WorldWideScience

Sample records for minimum-time trajectory tracking

  1. Minimum Time Trajectory Optimization of CNC Machining with Tracking Error Constraints

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-01-01

    Full Text Available An off-line optimization approach of high precision minimum time feedrate for CNC machining is proposed. Besides the ordinary considered velocity, acceleration, and jerk constraints, dynamic performance constraint of each servo drive is also considered in this optimization problem to improve the tracking precision along the optimized feedrate trajectory. Tracking error is applied to indicate the servo dynamic performance of each axis. By using variable substitution, the tracking error constrained minimum time trajectory planning problem is formulated as a nonlinear path constrained optimal control problem. Bang-bang constraints structure of the optimal trajectory is proved in this paper; then a novel constraint handling method is proposed to realize a convex optimization based solution of the nonlinear constrained optimal control problem. A simple ellipse feedrate planning test is presented to demonstrate the effectiveness of the approach. Then the practicability and robustness of the trajectory generated by the proposed approach are demonstrated by a butterfly contour machining example.

  2. Experimental Results for Minimum-Time Trajectory Tracking of a Direct-Drive Three-Link Planar Arm

    Energy Technology Data Exchange (ETDEWEB)

    DRIESSEN,BRIAN; PARKER,GORDON G.

    1999-09-01

    This work is an experimental investigation of the ability of a real three-link direct-drive arm to track model-based minimum-time trajectories that have been found off-line. Sufficiently large velocity gains in the computed torque control law were not achievable with the velocity sensors described herein. This indicates the critical importance of the velocity sensing when attempting to track trajectories that push the envelope of the system's torque capabilities.

  3. Trajectory tracking control for underactuated stratospheric airship

    Science.gov (United States)

    Zheng, Zewei; Huo, Wei; Wu, Zhe

    2012-10-01

    Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.

  4. Control system design for UAV trajectory tracking

    Science.gov (United States)

    Wang, Haitao; Gao, Jinyuan

    2006-11-01

    In recent years, because of the emerging requirements for increasing autonomy, the controller of uninhabited air vehicles must be augmented with a very sophisticated autopilot design which is capable of tracking complex and agile maneuvering trajectory. This paper provides a simplified control system framework to solve UAV maneuvering trajectory tracking problem. The flight control system is divided into three subsystems including command generation, transformation and allocation. According to the kinematics equations of the aircraft, flight path angle commands can be generated by desired 3D position from path planning. These commands are transformed to body angular rates through direct nonlinear mapping, which is simpler than common multi-loop method based on time scale separation assumption. Then, by using weighted pseudo-inverse method, the control surface deflections are allocated to follow body angular rates from the previous step. In order to improve the robustness, a nonlinear disturbance observer-based approach is used to compensate the uncertainty of system. A 6DOF nonlinear UAV model is controlled to demonstrate the performance of the trajectory tracking control system. Simulation results show that the control strategy is easy to be realized and the precision of tracking is satisfying.

  5. Quadrotor trajectory tracking using PID cascade control

    Science.gov (United States)

    Idres, M.; Mustapha, O.; Okasha, M.

    2017-12-01

    Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.

  6. Pneumatic motor speed control by trajectory tracking fuzzy logic

    Indian Academy of Sciences (India)

    In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is defined to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to find the TTFLC boundary values of membership functions ...

  7. Energy-efficient Trajectory Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Bhattacharya, Sourav; Blunck, Henrik

    2011-01-01

    Emergent location-aware applications often require tracking trajectories of mobile devices over a long period of time. To be useful, the tracking has to be energy-efficient to avoid having a major impact on the battery life of the mobile de vice. Furthermore, when trajectory information needs to ...

  8. Trajectory planning and optimal tracking for an industrial mobile robot

    Science.gov (United States)

    Hu, Huosheng; Brady, J. Michael; Probert, Penelope J.

    1994-02-01

    This paper introduces a unified approach to trajectory planning and tracking for an industrial mobile robot subject to non-holonomic constraints. We show (1) how a smooth trajectory is generated that takes into account the constraints from the dynamic environment and the robot kinematics; and (2) how a general predictive controller works to provide optimal tracking capability for nonlinear systems. The tracking performance of the proposed guidance system is analyzed by simulation.

  9. Sliding Mode Control for Trajectory Tracking of an Intelligent Wheelchair

    Directory of Open Access Journals (Sweden)

    Razvan SOLEA

    2009-12-01

    Full Text Available This paper deal with a robust sliding-mode trajectory tracking controller, fornonholonomic wheeled mobile robots and its experimental evaluation by theimplementation in an intelligent wheelchair (RobChair. The proposed control structureis based on two nonlinear sliding surfaces ensuring the tracking of the three outputvariables, with respect to the nonholonomic constraint. The performances of theproposed controller for the trajectory planning problem with comfort constraint areverified through the real time acceleration provided by an inertial measurement unit.

  10. Parametric Approach to Trajectory Tracking Control of Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Shijie Zhang

    2013-01-01

    Full Text Available The mathematic description of the trajectory of robot manipulators with the optimal trajectory tracking problem is formulated as an optimal control problem, and a parametric approach is proposed for the optimal trajectory tracking control problem. The optimal control problem is first solved as an open loop optimal control problem by using a time scaling transform and the control parameterization method. Then, by virtue of the relationship between the optimal open loop control and the optimal closed loop control along the optimal trajectory, a practical method is presented to calculate an approximate optimal feedback gain matrix, without having to solve an optimal control problem involving the complex Riccati-like matrix differential equation coupled with the original system dynamics. Simulation results of 2-link robot manipulator are presented to show the effectiveness of the proposed method.

  11. Robot trajectory tracking with self-tuning predicted control

    Science.gov (United States)

    Cui, Xianzhong; Shin, Kang G.

    1988-01-01

    A controller that combines self-tuning prediction and control is proposed for robot trajectory tracking. The controller has two feedback loops: one is used to minimize the prediction error, and the other is designed to make the system output track the set point input. Because the velocity and position along the desired trajectory are given and the future output of the system is predictable, a feedforward loop can be designed for robot trajectory tracking with self-tuning predicted control (STPC). Parameters are estimated online to account for the model uncertainty and the time-varying property of the system. The authors describe the principle of STPC, analyze the system performance, and discuss the simplification of the robot dynamic equations. To demonstrate its utility and power, the controller is simulated for a Stanford arm.

  12. Tracking Lagrangian trajectories in position–velocity space

    International Nuclear Information System (INIS)

    Xu, Haitao

    2008-01-01

    Lagrangian particle-tracking algorithms are susceptible to intermittent loss of particle images on the sensors. The measured trajectories are often interrupted into short segments and the long-time Lagrangian statistics are difficult to obtain. We present an algorithm to connect the segments of Lagrangian trajectories from common particle-tracking algorithms. Our algorithm tracks trajectory segments in the six-dimensional position and velocity space. We describe the approach to determine parameters in the algorithm and demonstrate the validity of the algorithm with data from numerical simulations and the improvement of long-time Lagrangian statistics on experimental data. The algorithm has important applications in measurements with high particle seeding density and in obtaining multi-particle Lagrangian statistics

  13. Trajectory generation for manipulators using linear quadratic optimal tracking

    Directory of Open Access Journals (Sweden)

    Olav Egeland

    1989-04-01

    Full Text Available The reference trajectory is normally known in advance in manipulator control which makes it possible to apply linear quadratic optimal tracking. This gives a control system which rounds corners and generates optimal feedforward. The method may be used for references consisting of straight-line segments as an alternative to the two-step method of using splines to smooth the reference and then applying feedforward. In addition, the method can be used for more complex trajectories. The actual dynamics of the manipulator are taken into account, and this results in smooth and accurate tracking. The method has been applied in combination with the computed torque technique and excellent performance was demonstrated in a simulation study. The method has also been applied experimentally to an industrial spray-painting robot where a saw-tooth reference was tracked. The corner was rounded extremely well, and the steady-state tracking error was eliminated by the optimal feedforward.

  14. Construction of a WMR for Trajectory Tracking Control: Experimental Results

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2013-01-01

    Full Text Available This paper reports a solution for trajectory tracking control of a differential drive wheeled mobile robot (WMR based on a hierarchical approach. The general design and construction of the WMR are described. The hierarchical controller proposed has two components: a high-level control and a low-level control. The high-level control law is based on an input-output linearization scheme for the robot kinematic model, which provides the desired angular velocity profiles that the WMR has to track in order to achieve the desired position (x*,y* and orientation (φ*. Then, a low-level control law, based on a proportional integral (PI approach, is designed to control the velocity of the WMR wheels to ensure those tracking features. Regarding the trajectories, this paper provides the solution or the following cases: (1 time-varying parametric trajectories such as straight lines and parabolas and (2 smooth curves fitted by cubic splines which are generated by the desired data points x1*,y1*,…,xn*,yn*. A straightforward algorithm is developed for constructing the cubic splines. Finally, this paper includes an experimental validation of the proposed technique by employing a DS1104 dSPACE electronic board along with MATLAB/Simulink software.

  15. Reference trajectory tracking for a multi-DOF robot arm

    Directory of Open Access Journals (Sweden)

    Krasňanský Róbert

    2015-12-01

    Full Text Available This paper presents the problem of tracking the generated reference trajectory by the simulation model of a multi-DOF robot arm. The kinematic transformation between task space and joint configuration coordinates is nonlinear and configuration dependent. To obtain the solution of the forward kinematics problem, the homogeneous transformation matrix is used. A solution to the inverse kinematics is a vector of joint configuration coordinates calculated using of pseudoinverse Jacobian technique. These coordinates correspond to a set of task space coordinates. The algorithm is presented which uses iterative solution and is simplified by considering stepper motors in robot arm joints. The reference trajectory in Cartesian coordinate system is generated on-line by the signal generator previously developed in MS Excel. Dynamic Data Exchange communication protocol allows sharing data with Matlab-Simulink. These data represent the reference tracking trajectory of the end effector. Matlab-Simulink software is used to calculate the representative joint rotations. The proposed algorithm is demonstrated experimentally on the model of 7-DOF robot arm system.

  16. Optimal Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PID Controller

    Directory of Open Access Journals (Sweden)

    Ameer L. Saleh

    2018-02-01

    Full Text Available This paper present an optimal Fractional Order PID (FOPID controller based on Particle Swarm Optimization (PSO for controlling the trajectory tracking of Wheeled Mobile Robot(WMR.The issue of trajectory tracking with given a desired reference velocity is minimized to get the distance and deviation angle equal to zero, to realize the objective of trajectory tracking a two FOPID controllers are used for velocity control and azimuth control to implement the trajectory tracking control. A path planning and path tracking methodologies are used to give different desired tracking trajectories.  PSO algorithm is using to find the optimal parameters of FOPID controllers. The kinematic and dynamic models of wheeled mobile robot for desired trajectory tracking with PSO algorithm are simulated in Simulink-Matlab. Simulation results show that the optimal FOPID controllers are more effective and has better dynamic performance than the conventional methods.

  17. Adaptive Trajectory Tracking Control using Reinforcement Learning for Quadrotor

    Directory of Open Access Journals (Sweden)

    Wenjie Lou

    2016-02-01

    Full Text Available Inaccurate system parameters and unpredicted external disturbances affect the performance of non-linear controllers. In this paper, a new adaptive control algorithm under the reinforcement framework is proposed to stabilize a quadrotor helicopter. Based on a command-filtered non-linear control algorithm, adaptive elements are added and learned by policy-search methods. To predict the inaccurate system parameters, a new kernel-based regression learning method is provided. In addition, Policy learning by Weighting Exploration with the Returns (PoWER and Return Weighted Regression (RWR are utilized to learn the appropriate parameters for adaptive elements in order to cancel the effect of external disturbance. Furthermore, numerical simulations under several conditions are performed, and the ability of adaptive trajectory-tracking control with reinforcement learning are demonstrated.

  18. Lane Changing Trajectory Planning and Tracking Controller Design for Intelligent Vehicle Running on Curved Road

    Directory of Open Access Journals (Sweden)

    Lie Guo

    2014-01-01

    Full Text Available To enhance the active safety and realize the autonomy of intelligent vehicle on highway curved road, a lane changing trajectory is planned and tracked for lane changing maneuver on curved road. The kinematics model of the intelligent vehicle with nonholonomic constraint feature and the tracking error model are established firstly. The longitudinal and lateral coupling and the difference of curvature radius between the outside and inside lane are taken into account, which is helpful to enhance the authenticity of desired lane changing trajectory on curved road. Then the trajectory tracking controller of closed-loop control structure is derived using integral backstepping method to construct a new virtual variable. The Lyapunov theory is applied to analyze the stability of the proposed tracking controller. Simulation results demonstrate that this controller can guarantee the convergences of both the relative position tracking errors and the position tracking synchronization.

  19. Lane changing trajectory planning and tracking control for intelligent vehicle on curved road.

    Science.gov (United States)

    Wang, Lukun; Zhao, Xiaoying; Su, Hao; Tang, Gongyou

    2016-01-01

    This paper explores lane changing trajectory planning and tracking control for intelligent vehicle on curved road. A novel arcs trajectory is planned for the desired lane changing trajectory. A kinematic controller and a dynamics controller are designed to implement the trajectory tracking control. Firstly, the kinematic model and dynamics model of intelligent vehicle with non-holonomic constraint are established. Secondly, two constraints of lane changing on curved road in practice (LCCP) are proposed. Thirdly, two arcs with same curvature are constructed for the desired lane changing trajectory. According to the geometrical characteristics of arcs trajectory, equations of desired state can be calculated. Finally, the backstepping method is employed to design a kinematic trajectory tracking controller. Then the sliding-mode dynamics controller is designed to ensure that the motion of the intelligent vehicle can follow the desired velocity generated by kinematic controller. The stability of control system is proved by Lyapunov theory. Computer simulation demonstrates that the desired arcs trajectory and state curves with B-spline optimization can meet the requirements of LCCP constraints and the proposed control schemes can make tracking errors to converge uniformly.

  20. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks.

    Science.gov (United States)

    Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong

    2017-06-02

    Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.

  1. Trajectory planning and trajectory tracking for a small-scale helicopter in autorotation

    NARCIS (Netherlands)

    Taamallah, Skander; Bombois, Xavier; Van den Hof, Paul M.J.

    2017-01-01

    The design of a high-performance guidance and control system for a small-scale helicopterUnmanned Aerial Vehicle (UAV), with an engine OFF flight condition (i.e. autorotation), is known to be a challenging task. It is the purpose of this paper to present a Trajectory Planning (TP) and Trajectory

  2. Optimal Point-to-Point Trajectory Tracking of Redundant Manipulators using Generalized Pattern Search

    Directory of Open Access Journals (Sweden)

    Thi Rein Myo

    2008-11-01

    Full Text Available Optimal point-to-point trajectory planning for planar redundant manipulator is considered in this study. The main objective is to minimize the sum of the position error of the end-effector at each intermediate point along the trajectory so that the end-effector can track the prescribed trajectory accurately. An algorithm combining Genetic Algorithm and Pattern Search as a Generalized Pattern Search GPS is introduced to design the optimal trajectory. To verify the proposed algorithm, simulations for a 3-D-O-F planar manipulator with different end-effector trajectories have been carried out. A comparison between the Genetic Algorithm and the Generalized Pattern Search shows that The GPS gives excellent tracking performance.

  3. Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks

    Directory of Open Access Journals (Sweden)

    Jose P. Perez

    2014-01-01

    Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.

  4. Trajectory planning and tracking for autonomous vehicles navigation

    OpenAIRE

    Chebly , Alia

    2017-01-01

    In this thesis, the trajectory planning and the control of autonomous vehicles are addressed. As a first step, a multi-body modeling technique is used to develop a four wheeled vehicle planar model. This technique considers the vehicle as a robot consisting of articulated bodies. The geometric description of the vehicle system is derived using the modified Denavit Hartenberg parameterization and then the dynamic model of the vehicle is computed by applying a recursive method used in robotics,...

  5. Back-tracking of primary particle trajectories for muons detected at the Earth surface

    Science.gov (United States)

    Shutenko, V. V.

    2017-01-01

    Investigations of cosmic rays on the surface of the Earth allow to derive information of applied character on the conditions of the interplanetary magnetic field and of the geomagnetic field. For this purpose, it is necessary to collate trajectories of particles detected in the ground-based detector to trajectories of primary cosmic rays in the heliosphere. This problem is solved by means of various back-tracking methods. In this work, one of such methods is presented.

  6. Back-tracking of primary particle trajectories for muons detected at the Earth surface

    International Nuclear Information System (INIS)

    Shutenko, V V

    2017-01-01

    Investigations of cosmic rays on the surface of the Earth allow to derive information of applied character on the conditions of the interplanetary magnetic field and of the geomagnetic field. For this purpose, it is necessary to collate trajectories of particles detected in the ground-based detector to trajectories of primary cosmic rays in the heliosphere. This problem is solved by means of various back-tracking methods. In this work, one of such methods is presented. (paper)

  7. A parallel algorithm for 3D particle tracking and Lagrangian trajectory reconstruction

    International Nuclear Information System (INIS)

    Barker, Douglas; Zhang, Yuanhui; Lifflander, Jonathan; Arya, Anshu

    2012-01-01

    Particle-tracking methods are widely used in fluid mechanics and multi-target tracking research because of their unique ability to reconstruct long trajectories with high spatial and temporal resolution. Researchers have recently demonstrated 3D tracking of several objects in real time, but as the number of objects is increased, real-time tracking becomes impossible due to data transfer and processing bottlenecks. This problem may be solved by using parallel processing. In this paper, a parallel-processing framework has been developed based on frame decomposition and is programmed using the asynchronous object-oriented Charm++ paradigm. This framework can be a key step in achieving a scalable Lagrangian measurement system for particle-tracking velocimetry and may lead to real-time measurement capabilities. The parallel tracking algorithm was evaluated with three data sets including the particle image velocimetry standard 3D images data set #352, a uniform data set for optimal parallel performance and a computational-fluid-dynamics-generated non-uniform data set to test trajectory reconstruction accuracy, consistency with the sequential version and scalability to more than 500 processors. The algorithm showed strong scaling up to 512 processors and no inherent limits of scalability were seen. Ultimately, up to a 200-fold speedup is observed compared to the serial algorithm when 256 processors were used. The parallel algorithm is adaptable and could be easily modified to use any sequential tracking algorithm, which inputs frames of 3D particle location data and outputs particle trajectories

  8. Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation

    Directory of Open Access Journals (Sweden)

    Jiajia Zhou

    2018-05-01

    Full Text Available This paper attempts to address the motion parameter skip problem associated with three-dimensional trajectory tracking of an underactuated Autonomous Underwater Vehicle (AUV using backstepping-based control, due to the unsmoothness of tracking trajectory. Through kinematics concepts, a three-dimensional dynamic velocity regulation controller is derived. This controller makes use of the surge and angular velocity errors with bio-inspired models and backstepping techniques. It overcomes the frequently occurring problem of parameter skip at inflection point existing in backstepping tracking control method and increases system robustness. Moreover, the proposed method can effectively avoid the singularity problem in backstepping control of virtual velocity error. The control system is proved to be uniformly ultimately bounded using Lyapunov stability theory. Simulation results illustrate the effectiveness and efficiency of the developed controller, which can realize accurate three-dimensional trajectory tracking for an underactuated AUV with constant external disturbances. Keywords: Dynamic velocity regulation, Bio-inspired model, Backstepping, Underactuated AUV, Three-dimensional trajectory tracking

  9. Robust Optimal Adaptive Trajectory Tracking Control of Quadrotor Helicopter

    Directory of Open Access Journals (Sweden)

    M. Navabi

    Full Text Available Abstract This paper focuses on robust optimal adaptive control strategy to deal with tracking problem of a quadrotor unmanned aerial vehicle (UAV in presence of parametric uncertainties, actuator amplitude constraints, and unknown time-varying external disturbances. First, Lyapunov-based indirect adaptive controller optimized by particle swarm optimization (PSO is developed for multi-input multi-output (MIMO nonlinear quadrotor to prevent input constraints violation, and then disturbance observer-based control (DOBC technique is aggregated with the control system to attenuate the effects of disturbance generated by an exogenous system. The performance of synthesis control method is evaluated by a new performance index function in time-domain, and the stability analysis is carried out using Lyapunov theory. Finally, illustrative numerical simulations are conducted to demonstrate the effectiveness of the presented approach in altitude and attitude tracking under several conditions, including large time-varying uncertainty, exogenous disturbance, and control input constraints.

  10. Feasibility Study On Missile Launch Detection And Trajectory Tracking

    Science.gov (United States)

    2016-09-01

    Feature (SURF) detection, and Kalman filtering are frequently used for object tracking. These methods have been applied frequently on video records...missile by processing the thermal imagery from the thermal-imaging sensor, which captures the temperature gradient of the surroundings within its field of...view. As the missile’s propulsion motor emits gases at high temperature to generate the thrust required for its flight, the heat 2 signature of

  11. Back to the Future: Consistency-Based Trajectory Tracking

    Science.gov (United States)

    Kurien, James; Nayak, P. Pandurand; Norvig, Peter (Technical Monitor)

    2000-01-01

    Given a model of a physical process and a sequence of commands and observations received over time, the task of an autonomous controller is to determine the likely states of the process and the actions required to move the process to a desired configuration. We introduce a representation and algorithms for incrementally generating approximate belief states for a restricted but relevant class of partially observable Markov decision processes with very large state spaces. The algorithm presented incrementally generates, rather than revises, an approximate belief state at any point by abstracting and summarizing segments of the likely trajectories of the process. This enables applications to efficiently maintain a partial belief state when it remains consistent with observations and revisit past assumptions about the process' evolution when the belief state is ruled out. The system presented has been implemented and results on examples from the domain of spacecraft control are presented.

  12. A trajectory tracking controller for an underwater hexapod vehicle.

    Science.gov (United States)

    Plamondon, N; Nahon, M

    2009-09-01

    This paper describes work done in the modeling and control of a low speed underwater vehicle that uses paddles instead of thrusters to move in the water. A review of previously modeled vehicles and of controller designs for underwater applications is presented. Then, a method to accurately predict the thrust produced by an oscillating flexible paddle is developed and validated. This is followed by the development of a method to determine the ideal paddle motion to produce a desired thrust. Several controllers are then developed and tested using a numerical simulation of the vehicle. We found that some model-based controllers could improve the performance of the system while others showed no benefit. Finally, we report results from experimental trials performed in an open water environment comparing the performance of the controllers. The experimental results showed that all the model-based controllers outperform the simple proportional-derivative controller. The controller giving the best performance was the model-based nonlinear controller. We also found that the vehicle was able to follow a change of a roll angle of 90 degrees in 0.7 s and to precisely follow a sinusoidal trajectory with a period of 6.28 s and an amplitude of 5 degrees.

  13. A trajectory tracking controller for an underwater hexapod vehicle

    International Nuclear Information System (INIS)

    Plamondon, N; Nahon, M

    2009-01-01

    This paper describes work done in the modeling and control of a low speed underwater vehicle that uses paddles instead of thrusters to move in the water. A review of previously modeled vehicles and of controller designs for underwater applications is presented. Then, a method to accurately predict the thrust produced by an oscillating flexible paddle is developed and validated. This is followed by the development of a method to determine the ideal paddle motion to produce a desired thrust. Several controllers are then developed and tested using a numerical simulation of the vehicle. We found that some model-based controllers could improve the performance of the system while others showed no benefit. Finally, we report results from experimental trials performed in an open water environment comparing the performance of the controllers. The experimental results showed that all the model-based controllers outperform the simple proportional-derivative controller. The controller giving the best performance was the model-based nonlinear controller. We also found that the vehicle was able to follow a change of a roll angle of 90 deg. in 0.7 s and to precisely follow a sinusoidal trajectory with a period of 6.28 s and an amplitude of 5 deg.

  14. Intelligent Hybrid Control Strategy for Trajectory Tracking of Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Yi Zuo

    2008-01-01

    Full Text Available We address the problem of robust tracking control using a PD-plus-feedforward controller and an intelligent adaptive robust compensator for a rigid robotic manipulator with uncertain dynamics and external disturbances. A key feature of this scheme is that soft computer methods are used to learn the upper bound of system uncertainties and adjust the width of the boundary layer base. In this way, the prior knowledge of the upper bound of the system uncertainties does need not to be required. Moreover, chattering can be effectively eliminated, and asymptotic error convergence can be guaranteed. Numerical simulations and experiments of two-DOF rigid robots are presented to show effectiveness of the proposed scheme.

  15. Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator

    Science.gov (United States)

    Shao, Xingling; Liu, Jun; Wang, Honglun

    2018-05-01

    In this paper, a robust back-stepping output feedback trajectory tracking controller is proposed for quadrotors subject to parametric uncertainties and external disturbances. Based on the hierarchical control principle, the quadrotor dynamics is decomposed into translational and rotational subsystems to facilitate the back-stepping control design. With given model information incorporated into observer design, a high-order extended state observer (ESO) that relies only on position measurements is developed to estimate the remaining unmeasurable states and the lumped disturbances in rotational subsystem simultaneously. To overcome the problem of "explosion of complexity" in the back-stepping design, the sigmoid tracking differentiator (STD) is introduced to compute the derivative of virtual control laws. The advantage is that the proposed controller via output-feedback scheme not only can ensure good tracking performance using very limited information of quadrotors, but also has the ability of handling the undesired uncertainties. The stability analysis is established using the Lyapunov theory. Simulation results demonstrate the effectiveness of the proposed control scheme in achieving a guaranteed tracking performance with respect to an 8-shaped reference trajectory.

  16. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.

    Science.gov (United States)

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-04-22

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle.

  17. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    Science.gov (United States)

    Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng

    2018-01-01

    Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  18. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    Directory of Open Access Journals (Sweden)

    Jenny Jeong

    Full Text Available Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  19. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking.

    Science.gov (United States)

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.

  20. Quadrotor Trajectory Tracking Based on Quasi-LPV System and Internal Model Control

    Directory of Open Access Journals (Sweden)

    ZeFang He

    2015-01-01

    Full Text Available Internal model control (IMC design method based on quasi-LPV (Linear Parameter Varying system is proposed. In this method, the nonlinear model is firstly transformed to the linear model based on quasi-LPV method; then, the quadrotor nonlinear motion function is transformed to transfer function matrix based on the transformation model from the state space to the transfer function; further, IMC is designed to control the controlled object represented by transfer function matrix and realize quadrotor trajectory tracking. The performance of the controller proposed in this paper is tested by tracking for three reference trajectories with drastic changes. The simulation results indicate that the control method proposed in this paper has stronger robustness to parameters uncertainty and disturbance rejection performance.

  1. Multivariable Super Twisting Based Robust Trajectory Tracking Control for Small Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Xing Fang

    2015-01-01

    Full Text Available This paper presents a highly robust trajectory tracking controller for small unmanned helicopter with model uncertainties and external disturbances. First, a simplified dynamic model is developed, where the model uncertainties and external disturbances are treated as compounded disturbances. Then the system is divided into three interconnected subsystems: altitude subsystem, yaw subsystem, and horizontal subsystem. Second, a disturbance observer based controller (DOBC is designed based upon backstepping and multivariable super twisting control algorithm to obtain robust trajectory tracking property. A sliding mode observer works as an estimator of the compounded disturbances. In order to lessen calculative burden, a first-order exact differentiator is employed to estimate the time derivative of the virtual control. Moreover, proof of the stability of the closed-loop system based on Lyapunov method is given. Finally, simulation results are presented to illustrate the effectiveness and robustness of the proposed flight control scheme.

  2. Visual Trajectory-Tracking Model-Based Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Andrej Zdešar

    2013-09-01

    Full Text Available In this paper we present a visual-control algorithm for driving a mobile robot along the reference trajectory. The configuration of the system consists of a two-wheeled differentially driven mobile robot that is observed by an overhead camera, which can be placed at arbitrary, but reasonable, inclination with respect to the ground plane. The controller must be capable of generating appropriate tangential and angular control velocities for the trajectory-tracking problem, based on the information received about the robot position obtained in the image. To be able to track the position of the robot through a sequence of images in real-time, the robot is marked with an artificial marker that can be distinguishably recognized by the image recognition subsystem. Using the property of differential flatness, a dynamic feedback compensator can be designed for the system, thereby extending the system into a linear form. The presented control algorithm for reference tracking combines a feedforward and a feedback loop, the structure also known as a two DOF control scheme. The feedforward part should drive the system to the vicinity of the reference trajectory and the feedback part should eliminate any errors that occur due to noise and other disturbances etc. The feedforward control can never achieve accurate reference following, but this deficiency can be eliminated with the introduction of the feedback loop. The design of the model predictive control is based on the linear error model. The model predictive control is given in analytical form, so the computational burden is kept at a reasonable level for real-time implementation. The control algorithm requires that a reference trajectory is at least twice differentiable function. A suitable approach to design such a trajectory is by exploiting some useful properties of the Bernstein-Bézier parametric curves. The simulation experiments as well as real system experiments on a robot normally used in the

  3. PTM Along Track Algorithm to Maintain Spacing During Same Direction Pair-Wise Trajectory Management Operations

    Science.gov (United States)

    Carreno, Victor A.

    2015-01-01

    Pair-wise Trajectory Management (PTM) is a cockpit based delegated responsibility separation standard. When an air traffic service provider gives a PTM clearance to an aircraft and the flight crew accepts the clearance, the flight crew will maintain spacing and separation from a designated aircraft. A PTM along track algorithm will receive state information from the designated aircraft and from the own ship to produce speed guidance for the flight crew to maintain spacing and separation

  4. Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

    OpenAIRE

    Shiuh-Jer Huang; Yu-Sheng Hsu

    2017-01-01

    On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be u...

  5. Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments

    Science.gov (United States)

    2016-03-05

    Vehicles in Urban Environments The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...Pine Tree Road Ithaca, NY 14850 -2820 ABSTRACT Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments...Probabilistic Anticipation for Autonomous Robots in Urban Environments, IEEE Transactions on Robotics, (04 2014): 0. doi: 10.1109/TRO.2013.2291620 Isaac

  6. Robust trajectory tracking control of a dual-arm space robot actuated by control moment gyroscopes

    Science.gov (United States)

    Jia, Yinghong; Misra, Arun K.

    2017-08-01

    It is a new design concept to employ control moment gyroscopes (CMGs) as reactionless actuators for space robots. Such actuation has several noticeable advantages such as weak dynamical coupling and low power consumption over traditional joint motor actuation. This paper presents a robust control law for a CMG-actuated space robot in presence of system uncertainties and closed-chain constraints. The control objective is to make the manipulation variables to track the desired trajectories, and reduce the possibility of CMG saturation simultaneously. A reduced-order dynamical equation in terms of independent motion variables is derived using Kane's equations. Desired trajectories of the independent motion variables are derived by minimum-norm trajectory planning algorithm, and an adaptive sliding mode controller with improved adaptation laws is proposed to drive the independent motion variables tracking the desired trajectories. Uniformly ultimate boundedness of the closed loop system is proven using Lyapunov method. The redundancy of the full-order actual control torques is utilized to generate a null torque vector which reduces the possibility of CMG angular momentum saturation while producing no effect on the reduced-order control input. Simulation results demonstrate the effectiveness of the proposed algorithms and the advantage of weak dynamical coupling of the CMG-actuated system.

  7. Consensus seeking, formation keeping, and trajectory tracking in multiple vehicle cooperative control

    Science.gov (United States)

    Ren, Wei

    Cooperative control problems for multiple vehicle systems can be categorized as either formation control problems with applications to mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft, and automated highway systems, or non-formation control problems such as task assignment, cooperative transport, cooperative role assignment, air traffic control, cooperative timing, and cooperative search. The cooperative control of multiple vehicle systems poses significant theoretical and practical challenges. For cooperative control strategies to be successful, numerous issues must be addressed. We consider three important and correlated issues: consensus seeking, formation keeping, and trajectory tracking. For consensus seeking, we investigate algorithms and protocols so that a team of vehicles can reach consensus on the values of the coordination data in the presence of imperfect sensors, communication dropout, sparse communication topologies, and noisy and unreliable communication links. The main contribution of this dissertation in this area is that we show necessary and/or sufficient conditions for consensus seeking with limited, unidirectional, and unreliable information exchange under fixed and switching interaction topologies (through either communication or sensing). For formation keeping, we apply a so-called "virtual structure" approach to spacecraft formation flying and multi-vehicle formation maneuvers. As a result, single vehicle path planning and trajectory generation techniques can be employed for the virtual structure while trajectory tracking strategies can be employed for each vehicle. The main contribution of this dissertation in this area is that we propose a decentralized architecture for multiple spacecraft formation flying in deep space with formation feedback introduced. This architecture ensures the necessary precision in the presence of actuator saturation, internal and external disturbances, and

  8. RGBD Video Based Human Hand Trajectory Tracking and Gesture Recognition System

    Directory of Open Access Journals (Sweden)

    Weihua Liu

    2015-01-01

    Full Text Available The task of human hand trajectory tracking and gesture trajectory recognition based on synchronized color and depth video is considered. Toward this end, in the facet of hand tracking, a joint observation model with the hand cues of skin saliency, motion and depth is integrated into particle filter in order to move particles to local peak in the likelihood. The proposed hand tracking method, namely, salient skin, motion, and depth based particle filter (SSMD-PF, is capable of improving the tracking accuracy considerably, in the context of the signer performing the gesture toward the camera device and in front of moving, cluttered backgrounds. In the facet of gesture recognition, a shape-order context descriptor on the basis of shape context is introduced, which can describe the gesture in spatiotemporal domain. The efficient shape-order context descriptor can reveal the shape relationship and embed gesture sequence order information into descriptor. Moreover, the shape-order context leads to a robust score for gesture invariant. Our approach is complemented with experimental results on the settings of the challenging hand-signed digits datasets and American sign language dataset, which corroborate the performance of the novel techniques.

  9. M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice.

    Directory of Open Access Journals (Sweden)

    Sheldon L Reeves

    2016-09-01

    Full Text Available Grooming is a complex and robust innate behavior, commonly performed by most vertebrate species. In mice, grooming consists of a series of stereotyped patterned strokes, performed along the rostro-caudal axis of the body. The frequency and duration of each grooming episode is sensitive to changes in stress levels, social interactions and pharmacological manipulations, and is therefore used in behavioral studies to gain insights into the function of brain regions that control movement execution and anxiety. Traditional approaches to analyze grooming rely on manually scoring the time of onset and duration of each grooming episode, and are often performed on grooming episodes triggered by stress exposure, which may not be entirely representative of spontaneous grooming in freely-behaving mice. This type of analysis is time-consuming and provides limited information about finer aspects of grooming behaviors, which are important to understand movement stereotypy and bilateral coordination in mice. Currently available commercial and freeware video-tracking software allow automated tracking of the whole body of a mouse or of its head and tail, not of individual forepaws. Here we describe a simple experimental set-up and a novel open-source code, named M-Track, for simultaneously tracking the movement of individual forepaws during spontaneous grooming in multiple freely-behaving mice. This toolbox provides a simple platform to perform trajectory analysis of forepaw movement during distinct grooming episodes. By using M-track we show that, in C57BL/6 wild type mice, the speed and bilateral coordination of the left and right forepaws remain unaltered during the execution of distinct grooming episodes. Stress exposure induces a profound increase in the length of the forepaw grooming trajectories. M-Track provides a valuable and user-friendly interface to streamline the analysis of spontaneous grooming in biomedical research studies.

  10. M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice.

    Science.gov (United States)

    Reeves, Sheldon L; Fleming, Kelsey E; Zhang, Lin; Scimemi, Annalisa

    2016-09-01

    Grooming is a complex and robust innate behavior, commonly performed by most vertebrate species. In mice, grooming consists of a series of stereotyped patterned strokes, performed along the rostro-caudal axis of the body. The frequency and duration of each grooming episode is sensitive to changes in stress levels, social interactions and pharmacological manipulations, and is therefore used in behavioral studies to gain insights into the function of brain regions that control movement execution and anxiety. Traditional approaches to analyze grooming rely on manually scoring the time of onset and duration of each grooming episode, and are often performed on grooming episodes triggered by stress exposure, which may not be entirely representative of spontaneous grooming in freely-behaving mice. This type of analysis is time-consuming and provides limited information about finer aspects of grooming behaviors, which are important to understand movement stereotypy and bilateral coordination in mice. Currently available commercial and freeware video-tracking software allow automated tracking of the whole body of a mouse or of its head and tail, not of individual forepaws. Here we describe a simple experimental set-up and a novel open-source code, named M-Track, for simultaneously tracking the movement of individual forepaws during spontaneous grooming in multiple freely-behaving mice. This toolbox provides a simple platform to perform trajectory analysis of forepaw movement during distinct grooming episodes. By using M-track we show that, in C57BL/6 wild type mice, the speed and bilateral coordination of the left and right forepaws remain unaltered during the execution of distinct grooming episodes. Stress exposure induces a profound increase in the length of the forepaw grooming trajectories. M-Track provides a valuable and user-friendly interface to streamline the analysis of spontaneous grooming in biomedical research studies.

  11. Modeling and Robust Trajectory Tracking Control for a Novel Six-Rotor Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Chengshun Yang

    2013-01-01

    Full Text Available Modeling and trajectory tracking control of a novel six-rotor unmanned aerial vehicle (UAV is concerned to solve problems such as smaller payload capacity and lack of both hardware redundancy and anticrosswind capability for quad-rotor. The mathematical modeling for the six-rotor UAV is developed on the basis of the Newton-Euler formalism, and a second-order sliding-mode disturbance observer (SOSMDO is proposed to reconstruct the disturbances of the rotational dynamics. In consideration of the under-actuated and strong coupling properties of the six-rotor UAV, a nested double loops trajectory tracking control strategy is adopted. In the outer loop, a position error PID controller is designed, of which the task is to compare the desired trajectory with real position of the six-rotor UAV and export the desired attitude angles to the inner loop. In the inner loop, a rapid-convergent nonlinear differentiator (RCND is proposed to calculate the derivatives of the virtual control signal, instead of using the analytical differentiation, to avoid “differential expansion” in the procedure of the attitude controller design. Finally, the validity and effectiveness of the proposed technique are demonstrated by the simulation results.

  12. Adaptive robust trajectory tracking control of a parallel manipulator driven by pneumatic cylinders

    Directory of Open Access Journals (Sweden)

    Ce Shang

    2016-04-01

    Full Text Available Due to the compressibility of air, non-linear characteristics, and parameter uncertainties of pneumatic elements, the position control of a pneumatic cylinder or parallel platform is still very difficult while comparing with the systems driven by electric or hydraulic power. In this article, based on the basic dynamic model and descriptions of thermal processes, a controller integrated with online parameter estimation is proposed to improve the performance of a pneumatic cylinder controlled by a proportional valve. The trajectory tracking error is significantly decreased by applying this method. Moreover, the algorithm is expanded to the problem of posture trajectory tracking for the three-revolute prismatic spherical pneumatic parallel manipulator. Lyapunov’s method is used to give the proof of stability of the controller. Using NI-CompactRio, NI-PXI, and Veristand platform as the realistic controller hardware and data interactive environment, the adaptive robust control algorithm is applied to the physical system successfully. Experimental results and data analysis showed that the posture error of the platform could be about 0.5%–0.7% of the desired trajectory amplitude. By integrating this method to the mechatronic system, the pneumatic servo solutions can be much more competitive in the industrial market of position and posture control.

  13. Experimental evaluation of feedforward control for the trajectory tracking of power in nuclear reactors

    International Nuclear Information System (INIS)

    Lau, S.H.; Bernard, J.A.; Lanning, D.D.

    1991-01-01

    This paper reports on an experimental comparison of feedforward control techniques for the trajectory-tracking of neutronic power was performed on the 5-MWt MIT Research Reactor. Included in the comparison were pure feedforward control in which the actuator signal is found solely by processing a demanded output through a system model, hybrid feedforward/feedback control in which the actuator signal is obtained by summing feedforward and feedback components, and period-generated control in which feedback is used to update the demand trajectory prior to its being processed through the system model for calculation of the actuator signal. This latter approach was found to be the most effective. In addition to the experimental results, discussions are given of both the rationale for model-based, feedforward control and the designs of the various controllers

  14. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems

    International Nuclear Information System (INIS)

    Asnafi, Alireza; Mahzoon, Mojtaba

    2011-01-01

    Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

  15. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems

    Energy Technology Data Exchange (ETDEWEB)

    Asnafi, Alireza [Hydro-Aeronautical Research Center, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of); Mahzoon, Mojtaba [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of)

    2011-09-15

    Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

  16. Analysis of Load-Carrying Capacity for Redundant Free-Floating Space Manipulators in Trajectory Tracking Task

    Directory of Open Access Journals (Sweden)

    Qingxuan Jia

    2014-01-01

    Full Text Available The aim of this paper is to analyze load-carrying capacity of redundant free-floating space manipulators (FFSM in trajectory tracking task. Combined with the analysis of influential factors in load-carrying process, evaluation of maximum load-carrying capacity (MLCC is described as multiconstrained nonlinear programming problem. An efficient algorithm based on repeated line search within discontinuous feasible region is presented to determine MLCC for a given trajectory of the end-effector and corresponding joint path. Then, considering the influence of MLCC caused by different initial configurations for the starting point of given trajectory, a kind of maximum payload initial configuration planning method is proposed by using PSO algorithm. Simulations are performed for a particular trajectory tracking task of the 7-DOF space manipulator, of which MLCC is evaluated quantitatively. By in-depth research of the simulation results, significant gap between the values of MLCC when using different initial configurations is analyzed, and the discontinuity of allowable load-carrying capacity is illustrated. The proposed analytical method can be taken as theoretical foundation of feasibility analysis, trajectory optimization, and optimal control of trajectory tracking task in on-orbit load-carrying operations.

  17. Study on Oil Pressure Characteristics and Trajectory Tracking Control in Shift Process of Wet-Clutch for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Junqiu Li

    2016-01-01

    Full Text Available Accurate control of oil pressure of wet-clutch is of great importance for improving shift quality. Based on dynamic models of two-gear planetary transmission and hydraulic control system, a trajectory tracking model of oil pressure was built by sliding mode control method. An experiment was designed to verify the validity of hydraulic control system, through which the relationship between duty cycle of on-off valve and oil pressure of clutch was determined. The tracking effect was analyzed by simulation. Results showed that oil pressure could follow well the optimal trajectory and the shift quality was effectively improved.

  18. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  19. Distributed radar network for real-time tracking of bullet trajectory

    Science.gov (United States)

    Zhang, Yimin; Li, Xin; Jin, Yuanwei; Amin, Moeness G.; Eydgahi, Ali

    2009-05-01

    Gunshot detection, sniper localization, and bullet trajectory prediction are of significant importance in military and homeland security applications. While the majority of existing work is based on acoustic and electro-optical sensors, this paper develops a framework of networked radar systems that uses distributed radar sensor networks to achieve the aforementioned objectives. The use of radio frequency radar systems allows the achievement of subtime- of-flight tracking response, enabling to response before the bullet reaches its target and, as such, effectively leading to the reduction of injuries and casualties in military and homeland security operations. The focus of this paper is to examine the MIMO radar concept with concurrent transmission of low-correlation waveforms from multiple radar sets to ensure wide surveillance coverage and maintain a high waveform repetition frequency for long coherent time interval required to achieve return signal concentration.

  20. Master-slave control with trajectory planning and Bouc-Wen model for tracking control of piezo-driven stage

    Science.gov (United States)

    Lu, Xiaojun; Liu, Changli; Chen, Lei

    2018-04-01

    In this paper, a redundant Piezo-driven stage having 3RRR compliant mechanism is introduced, we propose the master-slave control with trajectory planning (MSCTP) strategy and Bouc-Wen model to improve its micro-motion tracking performance. The advantage of the proposed controller lies in that its implementation only requires a simple control strategy without the complexity of modeling to avoid the master PEA's tracking error. The dynamic model of slave PEA system with Bouc-Wen hysteresis is established and identified via particle swarm optimization (PSO) approach. The Piezo-driven stage with operating period T=1s and 2s is implemented to track a prescribed circle. The simulation results show that MSCTP with Bouc-Wen model reduces the trajectory tracking errors to the range of the accuracy of our available measurement.

