Minimum-error discrimination of entangled quantum states
International Nuclear Information System (INIS)
Lu, Y.; Coish, N.; Kaltenbaek, R.; Hamel, D. R.; Resch, K. J.; Croke, S.
2010-01-01
Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum-error discrimination between entangled states, encoded in the polarization of pairs of photons. Although the optimal measurement involves projection onto entangled states, we use a result of J. Walgate et al. [Phys. Rev. Lett. 85, 4972 (2000)] to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum-error discrimination of nonorthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.
Minimum Error Entropy Classification
Marques de Sá, Joaquim P; Santos, Jorge M F; Alexandre, Luís A
2013-01-01
This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
International Nuclear Information System (INIS)
Herzog, Ulrike; Bergou, Janos A.
2004-01-01
We consider two different optimized measurement strategies for the discrimination of nonorthogonal quantum states. The first is ambiguous discrimination with a minimum probability of inferring an erroneous result, and the second is unambiguous, i.e., error-free, discrimination with a minimum probability of getting an inconclusive outcome, where the measurement fails to give a definite answer. For distinguishing between two mixed quantum states, we investigate the relation between the minimum-error probability achievable in ambiguous discrimination, and the minimum failure probability that can be reached in unambiguous discrimination of the same two states. The latter turns out to be at least twice as large as the former for any two given states. As an example, we treat the case where the state of the quantum system is known to be, with arbitrary prior probability, either a given pure state, or a uniform statistical mixture of any number of mutually orthogonal states. For this case we derive an analytical result for the minimum probability of error and perform a quantitative comparison with the minimum failure probability
The error in total error reduction.
Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R
2014-02-01
Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.
Proportionate Minimum Error Entropy Algorithm for Sparse System Identification
Directory of Open Access Journals (Sweden)
Zongze Wu
2015-08-01
Full Text Available Sparse system identification has received a great deal of attention due to its broad applicability. The proportionate normalized least mean square (PNLMS algorithm, as a popular tool, achieves excellent performance for sparse system identification. In previous studies, most of the cost functions used in proportionate-type sparse adaptive algorithms are based on the mean square error (MSE criterion, which is optimal only when the measurement noise is Gaussian. However, this condition does not hold in most real-world environments. In this work, we use the minimum error entropy (MEE criterion, an alternative to the conventional MSE criterion, to develop the proportionate minimum error entropy (PMEE algorithm for sparse system identification, which may achieve much better performance than the MSE based methods especially in heavy-tailed non-Gaussian situations. Moreover, we analyze the convergence of the proposed algorithm and derive a sufficient condition that ensures the mean square convergence. Simulation results confirm the excellent performance of the new algorithm.
Normalized Minimum Error Entropy Algorithm with Recursive Power Estimation
Directory of Open Access Journals (Sweden)
Namyong Kim
2016-06-01
Full Text Available The minimum error entropy (MEE algorithm is known to be superior in signal processing applications under impulsive noise. In this paper, based on the analysis of behavior of the optimum weight and the properties of robustness against impulsive noise, a normalized version of the MEE algorithm is proposed. The step size of the MEE algorithm is normalized with the power of input entropy that is estimated recursively for reducing its computational complexity. The proposed algorithm yields lower minimum MSE (mean squared error and faster convergence speed simultaneously than the original MEE algorithm does in the equalization simulation. On the condition of the same convergence speed, its performance enhancement in steady state MSE is above 3 dB.
An Improved Minimum Error Interpolator of CNC for General Curves Based on FPGA
Directory of Open Access Journals (Sweden)
Jiye HUANG
2014-05-01
Full Text Available This paper presents an improved minimum error interpolation algorithm for general curves generation in computer numerical control (CNC. Compared with the conventional interpolation algorithms such as the By-Point Comparison method, the Minimum- Error method and the Digital Differential Analyzer (DDA method, the proposed improved Minimum-Error interpolation algorithm can find a balance between accuracy and efficiency. The new algorithm is applicable for the curves of linear, circular, elliptical and parabolic. The proposed algorithm is realized on a field programmable gate array (FPGA with Verilog HDL language, and simulated by the ModelSim software, and finally verified on a two-axis CNC lathe. The algorithm has the following advantages: firstly, the maximum interpolation error is only half of the minimum step-size; and secondly the computing time is only two clock cycles of the FPGA. Simulations and actual tests have proved that the high accuracy and efficiency of the algorithm, which shows that it is highly suited for real-time applications.
Euclidean Geometry Codes, minimum weight words and decodable error-patterns using bit-flipping
DEFF Research Database (Denmark)
Høholdt, Tom; Justesen, Jørn; Jonsson, Bergtor
2005-01-01
We determine the number of minimum wigth words in a class of Euclidean Geometry codes and link the performance of the bit-flipping decoding algorithm to the geometry of the error patterns.......We determine the number of minimum wigth words in a class of Euclidean Geometry codes and link the performance of the bit-flipping decoding algorithm to the geometry of the error patterns....
Directory of Open Access Journals (Sweden)
Zhongzhou Du
2015-04-01
Full Text Available The signal transmission module of a magnetic nanoparticle thermometer (MNPT was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias, was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA when the hardware system of the MNPT was designed with the aforementioned method.
