence of Cu Addition on Dispersoid Formation and Mechanical Properties of Al-Mn-Mg 3004 Alloy

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-03-01

    Full Text Available The effect of Cu addition on dispersoid precipitation, mechanical properties and creep resistance was investigated in an Al-Mn-Mg 3004 alloy. The addition of Cu promoted dispersoid precipitation by increasing the number density and decreasing the size of dispersoids. Metastable β′-Mg2Si and Q-AlCuMgSi precipitates were observed during the heating process and both could provide favorable nucleation sites for dispersoid precipitation. The addition of Cu improved the thermal stability of dispersoids during a long-term thermal holding at 350 °C for 500 h. Results of mechanical testing show that the addition of Cu remarkably improved the hardness at room temperature, as well as the yield strength and creep resistance at 300 °C, which was mainly attributed to dispersoid strengthening and Cu solid solution strengthening. The yield strength contribution at 300 °C was quantitatively evaluated based on the dispersoid, solid solution and matrix contributions. It was confirmed that dispersoid strengthening is the main strengthening mechanism in the experimental alloys.

  13. Effect of micron size Ni particle addition in Sn–8Zn–3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Billah, Md. Muktadir; Shorowordi, Kazi Mohammad; Sharif, Ahmed, E-mail: asharif@mme.buet.ac.bd

    2014-02-05

    Highlights: • Ni-added Sn-Zn-Bi were characterized metallographically, thermally and mechanically. • The volume fraction of α-Zn phase increased with both Bi and Ni in Sn-Zn-Bi alloys. • Micron-sized Ni particles reacted with neither Sn nor Zn to form intermetallics. • Better combination of thermal and mechanical properties can be achieved with Ni. -- Abstract: Micron-sized Ni particle-reinforced Sn–8Zn–3Bi composite solders were prepared by mechanically dispersing Ni particles into Sn–8Zn–3Bi alloy and the bulk properties of the composite solder alloy were characterized metallographically, thermally and mechanically. Different percentage of Ni particle viz. 0.25, 0.5 and 1 wt.% were added in the liquid Sn–8Zn–3Bi alloy and then cast into the metal molds. Melting behavior was studied by differential thermal analyzer (DTA). Microstructural investigation was carried out by both optical and scanning electron microscope. Tensile properties were determined using an Instron Universal Testing Machine at a strain rate 3.00 mm/min. The results indicated that the Ni addition increased the melting temperature of Sn–8Zn–3Bi alloy. The addition of Ni was also found to increase the solidification range. In the Sn–8Zn–3Bi alloy, needle-shaped α-Zn phase was found to be uniformly distributed in the β-Sn matrix. However, it was found that the small amount of Ni addition in Sn–8Zn–3Bi alloy refined the Zn needles throughout the matrix. Also an enhanced precipitation of Zn in the structure was observed with the addition of Ni. All these structural changes improved the mechanical properties like tensile strength and hardness of the newly developed quaternary alloy.

  14. Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

    International Nuclear Information System (INIS)

    Lee, Woo Yong; Koh, Seong Ung; Kim, Kyoo Young

    2005-01-01

    The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. however, corrosion rate was not directly related to SSC susceptibility of steels

  15. Effect of Adding Elements on Microstructure of Mg-3Si Alloy

    Directory of Open Access Journals (Sweden)

    CUI Bin

    2017-03-01

    Full Text Available The microstructure of alloy Mg-3Si(mass fraction/%, same as below after successive additions with different elements of Zn, Nd, Gd and Y was observed and the microstructure evolution was investigated by scanning electron microscopy and X-ray diffraction. The results show the primary Mg2Si particles co-exist with eutectic Mg2Si particles in binary alloy Mg-Si. With minor addition of Zn element, only primary Mg2Si can be found in ternary Mg-3Si-3Zn system while eutectic Mg2Si particles disappear. In quaternary alloy Mg-2.0Nd-3.0Zn-3.0Si, the addition of Nd element can effectively refine the primary Mg2Si particles and form some Mg41Nd5 particles. After continuous adding of Gd and Y elements into quaternary system, Gd5Si3 and YSi particles increase significantly in the alloy Mg-8.0Gd-4.0Y-2.0Nd-3.0Zn-3.0Si, while volume fraction of primary Mg2Si decrease significantly. Thermo-Calc calculation predicts that the Gibbs free energy for primary particles Gd5Si3, YSi is lower, and therefore Gd, Y atom and Si are more likely to form compounds. In Mg-8Gd-4Y-2Nd-3Zn-3Si alloy, room temperature Gibbs free energy for primary particles Mg2Si, Gd5Si3, YSi is -9.56×104, -8.72×104, -2.83×104J/mol, respectively, and the mass fraction of these particles is 8.07%, 5.27%, 1.40% respectively.

  16. The Generation of AlmFe in Dilute Aluminium Alloys with Different Grain Refining Additions

    Science.gov (United States)

    Meredith, M. W.; Greer, A. L.; Evans, P. V.; Hamerton, R. G.

    Al13Fe4, Al6Fe and AlmFe are common intermetallics in commercial AA1XXX series Al alloys. Grain-refining additions (based on either Al-Ti-B or Al-Ti-C) are usually added to such alloys during solidification processing to aid the grain structure development. They also influence the favoured intermetallic and, hence, can affect the materials' properties. This work simulates commercial casting practices in an attempt to determine the mechanisms by which one intermetallic phase is favoured over another by the introduction of grain-refining additions. Directional solidification experiments on Al-0.3wt.%Fe-0.15wt.%Si with and without grain refiner are conducted using Bridgman apparatus. The type, amount and effectiveness of the grain-refining additions are altered and the resulting intermetallic phase selection followed. The materials are characterised using optical microscopy, scanning electron microscopy and X-ray diffraction. AlmFe is seen to form when Al-Ti-B grain-refiner is introduced but only when the refinement is successful; reducing the effectiveness of the refiner led to Al6Fe forming under all conditions. Al-Ti-C refiners are seen to promote AlmFe at lower solidification velocities than when Al-Ti-B was used even though the grain structure was not as refined. These trends can be explained within existing eutectic theory, by considering growth undercooling.

  17. Atomic investigation of alloying Cr, Ti, Y additions in a grain boundary of vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Li, Xiaojie; Zhao, Jijun [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Zheng, Pengfei; Chen, Jiming [Southwestern Institute of Physics, Chengdu 610041 (China)

    2016-01-15

    The effect of alloying additions (Cr, Ti and Y) in a vanadium (V) ∑3 (111) grain boundary (GB) is investigated by first-principles calculations. To determine site preference and segregation properties of Cr, Ti and Y in the GB and bulk, we calculate the formation energies and segregation energies for different interstitial and substitutional sites. Cr/Ti/Y atom prefers to segregate to the substitutional sites of the GB from bulk environment, whereas Cr segregation to GB is very weak. Based on the Rice and Wang's model, Cr acts as the GB cohesion, while Ti and Y are strong embrittlers. The analysis of atomic and electronic structures provides a reasonable expansion for the embrittlement behavior. Moreover, the effect of Cr, Ti and Y in the GB on solution of interstitial impurities C, N, O, H, and He are determined. The results show that Cr restrains solution of these impurities in the GB, while Ti tends to form Ti–N complex by absorbing N impurities and Y can absorbs O and He impurities. The present calculations are helpful for understanding the behavior of alloying Cr, Ti, Y additions at the grain boundary of vanadium.

  18. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  19. Effects of Impurity on the Corrosion Behavior of Alloy 617 in the Helium Environment

    International Nuclear Information System (INIS)

    Jung, Sujin; Kim, Dong Jin; Lee, Gyeong Geun

    2013-01-01

    The helium coolant in the primary circuit inevitably includes minor impurities such as H 2 , CO, CH 4 , and H 2 O under operating condition. Material degradation is aggravated through oxidation, carburization, and decarburization under the impure helium environment. In this study, high-temperature corrosion tests were carried out at 850-950 .deg. C in the impure helium environment. The mass changes of the specimens were measured and the microstructures were analyzed quantitatively. In addition, all corrosion tests were conducted in the pure helium environment and the results were compared to the results under the impure helium. Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures under the impure helium environment. All specimens had similar microstructure in the outer Cr-oxide layers, internal Al-oxides, and carbide-depleted zone. The weight increase of the corroded specimens in the pure helium was relatively reduced. Microstructure result, oxide layer and carbide depleted zone were hardly ever observed. The impurity in helium affected the corrosion behavior of Alloy 617 and may cause a decrease in the mechanical properties. Therefore, the control of minor impurities in VHTR helium is necessary for the application of Alloy 617 to the IHX material of a VHTR

  20. Catalytic effect of additional metallic phases on the hydrogen absorption behavior of a Zr-Based alloy

    International Nuclear Information System (INIS)

    Ruiz, F; Peretti, H; Castro, E; Real, S; Visitin, A; Triaca, W

    2005-01-01

    The electrochemical hydrogen absorption of electrodes containing Zr 0 .9Ti 0 .1(Ni 0 .5Mn 0 .25Cr 0 .20V 0 .05) 2 is studied in alkaline media by monitoring the activation and discharge capacity along charge-discharge cycling.The considered alloy is tested in both as melted and annealed condition in order to investigate the catalytic effect of small amounts of micro segregated secondary phases of the Zr-Ni system. Since these catalytic phases are only present in the as melted alloys, tests are also carried out using a composite material elaborated from powders of the annealed alloy with the addition of 18 wt.% of the suspected catalytic phases, melted separately.The hydrogen absorption-desorption behavior for the different cases is discussed and correlated with the metallurgical characterization of the materials.The catalytic effects are studied employing cyclic voltammetry and electrochemical impedance techniques. The results are analyzed in terms of a developed physicochemical model

  1. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  2. Effect of Minor Titanium Addition on Copper/Diamond Composites Prepared by Hot Forging

    Science.gov (United States)

    Yang, Fei; Sun, Wei; Singh, Ajit; Bolzoni, Leandro

    2018-03-01

    Copper/diamond composites have great potential to lead the next generation of advanced heat sink materials for use in high-power electronic devices and high-density integrated circuits because of their potential excellent properties of high thermal conductivity and close thermal expansion to the chip materials (e.g., Si, InP, GaAs). However, the poor wettability between copper and diamond presents a challenge for synthesizing copper/diamond composites with effective metallurgical bonding and satisfied thermal performance. In this article, copper/diamond composites were successfully prepared by hot forging of elemental copper and artificial diamond powders with small amounts (0 vol.%, 3 vol.% and 5 vol.%) of titanium additives. Microstructure observation and mechanical tests showed that adding minor titanium additions in the copper/diamond composite resulted in fewer cracks in the composites' microstructure and significantly improved the bonding between the copper and diamond. The strongest bonding strength was achieved for the copper/diamond composite with 3 vol.% titanium addition, and the possible reasons were discussed.

  3. Properties of hard alloys on the basis of WC-Co with the additives of nanodisperse TiN

    International Nuclear Information System (INIS)

    Ordanyan, S.S.; Andronova, T.E.; Vladimirova, M.A.; Pantelejev, I.B.; Zalite, I.

    2001-01-01

    The addition of nanodisperse titanium nitride (specific surface area of 20 - 30 m 2 /g, medium diameter of grains of 50 - 100 nm) to the starting hard alloy WC-Co in the stage of wet grinding allows to get some advantages: the growth of WC grains is retarded by the nanoparticles of TiN, being as a barrier for the process of secondary crystallization, and the toughness of hard alloy is being increased due to the formation of finely dispersed structure; the exploitation characteristics of cutting instruments are increased due to the volume alloying by means of titanium nitride having a decreased adhesion to the treated metal and decreased coefficient of friction; the formation of diffusion porosity is being eliminated due to the small size of TiN during the unavoidable dissolution of WC in TiN. (author)

  4. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bingtao [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  5. Mechanical properties of tungsten alloys with Y{sub 2}O{sub 3} and titanium additions

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, M.V., E-mail: mariavega.aguirre@upm.es [Departamento de Tecnologias Especiales Aplicadas a la Aeronautica, Universidad Politecnica de Madrid, E.U.I.T. Aeronautica, 28040 Madrid (Spain); Martin, A.; Pastor, J.Y. [Departamento de Ciencia de Materiales-CISDEM, Universidad Politecnica de Madrid.E.T.S. Ingenieros de Caminos, 28040 Madrid (Spain); LLorca, J. [Departamento de Ciencia de Materiales-CISDEM, Universidad Politecnica de Madrid.E.T.S. Ingenieros de Caminos, 28040 Madrid (Spain); Instituto Madrileno de Estudios Avanzados en Materiales (Instituto IMDEA-Materiales), Ingenieros de Caminos, 28040 Madrid (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2011-10-01

    In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti-0.47 wt.% Y{sub 2}O{sub 3} and 4 wt.% Ti-0.5 wt.% Y{sub 2}O{sub 3}) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 deg. C to 1000 deg. C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y{sub 2}O{sub 3}, is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y{sub 2}O{sub 3} and Ti permits to obtain materials with low pores presence.

  6. Improvement of aging kinetics and precipitate size refinement in Mg–Sn alloys by hafnium additions

    Energy Technology Data Exchange (ETDEWEB)

    Behdad, S. [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Zhou, L. [Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816 (United States); Henderson, H.B.; Manuel, M.V. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Sohn, Y. [Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816 (United States); Agarwal, A. [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Boesl, B., E-mail: bboesl@fiu.edu [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2016-01-10

    Two Mg–Sn alloys were microalloyed by addition of Hafnium and their age-hardening response was studied at 200 °C. Time to reach peak hardness was significantly reduced and improved by Hf addition. TEM study showed Hf clusters in the close vicinity and at the surface of Mg{sub 2}Sn precipitates, which confirms that Hf clusters act as additional nucleation centers for Mg{sub 2}Sn precipitate formation. Our results support the validity of thermokinetic criterion proposed by Mendis for selection of microalloying elements in order to refine precipitate size, accelerate aging kinetics and enhance peak hardness.

  7. In-place measurement of specific electric resistance during precipitation of γ'-precipitating Ni base alloys

    International Nuclear Information System (INIS)

    Silomon, M.

    1991-01-01

    During precipitation and coarsening of a second phase, the electric resistance of an alloy changes. Continuous resistance measurement is possible during heat treatment and can be conducted with limited experimental effort; any metallographic determination of the temperature and time dependencies of structural changes, however, requires very high effort. For this reason, an instrument was set up which permits continuous measurement of the resistance at precipitation temperature and during heating or cooling, while providing sufficient resolution for minor changes. Both measuring methods are conducted on technologically relevant alloys such as Nimonic PE 16 and those based on Ni-20 At.% Cr with deliberately varied additions of Al and Ti (accompanying investigations: TEM, SANS, and calorimetry). Their usefulness for alloy development is discussed within the scope of current concepts of demixing kinetics and resistance of alloys. Essential results concern the matrix/γ'-phase mismatch, the Ni 2 Cr short range order, and determination of the γ'-solvus temperature. (orig.) With 53 figs., 4 tabs [de

  8. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  9. Corrosion of aluminum alloys in ocean thermal energy conversion seawaters

    International Nuclear Information System (INIS)

    Larsen-Basse, J.

    1984-01-01

    Aluminum alloys 5052, 3004, and Alclad 3003 and 3004 were exposed to flowing seawater at 2.44 m/s (8 fps) at the Seacoast Test Facility on Hawaii. One year data for warm surface water and three mouth data for cold water from 600 m depth are reported for free fouling, chlorinated and sponge ball cleaned conditions. All alloys pit in deep seawater, but show no pitting in warm surface water. Uniform corrosion in the warm water is initially rapid, but after 25 to 30 days the rate becomes slower and extrapolated 30 year material losses are in the 125 to 215 μm range. Chlorination at a level of 0.05 ppm for one hour per day has only a minor effect on corrosion rates, while sponge ball cleaning leads to erosion-corrosion of the Alclad surfaces and has no effect on alloy 5052. The need for additional testing in tropical seawater is discussed, as is the need for an improved understanding of the formation of inorganic scale films, their properties, and their effect on corrosion rates and heat transfer

  10. Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint

    Science.gov (United States)

    Mokhtari, Omid; Nishikawa, Hiroshi

    2014-11-01

    In this study, the effect of adding 0.5 wt.% and 1 wt.% In and Ni to Sn-58Bi solder on intermetallic compound (IMC) layers at the interface and the microstructure of the solder alloys were investigated during reflow and thermal aging by scanning electron microscopy and electron probe micro-analysis. The results showed that the addition of minor elements was not effective in suppressing the IMC growth during the reflow; however, the addition of 0.5 wt.% In and Ni was effective in suppressing the IMC layer growth during thermal aging. The thickening kinetics of the total IMC layer was analyzed by plotting the mean thickness versus the aging time on log-log coordinates, and the results showed the transition point from grain boundary diffusion control to a volume diffusion control mechanism. The results also showed that the minor addition of In can significantly suppress the coarsening of the Bi phase.

  11. Microstructure and fatigue behaviors of a biomedical Ti–Nb–Ta–Zr alloy with trace CeO2 additions

    International Nuclear Information System (INIS)

    Song, Xiu; Wang, Lei; Niinomi, Mitsuo; Nakai, Masaaki; Liu, Yang; Zhu, Miaoyong

    2014-01-01

    The new β-type Ti–29Nb–13Ta–4.6Zr (TNTZ) alloy containing trace amounts of CeO 2 additions has been designed as a biomedical implant with improved fatigue properties achieved by keeping Young's modulus to a low value. The results show that the microstructure is refined by the addition of CeO 2 ; the β grain size becomes a little larger when Ce content increases from 0.05% to 0.10%. This occurs because dispersed CeO 2 particles can act as nucleation sites for β grains; thus, the effect of rare earth oxides on microstructure refinement mainly depends on the size and dispersion of the rare earth oxides. Young's moduli of TNTZ with CeO 2 additions are maintained as low as those of TNTZ without CeO 2 , while the fatigue limit is highly improved. The 0.10% Ce alloy exhibits the best fatigue strength among the experimental alloys; its fatigue strength is increased by 66.7% compared to that of pure TNTZ. The mechanism by which rare earth oxides affect fatigue performance is dominated by dispersion strengthening. The stiff rare earth oxides can hinder the movement of dislocations, resulting in resistance to the formation of fatigue cracks. Rare earth oxides also change the crack propagation direction and the crack propagation route, effectively decreasing the crack propagation rate

  12. Development and testing of metallic fuels with high minor actinide content

    International Nuclear Information System (INIS)

    Meyer, M.K.; Hayes, S.L.; Kennedy, J.R.; Keiser, D.D.; Hilton, B.A.; Frank, S.M.; Kim, Y.-S.; Chang, G.; Ambrosek, R.G.

    2003-01-01

    Metallic alloys are promising candidates for use as fuels for transmutation and in advanced closed nuclear cycles. Metallic alloys have high heavy metal atom density, relatively high thermal conductivity, favorable gas release behavior, and lend themselves to remote recycle processes. Both non-fertile and uranium-bearing metal fuels containing minor actinide are under consideration for use as transmutation fuels by the U.S. Advanced Fuel Cycle (AFC) program, however, little irradiation performance data exists for fuel forms containing significant fractions of minor actinides. The first irradiation tests of non-fertile high-actinide-content fuels are scheduled to begin in early 2003 in the Advanced Test Reactor (ATR). The irradiation test matrix was designed to provide basic information on the irradiation behavior of binary Pu-Zr alloy fuel and the effect of the minor actinides americium and neptunium on alloy fuel behavior, together and separately. Five variants of transuranic containing zirconium-based alloy fuels are included in the AFC-1 irradiation test matrix. These are (in wt.%) Pu-40Zr, Pu-60Zr, Pu-12Am-40Zr, Pu-10Np-40Zr and Pu-10Np-10Am-40Zr. PuN-ZrN based fuels containing Am and Np are also included. All five of the fuel alloys have been fabricated in the form of cylindrical fuel slugs by arc-casting. Short melt times, on the order or 5-20 seconds, prevent the volatilization of significant quantities of americium metal, despite the high melt temperatures characteristic of the arc-melting process. Alloy microstructure have been characterized by x-ray diffraction and scanning electron microscopy. Thermal analysis has also been performed. The AFC-1 irradiation experiment configuration consists of twenty-four sodium bonded fuel specimens sealed in helium filled secondary capsules. The first capsule has a design burnup to 7 at.% 239 Pu; goal peak burnup of the second capsule is ∼18 at%. Capsule assemblies are placed within an aluminum flow-through basket

  13. Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2016-10-01

    Full Text Available Wire arc additive manufacturing (WAAM offers a potential approach to fabricate large-scale magnesium alloy components with low cost and high efficiency, although this topic is yet to be reported in literature. In this study, WAAM is preliminarily applied to fabricate AZ31 magnesium. Fully dense AZ31 magnesium alloy components are successfully obtained. Meanwhile, to refine grains and obtain good mechanical properties, the effects of pulse frequency (1, 2, 5, 10, 100, and 500 Hz on the macrostructure, microstructure and tensile properties are investigated. The results indicate that pulse frequency can result in the change of weld pool oscillations and cooling rate. This further leads to the change of the grain size, grain shape, as well as the tensile properties. Meanwhile, due to the resonance of the weld pool at 5 Hz and 10 Hz, the samples have poor geometry accuracy but contain finer equiaxed grains (21 μm and exhibit higher ultimate tensile strength (260 MPa and yield strength (102 MPa, which are similar to those of the forged AZ31 alloy. Moreover, the elongation of all samples is above 23%.

  14. Influence of the addition of chromium in the microstructure and property of Cu-Al-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Teixeira, C.A.; Coelho, R.E.; Lima, P.C. de; Carvalho, C.O. de; Conrado, L.C.

    2016-01-01

    The Copper based alloys with addition of a fourth element have been studied for 20 years. These alloys, depending on their composition present shape memory effect structure and now a day possess a diversity of applications. Considering the importance of these materials, it was developed in this research alloys of Cu-Al-Ni with addition of Cr in different percentages (0.2, 0.4, 0.7 and 2.26wt.%). A plasma furnace (Company-EDG, model-Discovery), with vacuum control and argon gas injection, was utilized. Posteriorly, the samples underwent heat treatment of solubilization. This treatment consisted in submitting all samples to a temperature of 900 deg C for 1 hour and followed by water solution (salt, water, ice and alcohol) quenching at a temperature of -10 deg C. The samples were polished and etched with Ferric Chloride. All samples were analyzed X-ray Fluorescence, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). XRD was carried out with a tension 30kV from 25 deg to 100 deg. It was possible to verify, through the obtained SEM images, that Cr has a fundamental role in the martensite structure evolution and with XRD analyses it was observed that with the increase of Cr, results in the formation of phases 18R and 2H with a decrease of phase γ2, the last one unwanted to this type of alloy. (author)

  15. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-12-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  16. Effect of niobium addition to the Fe-17% Cr alloy on the resistance to generalized corrosion in sulfuric acid

    International Nuclear Information System (INIS)

    Alonso, Neusa; Wolynec, Stephan

    1992-01-01

    The aim of present work was to investigate the influence of Nb upon the corrosion resistance to o.5 M H2 SO 4 cf 17% Cr ferritic stainless steels, to which it was added in amounts larger than those necessary for the stabilization of interstitial elements. The performance of Fe-17% Cr alloys containing 0.31%, 0.58%, 1.,62% Nb was compared to that of two other Fe-17% Cr alloys containing 0.31%, 0.58% and 1.62% Nb was compared to that of two other Fe-175 Cr alloys, one without additions and another containing 0.93% Nb. Through weight and electrochemical measurements and through morphologic examination of corroded surface it was found that in o.5 M H 2 SO 4 solution the corrosion of these alloys, with the exception of that containing molybdenum, products in two different stages. In the first stage (up to about 60 minutes the rate practically does not change with time, the lower rates being displayed by alloys containing larger mounts of Nb. In the second stage (for immersion times larger than 60 minutes) the corrosion rate increases with time. the corrosion rate of Mo containing alloy is constant with time so that for longer immersion times this alloy becomes the most resistant. The first stage was discussed in terms of electromechanical properties of Nb and its ability to combine with steel impurities, while the second stage was considered as affected by corrosion products formed on the surface of these alloys after certain time of immersion. (author)

  17. Effect of trace yttrium addition on the microstructure and tensile properties of recycled Al–7Si–0.3Mg–1.0Fe casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Bingbing [Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong 510640 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Chen, Weiping, E-mail: mewpchen@scut.edu.cn [Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong 510640 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Liu, Lusheng; Cao, Xueyang; Zhou, Li [Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong 510640 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Fu, Zhiqiang, E-mail: kopyhit@163.com [Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2016-06-01

    In the present work, the effect of yttrium (Y) addition (0, 0.15, 0.3, 0.5 and 0.7 wt%) on the microstructure and tensile properties of recycled A356 cast alloys containing 1.0 wt% Fe has been studied systematically. With the addition of Y, despite no transformations of β-Fe (Al{sub 5}FeSi) phases into α-Fe phases, the acicular β-Fe phases were refined remarkably, and the volume fraction of β-Fe phases were decreased evidently. With addition of 0.3 wt% Y, the average length of β-Fe phase decreased from ~78 µm to ~20 µm and the finest β-Fe phases were obtained, in the meantime, the eutectic silicon particles were present in fully modified form, and the secondary dendrite arm spacing (SDAS) reached the lowest value. In addition, it was proposed that according to the microstructural analysis, the Al{sub 2}Si{sub 2}Y intermetallic phases might be responsible for the refinement of the β-Fe phases. With addition of 0.3 wt% Y, the maximum improvement of quality index was achieved, approximately 32% in both as-cast and T6 heat treated alloys, and the corresponding Y-modified alloys in T6 heat treated condition obtained the best tensile properties compared with other experimental alloys, with the corresponding ultimate tensile strength (UTS) and elongation (EL) values being 383.86 MPa and 4.85%, respectively. Furthermore, the tensile properties of 0.3 wt% Y modified recycled Al–7Si–0.3Mg–1.0Fe alloys (T6) exceed the minimum properties standard for ZL101A alloy (JB, T6), approximately 30.12% for UTS value and 61.67% for EL value, suggesting it can be a good candidate for the commercial applications.