  1. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    Science.gov (United States)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  2. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  3. An Improved Backstepping-Based Controller for Three-Dimensional Trajectory Tracking of a Midwater Trawl System

    Directory of Open Access Journals (Sweden)

    Zhao Yan

    2016-01-01

    Full Text Available An improved backstepping control method for three-dimensional trajectory tracking of a midwater trawl system is investigated. A new mathematical model of the trawl system while considering the horizontal expansion effect of two otter boards is presented based on the Newton Euler method. Subsequently, an active path tracking strategy of the trawl system based on the backstepping method is proposed. The nonstrict feedback characteristic of the proposed model employs a control allocation method and several parallel nonlinear PID (Proportion Integration Differentiation controllers to eliminate the high-order state variables. Then, the stability analysis by the Lyapunov Stability Theory shows that the proposed controller can maintain the stability of the trawl system even with the presence of external disturbances. To validate the proposed controller, a simulation comparison with a linear PID controller was conducted. The simulation results illustrate that the improved backstepping controller is effective for three-dimensional trajectory tracking of the midwater trawl system.

  4. Lossy compression of TPC data and trajectory tracking efficiency for the ALICE experiment

    International Nuclear Information System (INIS)

    Nicolaucig, A.; Ivanov, M.; Mattavelli, M.

    2003-01-01

    In this paper a quasi-lossless algorithm for the on-line compression of the data generated by the Time Projection Chamber (TPC) detector of the ALICE experiment at CERN is described. The algorithm is based on a lossy source code modeling technique, i.e. it is based on a source model which is lossy if samples of the TPC signal are considered one by one; conversely, the source model is lossless or quasi-lossless if some physical quantities that are of main interest for the experiment are considered. These quantities are the area and the location of the center of mass of each TPC signal pulse, representing the pulse charge and the time localization of the pulse. So as to evaluate the consequences of the error introduced by the lossy compression process, the results of the trajectory tracking algorithms that process data off-line after the experiment are analyzed, in particular, versus their sensibility to the noise introduced by the compression. Two different versions of these off-line algorithms are described, performing cluster finding and particle tracking. The results on how these algorithms are affected by the lossy compression are reported. Entropy coding can be applied to the set of events defined by the source model to reduce the bit rate to the corresponding source entropy. Using TPC simulated data according to the expected ALICE TPC performance, the compression algorithm achieves a data reduction in the range of 34.2% down to 23.7% of the original data rate depending on the desired precision on the pulse center of mass. The number of operations per input symbol required to implement the algorithm is relatively low, so that a real-time implementation of the compression process embedded in the TPC data acquisition chain using low-cost integrated electronics is a realistic option to effectively reduce the data storing cost of ALICE experiment

  5. Robust Takagi-Sugeno Fuzzy Dynamic Regulator for Trajectory Tracking of a Pendulum-Cart System

    Directory of Open Access Journals (Sweden)

    Miguel A. Llama

    2015-01-01

    Full Text Available Starting from a nonlinear model for a pendulum-cart system, on which viscous friction is considered, a Takagi-Sugeno (T-S fuzzy augmented model (TSFAM as well as a TSFAM with uncertainty (TSFAMwU is proposed. Since the design of a T-S fuzzy controller is based on the T-S fuzzy model of the nonlinear system, then, to address the trajectory tracking problem of the pendulum-cart system, three T-S fuzzy controllers are proposed via parallel distributed compensation: (1 a T-S fuzzy servo controller (TSFSC designed from the TSFAM; (2 a robust TSFSC (RTSFSC designed from the TSFAMwU; and (3 a robust T-S fuzzy dynamic regulator (RTSFDR designed from the RTSFSC with the addition of a T-S fuzzy observer, which estimates cart and pendulum velocities. Both TSFAM and TSFAMwU are comprised of two fuzzy rules and designed via local approximation in fuzzy partition spaces technique. Feedback gains for the three fuzzy controllers are obtained via linear matrix inequalities approach. A swing-up controller is developed to swing the pendulum up from its pendant position to its upright position. Real-time experiments validate the effectiveness of the proposed schemes, keeping the pendulum in its upright position while the cart follows a reference signal, standing out the RTSFDR.

  6. Lossy compression of TPC data and trajectory tracking efficiency for the ALICE experiment

    CERN Document Server

    Nicolaucig, A; Mattavelli, M

    2003-01-01

    In this paper a quasi-lossless algorithm for the on-line compression of the data generated by the Time Projection Chamber (TPC) detector of the ALICE experiment at CERN is described. The algorithm is based on a lossy source code modeling technique, i.e. it is based on a source model which is lossy if samples of the TPC signal are considered one by one; conversely, the source model is lossless or quasi-lossless if some physical quantities that are of main interest for the experiment are considered. These quantities are the area and the location of the center of mass of each TPC signal pulse, representing the pulse charge and the time localization of the pulse. So as to evaluate the consequences of the error introduced by the lossy compression process, the results of the trajectory tracking algorithms that process data off-line after the experiment are analyzed, in particular, versus their sensibility to the noise introduced by the compression. Two different versions of these off- line algorithms are described,...

  7. Singularity-Free Neural Control for the Exponential Trajectory Tracking in Multiple-Input Uncertain Systems with Unknown Deadzone Nonlinearities

    Directory of Open Access Journals (Sweden)

    J. Humberto Pérez-Cruz

    2014-01-01

    Full Text Available The trajectory tracking for a class of uncertain nonlinear systems in which the number of possible states is equal to the number of inputs and each input is preceded by an unknown symmetric deadzone is considered. The unknown dynamics is identified by means of a continuous time recurrent neural network in which the control singularity is conveniently avoided by guaranteeing the invertibility of the coupling matrix. Given this neural network-based mathematical model of the uncertain system, a singularity-free feedback linearization control law is developed in order to compel the system state to follow a reference trajectory. By means of Lyapunov-like analysis, the exponential convergence of the tracking error to a bounded zone can be proven. Likewise, the boundedness of all closed-loop signals can be guaranteed.

  8. A model predictive control approach combined unscented Kalman filter vehicle state estimation in intelligent vehicle trajectory tracking

    Directory of Open Access Journals (Sweden)

    Hongxiao Yu

    2015-05-01

    Full Text Available Trajectory tracking and state estimation are significant in the motion planning and intelligent vehicle control. This article focuses on the model predictive control approach for the trajectory tracking of the intelligent vehicles and state estimation of the nonlinear vehicle system. The constraints of the system states are considered when applying the model predictive control method to the practical problem, while 4-degree-of-freedom vehicle model and unscented Kalman filter are proposed to estimate the vehicle states. The estimated states of the vehicle are used to provide model predictive control with real-time control and judge vehicle stability. Furthermore, in order to decrease the cost of solving the nonlinear optimization, the linear time-varying model predictive control is used at each time step. The effectiveness of the proposed vehicle state estimation and model predictive control method is tested by driving simulator. The results of simulations and experiments show that great and robust performance is achieved for trajectory tracking and state estimation in different scenarios.

  9. PaTAVTT: A Hardware-in-the-Loop Scaled Platform for Testing Autonomous Vehicle Trajectory Tracking

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2017-01-01

    Full Text Available With the advent of autonomous vehicles, in particular its adaptability to harsh conditions, the research and development of autonomous vehicles attract significant attention by not only academia but also practitioners. Due to the high risk, high cost, and difficulty to test autonomous vehicles under harsh conditions, the hardware-in-the-loop (HIL scaled platform has been proposed as it is a safe, inexpensive, and effective test method. This platform system consists of scaled autonomous vehicle, scaled roadway, monitoring center, transmission device, positioning device, and computers. This paper uses a case of the development process of tracking control for high-speed U-turn to build the tracking control function. Further, a simplified vehicle dynamics model and a trajectory tracking algorithm have been considered to build the simulation test. The experiment results demonstrate the effectiveness of the HIL scaled platform.

  10. Optimal trajectories for flexible-link manipulator slewing using recursive quadratic programming: Experimental verification

    International Nuclear Information System (INIS)

    Parker, G.G.; Eisler, G.R.; Feddema, J.T.

    1994-01-01

    Procedures for trajectory planning and control of flexible link robots are becoming increasingly important to satisfy performance requirements of hazardous waste removal efforts. It has been shown that utilizing link flexibility in designing open loop joint commands can result in improved performance as opposed to damping vibration throughout a trajectory. The efficient use of link compliance is exploited in this work. Specifically, experimental verification of minimum time, straight line tracking using a two-link planar flexible robot is presented. A numerical optimization process, using an experimentally verified modal model, is used for obtaining minimum time joint torque and angle histories. The optimal joint states are used as commands to the proportional-derivative servo actuated joints. These commands are precompensated for the nonnegligible joint servo actuator dynamics. Using the precompensated joint commands, the optimal joint angles are tracked with such fidelity that the tip tracking error is less than 2.5 cm

  11. Distributed finite-time trajectory tracking control for multiple nonholonomic mobile robots with uncertainties and external disturbances

    Science.gov (United States)

    Ou, Meiying; Sun, Haibin; Gu, Shengwei; Zhang, Yangyi

    2017-11-01

    This paper investigates the distributed finite-time trajectory tracking control for a group of nonholonomic mobile robots with time-varying unknown parameters and external disturbances. At first, the tracking error system is derived for each mobile robot with the aid of a global invertible transformation, which consists of two subsystems, one is a first-order subsystem and another is a second-order subsystem. Then, the two subsystems are studied respectively, and finite-time disturbance observers are proposed for each robot to estimate the external disturbances. Meanwhile, distributed finite-time tracking controllers are developed for each mobile robot such that all states of each robot can reach the desired value in finite time, where the desired reference value is assumed to be the trajectory of a virtual leader whose information is available to only a subset of the followers, and the followers are assumed to have only local interaction. The effectiveness of the theoretical results is finally illustrated by numerical simulations.

  12. Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using Time Delay Control

    International Nuclear Information System (INIS)

    Park, Joon-Young; Cho, Byung-Hak; Lee, Jae-Kyung

    2009-01-01

    This paper addresses the trajectory control problem of an underwater inspection robot for nuclear reactor internals. From the viewpoint of control engineering, the trajectory control of the underwater robot is a difficult task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy and hydrodynamic damping, the difference between the centres of gravity and buoyancy, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring nonlinear plant dynamics, and was proven to be highly robust against nonlinearities, uncertainties and disturbances. We confirmed its effectiveness through experiments.

  13. Toward a method for tracking virus evolutionary trajectory applied to the pandemic H1N1 2009 influenza virus.

    Science.gov (United States)

    Squires, R Burke; Pickett, Brett E; Das, Sajal; Scheuermann, Richard H

    2014-12-01

    In 2009 a novel pandemic H1N1 influenza virus (H1N1pdm09) emerged as the first official influenza pandemic of the 21st century. Early genomic sequence analysis pointed to the swine origin of the virus. Here we report a novel computational approach to determine the evolutionary trajectory of viral sequences that uses data-driven estimations of nucleotide substitution rates to track the gradual accumulation of observed sequence alterations over time. Phylogenetic analysis and multiple sequence alignments show that sequences belonging to the resulting evolutionary trajectory of the H1N1pdm09 lineage exhibit a gradual accumulation of sequence variations and tight temporal correlations in the topological structure of the phylogenetic trees. These results suggest that our evolutionary trajectory analysis (ETA) can more effectively pinpoint the evolutionary history of viruses, including the host and geographical location traversed by each segment, when compared against either BLAST or traditional phylogenetic analysis alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Trajectory Tracking of a Tri-Rotor Aerial Vehicle Using an MRAC-Based Robust Hybrid Control Algorithm

    Directory of Open Access Journals (Sweden)

    Zain Anwar Ali

    2017-01-01

    Full Text Available In this paper, a novel Model Reference Adaptive Control (MRAC-based hybrid control algorithm is presented for the trajectory tracking of a tri-rotor Unmanned Aerial Vehicle (UAV. The mathematical model of the tri-rotor is based on the Newton–Euler formula, whereas the MRAC-based hybrid controller consists of Fuzzy Proportional Integral Derivative (F-PID and Fuzzy Proportional Derivative (F-PD controllers. MRAC is used as the main controller for the dynamics, while the parameters of the adaptive controller are fine-tuned by the F-PD controller for the altitude control subsystem and the F-PID controller for the attitude control subsystem of the UAV. The stability of the system is ensured and proven by Lyapunov stability analysis. The proposed control algorithm is tested and verified using computer simulations for the trajectory tracking of the desired path as an input. The effectiveness of our proposed algorithm is compared with F-PID and the Fuzzy Logic Controller (FLC. Our proposed controller exhibits much less steady state error, quick error convergence in the presence of disturbance or noise, and model uncertainties.

  15. Research on Ship Trajectory Tracking with High Precision Based on LOS

    Directory of Open Access Journals (Sweden)

    Hengzhi Liu

    2018-01-01

    Full Text Available Aiming at how precise to track by LOS, a method is proposed. The method combines the advantages of LOS simplicity and intuition, easy parameter setting and good convergence, with the features of GPC softening, multi-step prediction, rolling optimization and excellent controllability and robustness. In order to verify the effectiveness of the method, the method is simulated by Matlab. The simulation’s results show that it makes ship tracking highly precise.

  16. Fuzzy Vector Field Orientation Feedback Control-Based Slip Compensation for Trajectory Tracking Control of a Four Track Wheel Skid-steered Mobile Robot

    Directory of Open Access Journals (Sweden)

    Xuan Vinh Ha

    2013-04-01

    Full Text Available Skid-steered mobile robots have been widely used in exploring unknown environments and in military applications. In this paper, the tuning fuzzy Vector Field Orientation (FVFO feedback control method is proposed for a four track wheel skid-steered mobile robot (4-TW SSMR using flexible fuzzy logic control (FLC. The extended Kalman filter is utilized to estimate the positions, velocities and orientation angles, which are used for feedback control signals in the FVFO method, based on the AHRS kinematic motion model and velocity constraints. In addition, in light of the wheel slip and the braking ability of the robot, we propose a new method for estimating online wheel slip parameters based on a discrete Kalman filter to compensate for the velocity constraints. As demonstrated by our experimental results, the advantages of the combination of the proposed FVFO and wheel slip estimation methods overcome the limitations of the others in the trajectory tracking control problem for a 4-TW SSMR.

  17. Placement Stability, Cumulative Time in Care, and Permanency: Using Administrative Data from CPS to Track Placement Trajectories.

    Science.gov (United States)

    Hélie, Sonia; Poirier, Marie-Andrée; Esposito, Tonino; Turcotte, Daniel

    2017-11-17

    Objectives : The Quebec Youth Protection Act was amended in 2007. The main goal of this reform was to improve placement stability for children who are removed from their home for their protection. Among several legal provisions introduced was the establishment of maximum age-specific durations of out-of-home care, after which a plan must be established to provide stability for children placed in substitute care by finding permanent homes for them. The purpose of this study is (1) to examine trends in placement use and placement stability since the reform and (2) to document the current frequency of each type of placement setting, the cumulative time in care before the exit to permanency, and the sustainability of the permanency outcome. Methods: The study relies on 3 entry cohorts of all children investigated who received protection measures in the province of Quebec during 3 specific time frames before and after the reform ( n = 9620, 8676, 8425). Cohorts were observed for a period varying from 3 to 4 years. Administrative data from all 16 child protection agencies were used to track placement trajectory indicators and to compare cohorts. Results : There has been a decrease in the proportion of children receiving protection measures who were placed in care since the reform, and placement in kinship care has become more frequent among children placed. Placement stability improved slightly after the reform. Overall, for infants, the most frequent type of permanency attained is adoption, while reunification is the option most often indicated for older children. Some children are at a greater risk of experiencing unstable placement trajectories: young children have a high rate of reunification breakdown, some wait a long time to be adopted, and adolescents are frequently removed from the substitute care setting where they were supposed to stay until the age of 18. Conclusions : The results suggest interesting avenues for policy makers and service providers to improve

  18. Placement Stability, Cumulative Time in Care, and Permanency: Using Administrative Data from CPS to Track Placement Trajectories

    Directory of Open Access Journals (Sweden)

    Sonia Hélie

    2017-11-01

    Full Text Available Objectives: The Quebec Youth Protection Act was amended in 2007. The main goal of this reform was to improve placement stability for children who are removed from their home for their protection. Among several legal provisions introduced was the establishment of maximum age-specific durations of out-of-home care, after which a plan must be established to provide stability for children placed in substitute care by finding permanent homes for them. The purpose of this study is (1 to examine trends in placement use and placement stability since the reform and (2 to document the current frequency of each type of placement setting, the cumulative time in care before the exit to permanency, and the sustainability of the permanency outcome. Methods: The study relies on 3 entry cohorts of all children investigated who received protection measures in the province of Quebec during 3 specific time frames before and after the reform (n = 9620, 8676, 8425. Cohorts were observed for a period varying from 3 to 4 years. Administrative data from all 16 child protection agencies were used to track placement trajectory indicators and to compare cohorts. Results: There has been a decrease in the proportion of children receiving protection measures who were placed in care since the reform, and placement in kinship care has become more frequent among children placed. Placement stability improved slightly after the reform. Overall, for infants, the most frequent type of permanency attained is adoption, while reunification is the option most often indicated for older children. Some children are at a greater risk of experiencing unstable placement trajectories: young children have a high rate of reunification breakdown, some wait a long time to be adopted, and adolescents are frequently removed from the substitute care setting where they were supposed to stay until the age of 18. Conclusions: The results suggest interesting avenues for policy makers and service

  19. Placement Stability, Cumulative Time in Care, and Permanency: Using Administrative Data from CPS to Track Placement Trajectories

    Science.gov (United States)

    Hélie, Sonia; Poirier, Marie-Andrée; Esposito, Tonino; Turcotte, Daniel

    2017-01-01

    Objectives: The Quebec Youth Protection Act was amended in 2007. The main goal of this reform was to improve placement stability for children who are removed from their home for their protection. Among several legal provisions introduced was the establishment of maximum age-specific durations of out-of-home care, after which a plan must be established to provide stability for children placed in substitute care by finding permanent homes for them. The purpose of this study is (1) to examine trends in placement use and placement stability since the reform and (2) to document the current frequency of each type of placement setting, the cumulative time in care before the exit to permanency, and the sustainability of the permanency outcome. Methods: The study relies on 3 entry cohorts of all children investigated who received protection measures in the province of Quebec during 3 specific time frames before and after the reform (n = 9620, 8676, 8425). Cohorts were observed for a period varying from 3 to 4 years. Administrative data from all 16 child protection agencies were used to track placement trajectory indicators and to compare cohorts. Results: There has been a decrease in the proportion of children receiving protection measures who were placed in care since the reform, and placement in kinship care has become more frequent among children placed. Placement stability improved slightly after the reform. Overall, for infants, the most frequent type of permanency attained is adoption, while reunification is the option most often indicated for older children. Some children are at a greater risk of experiencing unstable placement trajectories: young children have a high rate of reunification breakdown, some wait a long time to be adopted, and adolescents are frequently removed from the substitute care setting where they were supposed to stay until the age of 18. Conclusions: The results suggest interesting avenues for policy makers and service providers to improve the

  20. Disturbance Observer for Lateral Trajectory Tracking Control for Autonomous and Cooperative Driving

    OpenAIRE

    Christian Rathgeber; Franz Winkler; Dirk Odenthal; Steffen Muller

    2015-01-01

    In this contribution a structure for high level lateral vehicle tracking control based on the disturbance observer is presented. The structure is characterized by stationary compensating side forces disturbances and guaranteeing a cooperative behavior at the same time. Driver inputs are not compensated by the disturbance observer. Moreover the structure is especially useful as it robustly stabilizes the vehicle. Therefore the parameters are selected using the Parameter Space Approach. The imp...

  1. Remaining Useful Life Estimation using Time Trajectory Tracking and Support Vector Machines

    International Nuclear Information System (INIS)

    Galar, D; Kumar, U; Lee, J; Zhao, W

    2012-01-01

    In this paper, a novel RUL prediction method inspired by feature maps and SVM classifiers is proposed. The historical instances of a system with life-time condition data are used to create a classification by SVM hyper planes. For a test instance of the same system, whose RUL is to be estimated, degradation speed is evaluated by computing the minimal distance defined based on the degradation trajectories, i.e. the approach of the system to the hyper plane that segregates good and bad condition data at different time horizon. Therefore, the final RUL of a specific component can be estimated and global RUL information can then be obtained by aggregating the multiple RUL estimations using a density estimation method.

  2. Learning the trajectory of a moving visual target and evolution of its tracking in the monkey

    Science.gov (United States)

    Bourrelly, Clara; Quinet, Julie; Cavanagh, Patrick

    2016-01-01

    An object moving in the visual field triggers a saccade that brings its image onto the fovea. It is followed by a combination of slow eye movements and catch-up saccades that try to keep the target image on the fovea as long as possible. The accuracy of this ability to track the “here-and-now” location of a visual target contrasts with the spatiotemporally distributed nature of its encoding in the brain. We show in six experimentally naive monkeys how this performance is acquired and gradually evolves during successive daily sessions. During the early exposure, the tracking is mostly saltatory, made of relatively large saccades separated by low eye velocity episodes, demonstrating that accurate (here and now) pursuit is not spontaneous and that gaze direction lags behind its location most of the time. Over the sessions, while the pursuit velocity is enhanced, the gaze is more frequently directed toward the current target location as a consequence of a 25% reduction in the number of catch-up saccades and a 37% reduction in size (for the first saccade). This smoothing is observed at several scales: during the course of single trials, across the set of trials within a session, and over successive sessions. We explain the neurophysiological processes responsible for this combined evolution of saccades and pursuit in the absence of stringent training constraints. More generally, our study shows that the oculomotor system can be used to discover the neural mechanisms underlying the ability to synchronize a motor effector with a dynamic external event. PMID:27683886

  3. Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters

    Directory of Open Access Journals (Sweden)

    S. M. M. Shariatmadar

    2017-08-01

    Full Text Available In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.

  4. Career Performance Trajectories in Track and Field Jumping Events from Youth to Senior Success: The Importance of Learning and Development.

    Science.gov (United States)

    Boccia, Gennaro; Moisè, Paolo; Franceschi, Alberto; Trova, Francesco; Panero, Davide; La Torre, Antonio; Rainoldi, Alberto; Schena, Federico; Cardinale, Marco

    2017-01-01

    The idea that early sport success can be detrimental for long-term sport performance is still under debate. Therefore, the aims of this study were to examine the career trajectories of Italian high and long jumpers to provide a better understanding of performance development in jumping events. The official long-jump and high-jump rankings of the Italian Track and Field Federation were collected from the age of 12 to career termination, for both genders from the year 1994 to 2014. Top-level athletes were identified as those with a percentile of their personal best performance between 97 and 100. The age of entering competitions of top-level athletes was not different than the rest of the athletic population, whereas top-level athletes performed their personal best later than the rest of the athletes. Top-level athletes showed an overall higher rate of improvement in performance from the age of 13 to the age of 18 years when compared to all other individuals. Only 10-25% of the top-level adult athletes were top-level at the age of 16. Around 60% of the top-level young at the age of 16 did not maintain the same level of performance in adulthood. Female high-jump represented an exception from this trend since in this group most top-level young become top-level adult athletes. These findings suggest that performance before the age of 16 is not a good predictor of adult performance in long and high jump. The annual rate of improvements from 13 to 18 years should be included as a predictor of success rather than performance per se. Coaches should be careful about predicting future success based on performances obtained during youth in jumping events.

  5. Career Performance Trajectories in Track and Field Jumping Events from Youth to Senior Success: The Importance of Learning and Development.

    Directory of Open Access Journals (Sweden)

    Gennaro Boccia

    Full Text Available The idea that early sport success can be detrimental for long-term sport performance is still under debate. Therefore, the aims of this study were to examine the career trajectories of Italian high and long jumpers to provide a better understanding of performance development in jumping events.The official long-jump and high-jump rankings of the Italian Track and Field Federation were collected from the age of 12 to career termination, for both genders from the year 1994 to 2014. Top-level athletes were identified as those with a percentile of their personal best performance between 97 and 100.The age of entering competitions of top-level athletes was not different than the rest of the athletic population, whereas top-level athletes performed their personal best later than the rest of the athletes. Top-level athletes showed an overall higher rate of improvement in performance from the age of 13 to the age of 18 years when compared to all other individuals. Only 10-25% of the top-level adult athletes were top-level at the age of 16. Around 60% of the top-level young at the age of 16 did not maintain the same level of performance in adulthood. Female high-jump represented an exception from this trend since in this group most top-level young become top-level adult athletes.These findings suggest that performance before the age of 16 is not a good predictor of adult performance in long and high jump. The annual rate of improvements from 13 to 18 years should be included as a predictor of success rather than performance per se. Coaches should be careful about predicting future success based on performances obtained during youth in jumping events.

  6. Detection of Diffusion Heterogeneity in Single Particle Tracking Trajectories Using a Hidden Markov Model with Measurement Noise Propagation

    Science.gov (United States)

    Slator, Paddy J.; Cairo, Christopher W.; Burroughs, Nigel J.

    2015-01-01

    We develop a Bayesian analysis framework to detect heterogeneity in the diffusive behaviour of single particle trajectories on cells, implementing model selection to classify trajectories as either consistent with Brownian motion or with a two-state (diffusion coefficient) switching model. The incorporation of localisation accuracy is essential, as otherwise false detection of switching within a trajectory was observed and diffusion coefficient estimates were inflated. Since our analysis is on a single trajectory basis, we are able to examine heterogeneity between trajectories in a quantitative manner. Applying our method to the lymphocyte function-associated antigen 1 (LFA-1) receptor tagged with latex beads (4 s trajectories at 1000 frames s−1), both intra- and inter-trajectory heterogeneity were detected; 12–26% of trajectories display clear switching between diffusive states dependent on condition, whilst the inter-trajectory variability is highly structured with the diffusion coefficients being related by D 1 = 0.68D 0 − 1.5 × 104 nm2 s−1, suggestive that on these time scales we are detecting switching due to a single process. Further, the inter-trajectory variability of the diffusion coefficient estimates (1.6 × 102 − 2.6 × 105 nm2 s−1) is very much larger than the measurement uncertainty within trajectories, suggesting that LFA-1 aggregation and cytoskeletal interactions are significantly affecting mobility, whilst the timescales of these processes are distinctly different giving rise to inter- and intra-trajectory variability. There is also an ‘immobile’ state (defined as D models within membranes incorporating aggregation, binding to the cytoskeleton, or traversing membrane microdomains. PMID:26473352

  7. Forward and Inverse Predictive Model for the Trajectory Tracking Control of a Lower Limb Exoskeleton for Gait Rehabilitation: Simulation modelling analysis

    Science.gov (United States)

    Zakaria, M. A.; Majeed, A. P. P. A.; Taha, Z.; Alim, M. M.; Baarath, K.

    2018-03-01

    The movement of a lower limb exoskeleton requires a reasonably accurate control method to allow for an effective gait therapy session to transpire. Trajectory tracking is a nontrivial means of passive rehabilitation technique to correct the motion of the patients’ impaired limb. This paper proposes an inverse predictive model that is coupled together with the forward kinematics of the exoskeleton to estimate the behaviour of the system. A conventional PID control system is used to converge the required joint angles based on the desired input from the inverse predictive model. It was demonstrated through the present study, that the inverse predictive model is capable of meeting the trajectory demand with acceptable error tolerance. The findings further suggest the ability of the predictive model of the exoskeleton to predict a correct joint angle command to the system.

  8. Minimum Time Path Planning for Robotic Manipulator in Drilling/ Spot Welding Tasks

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-04-01

    Full Text Available In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

  9. Discretization of space and time: determining the values of minimum length and minimum time

    OpenAIRE

    Roatta , Luca

    2017-01-01

    Assuming that space and time can only have discrete values, we obtain the expression of the minimum length and the minimum time interval. These values are found to be exactly coincident with the Planck's length and the Planck's time but for the presence of h instead of ħ .

  10. Analgesic consumption trajectories in 8975 patients 1 year after fast-track total hip or knee arthroplasty

    DEFF Research Database (Denmark)

    Jørgensen, C C; Petersen, M; Kehlet, H

    2018-01-01

    , opioids, anticonvulsants and antidepressants 1 month preoperatively and 1 year postoperatively. Patients were stratified according to preoperative opioid use. Postoperative analgesic consumption trajectories were stratified as increased, decreased or no use compared to the preoperative period. RESULTS.......6 (TKA) and 10.2% (THA) compared to 9.9 and 6.3% in opioid-naive TKA and THA patients, respectively. Increased NSAID and paracetamol use was seen in 11.5 and 12.4% of all patients. Preoperative analgesic use (any), TKA, psychiatric disorder, tobacco abuse, cardiac disease and use of walking aids were...

  11. Reconstruction of pre-instrumental storm track trajectories across the U.S. Pacific Northwest using circulation-based field sampling of Pinus Ponderosa

    Science.gov (United States)

    Wise, E.; Dannenberg, M. P.

    2015-12-01

    The trajectory of incoming storms from the Pacific Ocean is a key influence on drought and flood regimes in western North America. Flow is typically from the west in a zonal pattern, but decadal shifts between zonal and meridional flow have been identified as key features in hydroclimatic variability over the instrumental period. In Washington and most of the Pacific Northwest, there tend to be lower-latitude storm systems that result in decreased precipitation in El Niño years. However, the Columbia Basin in central Washington behaves in opposition to the surrounding region and typically has average to above-average precipitation in El Niño years due to changing storm-track trajectories and a decreasing rain shadow effect on the leeward side of the Cascades. This direct connection between storm-track position and precipitation patterns in Washington provided an exceptional opportunity for circulation-based field sampling and chronology development. New Pinus ponderosa (Ponderosa pine) tree-ring chronologies were developed from eight sites around the Columbia Basin in Washington and used to examine year-to-year changes in moisture regimes. Results show that these sites are representative of the two distinct climate response areas. The divergence points between these two site responses allowed us to reconstruct changing precipitation patterns since the late-17th century, and to link these patterns to previously reconstructed atmospheric pressure and El Niño indices. This study highlights the potential for using synoptic climatology to inform field-based proxy collection.

  12. Minimum time control of a pair of two-level quantum systems with opposite drifts

    International Nuclear Information System (INIS)

    Romano, Raffaele; D’Alessandro, Domenico

    2016-01-01

    In this paper we solve two equivalent time optimal control problems. On one hand, we design the control field to implement in minimum time the SWAP (or equivalent) operator on a two-level system, assuming that it interacts with an additional, uncontrollable, two-level system. On the other hand, we synthesize the SWAP operator simultaneously, in minimum time, on a pair of two-level systems subject to opposite drifts. We assume that it is possible to perform three independent control actions, and that the total control strength is bounded. These controls either affect the dynamics of the target system, under the first perspective, or, simultaneously, the dynamics of both systems, in the second view. We obtain our results by using techniques of geometric control theory on Lie groups. In particular, we apply the Pontryagin maximum principle, and provide a complete characterization of singular and nonsingular extremals. Our analysis shows that the problem can be formulated as the motion of a material point in a central force, a well known system in classical mechanics. Although we focus on obtaining the SWAP operator, many of the ideas and techniques developed in this work apply to the time optimal implementation of an arbitrary unitary operator. (paper)

  13. Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time.

    Science.gov (United States)

    Avellar, Gustavo S C; Pereira, Guilherme A S; Pimenta, Luciano C A; Iscold, Paulo

    2015-11-02

    This paper presents a solution for the problem of minimum time coverage of ground areas using a group of unmanned air vehicles (UAVs) equipped with image sensors. The solution is divided into two parts: (i) the task modeling as a graph whose vertices are geographic coordinates determined in such a way that a single UAV would cover the area in minimum time; and (ii) the solution of a mixed integer linear programming problem, formulated according to the graph variables defined in the first part, to route the team of UAVs over the area. The main contribution of the proposed methodology, when compared with the traditional vehicle routing problem's (VRP) solutions, is the fact that our method solves some practical problems only encountered during the execution of the task with actual UAVs. In this line, one of the main contributions of the paper is that the number of UAVs used to cover the area is automatically selected by solving the optimization problem. The number of UAVs is influenced by the vehicles' maximum flight time and by the setup time, which is the time needed to prepare and launch a UAV. To illustrate the methodology, the paper presents experimental results obtained with two hand-launched, fixed-wing UAVs.

  14. Regularity results for the minimum time function with Hörmander vector fields

    Science.gov (United States)

    Albano, Paolo; Cannarsa, Piermarco; Scarinci, Teresa

    2018-03-01

    In a bounded domain of Rn with boundary given by a smooth (n - 1)-dimensional manifold, we consider the homogeneous Dirichlet problem for the eikonal equation associated with a family of smooth vector fields {X1 , … ,XN } subject to Hörmander's bracket generating condition. We investigate the regularity of the viscosity solution T of such problem. Due to the presence of characteristic boundary points, singular trajectories may occur. First, we characterize these trajectories as the closed set of all points at which the solution loses point-wise Lipschitz continuity. Then, we prove that the local Lipschitz continuity of T, the local semiconcavity of T, and the absence of singular trajectories are equivalent properties. Finally, we show that the last condition is satisfied whenever the characteristic set of {X1 , … ,XN } is a symplectic manifold. We apply our results to several examples.

  15. Minimum Time Search in Uncertain Dynamic Domains with Complex Sensorial Platforms

    Science.gov (United States)

    Lanillos, Pablo; Besada-Portas, Eva; Lopez-Orozco, Jose Antonio; de la Cruz, Jesus Manuel

    2014-01-01

    The minimum time search in uncertain domains is a searching task, which appears in real world problems such as natural disasters and sea rescue operations, where a target has to be found, as soon as possible, by a set of sensor-equipped searchers. The automation of this task, where the time to detect the target is critical, can be achieved by new probabilistic techniques that directly minimize the Expected Time (ET) to detect a dynamic target using the observation probability models and actual observations collected by the sensors on board the searchers. The selected technique, described in algorithmic form in this paper for completeness, has only been previously partially tested with an ideal binary detection model, in spite of being designed to deal with complex non-linear/non-differential sensorial models. This paper covers the gap, testing its performance and applicability over different searching tasks with searchers equipped with different complex sensors. The sensorial models under test vary from stepped detection probabilities to continuous/discontinuous differentiable/non-differentiable detection probabilities dependent on distance, orientation, and structured maps. The analysis of the simulated results of several static and dynamic scenarios performed in this paper validates the applicability of the technique with different types of sensor models. PMID:25093345

  16. Trajectory optimization using indirect methods and parametric scramjet cycle analysis

    OpenAIRE

    Williams, Joseph

    2016-01-01

    This study investigates the solution of time sensitive regional strike trajectories for hypersonic missiles. This minimum time trajectory is suspected to be best performed by scramjet powered hypersonic missiles which creates strong coupled interaction between the flight dynamics and the performance of the engine. Comprehensive engine models are necessary to gain better insight into scramjet propulsion. Separately, robust and comprehensive trajectory analysis provides references for vehicles ...

  17. Geometric Algorithms for Trajectory Analysis

    NARCIS (Netherlands)

    Staals, Frank

    2015-01-01

    Technology such as the Global Positing System (GPS) has made tracking moving entities easy and cheap. As a result there is a large amount of trajectory data available, and an increasing demand on tools and techniques to analyze such data. We consider several analysis tasks for trajectory data,

  18. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data.

    Science.gov (United States)

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul; Han, Youngyih

    2017-09-01

    Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. Mobility Modelling through Trajectory Decomposition and Prediction

    OpenAIRE

    Faghihi, Farbod

    2017-01-01

    The ubiquity of mobile devices with positioning sensors make it possible to derive user's location at any time. However, constantly sensing the position in order to track the user's movement is not feasible, either due to the unavailability of sensors, or computational and storage burdens. In this thesis, we present and evaluate a novel approach for efficiently tracking user's movement trajectories using decomposition and prediction of trajectories. We facilitate tracking by taking advantage ...

  20. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    Science.gov (United States)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  1. Identification of digitized particle trajectories

    CERN Document Server

    Grote, H; Lassalle, J C; Zanella, P

    1973-01-01

    High-energy Physics Laboratories make increasing use of particle detectors which directly produce digital measurements of trajectories at very high rates. Data collected in vast amounts during experiments are then analysed by computer programs whose first task is the recognition of tracks and reconstruction of the interesting events. This paper discusses the applicability of various Pattern Recognition approaches. Examples are given of the problems and the practical achievements in this field.

  2. Stabilization and trajectory tracking control for underactuated

    Indian Academy of Sciences (India)

    The control of quadrotor helicopter has been a great challenge for control engineers and researchers since quadrotor is an underactuated and a highly unstable nonlinear system. In this paper, the dynamic model of quadrotor has been derived and a so-called robust optimal backstepping control (ROBC) is designed to ...

  3. Stabilization and trajectory tracking control for underactuated ...

    Indian Academy of Sciences (India)

    In this paper, the dynamic model of quadrotor has been derived and a so-called robust ... on a quadrotor simulation environment to demonstrate the effectiveness and merits of ..... is modeled in SIMULINK and the GSA is implemented in MATLAB. The model ... (vi) Optimization process is repeated for 20 times. The finest set ...

  4. Picking Robot Arm Trajectory Planning Method

    Directory of Open Access Journals (Sweden)

    Zhang Zhiyong

    2014-01-01

    Full Text Available The picking robot arm is scheduled to complete picking tasks in the working space, to overcome the shaking vibration to improve the picking stability, its movement should follow specific consistence trajectory points. Usually we should give definite multiple feature picking points, map their inverse kinematics to the joint space, establish motion equation for the corresponding point in the joint space, then follow these equations motion for the interpolation on the joint so that we can meet the movement requirements. Trajectory planning is decisive significance for accuracy and stability of controlling robot arm. The key issue that picking arm complete picking task will be come true by trajectory planning, namely, robot arm track the desired trajectory. which based on kinematics and statics picking analysis in a joint space according to the requirements of picking tasks, and obtain the position and orientation for picking robot arm, study and calculate the theory of trajectory parameters timely.

  5. A new approach to motion control of torque-constrained manipulators by using time-scaling of reference trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Valenzuela, Javier; Orozco-Manriquez, Ernesto [Digital del IPN, CITEDI-IPN, Tijuana, (Mexico)

    2009-12-15

    We introduce a control scheme based on using a trajectory tracking controller and an algorithm for on-line time scaling of the reference trajectories. The reference trajectories are time-scaled according to the measured tracking errors and the detected torque/acceleration saturation. Experiments are presented to illustrate the advantages of the proposed approach

  6. A new approach to motion control of torque-constrained manipulators by using time-scaling of reference trajectories

    International Nuclear Information System (INIS)

    Moreno-Valenzuela, Javier; Orozco-Manriquez, Ernesto

    2009-01-01

    We introduce a control scheme based on using a trajectory tracking controller and an algorithm for on-line time scaling of the reference trajectories. The reference trajectories are time-scaled according to the measured tracking errors and the detected torque/acceleration saturation. Experiments are presented to illustrate the advantages of the proposed approach

  7. Automated Trajectory Planner of Industrial Robot for Pick-and-Place Task

    Directory of Open Access Journals (Sweden)

    S. Saravana Perumaal

    2013-02-01

    Full Text Available Industrial robots, due to their great speed, precision and cost-effectiveness in repetitive tasks, now tend to be used in place of human workers in automated manufacturing systems. In particular, they perform the pick-and-place operation, a non-value-added activity which at the same time cannot be eliminated. Hence, minimum time is an important consideration for economic reasons in the trajectory planning system of the manipulator. The trajectory should also be smooth to handle parts precisely in applications such as semiconductor manufacturing, processing and handling of chemicals and medicines, and fluid and aerosol deposition. In this paper, an automated trajectory planner is proposed to determine a smooth, minimum-time and collision-free trajectory for the pick-and-place operations of a 6-DOF robotic manipulator in the presence of an obstacle. Subsequently, it also proposes an algorithm for the jerk-bounded Synchronized Trigonometric S-curve Trajectory (STST and the ‘forbidden-sphere’ technique to avoid the obstacle. The proposed planner is demonstrated with suitable examples and comparisons. The experiments show that the proposed planner is capable of providing a smoother trajectory than the cubic spline based trajectory.

  8. Management by Trajectory: Trajectory Management Study Report

    Science.gov (United States)

    Leiden, Kenneth; Atkins, Stephen; Fernandes, Alicia D.; Kaler, Curt; Bell, Alan; Kilbourne, Todd; Evans, Mark

    2017-01-01

    In order to realize the full potential of the Next Generation Air Transportation System (NextGen), improved management along planned trajectories between air navigation service providers (ANSPs) and system users (e.g., pilots and airline dispatchers) is needed. Future automation improvements and increased data communications between aircraft and ground automation would make the concept of Management by Trajectory (MBT) possible.

  9. The Wait Calculation: The Broader Consequences of the Minimum Time from Now to Interstellar Destinations and its Significance to the Space Economy

    Science.gov (United States)

    Kennedy, A.

    This paper summarises the wait calculation [1] of interstellar voyagers which finds the minimum time to destination given exponential growth in the rate of travel available to a civilisation. The minimum time obliges stellar system colonisers to consider departure times a significant risk factor in their voyages since a departure then to a destination will beat a departure made at any other time before or after. Generalised conclusions will be drawn about the significant impact that departures to interstellar destinations before, at, or after the minimum time will have on the economic potential of missions and on the inevitability of competition between them. There will be no international law operating in interstellar space and an ability to escape predatory actions en route, or at the destination, can only be done by precise calculations of departure times. Social and economic forces affecting the factors in the growth equation are discussed with reference to the probability of accelerating growth reaching the technological Singularity and strengthening the growth incentive trap. Islamic banking practices are discussed as a credible alternative to compounding interest bearing paper for funding the space economy in the long term and for supporting stakeholder investment in such long term mission development. The paper considers the essential free productivity of the Earth's biosphere and the capital accumulations made possible by land productivity are essential components to a viable long term space economy and that research into re-creating the costless productivity of the biosphere at a destination will determine both the mission's ultimate success and provide means of returns for stakeholders during the long build up. Conclusions of these arguments suggest that the Icarus project should ignore a robotic interstellar mission concept and develop a manned colonising mission from now.

  10. Design and Analysis of Optimal Ascent Trajectories for Stratospheric Airships

    Science.gov (United States)

    Mueller, Joseph Bernard

    Stratospheric airships are lighter-than-air vehicles that have the potential to provide a long-duration airborne presence at altitudes of 18-22 km. Designed to operate on solar power in the calm portion of the lower stratosphere and above all regulated air traffic and cloud cover, these vehicles represent an emerging platform that resides between conventional aircraft and satellites. A particular challenge for airship operation is the planning of ascent trajectories, as the slow moving vehicle must traverse the high wind region of the jet stream. Due to large changes in wind speed and direction across altitude and the susceptibility of airship motion to wind, the trajectory must be carefully planned, preferably optimized, in order to ensure that the desired station be reached within acceptable performance bounds of flight time and energy consumption. This thesis develops optimal ascent trajectories for stratospheric airships, examines the structure and sensitivity of these solutions, and presents a strategy for onboard guidance. Optimal ascent trajectories are developed that utilize wind energy to achieve minimum-time and minimum-energy flights. The airship is represented by a three-dimensional point mass model, and the equations of motion include aerodynamic lift and drag, vectored thrust, added mass effects, and accelerations due to mass flow rate, wind rates, and Earth rotation. A representative wind profile is developed based on historical meteorological data and measurements. Trajectory optimization is performed by first defining an optimal control problem with both terminal and path constraints, then using direct transcription to develop an approximate nonlinear parameter optimization problem of finite dimension. Optimal ascent trajectories are determined using SNOPT for a variety of upwind, downwind, and crosswind launch locations. Results of extensive optimization solutions illustrate definitive patterns in the ascent path for minimum time flights across

  11. Adaptive Trajectory Design

    Data.gov (United States)

    National Aeronautics and Space Administration — Adaptive Trajectory Design (ATD) is an original concept for quick and efficient end-to-end trajectory designs using proven piece-wise dynamical methods. With ongoing...