Minimum Mean-Square Error Estimation of Mel-Frequency Cepstral Features
DEFF Research Database (Denmark)
Jensen, Jesper; Tan, Zheng-Hua
2015-01-01
In this work we consider the problem of feature enhancement for noise-robust automatic speech recognition (ASR). We propose a method for minimum mean-square error (MMSE) estimation of mel-frequency cepstral features, which is based on a minimum number of well-established, theoretically consistent......-of-the-art MFCC feature enhancement algorithms within this class of algorithms, while theoretically suboptimal or based on theoretically inconsistent assumptions, perform close to optimally in the MMSE sense....
Total Survey Error for Longitudinal Surveys
Lynn, Peter; Lugtig, P.J.
2016-01-01
This article describes the application of the total survey error paradigm to longitudinal surveys. Several aspects of survey error, and of the interactions between different types of error, are distinct in the longitudinal survey context. Furthermore, error trade-off decisions in survey design and
Adaptive color halftoning for minimum perceived error using the blue noise mask
Yu, Qing; Parker, Kevin J.
1997-04-01
Color halftoning using a conventional screen requires careful selection of screen angles to avoid Moire patterns. An obvious advantage of halftoning using a blue noise mask (BNM) is that there are no conventional screen angle or Moire patterns produced. However, a simple strategy of employing the same BNM on all color planes is unacceptable in case where a small registration error can cause objectionable color shifts. In a previous paper by Yao and Parker, strategies were presented for shifting or inverting the BNM as well as using mutually exclusive BNMs for different color planes. In this paper, the above schemes will be studied in CIE-LAB color space in terms of root mean square error and variance for luminance channel and chrominance channel respectively. We will demonstrate that the dot-on-dot scheme results in minimum chrominance error, but maximum luminance error and the 4-mask scheme results in minimum luminance error but maximum chrominance error, while the shift scheme falls in between. Based on this study, we proposed a new adaptive color halftoning algorithm that takes colorimetric color reproduction into account by applying 2-mutually exclusive BNMs on two different color planes and applying an adaptive scheme on other planes to reduce color error. We will show that by having one adaptive color channel, we obtain increased flexibility to manipulate the output so as to reduce colorimetric error while permitting customization to specific printing hardware.
Minimum Time Trajectory Optimization of CNC Machining with Tracking Error Constraints
Directory of Open Access Journals (Sweden)
Qiang Zhang
2014-01-01
Full Text Available An off-line optimization approach of high precision minimum time feedrate for CNC machining is proposed. Besides the ordinary considered velocity, acceleration, and jerk constraints, dynamic performance constraint of each servo drive is also considered in this optimization problem to improve the tracking precision along the optimized feedrate trajectory. Tracking error is applied to indicate the servo dynamic performance of each axis. By using variable substitution, the tracking error constrained minimum time trajectory planning problem is formulated as a nonlinear path constrained optimal control problem. Bang-bang constraints structure of the optimal trajectory is proved in this paper; then a novel constraint handling method is proposed to realize a convex optimization based solution of the nonlinear constrained optimal control problem. A simple ellipse feedrate planning test is presented to demonstrate the effectiveness of the approach. Then the practicability and robustness of the trajectory generated by the proposed approach are demonstrated by a butterfly contour machining example.
Minimum Probability of Error-Based Equalization Algorithms for Fading Channels
Directory of Open Access Journals (Sweden)
Janos Levendovszky
2007-06-01
Full Text Available Novel channel equalizer algorithms are introduced for wireless communication systems to combat channel distortions resulting from multipath propagation. The novel algorithms are based on newly derived bounds on the probability of error (PE and guarantee better performance than the traditional zero forcing (ZF or minimum mean square error (MMSE algorithms. The new equalization methods require channel state information which is obtained by a fast adaptive channel identification algorithm. As a result, the combined convergence time needed for channel identification and PE minimization still remains smaller than the convergence time of traditional adaptive algorithms, yielding real-time equalization. The performance of the new algorithms is tested by extensive simulations on standard mobile channels.
Optimal ship forms for minimum total resistance in shallow water
Zhao, Lian-en
1984-01-01
Optimal ship forms for minimum total resistance in shallow water Optimal ship forms for minimum total resistance in shallow water: An attempt is made to obtain shallow-water optimal ship forms for total resistance by means of "tent" function representation under the constraints that the main dimensions of the ship and the water-line area were kept constant. The objective function in the quadratic programming is the sum of wave-making resistance calculated by Sretenski's formula and viscou...
Total error vs. measurement uncertainty: revolution or evolution?
Oosterhuis, Wytze P; Theodorsson, Elvar
2016-02-01
The first strategic EFLM conference "Defining analytical performance goals, 15 years after the Stockholm Conference" was held in the autumn of 2014 in Milan. It maintained the Stockholm 1999 hierarchy of performance goals but rearranged them and established five task and finish groups to work on topics related to analytical performance goals including one on the "total error" theory. Jim Westgard recently wrote a comprehensive overview of performance goals and of the total error theory critical of the results and intentions of the Milan 2014 conference. The "total error" theory originated by Jim Westgard and co-workers has a dominating influence on the theory and practice of clinical chemistry but is not accepted in other fields of metrology. The generally accepted uncertainty theory, however, suffers from complex mathematics and conceived impracticability in clinical chemistry. The pros and cons of the total error theory need to be debated, making way for methods that can incorporate all relevant causes of uncertainty when making medical diagnoses and monitoring treatment effects. This development should preferably proceed not as a revolution but as an evolution.