  18. Crystallographic, hyperfine and magnetic characterization of a maraging-400 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Alves, T. J. B.; Nunes, G. C. S. [Universidade Estadual de Maringá (Brazil); Sarvezuk, P. W. C. [Universidade Tecnológica Federal do Paraná (Brazil); Ivashita, F. F. [Universidade Estadual de Maringá (Brazil); Andrade, A. M. H. de [Universidade Federal do Rio Grande do Sul (Brazil); Viegas, A. [Universidade Federal de Santa Catarina (Brazil); Paesano, A., E-mail: andrea.paesano@pq.cnpq.br [Universidade Estadual de Maringá (Brazil)

    2017-11-15

    Maraging400-like alloys were made by arc-melting iron with the alloy elements (i.e., Ni, Co, Ti and Mo), followed by a high temperature heat-treatment for solubilization. The solubilized alloys were further heat-treated (480 °C and 580 °C, by 3 h), for aging. The samples were finely characterized by X-ray diffraction (Rietveld refinement), Mössbauer spectroscopy and magnetization techniques. The results revealed that the as-solubilized sample is martensitic and ferromagnetic. Its residual induction and coercive field increase monotonically with the maximum applied field of a magnetization minor loop and both curves presented very similar shapes. The area of the minor loops varies parabolically with this maximum applied field. The aging induced an atomic rearrangement in the martensite phase, involving change in the composition and lattice parameters, reversion of austenite and the formation of the Fe {sub 3} Mo {sub 2} intermetallic compound. Comparisons are presented between the results obtained by us for these alloys and those obtained for Maraging-350 steel samples.

  19. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    The specified alloys consist of Ni, Cr and Fe as main constituents, and Mo, Nb, Si, Zr, Ti, Al, C and B as minor constituents. They are said to exhibit high weldability and long-time structural stability, as well as low swelling under nuclear radiation conditions, making them especially suitable for use as a duct material and control element cladding for sodium-cooled nuclear reactors. (U.K.)

  20. Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors

    Science.gov (United States)

    Olson, B. V.; Kim, J. K.; Kadlec, E. A.; Klem, J. F.; Hawkins, S. D.; Leonhardt, D.; Coon, W. T.; Fortune, T. R.; Cavaliere, M. A.; Tauke-Pedretti, A.; Shaner, E. A.

    2015-11-01

    Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292 . The measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. Excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusion currents in nBn photodetectors.

  1. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yaping; Wang Shujun; Li Hui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn

    2009-05-27

    The modification effect of a Si-P master alloy on Al-24%Si alloy was investigated by using electron probe micro-analyzer (EPMA) and optical microscopy (OM). The dissolution problem of the Si-P master alloys was solved by changing the sequence of addition. When the Si-P master alloy was added into Al melt before the addition of silicon, the best modification effect could be achieved. The modification parameters of the master alloy on Al-24%Si alloy were optimized through designing and analyzing the orthogonal experiment, and their influences on the modification effect were discussed. The results show that the influence of temperature on the modification effect is the greatest, followed by the addition level, and the holding time is the least. The optimized modification parameters are the modification temperature of 810 deg. C, the addition level of 0.35 wt.%, the holding time of 30 min + 50 min whose meaning is that the Si-P master alloy is added firstly to the molten Al, and silicon is added 30 min later, then holding another 50 min. In addition, the modification mechanism of the Si-P master alloy on Al-24%Si alloy was also discussed.

  2. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tocci, Marialaura, E-mail: m.tocci@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy); Donnini, Riccardo, E-mail: riccardo.donnini@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Angella, Giuliano, E-mail: giuliano.angella@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Pola, Annalisa, E-mail: annalisa.pola@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy)

    2017-01-15

    In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affected by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.

  3. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Yi, E-mail: yimonmy@sina.com; Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-06-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al{sub 3}Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al{sub 3}Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al{sub 3}Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L1{sub 2} Al{sub 3}Zr phases with 35–60 nm in diameter precipitate during homogenization. • L1{sub 2} and DO{sub 22} Al{sub 3}Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005.

  4. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    International Nuclear Information System (INIS)

    Meng, Yi; Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-01-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al 3 Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al 3 Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al 3 Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L1 2 Al 3 Zr phases with 35–60 nm in diameter precipitate during homogenization. • L1 2 and DO 22 Al 3 Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005

  5. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    Science.gov (United States)

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    Abstract We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process–microstructure–property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts. PMID:28970868

  6. Thermal analysis of laser additive manufacturing of aluminium alloys: Experiment and simulation

    Science.gov (United States)

    Bock, Frederic E.; Froend, Martin; Herrnring, Jan; Enz, Josephin; Kashaev, Nikolai; Klusemann, Benjamin

    2018-05-01

    Laser additive manufacturing (LAM) has become increasingly popular in industry in recent decades because it enables exceptional degrees of freedom regarding the structural design of lightweight components compared to subtractive manufacturing techniques. Laser metal deposition (LMD) of wire-fed material shows in particular the advantages such as high process velocity and efficient use of material compared to other LAM processes. During wire-based LMD, the material is deposited onto a substrate and supplemented by successive layers allowing a layer-wise production of complex three-dimensional structures. Despite the increased productivity of LMD, regarding the ability to process aluminium alloys, there is still a lack in quality and reproducibility due to the inhomogeneous temperature distribution during the process, leading to undesired residual stresses, distortions and inconsistent layer geometries and poor microstructures. In this study, the aluminium alloy AA5087 as wire and AA5754 as substrate material were utilized for LMD. In order to obtain information about the temperature field during LMD, thermocouple and thermography measurements were performed during the process. The temperature measurements were used to validate a finite element model regarding the heat distribution, which will be further used to investigate the temperature field evolution over time. To consider the continuous addition of material within the FE-model, an inactive/active element approach was chosen, where initially deactivated elements are activated corresponding to the deposition of material. The first results of the simulation and the experiments show good agreement. Therefore, the model can be used in the future for LMD process optimization, e.g., in terms of minimizing local variations of the thermal load for each layer.

  7. Effect of boron addition to the hard magnetic bulk Nd60Fe30Al10 amorphous alloy

    International Nuclear Information System (INIS)

    Kong, H.Z.; Li, Y.; Ding, J.

    2000-01-01

    A detailed study of the effect of boron addition to crystallinity, magnetic properties and thermal properties was carried out for alloys Nd 60-x Fe 30 Al 10 B x with x=0, 1, 3 and 5 produced by copper mold chill casting and melt-spinning. The cast rods of alloys Nd 60-x Fe 30 Al 10 B x were largely amorphous. Remanence up to 0.154 T and coercivity up to 355 kA/m were observed, which were higher than those of the bulk amorphous Nd 60 Fe 30 Al 10 rod of the same diameter. A step in hysteresis loop was observed for the hard magnetic cast rod and ribbon melt-spun at a low speed of 5 m/s of the alloys with boron addition. Consistent increase in the amplitude of the step and magnetic field (H) at which the step was observed as the boron content increased. A single magnetic phase with low coercivity was observed for fully amorphous ribbon melt-spun at high speed of 30 m/s. Full crystallization due to heat treatment resulted in transition of hard magnetic amorphous phase of Nd 55 Fe 30 Al 10 B 5 cast rod to paramagnetic crystalline phases. TEM results of the as-cast rods illustrated the existence of numerous minute Nd-crystallites in amorphous matrix

  8. Socioeconomic status and parenting in ethnic minority families: testing a minority family stress model.

    Science.gov (United States)

    Emmen, Rosanneke A G; Malda, Maike; Mesman, Judi; van Ijzendoorn, Marinus H; Prevoo, Mariëlle J L; Yeniad, Nihal

    2013-12-01

    According to the family stress model (Conger & Donnellan, 2007), low socioeconomic status (SES) predicts less-than-optimal parenting through family stress. Minority families generally come from lower SES backgrounds than majority families, and may experience additional stressors associated with their minority status, such as acculturation stress. The primary goal of this study was to test a minority family stress model with a general family stress pathway, as well as a pathway specific to ethnic minority families. The sample consisted of 107 Turkish-Dutch mothers and their 5- to 6-year-old children, and positive parenting was observed during a 7-min problem-solving task. In addition, mothers reported their daily hassles, psychological distress, and acculturation stress. The relation between SES and positive parenting was partially mediated by both general maternal psychological stress and maternal acculturation stress. Our study contributes to the argument that stressors specific to minority status should be considered in addition to more general demographic and family stressors in understanding parenting behavior in ethnic minority families.

  9. Solidification of Al-Sn-Cu Based Immiscible Alloys under Intense Shearing

    Science.gov (United States)

    Kotadia, H. R.; Doernberg, E.; Patel, J. B.; Fan, Z.; Schmid-Fetzer, R.

    2009-09-01

    The growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.

  10. Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6)aluminum-(4)vanadium alloy components

    Science.gov (United States)

    Stavinoha, Joe N.

    The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al

  11. The effect of Sn addition on phase stability and phase evolution during aging heat treatment in Ti–Mo alloys employed as biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Mariana G. de, E-mail: marianagm@fem.unicamp.br; Salvador, Camilo F., E-mail: csalvador@fem.unicamp.br; Cremasco, Alessandra, E-mail: alessandra@fem.unicamp.br; Caram, Rubens, E-mail: caram@fem.unicamp.br

    2015-12-15

    Increases in life expectancy and improvements in necessary healthcare attach great importance to the development of biomaterials. Ti alloys containing β stabilizing elements are often used as biomaterials due to their high specific strength, high corrosion resistance, unusual biocompatibility and low elastic moduli, which benefit bone tissues close to an implant. This study deals with phase stability in β Ti–Mo–Sn alloys processed under different conditions and was performed according to the following steps: a study of the effect of Sn content (a) on phase stability in Ti–Mo alloys, (b) on the suppression of α″ and ω phase precipitation; (c) on α-phase precipitation during aging heat treatments and (d) on mechanical properties, including the elastic modulus, as measured using tensile tests and acoustic techniques. The alloys were prepared by arc melting under a controlled atmosphere followed by homogenization heat treatment and hot rolling. Optical microscopy, scanning and transmission electron microscopy, X-ray diffraction and differential scanning calorimetry were employed for characterization purposes. Samples were also submitted to solution treatment above the β transus temperature and aging heat treatments under a controlled atmosphere. The results suggest that Sn suppresses the formation of the ω and α″ phases in Ti–Mo system. - Highlights: • Sn addition to Ti alloys decreases elastic modulus by suppressing ω phase precipitation. • Sn addition decreases the temperature of martensite decomposition. • Sn addition decreases the temperature of α phase precipitation and β transus. • Mechanical strength decreases with increasing Sn content.

  12. The effect of Sn addition on phase stability and phase evolution during aging heat treatment in Ti–Mo alloys employed as biomaterials

    International Nuclear Information System (INIS)

    Mello, Mariana G. de; Salvador, Camilo F.; Cremasco, Alessandra; Caram, Rubens

    2015-01-01

    Increases in life expectancy and improvements in necessary healthcare attach great importance to the development of biomaterials. Ti alloys containing β stabilizing elements are often used as biomaterials due to their high specific strength, high corrosion resistance, unusual biocompatibility and low elastic moduli, which benefit bone tissues close to an implant. This study deals with phase stability in β Ti–Mo–Sn alloys processed under different conditions and was performed according to the following steps: a study of the effect of Sn content (a) on phase stability in Ti–Mo alloys, (b) on the suppression of α″ and ω phase precipitation; (c) on α-phase precipitation during aging heat treatments and (d) on mechanical properties, including the elastic modulus, as measured using tensile tests and acoustic techniques. The alloys were prepared by arc melting under a controlled atmosphere followed by homogenization heat treatment and hot rolling. Optical microscopy, scanning and transmission electron microscopy, X-ray diffraction and differential scanning calorimetry were employed for characterization purposes. Samples were also submitted to solution treatment above the β transus temperature and aging heat treatments under a controlled atmosphere. The results suggest that Sn suppresses the formation of the ω and α″ phases in Ti–Mo system. - Highlights: • Sn addition to Ti alloys decreases elastic modulus by suppressing ω phase precipitation. • Sn addition decreases the temperature of martensite decomposition. • Sn addition decreases the temperature of α phase precipitation and β transus. • Mechanical strength decreases with increasing Sn content.

  13. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Fujita, Takeshi; Hisatsune, Kunihiro

    2007-01-01

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  14. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Takanobu [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)]. E-mail: siraisi@nagasaki-u.ac.jp; Takuma, Yasuko [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Miura, Eri [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Fujita, Takeshi [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Hisatsune, Kunihiro [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)

    2007-06-15

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys.

  15. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants.

    Science.gov (United States)

    Tavares, A M G; Ramos, W S; de Blas, J C G; Lopes, E S N; Caram, R; Batista, W W; Souza, S A

    2015-11-01

    In the development of new materials for orthopedic implants, special attention has been given to Ti alloys that show biocompatible alloy elements and that are capable of reducing the elastic modulus. Accordingly, Ti-Nb-Si alloys show great potential for application. Thus, this is a study on the microstructures and properties of Ti-35Nb-xSi alloys (x=0, 0.15, 0.35 and 0.55) (wt%) which were thermally treated and cooled under the following conditions: furnace cooling (FC), air cooling (AC), and water quenching (WQ). The results showed that Si addition is effective to reduce the density of omega precipitates making beta more stable, and to produce grain refinement. Silicides, referred as (Ti,Nb)3Si, were formed for alloys containing 0.55% Si, and its formation presumably occurred during the heating at 1000°C. In all cooling conditions, the hardness values increased with the increasing of Si content, as a result from the strong Si solid solution strengthening effect, while the elastic modulus underwent a continuous reduction due to the reduction of omega precipitates in beta matrix. Lower elastic moduli were observed in water-quenched alloys, which concentration of 0.15% Si was more effective in their reduction, with value around 65 GPa. Regarding Ti-35Nb-xSi alloys (x=0, 0.15 and 0.35), the "double yield point" phenomenon, which is typical of alloys with shape memory effect, was observed. The increase in Si concentration also produced an increase from 382 MPa to 540 MPa in the alloys' mechanical strength. Ti-35Nb-0.55Si alloy, however, showed brittle mechanical behavior which was related to the presence of silicides at the grain boundary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of boron addition to Ti–13Zr–13Nb alloy on MG63 osteoblast cell viability and protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, P., E-mail: m.pallab@gmail.com [School of Mechanical Science, Indian Institute of Technology, Bhubaneswar (India); Singh, S.B. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur (India); Dhara, S. [School Medical Science and Technology, Indian Institute of Technology, Kharagpur (India); Chakraborty, M. [School of Mechanical Science, Indian Institute of Technology, Bhubaneswar (India)

    2015-01-01

    Cell proliferation, cell morphology and protein adsorption on near β-type Ti–13Zr–13Nb (TZN) alloy and Ti–13Zr–13Nb–0.5B (TZNB) composite have been investigated and compared to evaluate the effect of boron addition which has been added to the Ti alloy to improve their poor tribological properties by forming in situ TiB precipitates. MG63 cell proliferation on substrates with different chemistry but the same topography was compared. The MTT assay test showed that the cell viability on the TZN alloy was higher than the boron containing TZNB composite after 36 h of incubation and the difference was pronounced after 7 days. However, both the materials showed substantially higher cell attachment than the control (polystyrene). For the same period of incubation in fetal bovine serum (FBS), the amount of protein adsorbed on the surface of boron free TZN samples was higher than that in the case of boron containing TZNB composite. The presence of boron in the TZN alloy influenced protein adsorption and cell response and they are lower in TZNB than in TZN as a result of the associated difference in chemical characteristics. - Highlights: • The influence of boron addition on biocompatibility of Ti–13Zr–13Nb • Boron forms in situ TiB in TZN matrix and decreases cell proliferation on TZN surfaces. • Protein adsorption is lower in TZNB than in TZN. • Compared to TZNB composite, TZN alloy is more suitable for bone grafting applications.

  17. The effect of boron addition on microstructure and mechanical properties of biomedical Ti35Nb6Ta alloy

    Energy Technology Data Exchange (ETDEWEB)

    Málek, Jaroslav, E-mail: malek@ujp.cz [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague, Zbraslav (Czech Republic); CTU in Prague, Faculty of Mechanical Engineering, Department of Materials Engineering, Karlovo Namesti 13, 121 35 Praha 2 (Czech Republic); Hnilica, František, E-mail: hnilica@ujp.cz [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague, Zbraslav (Czech Republic); Veselý, Jaroslav, E-mail: vesely@ujp.cz [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague, Zbraslav (Czech Republic); Smola, Bohumil, E-mail: smola@met.mff.cuni.cz [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Březina, Vítězslav, E-mail: brezinavita@gmail.com [Masaryk University, Faculty of Medicine, Department of Stomathology, Komenského Náměstí 220/2, 662 43 Brno (Czech Republic); Kolařík, Kamil, E-mail: kamil.kolarik@email.cz [Faculty of Mechanical Engineering, University of West Bohemia, Univerzitní 22, 306 14 Plzeň (Czech Republic)

    2014-10-15

    The beta-titanium alloys are promising materials for bioapplications but their processing via melting is difficult. Coarse grains have been observed in as-cast specimens. Subsequent thermo-mechanical processing seems to be necessary in order to obtain fine-grained microstructure with better mechanical properties. The grain size can be decreased significantly by addition of small boron amount. In this work Ti–35Nb–6Ta alloy with various B additions (0, 0.05, 0.1, 0.3 and 0.5 wt.%) has been studied. Even the smallest amount of B leads to significant grain refinement in Ti–35Nb–6Ta alloy (from 1300 to about 350 μm). Slight grain refinement has been observed also after hot forging and solution treatment. TiB particles emerged in specimens due to B addition. These particles contribute to changes in mechanical properties not only in hot forged and solution treated specimens (hardness increase from 140 to 180 HV10), but also in cold swaged specimens (hardness from 230 to 250 HV10, tensile strength from 800 to 920 MPa). The hardness values can be increased up to 370 HV10 during aging at 400 °C (specimen with 0.5 wt.% B). It has been observed that specimens with low boron addition 0.05 wt.% possess no cytotoxicity. On the other hand in specimens with 0.1 wt.% B or more slight adverse effect on cytotoxicity has been observed. - Highlights: • The influence of boron on microstructure and mechanical properties has been studied. • Beta-transus temperature has been determined. • Cytotoxicity depending on boron content has been evaluated. • Possibility of final heat treatment has been determined.

  18. Fe-15Ni-13Cr austenitic stainless steels for fission and fusion reactor applications. II. Effects of minor elements on precipitate phase stability during thermal aging

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.

    2000-01-01

    The precipitate phase stability in Fe-15Ni-13Cr base austenitic alloys was investigated as a function of minor alloying additions after thermally aging at 600 deg. C and 675 deg. C for times ranging from 24 h to one year. Seven major precipitate phases were found in aged specimens, including M 23 C 6 , Laves, Eta (η), TiO, NbC, MC, and M 2 P. The types and amounts of precipitate phases varied with alloying element additions, aging temperature, and aging time. By analyzing the composition of each individual particle, it was possible to determine the essential constituent elements for each phase. From this information, a strategy to promote or suppress certain precipitate phases was developed. Among the seven phases, the most desirable precipitate phases were considered to be MC and M 2 P, because these particles form on a fine scale with a high number density and, therefore, can serve as effective gas atom trap sites under irradiation

  19. Influence of chemical composition on microstructure and strength of alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Fedorova, T.; Roesler, J.; Gehrmann, B. [Technische Univ. Braunschweig (Germany); Kloewer, J. [ThyssenKrupp VDM GmbH, Werdohl (Germany)

    2010-07-01

    Alloy 718 has been used for many years due to its unique mechanical properties and good processing characteristics. However, the temperature limit for Alloy 718 is about 650 C because of the thermal instability of the main strengthening phase {gamma}''-Ni{sub 3}(Nb, Ti, Al). At high temperatures meta-stable {gamma}'' changes into stable {delta}-Ni{sub 3}Nb with large size and plate-like morphology. As a consequence of this the alloy looses its microstructural stability and strength. The basic intent of this paper is to examine the role of major and minor elements within typical specification limits for Alloy 718 with respect to (i) microstructure evolution, (ii) strengthening effects and (iii) thermal stability of {gamma}' and {gamma}''. For this purpose, thermodynamic calculations using the software THERMOCALC were performed, varying the content of Nb, Ti, Al as well as B and Zr. In addition, alloys with precisely controlled chemical composition were prepared by drop casting in a vacuum arc furnace and hot forged, so that it was possible to compare the theoretical predictions with experimental results. The microstructure evolution was studied in detail by means of scanning electron microscopy and X-ray diffraction. Furthermore, mechanical properties including tensile and creep behaviour were examined. Based on these results, dependencies between chemical composition and microstructural stability will be elucidated. (orig.)

  20. Effect of Fe addition on the magnetic and giant magneto-impedance behaviour of CoCrSiB rapidly solidified alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Seema; Chattoraj, I; Panda, A K; Mitra, A; Pal, S K [National Metallurgical Laboratory, Jamshedpur 831 007 (India)

    2006-05-21

    Thermal electrical resistivity, magnetic hysteresis and magneto-impedance behaviour of melt spun and annealed Co{sub 71-X}Fe{sub X}Cr{sub 7}Si{sub 8}B{sub 14} (X = 0, 2, 3.2, 4, 6, 8 and 12 at.%) were investigated. The addition of Fe in the system changed crystallization as well as the magnetic properties of the materials. The alloy containing 6 at.% Fe showed an increase in resistivity during the first crystallization process. A TEM micrograph indicated the formation of nanostructure during the crystallization process. The GMI properties of the alloys are evaluated at a driving current amplitude of 5 mA and a frequency of 4 MHz. The two-peak behaviour in the GMI profile was observed for all the samples. It is found that the alloy with 4 at.% Fe has the maximum GMI ratio because of the nearly zero magnetostriction value of the sample. About 62% change in the GMI ratio was observed in the alloy with 4 at.% Fe when annealed at 673 K. The anisotropy field was also minimum for the annealed alloy. The results were explained by the formation of directional ordering and the reduction of the magnetostriction constant of the alloy due to nanocrystallization during the annealing process.

  1. Microstructure and ductility of Fe28Cr16Co alloy with additions of silicon, molybdenum, titanium and aluminium

    International Nuclear Information System (INIS)

    Vodopivec, F.; Zvokelj, J.; Breskvar, B.; Gnidovec, D.; Rodic, A.; Torkar, M.

    1994-01-01

    The microstructure of several alloys with base composition Fe28Cr16Co and addition up to 1.5% silicon, 0.32% titanium, 2.34% molybdenum and 1% aluminium was investigated in the temperature range 500 to 1250 C by optical microscopy, hardness measurements and dilatometry. Also, ductility and wire drawing tests were carried out on some alloys. The addition of silicon, titanium, molybdenum or 0.13% Al does not prevent the formation of γ phase up to the temperature 1250 C and the formation of phase σ in the temperature range 700 to approximately 1000 C. The addition of 1% Al prevents the formation of phase σ and shifts the temperature of formation of phase γ to 1158 C. The addition of different elements does not affect significantly the spinodal decomposition of phase α. At increased temperature an interval of sufficient ductility for deformation by wire drawing was established. The ductility was greatly improved if the microstructure consisted of small inclusions of phase γ in a matrix of phase α, probably because the deformation by twinning was hindered. However, insufficient magnetic properties were obtained also after 80% of deformation. (orig.)

  2. Techniques for chemical characterization of zirconium and its alloys

    International Nuclear Information System (INIS)

    Iyer, K.V.; Bassan, M.K.T.; Sudersanan, M.

    2002-01-01

    Chemical characterization of zirconium and its alloys such as zircaloy, Zr-Nb, etc for minor and trace constituents like Nb, Ti, Fe, Cr, Ni, Sn, Al etc has been carried out. Zirconium, being a major constituent, has been determined by gravimetry as zirconium oxide while other constituents like Nb, Ti, Fe have been determined by spectrophotometric methods. Other metals of importance at trace level have been estimated by AAS or ICPAES. The judicious use of both conventional and modern instrumental methods of analysis helps in the characterization of zirconium and its alloys for various major and minor constituents. The role of matrix effect in the determination was also investigated and methods have been worked out based on a preliminary separation of zirconium by a hydroxide precipitation. (author)

  3. Effects of Tungsten Addition on the Microstructure and Corrosion Resistance of Fe-3.5B Alloy in Liquid Zinc

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-04-01

    Full Text Available The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W2B, the rod-like (Fe, W3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W3B phase. The resultant Fe-3.5B-11W (wt % alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper.

  4. Effect of co-addition of RE, Fe and Mn on the microstructure and performance of A390 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Yunguo; Wu Yuying; Qian Zhao [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Xiangfa, E-mail: xfliu@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-12-15

    The co-addition effect of RE, Mn and Fe on the microstructure and high-temperature strength of A390 has been conducted. The alloying effect of RE has also been explored. Formation of detrimental long-acicular RE-rich phase is not observed. The AlSiCuCeLa phase, {alpha}-Al(Mn,Fe)-Si phase and another complex phase composed of Al, Si, Mn, Fe, Cu and RE are observed to form after addition. RE can decrease the diffusion rates of Cu, Mg in the aging process and the intermetallics nucleate on a localized scale, but could not become coarse during heat-treatment. The electronegativity differences between RE and Al or Si are larger than those between Cu and Al or Si, so the RE-rich intermetallic compounds in Al-Si alloys are more stable. The co-addition of RE, Mn and Fe proves to be an effective method to enhance the high-temperature strength of A390. The high-temperature strength of A390 is increased by 25% in this article using this method.