  12. Personalized trajectory matching in spatial networks

    KAUST Repository

    Shang, Shuo

    2013-07-31

    With the increasing availability of moving-object tracking data, trajectory search and matching is increasingly important. We propose and investigate a novel problem called personalized trajectory matching (PTM). In contrast to conventional trajectory similarity search by spatial distance only, PTM takes into account the significance of each sample point in a query trajectory. A PTM query takes a trajectory with user-specified weights for each sample point in the trajectory as its argument. It returns the trajectory in an argument data set with the highest similarity to the query trajectory. We believe that this type of query may bring significant benefits to users in many popular applications such as route planning, carpooling, friend recommendation, traffic analysis, urban computing, and location-based services in general. PTM query processing faces two challenges: how to prune the search space during the query processing and how to schedule multiple so-called expansion centers effectively. To address these challenges, a novel two-phase search algorithm is proposed that carefully selects a set of expansion centers from the query trajectory and exploits upper and lower bounds to prune the search space in the spatial and temporal domains. An efficiency study reveals that the algorithm explores the minimum search space in both domains. Second, a heuristic search strategy based on priority ranking is developed to schedule the multiple expansion centers, which can further prune the search space and enhance the query efficiency. The performance of the PTM query is studied in extensive experiments based on real and synthetic trajectory data sets. © 2013 Springer-Verlag Berlin Heidelberg.

  13. Computing with spatial trajectories

    CERN Document Server

    2011-01-01

    Covers the fundamentals and the state-of-the-art research inspired by the spatial trajectory data Readers are provided with tutorial-style chapters, case studies and references to other relevant research work This is the first book that presents the foundation dealing with spatial trajectories and state-of-the-art research and practices enabled by trajectories

  14. Handling Trajectory Uncertainties for Airborne Conflict Management

    Science.gov (United States)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  15. OPTIMAL AIRCRAFT TRAJECTORIES FOR SPECIFIED RANGE

    Science.gov (United States)

    Lee, H.

    1994-01-01

    For an aircraft operating over a fixed range, the operating costs are basically a sum of fuel cost and time cost. While minimum fuel and minimum time trajectories are relatively easy to calculate, the determination of a minimum cost trajectory can be a complex undertaking. This computer program was developed to optimize trajectories with respect to a cost function based on a weighted sum of fuel cost and time cost. As a research tool, the program could be used to study various characteristics of optimum trajectories and their comparison to standard trajectories. It might also be used to generate a model for the development of an airborne trajectory optimization system. The program could be incorporated into an airline flight planning system, with optimum flight plans determined at takeoff time for the prevailing flight conditions. The use of trajectory optimization could significantly reduce the cost for a given aircraft mission. The algorithm incorporated in the program assumes that a trajectory consists of climb, cruise, and descent segments. The optimization of each segment is not done independently, as in classical procedures, but is performed in a manner which accounts for interaction between the segments. This is accomplished by the application of optimal control theory. The climb and descent profiles are generated by integrating a set of kinematic and dynamic equations, where the total energy of the aircraft is the independent variable. At each energy level of the climb and descent profiles, the air speed and power setting necessary for an optimal trajectory are determined. The variational Hamiltonian of the problem consists of the rate of change of cost with respect to total energy and a term dependent on the adjoint variable, which is identical to the optimum cruise cost at a specified altitude. This variable uniquely specifies the optimal cruise energy, cruise altitude, cruise Mach number, and, indirectly, the climb and descent profiles. If the optimum

  16. Searching Trajectories by Regions of Interest

    KAUST Repository

    Shang, Shuo

    2017-03-22

    With the increasing availability of moving-object tracking data, trajectory search is increasingly important. We propose and investigate a novel query type named trajectory search by regions of interest (TSR query). Given an argument set of trajectories, a TSR query takes a set of regions of interest as a parameter and returns the trajectory in the argument set with the highest spatial-density correlation to the query regions. This type of query is useful in many popular applications such as trip planning and recommendation, and location based services in general. TSR query processing faces three challenges: how to model the spatial-density correlation between query regions and data trajectories, how to effectively prune the search space, and how to effectively schedule multiple so-called query sources. To tackle these challenges, a series of new metrics are defined to model spatial-density correlations. An efficient trajectory search algorithm is developed that exploits upper and lower bounds to prune the search space and that adopts a query-source selection strategy, as well as integrates a heuristic search strategy based on priority ranking to schedule multiple query sources. The performance of TSR query processing is studied in extensive experiments based on real and synthetic spatial data.

  17. Searching Trajectories by Regions of Interest

    KAUST Repository

    Shang, Shuo; chen, Lisi; Jensen, Christian S.; Wen, Ji-Rong; Kalnis, Panos

    2017-01-01

    With the increasing availability of moving-object tracking data, trajectory search is increasingly important. We propose and investigate a novel query type named trajectory search by regions of interest (TSR query). Given an argument set of trajectories, a TSR query takes a set of regions of interest as a parameter and returns the trajectory in the argument set with the highest spatial-density correlation to the query regions. This type of query is useful in many popular applications such as trip planning and recommendation, and location based services in general. TSR query processing faces three challenges: how to model the spatial-density correlation between query regions and data trajectories, how to effectively prune the search space, and how to effectively schedule multiple so-called query sources. To tackle these challenges, a series of new metrics are defined to model spatial-density correlations. An efficient trajectory search algorithm is developed that exploits upper and lower bounds to prune the search space and that adopts a query-source selection strategy, as well as integrates a heuristic search strategy based on priority ranking to schedule multiple query sources. The performance of TSR query processing is studied in extensive experiments based on real and synthetic spatial data.

  18. Trajectories of martian habitability.

    Science.gov (United States)

    Cockell, Charles S

    2014-02-01

    Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments.

  19. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  20. Real-time trajectory optimization on parallel processors

    Science.gov (United States)

    Psiaki, Mark L.

    1993-01-01

    A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.

  1. PANTHER. Trajectory Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wilson, Andrew T. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Valicka, Christopher G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kegelmeyer, W. Philip [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Newton, Benjamin D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Czuchlewski, Kristina Rodriguez [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We want to organize a body of trajectories in order to identify, search for, classify and predict behavior among objects such as aircraft and ships. Existing compari- son functions such as the Fr'echet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as total distance traveled and distance be- tween start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans that are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to iden- tify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories, predict destination and apply unsupervised machine learning algorithms.

  2. Experimental evaluation of the MIT-SNL period-generated minimum time control laws for the rapid adjustment of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Kwok, K.S.; Menadier, P.T.; Thome, F.V.; Wyant, F.J.

    1987-01-01

    The rapid adjustment of reactor neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. Designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws,' these relations are closed-form expressions of general applicability. In particular, if there is no limitation on the available rate of change of reactivity, these laws can be used to achieve virtually any desired power profile including time optimal ones. The innovative aspect of these laws is that the rate of change of reactivity rather than the reactivity itself is used as the control signal. For example, relative to a time-optimal response, these laws function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The response is time-optimal because the power adjustment is continuously made at the maximum allowed rate

  3. Trajectory Browser Website

    Science.gov (United States)

    Foster, Cyrus; Jaroux, Belgacem A.

    2012-01-01

    The Trajectory Browser is a web-based tool developed at the NASA Ames Research Center to be used for the preliminary assessment of trajectories to small-bodies and planets and for providing relevant launch date, time-of-flight and V requirements. The site hosts a database of transfer trajectories from Earth to asteroids and planets for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and delta V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies. The educational potential of the website is also recognized for academia and the public with regards to trajectory design, a field that has generally been poorly understood by the public. The website is currently hosted on NASA-internal URL http://trajbrowser.arc.nasa.gov/ with plans for a public release as soon as development is complete.

  4. Long range trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P. W.; Jessup, E. A.; White, R. E. [Air Resources Field Research Office, Las Vegas, Nevada (United States)

    1967-07-01

    A single air molecule can have a trajectory that can be described with a line, but most meteorologists use single lines to represent the trajectories of air parcels. A single line trajectory has the disadvantage that it is a categorical description of position. Like categorized forecasts it provides no qualification, and no provision for dispersion in case the parcel contains two or more molecules which may take vastly different paths. Diffusion technology has amply demonstrated that an initial aerosol cloud or volume of gas in the atmosphere not only grows larger, but sometimes divides into puffs, each having a different path or swath. Yet, the average meteorologist, faced with the problem of predicting the future motion of a cloud, usually falls back on the line trajectory approach with the explanation that he had no better tool for long range application. In his more rational moments, he may use some arbitrary device to spread his cloud with distance. One such technique has been to separate the trajectory into two or more trajectories, spaced about the endpoint of the original trajectory after a short period of travel, repeating this every so often like a chain reaction. This has the obvious disadvantage of involving a large amount of labor without much assurance of improved accuracy. Another approach is to draw a circle about the trajectory endpoint, to represent either diffusion or error. The problem then is to know what radius to give the circle and also whether to call it diffusion or error. Meteorologists at the Nevada Test Site (NTS) are asked frequently to provide advice which involves trajectory technology, such as prediction of an aerosol cloud path, reconstruction of the motion of a volume of air, indication of the dilution, and the possible trajectory prediction error over great distances. Therefore, we set out, nearly three years ago, to provide some statistical knowledge about the status of our trajectory technology. This report contains some of the

  5. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    AUTHOR|(CDS)2067159

    2016-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  6. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    Goetzmann, Christophe

    2014-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  7. LHCb: The LHCb tracking concept and performance

    CERN Multimedia

    Rodrigues, E

    2009-01-01

    The LHCb tracking system is designed to reconstruct charged particle trajectories in the forward spectrometer, in view of high precision studies of CP-violating phenomena and searches for rare b-hadron decays at the LHC. The system is composed of four major subdetectors and a dedicated magnet, providing an excellent momentum resolution just above 0.4%. The tracking model is based on the innovative trajectories concept introduced by the BaBar collaboration to reconstruct and fit the tracks, and has been further developed and improved. It is now able to cope with realistic geometries and misalignments in a sophisticated, robust and detector-independent way. The LHCb tracking concept including the interplay of various complementary pattern recognition algorithms and the bi-directional Kalman fitter will be described. The current performance of the tracking, based on the latest simulations, will be presented. Recent results obtained with the first LHC beam tracks from injection tests will be discussed.

  8. Cosmic ray particle dosimetry and trajectory tracing

    International Nuclear Information System (INIS)

    Cruty, M.R.; Benton, E.V.; Turnbill, C.E.; Philpott, D.E.

    1975-01-01

    Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET greater than or approximately equal to 0.15 million electron volts per micrometer (MeV/micron). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z greater than or equal to 6 and 2.2 particles with Z greater than or equal to 20 were found per detector. The track density, 29 tracks/sq cm, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package

  9. Automated Cooperative Trajectories

    Science.gov (United States)

    Hanson, Curt; Pahle, Joseph; Brown, Nelson

    2015-01-01

    This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.

  10. Branching trajectory continual integral

    International Nuclear Information System (INIS)

    Maslov, V.P.; Chebotarev, A.M.

    1980-01-01

    Heuristic definition of the Feynman continual integral over branching trajectories is suggested which makes it possible to obtain in the closed form the solution of the Cauchy problem for the model Hartree equation. A number of properties of the solution is derived from an integral representation. In particular, the quasiclassical asymptotics, exact solution in the gaussian case and perturbation theory series are described. The existence theorem for the simpliest continual integral over branching trajectories is proved [ru

  11. BMI trajectory groups in veterans of the Iraq and Afghanistan wars.

    Science.gov (United States)

    Rosenberger, Patricia H; Ning, Yuming; Brandt, Cynthia; Allore, Heather; Haskell, Sally

    2011-09-01

    The study sought to determine BMI trajectories in Iraq/Afghanistan veterans over 6 years and to examine sociodemographic factors associated with BMI trajectory membership. Our study sample included 16,656 veterans post-deployment and entering the Veteran Healthcare Administration (VHA) healthcare system. We used national VHA administrative sociodemographic data, tracked veteran BMI for 6 years, and used trajectory modeling to identify BMI trajectories and sociodemographic characteristics associated with trajectory membership. Five trajectory groups determined in the full sample were primarily differentiated by their post-deployment initial BMI: "healthy" (14.1%), "overweight" (36.3%), "borderline obese" (27.9%), "obese" (15.7%), and "severely obese" (6.0). Being female, younger, and white were associated with lower initial BMI trajectory group membership (p'seducation and white female Veterans were associated with the lowest initial BMI group (p'sEducation level and racial status are differentially related to BMI trajectory by gender. Published by Elsevier Inc.

  12. System of automized determination of charged particle trajectories in extended magnetic fields

    International Nuclear Information System (INIS)

    Toumanian, A.R.

    1981-01-01

    An automized system for the determination of particle trajectories by the floating current-carrying wire method is described. The system is able to determine the charged particle trajectories with the energy above 100 MeV in magnetic systems of any configuration and with track extent up to several tens metres with momentum resolution up to 3.10 -4 . The system efficiency makes 1500 tracks/hour on the average [ru

  13. Trajectory Analysis and Prediction for Improved Pedestrian Safety

    DEFF Research Database (Denmark)

    Møgelmose, Andreas; Trivedi, Mohan M.; Moeslund, Thomas B.

    2015-01-01

    This paper presents a monocular and purely vision based pedestrian trajectory tracking and prediction framework with integrated map-based hazard inference. In Advanced Driver Assistance systems research, a lot of effort has been put into pedestrian detection over the last decade, and several pede...

  14. Interpreting Early Career Trajectories

    Science.gov (United States)

    Barnatt, Joan; Gahlsdorf Terrell, Dianna; D'Souza, Lisa Andries; Jong, Cindy; Cochran-Smith, Marilyn; Viesca, Kara Mitchell; Gleeson, Ann Marie; McQuillan, Patrick; Shakman, Karen

    2017-01-01

    Career decisions of four teachers are explored through the concept of figured worlds in this qualitative, longitudinal case study. Participants were purposefully chosen for similarity at entry, with a range of career trajectories over time. Teacher career paths included remaining in one school, repeated changes in schools, attrition after…

  15. Trajectory structures and transport

    International Nuclear Information System (INIS)

    Vlad, Madalina; Spineanu, Florin

    2004-01-01

    The special problem of transport in two-dimensional divergence-free stochastic velocity fields is studied by developing a statistical approach, the nested subensemble method. The nonlinear process of trapping determined by such fields generates trajectory structures whose statistical characteristics are determined. These structures strongly influence the transport

  16. Trajectory grouping structure

    Directory of Open Access Journals (Sweden)

    Maike Buchin

    2015-03-01

    Full Text Available The collective motion of a set of moving entities like people, birds, or other animals, is characterized by groups arising, merging, splitting, and ending. Given the trajectories of these entities, we define and model a structure that captures all of such changes using the Reeb graph, a concept from topology. The trajectory grouping structure has three natural parameters that allow more global views of the data in group size, group duration, and entity inter-distance. We prove complexity bounds on the maximum number of maximal groups that can be present, and give algorithms to compute the grouping structure efficiently. We also study how the trajectory grouping structure can be made robust, that is, how brief interruptions of groups can be disregarded in the global structure, adding a notion of persistence to the structure. Furthermore, we showcase the results of experiments using data generated by the NetLogo flocking model and from the Starkey project. The Starkey data describe the movement of elk, deer, and cattle. Although there is no ground truth for the grouping structure in this data, the experiments show that the trajectory grouping structure is plausible and has the desired effects when changing the essential parameters. Our research provides the first complete study of trajectory group evolvement, including combinatorial,algorithmic, and experimental results.

  17. Track models and radiation chemical yields

    International Nuclear Information System (INIS)

    Chatterjee, A.; Magee, J.L.

    1987-01-01

    The authors are concerned only with systems in which single track effects dominate and radiation chemical yields are sums of yields for individual tracks. The authors know that the energy deposits of heavy particle tracks are composed of spurs along the particle trajectory (about one-half of the energy) and a more diffuse pattern composed of the tracks of knock-on electrons, called the penumbra (about one-half of the energy). The simplest way to introduce the concept of a unified track model for heavy particles is to consider the special case of the track of a heavy particle with an LET below 0.2-0.3eV/A, which in practice limits us to protons, deuterons, or particles with energy above 100 MeV per nucleon. At these LET values, to a good approximation, spurs formed by the main particle track can be considered to remain isolated throughout the radiation chemical reactions

  18. Adaptive fuzzy trajectory control for biaxial motion stage system

    Directory of Open Access Journals (Sweden)

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  19. Semantic Enrichment of GPS Trajectories

    NARCIS (Netherlands)

    de Graaff, V.; van Keulen, Maurice; de By, R.A.

    2012-01-01

    Semantic annotation of GPS trajectories helps us to recognize the interests of the creator of the GPS trajectories. Automating this trajectory annotation circumvents the requirement of additional user input. To annotate the GPS traces automatically, two types of automated input are required: 1) a

  20. Electron trajectory program

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1979-11-01

    The SLAC Electron Trajectory Program is described and instructions and examples for users are given. The program is specifically written to compute trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes. Either rectangular or cylindrically symmetric geometry may be used. Magntic fields may be specified using arbitrary configurations of coils, or the output of a magnet program such as Poisson or by an externally calculated array of the axial fields. The program is available in IBM FORTRAN but can be easily converted for use on other brands of hardware. The program is intended to be used with a plotter whose interface the user must provide

  1. Electron trajectory program

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B.

    1979-11-01

    The SLAC Electron Trajectory Program is described and instructions and examples for users are given. The program is specifically written to compute trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes. Either rectangular or cylindrically symmetric geometry may be used. Magntic fields may be specified using arbitrary configurations of coils, or the output of a magnet program such as Poisson or by an externally calculated array of the axial fields. The program is available in IBM FORTRAN but can be easily converted for use on other brands of hardware. The program is intended to be used with a plotter whose interface the user must provide.

  2. Au pair trajectories

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...

  3. Particle tracking

    International Nuclear Information System (INIS)

    Mais, H.; Ripken, G.; Wrulich, A.; Schmidt, F.

    1986-02-01

    After a brief description of typical applications of particle tracking in storage rings and after a short discussion of some limitations and problems related with tracking we summarize some concepts and methods developed in the qualitative theory of dynamical systems. We show how these concepts can be applied to the proton ring HERA. (orig.)

  4. Timber tracking

    DEFF Research Database (Denmark)

    Düdder, Boris; Ross, Omry

    2017-01-01

    Managing and verifying forest products in a value chain is often reliant on easily manipulated document or digital tracking methods - Chain of Custody Systems. We aim to create a new means of tracking timber by developing a tamper proof digital system based on Blockchain technology. Blockchain...

  5. Track Reconstruction in the ATLAS Experiment The Deterministic Annealing Filter

    CERN Document Server

    Fleischmann, S

    2006-01-01

    The reconstruction of the trajectories of charged particles is essential for experiments at the LHC. The experiments contain precise tracking systems structured in layers around the collision point which measure the positions where particle trajectories intersect those layers. The physics analysis on the other hand mainly needs the momentum and direction of the particle at the estimated creation or reaction point. It is therefore needed to determine these parameters from the initial measurements. At the LHC one has to deal with high backgrounds while even small deficits or artifacts can reduce the signal or may produce additional background after event selection. The track reconstruction does not only contain the estimation of the track parameters, but also a pattern recognition deciding which measurements belong to a track and how many particle tracks can be found. Track reconstruction at the ATLAS experiment suffers from the high event rate at the LHC resulting in a high occupancy of the tracking devices. A...

  6. Computer modeling of oil spill trajectories with a high accuracy method

    International Nuclear Information System (INIS)

    Garcia-Martinez, Reinaldo; Flores-Tovar, Henry

    1999-01-01

    This paper proposes a high accuracy numerical method to model oil spill trajectories using a particle-tracking algorithm. The Euler method, used to calculate oil trajectories, can give adequate solutions in most open ocean applications. However, this method may not predict accurate particle trajectories in certain highly non-uniform velocity fields near coastal zones or in river problems. Simple numerical experiments show that the Euler method may also introduce artificial numerical dispersion that could lead to overestimation of spill areas. This article proposes a fourth-order Runge-Kutta method with fourth-order velocity interpolation to calculate oil trajectories that minimise these problems. The algorithm is implemented in the OilTrack model to predict oil trajectories following the 'Nissos Amorgos' oil spill accident that occurred in the Gulf of Venezuela in 1997. Despite lack of adequate field information, model results compare well with observations in the impacted area. (Author)

  7. Making tracks

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-10-15

    In many modern tracking chambers, the sense wires, rather than being lined up uniformly, are grouped into clusters to facilitate the pattern recognition process. However, with higher energy machines providing collisions richer in secondary particles, event reconstruction becomes more complicated. A Caltech / Illinois / SLAC / Washington group developed an ingenious track finding and fitting approach for the Mark III detector used at the SPEAR electron-positron ring at SLAC (Stanford). This capitalizes on the detector's triggering, which uses programmable logic circuits operating in parallel, each 'knowing' the cell patterns for all tracks passing through a specific portion of the tracker (drift chamber)

  8. Why tracks

    International Nuclear Information System (INIS)

    Burchart, J.; Kral, J.

    1979-01-01

    A comparison is made of two methods of determining the age of rocks, ie., the krypton-argon method and the fission tracks method. The former method is more accurate but is dependent on the temperature and on the grain size of the investigated rocks (apatites, biotites, muscovites). As for the method of fission tracks, the determination is not dependent on grain size. This method allows dating and the determination of uranium concentration and distribution in rocks. (H.S.)

  9. Moyal dynamics and trajectories

    Science.gov (United States)

    Braunss, G.

    2010-01-01

    We give first an approximation of the operator δh: f → δhf := h*planckf - f*planckh in terms of planck2n, n >= 0, where h\\equiv h(p,q), (p,q)\\in {\\mathbb R}^{2 n} , is a Hamilton function and *planck denotes the star product. The operator, which is the generator of time translations in a *planck-algebra, can be considered as a canonical extension of the Liouville operator Lh: f → Lhf := {h, f}Poisson. Using this operator we investigate the dynamics and trajectories of some examples with a scheme that extends the Hamilton-Jacobi method for classical dynamics to Moyal dynamics. The examples we have chosen are Hamiltonians with a one-dimensional quartic potential and two-dimensional radially symmetric nonrelativistic and relativistic Coulomb potentials, and the Hamiltonian for a Schwarzschild metric. We further state a conjecture concerning an extension of the Bohr-Sommerfeld formula for the calculation of the exact eigenvalues for systems with classically periodic trajectories.

  10. Repetitive Rockfall Trajectory Testing

    Directory of Open Access Journals (Sweden)

    Axel Volkwein

    2018-03-01

    Full Text Available Numerical simulations of rockfall trajectories are a standard procedure for evaluating rockfall hazards. For these simulations, corresponding software codes must be calibrated and evaluated based on field data. This study addresses methods of repeatable rockfall tests, and investigates whether it is possible to produce traceable and statistically analysable data. A testing series is described extensively covering how to conduct rockfall experiments and how certain elements of rockfall trajectories can be measured. The tests use acceleration and rotation sensors inside test blocks, a system to determine block positions over time, surveying measurements, and video recordings. All systems are evaluated regarding their usability in the field and for analyses. The highly detailed description of testing methods is the basis for sound understanding and reproducibility of the tests. This article serves as a reference for future publications and other rockfall field tests, both as a guide and as a basis for comparisons. First analyses deliver information on runout with a shadow angle ranging between 21 and 45 degrees for a slope consisting of homogeneous soft soil. A digital elevation model of the test site as well as point clouds of the used test blocks are part of this publication.

  11. Optimizing experimental parameters for tracking of diffusing particles

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.

    2016-01-01

    We describe how a single-particle tracking experiment should be designed in order for its recorded trajectories to contain the most information about a tracked particle's diffusion coefficient. The precision of estimators for the diffusion coefficient is affected by motion blur, limited photon st...

  12. Canonical transformations of Kepler trajectories

    International Nuclear Information System (INIS)

    Mostowski, Jan

    2010-01-01

    In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these transformations change the eccentricity of the orbit. A method of obtaining elliptic trajectories from the circular ones with the help of canonical trajectories is discussed.

  13. Dual color single particle tracking via nanobodies

    International Nuclear Information System (INIS)

    Albrecht, David; Winterflood, Christian M; Ewers, Helge

    2015-01-01

    Single particle tracking is a powerful tool to investigate the function of biological molecules by following their motion in space. However, the simultaneous tracking of two different species of molecules is still difficult to realize without compromising the length or density of trajectories, the localization accuracy or the simplicity of the assay. Here, we demonstrate a simple dual color single particle tracking assay using small, bright, high-affinity labeling via nanobodies of accessible targets with widely available instrumentation. We furthermore apply a ratiometric step-size analysis method to visualize differences in apparent membrane viscosity. (paper)

  14. Advanced Alignment of the ATLAS Tracking System

    CERN Document Server

    Butti, P; The ATLAS collaboration

    2014-01-01

    In order to reconstruct the trajectories of charged particles, the ATLAS experiment exploits a tracking system built using different technologies, planar silicon modules or microstrips (PIX and SCT detectors) and gaseous drift tubes (TRT), all embedded in a 2T solenoidal magnetic field. Misalignments and deformations of the active detector elements deteriorate the track reconstruction resolution and lead to systematic biases on the measured track parameters. The alignment procedures exploits various advanced tools and techniques in order to determine for module positions and correct for deformations. For the LHC Run II, the system is being upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL).

  15. Trajectory Based Traffic Analysis

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2013-01-01

    We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point-and-click a......We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point......-and-click analysis, due to a novel and efficient indexing structure. With the web-site daisy.aau.dk/its/spqdemo/we will demonstrate several analyses, using a very large real-world data set consisting of 1.9 billion GPS records (1.5 million trajectories) recorded from more than 13000 vehicles, and touching most...

  16. Urban water trajectories

    CERN Document Server

    Allen, Adriana; Hofmann, Pascale; Teh, Tse-Hui

    2017-01-01

    Water is an essential element in the future of cities. It shapes cities’ locations, form, ecology, prosperity and health. The changing nature of urbanisation, climate change, water scarcity, environmental values, globalisation and social justice mean that the models of provision of water services and infrastructure that have dominated for the past two centuries are increasingly infeasible. Conventional arrangements for understanding and managing water in cities are being subverted by a range of natural, technological, political, economic and social changes. The prognosis for water in cities remains unclear, and multiple visions and discourses are emerging to fill the space left by the certainty of nineteenth century urban water planning and engineering. This book documents a sample of those different trajectories, in terms of water transformations, option, services and politics. Water is a key element shaping urban form, economies and lifestyles, part of the ongoing transformation of cities. Cities are face...

  17. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  18. Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering

    Science.gov (United States)

    Onishi, Masaki; Yoda, Ikushi

    In recent years, many human tracking researches have been proposed in order to analyze human dynamic trajectory. These researches are general technology applicable to various fields, such as customer purchase analysis in a shopping environment and safety control in a (railroad) crossing. In this paper, we present a new approach for tracking human positions by stereo image. We use the framework of two-stepped clustering with k-means method and fuzzy clustering to detect human regions. In the initial clustering, k-means method makes middle clusters from objective features extracted by stereo vision at high speed. In the last clustering, c-means fuzzy method cluster middle clusters based on attributes into human regions. Our proposed method can be correctly clustered by expressing ambiguity using fuzzy clustering, even when many people are close to each other. The validity of our technique was evaluated with the experiment of trajectories extraction of doctors and nurses in an emergency room of a hospital.

  19. Segmenting Trajectories by Movement States

    NARCIS (Netherlands)

    Buchin, M.; Kruckenberg, H.; Kölzsch, A.; Timpf, S.; Laube, P.

    2013-01-01

    Dividing movement trajectories according to different movement states of animals has become a challenge in movement ecology, as well as in algorithm development. In this study, we revisit and extend a framework for trajectory segmentation based on spatio-temporal criteria for this purpose. We adapt

  20. A Tracking Analyst for large 3D spatiotemporal data from multiple sources (case study: Tracking volcanic eruptions in the atmosphere)

    Science.gov (United States)

    Gad, Mohamed A.; Elshehaly, Mai H.; Gračanin, Denis; Elmongui, Hicham G.

    2018-02-01

    This research presents a novel Trajectory-based Tracking Analyst (TTA) that can track and link spatiotemporally variable data from multiple sources. The proposed technique uses trajectory information to determine the positions of time-enabled and spatially variable scatter data at any given time through a combination of along trajectory adjustment and spatial interpolation. The TTA is applied in this research to track large spatiotemporal data of volcanic eruptions (acquired using multi-sensors) in the unsteady flow field of the atmosphere. The TTA enables tracking injections into the atmospheric flow field, the reconstruction of the spatiotemporally variable data at any desired time, and the spatiotemporal join of attribute data from multiple sources. In addition, we were able to create a smooth animation of the volcanic ash plume at interactive rates. The initial results indicate that the TTA can be applied to a wide range of multiple-source data.

  1. Determination of extra trajectory parameters of projectile layout motion

    Science.gov (United States)

    Ishchenko, A.; Burkin, V.; Faraponov, V.; Korolkov, L.; Maslov, E.; Diachkovskiy, A.; Chupashev, A.; Zykova, A.

    2017-11-01

    The paper presents a brief description of the experimental track developed and implemented on the base of the RIAMM TSU for external trajectory investigations on determining the main aeroballistic parameters of various shapes projectiles, in the wide velocity range. There is comparison between the experimentally obtained dependence of the fin-stabilized projectile mock-up aerodynamic drag coefficient on the Mach number with the 1958 aerodynamic drag law and aerodynamic tests of the same mock-up

  2. GPS-Aided Video Tracking

    Directory of Open Access Journals (Sweden)

    Udo Feuerhake

    2015-08-01

    Full Text Available Tracking moving objects is both challenging and important for a large variety of applications. Different technologies based on the global positioning system (GPS and video or radio data are used to obtain the trajectories of the observed objects. However, in some use cases, they fail to provide sufficiently accurate, complete and correct data at the same time. In this work we present an approach for fusing GPS- and video-based tracking in order to exploit their individual advantages. In this way we aim to combine the reliability of GPS tracking with the high geometric accuracy of camera detection. For the fusion of the movement data provided by the different devices we use a hidden Markov model (HMM formulation and the Viterbi algorithm to extract the most probable trajectories. In three experiments, we show that our approach is able to deal with challenging situations like occlusions or objects which are temporarily outside the monitored area. The results show the desired increase in terms of accuracy, completeness and correctness.

  3. Data-based control trajectory planning for nonlinear systems

    International Nuclear Information System (INIS)

    Rhodes, C.; Morari, M.; Tsimring, L.S.; Rulkov, N.F.

    1997-01-01

    An open-loop trajectory planning algorithm is presented for computing an input sequence that drives an input-output system such that a reference trajectory is tracked. The algorithm utilizes only input-output data from the system to determine the proper control sequence, and does not require a mathematical or identified description of the system dynamics. From the input-output data, the controlled input trajectory is calculated in a open-quotes one-step-aheadclose quotes fashion using local modeling. Since the algorithm is calculated in this fashion, the output trajectories to be tracked can be nonperiodic. The algorithm is applied to a driven Lorenz system, and an experimental electrical circuit and the results are analyzed. Issues of stability associated with the implementation of this open-loop scheme are also examined using an analytic example of a driven Hacute enon map, problems associated with inverse controllers are illustrated, and solutions to these problems are proposed. copyright 1997 The American Physical Society

  4. Hopfield neural network in HEP track reconstruction

    International Nuclear Information System (INIS)

    Muresan, R.; Pentia, M.

    1997-01-01

    In experimental particle physics, pattern recognition problems, specifically for neural network methods, occur frequently in track finding or feature extraction. Track finding is a combinatorial optimization problem. Given a set of points in Euclidean space, one tries the reconstruction of particle trajectories, subject to smoothness constraints.The basic ingredients in a neural network are the N binary neurons and the synaptic strengths connecting them. In our case the neurons are the segments connecting all possible point pairs.The dynamics of the neural network is given by a local updating rule wich evaluates for each neuron the sign of the 'upstream activity'. An updating rule in the form of sigmoid function is given. The synaptic strengths are defined in terms of angle between the segments and the lengths of the segments implied in the track reconstruction. An algorithm based on Hopfield neural network has been developed and tested on the track coordinates measured by silicon microstrip tracking system

  5. Global track finder for Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Trusov, Viktor; Feindt, Michael; Heck, Martin; Kuhr, Thomas; Goldenzweig, Pablo [Karlsruhe Institute of Technology, IEKP (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    We present an implementation of a method based on the Legendre transformation for reconstruction charged particle tracks in the central drift chamber of the Belle II experiment. The method is designed for fast track finding and restoring circular patterns of track hits in transverse plane. It is done by searching for common tangents to drift circles of hits in the conformal space. With known transverse trajectories longitudinal momentum estimation performed by assigning stereo hits followed by determination of the track parameters. The method includes algorithms responsible for track quality estimation and reduction of rate of fakes. The work is targeting at increasing the efficiency and reducing the execution time because the computing power available to the experiment is limited. The algorithm is developed within the Belle II software environment with using Monte-Carlo simulation for probing its efficiency.

  6. Lunar Cube Transfer Trajectory Options

    Science.gov (United States)

    Folta, David; Dichmann, Donald James; Clark, Pamela E.; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can b e considered which have a wide range of transfer duration, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO) geostationary transfer orbits (GTO) and higher energy direct lunar transfer and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  7. Online Tracking

    Science.gov (United States)

    ... can disable blocking on those sites. Tagged with: computer security , cookies , Do Not Track , personal information , privacy June ... email Looking for business guidance on privacy and ... The Federal Trade Commission (FTC) is the nation’s consumer protection agency. The FTC works to prevent fraudulent, deceptive ...

  8. TrackML : The High Energy Physics Tracking Challenge

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    We organize on the Kaggle platform a  data science competition to stimulate both the ML and HEP communities to renew core tracking algorithms in preparation of the next generation of particle detectors at the LHC.    In a nutshell : one event has 100.000 3D points  ; how to associate the points onto 10.000 unknown approximately helicoidal trajectories ? avoiding combinatorial explosion ? you have a few seconds. But we do give you 100.000 events to train on. We ran ttbar+200 minimum bias event into ACTS a simplified (yet accurate) simulation of a generic LHC silicon detectors, and wrote out ...

  9. Trajectory Planning with Pose Feedback for a Dual-Arm Space Robot

    Directory of Open Access Journals (Sweden)

    Yicheng Liu

    2016-01-01

    Full Text Available In order to obtain high precision path tracking for a dual-arm space robot, a trajectory planning method with pose feedback is proposed to be introduced into the design process in this paper. Firstly, pose error kinematic models are derived from the related kinematics and desired pose command for the end-effector and the base, respectively. On this basis, trajectory planning with pose feedback is proposed from a control perspective. Theoretical analyses show that the proposed trajectory planning algorithm can guarantee that pose error converges to zero exponentially for both the end-effector and the base when the robot is out of singular configuration. Compared with the existing algorithms, the proposed algorithm can lead to higher precision path tracking for the end-effector. Furthermore, the algorithm renders the system good anti-interference property for the base. Simulation results demonstrate the effectiveness of the proposed trajectory planning algorithm.

  10. Tracking career performance of successful triathletes.

    Science.gov (United States)

    Malcata, Rita M; Hopkins, Will G; Pearson, Simon N

    2014-06-01

    Tracking athletes' performances over time is important but problematic for sports with large environmental effects. Here we have developed career performance trajectories for elite triathletes, investigating changes in swim, cycle, run stages, and total performance times while accounting for environmental and other external factors. Performance times of 337 female and 427 male triathletes competing in 419 international races between 2000 and 2012 were obtained from triathlon.org. Athletes were categorized according to any top 16 placing at World Championships or Olympics between 2008 and 2012. A mixed linear model accounting for race distance (sprint and Olympic), level of competition, calendar-year trend, athlete's category, and clustering of times within athletes and races was used to derive athletes' individual quadratic performance trajectories. These trajectories provided estimates of age of peak performance and predictions for the 2012 London Olympic Games. By markedly reducing the scatter of individual race times, the model produced well-fitting trajectories suitable for comparison of triathletes. Trajectories for top 16 triathletes showed different patterns for race stages and differed more among women than among men, but ages of peak total performance were similar for men and women (28 ± 3 yr, mean ± SD). Correlations between observed and predicted placings at Olympics were slightly higher than those provided by placings in races before the Olympics. Athletes' trajectories will help identify talented athletes and their weakest and strongest stages. The wider range of trajectories among women should be taken into account when setting talent identification criteria. Trajectories offer a small advantage over usual race placings for predicting men's performance. Further refinements, such as accounting for individual responses to race conditions, may improve utility of performance trajectories.

  11. HL-LHC tracking challenge

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    We organize on the Kaggle platform a data science competition to stimulate both the ML and HEP communities to renew core tracking algorithms in preparation of the next generation of particle detectors at the LHC. In a nutshell : one event has 100.000 3D points ; how to associate the points onto 10.000 unknown approximately helicoidal trajectories ? avoiding combinatorial explosion ? you have a few seconds. But we do give you 100.000 events to train on. We ran ttbar+200 minimum bias event into ACTS a simplified (yet accurate) simulation of a generic LHC silicon detectors, and wrote out the reconstructed hits, with matching truth. ...

  12. Generic trajectory representation and trajectory following for wheeled robots

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole

    2014-01-01

    will drive. Safe: Avoid fatal collisions. Based on a survey of existing methods and algorithms the article presents a generic way to represent constraints for different types of robots, a generic way to represent trajectories using Bëzier curves, a method to convert the trajectory so it can be driven...... in a smooth motion, a method to create a safe velocity profile for the robot, and a path following controller....

  13. Low Thrust Trajectory Design for GSFC Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The Evolutionary Mission Trajectory Generator (EMTG) is a global trajectory optimization tool. EMTG is intended for use in designing interplanetary missions which...

  14. CMS reconstruction improvements for the tracking in large pileup events

    CERN Document Server

    Rovere, M

    2015-01-01

    The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compatible with the increasing instantaneous luminosity of LHC, resulting in a large number of primary vertices and tracks per bunch crossing.The major upgrade put in place during the present LHC Long Shutdown will allow the tracking code to comply with the conditions expected during RunII and the much larger pileup. In particular, new algorithms that are intrinsically more robust in high occupancy conditions were developed, iteration...

  15. Positron emission zone plate holography for particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2006-01-15

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported.

  16. Positron emission zone plate holography for particle tracking

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2006-01-01

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported

  17. Knowledge-Based Trajectory Error Pattern Method Applied to an Active Force Control Scheme

    Directory of Open Access Journals (Sweden)

    Endra Pitowarno, Musa Mailah, Hishamuddin Jamaluddin

    2012-08-01

    Full Text Available The active force control (AFC method is known as a robust control scheme that dramatically enhances the performance of a robot arm particularly in compensating the disturbance effects. The main task of the AFC method is to estimate the inertia matrix in the feedback loop to provide the correct (motor torque required to cancel out these disturbances. Several intelligent control schemes have already been introduced to enhance the estimation methods of acquiring the inertia matrix such as those using neural network, iterative learning and fuzzy logic. In this paper, we propose an alternative scheme called Knowledge-Based Trajectory Error Pattern Method (KBTEPM to suppress the trajectory track error of the AFC scheme. The knowledge is developed from the trajectory track error characteristic based on the previous experimental results of the crude approximation method. It produces a unique, new and desirable error pattern when a trajectory command is forced. An experimental study was performed using simulation work on the AFC scheme with KBTEPM applied to a two-planar manipulator in which a set of rule-based algorithm is derived. A number of previous AFC schemes are also reviewed as benchmark. The simulation results show that the AFC-KBTEPM scheme successfully reduces the trajectory track error significantly even in the presence of the introduced disturbances.Key Words:  Active force control, estimated inertia matrix, robot arm, trajectory error pattern, knowledge-based.

  18. Trajectory data analyses for pedestrian space-time activity study.

    Science.gov (United States)

    Qi, Feng; Du, Fei

    2013-02-25

    automatic module. Trajectory segmentation(5) involves the identification of indoor and outdoor parts from pre-processed space-time tracks. Again, both interactive visual segmentation and automatic segmentation are supported. Segmented space-time tracks are then analyzed to derive characteristics of one's activity space such as activity radius etc. Density estimation and visualization are used to examine large amount of trajectory data to model hot spots and interactions. We demonstrate both density surface mapping(6) and density volume rendering(7). We also include a couple of other exploratory data analyses (EDA) and visualizations tools, such as Google Earth animation support and connection analysis. The suite of analytical as well as visual methods presented in this paper may be applied to any trajectory data for space-time activity studies.

  19. Galileo's Trajectory with Mild Resistance

    Science.gov (United States)

    Groetsch, C. W.

    2012-01-01

    An aspect of Galileo's classical trajectory that persists in a simple resistance model is noted. The resistive model provides a case study for the classroom analysis of limiting behaviour of an implicitly defined function. (Contains 1 note.)

  20. Flight test trajectory control analysis

    Science.gov (United States)

    Walker, R.; Gupta, N.

    1983-01-01

    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.

  1. Mobile Robot Based on the Selection of Fuzzy Behaviours for following Trajectories in Crops

    Directory of Open Access Journals (Sweden)

    Claudio Urrea

    2016-06-01

    Full Text Available This article addresses the problem of trajectory tracking in crops by a weed sprayer mobile robot (WSMR. This problem arises because to fumigate, the robot must follow a predefined path and avoid any obstacles it may encounter. To achieve both trajectory tracking and obstacle avoidance, a control scheme based on different behaviours is proposed, which consists essentially of an adaptive controller with a reference model for trajectory tracking and a fuzzy reactive for obstacle avoidance. Each of these controllers is executed according to the selection of the fuzzy behaviour controller, which uses information delivered by anti-collision sensors located on the robot. As a result of the implementation of this behaviour-based architecture and by means of computer simulations and experimental laboratory tests, the WSMR demonstrates the capability of autonomously following a desired trajectory between the rows of a crop in the presence of obstacles. The results are evaluated by taking into account trajectory tracking curves and the operating requirements of each controller, as well as the application of different errors indices for quantitatively evaluating the proposed control scheme.

  2. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  3. Multi-Objective Trajectory Optimization of a Hypersonic Reconnaissance Vehicle with Temperature Constraints

    Science.gov (United States)

    Masternak, Tadeusz J.

    This research determines temperature-constrained optimal trajectories for a scramjet-based hypersonic reconnaissance vehicle by developing an optimal control formulation and solving it using a variable order Gauss-Radau quadrature collocation method with a Non-Linear Programming (NLP) solver. The vehicle is assumed to be an air-breathing reconnaissance aircraft that has specified takeoff/landing locations, airborne refueling constraints, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom scramjet aircraft model is adapted from previous work and includes flight dynamics, aerodynamics, and thermal constraints. Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and coverage of high-value targets. To solve the optimal control formulation, a MATLAB-based package called General Pseudospectral Optimal Control Software (GPOPS-II) is used, which transcribes continuous time optimal control problems into an NLP problem. In addition, since a mission profile can have varying vehicle dynamics and en-route imposed constraints, the optimal control problem formulation can be broken up into several "phases" with differing dynamics and/or varying initial/final constraints. Optimal trajectories are developed using several different performance costs in the optimal control formulation: minimum time, minimum time with control penalties, and maximum range. The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for larger-scale operational and campaign planning and execution.