Tan, Aimin; Saffaj, Taoufiq; Musuku, Adrien; Awaiye, Kayode; Ihssane, Bouchaib; Jhilal, Fayçal; Sosse, Saad Alaoui; Trabelsi, Fethi
2015-03-01
The current approach in regulated LC-MS bioanalysis, which evaluates the precision and trueness of an assay separately, has long been criticized for inadequate balancing of lab-customer risks. Accordingly, different total error approaches have been proposed. The aims of this research were to evaluate the aforementioned risks in reality and the difference among four common total error approaches (β-expectation, β-content, uncertainty, and risk profile) through retrospective analysis of regulated LC-MS projects. Twenty-eight projects (14 validations and 14 productions) were randomly selected from two GLP bioanalytical laboratories, which represent a wide variety of assays. The results show that the risk of accepting unacceptable batches did exist with the current approach (9% and 4% of the evaluated QC levels failed for validation and production, respectively). The fact that the risk was not wide-spread was only because the precision and bias of modern LC-MS assays are usually much better than the minimum regulatory requirements. Despite minor differences in magnitude, very similar accuracy profiles and/or conclusions were obtained from the four different total error approaches. High correlation was even observed in the width of bias intervals. For example, the mean width of SFSTP's β-expectation is 1.10-fold (CV=7.6%) of that of Saffaj-Ihssane's uncertainty approach, while the latter is 1.13-fold (CV=6.0%) of that of Hoffman-Kringle's β-content approach. To conclude, the risk of accepting unacceptable batches was real with the current approach, suggesting that total error approaches should be used instead. Moreover, any of the four total error approaches may be used because of their overall similarity. Lastly, the difficulties/obstacles associated with the application of total error approaches in routine analysis and their desirable future improvements are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Conjugate descent formulation of backpropagation error in feedforward neural networks
Directory of Open Access Journals (Sweden)
NK Sharma
2009-06-01
Full Text Available The feedforward neural network architecture uses backpropagation learning to determine optimal weights between different interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to minimise the error function for a given set of patterns, by adjusting the weights of the network. The first derivates of the error with respect to the weights identify the local error surface in the descent direction. Hence the network exhibits a different local error surface for every different pattern presented to it, and weights are iteratively modified in order to minimise the current local error. The determination of an optimal weight vector is possible only when the total minimum error (mean of the minimum local errors for all patterns from the training set may be minimised. In this paper, we present a general mathematical formulation for the second derivative of the error function with respect to the weights (which represents a conjugate descent for arbitrary feedforward neural network topologies, and we use this derivative information to obtain the optimal weight vector. The local error is backpropagated among the units of hidden layers via the second order derivative of the error with respect to the weights of the hidden and output layers independently and also in combination. The new total minimum error point may be evaluated with the help of the current total minimum error and the current minimised local error. The weight modification processes is performed twice: once with respect to the present local error and once more with respect to the current total or mean error. We present some numerical evidence that our proposed method yields better network weights than those determined via a conventional gradient descent approach.
A minimum bit error-rate detector for amplify and forward relaying systems
Ahmed, Qasim Zeeshan; Alouini, Mohamed-Slim; Aissa, Sonia
2012-01-01
In this paper, a new detector is being proposed for amplify-and-forward (AF) relaying system when communicating with the assistance of L number of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the system. The complexity of the system is further reduced by implementing this detector adaptively. The proposed detector is free from channel estimation. Our results demonstrate that the proposed detector is capable of achieving a gain of more than 1-dB at a BER of 10 -5 as compared to the conventional minimum mean square error detector when communicating over a correlated Rayleigh fading channel. © 2012 IEEE.
A minimum bit error-rate detector for amplify and forward relaying systems
Ahmed, Qasim Zeeshan
2012-05-01
In this paper, a new detector is being proposed for amplify-and-forward (AF) relaying system when communicating with the assistance of L number of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the system. The complexity of the system is further reduced by implementing this detector adaptively. The proposed detector is free from channel estimation. Our results demonstrate that the proposed detector is capable of achieving a gain of more than 1-dB at a BER of 10 -5 as compared to the conventional minimum mean square error detector when communicating over a correlated Rayleigh fading channel. © 2012 IEEE.
Minimum Symbol Error Rate Detection in Single-Input Multiple-Output Channels with Markov Noise
DEFF Research Database (Denmark)
Christensen, Lars P.B.
2005-01-01
Minimum symbol error rate detection in Single-Input Multiple- Output(SIMO) channels with Markov noise is presented. The special case of zero-mean Gauss-Markov noise is examined closer as it only requires knowledge of the second-order moments. In this special case, it is shown that optimal detection...