  5. Effect of co-addition of RE, Fe and Mn on the microstructure and performance of A390 alloy

    International Nuclear Information System (INIS)

    Li Yunguo; Wu Yuying; Qian Zhao; Liu Xiangfa

    2009-01-01

    The co-addition effect of RE, Mn and Fe on the microstructure and high-temperature strength of A390 has been conducted. The alloying effect of RE has also been explored. Formation of detrimental long-acicular RE-rich phase is not observed. The AlSiCuCeLa phase, α-Al(Mn,Fe)-Si phase and another complex phase composed of Al, Si, Mn, Fe, Cu and RE are observed to form after addition. RE can decrease the diffusion rates of Cu, Mg in the aging process and the intermetallics nucleate on a localized scale, but could not become coarse during heat-treatment. The electronegativity differences between RE and Al or Si are larger than those between Cu and Al or Si, so the RE-rich intermetallic compounds in Al-Si alloys are more stable. The co-addition of RE, Mn and Fe proves to be an effective method to enhance the high-temperature strength of A390. The high-temperature strength of A390 is increased by 25% in this article using this method.

  6. Structural, thermal and magnetic investigations on immiscible Ag–Co nanocrystalline alloy with addition of Mn

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B.N., E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chabri, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India); Sardar, G. [Department of Zoology, Baruipur College, South 24 Parganas 743610 (India); Nath, D.N. [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2016-08-15

    50Ag–50Co (at%) and 40Ag–40Co–20Mn (at%) alloys prepared by ball milling up to 50 h and subsequent isothermal annealing at the temperature range of 350–650 °C for 1 h has been investigated systematically. Mn promotes early formation of the nanostructures and solid solutions of the alloys by ball milling. In contrast, annealing at 350 °C of Ag–Co alloy resulted the dissolution of hcp Co. Annealing above 350 °C decomposes the metastable Ag–Co alloy into the polycrystalline and segregated Ag and fcc Co. Enthalpy of mixing of both the alloy has increased with increase in milling time. Both the nanocrystalline alloys prepared by ball milling and annealing have been revealed the ferromagnetic behavior. The most significant improvement of magnetic properties is yielded in as-milled Ag–Co–Mn alloy obtained after annealing at 550 °C for 1 h. - Highlights: • A complete solid solution of Ag–Co–Mn alloy obtained after 50 h of milling. • A complete solid solution of milled Ag–Co alloy forms annealed at 350 {sup °}C for 1 h. • Precipitation of fcc Co are observed after annealing above 350 °C. • Enthalpy of mixing of the alloys increased with increase in milling time. • The superior magnetic properties achieved of Ag–Co–Mn alloy annealed at 550 °C.

  7. Modification of Sr on 4004 Aluminum Alloy

    Science.gov (United States)

    Guo, Erjun; Cao, Guojian; Feng, Yicheng; Wang, Liping; Wang, Guojun; Lv, Xinyu

    2013-05-01

    As a brazing foil, 4004 Al alloy has good welding performance. However, the high Si content decreases the plasticity of the alloy. To improve the plasticity of 4004 Al alloy and subsequently improve the productivity of 4004 Al foil or 434 composite foil, 4004 Al alloy was modified by Al-10%Sr master alloy. Modification effects of an additional amount of Sr, modification temperature, and holding time on 4004 aluminum alloy were studied by orthogonal design. The results showed that the greatest impact parameter of 4004 aluminum alloy modification was the additional amount of Sr, followed by holding time and modification temperature. The optimum modification parameters obtained by orthogonal design were as follows: Sr addition of 0.04%, holding time of 60 min, and modification temperature of 760°C. The effect of Sr addition on modification was analyzed in detail based on orthogonal results. With increasing of Sr addition, elongation of 4004 alloy increased at first, and decreased after reaching the maximum value.

  8. Effect of Sn addition on the microstructure and deformation behavior of Mg-3Al alloy

    International Nuclear Information System (INIS)

    Suh, Byeong-Chan; Kim, Jae H.; Bae, Jun Ho; Hwang, Ji Hyun; Shim, Myeong-Shik; Kim, Nack J.

    2017-01-01

    Mg alloys generally suffer from their poor formability at low temperatures due to their strong basal texture and a lack of adequate deformation systems. In the present study, a small amount of Sn was added instead of Zn to Mg-3Al alloy to modify its deformation behavior and improve the stretch formability. Microstructural examinations of the deformed Mg-3Al-1Sn (AT31) alloy by electron backscatter diffraction and transmission electron microscopy show that prismatic slip is quite active during deformation, resulting in much lower r-values and planar anisotropy than the counterpart Mg-3Al-1Zn (AZ31) alloy. Polycrystal plasticity simulation based on visco-plasticity self-consistent (VPSC) model also shows that prismatic slip is the dominant deformation mode in AT31 alloy besides basal slip. As a consequence, AT31 alloy shows a much higher stretch formability than AZ31 alloy. On the other hand, AZ31 alloy shows the development of intense shear bands during stretch forming, and these shear bands act as crack propagating paths, limiting the stretch formability of AZ31 alloy.

  9. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  10. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  11. Deformation behavior of laser welds in high temperature oxidation resistant Fe–Cr–Al alloys for fuel cladding applications

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G., E-mail: fieldkg@ornl.gov; Gussev, Maxim N., E-mail: gussevmn@ornl.gov; Yamamoto, Yukinori, E-mail: yamamotoy@ornl.gov; Snead, Lance L., E-mail: sneadll@ornl.gov

    2014-11-15

    Ferritic-structured Fe–Cr–Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe–(13–17.5)Cr–(3–4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  12. An increase of structural order parameter in Fe endash Co endash V soft magnetic alloy after thermal aging

    International Nuclear Information System (INIS)

    Zhu, Q.; Li, L.; Masteller, M.S.; Del Corso, G.J.

    1996-01-01

    Alloys of Fe 49 Co 49 V 2 (Hiperco Alloy 50) (Hiperco is a registered trademark of CRS Holdings, Inc.), both annealed and thermally aged, were studied using anomalous synchrotron x-ray and neutron powder diffraction. Rietveld and diffraction profile analysis indicated both an increase in the structural order parameter and a small lattice expansion (∼0.0004 A) after aging at 450 degree C for 200 h. In addition, a cubic minority phase (<0.3%) was identified in the open-quote open-quote annealed close-quote close-quote sample, which increased noticeably (0.3%→0.8%) as a result of aging. The presence of antiphase domain boundaries in the alloys was also revealed. These results directly correlate with the observed changes in the magnetization behavior and challenge the notion that a open-quote open-quote fully close-quote close-quote ordered Fe endash Co alloy demonstrates optimum soft magnetic properties. copyright 1996 American Institute of Physics

  13. Cluster-based bulk metallic glass formation in Fe-Si-B-Nb alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, C L; Wang, Q; Li, F W; Li, Y H; Wang, Y M; Dong, C [State Key Laboratory of Materials Modification, Dalian University of Technology (DUT), Dalian 116024 (China); Zhang, W; Inoue, A, E-mail: dong@dlut.edu.c [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-01-01

    Bulk metallic glass formations have been explored in Fe-B-Si-Nb alloy system using the so-called atomic cluster line approach in combination with minor alloying guideline. The atomic cluster line refers to a straight line linking binary cluster to the third element in a ternary system. The basic ternary compositions in Fe-B-Si system are determined by the inetersection points of two cluster lines, namely Fe-B cluster to Si and Fe-Si cluster to B, and then further alloyed with 3-5 at. % Nb for enhancing glass forming abilities. BMG rods with a diameter of 3 mm are formed under the case of minor Nb alloying the basic intersecting compositions of Fe{sub 8}B{sub 3}-Si with Fe{sub 12}Si-B and Fe{sub 8}B{sub 2}-Si with Fe{sub 9}Si-B. The BMGs also exhibit high Vickers hardness (H{sub v}) of 1130-1164 and high Young's modulous (E) of 170-180 GPa

  14. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  15. Swelling in neutron irradiated nickel-base alloys

    International Nuclear Information System (INIS)

    Brager, H.R.; Bell, W.L.

    1972-01-01

    Inconel 625, Incoloy 800 and Hastelloy X were neutron irradiated at 500 to 700 0 C. It was found that of the three alloys investigated, Inconel 625 offers the greatest swelling resistance. The superior swelling resistance of Inconel 625 relative to that of Hastelloy-X is probably related to differences in the concentrations of the minor rather than major alloy constituents, and can involve (a) enhanced recombination of defects in the Inconel 625 and (b) preferential attraction of vacancies to incoherent precipitates. (U.S.)

  16. Effects of Nd-addition on the structural, hydrogen storage, and electrochemical properties of C14 metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.F. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States); Young, K., E-mail: kwo.young@basf.com [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States); Nei, J.; Wang, L. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Ng, K.Y.S. [Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2015-10-25

    Nd-addition to the AB{sub 2}-based alloy Ti{sub 12}Zr{sub 22.8−x}V{sub 10}Cr{sub 7.5}Mn{sub 8.1}Co{sub 7.0}Ni{sub 32.2}Al{sub 0.4}Nd{sub x} is studied for its effects on the structure, gaseous-phase hydrogen storage, and electrochemical properties. This study follows a series of Cu, Mo, Fe, Y, Si, and La doping studies in similar AB{sub 2}-based alloys. Limited solubility of Nd in the main Laves phase promotes the formation of secondary phases (AB and Zr{sub 7}Ni{sub 10}) to provide catalytic effects and synergies for improved capacity and high-rate dischargeability (HRD) performance. The main C14 storage phase has smaller lattice constants and cell volumes, and these effects reduce the storage capacity at higher Nd levels. Different hydrogen absorption mechanisms can occur in these multi-component, multi-phase alloys depending on the interfaces of the phases, and they have effects on the alloy properties. Higher Nd-levels improve the HRD performance despite having lower bulk diffusion and surface exchange current. Magnetic susceptibility measurements indicate large percentage of larger metallic nickel clusters are present in the surface oxide of alloys with higher Nd-content, and AC impedance studies show very low charge-transfer resistance with high catalytic capability in the alloys. The −40 °C charge-transfer resistance of 8.9 Ω g in this Nd-series of alloys is the lowest measured out of the studies investigating doped AB{sub 2}-based MH alloys for improved low-temperature characteristics. The improvement in HRD and low-temperature performance appears to be related to the proportion of the highly catalytic NdNi-phase at the surface, which must offset the increased bulk diffusion resistance in the alloy. - Graphical abstract: Schematics of hydrogen flow and corresponding PCT isotherms in funneling mode. - Highlights: • Structural and hydrogen storage properties of Nd-substituted AB{sub 2} metal hydride are reported. • Nd contributes to the lowest

  17. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    International Nuclear Information System (INIS)

    Hou, Huilong; Stasak, Drew; Hasan, Naila Al; Takeuchi, Ichiro; Simsek, Emrah; Ott, Ryan; Cui, Jun; Qian, Suxin

    2017-01-01

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g −1 . Adiabatic compression on as-fabricated TiNi displays cooling Δ T as high as  −7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2 Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2 Ni precipitates is believed to be the origin of the unique superelasticity behavior. (paper)

  18. Effects of samarium (Sm) additions on the microstructure and mechanical properties of as-cast and hot-extruded Mg-5 wt%Al-3 wt%Ca-based alloys

    International Nuclear Information System (INIS)

    Son, Hyeon-Taek; Lee, Jae-Seol; Kim, Dae-Guen; Yoshimi, Kyosuke; Maruyama, Kouichi

    2009-01-01

    Samarium (Sm) additions to as-cast Mg-5Al-3Ca-based alloys result in changes, such as equiaxed grains and a refined grain size. The microstructure of as-cast Mg-5Al-3Ca-xSm alloys consists of an α-Mg matrix, a (Mg, Al) 2 Ca eutectic phase, and an Al 2 Sm intermetallic compound. In as-cast alloys, the (Mg, Al) 2 Ca eutectic phase was located at grain boundaries with a chain structure, and the Al 2 Sm intermetallic compounds were homogeneously distributed at the α-Mg matrix and grain boundaries. The eutectic phase of the extruded alloys was elongated in the extrusion direction and crushed into fine particles because of severe deformation during hot extrusion, and the grain size was refined with an increased amount of Sm addition. The maximum values of the yield strength and tensile strength were 313 MPa and 330 MPa at 2 wt%Sm alloy content, respectively

  19. Performance evaluation and characterisation of EIGA produced titanium alloy powder for additive manufacturing processes

    CSIR Research Space (South Africa)

    Arthur, Nana KK

    2017-11-01

    Full Text Available affect powder quality, and hinder processing. In an investigation by Goso and Kale [3], Ti-6Al-4V alloy powder was produced by the hydride-dehydride (HDH) process in order to make titanium components by blended elemental approach. Chemical analysis.... 2016. Additive manufacturing of metals, Acta Materialia, 117, pp 371-392. 3 [3] Goso, X. and Kale, A. 2010. Production of titanium metal powder by the HDH process, (Paper presented at the South African Institute of Mining and Metallurgy Light...

  20. Stress-induced thickening of Ω phase in Al–Cu–Mg alloys containing various Ag additions

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@mail.csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Zhou, Xuanwei; Xia, Peng; Liu, Meng [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2014-01-01

    The thickening of Ω phase in Al–Cu–Mg alloys containing various bulk Ag contents during stress aging at 200 °C with a tensile stress of 240 MPa was investigated by a combination of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). TEM characterization confirmed preferred orientation of Ω phase in all stress-aged samples. Corresponding quantitative TEM calculations revealed the thickening kinetics of Ω phase was significantly accelerated during stress aging as compared to that during stress-free aging at 200 °C. HRTEM analysis on the α/Ω interfacial structure confirmed that the applied tensile stress facilitated the rapid nucleation of the growth ledge on the broad face of Ω phase, thereby resulting in the accelerated plate thickening during stress aging at 200 °C. Meanwhile, quantitative TEM analysis highlighted the stress-induced thickening of Ω phase at 200 °C was affected by the bulk Ag content. This was consistent with the HRTEM observation as the ledge nucleation was found to be suppressed with increasing Ag addition. Our APT analysis on different stress-aged samples further suggested the progressive enrichment of Ag atoms in the segregation layer helped to stabilize the interfacial structure and was responsible for the lowest nucleation rate of the ledge in 1.77Ag alloy as compared to that in 0.46Ag alloy.

  1. Stress-induced thickening of Ω phase in Al–Cu–Mg alloys containing various Ag additions

    International Nuclear Information System (INIS)

    Bai, Song; Liu, Zhiyi; Zhou, Xuanwei; Xia, Peng; Liu, Meng

    2014-01-01

    The thickening of Ω phase in Al–Cu–Mg alloys containing various bulk Ag contents during stress aging at 200 °C with a tensile stress of 240 MPa was investigated by a combination of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). TEM characterization confirmed preferred orientation of Ω phase in all stress-aged samples. Corresponding quantitative TEM calculations revealed the thickening kinetics of Ω phase was significantly accelerated during stress aging as compared to that during stress-free aging at 200 °C. HRTEM analysis on the α/Ω interfacial structure confirmed that the applied tensile stress facilitated the rapid nucleation of the growth ledge on the broad face of Ω phase, thereby resulting in the accelerated plate thickening during stress aging at 200 °C. Meanwhile, quantitative TEM analysis highlighted the stress-induced thickening of Ω phase at 200 °C was affected by the bulk Ag content. This was consistent with the HRTEM observation as the ledge nucleation was found to be suppressed with increasing Ag addition. Our APT analysis on different stress-aged samples further suggested the progressive enrichment of Ag atoms in the segregation layer helped to stabilize the interfacial structure and was responsible for the lowest nucleation rate of the ledge in 1.77Ag alloy as compared to that in 0.46Ag alloy

  2. Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions.

    Science.gov (United States)

    Wieding, Jan; Fritsche, Andreas; Heinl, Peter; Körner, Carolin; Cornelsen, Matthias; Seitz, Hermann; Mittelmeier, Wolfram; Bader, Rainer

    2013-12-16

    The repair of large segmental bone defects caused by fracture, tumor or infection remains challenging in orthopedic surgery. The capability of two different bone scaffold materials, sintered tricalciumphosphate and a titanium alloy (Ti6Al4V), were determined by mechanical and biomechanical testing. All scaffolds were fabricated by means of additive manufacturing techniques with identical design and controlled pore geometry. Small-sized sintered TCP scaffolds (10 mm diameter, 21 mm length) were fabricated as dense and open-porous samples and tested in an axial loading procedure. Material properties for titanium alloy were determined by using both tensile (dense) and compressive test samples (open-porous). Furthermore, large-sized open-porous TCP and titanium alloy scaffolds (30 mm in height and diameter, 700 µm pore size) were tested in a biomechanical setup simulating a large segmental bone defect using a composite femur stabilized with an osteosynthesis plate. Static physiologic loads (1.9 kN) were applied within these tests. Ultimate compressive strength of the TCP samples was 11.2 ± 0.7 MPa and 2.2 ± 0.3 MPa, respectively, for the dense and the open-porous samples. Tensile strength and ultimate compressive strength was 909.8 ± 4.9 MPa and 183.3 ± 3.7 MPa, respectively, for the dense and the open-porous titanium alloy samples. Furthermore, the biomechanical results showed good mechanical stability for the titanium alloy scaffolds. TCP scaffolds failed at 30% of the maximum load. Based on recent data, the 3D printed TCP scaffolds tested cannot currently be recommended for high load-bearing situations. Scaffolds made of titanium could be optimized by adapting the biomechanical requirements.

  3. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn

    Science.gov (United States)

    Wu, Yuanhao; He, Guanping; Zhang, Yu; Liu, Yang; Li, Mei; Wang, Xiaolan; Li, Nan; Li, Kang; Zheng, Guan; Zheng, Yufeng; Yin, Qingshui

    2016-02-01

    In clinical practice, tumor recurrence and metastasis after orthopedic prosthesis implantation is an intensely troublesome matter. Therefore, to develop implant materials with antitumor property is extremely necessary and meaningful. Magnesium (Mg) alloys possess superb biocompatibility, mechanical property and biodegradability in orthopedic applications. However, whether they possess antitumor property had seldom been reported. In recent years, it showed that zinc (Zn) not only promote the osteogenic activity but also exhibit good antitumor property. In our present study, Zn was selected as an alloying element for the Mg-1Ca-0.5Sr alloy to develop a multifunctional material with antitumor property. We investigated the influence of the Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, 6 wt%) alloys extracts on the proliferation rate, cell apoptosis, migration and invasion of the U2OS cell line. Our results show that Zn containing Mg alloys extracts inhibit the cell proliferation by alteration the cell cycle and inducing cell apoptosis via the activation of the mitochondria pathway. The cell migration and invasion property were also suppressed by the activation of MAPK (mitogen-activated protein kinase) pathway. Our work suggests that the Mg-1Ca-0.5Sr-6Zn alloy is expected to be a promising orthopedic implant in osteosarcoma limb-salvage surgery for avoiding tumor recurrence and metastasis.

  4. Effect of P addition on glass forming ability and soft magnetic properties of melt-spun FeSiBCuC alloy ribbons

    International Nuclear Information System (INIS)

    Xu, J.; Yang, Y.Z.; Li, W.; Chen, X.C.; Xie, Z.W.

    2016-01-01

    The dependency of phosphorous content on the glass forming ability, thermal stability and soft magnetic properties of Fe 83.4 Si 2 B 14−x P x Cu 0.5 C 0.1 (x=0,1,2,3,4) alloys was investigated. The experimental results showed that the substitution of B by P increased the glass forming ability in this alloy system. The Fe 83.4 Si 2 B 10 P 4 Cu 0.5 C 0.1 alloy shows a fully amorphous character. Thermal stability of melt-spun ribbons increases and temperature interval between the first and second crystallization peaks enlarges with the increase of P content. And the saturation magnetic flux density (Bs) shows a slight increase with the increase of P content. The Fe 83.4 Si 2 B 11 P 3 Cu 0.5 C 0.1 nanocrystalline alloy exhibits a high Bs about 200.6 emu/g. The Bs of fully amorphous alloy Fe 83.4 Si 2 B 10 P 4 Cu 0.5 C 0.1 drops dramatically to 172.1 emu/g, which is lower than that of other nanocrystallines. Low material cost and excellent soft magnetic properties make the FeSiBPCuC alloys promise soft magnetic materials for industrial applications. - Highlights: • Partial substituting B by P helps to improve the glass forming ability of the alloy. • The addition of P content reduces the thermal stability and improves heat treatment temperature region for these alloys. • The Fe 83.4 Si 2 B 11 P 3 Cu 0.5 C 0.1 nanocrystalline alloy exhibits a high saturation magnetic density of 200.6 emu/g.

  5. Influence of micro-additions of bismuth on structures, mechanical and electrical transport properties of rapidly solidified Sn-3.5% Ag Alloy from melt

    International Nuclear Information System (INIS)

    El Bahay, M.M.; Mady, H.A.

    2005-01-01

    The present study was undertaken to investigate the influence of the Bi addition in the Sn-3.5 Ag rapidly solidified binary system for use as a Pb-free solder. The resulting properties of the binary system were extended to the Sn based ternary systems Sn 9 6.5-X Ag 3 .5 Bi x (0≤ X ≤ 2.5) solder. The structure and electrical resistivity of rapidly solidified (melt spun) alloys have been investigated. With the addition of up to 2.5 mass % Bi, the melting temperature decreases from 221.1 to 214.8 degree C. Wetting contact angle of the six alloys on Cu Zn 3 0 substrate are carried out at 573 K. Microhardness evaluations were also performed on the Sn-Ag-Bi alloys. The measured values and other researcher's results were compared with the calculated data

  6. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Safaa N. Saud

    2017-01-01

    Full Text Available The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery, and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  7. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys.

    Science.gov (United States)

    Saud, Safaa N; Hamzah, E; Bakhsheshi-Rad, H R; Abubakar, T

    2017-01-01

    The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  8. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  9. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Pt. 2

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1985-01-01

    The reactive impurities H 2 O, CO, H 2 and CH 4 which are present in the primary coolant helium of high temperature gas-cooled reactors can cause scale formation, internal oxidation and carburization or decarburization of the high temperature structural alloys. In Part 1 of this contribution a theoretical model was presented, which allows the explanation and prediction of the observed corrosion effects. The model is based on a classical stability diagram for chromium, modified to account for deviations from equilibrium conditions caused by kinetic factors. In this paper it is shown how a stability diagram for a commercial alloy can be constructed and how this can be used to correlate the corrosion results with the main experimental parameters, temperature, gas and alloy composition. Using the theoretical model and the presented experimental results, conditions are derived under which a protective chromia based surface scale will be formed which prevents a rapid transfer of carbon between alloy and gas atmosphere. It is shown that this protective surface oxide can only be formed if the carbon monoxide pressure in the gas exceeds a critical value. Psub(CO), which depends on temperature and alloy composition. Additions of methane only have a limited effect provided that the methane/water ratio is not near to, or greater than, a critical value of around 100/1. The influence of minor alloying additions of strong oxide forming elements, commonly present in high temperature alloys, on the protective properties of the chromia surface scales and the kinetics of carbon transfer is illustrated. (orig.) [de

  10. Accelerated age hardening by plastic deformation in Al-Cu with minor additions of Si and Ge

    International Nuclear Information System (INIS)

    Victoria Castro Riglos, M.; Taquire de la Cruz, M.; Tolley, Alfredo

    2011-01-01

    An extremely fast hardening response with no reduction in peak hardness was obtained in Al-Cu with minor additions of Si and Ge by 8% plastic deformation before artificial aging. The mechanism for the accelerated hardening was determined by detailed characterization with transmission electron microscopy. Plastic deformation was found to enhance the nucleation rate of Si-Ge precipitates, resulting in a higher volume density. Such precipitates catalyzed the formation of θ' precipitates that are responsible for hardening.

  11. Dependence of an overvoltage of electrochemical properties of aluminum alloys from various additives

    International Nuclear Information System (INIS)

    Karieva, Z.M.; Sidikov, S.A.

    2005-01-01

    It is known, that AI and its alloys are electrochemical behavior in electrolytes appreciably differs from many other metals as chrome, nickel, cobalt and iron. The study behavior of aluminum alloys in investigated electrolytes shows about stability of the oxygenic film that during electrode reactions are supplemented and further there is a moderate dissolution even at high temperatures and concentration of a passive film. The greater affinity to oxygen gives advantage, that the passive site of metal is considerably wide. Stage of transportation it is inherent in any heterogeneous processes. In the same a stage transition of the charged particles (electrons and ions) through border an electrode -solution (the stage of the category of ionization) is specifically electrochemical stage. At the slowed down course electrochemical processes the overvoltage develops of two parts -an overvoltage of transition and an overvoltage of reaction. In the present work is investigated behavior of electrochemical properties at addition in electrolyte-electrode of insignificant amounts of organic substances -inhibitors of corrosion. It is revealed, that adsorption of the given substances on surfaces of an electrode appreciably influences size of an overvoltage not changing thus of value of constants coefficient Taffel' s equation. ' The technique of carrying out of experiment and preparation of samples are resulted in works [3-5]. (author)

  12. Enhancement of High Temperature Strength of 2219 Alloys Through Small Additions of Nb and Zr and a Novel Heat Treatment

    Science.gov (United States)

    Mondol, S.; Makineni, S. K.; Kumar, S.; Chattopadhyay, K.