  4. PHENIX central arm tracking detectors

    International Nuclear Information System (INIS)

    Adcox, K.; Ajitanand, N.N.; Alexander, J.; Autrey, D.; Averbeck, R.; Azmoun, B.; Barish, K.N.; Baublis, V.V.; Belkin, R.; Bhaganatula, S.; Biggs, J.C.; Borland, D.; Botelho, S.; Bryan, W.L.; Burward-Hoy, J.; Butsyk, S.A.; Chang, W.C.; Christ, T.; Dietzsch, O.; Drees, A.; Rietz, R. du; El Chenawi, K.; Evseev, V.A.; Fellenstein, J.; Ferdousi, T.; Fraenkel, Z.; Franz, A.; Fung, S.Y.; Gannon, J.; Garpman, S.; Godoi, A.L.; Greene, S.V.; Gustafsson, H.-A.; Harder, J.; Hemmick, T.K.; Heuser, J.M.; Holzmann, W.; Hutter, R.; Issah, M.; Ivanov, V.I.; Jacak, B.V.; Jagadish, U.; Jia, J.; Johnson, S.C.; Kandasamy, A.; Kann, M.R.; Kelley, M.A.; Khanzadeev, A.V.; Khomutnikov, A.; Komkov, B.G.; Kopytine, M.L.; Kotchenda, L.; Kotchetkov, D.; Kozlov, V.S.; Kravtsov, P.A.; Kudin, L.G.; Kuriatkov, V.V.; Lacey, R.; Lauret, J.; Lebedev, A.; Lebedev, V.D.; Li, X.H.; Libby, B.; Liccardi, W.; Machnowski, R.; Mahon, J.; Markushin, D.G.; Matathias, F.; Marx, M.D.; Messer, F.; Miftakhov, N.M.; Milan, J.; Miller, T.E.; Milov, A.; Minuzzo, K.; Mioduszewski, S.; Mitchell, J.T.; Muniruzzamann, M.; Nandi, B.K.; Negrin, J.; Nilsson, P.; Nystrand, J.; O'Brien, E.; O'Connor, P.; Oskarsson, A.; Oesterman, L.; Otterlund, I.; Pancake, C.E.; Pantuev, V.S.; Petersen, R.; Pinkenburg, C.H.; Pisani, R.P.; Purwar, A.K.; Rankowitz, S.; Ravinovich, I.; Riabov, V.G.; Riabov, Yu.G.; Rosati, M.; Rose, A.A.; Roschin, E.V.; Samsonov, V.M.; Sangster, T.C.; Seto, R.; Silvermyr, D.; Sivertz, M.; Smith, M.; Solodov, G.P.; Stenlund, E.; Takagui, E.M.; Tarakanov, V.I.; Tarasenkova, O.P.; Thomas, J.L.; Trofimov, V.A.; Tserruya, I.; Tydesjoe, H.; Velkovska, J.; Velkovsky, M.; Vishnevskii, V.I.; Vorobyov, A.A.; Vznuzdaev, E.A.; Vznuzdaev, M.; Wang, H.Q.; Weimer, T.; Wolniewicz, K.; Wu, J.; Xie, W.; Young, G.R.

    2003-01-01

    The PHENIX tracking system consists of Drift Chambers (DC), Pad Chambers (PC) and the Time Expansion Chamber (TEC). PC1/DC and PC2/TEC/PC3 form the inner and outer tracking units, respectively. These units link the track segments that transverse the RICH and extend to the EMCal. The DC measures charged particle trajectories in the r-phi direction to determine p T of the particles and the invariant mass of particle pairs. The PCs perform 3D spatial point measurements for pattern recognition and longitudinal momentum reconstruction and provide spatial resolution of a few mm in both r-phi and z. The TEC tracks particles passing through the region between the RICH and the EMCal. The design and operational parameters of the detectors are presented and running experience during the first year of data taking with PHENIX is discussed. The observed spatial and momentum resolution is given which imposes a limitation on the identification and characterization of charged particles in various momentum ranges

  5. TPC track distortions III: fiat lux

    CERN Document Server

    Boyko, I; Dydak, F; Elagin, A; Gostkin, M; Guskov, A; Koreshev, V; Nefedov, Y; Nikolaev, K; Veenhof, R; Wotschack, J; Zhemchugov, A

    2005-01-01

    We present a comprehensive overview and final summary of all four types of static track distortions seen in the HARP TPC, in terms of physical origins, mathematical modelling, and correction algorithms. 'Static'™ distortions are defined as not depending on the event time within the 400 ms long accelerator spill. Calculated static distortions are compared with measurements from cosmic-muon tracks. We characterize track distortions by the r phi residuals of cluster positions with respect to the transverse projection of a helical trajectory constrained by hits in the RPC overlap regions. This method provides a fixed TPC-external reference system (by contrast to the co-moving coordinate system associated with a fit) which solely permits to identify individually, and measure quantitatively, the static TPC track distortions arising from (i) the inhomogeneity of the solenoidal magnetic field, (ii) the inhomogeneity of the electric field from the high-voltage mismatch between the inner and outer TPC field cages, (...

  6. Advanced alignment of the ATLAS tracking system

    CERN Document Server

    AUTHOR|(CDS)2085334; The ATLAS collaboration

    2016-01-01

    In order to reconstruct the trajectories of charged particles, the ATLAS experiment exploits a tracking system built using different technologies, silicon planar modules or microstrips (PIX and SCT detectors) and gaseous drift tubes (TRT), all embedded in a 2T solenoidal magnetic field. Misalignments of the active detector elements and deformations of the structures (which can lead to \\textit{Weak Modes}) deteriorate resolution of the track reconstruction and lead to systematic biases on the measured track parameters. The applied alignment procedures exploit various advanced techniques in order to minimise track-hit residuals and remove detector deformations. For the LHC Run II, the Pixel Detector has been refurbished and upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL).

  7. Advanced Alignment of the ATLAS Tracking System

    CERN Document Server

    Pedraza Lopez, S; The ATLAS collaboration

    2012-01-01

    In order to reconstruct trajectories of charged particles, ATLAS is equipped with a tracking system built using different technologies embedded in a 2T solenoidal magnetic field. ATLAS physics goals require high resolution, unbiased measurement of all charged particle kinematic parameters in order to assure accurate invariant mass reconstruction and interaction and decay vertex finding. These critically depend on the systematic effects related to the alignment of the tracking system. In order to eliminate malicious systematic deformations, various advanced tools and techniques have been put in place. These include information from known mass resonances, energy of electrons and positrons measured by the electromagnetic calorimeters, etc. Despite being stable under normal running conditions, ATLAS tracking system responses to sudden environ-mental changes (temperature, magnetic field) by small collective deformations. These have to be identified and corrected in order to assure uniform, highest quality tracking...

  8. The ESA's Space Trajectory Analysis software suite

    Science.gov (United States)

    Ortega, Guillermo

    The European Space Agency (ESA) initiated in 2005 an internal activity to develop an open source software suite involving university science departments and research institutions all over the world. This project is called the "Space Trajectory Analysis" or STA. This article describes the birth of STA and its present configuration. One of the STA aims is to promote the exchange of technical ideas, and raise knowledge and competence in the areas of applied mathematics, space engineering, and informatics at University level. Conceived as a research and education tool to support the analysis phase of a space mission, STA is able to visualize a wide range of space trajectories. These include among others ascent, re-entry, descent and landing trajectories, orbits around planets and moons, interplanetary trajectories, rendezvous trajectories, etc. The article explains that STA project is an original idea of the Technical Directorate of ESA. It was born in August 2005 to provide a framework in astrodynamics research at University level. As research and education software applicable to Academia, a number of Universities support this development by joining ESA in leading the development. ESA and Universities partnership are expressed in the STA Steering Board. Together with ESA, each University has a chair in the board whose tasks are develop, control, promote, maintain, and expand the software suite. The article describes that STA provides calculations in the fields of spacecraft tracking, attitude analysis, coverage and visibility analysis, orbit determination, position and velocity of solar system bodies, etc. STA implements the concept of "space scenario" composed of Solar system bodies, spacecraft, ground stations, pads, etc. It is able to propagate the orbit of a spacecraft where orbital propagators are included. STA is able to compute communication links between objects of a scenario (coverage, line of sight), and to represent the trajectory computations and

  9. Latent tracks in polymeric etched track detectors

    International Nuclear Information System (INIS)

    Yamauchi, Tomoya

    2013-01-01

    Track registration properties in polymeric track detectors, including Poly(allyl diglycol carbonate), Bispenol A polycarbonate, Poly(ethylen terephtarate), and Polyimide, have been investigated by means of Fourie transform Infararede FT-IR spectrometry. Chemical criterion on the track formation threshold has been proposes, in stead of the conventional physical track registration models. (author)

  10. Tracking telecommuting

    Energy Technology Data Exchange (ETDEWEB)

    Stastny, P.

    2007-03-15

    Many employees are now choosing to work from home using laptops and telephones. Employers in the oil and gas industry are now reaping a number of benefits from their telecommuting employees, including increased productivity; higher levels of employee satisfaction, and less absenteeism. Providing a telecommunication option can prove to be advantageous for employers wishing to hire or retain employees. Telecommuting may also help to reduce greenhouse gas (GHG) emissions. This article provided details of Teletrips Inc., a company that aids in the production of corporate social responsibility reports. Teletrips provides reports that document employee savings in time, vehicle depreciation maintenance, and gasoline costs. Teletrips currently tracks 12 companies in Calgary, and plans to grow through the development of key technology partnerships. The company is also working with the federal government to provide their clients with emission trading credits, and has forged a memorandum of understanding with the British Columbia government for tracking emissions. Calgary now openly supports telecommuting and is encouraging businesses in the city to adopt telecommuting on a larger scale. It was concluded that the expanding needs for road infrastructure and the energy used by cars to move workers in and out of the city are a massive burden to the city's tax base. 1 fig.

  11. INNER TRACKING

    CERN Document Server

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The Objective for 2006 was to complete all of the CMS Tracker sub-detectors and to start the integration of the sub-detectors into the Tracker Support Tube (TST). The Objective for 2007 is to deliver to CMS a completed, installed, commissioned and calibrated Tracking System (Silicon Strip and Pixels) aligned to < 100µ in April 2008 ready for the first physics collisions at LHC. In November 2006 all of the sub-detectors had been delivered to the Tracker Integration facility (TIF) at CERN and the tests and QA procedures to be carried out on each sub-detector before integration had been established. In December 2006, TIB/TID+ was integrated into TOB+, TIB/TID- was being prepared for integration, and TEC+ was undergoing tests at the final tracker operating temperature (-100 C) in the Lyon cold room. In February 2007, TIB/TID- has been integrated into TOB-, and the installation of the pixel support tube and the services for TI...

  12. Real-time Non-linear Target Tracking Control of Wheeled Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    YU Wenyong

    2006-01-01

    A control strategy for real-time target tracking for wheeled mobile robots is presented. Using a modified Kalman filter for environment perception, a novel tracking control law derived from Lyapunov stability theory is introduced. Tuning of linear velocity and angular velocity with mechanical constraints is applied. The proposed control system can simultaneously solve the target trajectory prediction, real-time tracking, and posture regulation problems of a wheeled mobile robot. Experimental results illustrate the effectiveness of the proposed tracking control laws.

  13. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2010-01-01

    ATLAS is a multipurpose experiment that records the LHC collisions. To reconstruct trajectories of charged particles produced in these collisions, ATLAS tracking system is equipped with silicon planar sensors and drift‐tube based detectors. They constitute the ATLAS Inner Detector. In order to achieve its scientific goals, the alignment of the ATLAS tracking system requires the determine accurately its almost 36000 degrees of freedom. Thus the demanded precision for the alignment of the silicon sensors is below 10 micrometers. This implies to use a large sample of high momentum and isolated charge particle tracks. The high level trigger selects those tracks online. Then the raw data with the hits information of the triggered tracks is stored in a calibration stream. Tracks from cosmic trigger during empty LHC bunches are also used as input for the alignment. The implementation of the track based alignment within the ATLAS software framework unifies different alignment approaches and allows the alignment of ...

  14. Distributed formation tracking using local coordinate systems

    DEFF Research Database (Denmark)

    Yang, Qingkai; Cao, Ming; Garcia de Marina, Hector

    2018-01-01

    This paper studies the formation tracking problem for multi-agent systems, for which a distributed estimator–controller scheme is designed relying only on the agents’ local coordinate systems such that the centroid of the controlled formation tracks a given trajectory. By introducing a gradient...... descent term into the estimator, the explicit knowledge of the bound of the agents’ speed is not necessary in contrast to existing works, and each agent is able to compute the centroid of the whole formation in finite time. Then, based on the centroid estimation, a distributed control algorithm...

  15. A multi-frame particle tracking algorithm robust against input noise

    International Nuclear Information System (INIS)

    Li, Dongning; Zhang, Yuanhui; Sun, Yigang; Yan, Wei

    2008-01-01

    The performance of a particle tracking algorithm which detects particle trajectories from discretely recorded particle positions could be substantially hindered by the input noise. In this paper, a particle tracking algorithm is developed which is robust against input noise. This algorithm employs the regression method instead of the extrapolation method usually employed by existing algorithms to predict future particle positions. If a trajectory cannot be linked to a particle at a frame, the algorithm can still proceed by trying to find a candidate at the next frame. The connectivity of tracked trajectories is inspected to remove the false ones. The algorithm is validated with synthetic data. The result shows that the algorithm is superior to traditional algorithms in the aspect of tracking long trajectories

  16. Automatic trajectory measurement of large numbers of crowded objects

    Science.gov (United States)

    Li, Hui; Liu, Ye; Chen, Yan Qiu

    2013-06-01

    Complex motion patterns of natural systems, such as fish schools, bird flocks, and cell groups, have attracted great attention from scientists for years. Trajectory measurement of individuals is vital for quantitative and high-throughput study of their collective behaviors. However, such data are rare mainly due to the challenges of detection and tracking of large numbers of objects with similar visual features and frequent occlusions. We present an automatic and effective framework to measure trajectories of large numbers of crowded oval-shaped objects, such as fish and cells. We first use a novel dual ellipse locator to detect the coarse position of each individual and then propose a variance minimization active contour method to obtain the optimal segmentation results. For tracking, cost matrix of assignment between consecutive frames is trainable via a random forest classifier with many spatial, texture, and shape features. The optimal trajectories are found for the whole image sequence by solving two linear assignment problems. We evaluate the proposed method on many challenging data sets.

  17. Trajectory Specification for Automation of Terminal Air Traffic Control

    Science.gov (United States)

    Paielli, Russell A.

    2016-01-01

    "Trajectory specification" is the explicit bounding and control of aircraft tra- jectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft nav- igation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) sys- tem or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on arrival spacing in the terminal area and presents ATC algorithms and software for achieving a specified delay of runway arrival time.

  18. Tracking of ball and players in beach volleyball videos.

    Directory of Open Access Journals (Sweden)

    Gabriel Gomez

    Full Text Available This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points.

  19. Tracking of Ball and Players in Beach Volleyball Videos

    Science.gov (United States)

    Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern

    2014-01-01

    This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936

  20. Real-time dynamic MLC tracking for inversely optimized arc radiotherapy

    DEFF Research Database (Denmark)

    Falk, Marianne; af Rosenschöld, Per Munck; Keall, Paul

    2010-01-01

    Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory.......Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory....

  1. ARTISTIC VISUALIZATION OF TRAJECTORY DATA USING CLOUD MODEL

    Directory of Open Access Journals (Sweden)

    T. Wu

    2017-09-01

    Full Text Available Rapid advance of location acquisition technologies boosts the generation of trajectory data, which track the traces of moving objects. A trajectory is typically represented by a sequence of timestamped geographical locations. Data visualization is an efficient means to represent distributions and structures of datasets and reveal hidden patterns in the data. In this paper, we explore a cloud model-based method for the generation of stylized renderings of trajectory data. The artistic visualizations of the proposed method do not have the goal to allow for data mining tasks or others but instead show the aesthetic effect of the traces of moving objects in a distorted manner. The techniques used to create the images of traces of moving objects include the uncertain line using extended cloud model, stroke-based rendering of geolocation in varying styles, and stylistic shading with aesthetic effects for print or electronic displays, as well as various parameters to be further personalized. The influence of different parameters on the aesthetic qualities of various painted images is investigated, including step size, types of strokes, colour modes, and quantitative comparisons using four aesthetic measures are also involved into the experiment. The experimental results suggest that the proposed method is with advantages of uncertainty, simplicity and effectiveness, and it would inspire professional graphic designers and amateur users who may be interested in playful and creative exploration of artistic visualization of trajectory data.

  2. Supervised Learning Applied to Air Traffic Trajectory Classification

    Science.gov (United States)

    Bosson, Christabelle; Nikoleris, Tasos

    2018-01-01

    Given the recent increase of interest in introducing new vehicle types and missions into the National Airspace System, a transition towards a more autonomous air traffic control system is required in order to enable and handle increased density and complexity. This paper presents an exploratory effort of the needed autonomous capabilities by exploring supervised learning techniques in the context of aircraft trajectories. In particular, it focuses on the application of machine learning algorithms and neural network models to a runway recognition trajectory-classification study. It investigates the applicability and effectiveness of various classifiers using datasets containing trajectory records for a month of air traffic. A feature importance and sensitivity analysis are conducted to challenge the chosen time-based datasets and the ten selected features. The study demonstrates that classification accuracy levels of 90% and above can be reached in less than 40 seconds of training for most machine learning classifiers when one track data point, described by the ten selected features at a particular time step, per trajectory is used as input. It also shows that neural network models can achieve similar accuracy levels but at higher training time costs.

  3. Artistic Visualization of Trajectory Data Using Cloud Model

    Science.gov (United States)

    Wu, T.; Zhou, Y.; Zhang, L.

    2017-09-01

    Rapid advance of location acquisition technologies boosts the generation of trajectory data, which track the traces of moving objects. A trajectory is typically represented by a sequence of timestamped geographical locations. Data visualization is an efficient means to represent distributions and structures of datasets and reveal hidden patterns in the data. In this paper, we explore a cloud model-based method for the generation of stylized renderings of trajectory data. The artistic visualizations of the proposed method do not have the goal to allow for data mining tasks or others but instead show the aesthetic effect of the traces of moving objects in a distorted manner. The techniques used to create the images of traces of moving objects include the uncertain line using extended cloud model, stroke-based rendering of geolocation in varying styles, and stylistic shading with aesthetic effects for print or electronic displays, as well as various parameters to be further personalized. The influence of different parameters on the aesthetic qualities of various painted images is investigated, including step size, types of strokes, colour modes, and quantitative comparisons using four aesthetic measures are also involved into the experiment. The experimental results suggest that the proposed method is with advantages of uncertainty, simplicity and effectiveness, and it would inspire professional graphic designers and amateur users who may be interested in playful and creative exploration of artistic visualization of trajectory data.

  4. Human action recognition using trajectory-based representation

    Directory of Open Access Journals (Sweden)

    Haiam A. Abdul-Azim

    2015-07-01

    Full Text Available Recognizing human actions in video sequences has been a challenging problem in the last few years due to its real-world applications. A lot of action representation approaches have been proposed to improve the action recognition performance. Despite the popularity of local features-based approaches together with “Bag-of-Words” model for action representation, it fails to capture adequate spatial or temporal relationships. In an attempt to overcome this problem, a trajectory-based local representation approaches have been proposed to capture the temporal information. This paper introduces an improvement of trajectory-based human action recognition approaches to capture discriminative temporal relationships. In our approach, we extract trajectories by tracking the detected spatio-temporal interest points named “cuboid features” with matching its SIFT descriptors over the consecutive frames. We, also, propose a linking and exploring method to obtain efficient trajectories for motion representation in realistic conditions. Then the volumes around the trajectories’ points are described to represent human actions based on the Bag-of-Words (BOW model. Finally, a support vector machine is used to classify human actions. The effectiveness of the proposed approach was evaluated on three popular datasets (KTH, Weizmann and UCF sports. Experimental results showed that the proposed approach yields considerable performance improvement over the state-of-the-art approaches.

  5. The trajectory prediction of spacecraft by grey method

    International Nuclear Information System (INIS)

    Wang, Qiyue; Wang, Zhongyu; Zhang, Zili; Wang, Yanqing; Zhou, Weihu

    2016-01-01

    The real-time and high-precision trajectory prediction of a moving object is a core technology in the field of aerospace engineering. The real-time monitoring and tracking technology are also significant guarantees of aerospace equipment. A dynamic trajectory prediction method called grey dynamic filter (GDF) which combines the dynamic measurement theory and grey system theory is proposed. GDF can use coordinates of the current period to extrapolate coordinates of the following period. At meantime, GDF can also keep the instantaneity of measured coordinates by the metabolism model. In this paper the optimal model length of GDF is firstly selected to improve the prediction accuracy. Then the simulation for uniformly accelerated motion and variably accelerated motion is conducted. The simulation results indicate that the mean composite position error of GDF prediction is one-fifth to that of Kalman filter (KF). By using a spacecraft landing experiment, the prediction accuracy of GDF is compared with the KF method and the primitive grey method (GM). The results show that the motion trajectory of spacecraft predicted by GDF is much closer to actual trajectory than the other two methods. The mean composite position error calculated by GDF is one-eighth to KF and one-fifth to GM respectively. (paper)

  6. Tracking Porters

    DEFF Research Database (Denmark)

    Bruun, Maja Hojer; Krause-Jensen, Jakob; Saltofte, Margit

    2015-01-01

    . In this chapter, we argue that although anthropology has its specific methodology – including a myriad of ethnographic data-gathering tools, techniques, analytical approaches and theories – it must first and foremost be understood as a craft. Anthropology as craft requires a specific ‘anthropological sensibility......’ that differs from the standardized procedures of normal science. To establish our points we use an example of problem-based project work conducted by a group of Techno-Anthropology students at Aalborg University, we focus on key aspects of this craft and how the students began to learn it: For two weeks...... the students followed the work of a group of porters. Drawing on anthropological concepts and research strategies the students gained crucial insights about the potential effects of using tracking technologies in the hospital....

  7. Fibre tracking

    International Nuclear Information System (INIS)

    Gaillard, J.M.

    1994-03-01

    A large-size scintillating plastic fibre tracking detector was built as part of the upgrade of the UA2 central detector at the SPS proton-antiproton collider. The cylindrical fibre detector of average radius of 40 cm consisted of 60000 plastic fibres with an active length of 2.1 m. One of the main motivations was to improve the electron identification. The fibre ends were bunched to be coupled to read-out systems of image intensifier plus CCD, 32 in total. The quality and the reliability of the UA2 fibre detector performance exceeded expectations throughout its years of operation. A few examples of the use of image intensifiers and of scintillating fibres in biological instrumentation are described. (R.P.) 11 refs., 15 figs., 2 tabs

  8. The method to increase an adequacy and exactitude of the tracking of controlled airplane flight

    Directory of Open Access Journals (Sweden)

    В. М. Васильєв

    2003-03-01

    Full Text Available The method to increase the adequacy and exactitude of trajectory estimates for tracking of controlled flight is proposed. The method of a solution of a non-linearity problem is also offered when imitate in trajectory estimation algorithm a control signal which includes nonlinear functions of restriction. The results of computer simulation are demonstrated

  9. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    Science.gov (United States)

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  10. Fluctuation theorems and atypical trajectories

    International Nuclear Information System (INIS)

    Sahoo, M; Lahiri, S; Jayannavar, A M

    2011-01-01

    In this work, we have studied simple models that can be solved analytically to illustrate various fluctuation theorems. These fluctuation theorems provide symmetries individually to the distributions of physical quantities such as the classical work (W c ), thermodynamic work (W), total entropy (Δs tot ) and dissipated heat (Q), when the system is driven arbitrarily out of equilibrium. All these quantities can be defined for individual trajectories. We have studied the number of trajectories which exhibit behaviour unexpected at the macroscopic level. As the time of observation increases, the fraction of such atypical trajectories decreases, as expected at the macroscale. The distributions for the thermodynamic work and entropy production in nonlinear models may exhibit a peak (most probable value) in the atypical regime without violating the expected average behaviour. However, dissipated heat and classical work exhibit a peak in the regime of typical behaviour only.

  11. Long-term future risk of severe exacerbations: Distinct 5-year trajectories of problematic asthma.

    Science.gov (United States)

    Yii, A C A; Tan, J H Y; Lapperre, T S; Chan, A K W; Low, S Y; Ong, T H; Tan, K L; Chotirmall, S H; Sterk, P J; Koh, M S

    2017-09-01

    Assessing future risk of exacerbations is an important component of asthma management. Existing studies have investigated short- but not long-term risk. Problematic asthma patients with unfavorable long-term disease trajectory and persistently frequent severe exacerbations need to be identified early to guide treatment. To identify distinct trajectories of severe exacerbation rates among "problematic asthma" patients and develop a risk score to predict the most unfavorable trajectory. Severe exacerbation rates over five years for 177 "problematic asthma" patients presenting to a specialist asthma clinic were tracked. Distinct trajectories of severe exacerbation rates were identified using group-based trajectory modeling. Baseline predictors of trajectory were identified and used to develop a clinical risk score for predicting the most unfavorable trajectory. Three distinct trajectories were found: 58.5% had rare intermittent severe exacerbations ("infrequent"), 32.0% had frequent severe exacerbations at baseline but improved subsequently ("nonpersistently frequent"), and 9.5% exhibited persistently frequent severe exacerbations, with the highest incidence of near-fatal asthma ("persistently frequent"). A clinical risk score composed of ≥2 severe exacerbations in the past year (+2 points), history of near-fatal asthma (+1 point), body mass index ≥25kg/m 2 (+1 point), obstructive sleep apnea (+1 point), gastroesophageal reflux (+1 point), and depression (+1 point) was predictive of the "persistently frequent" trajectory (area under the receiver operating characteristic curve: 0.84, sensitivity 72.2%, specificity 81.1% using cutoff ≥3 points). The trajectories and clinical risk score had excellent performance in an independent validation cohort. Patients with problematic asthma follow distinct illness trajectories over a period of five years. We have derived and validated a clinical risk score that accurately identifies patients who will have persistently

  12. Mining continuous activity patterns from animal trajectory data

    Science.gov (United States)

    Wang, Y.; Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.

    2014-01-01

    The increasing availability of animal tracking data brings us opportunities and challenges to intuitively understand the mechanisms of animal activities. In this paper, we aim to discover animal movement patterns from animal trajectory data. In particular, we propose a notion of continuous activity pattern as the concise representation of underlying similar spatio-temporal movements, and develop an extension and refinement framework to discover the patterns. We first preprocess the trajectories into significant semantic locations with time property. Then, we apply a projection-based approach to generate candidate patterns and refine them to generate true patterns. A sequence graph structure and a simple and effective processing strategy is further developed to reduce the computational overhead. The proposed approaches are extensively validated on both real GPS datasets and large synthetic datasets.

  13. A Trajectory Generation Approach for Payload Directed Flight

    Science.gov (United States)

    Ippolito, Corey A.; Yeh, Yoo-Hsiu

    2009-01-01

    Presently, flight systems designed to perform payload-centric maneuvers require preconstructed procedures and special hand-tuned guidance modes. To enable intelligent maneuvering via strong coupling between the goals of payload-directed flight and the autopilot functions, there exists a need to rethink traditional autopilot design and function. Research into payload directed flight examines sensor and payload-centric autopilot modes, architectures, and algorithms that provide layers of intelligent guidance, navigation and control for flight vehicles to achieve mission goals related to the payload sensors, taking into account various constraints such as the performance limitations of the aircraft, target tracking and estimation, obstacle avoidance, and constraint satisfaction. Payload directed flight requires a methodology for accurate trajectory planning that lets the system anticipate expected return from a suite of onboard sensors. This paper presents an extension to the existing techniques used in the literature to quickly and accurately plan flight trajectories that predict and optimize the expected return of onboard payload sensors.

  14. Fast algorithm of track reconstruction for the Delphy TPC

    International Nuclear Information System (INIS)

    Maillard, J.

    1984-01-01

    We describe a simple geometrical method (polar inversion) to reconstruct tracks. When the magnetic field is constant in magnitude and direction. This method uses geometrical properties of the trajectories. In the case of the DELPHI apparatus, the track reconstruction is done using TPC informations. After explaining the algorithm, we give results on ''GEANT'' simulated events using the ''Lund'' generator. Today we get a computer time of the order of 1.2 milliseconds on a CDC 7600 and an efficiency of 98% [fr

  15. Kick-Off Point (KOP and End of Buildup (EOB Data Analysis in Trajectory Design

    Directory of Open Access Journals (Sweden)

    Novrianti Novrianti

    2017-06-01

    Full Text Available Well X is a development well which is directionally drilled. Directional drilling is choosen because the coordinate target of Well X is above the buffer zone. The directional track plan needs accurate survey calculation in order to make the righ track for directional drilling. There are many survey calculation in directional drilling such as tangential, underbalance, average angle, radius of curvature, and mercury method. Minimum curvature method is used in this directional track plan calculation. This method is used because it gives less error than other method.  Kick-Off Point (KOP and End of Buildup (EOB analysis is done at 200 ft, 400 ft, and 600 ft depth to determine the trajectory design and optimal inclination. The hole problem is also determined in this trajectory track design. Optimal trajectory design determined at 200 ft depth because the inclination below 35º and also already reach the target quite well at 1632.28 ft TVD and 408.16 AHD. The optimal inclination at 200 ft KOP depth because the maximum inclination is 18.87º which is below 35º. Hole problem will occur if the trajectory designed at 600 ft. The problems are stuck pipe and the casing or tubing will not able to bend.

  16. Classical models for Regge trajectories

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Van Dam, H.; Marmo, G.; Morandi, G.; Mukunda, N.; Samuel, J.; Sudarshan, E.C.G.

    1987-01-01

    Two classical models for particles with internal structure and which describe Regge trajectories are developed. The remarkable geometric and other properties of the two internal spaces are highlighted. It is shown that the conditions of positive time-like four-velocity and energy momentum for the classical system imply strong and physically reasonable conditions on the Regge mass-spin relationship

  17. Classical Trajectories and Quantum Spectra

    Science.gov (United States)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  18. Visiting Vehicle Ground Trajectory Tool

    Science.gov (United States)

    Hamm, Dustin

    2013-01-01

    The International Space Station (ISS) Visiting Vehicle Group needed a targeting tool for vehicles that rendezvous with the ISS. The Visiting Vehicle Ground Trajectory targeting tool provides the ability to perform both realtime and planning operations for the Visiting Vehicle Group. This tool provides a highly reconfigurable base, which allows the Visiting Vehicle Group to perform their work. The application is composed of a telemetry processing function, a relative motion function, a targeting function, a vector view, and 2D/3D world map type graphics. The software tool provides the ability to plan a rendezvous trajectory for vehicles that visit the ISS. It models these relative trajectories using planned and realtime data from the vehicle. The tool monitors ongoing rendezvous trajectory relative motion, and ensures visiting vehicles stay within agreed corridors. The software provides the ability to update or re-plan a rendezvous to support contingency operations. Adding new parameters and incorporating them into the system was previously not available on-the-fly. If an unanticipated capability wasn't discovered until the vehicle was flying, there was no way to update things.

  19. Tracking Boulders

    Science.gov (United States)

    2006-01-01

    13 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a trough in the Sirenum Fossae region. On the floor and walls of the trough, large -- truck- to house-sized -- boulders are observed at rest. However, there is evidence in this image for the potential for mobility. In the central portion of the south (bottom) wall, a faint line of depressions extends from near the middle of the wall, down to the rippled trough floor, ending very near one of the many boulders in the area. This line of depressions is a boulder track; it indicates the path followed by the boulder as it trundled downslope and eventually came to rest on the trough floor. Because it is on Mars, even when the boulder is sitting still, this once-rolling stone gathers no moss. Location near: 29.4oS, 146.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  20. INNER TRACKING

    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The successful commissioning of ~ 25% of the Silicon Strip Tracker was completed in the Tracker Integration Facility (TIF) at CERN in July 2007 and the Tracker has since been prepared for moving and installation into CMS at P5. The Tracker was ready to move on schedule in September 2007. The Installation of the Tracker cooling pipes and LV cables between Patch Panel 1 (PP1) on the inside the CMS magnet cryostat, and the cooling plants and power system racks on the balconies has been completed. The optical fibres from PP1 to the readout FEDs in the USC have been installed, together with the Tracker cable channels, in parallel with the installation of the EB/HB services. All of the Tracker Safety, Power, DCS and the VME Readout Systems have been installed at P5 and are being tested and commissioned with CMS. It is planned to install the Tracker into CMS before Christmas. The Tracker will then be connected to the pre-installed services on Y...

  1. INNER TRACKING

    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The successful commissioning of ~ 25% of the Silicon Strip Tracker was completed in the Tracker Integration Facility (TIF) at CERN on 18 July 2007 and the Tracker has since been prepared for moving and installation into CMS at P5. The Tracker will be ready to move on schedule in September 2007. The Installation of the Tracker cooling pipes and LV cables between Patch Panel 1 (PP1) on the inside the CMS magnet cryostat, and the cooling plants and power system racks on the balconies has been completed. The optical fibres from PP1 to the readout FEDs in the USC will be installed in parallel with the installation of the EB/HB services, and will be completed in October. It is planned to install the Tracker into CMS at the end of October, after the completion of the installation of the EB/HB services. The Tracker will then be connected to the pre-installed services on YB0 and commissioned with CMS in December. The FPix and BPix continue to make ...

  2. Analytical-numerical solution for the trajectory of seismic rays in media with vertical heterogeneity

    International Nuclear Information System (INIS)

    Imhof, Armando Luis; Calvo, Carlos Adolfo; Moyano, Amalia; Sanchez, Manuel

    2015-01-01

    A determined curve path is followed by the propagation of seismic waves generated in emitters and detected in receivers by the principle of minimum time of Fermat. An ordinary differential equation is derived from the application of the calculation of variations. Due to the compaction of the terrain, the speed usually increases with depth. The experimental laws for each soil have led to this variation leading to a numerical resolution. The adjustment of experimental speed data by an exponential function; the analytical integration of the differential equation and the numerical determination of the integration constants are studied. A geophysical method such as up-hole or down-hole has determined the experimental data. Its main application is centered in the validation of numerical models of curved trajectories. Then time of first arrivals through tomographic algorithms for detection and modeling of anomalies in the first 12 m depth. (author) [es

  3. ACTS: from ATLAS software towards a common track reconstruction software

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349786; The ATLAS collaboration; Salzburger, Andreas; Kiehn, Moritz; Hrdinka, Julia; Calace, Noemi

    2017-01-01

    Reconstruction of charged particles' trajectories is a crucial task for most particle physics experiments. The high instantaneous luminosity achieved at the LHC leads to a high number of proton-proton collisions per bunch crossing, which has put the track reconstruction software of the LHC experiments through a thorough test. Preserving track reconstruction performance under increasingly difficult experimental conditions, while keeping the usage of computational resources at a reasonable level, is an inherent problem for many HEP experiments. Exploiting concurrent algorithms and using multivariate techniques for track identification are the primary strategies to achieve that goal. Starting from current ATLAS software, the ACTS project aims to encapsulate track reconstruction software into a generic, framework- and experiment-independent software package. It provides a set of high-level algorithms and data structures for performing track reconstruction tasks as well as fast track simulation. The software is de...

  4. An Integrated Tool for Low Thrust Optimal Control Orbit Transfers in Interplanetary Trajectories

    Science.gov (United States)

    Dargent, T.; Martinot, V.

    In the last recent years a significant progress has been made in optimal control orbit transfers using low thrust electrical propulsion for interplanetary missions. The system objective is always the same: decrease the transfer duration and increase the useful satellite mass. The optimum control strategy to perform the minimum time to orbit or the minimum fuel consumption requires the use of sophisticated mathematical tools, most of the time dedicated to a specific mission and therefore hardly reusable. To improve this situation and enable Alcatel Space to perform rather quick trajectory design as requested by mission analysis, we have developed a software tool T-3D dedicated to optimal control orbit transfers which integrates various initial and terminal rendezvous conditions - e.g. fixed arrival time for planet encounter - and engine thrust profiles -e.g. thrust law variation with respect to the distance to the Sun -. This single and quite versatile tool allows to perform analyses like minimum consumption for orbit insertions around a planet from an hyperbolic trajectory, interplanetary orbit transfers, low thrust minimum time multiple revolution orbit transfers, etc… From a mathematical point of view, the software relies on the minimum principle formulation to find the necessary conditions of optimality. The satellite dynamics is a two body model and relies of an equinoctial formulation of the Gauss equation. This choice has been made for numerical purpose and to solve more quickly the two point boundaries values problem. In order to handle the classical problem of co-state variables initialization, problems simpler than the actual one can be solved straight forward by the tool and the values of the co-state variables are kept as first guess for a more complex problem. Finally, a synthesis of the test cases is presented to illustrate the capacities of the tool, mixing examples of interplanetary mission, orbit insertion, multiple revolution orbit transfers

  5. Trajectories of suicidal ideation over 6 months among 482 outpatients with bipolar disorder

    DEFF Research Database (Denmark)

    Köhler-Forsberg, Ole; Madsen, Trine; Behrendt-Møller, Ida

    2017-01-01

    INTRODUCTION: Suicidal ideation occurs frequently among individuals with bipolar disorder; however, its course and persistence over time remains unclear. We aimed to investigate 6-months trajectories of suicidal ideation among adults with bipolar disorder. METHODS: The Bipolar CHOICE study...... randomized 482 outpatients with bipolar disorder to 6 months of lithium- or quetiapine-based treatment including other psychotropic medications as clinically indicated. Participants were asked at 9 visits about suicidal ideation using the Concise Health Risk Tracking scale. We performed latent Growth Mixture...... Modelling analysis to empirically identify trajectories of suicidal ideation. Multinomial logistic regression analyses were applied to estimate associations between trajectories and potential predictors. RESULTS: We identified four distinct trajectories. The Moderate-Stable group represented 11...

  6. Satellite Images-Based Obstacle Recognition and Trajectory Generation for Agricultural Vehicles

    Directory of Open Access Journals (Sweden)

    Mehmet Bodur

    2015-12-01

    Full Text Available In this study, a method for the generation of tracking trajectory points, detection and positioning of obstacles in agricultural fields have been presented. Our principal contribution is to produce traceable GPS trajectories for agricultural vehicles to be utilized by path planning algorithms, rather than a new path planning algorithm. The proposed system works with minimal initialization requirements, specifically, a single geographical coordinate entry of an agricultural field. The automation of agricultural plantation requires many aspects to be addressed, many of which have been covered in previous studies. Depending on the type of crop, different agricultural vehicles may be used in the field. However, regardless of their application, they all follow a specified trajectory in the field. This study takes advantage of satellite images for the detection and positioning of obstacles, and the generation of GPS trajectories in the agricultural realm. A set of image processing techniques is applied in Matlab for detection and positioning.

  7. Trajectories of delinquency and parenting styles

    NARCIS (Netherlands)

    Hoeve, M.; van Blokland, A.; Dubas, J.S.; Loeber, R; Gerris, J.R.M.; van der Laan, P.H.

    2008-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering

  8. Trajectories of Delinquency and Parenting Styles

    NARCIS (Netherlands)

    Hoeve, M.; Blokland, A.A.J.; Dubas, J.S.; Loeber, R.; Gerris, J.R.M.; Laan, P.H. van der

    2008-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering

  9. User Oriented Trajectory Search for Trip Recommendation

    KAUST Repository

    Ding, Ruogu

    2012-01-01

    Trajectory sharing and searching have received significant attention in recent years. In this thesis, we propose and investigate the methods to find and recommend the best trajectory to the traveler, and mainly focus on a novel technique named User

  10. Efficient Trajectory Options Allocation for the Collaborative Trajectory Options Program

    Science.gov (United States)

    Rodionova, Olga; Arneson, Heather; Sridhar, Banavar; Evans, Antony

    2017-01-01

    The Collaborative Trajectory Options Program (CTOP) is a Traffic Management Initiative (TMI) intended to control the air traffic flow rates at multiple specified Flow Constrained Areas (FCAs), where demand exceeds capacity. CTOP allows flight operators to submit the desired Trajectory Options Set (TOS) for each affected flight with associated Relative Trajectory Cost (RTC) for each option. CTOP then creates a feasible schedule that complies with capacity constraints by assigning affected flights with routes and departure delays in such a way as to minimize the total cost while maintaining equity across flight operators. The current version of CTOP implements a Ration-by-Schedule (RBS) scheme, which assigns the best available options to flights based on a First-Scheduled-First-Served heuristic. In the present study, an alternative flight scheduling approach is developed based on linear optimization. Results suggest that such an approach can significantly reduce flight delays, in the deterministic case, while maintaining equity as defined using a Max-Min fairness scheme.

  11. Trajectories of Behavioural Disturbances Across Dementia Types.

    Science.gov (United States)

    Linds, Alexandra B; Kirstein, Alana B; Freedman, Morris; Verhoeff, Nicolaas P L G; Wolf, Uri; Chow, Tiffany W

    2015-11-01

    To replicate a previous finding that the trajectory of the Neuropsychiatric Inventory (NPI) shifts in the sixth year of behavioural variant frontotemporal dementia (bvFTD). We evaluated longitudinal tracking with both the Frontal Behavioural Inventory (FBI) and NPI, comparing bvFTD against other dementias. Chart reviews over two to five years for patients with bvFTD (n=30), primary progressive aphasia (PPA, n=13) and Alzheimer's disease (AD, n=118) at an urban Canadian tertiary clinic specializing in dementia. Linear regressions of the longitudinal data tested predictors of annualized rates of change (ROC) in NPI and FBI total and subscales for apathy and disinhibition among dementia groups. The mode of the overall sample for the most advanced duration of illness observed was 5 years, with the median at 7 years. We did not find a crescendo-decrescendo pattern in scores although, for bvFTD and AD, high initial scores correlated with ensuing downward ROCs on the NPI and FBI. Educational level showed an influence on disinhibition ROCs. The FBI was no more revealing than the NPI for apathy and disinhibition scores in these dementias. A cognitive reserve effect on behavioural disturbance was supported but it may take longer than our 4 years of observing the clinical sample to record inflection points in the behavioural and psychiatric symptoms seen in bvFTD. The current data only imply that both apathy and disinhibition will diminish over the course of dementia.

  12. Making Sense of Trajectory Data in Indoor Spaces

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Thom, Andreas; Blunck, Henrik

    2015-01-01

    The increasing prevalence of positioning and tracking systems has helped simplify tracking large amounts of, e.g., people moving through buildings or cars traveling on roads, over long periods of time. However, technical limitations of positioning algorithms and traditional sensing infrastructures......-specific analysis tools. Additionally, it allows to predict the locally occurring expected positioning error biases. This in turn allows improved positioning, e.g., for real-time navigation assistance scenarios. We evaluate the proposed methods using trajectory data from employees at a large hospital complex...... which route was taken in a particular travel instance or whether two travel instances followed the same route. In this paper, we present a bootstrapping approach and several algorithms to mitigate error biases and related phenomena, focusing on indoor scenarios. In particular, we are able to estimate...

  13. Aircraft 4D trajectories planning under uncertainties

    OpenAIRE

    Chaimatanan , Supatcha; Delahaye , Daniel; Mongeau , Marcel

    2015-01-01

    International audience; To sustain the rapidly increasing air traffic demand, the future air traffic management system will rely on a concept, called Trajectory-Based Operations (TBO), that will require aircraft to follow an assigned 4D trajectory (time-constrained trajectory) with high precision. TBO involves separating aircraft via strategic (long-term) trajectory deconfliction rather than the currently-practicing tactical (short-term) conflict resolution. In this context, this paper presen...

  14. Towards Efficient Search for Activity Trajectories

    DEFF Research Database (Denmark)

    Zheng, Kai; Shang, Shuo; Yuan, Jing

    2013-01-01

    , recent proliferation in location-based web applications (e.g., Foursquare, Facebook) has given rise to large amounts of trajectories associated with activity information, called activity trajectory. In this paper, we study the problem of efficient similarity search on activity trajectory database. Given...