Directory of Open Access Journals (Sweden)
Nazelie Kassabian
2014-06-01
Full Text Available Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs. This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.
Random and Systematic Errors Share in Total Error of Probes for CNC Machine Tools
Directory of Open Access Journals (Sweden)
Adam Wozniak
2018-03-01
Full Text Available Probes for CNC machine tools, as every measurement device, have accuracy limited by random errors and by systematic errors. Random errors of these probes are described by a parameter called unidirectional repeatability. Manufacturers of probes for CNC machine tools usually specify only this parameter, while parameters describing systematic errors of the probes, such as pre-travel variation or triggering radius variation, are used rarely. Systematic errors of the probes, linked to the differences in pre-travel values for different measurement directions, can be corrected or compensated, but it is not a widely used procedure. In this paper, the share of systematic errors and random errors in total error of exemplary probes are determined. In the case of simple, kinematic probes, systematic errors are much greater than random errors, so compensation would significantly reduce the probing error. Moreover, it shows that in the case of kinematic probes commonly specified unidirectional repeatability is significantly better than 2D performance. However, in the case of more precise strain-gauge probe systematic errors are of the same order as random errors, which means that errors correction or compensation, in this case, would not yield any significant benefits.
International Nuclear Information System (INIS)
Tyson, Jon
2009-01-01
Matrix monotonicity is used to obtain upper bounds on minimum-error distinguishability of arbitrary ensembles of mixed quantum states. This generalizes one direction of a two-sided bound recently obtained by the author [J. Tyson, J. Math. Phys. 50, 032106 (2009)]. It is shown that the previously obtained special case has unique properties.
Estimation of Total Error in DWPF Reported Radionuclide Inventories
International Nuclear Information System (INIS)
Edwards, T.B.
1995-01-01
This report investigates the impact of random errors due to measurement and sampling on the reported concentrations of radionuclides in DWPF's filled canister inventory resulting from each macro-batch. The objective of this investigation is to estimate the variance of the total error in reporting these radionuclide concentrations
Decoding linear error-correcting codes up to half the minimum distance with Gröbner bases
Bulygin, S.; Pellikaan, G.R.; Sala, M.; Mora, T.; Perret, L.; Sakata, S.; Traverso, C.
2009-01-01
In this short note we show how one can decode linear error-correcting codes up to half the minimum distance via solving a system of polynomial equations over a finite field. We also explicitly present the reduced Gröbner basis for the system considered.
Errors in the Total Testing Process in the Clinical Chemistry ...
African Journals Online (AJOL)
2018-03-01
Mar 1, 2018 ... Analytical errors related to internal and external quality control exceeding the target range, (14.4%) ... indicators to assess errors in the total testing process. The. University ... Evidence showed that the risk of .... Data management and quality control: Pre-test ..... indicators and specifications for key processes.
Efficiently characterizing the total error in quantum circuits
Carignan-Dugas, Arnaud; Wallman, Joel J.; Emerson, Joseph
A promising technological advancement meant to enlarge our computational means is the quantum computer. Such a device would harvest the quantum complexity of the physical world in order to unfold concrete mathematical problems more efficiently. However, the errors emerging from the implementation of quantum operations are likewise quantum, and hence share a similar level of intricacy. Fortunately, randomized benchmarking protocols provide an efficient way to characterize the operational noise within quantum devices. The resulting figures of merit, like the fidelity and the unitarity, are typically attached to a set of circuit components. While important, this doesn't fulfill the main goal: determining if the error rate of the total circuit is small enough in order to trust its outcome. In this work, we fill the gap by providing an optimal bound on the total fidelity of a circuit in terms of component-wise figures of merit. Our bound smoothly interpolates between the classical regime, in which the error rate grows linearly in the circuit's length, and the quantum regime, which can naturally allow quadratic growth. Conversely, our analysis substantially improves the bounds on single circuit element fidelities obtained through techniques such as interleaved randomized benchmarking. This research was supported by the U.S. Army Research Office through Grant W911NF- 14-1-0103, CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.
Minimum Tracking Error Volatility
Luca RICCETTI
2010-01-01
Investors assign part of their funds to asset managers that are given the task of beating a benchmark. The risk management department usually imposes a maximum value of the tracking error volatility (TEV) in order to keep the risk of the portfolio near to that of the selected benchmark. However, risk management does not establish a rule on TEV which enables us to understand whether the asset manager is really active or not and, in practice, asset managers sometimes follow passively the corres...
Estimation of total error in DWPF reported radionuclide inventories. Revision 1
International Nuclear Information System (INIS)
Edwards, T.B.