    2018-05-01

    This paper presents a detailed investigation on the effect of small amount of Nb and Zr additions to 2219 Al alloy coupled with a novel three-stage heat treatment process. The main aim of the work is to increase the high temperature strength of 2219 alloy by introducing thermally stable L12 type ordered precipitates in the matrix as well as by reducing the coarsening of metastable strengthening θ″ and θ' precipitates. To achieve this, small amounts of Nb and Zr are added to 2219 alloy melt and retained in solid solution by suction casting in a water-cooled copper mould having a cooling rate of 102 to 103 K/s. The suction cast alloy is directly aged at 673 K (400 °C) to form L12 type ordered coherent Al3Zr precipitates. Subsequently, the alloy is solution treated at 808 K (535 °C) for 30 minutes to get supersaturation of Cu in the matrix without significantly affecting the Al3Zr precipitates. Finally, the alloy is aged at 473 K (200 °C), which results in the precipitation of θ″ and θ'. Microstructural characterization reveals that θ″ and θ' are heterogeneously precipitated on pre-existing uniformly distributed Al3Zr precipitates, which leads to a higher number density of these precipitates. This results in a significant increase in strength at room temperature as well as at 473 K (200 °C) as compared to the 2219 alloy. Furthermore, the alloy remains thermally stable after prolonged exposure at 473 K (200 °C), which is attributed to the elastic strain energy minimization by the conjoint Al3Zr/θ' or Al3Zr/θ″ precipitates, and the high Zr and Nb solute-vacancy binding energy, retarding the growth and coarsening of θ″ and θ' precipitates.

  13. Influence of Zr and nano-Y{sub 2}O{sub 3} additions on thermal stability and improved hardness in mechanically alloyed Fe base ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Hasan, E-mail: hkotan@konya.edu.tr [Department of Metallurgical Engineering and Materials Science, Necmettin Erbakan University, Dere Aşıklar Mah. Demet Sokak, Meram, Konya 42140 (Turkey); Darling, Kris A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Scattergood, Ronald O.; Koch, Carl C. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27695-7907 (United States)

    2014-12-05

    The motivation of this work was driven to improve the thermal stability in systems where polymorphic transformations can result in an additional driving force, upsetting the expected thermodynamic stability. In this study, Fe{sub 92}Ni{sub 8} alloys with Zr and nano-Y{sub 2}O{sub 3} additions were produced by ball milling and then annealed at high temperatures. Emphasis was placed on understanding the effects of dispersed nano-Y{sub 2}O{sub 3} particle additions and their effect on microstructural stability at and above the bcc-to-fcc transformation occurring at 700 °C in Fe–Ni systems. Results reveal that microstructural stability and hardness can be promoted by a combination of Zr and Y{sub 2}O{sub 3} additions, that being mostly effective for stability before and after phase transition, respectively. The mechanical strength of these alloys is achieved by a unique microstructure comprised a ultra-fine grain Fe base matrix, which contains dispersions of both nano-scale in-situ formed Zr base intermetallics and ex-situ added Y{sub 2}O{sub 3} secondary oxide phases. Both of these were found to be essential for a combination of high thermal stability and high mechanical strength properties. - Highlights: • Polymorphic transformations can limit the processing of nanostructured powders. • It causes a rapid grain growth and impairs the improved mechanical properties. • We aim to improve the hardness and thermal stability above the phase transformation. • Thermal stability is achieved by a combination of Zr and Y{sub 2}O{sub 3} additions. • Hardness is promoted by in-situ formed and ex-situ added secondary nano phases.

  14. The Effect of Cu and Ge Additions on Strength and Precipitation in a lean 6xxx Aluminium Alloy

    International Nuclear Information System (INIS)

    Mørtsell, E A; Holmestad, R; Marioara, C D; Andersen, S J; Røyset, J; Reiso, O

    2015-01-01

    It has been demonstrated that the strength loss in a lean Al-Mg-Si alloy due to solute reduction could be compensated by back-adding a lower at % of Ge and Cu. Nanosized precipitate needles which are the main cause of strength in these alloys, and material hardness has been correlated to parameters quantified by TEM. It was found that additions of Ge and Cu strongly affect the precipitation process by increasing precipitate density and reducing precipitate size. Investigations of precipitate atomic structure by HAADF-STEM indicated that they contain mixed areas of known phases and disordered regions. A hexagonal Si/Ge-network was found to be present in all precipitate cross sections. (paper)

  15. effects of sulphur addition on addition on and mechanical properties

    African Journals Online (AJOL)

    User

    on the microstructure and mechanical properties of sand cast been investigated ... owed that the addition of sulphur to Al-12wt%Si alloy. 12wt%Si alloy .... 28 materials. 29. Element. Aluminum. Silicon. Al. Si. Ca. Fe. Cu. Zn. Mn. Mg. Cr. B. 99.71.

  16. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications.

    Science.gov (United States)

    Trevisan, Francesco; Calignano, Flaviana; Aversa, Alberta; Marchese, Giulio; Lombardi, Mariangela; Biamino, Sara; Ugues, Daniele; Manfredi, Diego

    2018-04-01

    The mechanical properties and biocompatibility of titanium alloy medical devices and implants produced by additive manufacturing (AM) technologies - in particular, selective laser melting (SLM), electron beam melting (EBM) and laser metal deposition (LMD) - have been investigated by several researchers demonstrating how these innovative processes are able to fulfil medical requirements for clinical applications. This work reviews the advantages given by these technologies, which include the possibility to create porous complex structures to improve osseointegration and mechanical properties (best match with the modulus of elasticity of local bone), to lower processing costs, to produce custom-made implants according to the data for the patient acquired via computed tomography and to reduce waste.

  17. Usage of ATND method to determination of mechanical properties of AlMg10 alloy with complex additive of SbNiCr

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2009-07-01

    Full Text Available Aluminum alloys with magnesium are commonly used in foundry industry due to lower density and higher corrosion resistance, comparing with silumins. Complicated shapes of produced alloys, differences in wall thickness and operation under changing loads require performing quality control as early as in stage of their preparation (melting. To register crystallization processes and monitor a phenomena arisen in result of the crystallization, are implemented methods based on analysis of temperature change (ATD, DTA. In the paper is present an attempt of usage of the ATND method (Thermal-Voltage-Derivative Analysis to registration of crystallization process of the investigated alloy. Obtained results concern registration of the crystallization process, strength and fatigue tests of the material, and visual observation of morphology of alloy’s fracture after static tensile test. Performed regression analysis has enabled implementation of changeable values of characteristic points of the ATND method to estimation of mechanical properties of the AlMg10 alloy with SbNiCr additive.

  18. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys

    International Nuclear Information System (INIS)

    Bakhsheshi-Rad, H.R.; Idris, M.H.; Abdul-Kadir, M.R.; Ourdjini, A.; Medraj, M.; Daroonparvar, M.; Hamzah, E.

    2014-01-01

    Highlights: • Quaternary alloy show better mechanical and corrosion properties than binary alloy. • Mg–2Ca–0.5Mn–2Zn alloy showed suitable mechanical properties for bone application. • The improved corrosion resistance with addition of Mn and Zn into the Mg–Ca alloy. • Formation of protective surface film Mn-containing magnesium on quaternary alloy. • Secondary phases have strong effect on micro-galvanic corrosion of Mg alloys. - Abstract: Binary Mg–xCa alloys and the quaternary Mg–Ca–Mn–xZn were studied to investigate their bio-corrosion and mechanical properties. The surface morphology of specimens was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of mechanical properties show that the yield strength (YS), ultimate tensile strength (UTS) and elongation of quaternary alloy increased significantly with the addition of zinc (Zn) up to 4 wt.%. However, further addition of Zn content beyond 4 wt.% did not improve yield strength and ultimate tensile strength. In contrast, increasing calcium (Ca) content has a deleterious effect on binary Mg–Ca alloys. Compression tests of the magnesium (Mg) alloys revealed that the compression strength of quaternary alloy was higher than that of binary alloy. However, binary Mg–Ca alloy showed higher reduction in compression strength after immersion in simulated body fluid. The bio-corrosion behaviour of the binary and quaternary Mg alloys were investigated using immersion tests and electrochemical tests. Electrochemical tests shows that the corrosion potential (E corr ) of binary Mg–2Ca significantly shifted toward nobeler direction from −1996.8 to −1616.6 mV SCE with the addition of 0.5 wt.% manganese (Mn) and 2 wt.% Zn content. However, further addition of Zn to 7 wt.% into quaternary alloy has the reverse effect. Immersion tests show that the quaternary

  19. The effect of Cu addition and milling contaminations on the microstructure evolution of ball milled Al-Pb alloy during sintering

    International Nuclear Information System (INIS)

    Zhu, M.; Ouyang, L.Z.; Wu, Z.F.; Zeng, M.Q.; Li, Y.Y.; Zou, J.

    2006-01-01

    Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu (x = 0-7.0) bulk alloys were prepared by sintering the mechanically alloyed powders at various temperatures. The microstructure changes of the as consolidated powders in the course of sintering were analyzed by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction analysis and transmission electron microscopy. It has been found that, with respect to the Al-10 wt.%Pb-x wt.%Cu alloy, CuAl 2 and Cu 9 Al 4 phases formed in the milling process, and the amount of CuAl 2 phase increased while the Cu 9 Al 4 phase disappeared gradually in the sintering process. In both Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu alloys, the sintering process results in the coarsening of Pb phase and the growth rate of Pb phase fulfills the Lifshitz-Slyozov-Wagner equation even though the size of the Pb phase was in nanometer range. The Pb particle exhibits cuboctahedral morphology and has a cubic to cubic orientation relationship with the Al matrix. The addition of Cu strongly depressed the growth rate of Pb. Contamination induced by milling has apparent influence on the microstructure of the sintered alloys. Al 7 Cu 2 Fe and aluminium oxide phases were identified in the sintered alloys. The cuboctahedral morphology of Pb particles was broken up by the presence of the oxide phase

  20. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  1. Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys

    International Nuclear Information System (INIS)

    Shalaby, Rizk Mostafa

    2013-01-01

    Mechanical properties and indentation creep of the melt-spun process Bi–42 wt%Sn, Bi–40 wt%Sn–2 wt%In, Bi–40 wt%Sn–2 wt%Ag and Bi–38 wt%Sn–2 wt%In–2 wt%Ag were studied by dynamic resonance technique and Vickers indentation testing at room temperature and compared to that of the traditional Sn–37 wt%Pb eutectic alloy. The results show that the structure of Bi–42 wt%Sn alloy is characterized by the presence of rhombohedral Bi and body centered tetragonal β-Sn. The two ternary alloys exhibit additional constituent phases of intermetallic compounds SnIn 19 for Bi–40 wt%Sn–2 wt%In and ε-Ag 3 Sn for Bi–40 wt%Sn–2 wt%Ag alloys. Attention has been paid to the role of intermetallic compounds on mechanical and creep behavior. The In and Ag containing solder alloy exhibited a good combination of higher creep resistance, good mechanical properties and lower melting temperature as compared with Pb–Sn eutectic solder alloy. This was attributed to the strengthening effect of Bi as a strong solid solution element in the Sn matrix and formation of intermetallic compounds β-SnBi, ε-Ag 3 Sn and InSn 19 which act as both strengthening agent and grain refiner in the matrix of the material. Addition of In and Ag decreased the melting temperature of Bi–Sn lead-free solder from 143 °C to 133 °C which was possible mainly due to the existence of InSn 19 and Ag 3 Sn intermetallic compounds. Elastic constants, internal friction and thermal properties of Bi–Sn based alloys have been studied and analyzed.

  2. Effect of the AlCr20 Addition on the Microstructure of Secondary AlSi7Mg0.3 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-06-01

    Full Text Available This paper deals with influence of chrome addition and heat treatment on segregation of iron based phases in the secondary alloy AlSi7Mg0.3 microstructure by chrome and heat treatment. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich intermetallic phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type or by heat treatment. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases.

  3. Microstructural examination of commercial ferritic alloys at 299 DPA

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-11-01

    Microstructures and density change measurements are reported for Martensitic commercial steels HT-9 and Modified 9Cr-lMo (T9) and oxide dispersion strengthened ferritic alloys MA956 and NU957 following irradiation in the FFTF/MOTA at 420 degrees C to 200 DPA. Swelling as determined by density change remains below 2% for all conditions. Microstructures are found to be stable except in recrystallized grains of MA957, which are fabrication artifacts, with only minor swelling in the Martensitic steels and α' precipitation in alloys with 12% or more chromium. These results further demonstrate the high swelling resistance and microstructural stability of the ferritic alloy class

  4. Electroplating technologies of alloys

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Kim, Seung Ho; Jeong, Hyun Kyu; Hwnag, Sung Sik; Seo, Yong Chil; Kim, Dong Jin; Seo, Moo Hong

    2001-12-01

    In localization of electrosleeving technique, there are some problems like the following articles. Firstly, Patents published by OHT have claimed Ni-P, Ni-B alloy plating and Mo, Mn Cr, W, Co as a pinning agent. Secondly, alloy platings have many restrictions. There are some method to get alloy plating in spite of the various restrictions. If current density increase above limiting current density in one of the metals, both of the metals discharge at the same time. The addition of surface active agent(sufactant) in the plating solution is one of the methods to get alloy plating. Alloy plating using pulse current easily controls chemical composition and structure of deposit. Ni-Fe alloy plating is known to exhibit anomalous type of plating behavior in which deposition of the less noble metal is favoured. Presence of hypophohphite ion can control the iron codeposition by changing the deposition mechanism. Hypophohphite suppresses the deposition of Fe and also promotes Ni. Composite plating will be considered to improve the strength at the high temperature. Addition of particle size of 10δ400μm makes residual stress compressive in plate layer and suppress the grain growth rate at the high temperature. Addition of particle makes suface roughness high and fracture stress low at high temperature. But, selection of the kinds of particle and control of additives amount overcome the problems above

  5. Laser Additive Manufacturing of Magnetic Materials

    Science.gov (United States)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.

    2017-03-01

    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  6. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.

    Science.gov (United States)

    Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-17

    In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  7. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications.

    Science.gov (United States)

    Fischer, M; Laheurte, P; Acquier, P; Joguet, D; Peltier, L; Petithory, T; Anselme, K; Mille, P

    2017-06-01

    Biocompatible beta-titanium alloys such as Ti-27.5(at.%)Nb are good candidates for implantology and arthroplasty applications as their particular mechanical properties, including low Young's modulus, could significantly reduce the stress-shielding phenomenon usually occurring after surgery. The CLAD® process is a powder blown additive manufacturing process that allows the manufacture of patient specific (i.e. custom) implants. Thus, the use of Ti-27.5(at.%)Nb alloy formed by CLAD® process for biomedical applications as a mean to increase cytocompatibility and mechanical biocompatibility was investigated in this study. The microstructural properties of the CLAD-deposited alloy were studied with optical microscopy and electron back-scattered diffraction (EBSD) analysis. The conservation of the mechanical properties of the Ti-27.5Nb material after the transformation steps (ingot-powder atomisation-CLAD) were verified with tensile tests and appear to remain close to those of reference material. Cytocompatibility of the material and subsequent cell viability tests showed that no cytotoxic elements are released in the medium and that viable cells proliferated well. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some σ phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs

  9. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels.

    Science.gov (United States)

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-12

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening.

  10. Microstructural evolution and magnetic properties of binder jet additive manufactured Ni-Mn-Ga magnetic shape memory alloy foam

    International Nuclear Information System (INIS)

    Mostafaei, Amir; Kimes, Katerina A.; Stevens, Erica L.; Toman, Jakub; Krimer, Yuval L.; Ullakko, Kari; Chmielus, Markus

    2017-01-01

    This study investigated microstructural evolution, phase transformation and magnetic behavior of additively manufactured magnetic shape memory alloy foam. Pre-alloyed angular Ni-Mn-Ga ball-milled powder was binder jet printed and sintered at 1020 °C for 4 h in both vacuum and argon atmospheres. Porosity of the manufactured foams was studied using micro-computed x-ray tomography and it was found that the relative density of the sintered parts was about 50–60%. In the printed sample that was sintered in argon, electron microscopy with elemental analysis showed no compositional gradient. X-ray diffraction indicated that 10M modulated martensite was present in the pre-alloyed powder as well as the sample sintered in argon. Differential scanning calorimetry and thermomagnetic results showed that martensitic transformation of the sample sintered in argon was at 34 °C, while barely detectable in the sample sintered in vacuum. Saturation magnetization of the printed sample sintered in argon atmosphere was around 68.4 Am"2/kg. Production of a magnetic shape memory alloy by printing would enable complex-shaped elements for demanding applications, and intentionally including porosity could allow these polycrystals to exhibit the magnetic shape memory effect. Therefore, a facile method for sintering of Ni–Mn–Ga printed parts has been presented for the first time.

  11. Effect of boron addition on the microstructure and electrochemical performance of La2Mg(Ni0.85Co0.15)9 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Dong Xiaoping; Wang Guoqing; Guo Shihai; Ren Jiangyuan; Wang Xinlin

    2006-01-01

    In order to improve the electrochemical performances of La-Mg-Ni system (PuNi 3 -type) hydrogen storage alloy, a trace of boron was added in La 2 Mg(Ni 0.85 Co 0.15 ) 9 and rapid quenching techniques were used. La 2 Mg(Ni 0.85 Co 0.15 ) 9 B x (x = 0, 0.05, 0.1, 0.15, 0.2) hydrogen storage alloys were prepared by casting and rapid quenching. The microstructures and electrochemical performances of the as-cast and quenched alloys were determined and measured. The effects of the boron content and the quenching rate on the microstructures and electrochemical performances of the alloys were investigated in detail. The obtained results show that the as-cast and quenched alloys are composed of the (La, Mg)Ni 3 phase (PuNi 3 structure), the LaNi 5 phase and the LaNi 2 phase. A trace of the Ni 2 B phase exists in the as-cast alloys containing boron. The Ni 2 B phase in the alloys containing boron nearly disappears after rapid quenching and the relative amount of each phase in the alloys changes with the variety of the quenching rate. The addition of boron obviously enhances the cycle stability of the as-cast and quenched alloys. The effects of boron content on the capacities of the as-cast and quenched alloys are different. The capacities of the as-cast alloys monotonously decrease with the increase of boron content, whereas the capacities of the as-quenched alloys have a maximum value with the change of boron content. The as-cast and quenched alloys have an excellent activation performance

  12. Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys

    Science.gov (United States)

    Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo

    2017-12-01

    Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.

  13. Minor Actinides Burnup Enhancement in the European Sodium Fast Reactor through Moderator Material Addition

    International Nuclear Information System (INIS)

    Ramos, R.L.; Buiron, L.

    2013-01-01

    Conclusions: • ZrH 2 was the best moderator material, followed by MgO and MgAl 2 O 4 ; • When the number of moderator pins is increased: – the percentage of minor actinides consumed increases; – the total mass consumed of minor actinides decreases; – the decay heat generated decreases; – the neutron flux in the reactor varies very little. Perspectives: • For future studies it would be possible to evaluate the use of other materials with resonances in the scattering cross section in the fast range that would improve the results obtained with Mg. • It would be necessary to consider how to add moderator material without changing the initial mass of minor actinides. E.g., adding the moderator at the periphery of the minor actinide elements

  14. Nickel electroplating on copper pre-activated Al alloy in the electrolyte containing PEG1000 as an additive

    Science.gov (United States)

    Guan, Jie; Wang, Jinwei; Zhang, Dawei

    2018-06-01

    Ni coatings are prepared on Cu-pretreated anodic Al alloy by electroplating technique in environment-friendly electrolytes with PEG1000 as an additive. Some defects like pores, cracks and even uncovered areas are observed for the sample of the Cu-pretreated anodic Al alloy, and these defects seem to be remedied with the following Ni electroplating as observed from their SEM images; while the covering effect of Ni onto the Cu layer is rather limited as judged by their corrosion current data of polarization test. After adding PEG1000 in the Ni electroplating electrolyte, the obtained coating surfaces are seen smoother and thicker; and most of the tiny particles are seen closely packed together with some bigger particles on them. The diffusion of nickel particles into copper layer are confirmed by the line and mapping mode of EDS element analysis for the Ni-Cu composite coating. Their much lower corrosion current density ( I corr) and higher micro-hardness support the fact that the addition of PEG1000 in Ni plating electrolyte has a function of promoting the refinement of Ni particles and the formation of more compacter, thicker and smoother Ni-Cu composite coating.

  15. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  16. Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys

    Science.gov (United States)

    Wang, W. J.; Yung, K. C.; Choy, H. S.; Xiao, T. Y.; Cai, Z. X.

    2018-06-01

    Laser polishing of 3D printed metal components has drawn great interest in view of its potential applications in the dental implant industries. In this study, corrosion resistance, surface composition and crystalline structure of CoCr alloys were investigated. The corrosion resistance, micromorphology, composition, phase transformations and crystalline structures of samples were characterized using an electrochemical analyzer, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and transmission electron microscope (TEM), respectively. The results indicate that high laser powers and low object distances within a certain range can facilitate the formation of complex oxide films, which exhibits high corrosion resistance. Further, object distances have a significant influence on cooling rates during the solidification of the melt pool in laser polishing, and fast cooling generates vast amounts of vacancies and defects, which result in the crystalline phase transformation from γ to ε. Consequently, the formed oxides play an important role in corrosion resistance on the outer layer, and inner layer with γ phase also helps keep the CoCr alloys in a stable structure with high resistant to corrosion. The two process parameters in laser polishing, laser power and object distances, are demonstrated as being important for controlling the surface microstructures and corrosion resistance of the additive manufactured CoCr alloy components.

  17. Phase stability and magnetism in NiPt and NiPd alloys

    International Nuclear Information System (INIS)

    Paudyal, Durga; Mookerjee, Abhijit

    2004-01-01

    We show that the differences in stability of 3d-5d NiPt and 3d-4d NiPd alloys arise mainly due to relativistic corrections. The magnetic properties of disordered NiPd and NiPt alloys also differ due to these corrections, which lead to increase in the separation between the s-d bands of 5d elements in these alloys. For the magnetic case we also analyse the results in terms of splitting of majority and minority spin d band centres of the 3d elements. We further examine the effect of relativistic corrections to the pair energies and order-disorder transition temperatures in these alloys. The magnetic moments and Curie temperatures have also been studied along with the short range ordering/segregation effects in NiPt/NiPd alloys

  18. The effect of Sn addition on aging behavior and mechanical properties of wrought AZ80 magnesium alloy

    International Nuclear Information System (INIS)

    Jiang, Luyao; Zhang, Dingfei; Fan, Xiaowei; Guo, Fei; Hu, Guangshan; Xue, Hansong; Pan, Fusheng

    2015-01-01

    Highlights: • Thermodynamic and precipitation kinetics calculation was used to analyze aging hardening after addition of Sn. • Precipitation sequences were determined by the content of Sn element. • The microstructure of Mg 17 Al 12 discontinuous precipitates were influenced by Mg 2 Sn precipitates. - Abstract: The microstructure and mechanical properties of AZ80 wrought magnesium alloys with varying Sn contents (0, 1, 2 and 4 wt.%) have been studied by thermodynamic and precipitation kinetics calculation and examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), hardness test and uniaxial tensile test at room temperature in this paper. The results of thermodynamic and precipitation kinetics calculation showed that the precipitation sequences were determined by the content of Sn element. It was found that in the aging treatment of this work, Mg 17 Al 12 phase precipitated sooner than Mg 2 Sn phase in the alloys with less than 1.72 wt.% Sn and there was a contrary precipitation sequence of these two phases in the alloys with more than 1.72 wt.% Sn. Experimental results were in agreement with those of calculation. According to SEM and TEM observation, Sn promoted precipitation of Mg 17 Al 12 on aging temperature, however the preferential Mg 2 Sn phase suppressed discontinuous Mg 17 Al 12 precipitates by hindering the growth of these in their growth direction. AZ80 with 1–2 wt.% Sn as-aged alloys exhibited outstanding mechanical property that UTS, YS and EL were ∼420 MPa, ∼290 MPa and ∼5%, respectively

  19. Spiroketalcarminic Acid, a Novel Minor Anthraquinone Pigment in Cochineal Extract Used in Food Additives.

    Science.gov (United States)

    Ito, Yusai; Harikai, Naoki; Ishizuki, Kyoko; Shinomiya, Kazufusa; Sugimoto, Naoki; Akiyama, Hiroshi

    2017-09-01

    Cochineal extract prepared from the scale insect Dactylopus coccus (American cochineal) has been used as a natural red dye for food, cosmetics, and pharmaceuticals. The major pigment in cochineal extract is carminic acid (CA), an anthraquinone glucoside, and several minor pigments have been previously reported. Our investigation aimed at establishing the safety of cochineal dye products using ultra performance liquid chromatography-photo diode array-electrospray ionization-time of flight (UPLC-PDA-ESI-TOF)/MS found an unknown minor pigment, spiroketalcarminic acid (1), in three commercial cochineal extract samples; cochineal extract used in food additives, carmine that is an aluminum salt of cochineal extract used as natural dye, and a research reagent of CA. The purification of 1 from cochineal extract involved sequential chromatographic techniques, including preparative reversed-phase HPLC. Two dimensional (2D)-NMR and mass analyses established the structure of 1 to be a novel anthraquinone with an unusual 6,5-spiroketal system instead of the C-glucosyl moiety of CA. The absolute stereochemistry of the spiroketal moiety in 1 was determined by nuclear Overhauser effect spectroscopy (NOESY) correlations and optical rotation. No data corresponding to 1 had previously been reported for extracts of dried cochineal insects and traditional art products dyed with cochineal extract, indicating that 1 is likely produced during the preparation of commercial cochineal extract.

  20. Microstructure and magnetic properties of alnico permanent magnetic alloys with Zr-B additives

    Science.gov (United States)

    Rehman, Sajjad Ur; Jiang, Qingzheng; Ge, Qing; Lei, Weikai; Zhang, Lili; Zeng, Qingwen; ul Haq, A.; Liu, Renhui; Zhong, Zhenchen

    2018-04-01

    Alnico alloys are prepared with nominal composition of 31.4-xFe-7.0Al-36.0Co-4.0Cu-1.0Nb-14.0Ni-6.0Ti-0.6Zr-xB (x = 0.02, 0.04, 0.06, 0.08, in wt%) by arc melting and casting techniques and subsequent heat treatment. The alloys are characterized by X-ray diffraction method, optical microscope, scanning electron microscope and pulse field magnetometer by plotting magnetic hysteresis demagnetization curve. The results of HRSEM show at least two new phases at α-grain boundaries and triple junctions. These phases, when retained at low concentration, help in enhancing magnetic properties of alnico alloys by purifying spinodal phases and reducing the adverse effects of impurity elements. Two different heat treatment cycles are employed. In the first phase, the alloys are processed by using heat treatment cycles without magnetic field; and Hc of 1.35 kOe, Br of 4.87 kGs and (BH)max of 1.96 MGOe are obtained by furnace cooling below TC and subsequent tempering at 680 °C and 550 °C. In the second phase, the alloy with best magnetic properties is treated thermo-magnetically; and Hc of 1.68 kOe, Br of 7.1 kG and (BH)max of 4.45 MGOe are obtained.