  15. Methods for control over learning individual trajectory

    Science.gov (United States)

    Mitsel, A. A.; Cherniaeva, N. V.

    2015-09-01

    The article discusses models, methods and algorithms of determining student's optimal individual educational trajectory. A new method of controlling the learning trajectory has been developed as a dynamic model of learning trajectory control, which uses score assessment to construct a sequence of studied subjects.

  16. Trajectories of low back pain

    DEFF Research Database (Denmark)

    Axén, Iben; Leboeuf-Yde, Charlotte

    2013-01-01

    Low back pain is not a self-limiting problem, but rather a recurrent and sometimes persistent disorder. To understand the course over time, detailed investigation, preferably using repeated measurements over extended periods of time, is needed. New knowledge concerning short-term trajectories...... indicates that the low back pain 'episode' is short lived, at least in the primary care setting, with most patients improving. Nevertheless, in the long term, low back pain often runs a persistent course with around two-thirds of patients estimated to be in pain after 12 months. Some individuals never have...... low back pain, but most have it on and off or persistently. Thus, the low back pain 'condition' is usually a lifelong experience. However, subgroups of patients with different back pain trajectories have been identified and linked to clinical parameters. Further investigation is warranted...

  17. The particle tracking package Kassiopeia

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Stefan [Karlsruhe Institute of Technology (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The Kassiopeia particle tracking framework is an object-oriented software package utilizing modern C++ techniques, written originally to meet the needs of the Katrin collaboration. Kassiopeia's target consists of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and potentially stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a fully-featured geometry package which serves a variety of roles, including initialization of electromagnetic field simulations, gas flow simulations, and the support of state-dependent algorithm-swapping and behavioral changes. Kassiopeia has been well validated and widely used within the Katrin collaboration, playing a primary role in many theses and refereed publications.

  18. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  19. Interference, reduced action, and trajectories

    OpenAIRE

    Floyd, Edward R.

    2006-01-01

    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichroma...

  20. Robust tracking control of uncertain Duffing-Holmes control systems

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2009-01-01

    In this paper, the notion of virtual stabilizability for dynamical systems is introduced and the virtual stabilizability of uncertain Duffing-Holmes control systems is investigated. Based on the time-domain approach with differential inequality, a tracking control is proposed such that the states of uncertain Duffing-Holmes control system track the desired trajectories with any pre-specified exponential decay rate and convergence radius. Moreover, we present an algorithm to find such a tracking control. Finally, a numerical example is provided to illustrate the use of the main results.

  1. Kinect-Based Moving Human Tracking System with Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Abdel Mehsen Ahmad

    2017-04-01

    Full Text Available This paper is an extension of work originally presented and published in IEEE International Multidisciplinary Conference on Engineering Technology (IMCET. This work presents a design and implementation of a moving human tracking system with obstacle avoidance. The system scans the environment by using Kinect, a 3D sensor, and tracks the center of mass of a specific user by using Processing, an open source computer programming language. An Arduino microcontroller is used to drive motors enabling it to move towards the tracked user and avoid obstacles hampering the trajectory. The implemented system is tested under different lighting conditions and the performance is analyzed using several generated depth images.

  2. Solar tracking system

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  3. Synthetic Jet Actuator-Based Aircraft Tracking Using a Continuous Robust Nonlinear Control Strategy

    Directory of Open Access Journals (Sweden)

    N. Ramos-Pedroza

    2017-01-01

    Full Text Available A robust nonlinear control law that achieves trajectory tracking control for unmanned aerial vehicles (UAVs equipped with synthetic jet actuators (SJAs is presented in this paper. A key challenge in the control design is that the dynamic characteristics of SJAs are nonlinear and contain parametric uncertainty. The challenge resulting from the uncertain SJA actuator parameters is mitigated via innovative algebraic manipulation in the tracking error system derivation along with a robust nonlinear control law employing constant SJA parameter estimates. A key contribution of the paper is a rigorous analysis of the range of SJA actuator parameter uncertainty within which asymptotic UAV trajectory tracking can be achieved. A rigorous stability analysis is carried out to prove semiglobal asymptotic trajectory tracking. Detailed simulation results are included to illustrate the effectiveness of the proposed control law in the presence of wind gusts and varying levels of SJA actuator parameter uncertainty.

  4. Tracking Mobile Robot in Indoor Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2014-01-01

    Full Text Available This work addresses the problem of tracking mobile robots in indoor wireless sensor networks (WSNs. Our approach is based on a localization scheme with RSSI (received signal strength indication which is used widely in WSN. The developed tracking system is designed for continuous estimation of the robot’s trajectory. A WSN, which is composed of many very simple and cheap wireless sensor nodes, is deployed at a specific region of interest. The wireless sensor nodes collect RSSI information sent by mobile robots. A range-based data fusion scheme is used to estimate the robot’s trajectory. Moreover, a Kalman filter is designed to improve tracking accuracy. Experiments are provided to assess the performance of the proposed scheme.

  5. Almost-global tracking for a rigid body with internal rotors

    OpenAIRE

    Nayak, Aradhana; Banavar, Ravi N.

    2017-01-01

    Almost-global orientation trajectory tracking for a rigid body with external actuation has been well studied in the literature, and in the geometric setting as well. The tracking control law relies on the fact that a rigid body is a simple mechanical system (SMS) on the $3-$dimensional group of special orthogonal matrices. However, the problem of designing feedback control laws for tracking using internal actuation mechanisms, like rotors or control moment gyros, has received lesser attention...

  6. Power spectral density of a single Brownian trajectory: what one can and cannot learn from it

    Science.gov (United States)

    Krapf, Diego; Marinari, Enzo; Metzler, Ralf; Oshanin, Gleb; Xu, Xinran; Squarcini, Alessio

    2018-02-01

    The power spectral density (PSD) of any time-dependent stochastic process X t is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X t over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T\\to ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.

  7. Target Tracking of a Linear Time Invariant System under Irregular Sampling

    Directory of Open Access Journals (Sweden)

    Jin Xue-Bo

    2012-11-01

    Full Text Available Due to event-triggered sampling in a system, or maybe with the aim of reducing data storage, tracking many applications will encounter irregular sampling time. By calculating the matrix exponential using an inverse Laplace transform, this paper transforms the irregular sampling tracking problem to the problem of tracking with time-varying parameters of a system. Using the common Kalman filter, the developed method is used to track a target for the simulated trajectory and video tracking. The results of simulation experiments have shown that it can obtain good estimation performance even at a very high irregular rate of measurement sampling time.

  8. Calculation of the electron trajectory for 200 kV self-shielded electron accelerator

    International Nuclear Information System (INIS)

    Wang Shuiqing

    2000-01-01

    In order to calculate the electron trajectory of 200 kV self-shielded electron accelerator, the electric field is calculated with a TRAJ program. In this program, following electron track mash points one by one, the electron beam trajectories are calculated. Knowing the effect of grid voltage on electron optics and gaining grid voltage focusing effect in the various energy grades, the authors have gained scientific basis for adjusting grid voltage, and also accumulated a wealth of experience for designing self-shielded electron accelerator or electron curtain in future

  9. Inner Detector Track Reconstruction and Alignment at the ATLAS Experiment

    CERN Document Server

    Danninger, Matthias; The ATLAS collaboration

    2017-01-01

    The Inner Detector of the ATLAS experiment at the LHC is responsible for reconstructing the trajectories of charged particles (‘tracks’) with high efficiency and accuracy. It consists of three subdetectors, each using a different technology to provide measurements points. An overview of the use of each of these subdetectors in track reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking will be summarised. Of crucial importance for optimal tracking performance is precise knowledge of the relative positions of the detector elements. ATLAS uses a sophisticated, highly granular software alignment procedure to determine and correct for the positions of the sensors, including time-dependent effects appearing within single data runs. This alignment procedure will be discussed in detail, and its effect on Inner Detector tracking for LHC Run 2 proton-proton collision data highlighted.

  10. Optimal trajectories of aircraft and spacecraft

    Science.gov (United States)

    Miele, A.

    1990-01-01

    Work done on algorithms for the numerical solutions of optimal control problems and their application to the computation of optimal flight trajectories of aircraft and spacecraft is summarized. General considerations on calculus of variations, optimal control, numerical algorithms, and applications of these algorithms to real-world problems are presented. The sequential gradient-restoration algorithm (SGRA) is examined for the numerical solution of optimal control problems of the Bolza type. Both the primal formulation and the dual formulation are discussed. Aircraft trajectories, in particular, the application of the dual sequential gradient-restoration algorithm (DSGRA) to the determination of optimal flight trajectories in the presence of windshear are described. Both take-off trajectories and abort landing trajectories are discussed. Take-off trajectories are optimized by minimizing the peak deviation of the absolute path inclination from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. The survival capability of an aircraft in a severe windshear is discussed, and the optimal trajectories are found to be superior to both constant pitch trajectories and maximum angle of attack trajectories. Spacecraft trajectories, in particular, the application of the primal sequential gradient-restoration algorithm (PSGRA) to the determination of optimal flight trajectories for aeroassisted orbital transfer are examined. Both the coplanar case and the noncoplanar case are discussed within the frame of three problems: minimization of the total characteristic velocity; minimization of the time integral of the square of the path inclination; and minimization of the peak heating rate. The solution of the second problem is called nearly-grazing solution, and its merits are pointed out as a useful

  11. Loss of positional information when tracking multiple moving dots: the role of visual memory.

    Science.gov (United States)

    Narasimhan, Sathyasri; Tripathy, Srimant P; Barrett, Brendan T

    2009-01-01

    Pylyshyn, Z.W. and Storm, R.W. (1988) (Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179-197) proposed that human observers could simultaneously track up to five dots when presented with an array of dots moving in a random manner. In contrast, Tripathy, S.P., and Barrett, B.T. (2004) (Severe loss of positional information when detecting deviations in multiple trajectories. Journal of Vision, 4(12):4, 1020-1043, http://journalofvision.org/4/14/4/, doi: 10.1167/4.12.4) showed that when a threshold paradigm was employed, observers' ability to track deviations in straight-line trajectories is severely compromised when attending to two or more dots. In this study we present a series of four experiments that investigates the role of attention and visual memory while tracking deviations in multiple trajectories using a threshold paradigm. Our stimuli consisted of several linear, non-parallel, left-to-right trajectories, each moving at the same speed. At the trajectory mid-point (reached simultaneously by all dots), one of the dots (target) deviated clockwise or counter-clockwise. The observers' task was to identify the direction of deviation. The target trajectory was cued in the second half of the trial either by disappearance of distractors at the monitor's mid-line (Experiment 1) or by means of a change in colour of the target (Experiment 2); in both cases deviation thresholds rose steeply when the number of distractor trajectories was increased from 0 (typical threshold approximately 2 degrees) to 3 (typical threshold>20 degrees). When all the trajectories were presented statically in a single frame (Experiment 3), thresholds for identifying the orientation change of the target trajectory remained relatively unchanged as the number of distractor trajectories was increased. When a temporal delay of a few hundred milliseconds was introduced between the first and second halves of trajectories (Experiment 4

  12. Laser tracker TSPI uncertainty quantification via centrifuge trajectory

    Science.gov (United States)

    Romero, Edward; Paez, Thomas; Brown, Timothy; Miller, Timothy

    2009-08-01

    Sandia National Laboratories currently utilizes two laser tracking systems to provide time-space-position-information (TSPI) and high speed digital imaging of test units under flight. These laser trackers have been in operation for decades under the premise of theoretical accuracies based on system design and operator estimates. Advances in optical imaging and atmospheric tracking technology have enabled opportunities to provide more precise six degree of freedom measurements from these trackers. Applying these technologies to the laser trackers requires quantified understanding of their current errors and uncertainty. It was well understood that an assortment of variables contributed to laser tracker uncertainty but the magnitude of these contributions was not quantified and documented. A series of experiments was performed at Sandia National Laboratories large centrifuge complex to quantify TSPI uncertainties of Sandia National Laboratories laser tracker III. The centrifuge was used to provide repeatable and economical test unit trajectories of a test-unit to use for TSPI comparison and uncertainty analysis. On a centrifuge, testunits undergo a known trajectory continuously with a known angular velocity. Each revolution may represent an independent test, which may be repeated many times over for magnitudes of data practical for statistical analysis. Previously these tests were performed at Sandia's rocket sled track facility but were found to be costly with challenges in the measurement ground truth TSPI. The centrifuge along with on-board measurement equipment was used to provide known ground truth position of test units. This paper discusses the experimental design and techniques used to arrive at measures of laser tracker error and uncertainty.

  13. Ray trajectories for Alcubierre spacetime

    International Nuclear Information System (INIS)

    Anderson, Tom H; Mackay, Tom G; Lakhtakia, Akhlesh

    2011-01-01

    The Alcubierre spacetime was simulated by means of a Tamm medium which is asymptotically identical to vacuum and has constitutive parameters which are continuous functions of the spatial coordinates. Accordingly, the Tamm medium is amenable to physical realization as a micro- or nanostructured metamaterial. A comprehensive characterization of ray trajectories in the Tamm medium was undertaken, within the geometric-optics regime. Propagation directions corresponding to evanescent waves were identified: these occur in the region of the Tamm medium which corresponds to the warp bubble of the Alcubierre spacetime, especially for directions perpendicular to the velocity of the warp bubble at high speeds of that bubble. Ray trajectories are acutely sensitive to the magnitude and direction of the warp bubble's velocity, but rather less sensitive to the thickness of the transition zone between the warp bubble and its background. In particular, for rays which travel in the same direction as the warp bubble, the latter acts as a focusing lens, most notably at high speeds

  14. Stochastic and fractal analysis of fracture trajectories

    Science.gov (United States)

    Bessendorf, Michael H.

    1987-01-01

    Analyses of fracture trajectories are used to investigate structures that fall between 'micro' and 'macro' scales. It was shown that fracture trajectories belong to the class of nonstationary processes. It was also found that correlation distance, which may be related to a characteristic size of a fracture process, increases with crack length. An assemblage of crack trajectory processes may be considered as a diffusive process. Chudnovsky (1981-1985) introduced a 'crack diffusion coefficient' d which reflects the ability of the material to deviate the crack trajectory from the most energetically efficient path and thus links the material toughness to its structure. For the set of fracture trajectories in AISI 304 steel, d was found to be equal to 1.04 microns. The fractal dimension D for the same set of trajectories was found to be 1.133.

  15. Distinguished trajectories in time dependent vector fields

    OpenAIRE

    Madrid, J. A. Jimenez; Mancho, Ana M.

    2008-01-01

    We introduce a new definition of distinguished trajectory that generalizes the concepts of fixed point and periodic orbit to aperiodic dynamical systems. This new definition is valid for identifying distinguished trajectories with hyperbolic and nonhyperbolic types of stability. The definition is implemented numerically and the procedure consists of determining a path of limit coordinates. It has been successfully applied to known examples of distinguished trajectories. In the context of high...

  16. Trajectories of Delinquency and Parenting Styles

    OpenAIRE

    Hoeve, Machteld; Blokland, Arjan; Dubas, Judith Semon; Loeber, Rolf; Gerris, Jan R. M.; van der Laan, Peter H.

    2007-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10?19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persist...

  17. Decentralized flight trajectory planning of multiple aircraft

    OpenAIRE

    Yokoyama, Nobuhiro; 横山 信宏

    2008-01-01

    Conventional decentralized algorithms for optimal trajectory planning tend to require prohibitive computational time as the number of aircraft increases. To overcome this drawback, this paper proposes a novel decentralized trajectory planning algorithm adopting a constraints decoupling approach for parallel optimization. The constraints decoupling approach is formulated as the path constraints of the real-time trajectory optimization problem based on nonlinear programming. Due to the parallel...

  18. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.

    Science.gov (United States)

    Depuydt, Tom; Verellen, Dirk; Haas, Olivier; Gevaert, Thierry; Linthout, Nadine; Duchateau, Michael; Tournel, Koen; Reynders, Truus; Leysen, Katrien; Hoogeman, Mischa; Storme, Guy; De Ridder, Mark

    2011-03-01

    VERO is a novel platform for image guided stereotactic body radiotherapy. Orthogonal gimbals hold the linac-MLC assembly allowing real-time moving tumor tracking. This study determines the geometric accuracy of the tracking. To determine the tracking error, an 1D moving phantom produced sinusoidal motion with frequencies up to 30 breaths per minute (bpm). Tumor trajectories of patients were reproduced using a 2D robot and pursued with the gimbals tracking system prototype. Using the moving beam light field and a digital-camera-based detection unit tracking errors, system lag and equivalence of pan/tilt performance were measured. The system lag was 47.7 ms for panning and 47.6 ms for tilting. Applying system lag compensation, sinusoidal motion tracking was accurate, with a tracking error 90% percentile E(90%)tracking errors were below 0.14 mm. The 2D tumor trajectories were tracked with an average E(90%) of 0.54 mm, and tracking error standard deviations of 0.20 mm for pan and 0.22 mm for tilt. In terms of dynamic behavior, the gimbaled linac of the VERO system showed to be an excellent approach for providing accurate real-time tumor tracking in radiation therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Trajectory similarity join in spatial networks

    KAUST Repository

    Shang, Shuo

    2017-09-07

    The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider the case of trajectory similarity join (TS-Join), where the objects are trajectories of vehicles moving in road networks. Thus, given two sets of trajectories and a threshold θ, the TS-Join returns all pairs of trajectories from the two sets with similarity above θ. This join targets applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction. With these applications in mind, we provide a purposeful definition of similarity. To enable efficient TS-Join processing on large sets of trajectories, we develop search space pruning techniques and take into account the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer algorithm. For each trajectory, the algorithm first finds similar trajectories. Then it merges the results to achieve a final result. The algorithm exploits an upper bound on the spatiotemporal similarity and a heuristic scheduling strategy for search space pruning. The algorithm\\'s per-trajectory searches are independent of each other and can be performed in parallel, and the merging has constant cost. An empirical study with real data offers insight in the performance of the algorithm and demonstrates that is capable of outperforming a well-designed baseline algorithm by an order of magnitude.

  20. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-01-01

    persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc

  1. Renewable Energy Tracking Systems

    Science.gov (United States)

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  2. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  3. THE DYNAMIC MODEL FOR CONTROL OF STUDENT’S LEARNING INDIVIDUAL TRAJECTORY

    Directory of Open Access Journals (Sweden)

    A. A. Mitsel

    2015-01-01

    Full Text Available In connection with the transition of the educational system to a competence-oriented approach, the problem of learning outcomes assessment and creating an individual learning trajectory of a student has become relevant. Its solution requires the application of modern information technologies. The third generation of Federal state educational standards of higher professional education (FSES HPE defines the requirements for the results of Mastering the basic educational programs (BEP. According to FSES HPE up to 50% of subjects have a variable character, i.e. depend on the choice of a student. It significantly influences on the results of developing various competencies. The problem of forming student’s learning trajectory is analyzed in general and the choice of an individual direction was studied in details. Various methods, models and algorithms of the student’s individual learning trajectory formation were described. The analysis of the model of educational process organization in terms of individual approach makes it possible to develop a decision support system (DSS. DSS is a set of interrelated programs and data used for analysis of situation, development of alternative solutions and selection of the most acceptable alternative. DSSs are often used when building individual learning path, because this task can be considered as a discrete multi-criteria problem, creating a significant burden on the decision maker. A new method of controlling the learning trajectory has been developed. The article discusses problem statement and solution of determining student’s optimal individual educational trajectory as a dynamic model of learning trajectory control, which uses score assessment to construct a sequence of studied subjects. A new model of management learning trajectory is based on dynamic models for tracking the reference trajectory. The task can be converted to an equivalent model of linear programming, for which a reliable solution

  4. Advanced Tracking of Vehicles

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Li, K.-J.; Pakalnis, Stardas

    2005-01-01

    efficient tracking techniques. More specifically, while almost all commercially available tracking solutions simply offer time-based sampling of positions, this paper's techniques aim to offer a guaranteed tracking accuracy for each vehicle at the lowest possible costs, in terms of network traffic...

  5. A model of chemical etching of olivine in the vicinity of the trajectory of a swift heavy ion

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, S.A., E-mail: s.a.gorbunov@mail.ru [Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53, 119991 Moscow (Russian Federation); Rymzhanov, R.A. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Starkov, N.I. [Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53, 119991 Moscow (Russian Federation); Volkov, A.E. [Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53, 119991 Moscow (Russian Federation); Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); National Research Centre ‘Kurchatov Institute’, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Malakhov, A.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2015-12-15

    Searching of superheavy elements, the charge spectra of heavy nuclei in Galactic Cosmic Rays was investigated within the OLYMPIA experiment using the database of etched ion tracks in meteorite olivine. Etching results in the formation of hollow syringe-like channels with diameters of 1–10 μm along the trajectories of these swift heavy ions (SHI). According to the activated complex theory, the local chemical activity is determined by an increase of the specific Gibbs energy of the lattice stimulated by structure transformations, long-range elastic fields, and interatomic bonds breaking generated in the vicinity of the ion trajectory. To determine the dependencies of the Gibbs free energy increase in SHI tracks in olivine on the mass, energy and charge of a projectile, we apply a multiscale model of excitation and relaxation of materials in the vicinity of the SHI trajectory (SHI tracks). Effect of spreading of fast electrons from the ion trajectory causing neutralization of metallic atoms resulting in an increase of the chemical activity of olivine at long distances from the ion trajectory (up to 5 μm) is estimated and discussed.

  6. Robust Target Tracking with Multi-Static Sensors under Insufficient TDOA Information.

    Science.gov (United States)

    Shin, Hyunhak; Ku, Bonhwa; Nelson, Jill K; Ko, Hanseok

    2018-05-08

    This paper focuses on underwater target tracking based on a multi-static sonar network composed of passive sonobuoys and an active ping. In the multi-static sonar network, the location of the target can be estimated using TDOA (Time Difference of Arrival) measurements. However, since the sensor network may obtain insufficient and inaccurate TDOA measurements due to ambient noise and other harsh underwater conditions, target tracking performance can be significantly degraded. We propose a robust target tracking algorithm designed to operate in such a scenario. First, track management with track splitting is applied to reduce performance degradation caused by insufficient measurements. Second, a target location is estimated by a fusion of multiple TDOA measurements using a Gaussian Mixture Model (GMM). In addition, the target trajectory is refined by conducting a stack-based data association method based on multiple-frames measurements in order to more accurately estimate target trajectory. The effectiveness of the proposed method is verified through simulations.

  7. Privacy-Preserving Trajectory Collection

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Xuegang, Huang; Pedersen, Torben Bach

    2008-01-01

    In order to provide context--aware Location--Based Services, real location data of mobile users must be collected and analyzed by spatio--temporal data mining methods. However, the data mining methods need precise location data, while the mobile users want to protect their location privacy....... To remedy this situation, this paper first formally defines novel location privacy requirements. Then, it briefly presents a system for privacy--preserving trajectory collection that meets these requirements. The system is composed of an untrusted server and clients communicating in a P2P network. Location...... data is anonymized in the system using data cloaking and data swapping techniques. Finally, the paper empirically demonstrates that the proposed system is effective and feasible....

  8. Mobility, Education and Life Trajectories

    DEFF Research Database (Denmark)

    Olwig, Karen Fog; Valentin, Karen

    2015-01-01

    Travel for educational purposes, once the privilege of the upper class, has become a global mass phenomenon in recent years. This special issue examines, within different cultural and historical contexts, the close relationship between migration, education and social mobility. Adopting...... the perspective that education includes a broad range of formative experiences, the articles explore different educational trajectories and the local, regional and transnational relations in which they are embedded. Three key issues emerge from the analyses: firstly, the central role of temporality in terms...... of both the overall historical conditions and the specific biographical circumstances shaping educational opportunities; secondly, the complex agendas informing individuals’ migration and the adjustment of these agendas in the light of the vagaries of migrant life; and thirdly, the importance of migrants...

  9. How to track protists in three dimensions

    Science.gov (United States)

    Drescher, Knut; Leptos, Kyriacos C.; Goldstein, Raymond E.

    2009-01-01

    We present an apparatus optimized for tracking swimming micro-organisms in the size range of 10-1000 μm, in three dimensions (3Ds), far from surfaces, and with negligible background convective fluid motion. Charge coupled device cameras attached to two long working distance microscopes synchronously image the sample from two perpendicular directions, with narrow band dark-field or bright-field illumination chosen to avoid triggering a phototactic response. The images from the two cameras can be combined to yield 3D tracks of the organism. Using additional, highly directional broad-spectrum illumination with millisecond timing control the phototactic trajectories in 3D of organisms ranging from Chlamydomonas to Volvox can be studied in detail. Surface-mediated hydrodynamic interactions can also be investigated without convective interference. Minimal modifications to the apparatus allow for studies of chemotaxis and other taxes.

  10. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    Science.gov (United States)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  11. Entanglement evolution for quantum trajectories

    International Nuclear Information System (INIS)

    Vogelsberger, S; Spehner, D

    2011-01-01

    Entanglement is a key resource in quantum information. It can be destroyed or sometimes created by interactions with a reservoir. In recent years, much attention has been devoted to the phenomena of entanglement sudden death and sudden birth, i.e., the sudden disappearance or revival of entanglement at finite times resulting from a coupling of the quantum system to its environment. We investigate the evolution of the entanglement of noninteracting qubits coupled to reservoirs under monitoring of the reservoirs by means of continuous measurements. Because of these measurements, the qubits remain at all times in a pure state, which evolves randomly. To each measurement result (or 'realization') corresponds a quantum trajectory in the Hilbert space of the qubits. We show that for two qubits coupled to independent baths subjected to local measurements, the average of the qubits' concurrence over all quantum trajectories is either constant or decays exponentially. The corresponding decay rate depends on the measurement scheme only. This result contrasts with the entanglement sudden death phenomenon exhibited by the qubits' density matrix in the absence of measurements. Our analysis applies to arbitrary quantum jump dynamics (photon counting) as well as to quantum state diffusion (homodyne or heterodyne detections) in the Markov limit. We discuss the best measurement schemes to protect the entanglement of the qubits. We also analyze the case of two qubits coupled to a common bath. Then, the average concurrence can vanish at discrete times and may coincide with the concurrence of the density matrix. The results explained in this article have been presented during the 'Fifth International Workshop DICE2010' by the first author and have been the subject of a prior publication.

  12. Automatic Generation of Complex Spatial Trajectories of the UAV and Synthesis of Control

    Directory of Open Access Journals (Sweden)

    S. B. Tkachev

    2015-01-01

    Full Text Available In this paper, we propose a new method and algorithms that allow us to design complex spatial trajectories for an unmanned aerial vehicle (UAV passing through a given sequence of waypoints in the three-dimensional space.The nonlinear six-dimensional model of the UAV center-of-mass motion given in the trajectory frame is used for calculations. The state vector includes the altitude, the along-track deviation, the cross-track position, the velocity, the flight-path angle and the heading angle. The longitudinal and transverse overloads and the angle between the cross overload vector and vertical plane are considered as controls. This angle is often named as the roll angle.The feature of the problem is that both positions at waypoints and additional conditions are given. These conditions determine orientation of the velocity vector at each point (using the flight path angle and the heading angle. We also set either the point-visiting time or the pointvisiting velocity. The full state vector and controls are fixed at the starting waypoint.To construct a spatial trajectory, the concept of inverse dynamics problems is applied, as well as modern results of mathematical control theory of nonlinear dynamical systems. The introduction of new virtual controls allows us to represent the original system as an affine (linear in control system. Then, the designed system is converted into the regular canonical form.When we set flight times between any two waypoints, the corresponding segments of the trajectory are designed using time-dependent polynomials of the fifth degree. These polynomials specify the altitude variation, the variation of the along-track deviation and that of the cross-track position. If the point-visiting times are not fixed, the transition to a new independent variable (the normalized mechanical energy of the system is used. This transition is possible if the energy varies monotonically. In this case, the spatial trajectory is defined as a

  13. Technical description of the RIVM trajectory model

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, E.S.; Van Pul, W.A.J.

    1995-12-01

    The RIVM trajectory model, described in this report, enables calculation of a backward or forward trajectory. These trajectories are used to `follow` previous released air pollution in a backward mode or to `find` the origin of air pollution in a forward mode. The trajectories are used in the smog forecasting and in the TREND model for the distribution of materials in Europe. Presently 6-hourly ECMWF wind fields at 1000 and 850 hPa, with 3 deg x 3 deg latitude-longitude resolution are used. Wind fields with a different resolution in latitude-longitude can also be used after simple adjustments. An iterative method, described elsewhere, is applied to calculate the trajectories. Within limits, the user is free to choose the time step (1, 2 or 6-hour), transport height, length, starting or arrival date and starting or arrival position of the trajectory. The differences between the trajectories calculated with time steps of 1, 2 and 6 h were small. For the 96-hour trajectories at 1000 and 850 hPa the deviations were generally within 1 deg latitude and longitude, i.e. 100-200 km. The trajectory calculated with the 6-hour time step could be used without a great loss in accuracy compared to the calculations with the 1-hour time step. A typical error in the trajectory path at 1000 and 850 hPa was 500 km, which is about 30% of a typical travel distance. However, close to quickly changing weather systems, such as cyclones, the error can be as large as the travel distance and makes the calculations unreliable. The error in the forecasted trajectory was found to be larger than the above error estimation due to larger uncertainties in the forecasted compared to the analyzed wind fields. A manual on how to run the model is also given. 5 figs., 3 tabs., 5 refs., 6 appendices

  14. Parallel trajectory similarity joins in spatial networks

    KAUST Repository

    Shang, Shuo

    2018-04-04

    The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider two cases of trajectory similarity joins (TS-Joins), including a threshold-based join (Tb-TS-Join) and a top-k TS-Join (k-TS-Join), where the objects are trajectories of vehicles moving in road networks. Given two sets of trajectories and a threshold θ, the Tb-TS-Join returns all pairs of trajectories from the two sets with similarity above θ. In contrast, the k-TS-Join does not take a threshold as a parameter, and it returns the top-k most similar trajectory pairs from the two sets. The TS-Joins target diverse applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction. With these applications in mind, we provide purposeful definitions of similarity. To enable efficient processing of the TS-Joins on large sets of trajectories, we develop search space pruning techniques and enable use of the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer search framework that lays the foundation for the algorithms for the Tb-TS-Join and the k-TS-Join that rely on different pruning techniques to achieve efficiency. For each trajectory, the algorithms first find similar trajectories. Then they merge the results to obtain the final result. The algorithms for the two joins exploit different upper and lower bounds on the spatiotemporal trajectory similarity and different heuristic scheduling strategies for search space pruning. Their per-trajectory searches are independent of each other and can be performed in parallel, and the mergings have constant cost. An empirical study with real data offers insight in the performance of the algorithms and demonstrates that they are capable of outperforming well-designed baseline algorithms by an order of magnitude.

  15. Parallel trajectory similarity joins in spatial networks

    KAUST Repository

    Shang, Shuo; Chen, Lisi; Wei, Zhewei; Jensen, Christian S.; Zheng, Kai; Kalnis, Panos

    2018-01-01

    The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider two cases of trajectory similarity joins (TS-Joins), including a threshold-based join (Tb-TS-Join) and a top-k TS-Join (k-TS-Join), where the objects are trajectories of vehicles moving in road networks. Given two sets of trajectories and a threshold θ, the Tb-TS-Join returns all pairs of trajectories from the two sets with similarity above θ. In contrast, the k-TS-Join does not take a threshold as a parameter, and it returns the top-k most similar trajectory pairs from the two sets. The TS-Joins target diverse applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction. With these applications in mind, we provide purposeful definitions of similarity. To enable efficient processing of the TS-Joins on large sets of trajectories, we develop search space pruning techniques and enable use of the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer search framework that lays the foundation for the algorithms for the Tb-TS-Join and the k-TS-Join that rely on different pruning techniques to achieve efficiency. For each trajectory, the algorithms first find similar trajectories. Then they merge the results to obtain the final result. The algorithms for the two joins exploit different upper and lower bounds on the spatiotemporal trajectory similarity and different heuristic scheduling strategies for search space pruning. Their per-trajectory searches are independent of each other and can be performed in parallel, and the mergings have constant cost. An empirical study with real data offers insight in the performance of the algorithms and demonstrates that they are capable of outperforming well-designed baseline algorithms by an order of magnitude.

  16. Trajectory control of robot manipulators with closed-kinematic chain mechanism

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.; Premack, Timothy

    1987-01-01

    The problem of Cartesian trajectory control of a closed-kinematic chain mechanism robot manipulator, recently built at CAIR to study the assembly of NASA hardware for the future Space Station, is considered. The study is performed by both computer simulation and experimentation for tracking of three different paths: a straight line, a sinusoid, and a circle. Linearization and pole placement methods are employed to design controller gains. Results show that the controllers are robust and there are good agreements between simulation and experimentation. The results also show excellent tracking quality and small overshoots.

  17. Studying precipitation recycling over the Tibetan Plateau using evaporation-tagging and back-trajectory analysis

    Science.gov (United States)

    Gao, Y.

    2017-12-01

    Regional precipitation recycling (i.e., the contribution of local evaporation to local precipitation) is an important component of water cycle over the Tibetan Plateau (TP). Two methods were used to investigate regional precipitation recycling: 1) tracking of tagged atmospheric water parcels originating from evaporation in a source region (i.e., E-tagging), and 2) back-trajectory approach to track the evaporative sources contributed to precipitation in a specific region. These two methods were applied to Weather Research and Forecasting (WRF) regional climate simulations to quantify the precipitation recycling ratio in the TP for three selected years: climatologically normal, dry and wet year. The simulation region is characterized by high average elevation above 4000 m and complex terrain. The back-trajectory approach is also calculated over three sub-regions over the TP: namely western, northeastern and southeastern TP, and the E-tagging approach could provide recycling-ratio distributions over the whole TP. Three aspects are investigated to characterize the precipitation recycling: annual mean, seasonal variations and spatial distributions. Averaged over the TP, the precipitation recycling ratio estimated by the E-tagging approach is higher than that from the back-trajectory method. The back-trajectory approach uses a precipitation threshold as total precipitation in five days divided by a random number, and this number was set to 500 as a tread off between equilibrium and computational efficiency. Lower recycling ratio derived from the back-trajectory approach is related to the precipitation threshold used. The E-tagging, however, tracks every air parcel of evaporation regardless of the precipitation amount. There is no obvious seasonal variation in the recycling ratio using both methods. The E-tagging approach shows high recycling ratios in the center TP, indicating stronger land-atmospheric interactions than elsewhere.

  18. High-performance simulation-based algorithms for an alpine ski racer’s trajectory optimization in heterogeneous computer systems

    Directory of Open Access Journals (Sweden)

    Dębski Roman

    2014-09-01

    Full Text Available Effective, simulation-based trajectory optimization algorithms adapted to heterogeneous computers are studied with reference to the problem taken from alpine ski racing (the presented solution is probably the most general one published so far. The key idea behind these algorithms is to use a grid-based discretization scheme to transform the continuous optimization problem into a search problem over a specially constructed finite graph, and then to apply dynamic programming to find an approximation of the global solution. In the analyzed example it is the minimum-time ski line, represented as a piecewise-linear function (a method of elimination of unfeasible solutions is proposed. Serial and parallel versions of the basic optimization algorithm are presented in detail (pseudo-code, time and memory complexity. Possible extensions of the basic algorithm are also described. The implementation of these algorithms is based on OpenCL. The included experimental results show that contemporary heterogeneous computers can be treated as μ-HPC platforms-they offer high performance (the best speedup was equal to 128 while remaining energy and cost efficient (which is crucial in embedded systems, e.g., trajectory planners of autonomous robots. The presented algorithms can be applied to many trajectory optimization problems, including those having a black-box represented performance measure

  19. A globally nonsingular quaternion-based formulation for all-electric satellite trajectory optimization

    Science.gov (United States)

    Libraro, Paola

    The general electric propulsion orbit-raising maneuver of a spacecraft must contend with four main limiting factors: the longer time of flight, multiple eclipses prohibiting continuous thrusting, long exposure to radiation from the Van Allen belt and high power requirement of the electric engines. In order to optimize a low-thrust transfer with respect to these challenges, the choice of coordinates and corresponding equations of motion used to describe the kinematical and dynamical behavior of the satellite is of critical importance. This choice can potentially affect the numerical optimization process as well as limit the set of mission scenarios that can be investigated. To increase the ability to determine the feasible set of mission scenarios able to address the challenges of an all-electric orbit-raising, a set of equations free of any singularities is required to consider a completely arbitrary injection orbit. For this purpose a new quaternion-based formulation of a spacecraft translational dynamics that is globally nonsingular has been developed. The minimum-time low-thrust problem has been solved using the new set of equations of motion inside a direct optimization scheme in order to investigate optimal low-thrust trajectories over the full range of injection orbit inclinations between 0 and 90 degrees with particular focus on high-inclinations. The numerical results consider a specific mission scenario in order to analyze three key aspects of the problem: the effect of the initial guess on the shape and duration of the transfer, the effect of Earth oblateness on transfer time and the role played by, radiation damage and power degradation in all-electric minimum-time transfers. Finally trade-offs between mass and cost savings are introduced through a test case.

  20. Tracks: Nurses and the Tracking Network

    Centers for Disease Control (CDC) Podcasts

    This podcast highlights the utility of the National Environmental Public Health Tracking Network for nurses in a variety of work settings. It features commentary from the American Nurses Association and includes stories from a public health nurse in Massachusetts.

  1. Trajectories of Intimate Partner Violence Victimization

    Directory of Open Access Journals (Sweden)

    Kevin M. Swartout

    2012-08-01

    Full Text Available Introduction: The purposes of this study were to assess the extent to which latent trajectories of female intimate partner violence (IPV victimization exist; and, if so, use negative childhood experiences to predict trajectory membership.Methods: We collected data from 1,575 women at 5 time-points regarding experiences during adolescence and their 4 years of college. We used latent class growth analysis to fit a series of personcentered, longitudinal models ranging from 1 to 5 trajectories. Once the best-fitting model was selected, we used negative childhood experience variables—sexual abuse, physical abuse, and witnessing domestic violence—to predict most-likely trajectory membership via multinomial logistic regression.Results: A 5-trajectory model best fit the data both statistically and in terms of interpretability. The trajectories across time were interpreted as low or no IPV, low to moderate IPV, moderate to low IPV, high to moderate IPV, and high and increasing IPV, respectively. Negative childhood experiences differentiated trajectory membership, somewhat, with childhood sexual abuse as a consistent predictor of membership in elevated IPV trajectories.Conclusion: Our analyses show how IPV risk changes over time and in different ways. These differential patterns of IPV suggest the need for prevention strategies tailored for women that consider victimization experiences in childhood and early adulthood. [West J Emerg Med. 2012;13(3:272–277.

  2. From the trajectory to the density memory

    International Nuclear Information System (INIS)

    Cakir, Rasit; Krokhin, Arkadii; Grigolini, Paolo

    2007-01-01

    In this paper we discuss the connection between trajectory and density memory. The first form of memory is a property of a stochastic trajectory, whose stationary correlation function shows that the fluctuation at a given time depends on the earlier fluctuations. The density memory is a property of a collection of trajectories, whose density time evolution is described by a time convoluted equation showing that the density time evolution depends on its past history. We show that the trajectory memory does not necessarily yields density memory, and that density memory might be compatible with the existence of abrupt jumps resetting to zero the system's memory. We focus our attention on a time-convoluted diffusion equation, when the memory kernel is an inverse power law with (i) negative and (ii) positive tail. In case (i) there exist both renewal trajectories and trajectories with memory, compatible with this equation. Case (ii), which has eluded so far a convincing interpretation in terms of trajectories, is shown to be compatible only with trajectory memory

  3. User oriented trajectory search for trip recommendation

    KAUST Repository

    Shang, Shuo; Ding, Ruogu; Yuan, Bo; Xie, Kexin; Zheng, Kai; Kalnis, Panos

    2012-01-01

    trajectory search by locations (spatial domain only), we consider both spatial and textual domains in the new UOTS query. Given a trajectory data set, the query input contains a set of intended places given by the traveler and a set of textual attributes

  4. Soccer Ball Lift Coefficients via Trajectory Analysis

    Science.gov (United States)

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  5. Complex trajectories in a classical periodic potential

    International Nuclear Information System (INIS)

    Anderson, Alexander G; Bender, Carl M

    2012-01-01

    This paper examines the complex trajectories of a classical particle in the potential V(x) = −cos (x). Almost all the trajectories describe a particle that hops from one well to another in an erratic fashion. However, it is shown analytically that there are two special classes of trajectories x(t) determined only by the energy of the particle and not by the initial position of the particle. The first class consists of periodic trajectories; that is, trajectories that return to their initial position x(0) after some real time T. The second class consists of trajectories for which there exists a real time T such that x(t + T) = x(t) ± 2π. These two classes of classical trajectories are analogous to valence and conduction bands in quantum mechanics, where the quantum particle either remains localized or else tunnels resonantly (conducts) through a crystal lattice. These two special types of trajectories are associated with sets of energies of measure 0. For other energies, it is shown that for long times the average velocity of the particle becomes a fractal-like function of energy. (paper)

  6. Complex trajectories in a classical periodic potential

    Science.gov (United States)

    Anderson, Alexander G.; Bender, Carl M.

    2012-11-01

    This paper examines the complex trajectories of a classical particle in the potential V(x) = -cos (x). Almost all the trajectories describe a particle that hops from one well to another in an erratic fashion. However, it is shown analytically that there are two special classes of trajectories x(t) determined only by the energy of the particle and not by the initial position of the particle. The first class consists of periodic trajectories; that is, trajectories that return to their initial position x(0) after some real time T. The second class consists of trajectories for which there exists a real time T such that x(t + T) = x(t) ± 2π. These two classes of classical trajectories are analogous to valence and conduction bands in quantum mechanics, where the quantum particle either remains localized or else tunnels resonantly (conducts) through a crystal lattice. These two special types of trajectories are associated with sets of energies of measure 0. For other energies, it is shown that for long times the average velocity of the particle becomes a fractal-like function of energy.

  7. Robotic excavator trajectory control using an improved GA based PID controller

    Science.gov (United States)

    Feng, Hao; Yin, Chen-Bo; Weng, Wen-wen; Ma, Wei; Zhou, Jun-jing; Jia, Wen-hua; Zhang, Zi-li

    2018-05-01

    In order to achieve excellent trajectory tracking performances, an improved genetic algorithm (IGA) is presented to search for the optimal proportional-integral-derivative (PID) controller parameters for the robotic excavator. Firstly, the mathematical model of kinematic and electro-hydraulic proportional control system of the excavator are analyzed based on the mechanism modeling method. On this basis, the actual model of the electro-hydraulic proportional system are established by the identification experiment. Furthermore, the population, the fitness function, the crossover probability and mutation probability of the SGA are improved: the initial PID parameters are calculated by the Ziegler-Nichols (Z-N) tuning method and the initial population is generated near it; the fitness function is transformed to maintain the diversity of the population; the probability of crossover and mutation are adjusted automatically to avoid premature convergence. Moreover, a simulation study is carried out to evaluate the time response performance of the proposed controller, i.e., IGA based PID against the SGA and Z-N based PID controllers with a step signal. It was shown from the simulation study that the proposed controller provides the least rise time and settling time of 1.23 s and 1.81 s, respectively against the other tested controllers. Finally, two types of trajectories are designed to validate the performances of the control algorithms, and experiments are performed on the excavator trajectory control experimental platform. It was demonstrated from the experimental work that the proposed IGA based PID controller improves the trajectory accuracy of the horizontal line and slope line trajectories by 23.98% and 23.64%, respectively in comparison to the SGA tuned PID controller. The results further indicate that the proposed IGA tuning based PID controller is effective for improving the tracking accuracy, which may be employed in the trajectory control of an actual excavator.