1995-01-01
The Defense Waste Processing Facility (DWPF) at the Savannah River Site is required to determine and report the radionuclide inventory of its glass product. For each macro-batch, the DWPF will report both the total amount (in curies) of each reportable radionuclide and the average concentration (in curies/gram of glass) of each reportable radionuclide. The DWPF is to provide the estimated error of these reported values of its radionuclide inventory as well. The objective of this document is to provide a framework for determining the estimated error in DWPF's reporting of these radionuclide inventories. This report investigates the impact of random errors due to measurement and sampling on the total amount of each reportable radionuclide in a given macro-batch. In addition, the impact of these measurement and sampling errors and process variation are evaluated to determine the uncertainty in the reported average concentrations of radionuclides in DWPF's filled canister inventory resulting from each macro-batch
DEFF Research Database (Denmark)
Jensen, Jesper; Tan, Zheng-Hua
2014-01-01
We propose a method for minimum mean-square error (MMSE) estimation of mel-frequency cepstral features for noise robust automatic speech recognition (ASR). The method is based on a minimum number of well-established statistical assumptions; no assumptions are made which are inconsistent with others....... The strength of the proposed method is that it allows MMSE estimation of mel-frequency cepstral coefficients (MFCC's), cepstral mean-subtracted MFCC's (CMS-MFCC's), velocity, and acceleration coefficients. Furthermore, the method is easily modified to take into account other compressive non-linearities than...... the logarithmic which is usually used for MFCC computation. The proposed method shows estimation performance which is identical to or better than state-of-the-art methods. It further shows comparable ASR performance, where the advantage of being able to use mel-frequency speech features based on a power non...
Andries, Jan P M; Vander Heyden, Yvan; Buydens, Lutgarde M C
2017-08-22
The calibration performance of Partial Least Squares regression (PLS) can be improved by eliminating uninformative variables. For PLS, many variable elimination methods have been developed. One is the Uninformative-Variable Elimination for PLS (UVE-PLS). However, the number of variables retained by UVE-PLS is usually still large. In UVE-PLS, variable elimination is repeated as long as the root mean squared error of cross validation (RMSECV) is decreasing. The set of variables in this first local minimum is retained. In this paper, a modification of UVE-PLS is proposed and investigated, in which UVE is repeated until no further reduction in variables is possible, followed by a search for the global RMSECV minimum. The method is called Global-Minimum Error Uninformative-Variable Elimination for PLS, denoted as GME-UVE-PLS or simply GME-UVE. After each iteration, the predictive ability of the PLS model, built with the remaining variable set, is assessed by RMSECV. The variable set with the global RMSECV minimum is then finally selected. The goal is to obtain smaller sets of variables with similar or improved predictability than those from the classical UVE-PLS method. The performance of the GME-UVE-PLS method is investigated using four data sets, i.e. a simulated set, NIR and NMR spectra, and a theoretical molecular descriptors set, resulting in twelve profile-response (X-y) calibrations. The selective and predictive performances of the models resulting from GME-UVE-PLS are statistically compared to those from UVE-PLS and 1-step UVE, one-sided paired t-tests. The results demonstrate that variable reduction with the proposed GME-UVE-PLS method, usually eliminates significantly more variables than the classical UVE-PLS, while the predictive abilities of the resulting models are better. With GME-UVE-PLS, a lower number of uninformative variables, without a chemical meaning for the response, may be retained than with UVE-PLS. The selectivity of the classical UVE method
Influence of calculation error of total field anomaly in strongly magnetic environments
Yuan, Xiaoyu; Yao, Changli; Zheng, Yuanman; Li, Zelin
2016-04-01
An assumption made in many magnetic interpretation techniques is that ΔTact (total field anomaly - the measurement given by total field magnetometers, after we remove the main geomagnetic field, T0) can be approximated mathematically by ΔTpro (the projection of anomalous field vector in the direction of the earth's normal field). In order to meet the demand for high-precision processing of magnetic prospecting, the approximate error E between ΔTact and ΔTpro is studied in this research. Generally speaking, the error E is extremely small when anomalies not greater than about 0.2T0. However, the errorE may be large in highly magnetic environments. This leads to significant effects on subsequent quantitative inference. Therefore, we investigate the error E through numerical experiments of high-susceptibility bodies. A systematic error analysis was made by using a 2-D elliptic cylinder model. Error analysis show that the magnitude of ΔTact is usually larger than that of ΔTpro. This imply that a theoretical anomaly computed without accounting for the error E overestimate the anomaly associated with the body. It is demonstrated through numerical experiments that the error E is obvious and should not be ignored. It is also shown that the curves of ΔTpro and the error E had a certain symmetry when the directions of magnetization and geomagnetic field changed. To be more specific, the Emax (the maximum of the error E) appeared above the center of the magnetic body when the magnetic parameters are determined. Some other characteristics about the error Eare discovered. For instance, the curve of Emax with respect to the latitude was symmetrical on both sides of magnetic equator, and the extremum of the Emax can always be found in the mid-latitudes, and so on. It is also demonstrated that the error Ehas great influence on magnetic processing transformation and inversion results. It is conclude that when the bodies have highly magnetic susceptibilities, the error E can
Systematic errors in the tables of theoretical total internal conversion coefficients
International Nuclear Information System (INIS)
Dragoun, O.; Rysavy, M.