  1. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  2. Effect of zinc additions on oxide rupture strain and repassivation kinetics of iron-based alloys in 288 C water

    International Nuclear Information System (INIS)

    Angeliu, T.M.; Andresen, P.L.

    1996-01-01

    The effect of Zn water chemistry additions on the mechanism of intergranular stress corrosion cracking (IGSCC) of Fe-based alloys in water at 288 C was evaluated in terms of the slip-dissolution model. In this model, an increase in the oxide film rupture strain or surface film repassivation kinetics improved resistance to IGSCC. The oxide rupture strain of type 304L (UNS S30403) stainless steel (SS) increased up to a factor of two in deaerated and 200 ppb oxygenated, high-purity water ( 300 h of exposure. Repassivation kinetics experiments showed Zn additions of ∼ 100 ppb increased the repassivation rate of an Fe-12% Cr alloys up to a factor of two in various deaerated water environments at 288 C. Life prediction modeling revealed that the combination of a more ductile oxide film and faster repassivation kinetics resulted in a reduction in the overall crack growth rate (CGR) by at least a factor of four. This factor of improvement was consistent with data from compact tension experiments in similar environments where CGR decreased as the Zn addition increased, with a greater decrease in CGR realized at lower pre-Zn CGR

  3. Glass forming ability and mechanical properties of the NiZrTiSi amorphous alloys modified with Al, Cu and Nb additions

    International Nuclear Information System (INIS)

    Czeppe, Tomasz; Ochin, Patrick; Sypien, Anna

    2007-01-01

    The composition of the amorphous alloy Ni 59 Zr 20 Ti 16 Si 5 was modified with 2-9 at.% additions of Cu, Al and Nb. The ribbons and the bars 2.7 mm in diameter were prepared by melt spinning and injection casting from the alloys of the compositions: Ni 56 Zr 18 Ti 16 Si 5 Al 3 Cu 2 , Ni 56 Zr 18 Ti 13 Al 6 Si 5 Cu 2 , Ni 56 Zr 16 Ti 12 Nb 9 Al 3 Cu 2 Si 2 and Ni 56 Zr 16 Ti 12 Nb 6 Al 6 Cu 2 Si 2 . All ribbons were amorphous up to the resolution of the X-ray diffraction and conventional transmission electron microscopy, however rods were partially crystalline. Increase of Al content lowered and Nb content slightly increased crystallization start temperature T x and glass transition temperature T g . The influence of composition changes on the overcooled liquid range ΔT was more complicated. The increase of Nb and decrease of Ti and Zr content led to the remarkable increase of the liquidus temperature T l . As a result GFA calculated as T g /T l was lowered to the values about 0.63 for 6 and 9 at.% Nb addition. The activation energies for primary crystallization in alloy with 6 at.% Al and 6 at.% of Nb, were determined. The changes of tensile test strength and microhardness with Al and Nb additions showed hardening effect caused by Nb additions and increase in fracture strength with increasing Al content

  4. Effect of Aluminum Addition on the Evolution of Microstructure, Crystallographic Texture and Mechanical Properties of Single Phase Hexagonal Close Packed Mg-Li Alloys

    Science.gov (United States)

    Bhagat Singh, P.; Sabat, R. K.; Kumaran, S.; Suwas, S.

    2018-02-01

    In the present investigation, an effort has been made to understand the effect of aluminum addition to α Mg-Li alloys. The corresponding composition Mg-4Li- xAl ( x = 0, 2, 4 and 6 wt.%) alloys have been prepared by stir casting route under an argon environment. Extrusion was carried out at 300 °C with the extrusion ratio of 15:1. Significant grain refinement was observed after extrusion. X-ray diffraction-based investigation of the cast and extruded alloys showed the presence of intermetallic compounds such as Mg17Al12 and AlLi in the Al-rich alloys namely, Mg-4Li- xAl ( x = 4 and 6 wt.%). These precipitates were also present in the extruded plus annealed samples, indicating the stability of the precipitates at high temperature. The bulk x-ray texture measurement revealed a crystallographic texture where the c-axis of the h.c.p crystals was perpendicular to the extrusion direction (ED) for extruded sample. A texture transition was observed on annealing. The c-axis was oriented parallel to the ED. Mechanical properties of the cast, extruded and extruded plus annealed material illustrate that the addition of Al led to enhancement in hardness, yield strength and ultimate tensile strength.

  5. Development of New Heats of Advanced Ferritic/Martensitic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pestovich, Kimberly Shay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-23

    The Fuel Cycle Research and Development program is investigating methods of transmuting minor actinides in various fuel cycle options. To achieve this goal, new fuels and cladding materials must be developed and tested to high burnup levels (e.g. >20%) requiring cladding to withstand very high doses (greater than 200 dpa) while in contact with the coolant and the fuel. To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Recent results from testing numerous ferritic/martensitic steels at low temperatures suggest that improvements in low temperature radiation tolerance can be achieved through carefully controlling the nitrogen content in these alloys. Thus, four new heats of HT-9 were produced with controlled nitrogen content: two by Metalwerks and two by Sophisticated Alloys. Initial results on these new alloys are presented including microstructural analysis and hardness testing. Future testing will include irradiation testing with ions and in reactor.

  6. The effect of remelting various combinations of new and used cobalt-chromium alloy on the mechanical properties and microstructure of the alloy

    Directory of Open Access Journals (Sweden)

    Sharad Gupta

    2012-01-01

    Conclusion: Repeated remelting of base metal alloy for dental casting without addition of new alloy can affect the mechanical properties of the alloy. Microstructure analysis shows deterioration upon remelting. However, the addition of 25% and 50% (by weight of new alloy to the remelted alloy can bring about improvement both in mechanical properties and in microstructure.

  7. Photo-Electrochemical Effect of Zinc Addition on the Electrochemical Corrosion Potentials of Stainless Steels and Nickel Alloys in High Temperature Water

    International Nuclear Information System (INIS)

    Lee, Yi-Ching; Fong, Clinton; Fang-Chu, Charles; Chang, Ching

    2012-09-01

    Hydrogen water chemistry (HWC) is one of the main mitigating methods for stress corrosion cracking problem of reactor core stainless steel and nickel based alloy components. Zinc is added to minimize the radiation increase associated with HWC. However, the subsequently formed zinc-containing surface oxides may exhibit p-type semiconducting characteristics. Upon the irradiation of Cherenkov and Gamma ray in the reactor core, the ECP of stainless steels and nickel based alloys may shift in the anodic direction, possibly offsetting the beneficial effect of HWC. This study will evaluate the photo-electrochemical effect of Zinc Water Chemistry on SS304 stainless steel and Alloy 182 nickel based weld metal under simulated irradiated BWR water environments with UV illumination. The experimental results reveal that Alloy 182 nickel-based alloy generally possesses n-type semiconductor characteristics in both oxidizing NWC and reducing HWC conditions with zinc addition. Upon UV irradiation, the ECP of Alloy 182 will shift in the cathodic direction. In most conditions, SS304 will also exhibit n-type semiconducting properties. Only under hydrogen water chemistry, a weak p-type property may emerge. Only a slight upward shift in the anodic direction is detected when SS304 is illuminated with UV light. The potential influence of p-type semiconductor of zinc containing surface oxides is weak and the mitigation effect of HWC on the stress corrosion cracking is not adversely affected. (authors)

  8. The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting.

    Science.gov (United States)

    Luo, Jiasi; Wu, Songquan; Lu, Yanjin; Guo, Sai; Yang, Yang; Zhao, Chaoqian; Lin, Junjie; Huang, Tingting; Lin, Jinxin

    2018-03-19

    Microstructure, tribological property and corrosion resistance of orthopedic implant materials CoCrW-3 wt.% Cu fabricated by selective laser melting (SLM) process were systematically investigated with CoCrW as control. Equaxied γ-phase together with the inside {111}  type twin and platelet ε-phase was found in both the Cu-bearing and Cu-free alloys. Compared to the Cu-free alloy, the introduction of 3 wt.% Cu significantly increased the volume fraction of the ε-phase. In both alloys, the hardness of ε-phase zone was rather higher (~4 times) than that of γ-phase zone. The wear factor of 3 wt.% Cu-bearing alloy possessed smaller wear factor, although it had higher friction coefficient compared with Cu-free alloys. The ε-phase in the CoCr alloy would account for reducing both abrasive and fatigue wear. Moreover, the Cu-bearing alloy presented relatively higher corrosion potential E corr and lower corrosion current density I corr compared to the Cu-free alloy. Accordingly, 3 wt.% Cu addition plays a key role in enhancing the wear resistance and corrosion resistance of CoCrW alloys, which indicates that the SLM CoCrW-3Cu alloy is a promising personalized alternative for traditional biomedical implant materials.

  9. Microstructure and Mechanical Property of ODS Ferritic Steels Using Commercial Alloy Powders for High Temperature Service Applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Choi, Byoung-Kwon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Oxide dispersion strengthening (ODS) is one of the promising ways to improve the mechanical property at high temperatures. This is mainly attributed to uniformly distributed nano-oxide particle with a high density, which is extremely stable at the high temperature and acts as effective obstacles when the dislocations are moving. In this study, as a preliminary examination to develop the advanced structural materials for high temperature service applications, ODS ferritic steels were fabricated using commercial alloy powders and their microstructural and mechanical properties were investigated. In this study, ODS ferritic steels were fabricated using commercial stainless steel 430L powder and their microstructures and mechanical properties were investigated. Morphology of micro-grains and oxide particles were significantly changed by the addition of minor alloying elements such as Ti, Zr, and Hf. The ODS ferritic steel with Zr and Hf additions showed ultra-fine grains with fine complex oxide particles. The oxide particles were uniformly located in grains and on the grain boundaries. This led to higher hardness than ODS ferritic steel with Ti addition.

  10. Effect of scandium additions on microstructure and mechanical properties of Al-Zn-Mg alloy welds

    International Nuclear Information System (INIS)

    Dev, Selvi; Stuart, A. Archibald; Kumaar, R.C. Ravi Dev; Murty, B.S.; Rao, K. Prasad

    2007-01-01

    The microstructure and mechanical properties of fusion zones of medium strength Al-Zn-Mg alloy (RDE-40) welds obtained by using different fillers containing various amount of scandium was investigated. It was observed that addition of scandium led to very significant grain refinement in the fusion zone especially for scandium levels greater than the eutectic composition (0.55 wt%). The grain refinement led to the reduction in solidification cracking and improved the tensile properties of fusion zone compared to the ones obtained by the commercial AA5556 filler

  11. Effect of solution treatment on precipitation behaviors and age hardening response of Al–Cu alloys with Sc addition

    International Nuclear Information System (INIS)

    Chen, B.A.; Pan, L.; Wang, R.H.; Liu, G.; Cheng, P.M.; Xiao, L.; Sun, J.

    2011-01-01

    Highlights: ► Effects of Sc addition on the precipitation and age hardening of Al–Cu alloy were investigated. ► The critical influence of solution treatment on the Sc effect was revealed. ► A significant enhancement in age hardening response was experimentally found and quantitatively assessed. - Abstract: Influences of solution treatment on precipitation behaviors and age hardening response of Al–2.5 wt% Cu–0.3 wt% Sc alloys were investigated, in comparison with Sc-free one. The Al 3 Sc dispersoids, formed during homogenization, were either survived or dissolved to become Sc solute atoms in solution treatment, depending on the solution temperature. When the temperature for solution treatment is 873 K, most of the Al 3 Sc dispersoids were dissolved and a significant enhancement in the uniform precipitation of finer θ′-Al 2 Cu particles was achieved in following aging treatment, causing a noticeable increase in peak-aging hardness by about 90% compared to Sc-free alloys. The enhanced age hardening effect was quantitatively related to the remarkable reduction in effective inter-particle spacing of the plate-shaped θ′-Al 2 Cu precipitates. When the temperature for solution treatment is 793 K, however, most of the Al 3 Sc dispersoids were survived after solution treatment and facilitated the heterogeneous precipitation of θ′-Al 2 Cu plates directly on the {1 0 0} facets of dispersoids in following aging treatment. Concomitantly, the uniform precipitation of θ′-Al 2 Cu plates was greatly suppressed, resulting in a reduced age hardening response. The age hardening responses were quantitatively assessed by using a modified strengthening model that is applicable to the plate-shaped precipitates. The calculations were in good agreement with experimental results. The present results show the importance of controlling solution treatments to achieve significant promotion effect of Sc addition on the precipitation hardening in heat-treatable aluminum

  12. Effect of Rare Earth Metals, Sr, and Ti Addition on the Microstructural Characterization of A413.1 Alloy

    Directory of Open Access Journals (Sweden)

    M. G. Mahmoud

    2017-01-01

    Full Text Available The present work was performed on A413.1 alloy containing 0.2–1.5 wt% rare earth metals (lanthanum or cerium, 0.05–0.15% Ti, and 0–0.02 wt% Sr. These elements were either added individually or combined. Thermal analysis, image analysis, and electron probe microanalysis were the main techniques employed in the present study. The results show that the use of the depression in the eutectic temperature as a function of alloy modification cannot be applied in the case when the alloy is treated with rare earth metals. Increasing the concentration of RE increases the solidification zone especially in Sr-modified alloys leading to poor feeding ability. This observation is more prominent in the case of Ce addition. Depending upon the amount of added Ti, two RE based intermetallics can be formed: (i a white phase, mainly platelet-like (approximately 2.5 μm thick, that is rich in RE, Si, Cu, and Al and (ii a second phase made up of mainly grey sludge particles (star-like branching in different directions. The grey phase is rich in Ti with some RE (almost 20% of that in the white phase with traces of Si and Cu. There is a strong interaction between RE and Sr leading to a reduction in the efficiency of Sr as a eutectic Si modifier causing particle demodification.

  13. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  14. Quasicrystal-reinforced Mg alloys.

    Science.gov (United States)

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-04-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α -Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg-Zn-Y alloys, the co-presence of I and Ca 2 Mg 6 Zn 3 phases by addition of Ca can significantly enhance formability, while in Mg-Zn-Al alloys, the co-presence of the I-phase and Mg 2 Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg-Zn-Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg-Zn-Al-Sn alloys is attributed to the presence of finely distributed Mg 2 Sn and I-phase particles embedded in the α -Mg matrix.

  15. Effect of Multiple Reflow Cycles and Al2O3 Nanoparticles Reinforcement on Performance of SAC305 Lead-Free Solder Alloy

    Science.gov (United States)

    Tikale, Sanjay; Prabhu, K. Narayan

    2018-05-01

    The effect of Al2O3 nanoparticles reinforcement on melting behavior, microstructure evolution at the interface and joint shear strength of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder alloy subjected to multiple reflow cycles was investigated. The reinforced SAC305 solder alloy compositions were prepared by adding Al2O3 nanoparticles in different weight fractions (0.05, 0.1, 0.3 and 0.5 wt.%) through mechanical dispersion. Cu/solder/Cu micro-lap-shear solder joint specimens were used to assess the shear strength of the solder joint. Differential scanning calorimetry was used to investigate the melting behavior of SAC305 solder nanocomposites. The solder joint interfacial microstructure was studied using scanning electron microscopy. The results showed that the increase in melting temperature (T L) and melting temperature range of the SAC305 solder alloy by addition of Al2O3 nanoparticles were not significant. In comparison with unreinforced SAC305 solder alloy, the reinforcement of 0.05-0.5 wt.% of Al2O3 nanoparticles improved the solder wettability. The addition of nanoparticles in minor quantity effectively suppressed the Cu6Sn5 IMC growth, improved the solder joint shear strength and ductility under multiple reflow cycles. However, the improvement in solder properties was less pronounced on increasing the nanoparticle content above 0.1 wt.% of the solder alloy.

  16. Effect of boron addition on the microstructures and electrochemical properties of MmNi3.8Co0.4Mn0.6Al0.2 electrode alloys prepared by casting and rapid quenching

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Chen Meiyan; Wang Xinlin; Wang Guoqing; Lin Yufang; Qi Yan

    2004-01-01

    The rapid quenching technology was used in the preparation of the MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 B x (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys. The microstructures and electrochemical performances of the as-cast and quenched alloys were analysed and measured. The effects of boron additive on the microstructures and electrochemical properties of as-cast and quenched alloy MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 were investigated. The experimental results showed that the microstructure of as-cast MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 B x (x=0, 0.1, 0.2, 0.3, 0.4) alloy is composed of CaCu 5 -type main phase and a small amount of CeCo 4 B-type secondary phase. The abundance of the secondary phase increases with the increase of the boron content x. The secondary phase in the alloys disappears when quenching rate is larger than 22 m/s. The electrochemical measurement showed that the addition of boron slightly modifies the activation performance and dramatically enhances the cycle life of the alloys, whereas it reduces the capacities of the as-cast and quenched alloys. The influence of boron additive on the electrochemical characteristics of the as-quenched alloy is much stronger than that on the as-cast alloy. It is because boron strongly promotes the formation of the amorphous phase in the as-quenched alloy

  17. Effect of diluted alloying elements on mechanical properties of iron

    International Nuclear Information System (INIS)

    Hassan, A.A.S.

    1996-01-01

    Iron and its alloys have extensive applications. The effect of solute additions on mechanical properties of iron was investigated to check the efficiency of solute atoms on strength and surface e life. Additions in the range of 0.1 wt.% and 0.3 wt.% of alloying elements of Cu,Ni and Si were used. Samples of grains size ranged from 6-40 m which have been prepared by annealing followed by furnace cooling. The recrystallization temperature increases with alloying addition (475 degree C for Fe-0.3 wt. % C alloy compared to 375 degree C for pure iron). Si and Cu additions inhibit grain growth of iron whereas Ni addition enhances it.Addition of Si or Ni to iron induced softening below room temperature whereas addition of Cu caused hardening. The work hardening parameters decreased due to alloying additions. The strength coefficient K was 290 M N/m2 for Fe-03 wt % Ni compared to 340 M N/m2 for pure iron. The work hardening exponent n is 0.12 for fe-0.3 wt. Cu alloy compared to 0.17 for pure iron. All the investigated alloys fulfilled the Hall-Petch relation at liquid Nitrogen and at room temperature. Alloying addition which caused softening addition which caused hardening increased the Half-Petch parameters. Ni addition favors ductility of iron whereas Cu addition reduces it. Alloying additions generally lead to brittle fracture and decrease the crack resistance of iron. 9 tabs., 55 figs., 103 refs

  18. Optimization of the composition and structure of heat-resistant casting aluminium alloys with additions of cerium, iron, nickel and zirconium

    International Nuclear Information System (INIS)

    Belov, N.A.; Lavrishchev, Yu.V.

    2000-01-01

    A study is made of the effect of composition and structure on mechanical properties of cast alloys of the Al-Ce-Ni-Fe-Zr system in which binary and ternary eutectics with participation of low alloyed aluminium solid solution and Al 4 Ce, Al 3 Ni and Al 9 FeNi phases are crystallized. It is found that microhardness of eutectics is heavily dependent on the volume fraction of aluminides and their dispersivity. It was shown that essential hardening of aluminium matrix can be achieved at the cost of zirconium additive in quantity of 0.6 % when using two-stage manufacturing operation. Experimental compositions of Al-10 % Ce-5% Ni-0.6 % Zr and Al-1.5 % Fe-1.5 % Ni-0.6 % Zr on the basis of ternary and binary eutectics respectively as billets essentially exceed industrial heat-resistant cast aluminium alloys AK12MMgN and AM5 as to a set of room and high-temperature mechanical properties and hot brittleness index [ru

  19. Grain Refinement of an Al-2 wt%Cu Alloy by Al3Ti1B Master Alloy and Ultrasonic Treatment

    International Nuclear Information System (INIS)

    Wang, E Q; Wang, G; Dargusch, M S; StJohn, D H; Qian, M; Eskin, D G

    2016-01-01

    Both inoculation by AlTiB master alloys and Ultrasonic Treatment (UT) are effective methods of refining the grain size of aluminium alloys. The present study investigates the influence of UT on the grain refinement of an Al-2 wt% Cu alloy with a range of Al3TilB master alloy additions. When the alloy contains the smallest amount of added master alloy, UT caused significant additional grain refinement compared with that provided by the master alloy only. However, the influence of UT on grain size reduces with increasing addition of the master alloy. Plotting the grain size data versus the inverse of the growth restriction factor (Q) reveals that the application of UT causes both an increase in the number of potentially active nuclei and a decrease in the size of the nucleation free zone due to a reduction in the temperature gradient throughout the melt. Both these factors promote the formation of a fine equiaxed grain structure. (paper)

  20. Method and alloys for fabricating wrought components for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Thompson, L.D.; Johnson, W.R.

    1983-01-01

    Wrought, nickel-based alloys, suitable for components of a high-temperature gas-cooled reactor exhibit strength and excellent resistance to carburization at elevated temperatures and include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength. The range of compositions of these alloys is given. (author)

  1. Microstructural characterization aluminium alloys from the addition of boron; Caracterizacao microestrutural de ligas de aluminio a partir da adicao de boro

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, A.G.P.; Pipano, T.F.; Mota, M.A.; Mariano, N.A.; Ramos, E.C.T. [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil). Instituto de Ciencias e Tecnologia

    2014-07-01

    In the electrical industry, the aluminum becomes attractive because it has excellent characteristics for transmitting electricity. The liquid aluminum has in its composition transition elements (zirconium, titanium, vanadium and chromium) that interfere negatively on the quality of the product. The addition of aluminum-boron alloys have been used to remove transition metals through the formation of borides, enabling an increase in electrical conductivity. However, no detailed reports of reactions between boron, transition metals and primary aluminum engines. However, the objective is to determine the stoichiometric composition that enables an increase in electrical conductivity of an aluminum alloy. Samples with different concentrations of boron were characterized by optical emission spectrometry, electrical conductivity and X-ray diffraction. The addition of boron in excess reduces the time in the formation of borides, and enable an increase in electrical conductivity. (author)

  2. Effect of small addition of aluminum on electrochemical corrosion behavior of magnesium-calcium sacrificial anode in underground environment

    International Nuclear Information System (INIS)

    Rizam, S.S.; Sasirehka, G.; Firdaus, A.M.H.; Mahdi, C.I.; Nazree, D.M.; Abdul Razak Daud; Azrem, A.A.

    2009-01-01

    The effect of small addition of Al on the electrochemical performances was investigated by open circuit potential and Tafel Extrapolation method. The results show that open circuit potential reveals as-cast Mg containing Ca alloys with minor content of Al maintained highly negative potential with the range of -1.68 to -1.63 V SCE in comparison to both pure Mg (-1.60V SCE ) and commercial high potential Mg content. Corrosion rate for the as-cast samples remains higher (30-17 mpy) than pure Mg (3 mpy) and commercial high potential Mg anode (14 mpy). The increasing small content of Al results in the reduction of corrosion rate significantly. Therefore, it proves that the performance of Mg containing Ca alloy is strongly influenced by the concentration of Al. (author)

  3. Investigation of the HA film deposited on the porous Ti6Al4V alloy prepared via additive manufacturing

    International Nuclear Information System (INIS)

    Surmeneva, M; Chudinova, E; Syrtanov, M; Surmenev, R; Koptioug, A

    2015-01-01

    This study is focused on the use of radio frequency magnetron sputtering to modify the surface of porous Ti6Al4V alloy fabricated via additive manufacturing technology. The hydroxyapatite (HA) coated porous Ti6Al4V alloy was studied in respect with its chemical and phase composition, surface morphology, water contact angle and hysteresis, and surface free energy. Thin nanocrystalline HA film was deposited while its structure with diamond-shaped cells remained unchanged. Hysteresis and water contact angle measurements revealed an effect of the deposited HA films, namely an increased water contact angle and contact angle hysteresis. The increase of the contact angle of the coating-substrate system compared to the uncoated substrate was attributed to the multiscale structure of the resulted surfaces. (paper)

  4. Development of the advanced nuclear materials -Development of Inconel alloys-

    International Nuclear Information System (INIS)

    Kuk, Il Hyun; Chang, Jin Sung; Lee, Chang Kyu; Park, Soon Dong; Kim, Woo Kon; Jeong, Man Kyo; Woo, Yoon Myung; Han, Chang Hee

    1995-07-01

    The performance and the integrity of the steam generator U-tubes directly affects the efficiency and economics of nuclear power plant because they are closely interrelated with the maintenance and repair. Also the steam generator U-tubes have been one of world-wide hot issues in nuclear power plants for long time because of their continuing corrosion-related degradation. Right after stress corrosion cracking of Alloy 600 tubes are reported at primary side, in which the environment is believed to be tightly controlled all the time, in mid 80's, alloy 690 has started to replace alloy 600. Alloy 690 is basically same with alloy 600 except more Cr content. Firstly minor elements in alloy 690 (C, B, N, Y, Mo) were added or controlled to improve hot workability and corrosion resistance. It would be much more desirable if the mechanism or basic understanding of the degradation phenomena of steam generator U-tubes in operation conditions can be illuminated through the alloy modification research. Alloy 600 tubes which were preproduced in cooperation with Sammi Special Steel were evaluated, being compared with imported one. Also alloy 600 and alloy 690 tubes were produced from Inconel 600 and 690 INCO- forged bar. These will be closely evaluated with purely Korean-made alloy 600 and 690 tubes. 22 tabs., 93 figs., 14 refs. (Author)

  5. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Duan, Hongping; Yan, Chuanwei; Wang, Fuhui

    2007-01-01

    Various plasma electrolytic oxidation (PEO) films were prepared on magnesium alloy AZ91D in a silicate bath with different additives such as phosphate, fluoride and borate. Effects of the additives on chemical composition and corrosion resistance of the PEO films were examined by means of scanning electron microscopy (SEM), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results showed that the PEO films obtained in solutions with both borate and fluoride had better corrosion resistance. In order to understand the corrosion mechanism of PEO films on magnesium alloy AZ91D, electronic property of the magnesium electrode with PEO films was studied by Mott-Schottky approach in a solution containing borate and chloride. The results indicated that magnesium electrodes with and without PEO films all exhibited n-type semiconducting property. However, in comparison with the magnesium electrode treated in solutions containing phosphate or borate, the electrode treated in solutions containing both borate and fluoride (M-film) had lower donor concentration and much negative flat band potential; therefore, the M-film had lower reactivity and higher corrosion resistance

  6. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.