  8. Tracks: Nurses and the Tracking Network

    Centers for Disease Control (CDC) Podcasts

    2012-06-06

    This podcast highlights the utility of the National Environmental Public Health Tracking Network for nurses in a variety of work settings. It features commentary from the American Nurses Association and includes stories from a public health nurse in Massachusetts.  Created: 6/6/2012 by National Center for Environmental Health (NCEH)/Division of Environmental Hazards and Health Effects (DEHHE)/Environmental Health Tracking Branch (EHTB).   Date Released: 6/6/2012.

  9. Origin choice and petal loss in the flower garden of spiral wave tip trajectories

    OpenAIRE

    Gray, Richard A.; Wikswo, John P.; Otani, Niels F.

    2009-01-01

    Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two...

  10. Trajectory Specification for Terminal Air Traffic: Pairwise Conflict Detection and Resolution

    Science.gov (United States)

    Paielli, Russ; Erzberger, Heinz

    2017-01-01

    Trajectory specification is the explicit bounding and control of aircraft trajectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft navigation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) system or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on the terminal area and presents algorithms and software for spacing arrivals and deconflicting both arrivals and departures.

  11. Dense Trajectories and DHOG for Classification of Viewpoints from Echocardiogram Videos

    Directory of Open Access Journals (Sweden)

    Liqin Huang

    2016-01-01

    Full Text Available In echo-cardiac clinical computer-aided diagnosis, an important step is to automatically classify echocardiography videos from different angles and different regions. We propose a kind of echocardiography video classification algorithm based on the dense trajectory and difference histograms of oriented gradients (DHOG. First, we use the dense grid method to describe feature characteristics in each frame of echocardiography sequence and then track these feature points by applying the dense optical flow. In order to overcome the influence of the rapid and irregular movement of echocardiography videos and get more robust tracking results, we also design a trajectory description algorithm which uses the derivative of the optical flow to obtain the motion trajectory information and associates the different characteristics (e.g., the trajectory shape, DHOG, HOF, and MBH with embedded structural information of the spatiotemporal pyramid. To avoid “dimension disaster,” we apply Fisher’s vector to reduce the dimension of feature description followed by the SVM linear classifier to improve the final classification result. The average accuracy of echocardiography video classification is 77.12% for all eight viewpoints and 100% for three primary viewpoints.

  12. The power of a single trajectory

    Science.gov (United States)

    Schnellbächer, Nikolas D.; Schwarz, Ulrich S.

    2018-03-01

    Random walks are often evaluated in terms of their mean squared displacements, either for a large number of trajectories or for one very long trajectory. An alternative evaluation is based on the power spectral density, but here it is less clear which information can be extracted from a single trajectory. For continuous-time Brownian motion, Krapf et al now have mathematically proven that the one property that can be reliably extracted from a single trajectory is the frequency dependence of the ensemble-averaged power spectral density (Krapf et al 2018 New J. Phys. 20 023029). Their mathematical analysis also identifies the appropriate frequency window for this procedure and shows that the diffusion coefficient can be extracted by averaging over a small number of trajectories. The authors have verified their analytical results both by computer simulations and experiments.

  13. Trajectories of delinquency and parenting styles.

    Science.gov (United States)

    Hoeve, Machteld; Blokland, Arjan; Dubas, Judith Semon; Loeber, Rolf; Gerris, Jan R M; van der Laan, Peter H

    2008-02-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10-19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persisting, and serious desisting trajectory. More serious delinquents tended to more frequently engage in delinquency, and to report a higher proportion of theft. Proportionally, serious persistent delinquents were the most violent of all trajectory groups. Using cluster analysis we identified three parenting styles: authoritative, authoritarian (moderately supportive), and neglectful (punishing). Controlling for demographic characteristics and childhood delinquency, neglectful parenting was more frequent in moderate desisters, serious persisters, and serious desisters, suggesting that parenting styles differentiate non- or minor delinquents from more serious delinquents.

  14. Path-based Queries on Trajectory Data

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Pelekis, Nikos; Theodoridis, Yannis

    2014-01-01

    In traffic research, management, and planning a number of path-based analyses are heavily used, e.g., for computing turn-times, evaluating green waves, or studying traffic flow. These analyses require retrieving the trajectories that follow the full path being analyzed. Existing path queries cannot...... sufficiently support such path-based analyses because they retrieve all trajectories that touch any edge in the path. In this paper, we define and formalize the strict path query. This is a novel query type tailored to support path-based analysis, where trajectories must follow all edges in the path...... a specific path by only retrieving data from the first and last edge in the path. To correctly answer strict path queries existing network-constrained trajectory indexes must retrieve data from all edges in the path. An extensive performance study of NETTRA using a very large real-world trajectory data set...

  15. Development of an Integrated Intelligent Multi -Objective Framework for UAV Trajectory Generation

    Science.gov (United States)

    Wilburn, Jennifer Nicole

    This thesis explores a variety of path planning and trajectory generation schemes intended for small, fixed-wing Unmanned Aerial Vehicles. Throughout this analysis, discrete and pose-based methods are investigated. Pose-based methods are the focus of this research due to their increased flexibility and typically lower computational overhead. Path planning in 3 dimensions is also performed. The 3D Dubins methodology presented is an extension of a previously suggested approach and addresses both the mathematical formulation of the methodology, as well as an assessment of numerical issues encountered and the solutions implemented for these. The main contribution of this thesis is a 3-dimensional clothoid trajectory generation algorithm, which produces flyable paths of continuous curvature to ensure a more followable commanded path. This methodology is an extension of the 3D Dubins method and the 2D clothoid method, which have been implemented herein. To ensure flyability of trajectories produced by 3D pose-based trajectory generation methodologies, a set of criteria are specified to limit the possible solutions to only those flyable by the aircraft. Additionally, several assumptions are made concerning the motion of the aircraft in order to simplify the path generation problem. The 2D and 3D clothoid and Dubins trajectory planners are demonstrated through a trajectory tracking performance comparison between first the 2D Dubins and 2D clothoid methods using a position proportional-integral-derivative controller, then the 3D Dubins and 3D clothoid methods using both a position proportional-integral-derivative controller and an outer-loop non-linear dynamic inversion controller, within the WVU UAV Simulation Environment. These comparisons are demonstrated for both nominal and off-nominal conditions, and show that for both 2D and 3D implementations, the clothoid path planners yields paths with better trajectory tracking performance as compared to the Dubins path planners

  16. Task Decomposition Module For Telerobot Trajectory Generation

    Science.gov (United States)

    Wavering, Albert J.; Lumia, Ron

    1988-10-01

    A major consideration in the design of trajectory generation software for a Flight Telerobotic Servicer (FTS) is that the FTS will be called upon to perform tasks which require a diverse range of manipulator behaviors and capabilities. In a hierarchical control system where tasks are decomposed into simpler and simpler subtasks, the task decomposition module which performs trajectory planning and execution should therefore be able to accommodate a wide range of algorithms. In some cases, it will be desirable to plan a trajectory for an entire motion before manipulator motion commences, as when optimizing over the entire trajectory. Many FTS motions, however, will be highly sensory-interactive, such as moving to attain a desired position relative to a non-stationary object whose position is periodically updated by a vision system. In this case, the time-varying nature of the trajectory may be handled either by frequent replanning using updated sensor information, or by using an algorithm which creates a less specific state-dependent plan that determines the manipulator path as the trajectory is executed (rather than a priori). This paper discusses a number of trajectory generation techniques from these categories and how they may be implemented in a task decompo-sition module of a hierarchical control system. The structure, function, and interfaces of the proposed trajectory gener-ation module are briefly described, followed by several examples of how different algorithms may be performed by the module. The proposed task decomposition module provides a logical structure for trajectory planning and execution, and supports a large number of published trajectory generation techniques.

  17. Sliding Mode Tracking Control of Manipulator Based on the Improved Reaching Law

    Directory of Open Access Journals (Sweden)

    Wei-Na ZHAI

    2013-04-01

    Full Text Available Due to the mechanical hand often have serious uncertainty, as the state in which the different and external changes, also its parameters are changing, this is very adverse to achieve precise control. In this paper, the traditional sliding mode variable structure was improved, the sign function is replaced by saturated function based on the double power reaching law, by adjusting the values of e1, e2, a, b, g and k to effectively improve the manipulator joint reaching speed, track expected trajectory fast and shorten the system response time. Finally, the method is used for simulation of manipulator trajectory tracking, compared to two reaching law control algorithms. The simulation results show that the control algorithm has good dynamic performance, which can effectively restrain the chattering and quickly track the desired trajectory. Therefore, the improved reaching law can effectively improve the performance of robotic manipulator.

  18. Optimizing Likelihood Models for Particle Trajectory Segmentation in Multi-State Systems.

    Science.gov (United States)

    Young, Dylan Christopher; Scrimgeour, Jan

    2018-06-19

    Particle tracking offers significant insight into the molecular mechanics that govern the behav- ior of living cells. The analysis of molecular trajectories that transition between different motive states, such as diffusive, driven and tethered modes, is of considerable importance, with even single trajectories containing significant amounts of information about a molecule's environment and its interactions with cellular structures. Hidden Markov models (HMM) have been widely adopted to perform the segmentation of such complex tracks. In this paper, we show that extensive analysis of hidden Markov model outputs using data derived from multi-state Brownian dynamics simulations can be used both for the optimization of the likelihood models used to describe the states of the system and for characterization of the technique's failure mechanisms. This analysis was made pos- sible by the implementation of parallelized adaptive direct search algorithm on a Nvidia graphics processing unit. This approach provides critical information for the visualization of HMM failure and successful design of particle tracking experiments where trajectories contain multiple mobile states. © 2018 IOP Publishing Ltd.

  19. Video-based Chinese Input System via Fingertip Tracking

    Directory of Open Access Journals (Sweden)

    Chih-Chang Yu

    2012-10-01

    Full Text Available In this paper, we propose a system to detect and track fingertips online and recognize Mandarin Phonetic Symbol (MPS for user-friendly Chinese input purposes. Using fingertips and cameras to replace pens and touch panels as input devices could reduce the cost and improve the ease-of-use and comfort of computer-human interface. In the proposed framework, particle filters with enhanced appearance models are applied for robust fingertip tracking. Afterwards, MPS combination recognition is performed on the tracked fingertip trajectories using Hidden Markov Models. In the proposed system, the fingertips of the users could be robustly tracked. Also, the challenges of entering, leaving and virtual strokes caused by video-based fingertip input can be overcome. Experimental results have shown the feasibility and effectiveness of the proposed work.

  20. Track Simulation and Reconstruction in the ATLAS experiment

    CERN Document Server

    Salzburger, Andreas; Elsing, Markus

    The reconstruction and simulation of particle trajectories is an inevitable part of the analysis strate- gies for data taken with the ATLAS detector. Many aspects and necessary parts of a high-quality track reconstruction will be presented and discussed in this work. At first, the technical realisation of the data model and the reconstruction geometry will be given; the reconstruction geometry is charac- terised by a newly developed navigation model and an automated procedure for the synchronisation of the detailed simulation geometry description with the simplified reconstruction geometry model, which allows a precise description of the tracker material in track reconstruction. Both components help the coherent and fast integration of material effects in a newly established track extrapolation package, that is discussed in the following. The extrapolation engine enables a highly precise trans- port of the track parameterisation and the associated covariances through the complex magnetic field and the detec...

  1. Vision-based map building and trajectory planning to enable autonomous flight through urban environments

    Science.gov (United States)

    Watkins, Adam S.

    The desire to use Unmanned Air Vehicles (UAVs) in a variety of complex missions has motivated the need to increase the autonomous capabilities of these vehicles. This research presents autonomous vision-based mapping and trajectory planning strategies for a UAV navigating in an unknown urban environment. It is assumed that the vehicle's inertial position is unknown because GPS in unavailable due to environmental occlusions or jamming by hostile military assets. Therefore, the environment map is constructed from noisy sensor measurements taken at uncertain vehicle locations. Under these restrictions, map construction becomes a state estimation task known as the Simultaneous Localization and Mapping (SLAM) problem. Solutions to the SLAM problem endeavor to estimate the state of a vehicle relative to concurrently estimated environmental landmark locations. The presented work focuses specifically on SLAM for aircraft, denoted as airborne SLAM, where the vehicle is capable of six degree of freedom motion characterized by highly nonlinear equations of motion. The airborne SLAM problem is solved with a variety of filters based on the Rao-Blackwellized particle filter. Additionally, the environment is represented as a set of geometric primitives that are fit to the three-dimensional points reconstructed from gathered onboard imagery. The second half of this research builds on the mapping solution by addressing the problem of trajectory planning for optimal map construction. Optimality is defined in terms of maximizing environment coverage in minimum time. The planning process is decomposed into two phases of global navigation and local navigation. The global navigation strategy plans a coarse, collision-free path through the environment to a goal location that will take the vehicle to previously unexplored or incompletely viewed territory. The local navigation strategy plans detailed, collision-free paths within the currently sensed environment that maximize local coverage

  2. Research on target tracking in coal mine based on optical flow method

    Science.gov (United States)

    Xue, Hongye; Xiao, Qingwei

    2015-03-01

    To recognize, track and count the bolting machine in coal mine video images, a real-time target tracking method based on the Lucas-Kanade sparse optical flow is proposed in this paper. In the method, we judge whether the moving target deviate from its trajectory, predicate and correct the position of the moving target. The method solves the problem of failure to track the target or lose the target because of the weak light, uneven illumination and blocking. Using the VC++ platform and Opencv lib we complete the recognition and tracking. The validity of the method is verified by the result of the experiment.

  3. Open string Regge trajectory and its field theory limit

    International Nuclear Information System (INIS)

    Rojas, Francisco; Thorn, Charles B.

    2011-01-01

    We study the properties of the leading Regge trajectory in open string theory including the open string planar one-loop corrections. With SU(N) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N→∞ with Ng s 2 fixed. Our motivation is to improve the understanding of open string theory at finite α ' as a model of gauge field theories. SU(N) gauge theories in D space-time dimensions are described by requiring open strings to end on a stack of N Dp-branes of space-time dimension D=p+1. The large N leading trajectory α(t)=1+α ' t+Σ(t) can be extracted, through order g 2 , from the s→-∞ limit, at fixed t, of the four open string tree and planar loop diagrams. We analyze the t→0 behavior with the result that Σ(t)∼-Cg 2 (-α ' t) (D-4)/2 /(D-4). This result precisely tracks the 1-loop Reggeized gluon of gauge theory in D>4 space-time dimensions. In particular, for D→4 it reproduces the known infrared divergences of gauge theory in 4 dimensions with a Regge trajectory behaving as -ln(-α ' t). We also study Σ(t) in the limit t→-∞ and show that, when D ' t/(ln(-α ' t)) γ , where γ>0 depends on D and the number of massless scalars. Thus, as long as 4 ' t arbitrarily large. Finally we present the results of numerical calculations of Σ(t) for all negative t.

  4. Career performance trajectories of Olympic swimmers: benchmarks for talent development.

    Science.gov (United States)

    Allen, Sian V; Vandenbogaerde, Tom J; Hopkins, William G

    2014-01-01

    The age-related progression of elite athletes to their career-best performances can provide benchmarks for talent development. The purpose of this study was to model career performance trajectories of Olympic swimmers to develop these benchmarks. We searched the Web for annual best times of swimmers who were top 16 in pool events at the 2008 or 2012 Olympics, from each swimmer's earliest available competitive performance through to 2012. There were 6959 times in the 13 events for each sex, for 683 swimmers, with 10 ± 3 performances per swimmer (mean ± s). Progression to peak performance was tracked with individual quadratic trajectories derived using a mixed linear model that included adjustments for better performance in Olympic years and for the use of full-body polyurethane swimsuits in 2009. Analysis of residuals revealed appropriate fit of quadratic trends to the data. The trajectories provided estimates of age of peak performance and the duration of the age window of trivial improvement and decline around the peak. Men achieved peak performance later than women (24.2 ± 2.1 vs. 22.5 ± 2.4 years), while peak performance occurred at later ages for the shorter distances for both sexes (∼1.5-2.0 years between sprint and distance-event groups). Men and women had a similar duration in the peak-performance window (2.6 ± 1.5 years) and similar progressions to peak performance over four years (2.4 ± 1.2%) and eight years (9.5 ± 4.8%). These data provide performance targets for swimmers aiming to achieve elite-level performance.

  5. Trajectories of saltating sand particles behind a porous fence

    Science.gov (United States)

    Zhang, Ning; Lee, Sang Joon; Chen, Ting-Guo

    2015-01-01

    Trajectories of aeolian sand particles behind a porous wind fence embedded in a simulated atmospheric boundary layer were visualized experimentally, to investigate the shelter effect of the fence on sand saltation. Two sand samples, one collected from a beach (d = 250 μm) and the other from a desert (d = 100 μm), were tested in comparison with the previous studies of a 'no-fence' case. A wind fence (ε = 38.5%) was installed on a flat sand bed filled with each sand sample. A high-speed photography technique and the particle tracking velocimetry (PTV) method were employed to reconstruct the trajectories of particles saltating behind the fence. The collision processes of these sand particles were analyzed, momentum and kinetic energy transfer between saltating particles and ground surface were also investigated. In the wake region, probability density distributions of the impact velocities agree well with the pattern of no-fence case, and can be explained by a log-normal law. The horizontal component of impact velocity for the beach sand is decreased by about 54%, and about 76% for the desert sand. Vertical restitution coefficients of bouncing particles are smaller than 1.0 due to the presence of the wind fence. The saltating particles lose a large proportion of their energy during the collision process. These results illustrate that the porous wind fence effectively abates the further evolution of saltating sand particles.

  6. Vehicle Trajectory Estimation Using Spatio-Temporal MCMC

    Directory of Open Access Journals (Sweden)

    Francois Bardet

    2010-01-01

    Full Text Available This paper presents an algorithm for modeling and tracking vehicles in video sequences within one integrated framework. Most of the solutions are based on sequential methods that make inference according to current information. In contrast, we propose a deferred logical inference method that makes a decision according to a sequence of observations, thus processing a spatio-temporal search on the whole trajectory. One of the drawbacks of deferred logical inference methods is that the solution space of hypotheses grows exponentially related to the depth of observation. Our approach takes into account both the kinematic model of the vehicle and a driver behavior model in order to reduce the space of the solutions. The resulting proposed state model explains the trajectory with only 11 parameters. The solution space is then sampled with a Markov Chain Monte Carlo (MCMC that uses a model-driven proposal distribution in order to control random walk behavior. We demonstrate our method on real video sequences from which we have ground truth provided by a RTK GPS (Real-Time Kinematic GPS. Experimental results show that the proposed algorithm outperforms a sequential inference solution (particle filter.

  7. Determining of the track parameters in solid state nuclear track detectors Cr 39 due to alpha particles

    International Nuclear Information System (INIS)

    Kostic, D.; Nikezic, D.

    1997-01-01

    An equation of the etch pit wall is proposed to be used for simulation of the track growth and calculating the major and the minor axis of etch pit opening. Dependence on the following parameters is set up: distance along a track from the point where the particle entered the detector, ratio of the track etch wall to the bulk etch rate, integration constant determined from particle penetration depth and normal distance from the particle trajectory to the etch pit wall. The corresponding computer program was written. The input parameters of this program are: alpha particles energy, incidence angle and removed layer; the output gives track parameters. The results obtained by this method are compared to another approach given by Somogy and Szalay (1973) and a reasonably good agreement is found. (author)

  8. Robust multiple cue fusion-based high-speed and nonrigid object tracking algorithm for short track speed skating

    Science.gov (United States)

    Liu, Chenguang; Cheng, Heng-Da; Zhang, Yingtao; Wang, Yuxuan; Xian, Min

    2016-01-01

    This paper presents a methodology for tracking multiple skaters in short track speed skating competitions. Nonrigid skaters move at high speed with severe occlusions happening frequently among them. The camera is panned quickly in order to capture the skaters in a large and dynamic scene. To automatically track the skaters and precisely output their trajectories becomes a challenging task in object tracking. We employ the global rink information to compensate camera motion and obtain the global spatial information of skaters, utilize random forest to fuse multiple cues and predict the blob of each skater, and finally apply a silhouette- and edge-based template-matching and blob-evolving method to labelling pixels to a skater. The effectiveness and robustness of the proposed method are verified through thorough experiments.

  9. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  10. Tracking down quirks at the Large Hadron Collider

    Science.gov (United States)

    Knapen, Simon; Lou, Hou Keong; Papucci, Michele; Setford, Jack

    2017-12-01

    Nonhelical tracks are the smoking gun signature of charged and/or colored quirks, which are pairs of particles bound by a new, long-range confining force. We propose a method to efficiently search for these nonhelical tracks at the LHC, without the need to fit their trajectories. We show that the hits corresponding to quirky trajectories can be selected efficiently by searching for coplanar hits in the inner layers of the ATLAS and CMS trackers, even in the presence of on average 50 pile-up vertices. We further argue that backgrounds from photon conversions and unassociated pile-up hits can be removed almost entirely, while maintaining a signal reconstruction efficiency as high as ˜70 % . With the 300 fb-1 dataset, this implies a discovery potential for string tension between 100 eV and 30 keV, and colored (electroweak charged) quirks as heavy as 1600 (650) GeV may be discovered.

  11. Track-before-detect procedures for detection of extended object

    Science.gov (United States)

    Fan, Ling; Zhang, Xiaoling; Shi, Jun

    2011-12-01

    In this article, we present a particle filter (PF)-based track-before-detect (PF TBD) procedure for detection of extended objects whose shape is modeled by an ellipse. By incorporating of an existence variable and the target shape parameters into the state vector, the proposed algorithm performs joint estimation of the target presence/absence, trajectory and shape parameters under unknown nuisance parameters (target power and noise variance). Simulation results show that the proposed algorithm has good detection and tracking capabilities for extended objects.

  12. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    International Nuclear Information System (INIS)

    Gering, Stefan; Adamy, Jürgen

    2014-01-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis

  13. Track-before-detect procedures for detection of extended object

    Directory of Open Access Journals (Sweden)

    Fan Ling

    2011-01-01

    Full Text Available Abstract In this article, we present a particle filter (PF-based track-before-detect (PF TBD procedure for detection of extended objects whose shape is modeled by an ellipse. By incorporating of an existence variable and the target shape parameters into the state vector, the proposed algorithm performs joint estimation of the target presence/absence, trajectory and shape parameters under unknown nuisance parameters (target power and noise variance. Simulation results show that the proposed algorithm has good detection and tracking capabilities for extended objects.

  14. Positron Emission Tomography Particle tracking using cluster analysis

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2004-01-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method

  15. Positron Emission Tomography Particle tracking using cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham, B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2004-12-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method.

  16. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    Science.gov (United States)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  17. Tracers vs. trajectories in a coastal region

    Science.gov (United States)

    Engqvist, A.; Döös, K.

    2008-12-01

    Two different methods of estimating the water exchange through a Baltic coastal region have been used, consisting of particle trajectories and passive tracers. Water is traced from and to a small discharge region near the coast. The discharge material in this region is treated as zero dimensional particles or tracers with neutral buoyancy. The real discharge material could be a leakage of radio-nuclides through the sea floor from an underground repository of nuclear waste. Water exchange rates between the discharge region and the model domain are estimated using both forward and backward trajectories as well as passive tracers. The Lagrangian trajectories can account for the time evolution of the water exchange while the tracers give one average age per model grid box. Water exchange times such as residence time, age and transient times have been calculated with trajectories but only the average age (AvA) for tracers. The trajectory calculations provide a more detailed time evolution than the tracers. On the other hand the tracers are integrated "on-line" simultaneously in the sea circulation model with the same time step while the Lagrangian trajectories are integrated "off-line" from the stored model velocities with its inherent temporal resolution, presently one hour. The sub-grid turbulence is parameterised as a Laplacian diffusion for the passive tracers and with an extra stochastic velocity for trajectories. The importance of the parameterised sub-grid turbulence for the trajectories is estimated to give an extra diffusion of the same order as the Laplacian diffusion by comparing the Lagrangian dispersions with and without parameterisation. The results of the different methods are similar but depend on the chosen diffusivity coefficient with a slightly higher correlation between trajectories and tracers when integrated with a lower diffusivity coefficient.

  18. Posterolateral Trajectories Favor a Longer Motor Domain in Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease.

    Science.gov (United States)

    Tamir, Idit; Marmor-Levin, Odeya; Eitan, Renana; Bergman, Hagai; Israel, Zvi

    2017-10-01

    The clinical outcome of patients with Parkinson disease (PD) who undergo subthalamic nucleus (STN) deep brain stimulation (DBS) is, in part, determined by the length of the electrode trajectory through the motor STN domain, the dorsolateral oscillatory region (DLOR). Trajectory length has been found to correlate with the stimulation-related improvement in patients' motor function (estimated by part III of the United Parkinson's Disease Rating Scale [UPDRS]). Therefore, it seems that ideally trajectories should have maximal DLOR length. We retrospectively studied the influence of various anatomic aspects of the brains of patients with PD and the geometry of trajectories planned on the length of the DLOR and STN recorded during DBS surgery. We examined 212 trajectories and 424 microelectrode recording tracks in 115 patients operated on in our center between 2010 and 2015. We found a strong correlation between the length of the recorded DLOR and STN. Trajectories that were more lateral and/or posterior in orientation had a longer STN and DLOR pass, although the DLOR/STN fraction length remained constant. The STN target was more lateral when the third ventricle was wider, and the latter correlated with older age and male gender. Trajectory angles correlate with the recorded STN and DLOR lengths, and should be altered toward a more posterolateral angle in older patients and atrophied brains to compensate for the changes in STN location and geometry. These fine adjustments should yield a longer motor domain pass, thereby improving the patient's predicted outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A simultaneous localization and tracking method for a worm tracking system

    Directory of Open Access Journals (Sweden)

    Kowalski Mateusz

    2014-09-01

    Full Text Available The idea of worm tracking refers to the path analysis of Caenorhabditis elegans nematodes and is an important tool in neurobiology which helps to describe their behavior. Knowledge about nematode behavior can be applied as a model to study the physiological addiction process or other nervous system processes in animals and humans. Tracking is performed by using a special manipulator positioning a microscope with a camera over a dish with an observed individual. In the paper, the accuracy of a nematode’s trajectory reconstruction is investigated. Special attention is paid to analyzing errors that occurred during the microscope displacements. Two sources of errors in the trajectory reconstruction are shown. One is due to the difficulty in accurately measuring the microscope shift, the other is due to a nematode displacement during the microscope movement. A new method that increases path reconstruction accuracy based only on the registered sequence of images is proposed. The method Simultaneously Localizes And Tracks (SLAT the nematodes, and is robust to the positioning system displacement errors. The proposed method predicts the nematode position by using NonParametric Regression (NPR. In addition, two other methods of the SLAT problem are implemented to evaluate the NPR method. The first consists in ignoring the nematode displacement during microscope movement, and the second is based on a Kalman filter. The results suggest that the SLAT method based on nonparametric regression gives the most promising results and decreases the error of trajectory reconstruction by 25% compared with reconstruction based on data from the positioning system

  20. Electrostatic imaging of particle trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Charpak, G.; Bouclier, R.; Breskin, A.; Chechik, R. (European Organization for Nuclear Research, Geneva (Switzerland)); Lewiner, J. (Ecole Superieure de Physique et Chimie Industrielles, 75 - Paris (France))

    1982-02-01

    The ions liberated in a high-pressure gas or in some liquids can be collected, by electric fields, on the surface of insulators and can be accurately localized. In a simulation of this method at atmospheric pressure, we applied it to ..cap alpha.. particles, with the additional amplification from a parallel grid gap. By directly measuring the static electric charges collected on mylar foils, we observe tracks of 1 mm fwhm and charge densities as low as 10/sup 4/ electrons/mm/sup 2/. The combination of multistep gated avalanche chambers with this read-out method should permit high-accuracy measurements of minimum ionizing particles. The limits of the method and some conditions for detection by liquid toners are discussed.

  1. A new paradigm for particle tracking velocimetry, based on graph-theory and pulsed neural network

    International Nuclear Information System (INIS)

    Derou, D.; Herault, L.

    1994-01-01

    The Particle Tracking Velocimetry (PTV) technique works by recording, at different instances in time, positions of small tracers particles following a flow and illuminated by a sheet, or pseudo sheet, of light. It aims to recognize each particle trajectory, constituted of n different spots and determine thus each particle velocity vector. In this paper, we devise a new method, taking into account a global consistency of the trajectories to be extracted, in terms of visual perception and physical properties. It is based on a graph-theoretic formulation of the particle tracking problem and the use of an original neural network, called pulsed neural network. (authors). 4 figs

  2. Tracking Genomic Cancer Evolution for Precision Medicine: The Lung TRACERx Study

    DEFF Research Database (Denmark)

    Jamal-Hanjani, Mariam; Hackshaw, Alan; Ngai, Yenting

    2014-01-01

    . TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy [Rx]), a prospective study of patients with primary non-small cell lung cancer (NSCLC), aims to define the evolutionary trajectories of lung cancer in both space and time through multiregion and longitudinal tumour sampling and genetic...... analysis. By following cancers from diagnosis to relapse, tracking the evolutionary trajectories of tumours in relation to therapeutic interventions, and determining the impact of clonal heterogeneity on clinical outcomes, TRACERx may help to identify novel therapeutic targets for NSCLC and may also serve...

  3. Path integrals and geometry of trajectories

    International Nuclear Information System (INIS)

    Blau, M.; Keski-Vakkuri, E.; Niemi, A.J.

    1990-01-01

    A geometrical interpretation of path integrals is developed in the space of trajectories. This yields a supersymmetric formulation of a generic path integral, with the supersymmetry resembling the BRST supersymmetry of a first class constrained system. If the classical equation of motion is a Killing vector field in the space of trajectories, the supersymmetry localizes the path integral to classical trajectories and the WKB approximation becomes exact. This can be viewed as a path integral generalization of the Duistermaat-Heckman theorem, which states the conditions for the exactness of the WKB approximation for integrals in a compact phase space. (orig.)

  4. An Examination of "The Martian" Trajectory

    Science.gov (United States)

    Burke, Laura

    2015-01-01

    This analysis was performed to support a request to examine the trajectory of the Hermes vehicle in the novel "The Martian" by Andy Weir. Weir developed his own tool to perform the analysis necessary to provide proper trajectory information for the novel. The Hermes vehicle is the interplanetary spacecraft that shuttles the crew to and from Mars. It is notionally a Nuclear powered vehicle utilizing VASIMR engines for propulsion. The intent of this analysis was the determine whether the trajectory as it was outlined in the novel is consistent with the rules of orbital mechanics.

  5. Soccer ball lift coefficients via trajectory analysis

    International Nuclear Information System (INIS)

    Goff, John Eric; Carre, Matt J

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  6. Soccer ball lift coefficients via trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-07-15

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  7. Helicopter trajectory planning using optimal control theory

    Science.gov (United States)

    Menon, P. K. A.; Cheng, V. H. L.; Kim, E.

    1988-01-01

    A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.

  8. A variable structure tracking controller for robot manipulators

    International Nuclear Information System (INIS)

    Lee, Jung Hoon; Shin, Hwi Beom

    1997-01-01

    In this paper, a continuous variable structure tracking controller is designed for the purpose of the control of robot manipulators to follow a given desired planned trajectory with high accuracy. The robustness and continuity of the algorithm are much improved by means of the feedforward compensation technique based on the disturbance observer without any chattering problem. Also the stability of the algorithm is analyzed in detail, further more the usefulness and good performances are verified through computer simulation studies. (author)

  9. Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): System description and prototype testing

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Meyer, Juergen; Baier, Kurt; Guckenberger, Matthias; Herrmann, Christian; Hess, Robin; Janka, Christian; Ma Lei; Mersebach, Torben; Richter, Anne; Roth, Michael; Schilling, Klaus; Flentje, Michael

    2008-01-01

    A novel system for real-time tumor tracking and motion compensation with a robotic HexaPOD treatment couch is described. The approach is based on continuous tracking of the tumor motion in portal images without implanted fiducial markers, using the therapeutic megavoltage beam, and tracking of abdominal breathing motion with optical markers. Based on the two independently acquired data sets the table movements for motion compensation are calculated. The principle of operation of the entire prototype system is detailed first. In the second part the performance of the HexaPOD couch was investigated with a robotic four-dimensional-phantom capable of simulating real patient tumor trajectories in three-dimensional space. The performance and limitations of the HexaPOD table and the control system were characterized in terms of its dynamic behavior. The maximum speed and acceleration of the HexaPOD were 8 mm/s and 34.5 mm/s 2 in the lateral direction, and 9.5 mm/s and 29.5 mm/s 2 in longitudinal and anterior-posterior direction, respectively. Base line drifts of the mean tumor position of realistic lung tumor trajectories could be fully compensated. For continuous tumor tracking and motion compensation a reduction of tumor motion up to 68% of the original amplitude was achieved. In conclusion, this study demonstrated that it is technically feasible to compensate breathing induced tumor motion in the lung with the adaptive tumor tracking system

  10. Optical tracking of nanoscale particles in microscale environments

    Science.gov (United States)

    Mathai, P. P.; Liddle, J. A.; Stavis, S. M.

    2016-03-01

    The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.

  11. Environmental Public Health Tracking

    Centers for Disease Control (CDC) Podcasts

    In this podcast series, CDC scientists address frequently asked questions about the National Environmental Public Health Tracking Network, including using and applying data, running queries, and much more.

  12. DCS Budget Tracking System

    Data.gov (United States)

    Social Security Administration — DCS Budget Tracking System database contains budget information for the Information Technology budget and the 'Other Objects' budget. This data allows for monitoring...

  13. Active Transportation Demand Management (ATDM) Trajectory Level Validation

    Data.gov (United States)

    Department of Transportation — The ATDM Trajectory Validation project developed a validation framework and a trajectory computational engine to compare and validate simulated and observed vehicle...

  14. Low Thrust Trajectory Design for GSFC Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Evolutionary Mission Trajectory Generator (EMTG) is a global trajectory optimization tool. EMTG is intended for use in designing interplanetary missions which...

  15. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator.

    Science.gov (United States)

    Ayvali, Elif; Desai, Jaydev P

    2014-04-01

    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.

  16. Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations?

    Science.gov (United States)

    Russell, D M; Sternad, D

    2001-12-01

    In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.

  17. A Novel Method of Robust Trajectory Linearization Control Based on Disturbance Rejection

    Directory of Open Access Journals (Sweden)

    Xingling Shao

    2014-01-01

    Full Text Available A novel method of robust trajectory linearization control for a class of nonlinear systems with uncertainties based on disturbance rejection is proposed. Firstly, on the basis of trajectory linearization control (TLC method, a feedback linearization based control law is designed to transform the original tracking error dynamics to the canonical integral-chain form. To address the issue of reducing the influence made by uncertainties, with tracking error as input, linear extended state observer (LESO is constructed to estimate the tracking error vector, as well as the uncertainties in an integrated manner. Meanwhile, the boundedness of the estimated error is investigated by theoretical analysis. In addition, decoupled controller (which has the characteristic of well-tuning and simple form based on LESO is synthesized to realize the output tracking for closed-loop system. The closed-loop stability of the system under the proposed LESO-based control structure is established. Also, simulation results are presented to illustrate the effectiveness of the control strategy.

  18. Leveraging Chaos in Continuous Thrust Trajectory Design

    Data.gov (United States)

    National Aeronautics and Space Administration — A trajectory design tool is sought to leverage chaos and nonlinear dynamics present in multi-body gravitational fields to design ultra-low energy transfer...

  19. Age trajectories of stroke case fatality

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj; Andersen, Zorana Jovanovic; Andersen, Klaus Kaae

    2011-01-01

    Mortality rates level off at older ages. Age trajectories of stroke case-fatality rates were studied with the aim of investigating prevalence of this phenomenon, specifically in case-fatality rates at older ages....

  20. Highly Accurate Measurement of Projectile Trajectories

    National Research Council Canada - National Science Library

    Leathem, J

    1997-01-01

    .... The method has been extensively used for free flight testing of weapon models. This report describes the on board instrumentation, the range instrumentation and the experimental procedure used to carry out the trajectory measurements...

  1. Analytical Ballistic Trajectories with Approximately Linear Drag

    Directory of Open Access Journals (Sweden)

    Giliam J. P. de Carpentier

    2014-01-01

    Full Text Available This paper introduces a practical analytical approximation of projectile trajectories in 2D and 3D roughly based on a linear drag model and explores a variety of different planning algorithms for these trajectories. Although the trajectories are only approximate, they still capture many of the characteristics of a real projectile in free fall under the influence of an invariant wind, gravitational pull, and terminal velocity, while the required math for these trajectories and planners is still simple enough to efficiently run on almost all modern hardware devices. Together, these properties make the proposed approach particularly useful for real-time applications where accuracy and performance need to be carefully balanced, such as in computer games.

  2. Trajectory Clustering with Applications to Airspace Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a framework aimed at monitoring the behavior of aircraft in a given airspace. Trajectories that constitute typical operations are determined and...

  3. Trajectory behaviour at different phonemic context sizes

    CSIR Research Space (South Africa)

    Badenhorst, J

    2011-11-01

    Full Text Available The authors propose a piecewise-linear model for the temporal trajectories of Mel Frequency Cepstral Coefficients during phone transitions. As with conventional Hidden Markov Models, the parameters of the model can be estimated for different...

  4. The existence of trajectories joining critical points

    International Nuclear Information System (INIS)

    Yu Shuxiang.

    1985-01-01

    In this paper, using the notion of an isolating block and the concept of canonical regions, three existence criteria of trajectories connecting a pair of critical points of planar differential equations are given. (author)

  5. Trajectory phases of a quantum dot model

    International Nuclear Information System (INIS)

    Genway, Sam; Hickey, James M; Garrahan, Juan P; Armour, Andrew D

    2014-01-01

    We present a thermodynamic formalism to study the trajectories of charge transport through a quantum dot coupled to two leads in the resonant-level model. We show that a close analogue of equilibrium phase transitions exists for the statistics of transferred charge; by tuning an appropriate ‘counting field’, crossovers to different trajectory phases are possible. Our description reveals a mapping between the statistics of a given device and current measurements over a range of devices with different dot–lead coupling strengths. Furthermore insight into features of the trajectory phases are found by studying the occupation of the dot conditioned on the transported charge between the leads; this is calculated from first principles using a trajectory biased two-point projective measurement scheme. (paper)

  6. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-01-01

    to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic

  7. Quantum dynamics modeled by interacting trajectories

    Science.gov (United States)

    Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.

    2018-03-01

    We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.

  8. Action Recognition Using Discriminative Structured Trajectory Groups

    KAUST Repository

    Atmosukarto, Indriyati

    2015-01-06

    In this paper, we develop a novel framework for action recognition in videos. The framework is based on automatically learning the discriminative trajectory groups that are relevant to an action. Different from previous approaches, our method does not require complex computation for graph matching or complex latent models to localize the parts. We model a video as a structured bag of trajectory groups with latent class variables. We model action recognition problem in a weakly supervised setting and learn discriminative trajectory groups by employing multiple instance learning (MIL) based Support Vector Machine (SVM) using pre-computed kernels. The kernels depend on the spatio-temporal relationship between the extracted trajectory groups and their associated features. We demonstrate both quantitatively and qualitatively that the classification performance of our proposed method is superior to baselines and several state-of-the-art approaches on three challenging standard benchmark datasets.

  9. Study of particle swarm optimization particle trajectories

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2006-01-01

    Full Text Available . These theoretical studies concentrate mainly on simplified PSO systems. This paper overviews current theoretical studies, and extend these studies to investigate particle trajectories for general swarms to include the influence of the inertia term. The paper also...

  10. DIRECTIONAL WELL TRAJECTORY DESIGN: THE THEORITICAL ...

    African Journals Online (AJOL)

    user

    2016-10-04

    Oct 4, 2016 ... record presentation of a desired complex directional well trajectory, also from which the overall angle change. (dogleg) is observed not to ... example; 23oNE means 23 degrees East from North, .... Azimuth Angles Selection.

  11. Trajectory similarity join in spatial networks

    KAUST Repository

    Shang, Shuo; Chen, Lisi; Wei, Zhewei; Jensen, Christian S.; Zheng, Kai; Kalnis, Panos

    2017-01-01

    With these applications in mind, we provide a purposeful definition of similarity. To enable efficient TS-Join processing on large sets of trajectories, we develop search space pruning techniques and take into account the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer algorithm. For each trajectory, the algorithm first finds similar trajectories. Then it merges the results to achieve a final result. The algorithm exploits an upper bound on the spatiotemporal similarity and a heuristic scheduling strategy for search space pruning. The algorithm's per-trajectory searches are independent of each other and can be performed in parallel, and the merging has constant cost. An empirical study with real data offers insight in the performance of the algorithm and demonstrates that is capable of outperforming a well-designed baseline algorithm by an order of magnitude.

  12. Mobile Robot Positioning by using Low-Cost Visual Tracking System

    Directory of Open Access Journals (Sweden)

    Ruangpayoongsak Niramon

    2017-01-01

    Full Text Available This paper presents an application of visual tracking system on mobile robot positioning. The proposed method is verified on a constructed low-cost tracking system consisting of 2 DOF pan-tilt unit, web camera and distance sensor. The motion of pan-tilt joints is realized and controlled by using LQR controller running on microcontroller. Without needs of camera calibration, robot trajectory is tracked by Kalman filter integrating distance information and joint positions. The experimental results demonstrate validity of the proposed positioning technique and the obtained mobile robot trajectory is benchmarked against laser rangefinder positioning. The implemented system can successfully track a mobile robot driving at 14 cm/s.

  13. Kinematic evaluation of virtual walking trajectories.

    Science.gov (United States)

    Cirio, Gabriel; Olivier, Anne-Hélène; Marchal, Maud; Pettré, Julien

    2013-04-01

    Virtual walking, a fundamental task in Virtual Reality (VR), is greatly influenced by the locomotion interface being used, by the specificities of input and output devices, and by the way the virtual environment is represented. No matter how virtual walking is controlled, the generation of realistic virtual trajectories is absolutely required for some applications, especially those dedicated to the study of walking behaviors in VR, navigation through virtual places for architecture, rehabilitation and training. Previous studies focused on evaluating the realism of locomotion trajectories have mostly considered the result of the locomotion task (efficiency, accuracy) and its subjective perception (presence, cybersickness). Few focused on the locomotion trajectory itself, but in situation of geometrically constrained task. In this paper, we study the realism of unconstrained trajectories produced during virtual walking by addressing the following question: did the user reach his destination by virtually walking along a trajectory he would have followed in similar real conditions? To this end, we propose a comprehensive evaluation framework consisting on a set of trajectographical criteria and a locomotion model to generate reference trajectories. We consider a simple locomotion task where users walk between two oriented points in space. The travel path is analyzed both geometrically and temporally in comparison to simulated reference trajectories. In addition, we demonstrate the framework over a user study which considered an initial set of common and frequent virtual walking conditions, namely different input devices, output display devices, control laws, and visualization modalities. The study provides insight into the relative contributions of each condition to the overall realism of the resulting virtual trajectories.

  14. User Oriented Trajectory Search for Trip Recommendation

    KAUST Repository

    Ding, Ruogu

    2012-07-08

    Trajectory sharing and searching have received significant attention in recent years. In this thesis, we propose and investigate the methods to find and recommend the best trajectory to the traveler, and mainly focus on a novel technique named User Oriented Trajectory Search (UOTS) query processing. In contrast to conventional trajectory search by locations (spatial domain only), we consider both spatial and textual domains in the new UOTS query. Given a trajectory data set, the query input contains a set of intended places given by the traveler and a set of textual attributes describing the traveler’s preference. If a trajectory is connecting/close to the specified query locations, and the textual attributes of the trajectory are similar to the traveler’s preference, it will be recommended to the traveler. This type of queries can enable many popular applications such as trip planning and recommendation. There are two challenges in UOTS query processing, (i) how to constrain the searching range in two domains and (ii) how to schedule multiple query sources effectively. To overcome the challenges and answer the UOTS query efficiently, a novel collaborative searching approach is developed. Conceptually, the UOTS query processing is conducted in the spatial and textual domains alternately. A pair of upper and lower bounds are devised to constrain the searching range in two domains. In the meantime, a heuristic searching strategy based on priority ranking is adopted for scheduling the multiple query sources, which can further reduce the searching range and enhance the query efficiency notably. Furthermore, the devised collaborative searching approach can be extended to situations where the query locations are ordered. Extensive experiments are conducted on both real and synthetic trajectory data in road networks. Our approach is verified to be effective in reducing both CPU time and disk I/O time.