1992-01-01
Some of the total internal conversion coefficients presented in widely used tables of Rosel et al (1978 Atom. Data Nucl. Data Tables 21, 291) were found to be erroneous. The errors appear for some low transition energies, all multipolarities, and probably for all elements. The origin of the errors is explained. The subshell conversion coefficients of Rosel et al, where available, agree with our calculations. to within a few percent. (author)
Mao, Jiening
2018-05-23
Abstract: Hybrid precoding design is challenging for millimeter-wave (mmWave) massive MIMO. Most prior hybrid precoding schemes are designed to maximize the sum spectral efficiency (SSE), while seldom investigate the bit-error-rate (BER). Therefore, this letter designs an over-sampling codebook (OSC)-based hybrid minimum sum-mean-square-error (min-SMSE) precoding to optimize the BER. Specifically, given the effective baseband channel consisting of the real channel and analog precoding, we first design the digital precoder/combiner based on min-SMSE criterion to optimize the BER. To further reduce the SMSE between the transmit and receive signals, we propose an OSC-based joint analog precoder/combiner (JAPC) design. Simulation results show that the proposed scheme can achieve the better performance than its conventional counterparts.
Mao, Jiening; Gao, Zhen; Wu, Yongpeng; Alouini, Mohamed-Slim
2018-01-01
Hybrid precoding design is challenging for millimeter-wave (mmWave) massive MIMO. Most prior hybrid precoding schemes are designed to maximize the sum spectral efficiency (SSE), while seldom investigate the bit-error-rate (BER). Therefore, this letter designs an over-sampling codebook (OSC)-based hybrid minimum sum-mean-square-error (min-SMSE) precoding to optimize the BER. Specifically, given the effective baseband channel consisting of the real channel and analog precoding, we first design the digital precoder/combiner based on min-SMSE criterion to optimize the BER. To further reduce the SMSE between the transmit and receive signals, we propose an OSC-based joint analog precoder/combiner (JAPC) design. Simulation results show that the proposed scheme can achieve the better performance than its conventional counterparts.
Comments on the 'minimum flux corona' concept
International Nuclear Information System (INIS)
Antiochos, S.K.; Underwood, J.H.
1978-01-01
Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de
Errors in the determination of the total filtration of diagnostic x-ray tubes by the HVL method
International Nuclear Information System (INIS)
Gilmore, B.J.; Cranley, K.
1990-01-01
Optimal technique and an analysis of errors are essential for interpreting whether the total filtration of a diagnostic x-ray tube is acceptable. The study discusses this problem from a theoretical viewpoint utilising recent theoretical HVL-total-filtration data relating to 10 0 and 16 0 tungsten target angles and 0-30% kilovoltage ripples. The theory indicates the typical accuracy to which each appropriate parameter must be determined to maintain acceptable errors in total filtration. A quantitative approach is taken to evaluate systematic errors in a technique for interpolation of HVL from raw attenuation curve data. A theoretical derivation is presented to enable random errors in HVL due to x-ray set inconsistency to be estimated for particular experimental techniques and data analysis procedures. Further formulae are presented to enable errors in the total filtration estimate to be readily determined from those in the individual parameters. (author)
Classification of resistance to passive motion using minimum probability of error criterion.
Chan, H C; Manry, M T; Kondraske, G V
1987-01-01
Neurologists diagnose many muscular and nerve disorders by classifying the resistance to passive motion of patients' limbs. Over the past several years, a computer-based instrument has been developed for automated measurement and parameterization of this resistance. In the device, a voluntarily relaxed lower extremity is moved at constant velocity by a motorized driver. The torque exerted on the extremity by the machine is sampled, along with the angle of the extremity. In this paper a computerized technique is described for classifying a patient's condition as 'Normal' or 'Parkinson disease' (rigidity), from the torque versus angle curve for the knee joint. A Legendre polynomial, fit to the curve, is used to calculate a set of eight normally distributed features of the curve. The minimum probability of error approach is used to classify the curve as being from a normal or Parkinson disease patient. Data collected from 44 different subjects was processes and the results were compared with an independent physician's subjective assessment of rigidity. There is agreement in better than 95% of the cases, when all of the features are used.
Minimum error discrimination for an ensemble of linearly independent pure states
International Nuclear Information System (INIS)
Singal, Tanmay; Ghosh, Sibasish
2016-01-01
Inspired by the work done by Belavkin (1975 Stochastics 1 315) and independently by Mochon, (2006 Phys. Rev. A 73 032328), we formulate the problem of minimum error discrimination (MED) of any ensemble of n linearly independent pure states by stripping the problem of its rotational covariance and retaining only the rotationally invariant aspect of the problem. This is done by embedding the optimal conditions in a matrix equality as well as matrix inequality. Employing the implicit function theorem in these conditions we get a set of first-order coupled ordinary nonlinear differential equations which can be used to drag the solution from an initial point (where solution is known) to another point (whose solution is sought). This way of obtaining the solution can be done through a simple Taylor series expansion and analytic continuation when required. Thus, we complete the work done by Belavkin and Mochon by ultimately leading their theory to a solution for the MED problem of linearly independent pure state ensembles. We also compare the computational complexity of our technique with the barrier-type interior point method of SDP and show that our technique is computationally as efficient as (actually, a bit more than) the SDP algorithm, with the added advantage of being much simpler to implement. (paper)
International Nuclear Information System (INIS)
Brodsky, A.