    Science.gov (United States)

    Verissimo, Nathália C; Geilich, Benjamin M; Oliveira, Haroldo G; Caram, Rubens; Webster, Thomas J

    2015-12-01

    β-type Ti alloys containing Nb are exciting materials for numerous orthopedic and dental applications due to their exceptional mechanical properties. To improve their cytocompatibility properties (such as increasing bone growth and decreasing infection), the surfaces of such materials can be optimized by adding elements and/or nanotexturing through anodization. Because of the increasing prevalence of orthopedic implant infections, the objective of this in vitro study was to add Sn and create unique nanoscale surface features on β-type Ti alloys. Nanotubes and nanofeatures on Ti-35Nb and Ti-35Nb-4Sn alloys were created by anodization in a HF-based electrolyte and then heat treated in a furnace to promote amorphous structures and phases such as anatase, a mixture of anatase-rutile, and rutile. Samples were characterized by SEM, which indicated different morphologies dependent on the oxide content and method of modification. XPS experiments identified the oxide content which resulted in a phase transformation in the oxide layer formed onto Ti-35Nb and Ti-35Nb-4Sn alloys. Most importantly, regardless of the resulting nanostructures (nanotubes or nanofeatures) and crystalline phase, this study showed for the first time that adding Sn to β-type Ti alloys strongly decreased the adhesion of Staphylococcus aureus (S. aureus; a bacteria which commonly infects orthopedic implants leading to their failure). Thus, this study demonstrated that β-type Ti alloys with Nb and Sn have great promise to improve numerous orthopedic applications where infection may be a concern. © 2015 Wiley Periodicals, Inc.

  7. Effect of minor addition of titanium- and molybdenum dioxides on thermodynamic properties of vanadium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' eva, I A; Sulejmenova, G S

    1984-07-01

    The effect of minor additions (0.5 and 1%) of TiO2 and MoO2 on the partial thermodynamic functions of oxygen in vanadium dioxide was studied by the method of electromotive force with solid electrolyte on the base of stabilized ZrO2 possessing the oxygen conductivity. Investigations were conducted at 1050-1360 K for single-phase samples of monoclinic crystal structure. The addition MoO2 to VO2 is shown to reduce the equilibrium oxygen pressure above the Vsub(1-x) Msub(x)Osub(1.998) (M=Mo, Ti) thiosulfate ion in aqueous solution. Three thiosulfates of monovalent indium were isolated in solid state: In2S2O3x2H2O, In2S2O3xInOHx2H2O and In2S2O3x2InNO3x2H2O. Infrared spectra were investigated and thermal decomposition of prepared compounds was studied.

  8. Effect of boron additions and processing on microstructure and mechanical properties of a titanium alloy Ti–6.5Al–3.3Mo–0.3Si

    Energy Technology Data Exchange (ETDEWEB)

    Imayev, V.M., E-mail: vimayev@mail.ru; Gaisin, R.A.; Imayev, R.M.

    2015-08-12

    The effects of boron additions in an amount of 0.1–2 wt%, thermomechanical processing and heat treatment on microstructure and mechanical properties of a two-phase titanium alloy Ti–6.5Al–3.3Mo–0.3Si alloy have been investigated. Depending on the boron amount, the materials under study were divided into two groups: (1) boron modified alloys containing ~0.1 wt% of boron and (2) discontinuously reinforced metal matrix Ti–TiB based composites containing 1.5–2 wt% of boron. Boron additions led to formation of TiB whiskers, which were predominantly located along boundaries of prior β-grains and α-colonies resulting in refined as-cast microstructure. Multiple 3D forging at T=650–700 °C applied for the boron modified alloys resulted in formation of ultrafine-grained microstructure and intensive breaking of TiB whiskers. Tensile properties of the Ti–6.5Al–3.3Mo–0.3Si–0.2 wt% B alloy after multiple 3D forging followed by β-heat treatment were found to be appreciably higher than those of the alloy free of boron after the same processing route that was ascribed to better controlling the β-grain size during β heat treatment. The composite materials were subjected to multiple isothermal 2D forging at T=950 °C that provided effective alignment of TiB whiskers while retaining their high aspect ratio. The hot forged composites demonstrated appreciably higher strength, creep resistance in comparison with those of the base alloy without drastic reduction in ductility. The effect of TiB whiskers orientation and morphology on the tensile properties of the composite materials is discussed.

  9. Effect of CaO Addition on the High-Temperature Oxidation of AM30 Magnesium Alloys

    International Nuclear Information System (INIS)

    Won, Sung-Bin; Lee, Dong Bok

    2014-01-01

    AM30 + (0, 0.5, 1, 1.5) wt%CaO magnesium alloys were cast and oxidized at 625 ℃ and 650 ℃ in atmospheric air. The CaO particles that were added during casting allowed casting the AM30 alloys in air without using environmentally hazardous SF_6 or SO_2 gases. They decomposed to dissolve in the α-Mg matrix and also to precipitate along the matrix grain boundaries as Al_2Ca during casting. The ignition temperatures were 584.6 ℃ for AM30, 604.5 ℃ for AM30 + 0.5 wt%CaO, and 691.7 ℃ for AM30 + 1 wt%CaO. No ignition occurred for AM30 + 1.5 wt%CaO up to 700 ℃. During oxidation, CaO-rich oxide scales formed on the alloy surface, which prevented direct contact of the alloy with air and fast oxidation of the alloy in air

  10. Effect of CaO Addition on the High-Temperature Oxidation of AM30 Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Won, Sung-Bin; Lee, Dong Bok [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-03-15

    AM30 + (0, 0.5, 1, 1.5) wt%CaO magnesium alloys were cast and oxidized at 625 ℃ and 650 ℃ in atmospheric air. The CaO particles that were added during casting allowed casting the AM30 alloys in air without using environmentally hazardous SF{sub 6} or SO{sub 2} gases. They decomposed to dissolve in the α-Mg matrix and also to precipitate along the matrix grain boundaries as Al{sub 2}Ca during casting. The ignition temperatures were 584.6 ℃ for AM30, 604.5 ℃ for AM30 + 0.5 wt%CaO, and 691.7 ℃ for AM30 + 1 wt%CaO. No ignition occurred for AM30 + 1.5 wt%CaO up to 700 ℃. During oxidation, CaO-rich oxide scales formed on the alloy surface, which prevented direct contact of the alloy with air and fast oxidation of the alloy in air.

  11. Development of fast reactor metal fuels containing minor actinides

    International Nuclear Information System (INIS)

    Ohta, Hirokazu; Ogata, Takanari; Kurata, Masaki; Koyama, Tadafumi; Papaioannou, Dimitrios; Glatz, Jean-Paul; Rondinella, Vincenzo V.

    2011-01-01

    Fast reactor metal fuels containing minor actinides (MAs) Np, Am, and Cm and rare earths (REs) Y, Nd, Ce, and Gd are being developed by the Central Research Institute of Electric Power Industry (CRIEPI) in collaboration with the Institute for Transuranium Elements (ITU) in the METAPHIX project. The basic properties of U-Pu-Zr alloys containing MA (and RE) were characterized by performing ex-reactor experiments. On the basis of the results, test fuel pins including U-Pu-Zr-MA(-RE) alloy ingots in parts of the fuel stack were fabricated and irradiated up to a maximum burnup of ∼10 at% in the Phenix fast reactor (France). Nondestructive postirradiation tests confirmed that no significant damage to the fuel pins occurred. At present, detailed destructive postirradiation examinations are being carried out at ITU. (author)

  12. Phase-oriented surface segregation in an aluminium casting alloy

    International Nuclear Information System (INIS)

    Nguyen, Chuong L.; Atanacio, Armand; Zhang, Wei; Prince, Kathryn E.; Hyland, Margaret M.; Metson, James B.

    2009-01-01

    There have been many reports of the surface segregation of minor elements, especially Mg, into surface layers and oxide films on the surface of Al alloys. LM6 casting alloy (Al-12%Si) represents a challenging system to examine such segregation as the alloy features a particularly inhomogeneous phase structure. The very low but mobile Mg content (approximately 0.001 wt.%), and the surface segregation of modifiers such as Na, mean the surface composition responds in a complex manner to thermal treatment conditions. X-ray photoelectron spectroscopy (XPS) has been used to determine the distribution of these elements within the oxide film. Further investigation by dynamic secondary ion mass spectrometry (DSIMS) confirmed a strong alignment of segregated Na and Mg into distinct phases of the structure.

  13. Influence of Li₂Sb Additions on Microstructure and Mechanical Properties of Al-20Mg₂Si Alloy.

    Science.gov (United States)

    Yu, Hong-Chen; Wang, Hui-Yuan; Chen, Lei; Zha, Min; Wang, Cheng; Li, Chao; Jiang, Qi-Chuan

    2016-03-29

    It is found that Li₂Sb compound can act as the nucleus of primary Mg₂Si during solidification, by which the particle size of primary Mg₂Si decreased from ~300 to ~15-25 μm. Owing to the synergistic effect of the Li₂Sb nucleus and adsorption-poisoning of Li atoms, the effect of complex modification of Li-Sb on primary Mg₂Si was better than that of single modification of Li or Sb. When Li-Sb content increased from 0 to 0.2 and further to 0.5 wt.%, coarse dendrite changed to defective truncated octahedron and finally to perfect truncated octahedral shape. With the addition of Li and Sb, ultimate compression strength (UCS) of Al-20Mg₂Si alloys increased from ~283 to ~341 MPa and the yield strength (YS) at 0.2% offset increased from ~112 to ~179 MPa while almost no change was seen in the uniform elongation. Our study offers a simple method to control the morphology and size of primary Mg₂Si, which will inspire developing new Al-Mg-Si alloys with improved mechanical properties.

  14. Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al--Mg--Si alloys

    International Nuclear Information System (INIS)

    Kim, JaeHwang; Daniel Marioara, Calin; Holmestad, Randi; Kobayashi, Equo; Sato, Tatsuo

    2013-01-01

    Low Cu and Ag additions (≤0.10 at%) were found to strongly affect the age-hardening behavior in Al--Mg--Si alloys with Mg+Si>1.5 at%. The hardness increased during aging at 170 °C and the formation of β ″ precipitates was kinetically accelerated. The activation energy of the formation of the β ″ phase was calculated to 127, 105, 108 and 99 KJmol −1 in the base, Cu-added, Ag-added and Cu--Ag-added alloys, respectively using the Kissinger method. The negative effect of two-step aging caused by the formation of Cluster (1) during natural aging was not overcome by the addition of microalloying elements. However, it was suppressed by the formation of Cluster (2) through a pre-aging at 100 °C. Quantitative analysis of the precipitate microstructure was performed using a transmission electron microscope equipped with a parallel electron energy loss spectrometer for the determination of specimen thickness. The formation of Cluster (2) was found to increase the number density of β ″ precipitates, whereas the formation of Cluster (1) decreased the number density and increased the needle length. The effects of low Cu and Ag additions in combination with multi-step aging are discussed based on microstructure observations and hardness and resistivity measurements.

  15. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  16. EFFECTS OF MO ADDITION ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CAST MICROALLOYED STEEL

    Directory of Open Access Journals (Sweden)

    H. Torkamani

    2017-09-01

    Full Text Available In industry, the cost of production is an important factor and it is preferred to use conventional and low cost procedures for producing the parts. Heat treatment cycles and alloying additions are the key factors affecting the microstructure and mechanical properties of the cast steels. In this study an attempt was made to evaluate the influence of minor Mo addition on the microstructure and mechanical properties of conventionally heat treated cast micro-alloyed steels. The results of Jominy and dilatometry tests and also microstructural examinations revealed that Mo could effectively increase the hardenability of the investigated steel and change the microstructure features of the air-cooled samples. Acicular microstructure was the consequence of increasing the hardenability in Mo-added steel. Besides, it was found that Mo could greatly affect the isothermal bainitic transformation and higher fraction of martensite after cooling (from isothermal temperature was due to the Mo addition. The results of impact test indicated that the microstructure obtained in air-cooled Mo-added steel led to better impact toughness (28J in comparison with the base steel (23J. Moreover, Mo-added steel possessed higher hardness (291HV, yield (524MPa and tensile (1108MPa strengths compared to the base one.

  17. Corrosion behavior of Mg–5Al based magnesium alloy with 1 wt.% Sn, Mn and Zn additions in 3.5 wt.% NaCl solution

    Directory of Open Access Journals (Sweden)

    Nguyen Dang Nam

    2014-06-01

    Full Text Available The corrosion properties of four Mg–5Al alloys with M-alloying elements (tin, manganese and zinc in a 3.5 wt.% NaCl solution were examined using electrochemical tests and surface analyses. The electrochemical results indicated that the addition of 1 wt.% M metal decreased the corrosion rate and hydrogen evolution rate of the Mg–5Al specimens. Moreover, the addition of 1Zn resulted in having the best corrosion resistance due to the interaction of Zn oxide with Mg and Al oxides which acted as a corrosion barrier.

  18. Improvement effect on corrosion under heat flux in nitric acid solutions of anti-IGC stainless steel and high Cr-W-Si Ni base RW alloy

    International Nuclear Information System (INIS)

    Doi, Masamitsu; Kiuchi, Kiyoshi; Yano, Masaya; Sekiyama, Yoshio

    2001-03-01

    In the advanced purex reprocessing equipment, the higher corrosion resistance is required for materials because of the high corrosive environment caused from the thermodynamic decomposition of boiling nitric acid. The authors group has been developed the two types of new corrosion resistant materials for application to the reprocessing equipment. One is the type 304ULC stainless steel with controlled microstructure and decreased minor elements (EB-SAR). The other is the nickel base alloy with the ability of forming stable oxide film by addition of Cr, W and Si (RW alloy). In this study, the heat transfer tubes applied in diminished pressure was postulated. In addition to the dominant factors of heat conducting corrosion by the nitric acid solution, the effect of the heat flux and the concentration of the corrosive vanadium ions were investigated. (author)

  19. Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment.

    Science.gov (United States)

    Rosalbino, F; Delsante, S; Borzone, G; Scavino, G

    2012-05-01

    Titanium alloys exhibit excellent corrosion resistance in most aqueous media due to the formation of a stable oxide film, and some of these alloys (particularly Ti-6Al-7Nb) have been chosen for surgical and odontological implants for their resistance and biocompatibility. Treatment with fluorides (F(-)) is known to be the main method for preventing plaque formation and dental caries. Toothpastes, mouthwashes, and prophylactic gels can contain from 200 to 20,000 ppm F(-) and can affect the corrosion behaviour of titanium alloy devices present in the oral cavity. In this work, the electrochemical corrosion behaviour of Ti-1M alloys (M = Ag, Au, Pd, Pt) was assessed in artificial saliva of pH = 3.0 containing 910 ppm F(-) (0.05 M NaF) through open circuit potential, E(OC), and electrochemical impedance spectroscopy (EIS) measurements. The corrosion behaviour of the Ti-6Al-7Nb commercial alloy was also evaluated for comparison. E (OC) measurements show an active behaviour for all the titanium alloys in fluoridated acidified saliva due to the presence of significant concentrations of HF and HF(2) (-) species that dissolve the spontaneous air-formed oxide film giving rise to surface activation. However, an increase in stability of the passive oxide layer and consequently a decrease in surface activation is observed for the Ti-1M alloys. This behaviour is confirmed by EIS measurements. In fact, the Ti-6Al-7Nb alloy exhibits lower impedance values as compared with Ti-1M alloys, the highest values being measured for the Ti-1Au alloy. The experimental results show that the corrosion resistance of the studied Ti-1M alloys is similar to or better than that of Ti-6Al-7Nb alloy currently used as biomaterial, suggesting their potential for dental applications.

  20. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys

    International Nuclear Information System (INIS)

    Sutou, Y.; Kainuma, R.; Ishida, K.

    1999-01-01

    The effect of alloying elements on the M s temperature, ductility and the shape memory properties of Cu-Al-Mn ductile shape memory (SM) alloys was investigated by differential scanning calorimetry, cold-rolling and tensile test techniques. It was found that the addition of Au, Si and Zn to the Cu 73 -Al 17 -Mn 10 alloy stabilized the martensite (6M) phase increasing the M s temperature, while the addition of Ag, Co, Cr, Fe, Ni, Sn and Ti decreased the stability of the martensite phase, decreasing the M s temperature. The SM properties were improved by the addition of Co, Ni, Cr and Ti. (orig.)

  1. Effect of {gamma}` and {gamma} (Ag{sub 2}Al) precipitates on the steady state creep of Al-16wt%Ag alloys with and without Zr addition

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Youssef, S.B. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Mahmoud, M.A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics

    1996-11-16

    The steady state creep behaviour of Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys has been studied at constant load (= 137.2 MPa) and tested at different working temperatures for samples aged at temperatures favouring the formation of {gamma}` and {gamma} precipitates. It was found that addition of Zr to Al-16 wt% Ag alloy accelerates the precipitations {gamma}` and {gamma} due to the formation of the metastable phase Al{sub 3}Zr. For both alloys, two values of activation energy have been obtained as (34 {+-} 0.3) kJ/mol for viscous glide of dislocations due to the existence of {gamma}` precipitates and (68 {+-} 0.3) kJ/mol for grain boundary diffusion due to the existence of {gamma} precipitates. TEM investigations of {gamma}` and {gamma} precipitates confirmed the above-mentioned effect of Zr addition. (orig.)

  2. Effect of Al-R (R = Dy or Tb) master alloys addition on the properties of magnets made of Nd14.7R1.3Fe75Co2B7

    International Nuclear Information System (INIS)

    Savchenko, A.G.; Ryazantsev, V.A.; Skuratovskij, Yu.E.; Lileev, A.S.; Menushenkov, V.P.

    2000-01-01

    The hysteresis characteristics of caked constant magnets of the (Nd, R)-(Fe, Co)-B system alloys with the Al-R master easily-melting additions, wherein R is Dy or Tb, are studied. High efficiency of the mixture method by obtaining highly-coercive constant magnets on the basis of the studied systems alloys is shown. The hysteresis properties of the caked constant magnets may be changed within sufficiently wide limits by varing the number and composition of the alloys mixture components. The effect of the Al-Dy and Al-Tb additions on properties of constant magnets of uniform nominal composition is compared. Higher efficiency of master alloys on the Tb basis is noted; the coercive force and energy characteristics of this series of caked constant magnets is higher [ru

  3. Effect of Ti/Cr additive on helium diffusion and segregation in dilute vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Tingting [Information Science and Technology College, Dalian Maritime University, Dalian 116026 (China); Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Zhao, Jijun [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Zheng, Pengfei; Chen, Jiming [Southwestern Institute of Physics, Chengdu 610041 (China)

    2017-02-15

    Highlights: • He prefers to segregate to Ti region rather than Cr region in the vanadium alloys. • He diffusion barrier decreases towards Ti while it increases towards Cr. • The He{sub n}Ti complexes are more stable than the He{sub n}Cr complexes energetically. - Abstract: The effect of Ti/Cr additive on He diffusion and segregation properties in dilute vanadium alloys is investigated using first-principles calculations. First we determined the He preference site and investigated the He-Cr/He-Ti interactions. Energetically, He prefers to segregate to Ti regions rather than Cr regions. The most stable site for interstitial He is a tetrahedral site near Ti. He-Ti interactions have a weak attraction while He-Cr interactions have a weak repulsion. Kinetically, He diffusion to Ti has a lower energy barrier; contrarily the He barrier increases towards Cr. Furthermore, we discuss the stability of He{sub n}-Cr/Ti complexes and He{sub n}-vacancy-Cr and Ti complexes with n = 1–8. It is found that the He{sub n}Ti complexes are more stable than the He{sub n}Cr complexes while the He{sub n}-vacancy-Ti complexes are less favorable than He{sub n}-vacancy-Cr. The findings give a reference for understanding the mechanism of He embrittlement under irradiation.

  4. Minor component ordering in wurtzite Ga1-xInxN and Ga1-xAlxN

    International Nuclear Information System (INIS)

    Laaksonen, K.; Ganchenkova, M.G.; Nieminen, R.M.

    2006-01-01

    The electronic and thermodynamic properties of materials are defined largely by their internal structure, in particular, composition uniformity. In this work the homogeneity of the minor component distribution in ternary Ga(In/Al)N alloys in the wurtzite polytype is studied. For this aim, the stability of different configurations of small clusters of the second component atoms is examined using Daft-based code Vas. The hydrostatic strain, induced in the matrix by the component atomic size mismatch, as well as external hydrostatic strain are taken under consideration. Clustering of In atoms along the [0001] direction is shown to be energetically favourable, whereas in the (0001) plane they repel each other. In contrast, Al atoms in GaN do not interact, irrespective of strain conditions. According to these results In in GaN should form [0001] aligned pairs or chains and, at higher In concentrations, zigzag chains in the c-direction, while Al forms a random alloy with the matrix material. The effect of the minor component (In/Al) ordering pattern on the band gap of the ternary Ga(In/Al)N alloy is also discussed

  5. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    OpenAIRE

    Cui S.; Mishra R.; Jung I.-H.

    2018-01-01

    Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed...

  6. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    Science.gov (United States)

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  7. Nickel aluminide alloy suitable for structural applications

    Science.gov (United States)

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  8. SLM processing-microstructure-mechanical property correlation in an aluminum alloy produced by additive manufacturing

    Science.gov (United States)

    Alejos, Martin Fernando

    Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all aluminum tensile specimens (350-380 MPa). Fatigue strength was greatest for wrought 6061 T6 aluminum (175 MPa). The fatigue behavior was a strong function of build orientation for the additive manufactured specimens. The 0°, 30°, and 60° orientations had fatigue strengths close to 104 MPa while the 90° orientation had a fatigue strength of 125 MPa. All test specimens failed primarily in a ductile manner. The effect of laser power, hatch spacing, and scan speed were also studied using microstructural analysis. Increasing laser power decreased grain size and void size. Increasing scan speed led to the formation of columnar grains. Increasing hatch spacing decreased grain size and the amount of voids present in the microstructure.

  9. Effect of Ag additions on the lengthening rate of Ω plates and formation of σ phase in Al-Cu-Mg alloys during thermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yaru; Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn; Bai, Song; Ying, Puyou; Lin, Lianghua

    2017-01-15

    Effect of Ag additions on the mechanical properties and microstructures of the peak-aged Al-Cu-Mg alloys during prolonged thermal exposure at 150 °C, was investigated by tensile testing, conventional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The results showed that after exposure for 500 h, > 85% of the peak strength remained. Microstructure observations indicated that increasing the Ag content from 0.14 to 0.57% promoted the precipitation of a fine and uniform Ω phase and suppressed the formation of the θ′ phase, leading to a notable improvement of the strength properties and thermal stability of the studied alloys. Quantitative TEM analysis showed that the coarsening of Ω phase was predominated by plate lengthening rather than thickening, while its lengthening rate was independent of various Ag additions during exposure at 150 °C. In addition, an increase of Ag also facilitated the formation of a cubic σ phase, which was further supported by STEM results. - Highlights: •Increasing Ag improved strength properties and thermal stability of the alloys. •After exposure for 500 h, > 85% of the peak strength remained. •The lengthening rate of Ω plates remained constant as Ag increased at 150 °C. •Increasing Ag content facilitated the formation of σ phase.

  10. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    Science.gov (United States)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  11. Effect of Sn addition on phases stability and mechanical properties of aged Ti-10Mo Alloy

    International Nuclear Information System (INIS)

    Cardoso, F.F.; Lopes, E.S.N.; Cremasco, A.; Contieri, R.J.; Mello, M.G.; Caram, R.