  15. Trajectory Stability in the Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Sergio Sánchez

    2018-01-01

    Full Text Available Two generalizations of the traveling salesman problem in which sites change their position in time are presented. The way the rank of different trajectory lengths changes in time is studied using the rank diversity. We analyze the statistical properties of rank distributions and rank dynamics and give evidence that the shortest and longest trajectories are more predictable and robust to change, that is, more stable.

  16. Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design

    Science.gov (United States)

    Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter

    2011-01-01

    On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where

  17. Can Tracking Improve Learning?

    Science.gov (United States)

    Duflo, Esther; Dupas, Pascaline; Kremer, Michael

    2009-01-01

    Tracking students into different classrooms according to their prior academic performance is controversial among both scholars and policymakers. If teachers find it easier to teach a homogeneous group of students, tracking could enhance school effectiveness and raise test scores of both low- and high-ability students. If students benefit from…

  18. Attitude and position tracking

    CSIR Research Space (South Africa)

    Candy, LP

    2011-01-01

    Full Text Available Several applications require the tracking of attitude and position of a body based on velocity data. It is tempting to use direction cosine matrices (DCM), for example, to track attitude based on angular velocity data, and to integrate the linear...

  19. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  20. Track Starter's Guide.

    Science.gov (United States)

    Dailey, Charles H.; Rankin, Kelly D.

    This guide was developed to serve both the novice and experienced starter in track and field events. Each year in the United States, runners encounter dozens of different starters' mannerisms as they travel to track meets in various towns and states. The goal of any competent and conscientious starter is to insure that all runners receive a fair…

  1. Large scale tracking algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ross L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Joshua Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melgaard, David Kennett [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pitts, Todd Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zollweg, Joshua David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Dylan Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nandy, Prabal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitlow, Gary L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  2. Optimizing interplanetary trajectories with deep space maneuvers

    Science.gov (United States)

    Navagh, John

    1993-09-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  3. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.

  4. Controlled ion track etching

    Science.gov (United States)

    George, J.; Irkens, M.; Neumann, S.; Scherer, U. W.; Srivastava, A.; Sinha, D.; Fink, D.

    2006-03-01

    It is a common practice since long to follow the ion track-etching process in thin foils via conductometry, i.e . by measurement of the electrical current which passes through the etched track, once the track breakthrough condition has been achieved. The major disadvantage of this approach, namely the absence of any major detectable signal before breakthrough, can be avoided by examining the track-etching process capacitively. This method allows one to define precisely not only the breakthrough point before it is reached, but also the length of any non-transient track. Combining both capacitive and conductive etching allows one to control the etching process perfectly. Examples and possible applications are given.

  5. Why we are tracking

    DEFF Research Database (Denmark)

    Tække, Jesper

    2015-01-01

    In this short essay, concerning why we are tracking, I will try to frame tracking as an evolutionary developed skill that humans need to survive. From an evolutionary point zero life must reflect upon itself in regard to its surrounding world as a kind of societal self-synchronization in this reg......In this short essay, concerning why we are tracking, I will try to frame tracking as an evolutionary developed skill that humans need to survive. From an evolutionary point zero life must reflect upon itself in regard to its surrounding world as a kind of societal self......-synchronization in this regard (Spencer 1890, Luhmann 2000, Tække 2014, 2011). I was inspired by Jill Walker Rettberg’s book: “Seeing Ourselves through Technology” and her presentation at the seminar: “Tracking Culture” arranged by Anders Albrechtslund in Aarhus January 2015....

  6. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-04-13

    In this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by \\'handing over the camera\\' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  7. Real-time detecting and tracking ball with OpenCV and Kinect

    Science.gov (United States)

    Osiecki, Tomasz; Jankowski, Stanislaw

    2016-09-01

    This paper presents a way to detect and track ball with using the OpenCV and Kinect. Object and people recognition, tracking are more and more popular topics nowadays. Described solution makes it possible to detect ball based on the range, which is set by the user and capture information about ball position in three dimensions. It can be store in the computer and use for example to display trajectory of the ball.

  8. A Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Aizzat Zakaria

    2013-08-01

    Full Text Available Trajectory tracking is an important aspect of autonomous vehicles. The idea behind trajectory tracking is the ability of the vehicle to follow a predefined path with zero steady state error. The difficulty arises due to the nonlinearity of vehicle dynamics. Therefore, this paper proposes a stable tracking control for an autonomous vehicle. An approach that consists of steering wheel control and lateral control is introduced. This control algorithm is used for a non-holonomic navigation problem, namely tracking a reference trajectory in a closed loop form. A proposed future prediction point control algorithm is used to calculate the vehicle's lateral error in order to improve the performance of the trajectory tracking. A feedback sensor signal from the steering wheel angle and yaw rate sensor is used as feedback information for the controller. The controller consists of a relationship between the future point lateral error, the linear velocity, the heading error and the reference yaw rate. This paper also introduces a spike detection algorithm to track the spike error that occurs during GPS reading. The proposed idea is to take the advantage of the derivative of the steering rate. This paper aims to tackle the lateral error problem by applying the steering control law to the vehicle, and proposes a new path tracking control method by considering the future coordinate of the vehicle and the future estimated lateral error. The effectiveness of the proposed controller is demonstrated by a simulation and a GPS experiment with noisy data. The approach used in this paper is not limited to autonomous vehicles alone since the concept of autonomous vehicle tracking can be used in mobile robot platforms, as the kinematic model of these two platforms is similar.

  9. On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles

    Science.gov (United States)

    2006-02-17

    On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is

  10. Location-allocation algorithm for multiple particle tracking using Birmingham MWPC positron camera

    International Nuclear Information System (INIS)

    Gundogdu, O.; Tarcan, E.

    2004-01-01

    Positron Emission Particle Tracking is a powerful, non-invasive technique that employs a single radioactive particle. It has been applied to a wide range of industrial systems. This paper presents an original application of a technique, which was mainly developed in economics or resource management. It allows the tracking of multiple particles using small number of trajectories with correct tagging. This technique originally used in economics or resource management provides very encouraging results

  11. Location-allocation algorithm for multiple particle tracking using Birmingham MWPC positron camera

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. E-mail: o.gundogdu@surrey.ac.uko_gundo@yahoo.co.uko.gundogdu@kingston.ac.uk; Tarcan, E

    2004-05-01

    Positron Emission Particle Tracking is a powerful, non-invasive technique that employs a single radioactive particle. It has been applied to a wide range of industrial systems. This paper presents an original application of a technique, which was mainly developed in economics or resource management. It allows the tracking of multiple particles using small number of trajectories with correct tagging. This technique originally used in economics or resource management provides very encouraging results.

  12. Design of tracking mount and controller for mobile satellite laser ranging system

    Science.gov (United States)

    Park, Cheol Hoon; Son, Young Su; Kim, Byung In; Ham, Sang Young; Lee, Sung Whee; Lim, Hyung Chul

    2012-01-01

    In this study, we have proposed and implemented a design for the tracking mount and controller of the ARGO-M (Accurate Ranging system for Geodetic Observation - Mobile) which is a mobile satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute (KASI) and Korea Institute of Machinery and Materials (KIMM). The tracking mount comprises a few core components such as bearings, driving motors and encoders. These components were selected as per the technical specifications for the tracking mount of the ARGO-M. A three-dimensional model of the tracking mount was designed. The frequency analysis of the model predicted that the first natural frequency of the designed tracking mount was high enough. The tracking controller is simulated using MATLAB/xPC Target to achieve the required pointing and tracking accuracy. In order to evaluate the system repeatability and tracking accuracy of the tracking mount, a prototype of the ARGO-M was fabricated, and repeatability tests were carried out using a laser interferometer. Tracking tests were conducted using the trajectories of low earth orbit (LEO) and high earth orbit (HEO) satellites. Based on the test results, it was confirmed that the prototype of the tracking mount and controller of the ARGO-M could achieve the required repeatability along with a tracking accuracy of less than 1 arcsec.

  13. 3D scanning particle tracking velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Klaus; Holzner, Markus; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang [Swiss Federal Institut of Technology Zurich, Institut fuer Hydromechanik und Wasserwirtschaft, Zuerich (Switzerland); Luethi, Beat [Risoe National Laboratory, Roskilde (Denmark)

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements. (orig.)

  14. Principal direction of inertia for 3D trajectories from patient-specific TMJ movement.

    Science.gov (United States)

    Kim, Dae-Seung; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Hwang, Soon-Jung; Kim, Seong-Ha; Yi, Won-Jin

    2013-03-01

    Accurate simulation and evaluation of mandibular movement is fundamental for the analysis of functional changes and effects of the mandible and maxilla before and after surgical treatments. We applied principal axes of inertia to the three-dimensional (3D) trajectories generated by patient-specific simulations of TMJ movements for the functional evaluations of mandible movement. Three-dimensional movements of the mandible and the maxilla were tracked based on a patient-specific splint and an optical tracking system. The dental occlusion recorded on the sprint provided synchronization for initial movement in the tracking and the simulation phases. The translation and rotation recorded during movement tracking was applied sequentially to the mandibular model in relation to a fixed maxilla model. The sequential 3D positions of selected landmarks on the mandible were calculated based on the reference coordinate system. The landmarks selected for analysis were bilateral condyles and pogonion points. The moment of inertia tensor was calculated with respect to the 3D trajectory points. Using the unit vectors along the principal axes derived from the tensor matrix, α, β and γ rotations around z-, y- and x-axes were determined to represent the principal directions as principal rotations respectively. The γ direction showed the higher standard deviation, variation of directions, than other directions at all the landmarks. The mandible movement has larger kinematic redundancy in the γ direction than α and β during mouth opening and closing. Principal directions of inertia would be applied to analyzing the changes in angular motion of trajectories introduced by mandibular shape changes from surgical treatments and also to the analysis of the influence of skeletal deformities on mandibular movement asymmetry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Functional Trajectories, Cognition, and Subclinical Cerebrovascular Disease.

    Science.gov (United States)

    Dhamoon, Mandip S; Cheung, Ying-Kuen; Gutierrez, Jose; Moon, Yeseon P; Sacco, Ralph L; Elkind, Mitchell S V; Wright, Clinton B

    2018-03-01

    Cognition and education influence functional trajectories, but whether associations differ with subclinical brain infarcts (SBI) or white matter hyperintensity volume (WMHV) is unknown. We hypothesized that SBI and WMHV moderated relationships between cognitive performance and education and functional trajectories. A total of 1290 stroke-free individuals underwent brain magnetic resonance imaging and were followed for 7.3 years (mean) with annual functional assessments with the Barthel index (range, 0-100). Magnetic resonance imaging measurements included pathology-informed SBI (PI-SBI) and WMHV (% total cranial volume). Generalized estimating equation models tested associations between magnetic resonance imaging variables and baseline Barthel index and change in Barthel index, adjusting for demographic, vascular, cognitive, and social risk factors, and stroke and myocardial infarction during follow-up. We tested interactions among education level, baseline cognitive performance (Mini-Mental State score), and functional trajectories and ran models stratified by levels of magnetic resonance imaging variables. Mean age was 70.6 (SD, 9.0) years; 19% had PI-SBI, and mean WMHV was 0.68%. Education did not modify associations between cognition and functional trajectories. PI-SBI modified associations between cognition and functional trajectories ( P =0.04) with a significant protective effect of better cognition on functional decline seen only in those without PI-SBI. There was no significant interaction for WMHV ( P =0.8). PI-SBI, and greater WMHV, were associated with 2- to 3-fold steeper functional decline, holding cognition constant. PI-SBI moderated the association between cognition and functional trajectories, with 3-fold greater decline among those with PI-SBI (compared with no PI-SBI) and normal baseline cognition. This highlights the strong and independent association between subclinical markers and patient-centered trajectories over time. © 2018 American Heart

  16. User oriented trajectory search for trip recommendation

    KAUST Repository

    Shang, Shuo

    2012-01-01

    Trajectory sharing and searching have received significant attentions in recent years. In this paper, we propose and investigate a novel problem called User Oriented Trajectory Search (UOTS) for trip recommendation. In contrast to conventional trajectory search by locations (spatial domain only), we consider both spatial and textual domains in the new UOTS query. Given a trajectory data set, the query input contains a set of intended places given by the traveler and a set of textual attributes describing the traveler\\'s preference. If a trajectory is connecting/close to the specified query locations, and the textual attributes of the trajectory are similar to the traveler\\'e preference, it will be recommended to the traveler for reference. This type of queries can bring significant benefits to travelers in many popular applications such as trip planning and recommendation. There are two challenges in the UOTS problem, (i) how to constrain the searching range in two domains and (ii) how to schedule multiple query sources effectively. To overcome the challenges and answer the UOTS query efficiently, a novel collaborative searching approach is developed. Conceptually, the UOTS query processing is conducted in the spatial and textual domains alternately. A pair of upper and lower bounds are devised to constrain the searching range in two domains. In the meantime, a heuristic searching strategy based on priority ranking is adopted for scheduling the multiple query sources, which can further reduce the searching range and enhance the query efficiency notably. Furthermore, the devised collaborative searching approach can be extended to situations where the query locations are ordered. The performance of the proposed UOTS query is verified by extensive experiments based on real and synthetic trajectory data in road networks. © 2012 ACM.

  17. Shadowing of physical trajectories in chaotic dynamics: Containment and refinement

    International Nuclear Information System (INIS)

    Grebogi, C.; Hammel, S.M.; Yorke, J.A.; Sauer, T.

    1990-01-01

    For a chaotic system, a noisy trajectory diverges rapidly from the true trajectory with the same initial condition. To understand in what sense the noisy trajectory reflects the true dynamics of the actual system, we developed a rigorous procedure to show that some true trajectories remain close to the noisy one for long times. The procedure involves a combination of containment, which establishes the existence of an uncountable number of true trajectories close to the noisy one, and refinement, which produces a less noisy trajectory. Our procedure is applied to noisy chaotic trajectories of the standard map and the driven pendulum

  18. An Improved Sequential Initiation Method for Multitarget Track in Clutter with Large Noise Measurement

    Directory of Open Access Journals (Sweden)

    Daxiong Ji

    2014-01-01

    Full Text Available This paper proposes an improved sequential method for underwater multiple objects tracks initiation in clutter, estimating the initial position for the trajectory. The underwater environment is complex and changeable, and the sonar data are not very ideal. When the detection distance is far, the error of measured data is also great. Besides that, the clutter has a grave effect on the tracks initiation. So it is hard to initialize a track and estimate the initial position. The new tracks initiation is that when at least six of ten points meet the requirements, then we determine that there is a new track and the initial states of the parameters are estimated by the linear least square method. Compared to the conventional tracks initiation methods, our method not only considers the kinematics information of targets, but also regards the error of the sonar sensors as an important element. Computer simulations confirm that the performance of our method is very nice.

  19. Fast track-hoftealloplastik

    DEFF Research Database (Denmark)

    Hansen, Torben Bæk; Gromov, Kirill; Kristensen, Billy B

    2017-01-01

    Fast-track surgery implies a coordinated perioperative approach aimed at reducing surgical stress and facilitating post-operative recovery. The fast-track programme has reduced post-operative length of stay and has led to shorter convalescence with more rapid functional recovery and decreased...... morbidity and mortality in total hip arthroplasty. It should now be a standard total hip arthroplasty patient pathway, but fine tuning of the multiple factors in the fast-track pathway is still needed in patients with special needs or high comorbidity burden....

  20. Post-flight trajectory reconstruction of suborbital free-flyers using GPS raw data

    Science.gov (United States)

    Ivchenko, N.; Yuan, Y.; Linden, E.

    2017-08-01

    This paper describes the reconstruction of postflight trajectories of suborbital free flying units by using logged GPS raw data. We took the reconstruction as a global least squares optimization problem, using both the pseudo-range and Doppler observables, and solved it by using the trust-region-reflective algorithm, which enabled navigational solutions of high accuracy. The code tracking was implemented with a large number of correlators and least squares curve fitting, in order to improve the precision of the code start times, while a more conventional phased lock loop was used for Doppler tracking. We proposed a weighting scheme to account for fast signal strength variation due to free-flier fast rotation, and a penalty for jerk to achieve a smooth solution. We applied these methods to flight data of two suborbital free flying units launched on REXUS 12 sounding rocket, reconstructing the trajectory, receiver clock error and wind up rates. The trajectory exhibits a parabola with the apogee around 80 km, and the velocity profile shows the details of payloadwobbling. The wind up rates obtained match the measurements from onboard angular rate sensors.

  1. Post-flight trajectory reconstruction of suborbital free-flyers using GPS raw data

    Directory of Open Access Journals (Sweden)

    Ivchenko N.

    2017-08-01

    Full Text Available This paper describes the reconstruction of postflight trajectories of suborbital free flying units by using logged GPS raw data. We took the reconstruction as a global least squares optimization problem, using both the pseudo-range and Doppler observables, and solved it by using the trust-region-reflective algorithm, which enabled navigational solutions of high accuracy. The code tracking was implemented with a large number of correlators and least squares curve fitting, in order to improve the precision of the code start times, while a more conventional phased lock loop was used for Doppler tracking. We proposed a weighting scheme to account for fast signal strength variation due to free-flier fast rotation, and a penalty for jerk to achieve a smooth solution. We applied these methods to flight data of two suborbital free flying units launched on REXUS 12 sounding rocket, reconstructing the trajectory, receiver clock error and wind up rates. The trajectory exhibits a parabola with the apogee around 80 km, and the velocity profile shows the details of payloadwobbling. The wind up rates obtained match the measurements from onboard angular rate sensors.

  2. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.

    Science.gov (United States)

    Yang, Wei; Ai, Tinghua; Lu, Wei

    2018-04-19

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  3. Eye movements and manual interception of ballistic trajectories: effects of law of motion perturbations and occlusions.

    Science.gov (United States)

    Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco

    2015-02-01

    Manual interceptions are known to depend critically on integration of visual feedback information and experience-based predictions of the interceptive event. Within this framework, coupling between gaze and limb movements might also contribute to the interceptive outcome, since eye movements afford acquisition of high-resolution visual information. We investigated this issue by analyzing subjects' head-fixed oculomotor behavior during manual interceptions. Subjects moved a mouse cursor to intercept computer-generated ballistic trajectories either congruent with Earth's gravity or perturbed with weightlessness (0 g) or hypergravity (2 g) effects. In separate sessions, trajectories were either fully visible or occluded before interception to enforce visual prediction. Subjects' oculomotor behavior was classified in terms of amounts of time they gazed at different visual targets and of overall number of saccades. Then, by way of multivariate analyses, we assessed the following: (1) whether eye movement patterns depended on targets' laws of motion and occlusions; and (2) whether interceptive performance was related to the oculomotor behavior. First, we found that eye movement patterns depended significantly on targets' laws of motion and occlusion, suggesting predictive mechanisms. Second, subjects coupled differently oculomotor and interceptive behavior depending on whether targets were visible or occluded. With visible targets, subjects made smaller interceptive errors if they gazed longer at the mouse cursor. Instead, with occluded targets, they achieved better performance by increasing the target's tracking accuracy and by avoiding gaze shifts near interception, suggesting that precise ocular tracking provided better trajectory predictions for the interceptive response.

  4. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-04-01

    Full Text Available Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT. First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  5. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  6. PRESS: A Novel Framework of Trajectory Compression in Road Networks

    OpenAIRE

    Song, Renchu; Sun, Weiwei; Zheng, Baihua; Zheng, Yu

    2014-01-01

    Location data becomes more and more important. In this paper, we focus on the trajectory data, and propose a new framework, namely PRESS (Paralleled Road-Network-Based Trajectory Compression), to effectively compress trajectory data under road network constraints. Different from existing work, PRESS proposes a novel representation for trajectories to separate the spatial representation of a trajectory from the temporal representation, and proposes a Hybrid Spatial Compression (HSC) algorithm ...

  7. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach.

    Science.gov (United States)

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-12-30

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  8. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach

    Directory of Open Access Journals (Sweden)

    Zhaoyuan Yu

    2015-12-01

    Full Text Available Passive infrared (PIR motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  9. Signatures of unstable semiclassical trajectories in tunneling

    International Nuclear Information System (INIS)

    Levkov, D G; Panin, A G; Sibiryakov, S M

    2009-01-01

    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is a substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using a modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the 'phase transition' between the cases of stable and unstable trajectories across certain 'critical' values of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory

  10. Trajectory attractors of equations of mathematical physics

    International Nuclear Information System (INIS)

    Vishik, Marko I; Chepyzhov, Vladimir V

    2011-01-01

    In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier-Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier-Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.

  11. The trajectory control in the SLC linac

    International Nuclear Information System (INIS)

    Hsu, I.C.; Adolphsen, C.E.; Himel, T.M.; Seeman, J.T.

    1991-05-01

    Due to wake field effects, the trajectories of accelerated beams in the Linac should be well maintained to avoid severe beam breakup. In order to maintain a small emittance at the end of the Linac, the tolerance on the trajectory deviations become tighter when the beam intensities increase. The existing two beam trajectory correction method works well when the theoretical model agrees with the real machine lattice. Unknown energy deviations along the linac as well as wake field effects can cause the real lattice to deviate from the model. This makes the trajectory correction difficult. Several automated procedures have been developed to solve these problems. They are: an automated procedure to frequently steer the whole Linac by dividing the Linac into several small regions; an automated procedure to empirically correct the model to fit the real lattice and eight trajectory correcting feedback loops along the linac and steering through the collimator region with restricted corrector strengths and a restricted number of correctors. 6 refs., 2 figs

  12. Spatiotemporal Interpolation Methods for Solar Event Trajectories

    Science.gov (United States)

    Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe

    2018-05-01

    This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.

  13. Lagrangian 3D tracking of fluorescent microscopic objects in motion

    Science.gov (United States)

    Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  14. Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle

    Science.gov (United States)

    Chen, Hongbin

    2018-03-01

    Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.

  15. A silicon track trigger for the DOe experiment

    International Nuclear Information System (INIS)

    Narain, Meenakshi

    2000-01-01

    The design of a processor to trigger on long-lived particles (e.g. b-quarks) for the DOe experiment at the Fermilab Tevatron is presented. This device reconstructs the trajectory of the charged particles in the DOe tracking system, which consists of a central fiber tracker and a silicon microstrip tracker. The r-phi impact parameter resolution of the fitted tracks is about 40 μm. This enables the identification of the long-lived b-quarks produced in the decays of various particles, e.g. the top quarks, Higgs Boson, techni-particles and other exotic particles produced in pp-bar collisions at the Tevatron. In this report we describe the design of the architecture and algorithms for the Silicon Track Trigger

  16. A silicon track trigger for the DOe experiment

    CERN Document Server

    Narain, M

    2000-01-01

    The design of a processor to trigger on long-lived particles (e.g. b-quarks) for the DOe experiment at the Fermilab Tevatron is presented. This device reconstructs the trajectory of the charged particles in the DOe tracking system, which consists of a central fiber tracker and a silicon microstrip tracker. The r-phi impact parameter resolution of the fitted tracks is about 40 mu m. This enables the identification of the long-lived b-quarks produced in the decays of various particles, e.g. the top quarks, Higgs Boson, techni-particles and other exotic particles produced in pp-bar collisions at the Tevatron. In this report we describe the design of the architecture and algorithms for the Silicon Track Trigger.

  17. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Heller, C; The ATLAS collaboration

    2011-01-01

    ATLAS is one of the multipurpose experiments that records the products of the LHC proton-proton and heavy ion collisions. In order to reconstruct trajectories of charged particles produced in these collisions, ATLAS is equipped with a tracking system built using two different technologies, silicon planar sensors (pixel and microstrips) and drift-tube based detectors. Together they constitute the ATLAS Inner Detector, which is embedded in a 2 T axial field. Efficiently reconstructing tracks from charged particles traversing the detector, and precisely measure their momenta is of crucial importance for physics analyses. In order to achieve its scientific goals, an alignment of the ATLAS Inner Detector is required to accurately determine its more than 700,000 degrees of freedom. The goal of the alignment is set such that the limited knowledge of the sensor locations should not deteriorate the resolution of track parameters by more than 20% with respect to the intrinsic tracker resolution. The implementation of t...

  18. Track Loading Vehicle - TLV

    Data.gov (United States)

    Federal Laboratory Consortium — The TLV is designed to apply forces close to the strength limits of the rails and other track structure components, such as ties, rail fasteners, and ballast, while...

  19. Procurement Tracking System (PTS)

    Data.gov (United States)

    Office of Personnel Management — The Procurement Tracking System (PTS) is used solely by the procurement staff of the Office of the Inspector General (OIG) at the U.S. Office of Personnel Management...

  20. Financial Disclosure Tracking System

    Data.gov (United States)

    US Agency for International Development — USAID's FDTS identifies personal service contractors and local employees who should file disclosure reports. It tracks late filers and identifies those who must take...

  1. Case Analysis Tracking System

    Data.gov (United States)

    National Archives and Records Administration — CATS tracks Public and Federal Agency Reference Requests for OPF (Official Personnel Folder) , EMF (Employee Medical Folder), and eOPF (electronic Official Personnel...

  2. Matter Tracking Information System -

    Data.gov (United States)

    Department of Transportation — The Matter Tracking Information System (MTIS) principle function is to streamline and integrate the workload and work activity generated or addressed by our 300 plus...

  3. LHCb on track

    CERN Document Server

    2006-01-01

    On 7 and 8 June 2006, the last large component of the LHCb experiment was lowered into the cavern. This 10-tonne, 18-metre long metal structure known as 'the bridge' will support the LHCb tracking system.

  4. Human Capital Tracking Tool -

    Data.gov (United States)

    Department of Transportation — AVS is now required to collect, track, and report on data from the following Flight, Business and Workforce Plan. The Human Resource Management’s Performance Target...

  5. Energy Tracking Software Platform

    Energy Technology Data Exchange (ETDEWEB)

    Ryan Davis; Nathan Bird; Rebecca Birx; Hal Knowles

    2011-04-04

    Acceleration has created an interactive energy tracking and visualization platform that supports decreasing electric, water, and gas usage. Homeowners have access to tools that allow them to gauge their use and track progress toward a smaller energy footprint. Real estate agents have access to consumption data, allowing for sharing a comparison with potential home buyers. Home builders have the opportunity to compare their neighborhood's energy efficiency with competitors. Home energy raters have a tool for gauging the progress of their clients after efficiency changes. And, social groups are able to help encourage members to reduce their energy bills and help their environment. EnergyIT.com is the business umbrella for all energy tracking solutions and is designed to provide information about our energy tracking software and promote sales. CompareAndConserve.com (Gainesville-Green.com) helps homeowners conserve energy through education and competition. ToolsForTenants.com helps renters factor energy usage into their housing decisions.

  6. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  7. Function integrated track system

    OpenAIRE

    Hohnecker, Eberhard

    2010-01-01

    The paper discusses a function integrated track system that focuses on the reduction of acoustic emissions from railway lines. It is shown that the combination of an embedded rail system (ERS), a sound absorbing track surface, and an integrated mini sound barrier has significant acoustic advantages compared to a standard ballast superstructure. The acoustic advantages of an embedded rail system are particularly pronounced in the case of railway bridges. Finally, it is shown that a...

  8. Temperature responsive track membranes

    International Nuclear Information System (INIS)

    Omichi, H.; Yoshido, M.; Asano, M.; Tamada, H.

    1994-01-01

    A new track membrane was synthesized by introducing polymeric hydrogel to films. Such a monomer as amino acid group containing acryloyl or methacryloyl was either co-polymerized with diethylene glycol-bis-ally carbonate followed by on beam irradiation and chemical etching, or graft co-polymerized onto a particle track membrane of CR-39. The pore size was controlled in water by changing the water temperature. Some films other than CR-39 were also examined. (author). 11 refs, 7 figs

  9. Hydraulic actuators for flexible robots : a flatness based approach for tracking and vibration control

    NARCIS (Netherlands)

    Wey, T.; Lemmen, M.; Bernzen, W.; Wey, T.

    1999-01-01

    This paper deals with an application of the differential algebraic flatness approach to hydraulic drives. Here, an elastic robot arm driven by a differential cylinder is investigated. The task is to design a suitable control law which not only tracks a given trajectory but also allows the damping of

  10. Approximate Learning and Inference for Tracking with Non-overlapping Cameras

    NARCIS (Netherlands)

    Zajdel, W.; Kröse, B.; Hamza, M.H.

    2003-01-01

    Tracking with multiple cameras requires partitioning of ob servations from various sensors into trajectories. In this paper we assume that the observations are generated by a hidden, stochastic 'partition' process and propose a hidden Markov model (HMM) as a generative model for the data. The state

  11. Global Practical Stabilization and Tracking for an Underactuated Ship - A Combined Averaging and Backstepping Approach

    Directory of Open Access Journals (Sweden)

    Kristin Y. Pettersen

    1999-10-01

    Full Text Available We solve both the global practical stabilization and tracking problem for an underactuated ship, using a combined integrator backstepping and averaging approach. Exponential convergence to an arbitrarily small neighbourhood of the origin and of the reference trajectory, respectively, is proved. Simulation results are included.

  12. Automatic tracking of red blood cells in micro channels using OpenCV

    Science.gov (United States)

    Rodrigues, Vânia; Rodrigues, Pedro J.; Pereira, Ana I.; Lima, Rui

    2013-10-01

    The present study aims to developan automatic method able to track red blood cells (RBCs) trajectories flowing through a microchannel using the Open Source Computer Vision (OpenCV). The developed method is based on optical flux calculation assisted by the maximization of the template-matching product. The experimental results show a good functional performance of this method.

  13. Using the Global Positioning System for Earth Orbiter and Deep Space Tracking

    Science.gov (United States)

    Lichten, Stephen M.

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.

  14. Making Meaning of Experience: Navigating the Transformation from Graduate Student to Tenure-Track Professor

    Science.gov (United States)

    Coke, Pamela K.; Benson, Sheila; Hayes, Monie

    2015-01-01

    This article is about three adult authors who are making meaning of their experiences as early career, tenure-track professors. All former secondary English language arts instructors who are responsible for preparing future secondary English teachers, the authors use Mezirow's transformative learning theory lens to examine their trajectories from…

  15. Orion Exploration Flight Test 1 (EFT-1) Best Estimated Trajectory Development

    Science.gov (United States)

    Holt, Greg N.; Brown, Aaron

    2016-01-01

    The Orion Exploration Flight Test 1 (EFT-1) mission successfully flew on Dec 5, 2014 atop a Delta IV Heavy launch vehicle. The goal of Orions maiden flight was to stress the system by placing an uncrewed vehicle on a high-energy trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. The Orion navigation team combined all trajectory data from the mission into a Best Estimated Trajectory (BET) product. There were significant challenges in data reconstruction and many lessons were learned for future missions. The team used an estimation filter incorporating radar tracking, onboard sensors (Global Positioning System and Inertial Measurement Unit), and day-of-flight weather balloons to evaluate the true trajectory flown by Orion. Data was published for the entire Orion EFT-1 flight, plus objects jettisoned during entry such as the Forward Bay Cover. The BET customers include approximately 20 disciplines within Orion who will use the information for evaluating vehicle performance and influencing future design decisions.

  16. Trajectories of schizotypy and their emotional and social functioning: An 18-month follow-up study.

    Science.gov (United States)

    Wang, Yi; Shi, Hai-Song; Liu, Wen-Hua; Xie, Dong-Jie; Geng, Fu-Lei; Yan, Chao; Wang, Ya; Xiao, Ya-Hui; So, Suzanne H W; Chiu, Chui-De; Leung, Patrick W L; Cheung, Eric F C; Gooding, Diane C; Chan, Raymond C K

    2018-03-01

    Schizotypy is a set of personality traits that convey liability to develop schizophrenia. Studying schizotypy in healthy individuals may facilitate the understanding of the psychopathological processes underlying schizophrenia. The present study aimed to examine the developmental trajectories of schizotypy over time using a longitudinal study design. The Chapman Scales for Psychosis Proneness were administered to 1541 college students at baseline, and subsequently at six-monthly intervals up to 18months. Latent class growth analysis was conducted to track the different trajectories. In addition, self-reported scales were used to measure idea of reference, emotional experiences and expression, stress and coping, as well as social functioning. We identified four latent classes with distinct trajectories: "nonschizotypy" group (LC1), "stable high schizotypy" group (LC3), "high reactive schizotypy" group (LC2) and "low reactive schizotypy" group (LC4). These findings suggest that there may be distinct developmental trajectories for schizotypy. Two groups may be of particular interest: the "stable high schizotypy" group that displayed the worst clinical and functioning outcomes on almost all measures and the "high reactive schizotypy" group characterized by a relatively rapid decline in functioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Material Tracking Using LANMAS

    International Nuclear Information System (INIS)

    Armstrong, F.

    2010-01-01

    LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.

  18. Effective Online Group Discovery in Trajectory Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    2013-01-01

    GPS-enabled devices are pervasive nowadays. Finding movement patterns in trajectory data stream is gaining in importance. We propose a group discovery framework that aims to efficiently support the online discovery of moving objects that travel together. The framework adopts a sampling-independen......GPS-enabled devices are pervasive nowadays. Finding movement patterns in trajectory data stream is gaining in importance. We propose a group discovery framework that aims to efficiently support the online discovery of moving objects that travel together. The framework adopts a sampling......-independent approach that makes no assumptions about when positions are sampled, gives no special importance to sampling points, and naturally supports the use of approximate trajectories. The framework's algorithms exploit state-of-the-art, density-based clustering (DBScan) to identify groups. The groups are scored...

  19. Dual unitarization scheme with several trajectories

    International Nuclear Information System (INIS)

    Chaichiam, M.; Hayashi, M.

    1977-12-01

    Consequences of bootstrap with several input Regge trajectories are investigated. We find that in a formal treatment of bootstrap the consistency requires the intercept of output Pomeron pole in the one-dimensional case to be larger than one: αsub(B)(0) > 1, a situation reminiscent of the one in the Reggeon field theory. Symmetry breakings of the Pomeron couplings are derived. These couplings coincide with those of the f-dominated Pomeron model of Carlitz-Green-Zee in the approximation, when in the unitarity loops only highest Regge trajectories are included. The case when all possible trajectories are exchanged is also discussed. Predictions of dual unitary model for the slopes of differential cross section for diffractive scattering are made which differ from the ones of the CGZ model. Comparison with the experimentally available data is done. (author)

  20. Classical trajectories and quantum field theory

    International Nuclear Information System (INIS)

    Vitiello, Giuseppe; Istituto Nazionale di Fisica Nucleare, Salerno

    2005-01-01

    The density matrix and the Wigner function formalism requires the doubling of the degrees of freedom in quantum mechanics (QM) and quantum field theory (QFT). The doubled degrees of freedom play the role of the thermal bath or environment degrees of freedom and are entangled with the system degrees of freedom. They also account for quantum noise in the fluctuating random forces in the system-environment coupling. The algebraic structure of QFT turns out to be the one of the deformed Hopf algebra. In such a frame, the trajectories in the space of the unitarily inequivalent representations of the canonical commutation relations turn out to be classical trajectories and, under convenient conditions, they may exhibit properties typical of classical chaotic trajectories in nonlinear dynamics. The quantum Brownian motion and the two-slit experiment in QM are discussed in connection with the doubling of the degrees of freedom. (author)

  1. A new trajectory correction technique for linacs

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.; Ruth, R.D.

    1990-06-01

    In this paper, we describe a new trajectory correction technique for high energy linear accelerators. Current correction techniques force the beam trajectory to follow misalignments of the Beam Position Monitors. Since the particle bunch has a finite energy spread and particles with different energies are deflected differently, this causes ''chromatic'' dilution of the transverse beam emittance. The algorithm, which we describe in this paper, reduces the chromatic error by minimizing the energy dependence of the trajectory. To test the method we compare the effectiveness of our algorithm with a standard correction technique in simulations on a design linac for a Next Linear Collider. The simulations indicate that chromatic dilution would be debilitating in a future linear collider because of the very small beam sizes required to achieve the necessary luminosity. Thus, we feel that this technique will prove essential for future linear colliders. 3 refs., 6 figs., 2 tabs

  2. Robot Trajectories Comparison: A Statistical Approach

    Directory of Open Access Journals (Sweden)

    A. Ansuategui

    2014-01-01

    Full Text Available The task of planning a collision-free trajectory from a start to a goal position is fundamental for an autonomous mobile robot. Although path planning has been extensively investigated since the beginning of robotics, there is no agreement on how to measure the performance of a motion algorithm. This paper presents a new approach to perform robot trajectories comparison that could be applied to any kind of trajectories and in both simulated and real environments. Given an initial set of features, it automatically selects the most significant ones and performs a statistical comparison using them. Additionally, a graphical data visualization named polygraph which helps to better understand the obtained results is provided. The proposed method has been applied, as an example, to compare two different motion planners, FM2 and WaveFront, using different environments, robots, and local planners.

  3. Robot Trajectories Comparison: A Statistical Approach

    Science.gov (United States)

    Ansuategui, A.; Arruti, A.; Susperregi, L.; Yurramendi, Y.; Jauregi, E.; Lazkano, E.; Sierra, B.

    2014-01-01

    The task of planning a collision-free trajectory from a start to a goal position is fundamental for an autonomous mobile robot. Although path planning has been extensively investigated since the beginning of robotics, there is no agreement on how to measure the performance of a motion algorithm. This paper presents a new approach to perform robot trajectories comparison that could be applied to any kind of trajectories and in both simulated and real environments. Given an initial set of features, it automatically selects the most significant ones and performs a statistical comparison using them. Additionally, a graphical data visualization named polygraph which helps to better understand the obtained results is provided. The proposed method has been applied, as an example, to compare two different motion planners, FM2 and WaveFront, using different environments, robots, and local planners. PMID:25525618

  4. Romantic attraction and adolescent smoking trajectories.

    Science.gov (United States)

    Pollard, Michael S; Tucker, Joan S; Green, Harold D; Kennedy, David P; Go, Myong-Hyun

    2011-12-01

    Research on sexual orientation and substance use has established that lesbian, gay, and bisexual (LGB) individuals are more likely to smoke than heterosexuals. This analysis furthers the examination of smoking behaviors across sexual orientation groups by describing how same- and opposite-sex romantic attraction, and changes in romantic attraction, are associated with distinct six-year developmental trajectories of smoking. The National Longitudinal Study of Adolescent Health dataset is used to test our hypotheses. Multinomial logistic regressions predicting smoking trajectory membership as a function of romantic attraction were separately estimated for men and women. Romantic attraction effects were found only for women. The change from self-reported heterosexual attraction to lesbian or bisexual attraction was more predictive of higher smoking trajectories than was a consistent lesbian or bisexual attraction, with potentially important differences between the smoking patterns of these two groups. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Quantum trajectory phase transitions in the micromaser.

    Science.gov (United States)

    Garrahan, Juan P; Armour, Andrew D; Lesanovsky, Igor

    2011-08-01

    We study the dynamics of the single-atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first order or continuous, and are controlled not just by standard parameters of the micromaser but also by nonequilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary-state properties of the micromaser.

  6. Developmental trajectories of bullying and associated factors.

    Science.gov (United States)

    Pepler, Debra; Jiang, Depeng; Craig, Wendy; Connolly, Jennifer

    2008-01-01

    Trajectories in bullying through adolescence were studied along with individual, family, and peer relationship factors. At the outset, participants' ages ranged from 10 to 14; 74% identified as European Canadian with the remainder from diverse backgrounds. With 8 waves of data over 7 years, 871 students (466 girls and 405 boys) were studied to reveal 4 trajectories: 9.9% reported consistently high levels of bullying, 13.4% reported early moderate levels desisting to almost no bullying at the end of high school, 35.1% reported consistently moderate levels, and 41.6% almost never reported bullying. Students who bullied had elevated risks in individual, parent, and peer relationship domains. Risk profiles and trajectories provide direction for interventions to curtail the development of power and aggression in relationships.

  7. The life trajectories modality of oral history

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Gonçalves

    2007-05-01

    Full Text Available This article seeks to explore the potential of qualitative research. It presents the life trajectory modality of the oral history method, to discuss the possibility of its utilization in scientific research in the Social Work profession. The epistemological foundations of oral history are discussed to establish its scientific character. The life trajectories modality is presented as a historic and social construction that utilizes different interview techniques to give voice to previously invisible subjects, indicating the principal phases of the methodological procedures used in this approach. The conclusions highlight the importance of the construction of this model and its projection as a research proposal that implies a process of understanding and analyzing the social universes that are contextualized and interconnected, considering the realities of the life trajectories of the subjects studied.

  8. Evaluating Trajectory Queries over Imprecise Location Data

    DEFF Research Database (Denmark)

    Xie, Scott, Xike; Cheng, Reynold; Yiu, Man Lung

    2012-01-01

    Trajectory queries, which retrieve nearby objects for every point of a given route, can be used to identify alerts of potential threats along a vessel route, or monitor the adjacent rescuers to a travel path. However, the locations of these objects (e.g., threats, succours) may not be precisely...... obtained due to hardware limitations of measuring devices, as well as the constantly-changing nature of the external environment. Ignoring data uncertainty can render low query quality, and cause undesirable consequences such as missing alerts of threats and poor response time in rescue operations. Also......, the query is quite time-consuming, since all the points on the trajectory are considered. In this paper, we study how to efficiently evaluate trajectory queries over imprecise location data, by proposing a new concept called the u-bisector. In general, the u-bisector is an extension of bisector to handle...

  9. Development of etched nuclear tracks

    International Nuclear Information System (INIS)

    Somogyi, G.

    1980-01-01

    The theoretical description of the evolution of etched tracks in solid state nuclear track detectors is considered for different initial conditions, for the cases of constant and varying track etch rates, isotropic and anisotropic bulk etching as well as for thick and thin detectors. It is summarized how one can calculate the main parameters of etch-pit geometry, the track length, the axes of a surface track opening, track profile and track contour. The application of the theory of etch-track evolution is demonstrated with selected practical problems. Attention is paid to certain questions related to the determination of unknown track parameters and calculation of surface track sizes. Finally, the theory is extended to the description of the perforation and etch-hole evolution process in thin detectors, which is of particular interest for track radiography and nuclear filter production. (orig.)

  10. Development of etched nuclear tracks

    International Nuclear Information System (INIS)

    Somogyi, G.

    1979-01-01

    The theoretical description of the evolution of etched tracks in solid state nuclear track detectors is considered for different initial conditions, for the cases of constant and varying track etch rates, isotopic and unisotropic bulk etching as well as for thick and thin detectors. It is summarized how the main parameters of etch-pit geometry, the track length, the axes of a surface track opening, the track profile and the track contour can be calculated. The application of the theory of etch-track evolution is demonstrated with selected practical problems. Attention is paid to certain questions related to the determination of unknown track parameters and calculation of surface track sizes. Finally, the theory is extended to the description of the perforation and etch-hole evolution process in thin detectors, which is of particular interest for track radiography and nuclear filter production. (author)

  11. ACTS: from ATLAS software towards a common track reconstruction software

    Science.gov (United States)

    Gumpert, C.; Salzburger, A.; Kiehn, M.; Hrdinka, J.; Calace, N.; ATLAS Collaboration

    2017-10-01

    Reconstruction of charged particles’ trajectories is a crucial task for most particle physics experiments. The high instantaneous luminosity achieved at the LHC leads to a high number of proton-proton collisions per bunch crossing, which has put the track reconstruction software of the LHC experiments through a thorough test. Preserving track reconstruction performance under increasingly difficult experimental conditions, while keeping the usage of computational resources at a reasonable level, is an inherent problem for many HEP experiments. Exploiting concurrent algorithms and using multivariate techniques for track identification are the primary strategies to achieve that goal. Starting from current ATLAS software, the ACTS project aims to encapsulate track reconstruction software into a generic, framework- and experiment-independent software package. It provides a set of high-level algorithms and data structures for performing track reconstruction tasks as well as fast track simulation. The software is developed with special emphasis on thread-safety to support parallel execution of the code and data structures are optimised for vectorisation to speed up linear algebra operations. The implementation is agnostic to the details of the detection technologies and magnetic field configuration which makes it applicable to many different experiments.