1985-01-01
An approach to defining minimum detectable amount (MDA) of radioactivity in a sample will be discussed, with the aim of obtaining comments helpful in developing a formulation of MDA that will be broadly applicable to all kinds of radiobioassay measurements, and acceptable to the scientists who make these measurements. Also, the influence of random and systematic errors on the defined MDA are examined
Total error shift patterns for daily CT on rails image-guided radiotherapy to the prostate bed
Directory of Open Access Journals (Sweden)
Mota Helvecio C
2011-10-01
Full Text Available Abstract Background To evaluate the daily total error shift patterns on post-prostatectomy patients undergoing image guided radiotherapy (IGRT with a diagnostic quality computer tomography (CT on rails system. Methods A total of 17 consecutive post-prostatectomy patients receiving adjuvant or salvage IMRT using CT-on-rails IGRT were analyzed. The prostate bed's daily total error shifts were evaluated for a total of 661 CT scans. Results In the right-left, cranial-caudal, and posterior-anterior directions, 11.5%, 9.2%, and 6.5% of the 661 scans required no position adjustments; 75.3%, 66.1%, and 56.8% required a shift of 1 - 5 mm; 11.5%, 20.9%, and 31.2% required a shift of 6 - 10 mm; and 1.7%, 3.8%, and 5.5% required a shift of more than 10 mm, respectively. There was evidence of correlation between the x and y, x and z, and y and z axes in 3, 3, and 3 of 17 patients, respectively. Univariate (ANOVA analysis showed that the total error pattern was random in the x, y, and z axis for 10, 5, and 2 of 17 patients, respectively, and systematic for the rest. Multivariate (MANOVA analysis showed that the (x,y, (x,z, (y,z, and (x, y, z total error pattern was random in 5, 1, 1, and 1 of 17 patients, respectively, and systematic for the rest. Conclusions The overall daily total error shift pattern for these 17 patients simulated with an empty bladder, and treated with CT on rails IGRT was predominantly systematic. Despite this, the temporal vector trends showed complex behaviors and unpredictable changes in magnitude and direction. These findings highlight the importance of using daily IGRT in post-prostatectomy patients.
Walton, David M; Macdermid, Joy C; Nielson, Warren; Teasell, Robert W; Chiasson, Marco; Brown, Lauren
2011-09-01
Clinical measurement. To evaluate the intrarater, interrater, and test-retest reliability of an accessible digital algometer, and to determine the minimum detectable change in normal healthy individuals and a clinical population with neck pain. Pressure pain threshold testing may be a valuable assessment and prognostic indicator for people with neck pain. To date, most of this research has been completed using algometers that are too resource intensive for routine clinical use. Novice raters (physiotherapy students or clinical physiotherapists) were trained to perform algometry testing over 2 clinically relevant sites: the angle of the upper trapezius and the belly of the tibialis anterior. A convenience sample of normal healthy individuals and a clinical sample of people with neck pain were tested by 2 different raters (all participants) and on 2 different days (healthy participants only). Intraclass correlation coefficient (ICC), standard error of measurement, and minimum detectable change were calculated. A total of 60 healthy volunteers and 40 people with neck pain were recruited. Intrarater reliability was almost perfect (ICC = 0.94-0.97), interrater reliability was substantial to near perfect (ICC = 0.79-0.90), and test-retest reliability was substantial (ICC = 0.76-0.79). Smaller change was detectable in the trapezius compared to the tibialis anterior. This study provides evidence that novice raters can perform digital algometry with adequate reliability for research and clinical use in people with and without neck pain.
Achieving minimum-error discrimination of an arbitrary set of laser-light pulses
da Silva, Marcus P.; Guha, Saikat; Dutton, Zachary
2013-05-01
Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability of error. While concrete optical circuits for the optimal discrimination between two coherent states are well known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke, and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Total error components - isolation of laboratory variation from method performance
International Nuclear Information System (INIS)
Bottrell, D.; Bleyler, R.; Fisk, J.; Hiatt, M.
1992-01-01
The consideration of total error across sampling and analytical components of environmental measurements is relatively recent. The U.S. Environmental Protection Agency (EPA), through the Contract Laboratory Program (CLP), provides complete analyses and documented reports on approximately 70,000 samples per year. The quality assurance (QA) functions of the CLP procedures provide an ideal data base-CLP Automated Results Data Base (CARD)-to evaluate program performance relative to quality control (QC) criteria and to evaluate the analysis of blind samples. Repetitive analyses of blind samples within each participating laboratory provide a mechanism to separate laboratory and method performance. Isolation of error sources is necessary to identify effective options to establish performance expectations, and to improve procedures. In addition, optimized method performance is necessary to identify significant effects that result from the selection among alternative procedures in the data collection process (e.g., sampling device, storage container, mode of sample transit, etc.). This information is necessary to evaluate data quality; to understand overall quality; and to provide appropriate, cost-effective information required to support a specific decision
Using wide area differential GPS to improve total system error for precision flight operations
Alter, Keith Warren
Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.