    2010-01-01

    Nowadays there is considerable effort in order to develop new titanium alloys using non-toxic elements such as Mo and Sn. This work deals with the alloys Ti-Mo-Sn. The samples were melted, homogenized and hot swaged. Afterwards they were solubilized and water quenched. The alloys were also aged at several temperatures Characterization involved determination of Young's modulus, hardness, X-ray diffraction and optical microscopy. The X-ray diffraction indicated the presence of athermal and isothermal ω phase for Ti-10Mo alloy. One also evidenced that the Vickers hardness varies with the temperature and the time of aging heat treatment. (author)

  12. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  13. Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition

    International Nuclear Information System (INIS)

    Zhu, Rundong; Li, Zhiyong; Li, Xiaoxi; Sun, Qi

    2015-01-01

    Highlights: • The low-power-laser was used to obtain the excellent coatings with different amount of Y_2O_3 addition. • The addition of rare earth oxide Y_2O_3 refined and purified the microstructure of the coatings, meanwhile, increased the thickness of the coatings and reduced the dilution of cladding materials from based alloy. • The primary phases in the coatings are Mg_3_2Al_4_7Cu_7, MgCu_6Al_5, Al_2CuMg and Al_1_2Mg_1_7. The A_l_4MgY and MgAl_2O_4 phase can be found in Y_2O_3-modified coatings. • The micro-hardness and the abrasion resistance of the coatings with Y_2O_3 had been improved obviously compared with the coatings without Y_2O_3. • The corrosion resistance of the AZ91D magnesium alloy had been improved by laser cladding. And the effect of Y_2O_3 on the corrosion potential of the coatings was less than the effect of Y_2O_3 on corrosion current density of the coatings. - Abstract: Due to the low-melting-point and high evaporation rate of magnesium at elevated temperature, high power laser clad coating on magnesium always causes subsidence and deterioration in the surface. Low power laser can reduce the evaporation effect while brings problems such as decreased thickness, incomplete fusion and unsatisfied performance. Therefore, low power laser with selected parameters was used in our research work to obtain Al–Cu coatings with Y_2O_3 addition on AZ91D magnesium alloy. The addition of Y_2O_3 obviously increases thickness of the coating and improves the melting efficiency. Furthermore, the effect of Y_2O_3 addition on the microstructure of laser clad Al–Cu coatings was investigated by scanning electron microscopy. The energy-dispersive spectrometer (EDS) and X-ray diffractometer (XRD) were used to examine the elemental and phase compositions of the coatings. The properties were investigated by micro-hardness test, dry wear test and electrochemical corrosion. It was found that the addition of Y_2O_3 refined the microstructure. The micro

  14. Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloys using spherical indentation

    International Nuclear Information System (INIS)

    Sreeranganathan, A.; Gokhale, A.; Tamirisakandala, S.

    2008-01-01

    The constitutive properties of the titanium alloy matrix in boron-modified titanium alloys are different from those of the corresponding unreinforced alloy due to the microstructural changes resulting from the addition of boron. Experimental and finite-element analyses of spherical indentation with a large penetration depth to indenter radius ratio are used to compute the local constitutive properties of the matrix alloy. The results are compared with that of the corresponding alloy without boron, processed in the same manner

  15. Effect of Additions of Ceramic Nanoparticles and Gas-Dynamic Treatment on Al Casting Alloys

    Directory of Open Access Journals (Sweden)

    Konstantin Borodianskiy

    2015-12-01

    Full Text Available In recent years, improving the mechanical properties of metals has become the main challenge in the modern materials and metallurgical industry. An alloying process is usually used to achieve advanced performance of metals. This paper, however, describes an alternative approach. Modification with ceramic nanoparticles, gas-dynamic treatment (GDT and a combined treatment were investigated on a hypoeutectic Al-Si A356 alloy. Microstructural studies revealed the refinement of coarse α-Al grains and the formation of distributed eutectic Si particles. Subsequent testing of the mechanical properties revealed improvement after applying each of the treatments. The best results were obtained after modification with TiCN nanoparticles followed by GDT; the tensile strength and elongation of the A356 alloys increased by 18% and 19%, respectively.

  16. Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Wen, Y.R.; Li, Y.P.; Hirata, A.; Zhang, Y.; Fujita, T.; Furuhara, T.; Liu, C.T.; Chiba, A.; Chen, M.W.

    2013-01-01

    We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe–Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe–Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core–shell nanoprecipitates with a Cu-rich core and a B2 Ni–Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core–shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe–Cu alloys. Reinforcement of the B2 Ni–Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core–shell nanoprecipitates

  17. Aluminium Alloy AA6060 surface treatment with high temperature steam containing chemical additives

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Tabrizian, Naja; Jellesen, Morten S.

    2015-01-01

    The steam treatment process was employed to produce a conversion coating on aluminium alloy AA6060. The changes in microstructure and its effect on corrosion resistance properties were investigated. Various concentrations of KMnO4 containing Ce(NO3)3 was injected into the steam and its effect...... on the formation of steam-based conversion coating was evaluated. The use of Mn-Ce into the steam resulted in incorporation of these species into the conversion coating, which resulted in improved corrosion resistance of the alloy substrate....

  18. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Kim, W.Y.; Kim, H.S.; Kim, S.K.; Ra, T.Y.; Kim, M.S.

    2005-01-01

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb 5 Si 3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb 5 Si 3 . At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  19. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  20. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.

    Science.gov (United States)

    Kabir, Mohammad Rizviul; Richter, Henning

    2017-02-08

    A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.

  1. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Mohammad Rizviul Kabir

    2017-02-01

    Full Text Available A selective laser melting (SLM-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.

  2. Superplasticity-like deformation of a coarse-grained Al5052 alloy

    International Nuclear Information System (INIS)

    Chow, K.K.; Chan, K.C.

    2000-01-01

    In the present paper, hot forming properties of a commercially available coarse-grained Al5052 alloy under uniaxial and biaxial stress states were examined. In hot tensile tests, the alloy exhibits a superplastic-like behaviour with a maximum tensile elongation of 194% at a temperature of 873 K and at an initial strain rate of 2.08 x 10 -1 s -1 . Dislocation slip and grain boundary sliding were considered to be the deformation mechanisms. The alloy was also bulged at a constant polar strain-rate of 2.0 x 10 -1 s -1 and at an optimum temperature of 873 K using elliptical dies with aspect ratios of 1:1, 4:3, 2:1, 8:3 and 4:1. The strain distributions revealed that the strain gradient obtained in the minor axis was much greater than that in major axis. Moreover, it was shown that the deformation behavior of the alloy was basically isotropic and the volume strain of the alloy sheet did not equal to zero which was considered to relate to its cavitation behaviour. (orig.)

  3. Refining processes of selected copper alloys

    Directory of Open Access Journals (Sweden)

    S. Rzadkosz

    2009-04-01

    Full Text Available The analysis of the refining effectiveness of the liquid copper and selected copper alloys by various micro additions and special refiningsubstances – was performed. Examinations of an influence of purifying, modifying and deoxidation operations performed in a metal bath on the properties of certain selected alloys based on copper matrix - were made. Refining substances, protecting-purifying slag, deoxidation and modifying substances containing micro additions of such elements as: zirconium, boron, phosphor, sodium, lithium, or their compounds introduced in order to change micro structures and properties of alloys, were applied in examinations. A special attention was directed to macro and micro structures of alloys, their tensile and elongation strength and hot-cracks sensitivity. Refining effects were estimated by comparing the effectiveness of micro structure changes with property changes of copper and its selected alloys from the group of tin bronzes.

  4. United modification of Al-24Si alloy by Al-P and Al-Ti-C master alloys

    Institute of Scientific and Technical Information of China (English)

    韩延峰; 刘相法; 王海梅; 王振卿; 边秀房; 张均艳

    2003-01-01

    The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is foundthat excellent modification effect can be obtained by the addition of this new type of A1-P master alloy into Al-24Simelt and the average primary Si grain size is decreased below 47 μm from original 225 μm. It is also found that theTiC particles in the melt coming from Al8Ti2C can improve the modification effect of the Al-P master alloy. Whenthe content of TiC particles in the Al-24Si melt is 0.03 %, the improvement reaches the maximum and keeps steadywith increasing content of TiC particles. Modification effect occurs at 50 min after the addition of the Al-P master al-loy and TiC particles, and keeps stable with prolonging holding time.

  5. The influence of chromium additions on order and ductility in Fe3Al intermetallic

    International Nuclear Information System (INIS)

    Morris, D.G.; Dadras, M.; Morris, M.A.

    1993-01-01

    It has previously been shown that the addition of Cr to the Fe 3 Al alloy can lead to improvements in ductility. Initial interpretations of this effect were based on changes in the fault energies and dislocation configurations, but recently the influence of environmental attack has been invoked. In the present study the role of Cr and other elemental additions on the state of order, dislocation dissociations and configurations, and on ductility has been examined under conditions where environmental attack should not be important. The addition of Cr is shown to have only a minor affect on ordering kinetics, fault energies and dislocation configurations. However, for the alloys generally considered, containing 28% Al, it is shown that the ordered state and microstructure depends sensitively on the precise composition and heat treatments given. In particular, small amounts of solute elements such as B can lead to the appearance of two-phase ordered-disordered microstructures over a wide temperature range, to the appearance of imperfect long range and short range order, and to major changes in the kinetics of ordering and disordering. The mechanical properties achieved are shown to depend critically on the extent and distribution of disorder (the long range order parameter, the extent of short range order, the presence and distribution of thick disordered domain walls) and this factor may explain much of the variability in properties reported between similar alloys. By way of example, the presence of short range order will confine dislocations to well-defined shear planes, concentrating shear and inducing early failure; disordered domain walls will dissociate superdislocations thereby spreading shear homogeneously; the ordered domains/disordered walls morphology will lead to particle-dispersion hardening. (orig.)

  6. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Cuiuri, Dominic; Hoye, Nicholas; Li, Huijun; Pan, Zengxi, E-mail: zengxi@uow.edu.au

    2015-04-17

    An innovative and low cost additive layer manufacturing (ALM) process is used to produce γ-TiAl based alloy wall components. Gas tungsten arc welding (GTAW) provides the heat source for this new approach, combined with in-situ alloying through separate feeding of commercially pure Ti and Al wires into the weld pool. This paper investigates the morphology, microstructure and mechanical properties of the additively manufactured TiAl material, and how these are affected by the location within the manufactured component. The typical additively layer manufactured morphology exhibits epitaxial growth of columnar grains and several layer bands. The fabricated γ-TiAl based alloy consists of comparatively large α{sub 2} grains in the near-substrate region, fully lamellar colonies with various sizes and interdendritic γ structure in the intermediate layer bands, followed by fine dendrites and interdendritic γ phases in the top region. Microhardness measurements and tensile testing results indicated relatively homogeneous mechanical characteristics throughout the deposited material. The exception to this homogeneity occurs in the near-substrate region immediately adjacent to the pure Ti substrate used in these experiments, where the alloying process is not as well controlled as in the higher regions. The tensile properties are also different for the vertical (build) direction and horizontal (travel) direction because of the differing microstructure in each direction. The microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail. The results demonstrate the potential to produce full density titanium aluminide components directly using the new additive layer manufacturing method.

  7. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding

    International Nuclear Information System (INIS)

    Ma, Yan; Cuiuri, Dominic; Hoye, Nicholas; Li, Huijun; Pan, Zengxi

    2015-01-01

    An innovative and low cost additive layer manufacturing (ALM) process is used to produce γ-TiAl based alloy wall components. Gas tungsten arc welding (GTAW) provides the heat source for this new approach, combined with in-situ alloying through separate feeding of commercially pure Ti and Al wires into the weld pool. This paper investigates the morphology, microstructure and mechanical properties of the additively manufactured TiAl material, and how these are affected by the location within the manufactured component. The typical additively layer manufactured morphology exhibits epitaxial growth of columnar grains and several layer bands. The fabricated γ-TiAl based alloy consists of comparatively large α 2 grains in the near-substrate region, fully lamellar colonies with various sizes and interdendritic γ structure in the intermediate layer bands, followed by fine dendrites and interdendritic γ phases in the top region. Microhardness measurements and tensile testing results indicated relatively homogeneous mechanical characteristics throughout the deposited material. The exception to this homogeneity occurs in the near-substrate region immediately adjacent to the pure Ti substrate used in these experiments, where the alloying process is not as well controlled as in the higher regions. The tensile properties are also different for the vertical (build) direction and horizontal (travel) direction because of the differing microstructure in each direction. The microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail. The results demonstrate the potential to produce full density titanium aluminide components directly using the new additive layer manufacturing method

  8. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  9. Alloy Design Data Generated for B2-Ordered Compounds

    Science.gov (United States)

    Noebe, Ronald D.; Bozzolo, Guillermo; Abel, Phillip B.

    2003-01-01

    Developing alloys based on ordered compounds is significantly more complicated than developing designs based on disordered materials. In ordered compounds, the major constituent elements reside on particular sublattices. Therefore, the addition of a ternary element to a binary-ordered compound is complicated by the manner in which the ternary addition is made (at the expense of which binary component). When ternary additions are substituted for the wrong constituent, the physical and mechanical properties usually degrade. In some cases the resulting degradation in properties can be quite severe. For example, adding alloying additions to NiAl in the wrong combination (i.e., alloying additions that prefer the Al sublattice but are added at the expense of Ni) will severely embrittle the alloy to the point that it can literally fall apart during processing on cooling from the molten state. Consequently, alloying additions that strongly prefer one sublattice over another should always be added at the expense of that component during alloy development. Elements that have a very weak preference for a sublattice can usually be safely added at the expense of either element and will accommodate any deviation from stoichiometry by filling in for the deficient component. Unfortunately, this type of information is not known beforehand for most ordered systems. Therefore, a computational survey study, using a recently developed quantum approximate method, was undertaken at the NASA Glenn Research Center to determine the preferred site occupancy of ternary alloying additions to 12 different B2-ordered compounds including NiAl, FeAl, CoAl, CoFe, CoHf, CoTi, FeTi, RuAl, RuSi, RuHf, RuTi, and RuZr. Some of these compounds are potential high temperature structural alloys; others are used in thin-film magnetic and other electronic applications. The results are summarized. The italicized elements represent the previous sum total alloying information known and verify the computational

  10. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  11. The solidification velocity of nickel and titanium alloys

    Science.gov (United States)

    Altgilbers, Alex Sho

    2002-09-01

    The solidification velocity of several Ni-Ti, Ni-Sn, Ni-Si, Ti-Al and Ti-Ni alloys were measured as a function of undercooling. From these results, a model for alloy solidification was developed that can be used to predict the solidification velocity as a function of undercooling more accurately. During this investigation a phenomenon was observed in the solidification velocity that is a direct result of the addition of the various alloying elements to nickel and titanium. The additions of the alloying elements resulted in an additional solidification velocity plateau at intermediate undercoolings. Past work has shown a solidification velocity plateau at high undercoolings can be attributed to residual oxygen. It is shown that a logistic growth model is a more accurate model for predicting the solidification of alloys. Additionally, a numerical model is developed from simple description of the effect of solute on the solidification velocity, which utilizes a Boltzmann logistic function to predict the plateaus that occur at intermediate undercoolings.

  12. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  13. Effect of alloying elements on the stability of Ni2M in Alloy690 based upon thermodynamic calculation

    International Nuclear Information System (INIS)

    Horiuchi, Toshiaki; Kuwano, Kazuhiro; Satoh, Naohiro

    2012-01-01

    Some researchers recently point out that Ni based alloys used in nuclear power plants have the ordering tendency, which is a potential to decrease mechanical properties within the expected lifetime of the plants. In the present study, authors evaluated the effect of 8 alloying elements on the ordering tendency in Alloy690 based upon thermodynamic calculation by Thermo-Calc. It is clarified that the additive amount of Fe, Cr, Ti and Si, particularly Fe and Cr, was influential for the stability of Ni 2 M, while that of Mn, Cu, B and C had almost no effect for that. Authors therefore designed the Ni 2 M stabilized alloy by no addition of Fe in Alloy690. Ni 2 M is estimated to be stable even at 773 K in the Ni 2 M stabilized alloy. The influence by long range ordering or precipitating of Ni 2 M in Alloy690 for mechanical properties or SCC susceptibility is expected to be clarified by the sample obtained in the present study. (author)

  14. Microstructure and mechanical properties of molybdenum silicides with Al additions

    International Nuclear Information System (INIS)

    Rosales, I.; Bahena, D.; Colin, J.

    2007-01-01

    Several molybdenum silicides alloys with different aluminum additions were produced by the arc-cast method. Microstructure observed in the alloys presented a variation of the precipitated second phase respect to the aluminum content. Evaluation of the compressive behavior at high temperature of the alloys shows an important improvement in its ductility, approximately of 20%. Fracture toughness was increased proportionally with Al content. In addition at room temperature the alloys show a better mechanical behavior in comparison with the sample unalloyed. In general, Al additions result to be a good alternative to improve the resistance of these intermetallic alloys. The results are interpreted on the base of the analysis of second phase strengthening

  15. Formation and characterization of Al–Ti–Nb alloys by electron-beam surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Valkov, S., E-mail: stsvalkov@gmail.com [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Petrov, P. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Lazarova, R. [Institute of Metal Science, Equipment and Technologies with Hydro and Aerodynamics Center, Bulgarian Academy of Science, 67 Shipchenski Prohod blvd., 1574 Sofia (Bulgaria); Bezdushnyi, R. [Department of Solid State Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kliment Ohridsky”, 1164 Sofia (Bulgaria); Dechev, D. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)

    2016-12-15

    Highlights: • Al–Ti–Nb surface alloys have been successfully obtained by electron-beam surface alloying technology. • The alloys consist of (Ti,Nb)Al{sub 3} fractions, distributed in the biphasic structure of (Ti,Nb)Al{sub 3} particles dispersed in α-Al. • The alloying speed does not affect the lattice parameters of (Ti,Nb)Al{sub 3} and, does not form additional stresses, strains etc. • It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. • The measured hardness of (Ti,Nb)Al{sub 3} compound reaches 775 HV[kg/cm{sup 2}] which is much greater than the values of NbAl{sub 3}. - Abstract: The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V{sub 1} = 0.5 cm/s and V{sub 2} = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al{sub 3} fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al{sub 3} particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al{sub 3} lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a

  16. Refinement and fracture mechanisms of as-cast QT700-6 alloy by alloying method

    Directory of Open Access Journals (Sweden)

    Min-qiang Gao

    2017-01-01

    Full Text Available The as-cast QT700-6 alloy was synthesized with addition of a certain amount of copper, nickel, niobium and stannum elements by alloying method in a medium frequency induction furnace, aiming at improving its strength and toughness. Microstructures of the as-cast QT700-6 alloy were observed using a scanning-electron microscope (SEM and the mechanical properties were investigated using a universal tensile test machine. Results indicate that the ratio of pearlite/ferrite is about 9:1 and the graphite size is less than 40 μm in diameter in the as-cast QT700-6 alloy. The predominant refinement mechanism is attributed to the formation of niobium carbides, which increases the heterogeneous nucleus and hinders the growth of graphite. Meanwhile, niobium carbides also exist around the grain boundaries, which improve the strength of the ductile iron. The tensile strength and elongation of the as-cast QT700-6 alloy reach over 700 MPa and 6%, respectively, when the addition amount of niobium is 0.8%. The addition of copper and nickel elements contributed to the decrease of eutectoid transformation temperature, resulting in the decrease of pearlite lamellar spacing (about 248 nm, which is also beneficial to enhancing the tensile strength. The main fracture mechanism is cleavage fracture with the appearance of a small amount of dimples.

  17. Chloride stress corrosion cracking of Alloy 600 in boric acid solutions

    International Nuclear Information System (INIS)

    Berge, Ph.; Noel, D.; Gras, J.M.; Prieux, B.

    1997-10-01

    The high nickel austenitic alloys are generally considered to have good resistance to chloride stress corrosion cracking. In the standard boiling magnesium chloride solution tests, alloys with more than 40% nickel are immune. Nevertheless, more recent data show that cracking can occur in both Alloys 600 and 690 if the solution is acidified. In other low pH media, such as boric acid solution at 100 deg C, transgranular and intergranular cracking are observed in Alloy 600 in the presence of minor concentrations of sodium chloride (2g/I). In concentrated boric acid at higher temperatures (250 and 290 deg C), intergranular cracking also occurs, either when the chloride concentration is high, or at low chloride contents and high oxygen levels. The role of pH and a possible specific action of boric acid are discussed, together with the influence of electrochemical potential. (author)

  18. Annealing texture of rolled nickel alloys

    International Nuclear Information System (INIS)

    Meshchaninov, I.V.; Khayutin, S.G.

    1976-01-01

    A texture of pure nickel and binary alloys after the 95% rolling and annealing has been studied. Insoluble additives (Mg, Zr) slacken the cubic texture in nickel and neral slackening of the texture (Zr). In the case of alloying with silicium (up to 2%) the texture practically coinsides with that of a technical-grade nickel. The remaining soluble additives either do not change the texture of pure nickel (C, Nb) or enhance the sharpness and intensity of the cubic compontnt (Al, Cu, Mn, Cr, Mo, W, Co -at their content 0.5 to 2.0%). A model is proposed by which variation of the annealing texture upon alloying is caused by dissimilar effect of the alloying elements on the mobility of high- and low-angle grain boundaries

  19. Plutonium microstructures. Part 2. Binary and ternary alloys

    International Nuclear Information System (INIS)

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described

  20. Comparison and evaluation of marginal and internal gaps in cobalt-chromium alloy copings fabricated using subtractive and additive manufacturing.

    Science.gov (United States)

    Kim, Dong-Yeon; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul

    2018-01-01

    To evaluate the marginal and internal gaps of cobalt-chromium (Co-Cr) alloy copings fabricated using subtractive and additive manufacturing. A study model of an abutment tooth 46 was prepared by a 2-step silicone impression with dental stone. Fifteen stereolithography files for Co-Cr alloy copings were compiled using a model scanner and dental CAD software. Using the lost wax (LW), wax block (WB), soft metal block (SMB), microstereolithography (μ-SLA), and selected laser melting (SLM) techniques, 15 Co-Cr alloy copings were fabricated per group. The marginal and internal gaps of these Co-Cr alloy copings were measured using a digital microscope (160×), and the data obtained were analyzed using the non-parametric Kruskal-Wallis H-test and post-hoc Mann-Whitney U-test with Bonferroni correction. The mean values of the marginal, axial wall, and occlusal gaps were 91.8, 83.4, and 163μm in the LW group; 94.2, 77.5, and 122μm in the WB group; 60.0, 79.4, and 90.8μm in the SMB group; 154, 72.4, and 258μm in the μ-SLA group; and 239, 73.6, and 384μm in the SLM group, respectively. The differences in the marginal and occlusal gaps between the 5 groups were statistically significant (P<.05). The marginal gaps of the LW, WB, and SMB groups were within the clinically acceptable limit, but further improvements in the μ-SLA and SLM approaches may be required prior to clinical implementation. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  1. First-Principles Study on the Structural Stability and Segregation Behavior of γ-Fe/Cr2N Interface with Alloying Additives M (M = Mn, V, Ti, Mo, and Ni

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2016-07-01

    Full Text Available This study investigated the structural stability and electrochemical properties of alloying additives M (M = Mn, V, Ti, Mo, or Ni at the γ-Fe(111/Cr2N(0001 interface by the first-principles method. Results indicated that V and Ti were easily segregated at the γ-Fe(111/Cr2N(0001 interface and enhanced interfacial adhesive strength. By contrast, Ni and Mo were difficult to segregate at the γ-Fe(111/Cr2N(0001 interface. Moreover, the results of the work function demonstrated that alloying additives Mn reduced local electrochemical corrosion behavior of the γ-Fe(111/Cr2N(0001 interface by cutting down Volta potential difference (VPD between clean γ-Fe(111 and Cr2N(0001, while alloying additives V, Ti, Mo, and Ni at the γ-Fe(111/Cr2N(0001 interface magnified VPD between clean γ-Fe(111 and Cr2N(0001, which were low-potential sites that usually serve as local attack initiation points.

  2. Effects of additive Pd on the structures and electrochemical hydrogen storage properties of Mg{sub 67}Co{sub 33}-based composites or alloys with BCC phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao; Zhuang, Xiangyang [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Zhu, Yunfeng [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Zhan, Leyu [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Pu, Zhenggan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Wan, Neng [SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing 210096 (China); Li, Liquan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China)

    2015-02-15

    Highlights: • Additive Pd in Mg{sub 67}Co{sub 33} benefits to form a ternary BCC alloy. • Introducing 5.0 at.% Pd in Mg{sub 67}Co{sub 33} lifts the initial discharge capacity from 10 mAh/g to maximum 530 mAh/g. • Exchange current density was increased due to the homogeneously dispersed Pd. • Additive Pd slightly enhances the hydrogen diffusion coefficient of Mg-Co-Pd composites or alloys. - Abstract: Mg{sub 67}Co{sub 33} and Mg{sub 67}Co{sub 33}-Pd composites/alloys prepared by ball milling for 120 h possess nano-crystalline with body-centered cubic (BCC) structure, which was verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) analyses. The introduced 5.0 at.% Pd significantly lifts the initial discharge capacity from 10 mAh g{sup -1} of Mg{sub 67}Co{sub 33} to maximum 530 mAh g{sup -1}. Pd also drives the Mg{sub 67}Co{sub 33}-Pd composite forming a full BCC alloy during ball milling. The distribution of Pd gradually becomes homogeneous with the augmentation of the ball milling time according to the analyses by scanning electron microscopy-energy dispersive spectrometer (SEM-EDS). Exchange current density increased with the milling time and can be ascribed to the homogeneously dispersion of Pd over the surface. The introduced Pd also enhances the hydrogen diffusion coefficient of the Mg{sub 67}Co{sub 33}-Pd composites/alloys.