  12. Continuous fractional-order Zero Phase Error Tracking Control.

    Science.gov (United States)

    Liu, Lu; Tian, Siyuan; Xue, Dingyu; Zhang, Tao; Chen, YangQuan

    2018-04-01

    A continuous time fractional-order feedforward control algorithm for tracking desired time varying input signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Tracking Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds of systems has a targeted FZPETC design control strategy. The improved tracking performance has been evaluated successfully by applying the proposed controller to three different kinds of fractional-order controlled systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not have available future tracking trajectory information or have problem in high frequency disturbance rejection if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop thermal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. The seam visual tracking method for large structures

    Science.gov (United States)

    Bi, Qilin; Jiang, Xiaomin; Liu, Xiaoguang; Cheng, Taobo; Zhu, Yulong

    2017-10-01

    In this paper, a compact and flexible weld visual tracking method is proposed. Firstly, there was the interference between the visual device and the work-piece to be welded when visual tracking height cannot change. a kind of weld vision system with compact structure and tracking height is researched. Secondly, according to analyze the relative spatial pose between the camera, the laser and the work-piece to be welded and study with the theory of relative geometric imaging, The mathematical model between image feature parameters and three-dimensional trajectory of the assembly gap to be welded is established. Thirdly, the visual imaging parameters of line structured light are optimized by experiment of the weld structure of the weld. Fourth, the interference that line structure light will be scatters at the bright area of metal and the area of surface scratches will be bright is exited in the imaging. These disturbances seriously affect the computational efficiency. The algorithm based on the human eye visual attention mechanism is used to extract the weld characteristics efficiently and stably. Finally, in the experiment, It is verified that the compact and flexible weld tracking method has the tracking accuracy of 0.5mm in the tracking of large structural parts. It is a wide range of industrial application prospects.

  14. Automated Tracking of Cell Migration with Rapid Data Analysis.

    Science.gov (United States)

    DuChez, Brian J

    2017-09-01

    Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  15. Bohmian trajectories for an evaporating blackhole

    Energy Technology Data Exchange (ETDEWEB)

    Acacio de Barros, J. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: acacio@fisica.ufjf.br; Oliveira-Neto, G. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: gilneto@fisica.ufjf.br; Vale, T.B. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: tiberio@fisica.ufjf.br

    2005-03-14

    In this work we apply Bohm's interpretation to the quantized spherically-symmetric blackhole coupled to a massless scalar field. We show that the quantum trajectories for linear combinations of eigenstates of the Wheeler-DeWitt equation form a large set of different curves that cannot be predicted by the standard interpretation of quantum mechanics. Some of them are consistent with the expected value of the time derivative of the mass, whereas other trajectories are not, because they represent blackholes that switch from absorbing to emitting regimes.

  16. Optimization approaches for robot trajectory planning

    Directory of Open Access Journals (Sweden)

    Carlos Llopis-Albert

    2018-03-01

    Full Text Available The development of optimal trajectory planning algorithms for autonomous robots is a key issue in order to efficiently perform the robot tasks. This problem is hampered by the complex environment regarding the kinematics and dynamics of robots with several arms and/or degrees of freedom (dof, the design of collision-free trajectories and the physical limitations of the robots. This paper presents a review about the existing robot motion planning techniques and discusses their pros and cons regarding completeness, optimality, efficiency, accuracy, smoothness, stability, safety and scalability.

  17. On Discovery of Gathering Patterns from Trajectories

    DEFF Research Database (Denmark)

    Zheng, Kai; Zheng, Yu; Yuan, Jing

    2013-01-01

    The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a variety of critical applications. In this li......The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a variety of critical applications...

  18. DESTINY+ Trajectory Design to (3200) Phaethon

    Science.gov (United States)

    Sarli, Bruno Victorino; Horikawa, Makoto; Yam, Chit Hong; Kawakatsu, Yasuhiro; Yamamoto, Takayuki

    2018-03-01

    This work explores the target selection and trajectory design of the mission candidate for ISAS/JAXA's small science satellite series, DESTINY PLUS or DESTINY+. This mission combines unique aspects of the latest satellite technology and exploration of transition bodies to fill a technical and scientific gap in the Japanese space science program. The spacecraft is targeted to study the comet-asteroid transition body (3200) Phaethon through a combination of low-thrust propulsion and Earth Gravity Assist. The trajectory design concept is presented in details together with the launch window and flyby date analysis. Alternative targets for a possible mission extension scenario are also explored.

  19. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  20. Large angle tracking and high discriminating tracking in nuclear emulsion

    International Nuclear Information System (INIS)

    Matsuo, Tomokazu; Shibuya, Hiroshi; Ogawa, Satoru; Fukuda, Tsutomu; Mikado, Shoji

    2015-01-01

    Nuclear emulsion is a high resolution and re-analyzable detector. Conventional “Track Selector” which have angle acceptance |tan θ|<0.6 are widely used to find tracks in emulsion. We made a new track selector “Fine Track Selector” (FTS) which has large angle acceptance and high discriminating ability. The FTS reduces fake tracks using new algorithms, navigation etc. FTS also keeps finding efficiency of tracks around 90% in an angle range of |tan θ| < 3.5. FTS was applied to the τ candidate in OPERA and no additional tracks found. FTS will be useful to our new J-PARC emulsion experiment.

  1. Trajectory Planning and Optimized Adaptive Control for a Class of Wheeled Inverted Pendulum Vehicle Models.

    Science.gov (United States)

    Yang, Chenguang; Li, Zhijun; Li, Jing

    2013-02-01

    In this paper, we investigate optimized adaptive control and trajectory generation for a class of wheeled inverted pendulum (WIP) models of vehicle systems. Aiming at shaping the controlled vehicle dynamics to be of minimized motion tracking errors as well as angular accelerations, we employ the linear quadratic regulation optimization technique to obtain an optimal reference model. Adaptive control has then been developed using variable structure method to ensure the reference model to be exactly matched in a finite-time horizon, even in the presence of various internal and external uncertainties. The minimized yaw and tilt angular accelerations help to enhance the vehicle rider's comfort. In addition, due to the underactuated mechanism of WIP, the vehicle forward velocity dynamics cannot be controlled separately from the pendulum tilt angle dynamics. Inspired by the control strategy of human drivers, who usually manipulate the tilt angle to control the forward velocity, we design a neural-network-based adaptive generator of implicit control trajectory (AGICT) of the tilt angle which indirectly "controls" the forward velocity such that it tracks the desired velocity asymptotically. The stability and optimal tracking performance have been rigorously established by theoretic analysis. In addition, simulation studies have been carried out to demonstrate the efficiency of the developed AGICT and optimized adaptive controller.

  2. Origin choice and petal loss in the flower garden of spiral wave tip trajectories.

    Science.gov (United States)

    Gray, Richard A; Wikswo, John P; Otani, Niels F

    2009-09-01

    Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh-Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system's state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave.

  3. Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory

    Science.gov (United States)

    Tu, X.; Zhao, P.; Zhou, Y. F.

    2017-12-01

    In this paper, we focus on how to improve the identification efficiency of friction parameters in a robot joint. First, the static friction model that has only linear dependencies with respect to their parameters is adopted so that the servomotor dynamics can be linearized. In this case, the traditional exciting trajectory based on Fourier series is modified by replacing the constant term with quintic polynomial to ensure the boundary continuity of speed and acceleration. Then, the Fourier-related parameters are optimized by genetic algorithm(GA) in which the condition number of regression matrix is set as the fitness function. At last, compared with the constant-velocity tracking experiment, the friction parameters from the exciting trajectory experiment has the similar result with the advantage of time reduction.

  4. On the integration scheme along a trajectory for the characteristics method

    International Nuclear Information System (INIS)

    Le Tellier, Romain; Hebert, Alain

    2006-01-01

    The issue of the integration scheme along a trajectory which appears for all tracking-based transport methods is discussed from the point of view of the method of characteristics. The analogy with the discrete ordinates method in slab geometry is highlighted along with the practical limitation in transposing high-order S N schemes to a trajectory-based method. We derived an example of such a transposition starting from the linear characteristic scheme. This new scheme is compared with the standard flat-source approximation of the step characteristic scheme and with the diamond differencing scheme. The numerical study covers a 1D analytical case, 2D one-group critical and fixed-source benchmarks and finally a realistic multigroup calculation on a BWR-MOX assembly

  5. The Extraction of Road Boundary from Crowdsourcing Trajectory Using Constrained Delaunay Triangulation

    Directory of Open Access Journals (Sweden)

    YANG Wei

    2017-02-01

    Full Text Available Extraction of road boundary accurately from crowdsourcing trajectory lines is still a hard work.Therefore,this study presented a new approach to use vehicle trajectory lines to extract road boundary.Firstly, constructing constrained Delaunay triangulation within interpolated track lines to calculate road boundary descriptors using triangle edge length and Voronoi cell.Road boundary recognition model was established by integrating the two boundary descriptors.Then,based on seed polygons,a regional growing method was proposed to extract road boundary. Finally, taxi GPS traces in Beijing were used to verify the validity of the novel method, and the results also showed that our method was suitable for GPS traces with disparity density,complex road structure and different time interval.

  6. Comparison between theoretical predictions and tracking

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A.G.

    1985-01-01

    The beam-beam interaction in a proton-antiproton collider has been an outstanding issue for a long time. Several theoretical predictions have been made in the past which range from the appearance of single beam-beam driven resonances to the onset of stochasticity and Arnold diffusion and the presence of chaotic trajectories. All these effects would cause a limit on the maximum strength of the beam-beam interaction, the so called beam-beam tune-shift, and speculative values have been offered ranging from as low as 0.0005 to as large as a fraction of unit. The lower limit could be caused in a more complicated situation where the external focussing forces which keep the two beams in the same storage ring are also modulated in time. These theoretical predictions have been compared with extensive computer tracking where the motion of the particles is followed turn after turn over very long periods of time. Though it is indeed possible to observe the formation of several resonances, nevertheless the onset of connected stochasticity seems to occur at too large beam-beam tune-shift to be of any practical relevance. Moreover no Arnold diffusion has been observed to have any practical significance. Chaotic trajectories have been found to embed the phase space in disconnected regions of appreciable extension. They increase in numbers considerably when time modulation of external focussing forces is added. 15 refs., 18 figs.

  7. Comparison between theoretical predictions and tracking

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1985-01-01

    The beam-beam interaction in a proton-antiproton collider has been an outstanding issue for a long time. Several theoretical predictions have been made in the past which range from the appearance of single beam-beam driven resonances to the onset of stochasticity and Arnold diffusion and the presence of chaotic trajectories. All these effects would cause a limit on the maximum strength of the beam-beam interaction, the so called beam-beam tune-shift, and speculative values have been offered ranging from as low as 0.0005 to as large as a fraction of unit. The lower limit could be caused in a more complicated situation where the external focussing forces which keep the two beams in the same storage ring are also modulated in time. These theoretical predictions have been compared with extensive computer tracking where the motion of the particles is followed turn after turn over very long periods of time. Though it is indeed possible to observe the formation of several resonances, nevertheless the onset of connected stochasticity seems to occur at too large beam-beam tune-shift to be of any practical relevance. Moreover no Arnold diffusion has been observed to have any practical significance. Chaotic trajectories have been found to embed the phase space in disconnected regions of appreciable extension. They increase in numbers considerably when time modulation of external focussing forces is added. 15 refs., 18 figs

  8. Trajectory calculation of a trapped particle in electro-dynamic balance for study of chemical reaction of aerosol particles

    International Nuclear Information System (INIS)

    Okuma, Miho; Itou, Takahiro; Harano, Azuchi; Takarada, Takayuki; James, Davis E

    2013-01-01

    Electrodynamic balance (EDB) is a powerful tool for investigating the chemical reactions between a fine particle and gaseous species. But the EDB device alone is inadequate to match the rapid weight change of a fine particle caused by chemical reactions, because it takes a few seconds to set a fine particle at null point. The particle trajectory calculation for the trapped particle added to the EDB is thus a very useful tool for the measurement of the transient response of a particle weight change with no need to adjust the applied DC voltage to set the null point. The purpose of this study is to develop the trajectory calculation method to track the particle oscillation pattern in the EDB and examine the possibility for kinetic studies on the reaction of a single aerosol particle with gaseous species. The results demonstrated the feasibility of applying particle trajectory calculation to realize the research purpose.

  9. Clean tracks for ATLAS

    CERN Multimedia

    2006-01-01

    First cosmic ray tracks in the integrated ATLAS barrel SCT and TRT tracking detectors. A snap-shot of a cosmic ray event seen in the different layers of both the SCT and TRT detectors. The ATLAS Inner Detector Integration Team celebrated a major success recently, when clean tracks of cosmic rays were detected in the completed semiconductor tracker (SCT) and transition radiation tracker (TRT) barrels. These tracking tests come just months after the successful insertion of the SCT into the TRT (See Bulletin 09/2006). The cosmic ray test is important for the experiment because, after 15 years of hard work, it is the last test performed on the fully assembled barrel before lowering it into the ATLAS cavern. The two trackers work together to provide millions of channels so that particles' tracks can be identified and measured with great accuracy. According to the team, the preliminary results were very encouraging. After first checks of noise levels in the final detectors, a critical goal was to study their re...

  10. Track benchmarking method for uncertainty quantification of particle tracking velocimetry interpolations

    International Nuclear Information System (INIS)

    Schneiders, Jan F G; Sciacchitano, Andrea

    2017-01-01

    The track benchmarking method (TBM) is proposed for uncertainty quantification of particle tracking velocimetry (PTV) data mapped onto a regular grid. The method provides statistical uncertainty for a velocity time-series and can in addition be used to obtain instantaneous uncertainty at increased computational cost. Interpolation techniques are typically used to map velocity data from scattered PTV (e.g. tomographic PTV and Shake-the-Box) measurements onto a Cartesian grid. Recent examples of these techniques are the FlowFit and VIC+  methods. The TBM approach estimates the random uncertainty in dense velocity fields by performing the velocity interpolation using a subset of typically 95% of the particle tracks and by considering the remaining tracks as an independent benchmarking reference. In addition, also a bias introduced by the interpolation technique is identified. The numerical assessment shows that the approach is accurate when particle trajectories are measured over an extended number of snapshots, typically on the order of 10. When only short particle tracks are available, the TBM estimate overestimates the measurement error. A correction to TBM is proposed and assessed to compensate for this overestimation. The experimental assessment considers the case of a jet flow, processed both by tomographic PIV and by VIC+. The uncertainty obtained by TBM provides a quantitative evaluation of the measurement accuracy and precision and highlights the regions of high error by means of bias and random uncertainty maps. In this way, it is possible to quantify the uncertainty reduction achieved by advanced interpolation algorithms with respect to standard correlation-based tomographic PIV. The use of TBM for uncertainty quantification and comparison of different processing techniques is demonstrated. (paper)

  11. Velocity Tracking Control of Wheeled Mobile Robots by Iterative Learning Control

    Directory of Open Access Journals (Sweden)

    Xiaochun Lu

    2016-05-01

    Full Text Available This paper presents an iterative learning control (ILC strategy to resolve the trajectory tracking problem of wheeled mobile robots (WMRs based on dynamic model. In the previous study of WMRs’ trajectory tracking, ILC was usually applied to the kinematical model of WMRs with the assumption that desired velocity can be tracked immediately. However, this assumption cannot be realized in the real world at all. The kinematic and dynamic models of WMRs are deduced in this chapter, and a novel combination of D-type ILC algorithm and dynamic model of WMR with random bounded disturbances are presented. To analyze the convergence of the algorithm, the method of contracting mapping, which shows that the designed controller can make the velocity tracking errors converge to zero completely when the iteration times tend to infinite, is adopted. Simulation results show the effectiveness of D-type ILC in the trajectory tracking problem of WMRs, demonstrating the effectiveness and robustness of the algorithm in the condition of random bounded disturbance. A comparative study conducted between D-type ILC and compound cosine function neural network (NN controller also demonstrates the effectiveness of the ILC strategy.

  12. Criminal Trajectories of White-collar Offenders

    NARCIS (Netherlands)

    van Onna, J.; van der Geest, V.R.; Huisman, W.; Denkers, A.J.M.

    2014-01-01

    Objectives:This article analyzes the criminal development and sociodemographic and criminal profile of a sample of prosecuted white-collar offenders. It identifies trajectory groups and describes their profiles based on crime, sociodemographic, and selection offence characteristics.Methods:The

  13. Graphical Method for Determining Projectile Trajectory

    Science.gov (United States)

    Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.

    2010-01-01

    We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…

  14. Propositional Optimal Trajectory Programming for Improving Stability ...

    African Journals Online (AJOL)

    Propositional Optimal Trajectory Programming for Improving Stability of Hermite Definite Control System. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE (AJOL) ... Knowledge of systems operation subjected to heat diffusion constraints is required of systems analysts. In an instance that ...

  15. FEL Trajectory Analysis for the VISA Experiment

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    1998-01-01

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, and post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment

  16. Academic Trajectories of Newcomer Immigrant Youth

    Science.gov (United States)

    Suarez-Orozco, Carola; Gaytan, Francisco X.; Bang, Hee Jin; Pakes, Juliana; O'Connor, Erin; Rhodes, Jean

    2010-01-01

    Immigration to the United States presents both challenges and opportunities that affect students' academic achievement. Using a 5-year longitudinal, mixed-methods approach, we identified varying academic trajectories of newcomer immigrant students from Central America, China, the Dominican Republic, Haiti, and Mexico. Latent class growth curve…

  17. Developmental Trajectories of Early Communication Skills

    Science.gov (United States)

    Maatta, Sira; Laakso, Marja-Leena; Tolvanen, Asko; Ahonen, Timo; Aro, Tuija

    2012-01-01

    Purpose: This study focused on developmental trajectories of prelinguistic communication skills and their connections to later parent-reported language difficulties. Method: The participants represent a subset of a community-based sample of 508 children. Data include parent reports of prelinguistic communication skills at 12, 15, 18, and 21 months…

  18. APT: Action localization Proposals from dense Trajectories

    NARCIS (Netherlands)

    van Gemert, J.C.; Jain, M.; Gati, E.; Snoek, C.G.M.; Xie, X.; Jones, M.W.; Tam, G.K.L.

    2015-01-01

    This paper is on action localization in video with the aid of spatio-temporal proposals. To alleviate the computational expensive video segmentation step of existing proposals, we propose bypassing the segmentations completely by generating proposals directly from the dense trajectories used to

  19. Logarithmic spiral trajectories generated by Solar sails

    Science.gov (United States)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  20. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    Science.gov (United States)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  1. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  2. Classical trajectory methods in molecular collisions

    International Nuclear Information System (INIS)

    Porter, R.N.; Raff, L.M.

    1976-01-01

    The discussion of classical trajectory methods in molecular collisions includes classical dynamics, Hamiltonian mechanics, classical scattering cross sections and rate coefficients, statistical averaging, the selection of initial states, integration of equations of motion, analysis of final states, consecutive collisions, and the prognosis for classical molecular scattering calculations. 61 references

  3. Improved transition models for cepstral trajectories

    CSIR Research Space (South Africa)

    Badenhorst, J

    2012-11-01

    Full Text Available We improve on a piece-wise linear model of the trajectories of Mel Frequency Cepstral Coefficients, which are commonly used as features in Automatic Speech Recognition. For this purpose, we have created a very clean single-speaker corpus, which...

  4. Trajectory Optimization for Differential Flat Systems

    OpenAIRE

    Kahina Louadj; Benjamas Panomruttanarug; Alexandre Carlos Brandao Ramos; Felix Mora-Camino

    2016-01-01

    International audience; The purpose of this communication is to investigate the applicability of Variational Calculus to the optimization of the operation of differentially flat systems. After introducingcharacteristic properties of differentially flat systems, the applicability of variational calculus to the optimization of flat output trajectories is displayed. Two illustrative examples are also presented.

  5. Landscape and Heritage: trajectories and consequences

    DEFF Research Database (Denmark)

    Harvey, David

    2015-01-01

    supporting and often parallel endeavour of academic, policy and popular inquiry that explores the significance of landscape and heritage as meaningful categories of an emergent and processual nature. Despite such a parallel trajectory, however, the actual practices of landscape and heritage studies still...

  6. A STUDY OF SHUTTLECOCK'S TRAJECTORY IN BADMINTON

    Directory of Open Access Journals (Sweden)

    Yung-Jen Chen

    2009-12-01

    Full Text Available The main purpose of this study was to construct and validate a motion equation for the flight of the badminton and to find the relationship between the air resistance force and a shuttlecock's speed. This research method was based on motion laws of aerodynamics. It applied aerodynamic theories to construct motion equation of a shuttlecock's flying trajectory under the effects of gravitational force and air resistance force. The result showed that the motion equation of a shuttlecock's flight trajectory could be constructed by determining the terminal velocity. The predicted shuttlecock trajectory fitted the measured data fairly well. The results also revealed that the drag force was proportional to the square of a shuttlecock velocity. Furthermore, the angle and strength of a stroke could influence trajectory. Finally, this study suggested that we could use a scientific approach to measure a shuttlecock's velocity objectively when testing the quality of shuttlecocks. And could be used to replace the traditional subjective method of the Badminton World Federation based on players' striking shuttlecocks, as well as applying research findings to improve professional knowledge of badminton player training

  7. The emergence of an electric mobility trajectory

    NARCIS (Netherlands)

    Dijk, M.; Orsato, R.J.; Kemp, R.P.M.

    2013-01-01

    In this paper, we analyse the emergence of a trajectory of electric mobility. We describe developments in electric vehicles before and after 2005. The central thesis of the paper is that electric mobility has crossed a critical threshold and is benefiting from various developments whose influence

  8. The influence of work-family conflict trajectories on self-rated health trajectories in Switzerland: a life course approach.

    Science.gov (United States)

    Cullati, Stéphane

    2014-07-01

    Self-rated health (SRH) trajectories tend to decline over a lifetime. Moreover, the Cumulative Advantage and Disadvantage (CAD) model indicates that SRH trajectories are known to consistently diverge along socioeconomic positions (SEP) over the life course. However, studies of working adults to consider the influence of work and family conflict (WFC) on SRH trajectories are scarce. We test the CAD model and hypothesise that SRH trajectories diverge over time according to socioeconomic positions and WFC trajectories accentuate this divergence. Using longitudinal data from the Swiss Household Panel (N = 2327 working respondents surveyed from 2004 to 2010), we first examine trajectories of SRH and potential divergence over time across age, gender, SEP and family status using latent growth curve analysis. Second, we assess changes in SRH trajectories in relation to changes in WFC trajectories and divergence in SRH trajectories according to gender, SEP and family status using parallel latent growth curve analysis. Three measures of WFC are used: exhaustion after work, difficulty disconnecting from work, and work interference in private family obligations. The results show that SRH trajectories slowly decline over time and that the rate of change is not influenced by age, gender or SEP, a result which does not support the CAD model. SRH trajectories are significantly correlated with exhaustion after work trajectories but not the other two WFC measures. When exhaustion after work trajectories are taken into account, SRH trajectories of higher educated people decline slower compared to less educated people, supporting the CAD hypothesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings

    Science.gov (United States)

    Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang

    2018-03-01

    Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.

  10. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    Science.gov (United States)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  11. EYE GAZE TRACKING

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method of performing eye gaze tracking of at least one eye of a user, by determining the position of the center of the eye, said method comprising the steps of: detecting the position of at least three reflections on said eye, transforming said positions to spanning...... a normalized coordinate system spanning a frame of reference, wherein said transformation is performed based on a bilinear transformation or a non linear transformation e.g. a möbius transformation or a homographic transformation, detecting the position of said center of the eye relative to the position...... of said reflections and transforming this position to said normalized coordinate system, tracking the eye gaze by tracking the movement of said eye in said normalized coordinate system. Thereby calibration of a camera, such as knowledge of the exact position and zoom level of the camera, is avoided...

  12. Negotiating Family Tracking

    DEFF Research Database (Denmark)

    Albrechtslund, Anders; Bøge, Ask Risom; Sonne Damkjær, Maja

    This presentation explores the question: What motivates the use of tracking technologies in families, and how does the use transform the relations between parent and child? The purpose is to investigate why tracking technologies are used in families and how these technologies potentially change...... the relation between parents and children. The use of tracking technologies in families implicate negotiations about the boundaries of trust and intimacy in parent-child relations which can lead to strategies of resistance or modification (Fotel and Thomsen, 2004; Rooney, 2010; Steeves and Jones, 2010......). In the presentation, we report from a qualitative study that focuses on intergenerational relations. The study draws on empirical data from workshops with Danish families as well as individual and group interviews. We aim to gain insights about the sharing habits and negotiations in intimate family relations...

  13. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org; Sahoo, Narayan [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030 (United States); Ferreira, Felisberto A. [Department of Nuclear Physics, University of Sao Paulo, SP 05508-090 (Brazil); McFadden, Conor H. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Hallacy, Timothy M. [Biophysics Program, Harvard University, Cambridge, Massachusetts 02138 (United States); Granville, Dal A. [Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario K1H 8L6 (Canada); Akselrod, Mark S. [Crystal Growth Division, Landauer, Inc., Stillwater, Oklahoma 74074 (United States)

    2016-05-15

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.

  14. Fast Compressive Tracking.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  15. MILP-Based 4D Trajectory Planning for Tactical Trajectory Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to develop specialized algorithms and software decision-aiding tools for four-dimensional (4D) vehicle-centric, tactical trajectory...

  16. Trajectory Design to Benefit Trajectory-Based Surface Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trajectory-based operations constitute a key mechanism considered by the Joint Planning and Development Office (JPDO) for managing traffic in high-density or...

  17. Trajectory Design to Benefit Trajectory-Based Surface Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Trajectory-based operations constitute a key mechanism considered by the Joint Planning and Development Office (JPDO) for managing traffic in high-density or...

  18. Tracking Your Development

    CERN Document Server

    Hennum, Kelly M

    2011-01-01

    This book provides you with the means to set development goals and to track your progress on achieving them. It can help you efficiently gather and make sense of information about your progress and avoid common pitfalls that can block your development. Tracking your development can be captures in a few steps: articulating your goal, creating an action plan, gathering information about your behavior, indentifying barriers and support, and revising your action plan. Taking these steps will greatly increase the likelihood of achieving your goals.

  19. Predictors of trajectories of epilepsy-specific quality of life among children newly diagnosed with epilepsy.

    Science.gov (United States)

    Ramsey, Rachelle R; Loiselle, Kristin; Rausch, Joseph R; Harrison, Jordan; Modi, Avani C

    2016-04-01

    The objective of this study was to identify two-year trajectories of epilepsy-specific health-related quality of life (HRQOL) among children newly diagnosed with epilepsy and to evaluate the predictive value of a comprehensive set of medical, psychosocial, and family factors. Ninety-four children with epilepsy (8.14 ± 2.37 years of age and 63% male) and their caregivers participated in this study. Caregivers completed the Quality of Life in Childhood Epilepsy Questionnaire (QOLCE) and measures of psychological and family functioning at one month postdiagnosis. The QOLCE was also given at eight additional time points during the subsequent two years as a part of a large observational study in children with epilepsy. Adherence data were collected via MEMS TrackCaps, and medical information was collected through chart review. Unique trajectories were identified for the overall QOLCE scale, as well as the subscales. Most trajectory models for the QOLCE subscales contained at least one at-risk trajectory for children, indicating that there is a subgroup of children experiencing poor long-term HRQOL. Health-related quality-of-life trajectories remained predominantly stable during the two-year period following treatment initiation. The number of AEDs, internalizing problems, and externalizing problems emerged as the most consistent predictors across the HRQOL domains. Medical and psychosocial interventions, such as cognitive-behavioral strategies, should target modifiable factors (e.g., internalizing symptoms, externalizing symptoms, number of AEDs trialed) shortly after diagnosis to improve HRQOL for children with epilepsy over the course of their disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    Science.gov (United States)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  1. PEPT: An invaluable tool for 3-D particle tracking and CFD simulation verification in hydrocyclone studies

    Directory of Open Access Journals (Sweden)

    Hoffmann Alex C.

    2013-05-01

    Full Text Available Particle tracks in a hydrocyclone generated both experimentally by positron emission particle tracking (PEPT and numerically with Eulerian-Lagranian CFD have been studied and compared. A hydrocyclone with a cylinder-on-cone design was used in this study, the geometries used in the CFD simulations and in the experiments being identical. It is shown that it is possible to track a fast-moving particle in a hydrocyclone using PEPT with high temporal and spatial resolutions. The numerical 3-D particle trajectories were generated using the Large Eddy Simulation (LES turbulence model for the fluid and Lagrangian particle tracking for the particles. The behaviors of the particles were analyzed in detail and were found to be consistent between experiments and CFD simulations. The tracks of the particles are discussed and related to the fluid flow field visualized in the CFD simulations using the cross-sectional static pressure distribution.

  2. Path Tracking Control of Automatic Parking Cloud Model considering the Influence of Time Delay

    Directory of Open Access Journals (Sweden)

    Yiding Hua

    2017-01-01

    Full Text Available This paper establishes the kinematic model of the automatic parking system and analyzes the kinematic constraints of the vehicle. Furthermore, it solves the problem where the traditional automatic parking system model fails to take into account the time delay. Firstly, based on simulating calculation, the influence of time delay on the dynamic trajectory of a vehicle in the automatic parking system is analyzed under the transverse distance Dlateral between different target spaces. Secondly, on the basis of cloud model, this paper utilizes the tracking control of an intelligent path closer to human intelligent behavior to further study the Cloud Generator-based parking path tracking control method and construct a vehicle path tracking control model. Moreover, tracking and steering control effects of the model are verified through simulation analysis. Finally, the effectiveness and timeliness of automatic parking controller in the aspect of path tracking are tested through a real vehicle experiment.

  3. Formation Tracking with Orientation Convergence for Groups of Unicycles

    Directory of Open Access Journals (Sweden)

    Jaime González-Sierra

    2013-03-01

    Full Text Available This paper presents three trajectory tracking control strategies for unicycle-type robots based on a leader-followers scheme. The leader robot converges asymptotically to a smooth trajectory, while the follower robots form an undirected open-chain configuration at the same time. It is also shown that the orientation angles of all the robots converge to the same value. The control laws are based on a dynamic extension of the kinematic model of each robot. The output function to be controlled is the midpoint of the wheel axis of every robot. This choice leads to an ill-defined control law when the robot is at rest. To avoid such singularities, a complementary control law is enabled momentarily when the linear velocity of the unicycles is close to zero. Finally, numerical simulations and real-time experiments show the performance of the control strategies.

  4. Trajectories of personal control in cancer patients receiving psychological care

    NARCIS (Netherlands)

    Zhu, Lei; Schroevers, Maya J.; van der Lee, Marije; Garssen, Bert; Stewart, Roy E.; Sanderman, Robbert; Ranchor, Adelita V.

    Objective: This study aimed to (1) identify subgroups of cancer patients with distinct personal control trajectories during psychological care, (2) examine whether socio-demographic, clinical, and psychological care characteristics could distinguish trajectories, and (3) examine differential

  5. Trajectories of personal control in cancer patients receiving psychological care

    NARCIS (Netherlands)

    Zhu, Lei; Schroevers, Maya J.; van der Lee, Marije; Garssen, Bert; Stewart, Roy E.; Sanderman, Robbert; Ranchor, A.V.

    2015-01-01

    Objective This study aimed to (1) identify subgroups of cancer patients with distinct personal control trajectories during psychological care, (2) examine whether socio-demographic, clinical, and psychological care characteristics could distinguish trajectories, and (3) examine differential patterns

  6. Three-dimensional tracking of cardiac catheters using an inverse geometry x-ray fluoroscopy system

    International Nuclear Information System (INIS)

    Speidel, Michael A.; Tomkowiak, Michael T.; Raval, Amish N.; Van Lysel, Michael S.

    2010-01-01

    Purpose: Scanning beam digital x-ray (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis at multiple planes. This study describes a tomosynthesis-based method for 3D tracking of high-contrast objects and present the first experimental investigation of cardiac catheter tracking using a prototype SBDX system. Methods: The 3D tracking algorithm utilizes the stack of regularly spaced tomosynthetic planes that are generated by SBDX after each frame period (15 frames/s). Gradient-filtered versions of the image planes are generated, the filtered images are segmented into object regions, and then a 3D coordinate is calculated for each object region. Two phantom studies of tracking performance were conducted. In the first study, an ablation catheter in a chest phantom was imaged as it was pulled along a 3D trajectory defined by a catheter sheath (10, 25, and 50 mm/s pullback speeds). SBDX tip tracking coordinates were compared to the 3D trajectory of the sheath as determined from a CT scan of the phantom after the registration of the SBDX and CT coordinate systems. In the second study, frame-to-frame tracking precision was measured for six different catheter configurations as a function of image noise level (662-7625 photons/mm 2 mean detected x-ray fluence at isocenter). Results: During catheter pullbacks, the 3D distance between the tracked catheter tip and the sheath centerline was 1.0±0.8 mm (mean ±one standard deviation). The electrode to centerline distances were comparable to the diameter of the catheter tip (2.3 mm), the confining sheath (4 mm outside diameter), and the estimated SBDX-to-CT registration error (±0.7 mm). The tip position was localized for all 332 image frames analyzed and 83% of tracked positions were inside the 3D sheath volume derived from CT. The pullback speeds derived from the catheter trajectories were within 5% of the programed pullback speeds. The

  7. Unmanned aerial vehicle trajectory planning with direct methods

    Science.gov (United States)

    Geiger, Brian

    A real-time method for trajectory optimization to maximize surveillance time of a fixed or moving ground target by one or more unmanned aerial vehicles (UAVs) is presented. The method accounts for performance limits of the aircraft, intrinsic properties of the camera, and external disturbances such as wind. Direct collocation with nonlinear programming is used to implement the method in simulation and onboard the Penn State/Applied Research Lab's testbed UAV. Flight test results compare well with simulation. Both stationary targets and moving targets, such as a low flying UAV, were successfully tracked in flight test. In addition, a new method using a neural network approximation is presented that removes the need for collocation and numerical derivative calculation. Neural networks are used to approximate the objective and dynamics functions in the optimization problem which allows for reduced computation requirements. The approximation reduces the size of the resulting nonlinear programming problem compared to direct collocation or pseudospectral methods. This method is shown to be faster than direct collocation and psuedospectral methods using numerical or automatic derivative techniques. The neural network approximation is also shown to be faster than analytical derivatives but by a lesser factor. Comparative results are presented showing similar accuracy for all methods. The method is modular and enables application to problems of the same class without network retraining.

  8. The misleading narrative of the canonical faculty productivity trajectory.

    Science.gov (United States)

    Way, Samuel F; Morgan, Allison C; Clauset, Aaron; Larremore, Daniel B

    2017-10-31

    A scientist may publish tens or hundreds of papers over a career, but these contributions are not evenly spaced in time. Sixty years of studies on career productivity patterns in a variety of fields suggest an intuitive and universal pattern: Productivity tends to rise rapidly to an early peak and then gradually declines. Here, we test the universality of this conventional narrative by analyzing the structures of individual faculty productivity time series, constructed from over 200,000 publications and matched with hiring data for 2,453 tenure-track faculty in all 205 PhD-granting computer science departments in the United States and Canada. Unlike prior studies, which considered only some faculty or some institutions, or lacked common career reference points, here we combine a large bibliographic dataset with comprehensive information on career transitions that covers an entire field of study. We show that the conventional narrative confidently describes only one-fifth of faculty, regardless of department prestige or researcher gender, and the remaining four-fifths of faculty exhibit a rich diversity of productivity patterns. To explain this diversity, we introduce a simple model of productivity trajectories and explore correlations between its parameters and researcher covariates, showing that departmental prestige predicts overall individual productivity and the timing of the transition from first- to last-author publications. These results demonstrate the unpredictability of productivity over time and open the door for new efforts to understand how environmental and individual factors shape scientific productivity. Published under the PNAS license.

  9. Vehicle Reference Generator for Collision-Free Trajectories in Hazardous Maneuvers

    Directory of Open Access Journals (Sweden)

    Cuauhtémoc Acosta Lúa

    2018-01-01

    Full Text Available This paper presents a reference generator for ground vehicles, based on potential fields adapted to the case of vehicular dynamics. The reference generator generates signals to be tracked by the vehicle, corresponding to a trajectory avoiding collisions with obstacles. This generator integrates artificial forces of potential fields of the object surrounding the vehicle. The reference generator is used with a controller to ensure the tracking of the accident-free reference. This approach can be used for vehicle autonomous driving or for active control of manned vehicles. Simulation results, presented for the autonomous driving, consider a scenario inspired by the so-called moose (or elk test, with the presence of other collaborative vehicles.

  10. Second sound tracking system

    Science.gov (United States)

    Yang, Jihee; Ihas, Gary G.; Ekdahl, Dan

    2017-10-01

    It is common that a physical system resonates at a particular frequency, whose frequency depends on physical parameters which may change in time. Often, one would like to automatically track this signal as the frequency changes, measuring, for example, its amplitude. In scientific research, one would also like to utilize the standard methods, such as lock-in amplifiers, to improve the signal to noise ratio. We present a complete He ii second sound system that uses positive feedback to generate a sinusoidal signal of constant amplitude via automatic gain control. This signal is used to produce temperature/entropy waves (second sound) in superfluid helium-4 (He ii). A lock-in amplifier limits the oscillation to a desirable frequency and demodulates the received sound signal. Using this tracking system, a second sound signal probed turbulent decay in He ii. We present results showing that the tracking system is more reliable than those of a conventional fixed frequency method; there is less correlation with temperature (frequency) fluctuation when the tracking system is used.

  11. Eye tracking social preferences

    NARCIS (Netherlands)

    Jiang, Ting; Potters, Jan; Funaki, Yukihiko

    We hypothesize that if people are motivated by a particular social preference, then choosing in accordance with this preference will lead to an identifiable pattern of eye movements. We track eye movements while subjects make choices in simple three-person distribution experiments. We characterize

  12. Tracking, say, SKYPE Locations

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Tracking, say, SKYPE Locations. Real Time Communication: Peer-to-Peer (P2P). Datagram flows between the two conversing partners; Exposes the IP addresses of all the participants to one another. If A knows B's VoIP ID, she can establish a call with Bob & obtain his current ...

  13. Energy Tracking Diagrams

    Science.gov (United States)

    Scherr, Rachel E.; Harrer, Benedikt W.; Close, Hunter G.; Daane, Abigail R.; DeWater, Lezlie S.; Robertson, Amy D.; Seeley, Lane; Vokos, Stamatis

    2016-01-01

    Energy is a crosscutting concept in science and features prominently in national science education documents. In the "Next Generation Science Standards," the primary conceptual learning goal is for learners to conserve energy as they "track" the transfers and transformations of energy within, into, or out of the system of…

  14. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  15. Track Dynamics Program

    Science.gov (United States)

    1978-10-01

    8 Track Bushing Research, . . . . . . . . . . . * . . . 8 Advanced frack Concept Development ..... . . . . . 9 TECHNICAL DISCUSSION...machine design effort was conducted. The design which was developed has separate servocontrolled hydraulic actuators to apply radial...back bending-but, in the order and magnitude of the way the torsional stress is incurred in service. This suggests a programable, hydraulically actuated

  16. Tracking Politics with POWER

    Science.gov (United States)

    Moreira, Silvio; Batista, David S.; Carvalho, Paula; Couto, Francisco M.; Silva, Mario J.

    2013-01-01

    Purpose: POWER is an ontology of political processes and entities. It is designed for tracking politicians, political organizations and elections, both in mainstream and social media. The aim of this paper is to propose a data model to describe political agents and their relations over time. Design/methodology/approach: The authors propose a data…

  17. Force-field compensation in a manual tracking task.

    Directory of Open Access Journals (Sweden)

    Valentina Squeri

    2010-06-01

    Full Text Available This study addresses force/movement control in a dynamic "hybrid" task: the master sub-task is continuous manual tracking of a target moving along an eight-shaped Lissajous figure, with the tracking error as the primary performance index; the slave sub-task is compensation of a disturbing curl viscous field, compatibly with the primary performance index. The two sub-tasks are correlated because the lateral force the subject must exert on the eight-shape must be proportional to the longitudinal movement speed in order to perform a good tracking. The results confirm that visuo-manual tracking is characterized by an intermittent control mechanism, in agreement with previous work; the novel finding is that the overall control patterns are not altered by the presence of a large deviating force field, if compared with the undisturbed condition. It is also found that the control of interaction-forces is achieved by a combination of arm stiffness properties and direct force control, as suggested by the systematic lateral deviation of the trajectories from the nominal path and the comparison between perturbed trials and catch trials. The coordination of the two sub-tasks is quickly learnt after the activation of the deviating force field and is achieved by a combination of force and the stiffness components (about 80% vs. 20%, which is a function of the implicit accuracy of the tracking task.

  18. Tracking the trajectory of shame, guilt, and pride across the life span.

    Science.gov (United States)

    Orth, Ulrich; Robins, Richard W; Soto, Christopher J

    2010-12-01

    The authors examined age differences in shame, guilt, and 2 forms of pride (authentic and hubristic) from age 13 years to age 89 years, using cross-sectional data from 2,611 individuals. Shame decreased from adolescence into middle adulthood, reaching a nadir around age 50 years, and then increased in old age. Guilt increased from adolescence into old age, reaching a plateau at about age 70 years. Authentic pride increased from adolescence into old age, whereas hubristic pride decreased from adolescence into middle adulthood, reaching a minimum around age 65 years, and then increased in old age. On average, women reported experiencing more shame and guilt; Blacks reported experiencing less shame and Asians more hubristic pride than other ethnicities. Across the life span, shame and hubristic pride tended to be negatively related to psychological well-being, and shame-free guilt and authentic pride showed positive relations with well-being. Overall, the findings support the maturity principle of personality development and suggest that as people age they become more prone to experiencing psychologically adaptive self-conscious emotions, such as guilt and authentic pride, and less prone to experiencing psychologically maladaptive ones, such as shame and hubristic pride. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  19. Mobile robot trajectory tracking using noisy RSS measurements: an RFID approach.

    Science.gov (United States)

    Miah, M Suruz; Gueaieb, Wail

    2014-03-01

    Most RF beacons-based mobile robot navigation techniques rely on approximating line-of-sight (LOS) distances between the beacons and the robot. This is mostly performed using the robot's received signal strength (RSS) measurements from the beacons. However, accurate mapping between the RSS measurements and the LOS distance is almost impossible to achieve in reverberant environments. This paper presents a partially-observed feedback controller for a wheeled mobile robot where the feedback signal is in the form of noisy RSS measurements emitted from radio frequency identification (RFID) tags. The proposed controller requires neither an accurate mapping between the LOS distance and the RSS measurements, nor the linearization of the robot model. The controller performance is demonstrated through numerical simulations and real-time experiments. ©2013 Published by ISA. All rights reserved.

  20. Approximate Models for Closed-Loop Trajectory Tracking in Underactuated Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Control of robotic systems, as a field, spans both traditional closed-loop feedback techniques and modern machine learning strategies, which are primarily open-loop....