  3. Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Rundong; Li, Zhiyong, E-mail: lizhiyong@nuc.edu.cn; Li, Xiaoxi; Sun, Qi

    2015-10-30

    Highlights: • The low-power-laser was used to obtain the excellent coatings with different amount of Y{sub 2}O{sub 3} addition. • The addition of rare earth oxide Y{sub 2}O{sub 3} refined and purified the microstructure of the coatings, meanwhile, increased the thickness of the coatings and reduced the dilution of cladding materials from based alloy. • The primary phases in the coatings are Mg{sub 32}Al{sub 47}Cu{sub 7}, MgCu{sub 6}Al{sub 5}, Al{sub 2}CuMg and Al{sub 12}Mg{sub 17}. The A{sub l4}MgY and MgAl{sub 2}O{sub 4} phase can be found in Y{sub 2}O{sub 3}-modified coatings. • The micro-hardness and the abrasion resistance of the coatings with Y{sub 2}O{sub 3} had been improved obviously compared with the coatings without Y{sub 2}O{sub 3}. • The corrosion resistance of the AZ91D magnesium alloy had been improved by laser cladding. And the effect of Y{sub 2}O{sub 3} on the corrosion potential of the coatings was less than the effect of Y{sub 2}O{sub 3} on corrosion current density of the coatings. - Abstract: Due to the low-melting-point and high evaporation rate of magnesium at elevated temperature, high power laser clad coating on magnesium always causes subsidence and deterioration in the surface. Low power laser can reduce the evaporation effect while brings problems such as decreased thickness, incomplete fusion and unsatisfied performance. Therefore, low power laser with selected parameters was used in our research work to obtain Al–Cu coatings with Y{sub 2}O{sub 3} addition on AZ91D magnesium alloy. The addition of Y{sub 2}O{sub 3} obviously increases thickness of the coating and improves the melting efficiency. Furthermore, the effect of Y{sub 2}O{sub 3} addition on the microstructure of laser clad Al–Cu coatings was investigated by scanning electron microscopy. The energy-dispersive spectrometer (EDS) and X-ray diffractometer (XRD) were used to examine the elemental and phase compositions of the coatings. The properties were investigated

  4. Effect of Si addition to Al-8Mg alloy on the microstructure and thermo-physical properties of SiCp/Al composites prepared by pressureless infiltration

    International Nuclear Information System (INIS)

    Ren Shubin; He Xinbo; Qu Xuanhui; Humail, Islam S.; Li Yan

    2007-01-01

    Fifty-five volume percentage of SiCp/Al composites were prepared by pressureless infiltration to investigate the effect of Si addition to Al-8Mg alloy from 0 wt% to 18 wt% on the interfacial reaction between Al and SiC and the thermo-physical properties of the prepared composites. TEM and X-ray analysis showed that the degree of interfacial reaction decreased as the Si content increased, and that it ceased at 1273 K when the Si addition to the aluminum was greater than 12 wt%. The Si addition to Al-8Mg alloy reduced the CTE of the composites and increased their thermal conductivity (TC), but Si beyond 12 wt% led to the reduction of TC, though the CTE was lower. This is attributable to the combined action of the Si on the wettability, interfacial reaction and the TC and CTE of the matrix itself

  5. The A1 to L10 transformation in FePt films with ternary alloying additions of Mg, V, Mn, and B

    International Nuclear Information System (INIS)

    Wang, B.; Barmak, K.; Klemmer, T. J.

    2011-01-01

    The impact of ternary additions of Mg, V, Mn, and B on the A1 [face centered cubic (fcc)] to L1 0 phase transformation has been studied. The films were cosputter deposited from elemental targets at room temperature and annealed after deposition. The films had Mg additions in the range ∼0-2.6 at.%, V additions in the range 0.7-12.2 at.%, Mn additions in the range 2.2-16.3 at.%, and B additions in the range 1.2-12.9 at.%. For all four ternary alloy systems, annealing resulted in the formation of no other phases than the L1 0 phase. Ternary additions of C than the binary FePt films with the same Pt content.

  6. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  7. Effects of reactive element additions and sulfur removal on the oxidation behavior of FECRAL alloys

    International Nuclear Information System (INIS)

    Stasik, M.C.; Pettit, F.S.; Meier, G.H.; Smialek, J.L.

    1994-01-01

    The results of this study have shown that desulfurization of FeCrAl alloys by hydrogen annealing can result in improvements in cyclic oxidation comparable to that achieved by doping with reactive elements. Moreover, specimens of substantial thicknesses can be effectively desulfurized because of the high diffusivity of sulfur in bcc iron alloys. The results have also shown that there is less stress generation during the cyclic oxidation of Y-doped FeCrAl compared to Ti-doped or desulfurized FeCrAl. This indicates that the growth mechanism, as well as the strength of the oxide/alloy interface, influences the ultimate oxidation morphology and stress state which will certainly affect the length of time the alumina remains protective

  8. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  9. A hybrid finite-element and cellular-automaton framework for modeling 3D microstructure of Ti–6Al–4V alloy during solid–solid phase transformation in additive manufacturing

    Science.gov (United States)

    Chen, Shaohua; Xu, Yaopengxiao; Jiao, Yang

    2018-06-01

    Additive manufacturing such as selective laser sintering and electron beam melting has become a popular technique which enables one to build near-net-shape product from packed powders. The performance and properties of the manufactured product strongly depends on its material microstructure, which is in turn determined by the processing conditions including beam power density, spot size, scanning speed and path etc. In this paper, we develop a computational framework that integrates the finite element method (FEM) and cellular automaton (CA) simulation to model the 3D microstructure of additively manufactured Ti–6Al–4V alloy, focusing on the β → α + β transition pathway in a consolidated alloy region as the power source moves away from this region. Specifically, the transient temperature field resulted from a scanning laser/electron beam following a zig-zag path is first obtained by solving nonlinear heat transfer equations using the FEM. Next, a CA model for the β → α + β phase transformation in the consolidated alloy is developed which explicitly takes into account the temperature dependent heterogeneous nucleation and anisotropic growth of α grains from the parent β phase field. We verify our model by reproducing the overall transition kinetics predicted by the Johnson–Mehl–Avrami–Kolmogorov theory under a typical processing condition and by quantitatively comparing our simulation results with available experimental data. The utility of the model is further demonstrated by generating large-field realistic 3D alloy microstructures for subsequent structure-sensitive micro-mechanical analysis. In addition, we employ our model to generate a wide spectrum of alloy microstructures corresponding to different processing conditions for establishing quantitative process-structure relations for the system.

  10. Effect of composition on the superplasticity of aluminium scandium alloys

    International Nuclear Information System (INIS)

    Bradley, E.L. III; Morris, J.W. Jr.

    1992-01-01

    Several aluminum alloys have been shown to exhibit superplasticty in the as-rolled condition. Previous work has shown that aluminum-scandium alloys also exhibit this behavior, but only with the addition of ternary alloying elements such as lithium and magnesium. These additions raised the strain-rate sensitivity of these alloys to 0.4-0.5 for selected strain rates at temperatures above 400 degrees C. A systematic study was undertaken of five Al-Sc alloys with varying lithium and magnesium concentrations in order to fully characterize the high temperature deformation mechanism. Specimens were deformed at a constant strain rate to predetermined true strains for textural and microstructural characterization. In this paper work is presented that will elucidate the effect of these different ternary additives on the superplastic deformation mechanism in these alloys

  11. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    International Nuclear Information System (INIS)

    Rashvand avei, M.; Jafarian, M.; Moghanni Bavil Olyaei, H.; Gobal, F.; Hosseini, S.M.; Mahjani, M.G.

    2013-01-01

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm −2 . • High inhibitor efficiency about 97% for AA6060

  12. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rashvand avei, M. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Jafarian, M., E-mail: mjafarian@kntu.ac.ir [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Moghanni Bavil Olyaei, H. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-8516, Tehran (Iran, Islamic Republic of); Hosseini, S.M. [Jahad Organization – Science and Technology Center, Tehran (Iran, Islamic Republic of); Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2013-12-16

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm{sup −2}. • High inhibitor efficiency about 97% for AA6060.

  13. Radiation-induced segregation in binary and ternary alloys

    International Nuclear Information System (INIS)

    Okamoto, P.R.; Rehn, L.E.

    1979-01-01

    A review is given of our current knowledge of radiation-induced segregation of major and minor elements in simple binary and ternary alloys as derived from experimental techniques such as Auger electron spectroscopy, secondary-ion mass spectroscopy, ion-backscattering, infrared emissivity measurements and transmission electron microscopy. Measurements of the temperature, dose and dose-rate dependences as well as of the effects of such materials variables as solute solubility, solute misfit and initial solute concentration has proved particularly valuable in understanding the mechanisms of segregation. The interpretation of these data in terms of current theoretical models which link solute segregation behavior to defect-solute binding interactions and/or to the relative diffusion rates of solute and solvent atoms the interstitial and vacancy migration mechanisms has, in general, been fairly successful and has provided considerable insight into the highly interrelated phenomena of solute-defect trapping, solute segregation, phase stability and void swelling. Specific examples in selected fcc, bcc and hcp alloy systems are discussed with particular emphasis given to the effects of radiation-induced segregation on the phase stability of single-phase and two-phase binary alloys and simple Fe-Cr-Ni alloys. (Auth.)

  14. Silumins alloy crystallization

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available This paper presents the results of research, by ATD method, of hypo-, near- and hyperutectic silumins crystallization containing the following alloying additives: Mg, Ni, Cu, Cr, Mo, W, V. It has been shown that, depending on their concentration may crystallize pre-eutectic or eutectic multicomponent phases containing these alloy additives. It has been revealed that any subsequent crystallizable phase nucleate and grows near the liquid/former crystallized phase interface. In multiphases compound also falls the silicon, resulting in a reduction in its quantity and the fragmentation in the eutectic mixture. As a result, it gets a high hardness of silumins in terms of 110-220HB.

  15. Tribological Behaviors of Graphene and Graphene Oxide as Water-Based Lubricant Additives for Magnesium Alloy/Steel Contacts

    Directory of Open Access Journals (Sweden)

    Hongmei Xie

    2018-01-01

    Full Text Available The tribological behaviors of graphene and graphene oxide (GO as water-based lubricant additives were evaluated by use of a reciprocating ball-on-plate tribometer for magnesium alloy-steel contacts. Three sets of test conditions were examined to investigate the effect of concentration, the capacity of carrying load and the endurance of the lubrication film, respectively. The results showed that the tribological behaviors of water can be improved by adding the appropriate graphene or GO. Compared with pure deionized water, 0.5 wt.% graphene nanofluids can offer reduction of friction coefficient by 21.9% and reduction of wear rate by 13.5%. Meanwhile, 0.5 wt.% GO nanofluids were found to reduce the friction coefficient and wear rate up to 77.5% and 90%, respectively. Besides this, the positive effect of the GO nanofluids was also more pronounced in terms of the load-carrying capacity and the lubrication film endurance. The wear mechanisms have been tentatively proposed according to the observation of the worn surfaces by field emission scanning electron microscope-energy dispersive spectrometer (FESEM-EDS and Raman spectrum as well as the wettability of the nanofluids on the magnesium alloy surface by goniometer.

  16. Tribological Behaviors of Graphene and Graphene Oxide as Water-Based Lubricant Additives for Magnesium Alloy/Steel Contacts.

    Science.gov (United States)

    Xie, Hongmei; Jiang, Bin; Dai, Jiahong; Peng, Cheng; Li, Chunxia; Li, Quan; Pan, Fusheng

    2018-01-29

    The tribological behaviors of graphene and graphene oxide (GO) as water-based lubricant additives were evaluated by use of a reciprocating ball-on-plate tribometer for magnesium alloy-steel contacts. Three sets of test conditions were examined to investigate the effect of concentration, the capacity of carrying load and the endurance of the lubrication film, respectively. The results showed that the tribological behaviors of water can be improved by adding the appropriate graphene or GO. Compared with pure deionized water, 0.5 wt.% graphene nanofluids can offer reduction of friction coefficient by 21.9% and reduction of wear rate by 13.5%. Meanwhile, 0.5 wt.% GO nanofluids were found to reduce the friction coefficient and wear rate up to 77.5% and 90%, respectively. Besides this, the positive effect of the GO nanofluids was also more pronounced in terms of the load-carrying capacity and the lubrication film endurance. The wear mechanisms have been tentatively proposed according to the observation of the worn surfaces by field emission scanning electron microscope-energy dispersive spectrometer (FESEM-EDS) and Raman spectrum as well as the wettability of the nanofluids on the magnesium alloy surface by goniometer.

  17. Development of Pb-Free Nanocomposite Solder Alloys

    Directory of Open Access Journals (Sweden)

    Animesh K. Basak

    2018-04-01

    Full Text Available As an alternative to conventional Pb-containing solder material, Sn–Ag–Cu (SAC based alloys are at the forefront despite limitations associated with relatively poor strength and coarsening of grains/intermetallic compounds (IMCs during aging/reflow. Accordingly, this study examines the improvement of properties of SAC alloys by incorporating nanoparticles in it. Two different types of nanoparticles were added in monolithic SAC alloy: (1 Al2O3 or (2 Fe and their effect on microstructure and thermal properties were investigated. Addition of Fe nanoparticles leads to the formation of FeSn2 IMCs alongside Ag3Sn and Cu6Sn5 from monolithic SAC alloy. Addition of Al2O3 nano-particles do not contribute to phase formation, however, remains dispersed along primary β-Sn grain boundaries and act as a grain refiner. As the addition of either Fe or Al2O3 nano-particles do not make any significant effect on thermal behavior, these reinforced nanocomposites are foreseen to provide better mechanical characteristics with respect to conventional monolithic SAC solder alloys.

  18. Thermal stability of (AlSi)x(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    International Nuclear Information System (INIS)

    Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L.

    2014-01-01

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi) x (TiVZr) phases with D0 22 /D0 23 tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi) x (TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals

  19. Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development

    International Nuclear Information System (INIS)

    Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.

    2007-01-01

    Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)

  20. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    Science.gov (United States)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  1. Superior critical current density obtained in MgB_2 bulks via employing carbon-coated boron and minor Cu addition

    International Nuclear Information System (INIS)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-01-01

    Highlights: • Usage of carbon-coated boron leads to high level of homogeneous carbon doping. • Cu addition improves MgB_2 grain connectivity, leading to higher J_c at low fields. • Cu addition reduces MgO impurity, also contributing to the improvement of J_c. - Abstract: High performance Cu doped MgB_2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB_2 grains, as well as a high level of homogeneous carbon doping in the MgB_2 samples, which significantly enhance the J_c in both Cu doped and undoped bulks compared to MgB_2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB_2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (J_c) at self fields and low fields (the best values are 7 × 10"5 A/cm"2 at self fields, and 1 × 10"5 A/cm"2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of J_c at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB_2 bulks or wires with excellent J_c on an industrial scale.

  2. Tribological research of cobalt alloys used as biomaterials

    Directory of Open Access Journals (Sweden)

    Robert Karpiński

    2015-12-01

    Full Text Available This study provides information about the cobalt alloys used in dentistry and medicine. The work includes a review of the literature describing the general properties of cobalt alloys. In addition it describes the impact of the manufacturing conditions and alloy additives used , on the structure and mechanical properties of these alloys. The research methodology and the results obtained has been presented in the study. Two cobalt-based alloys Co-CrMo-W and Co-Cr-Ni-Mo were selected for the tests. The first one was prepared with the use of casting technique whereas the second was obtained due to plastic forming. An analysis of the chemical composition and in vitro tribological tests with the use of tribotester of "ball-on-disc" type was conducted. Comparative tribological characteristics of these alloys has been presented.

  3. Influence of Nickel Addition on Properties of Secondary AlSi7Mg0.3 Alloy

    Directory of Open Access Journals (Sweden)

    Richtárech L.

    2015-06-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by nickel. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich intermetallic phases. It is impossible to remove iron from melt by standard operations. Some elements eliminates iron by changing iron intermetallic phase morphology, decreasing its extent and by improving alloy properties. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of nickel as iron corrector of iron based phases.

  4. Effect of iron addition on the work-hardening characteristics of Al-16 wt%Ag alloy

    International Nuclear Information System (INIS)

    Abd El-Salam, F.; Mahmoud, M.A.; Abd El-Khalek, A.M.; Nada, R.H.

    2002-01-01

    The effect of pre-aging time (up to 120 min) and temperatures (428-498 K) on the stress-strain characteristics of Al-16 wt%Ag and Al-16 wt%Ag-0.28 wt%Fe alloys was investigated at different deformation temperatures in the range 353-413 K. The tensile parameters measured for both alloys showed general increase with increasing pre-aging time at 428 and 458 K, while the samples pre-aged at 498 K showed initial softening up to pre-aging time of 60 min followed by increased hardening for longer pre-aging times. The Fe-free samples were generally harder than the ternary samples. The activation energy of the fracture mechanism in both alloys was around 28 kJ/mol

  5. Superior metallic alloys through rapid solidification processing (RSP) by design

    Energy Technology Data Exchange (ETDEWEB)

    Flinn, J.E. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.

  6. Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions

    International Nuclear Information System (INIS)

    Bermingham, M.J.; Kent, D.; Zhan, H.; StJohn, D.H.; Dargusch, M.S.

    2015-01-01

    This study demonstrates that trace boron addition to Ti–6Al–4V coupons produced by additive layer manufacturing is an effective way to eliminate the deleterious anisotropic microstructures often encountered with this manufacturing technique. Trace boron additions (up to 0.13 wt.%) to this alloy eliminate grain boundary-α and colony-α, and instead produce a homogeneous α-microstructure consisting of fine equiaxed α-grains in both as-deposited and heat treated coupons. Prior-β grains remain columnar with boron addition but become narrower due to the wider solidification range and growth restricting effect of the boron solute. Compared to unmodified Ti–6Al–4V alloy, Ti–6Al–4V modified with trace boron additions showed up to 40% improvement in plasticity with no loss in strength under uniaxial compression at room temperature. Boron additions were found to inhibit twinning transmission that causes sudden large load drops during deformation of the unmodified Ti–6Al–4V alloy in the heat treated condition

  7. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  8. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  9. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  10. Effect of the Addition of 3% Co in NiTi Alloy on Loading/Unloading Force

    Science.gov (United States)

    Phukaoluan, A.; Dechkunakorn, S.; Anuwongnukroh, N.; Khantachawana, A.; Kaewtathip, P.; Kajornchaiyakul, J.; Wichai, W.

    2017-11-01

    The study evaluated the loading-unloading force in the load-deflection curve of the fabricated NiTiCo and NiTi wires. Wire alloys with Nickel, Titanium, and Cobalt (purity-99.95%) with atomic weight ratio 47Ni:50Ti:3Co and 50.6Ni:49.4Ti were prepared, sliced, and cold-rolled at 30% reduction, followed by heat treatment in a furnace at 400oC for 1 hour. The specimens of wire size of 0.016 x 0.022 inch2 were cut and subjected to three-point bending test to investigate the load-deflection curve at deflection point 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 mm. Descriptive statistic was used to evaluate each variables and independent t-test was used to compare between the groups. The results presented a load-deflection curve that resembled a typical superelastic wire. However, significant differences were seen in the loading-unloading forces between the two with an average loading force of 412.53g and 304.98g and unloading force of 292.40g and 208.08g for NiTiCo and NiTi wire, respectively. The force at each deflection point of NiTiCo in loading-unloading force was higher than NiTi wire. This study concluded that the addition of 3%Co in NiTi alloy can increase the loading-unloading force of NiTi wire but were within the range for orthodontic tooth movement.

  11. On the corrosion of binary magnesium-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Birbilis, N. [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); CAST Co-operative Research Centre (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia)], E-mail: nick.birbilis@eng.monash.edu.au; Easton, M.A. [CAST Co-operative Research Centre (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia); Sudholz, A.D. [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia); Zhu, S.M. [CAST Co-operative Research Centre (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia); Gibson, M.A. [CAST Co-operative Research Centre (Australia); CSIRO Division of Materials Science and Engineering (Australia)

    2009-03-15

    The corrosion properties of high-pressure die cast (HPDC) magnesium-rare earth (RE) based alloys have been studied. Binary additions of La, Ce and Nd to commercially pure Mg were made up to a nominal 6 wt.%. It was found that the intermetallic phases formed in the eutectic were Mg{sub 12}La, Mg{sub 12}Ce and Mg{sub 3}Nd, respectively. Results indicated that increasing RE alloying additions systematically increased corrosion rates. This was also described in the context of the electrochemical response of Mg-RE intermetallics - which were independently assessed by the electrochemical microcapillary technique. This study is a discrete effort towards revealing the electrochemical effect of carefully controlled binary alloying additions to magnesium in order to elucidate the microstructure-corrosion relationship more generally for HPDC Mg alloys. Such fundamental information is seen to not only be useful in understanding the corrosion of alloys which presently contain RE additions, but may be exploited in the design of magnesium alloys with more predictable corrosion behaviour. There is a special need to understand this relationship - particularly for magnesium that commonly displays poor corrosion resistance.

  12. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    Science.gov (United States)

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  13. Effects of silicon on mechanical properties of AM60 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Hu Yong

    2012-08-01

    Full Text Available Silicon was added to improve the tensile, wear and creep behaviors of AM60 magnesium alloy in this study. The investigation has been undertaken by means of universal testing machine, HBE-3000A Brinell hardness tester, M-2000 friction-wear machine, DMA-Q800 creep machine, optical microscopy (OM and scanning electron microscopy (SEM. The results indicate that the Chinese script type Mg2Si particles are formed by adding Si into the AM60 magnesium alloy. The ultimate tensile strength and hardness of the AM60 magnesium alloy increases with the Si addition, and the ultimate tensile strength and hardness of the AM60+1.0wt.%Si alloy are increased by 12% and 19.8%, respectively in comparison with that of the AM60 magnesium alloy. The wear property and the high temperature creep property of the AM60 magnesium alloy are also improved with Si addition. The wear mechanisms of the AM60 and AM60+1.0wt.%Si alloys are adhesive wear and abrasion wear, respectively. While, the elongation of the AM60 magnesium alloy decreases with the addition of Si. The optimum Si addition content is 1.0wt.%.

  14. Annex 5 - Fabrication of U-Al alloy

    International Nuclear Information System (INIS)

    Drobnjak, Dj.; Lazarevic, Dj.; Mihajlovic, A.

    1961-01-01

    Alloy U-Al with low content of aluminium is often used for fabrication of fuel elements because it is stable under moderate neutron flux density. Additionally this type of alloys show much better characteristics than pure uranium under reactor operating conditions (temperature, mechanical load, corrosion effect of water). This report contains the analysis of the phase diagram of U-Al alloy with low content of aluminium, applied procedure for alloying and casting with detailed description of equipment. Characteristics of the obtained alloy are described and conclusions about the experiment and procedure are presented [sr

  15. Influence of iron and beryllium additions on heat resistance of silicide coatings on TsMB-30 molybdenum alloy

    International Nuclear Information System (INIS)

    Zajtseva, A.L.; Fedorchuk, N.M.; Lazarev, Eh.M.; Korotkov, N.A.

    1985-01-01

    Alloying of titanium modified silicide coatings on TsMB-30 molybdenum alloy with iron or beryllium is stated to improve their protective properties. Coatings with low content of alloying elements have the best protective properties. Service life of coatings is determined by the formed oxide film and phase transformations taking place in the coating

  16. Effect of Al alloying on the martensitic temperature in Ti-Ta shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Alberto; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universitaet Bochum (Germany)

    2017-07-01

    Ti-Ta-based alloys are promising candidates as high temperature shape memory alloys (HTSMAs) for actuators and superelastic applications. The shape memory mechanism involves a martensitic transformation between the low-temperature α'' phase (orthorhombic) and the high-temperature β phase (body-centered cubic). In order to prevent the degradation of the shape memory effect, Ti-Ta needs to be alloyed with further elements. However, this often reduces the martensitic temperature M{sub s}, which is usually strongly composition dependent. The aim of this work is to analyze how the addition of a third element to Ti-Ta alloys affects M{sub s} by means of electronic structure calculations. In particular, it will be investigated how alloying Al to Ti-Ta alters the relative stability of the α'' and β phases. This understanding will help to identify new alloy compositions featuring both a stable shape memory effect and elevated transformation temperatures.

  17. Corrosion behavior of metals and alloys in marine-industrial environment

    Directory of Open Access Journals (Sweden)

    Mariappan Natesan, Subbiah Selvaraj, Tharmakkannu Manickam and Gopalachari Venkatachari

    2008-01-01

    Full Text Available This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu–Zn alloys (Cu–27Zn, Cu–30Zn and Cu–37Zn, were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu–Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy.

  18. Heterogeneous coarsening of Pb phase and the effect of Cu addition on it in a nanophase composite of Al-10 wt%Pb alloy prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Zhu, M.; Liu, X.; Wu, Z.F.; Ouyang, L.Z.; Zeng, M.Q.

    2009-01-01

    A nanophase composite of Al-10 wt%Pb alloy was prepared by mechanical alloying. The coarsening behavior of Pb phase in the composite during heating process was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nanoindentation test. The present work shows that the Pb phase grew substantially and had two different size distributions when the heating temperature was above 823 K. The different size distributions of Pb phase were owing to different grain size ranges of Al matrix in different regions, which led to the different growth rates of the Pb phase in those regions. It has been proposed that the different size ranges of Al grain appeared upon heating were originated from a statistical size distribution of Al grains in the as-milled powder. With the addition of a small amount of Cu, the heterogeneous growth of Pb phase can be suppressed, and the coarsening of Pb phase shows two distinct rates. This indicates that the coarsening is mainly governed by grain boundary diffusion and lattice diffusion of Al matrix in the initial stage and the later one, respectively

  19. Derivative thermo analysis of the Al-Si cast alloy with addition of rare earths metals

    Directory of Open Access Journals (Sweden)

    M. Krupiński

    2010-01-01

    Full Text Available In this paper the dependence between chemical composition, structure and cooling rate of Al–Si aluminium cast alloy was investigated. For studying of the structure changes the thermo-analysis was carried out, using the UMSA (Universal Metallurgical Simulator and Analyzer device. For structure investigation optical and electron scanning microscopy was used, phase and chemical composition of the Al cast alloy also using qualitative point-wise EDS microanalysis.

  20. A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication

    Science.gov (United States)

    Li, Ling; Tirado, Angelica; Conner, B. S.; Chi, Miaofang; Elliott, Amy M.; Rios, Orlando; Zhou, Haidong; Paranthaman, M. Parans

    2017-09-01

    In this paper, binder jetting additive manufacturing technique is employed to fabricate NdFeB isotropic bonded magnets, followed by an infiltration process with low-melting point eutectic alloys [i.e., Nd3Cu0.25Co0.75 (NdCuCo) and Pr3Cu0.25Co0.75 (PrCuCo)]. Densification and mechanical strength improvement are achieved for the as-printed porous part. Meanwhile, the intrinsic coercivity Hci is enhanced from 732 to 1345 kA/m and 1233 kA/m after diffusion of NdCuCo and PrCuCo, respectively. This study presents a novel method for fabricating complex-shaped bonded magnets with promising mechanical and magnetic properties.