Directory of Open Access Journals (Sweden)
Mardawia M Panrereng
2015-06-01
Full Text Available Dalam beberapa tahun terakhir, sistem komunikasi akustik bawah air banyak dikembangkan oleh beberapa peneliti. Besarnya tantangan yang dihadapi membuat para peneliti semakin tertarik untuk mengembangkan penelitian dibidang ini. Kanal bawah air merupakan media komunikasi yang sulit karena adanya attenuasi, absorption, dan multipath yang disebabkan oleh gerakan gelombang air setiap saat. Untuk perairan dangkal, multipath disebabkan adanya pantulan dari permukaan dan dasar laut. Kebutuhan pengiriman data cepat dengan bandwidth terbatas menjadikan Ortogonal Frequency Division Multiplexing (OFDM sebagai solusi untuk komunikasi transmisi tinggi dengan modulasi menggunakan Binary Phase-Shift Keying (BPSK. Estimasi kanal bertujuan untuk mengetahui karakteristik respon impuls kanal propagasi dengan mengirimkan pilot simbol. Pada estimasi kanal menggunakan metode Least Square (LS nilai Mean Square Error (MSE yang diperoleh cenderung lebih besar dari metode estimasi kanal menggunakan metode Minimum Mean Square (MMSE. Hasil kinerja estimasi kanal berdasarkan perhitungan Bit Error Rate (BER untuk estimasi kanal menggunakan metode LS dan metode MMSE tidak menunjukkan perbedaan yang signifikan yaitu berselisih satu SNR untuk setiap metode estimasi kanal yang digunakan.
LDPC Codes with Minimum Distance Proportional to Block Size
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy
2009-01-01
Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low
Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan
2009-02-01
The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.
Errors in clinical laboratories or errors in laboratory medicine?
Plebani, Mario
2006-01-01
Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes
DEFF Research Database (Denmark)
Rahimi, Maryam; Nielsen, Jesper Ødum; Pedersen, Troels
2014-01-01
A comparison in data achievement between two well-known algorithms with simulated and real measured data is presented. The algorithms maximise the data rate in cooperative base stations (BS) multiple-input-single-output scenario. Weighted sum-minimum mean square error algorithm could be used...... in multiple-input-multiple-output scenarios, but it has lower performance than virtual signal-to-interference plus noise ratio algorithm in theory and practice. A real measurement environment consisting of two BS and two users have been studied to evaluate the simulation results....
Directory of Open Access Journals (Sweden)
Lie-Liang Yang
2008-01-01
Full Text Available In wireless communications, multicarrier direct-sequence code-division multiple access (MC DS-CDMA constitutes one of the highly flexible multiple access schemes. MC DS-CDMA employs a high number of degrees-of-freedom, which are beneficial to design and reconfiguration for communications in dynamic communications environments, such as in the cognitive radios. In this contribution, we consider the multiuser detection (MUD in MC DS-CDMA, which motivates lowcomplexity, high flexibility, and robustness so that the MUD schemes are suitable for deployment in dynamic communications environments. Specifically, a range of low-complexity MUDs are derived based on the zero-forcing (ZF, minimum mean-square error (MMSE, and interference cancellation (IC principles. The bit-error rate (BER performance of the MC DS-CDMA aided by the proposed MUDs is investigated by simulation approaches. Our study shows that, in addition to the advantages provided by a general ZF, MMSE, or IC-assisted MUD, the proposed MUD schemes can be implemented using modular structures, where most modules are independent of each other. Due to the independent modular structure, in the proposed MUDs one module may be reconfigured without yielding impact on the others. Therefore, the MC DS-CDMA, in conjunction with the proposed MUDs, constitutes one of the promising multiple access schemes for communications in the dynamic communications environments such as in the cognitive radios.
Directory of Open Access Journals (Sweden)
Wang Li-Chun
2008-01-01
Full Text Available Abstract In wireless communications, multicarrier direct-sequence code-division multiple access (MC DS-CDMA constitutes one of the highly flexible multiple access schemes. MC DS-CDMA employs a high number of degrees-of-freedom, which are beneficial to design and reconfiguration for communications in dynamic communications environments, such as in the cognitive radios. In this contribution, we consider the multiuser detection (MUD in MC DS-CDMA, which motivates lowcomplexity, high flexibility, and robustness so that the MUD schemes are suitable for deployment in dynamic communications environments. Specifically, a range of low-complexity MUDs are derived based on the zero-forcing (ZF, minimum mean-square error (MMSE, and interference cancellation (IC principles. The bit-error rate (BER performance of the MC DS-CDMA aided by the proposed MUDs is investigated by simulation approaches. Our study shows that, in addition to the advantages provided by a general ZF, MMSE, or IC-assisted MUD, the proposed MUD schemes can be implemented using modular structures, where most modules are independent of each other. Due to the independent modular structure, in the proposed MUDs one module may be reconfigured without yielding impact on the others. Therefore, the MC DS-CDMA, in conjunction with the proposed MUDs, constitutes one of the promising multiple access schemes for communications in the dynamic communications environments such as in the cognitive radios.
Patterning control strategies for minimum edge placement error in logic devices
Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim
2017-03-01
In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.
Prasitmeeboon, Pitcha
repetitive control FIR compensator. The aim is to reduce the final error level by using real time frequency response model updates to successively increase the cutoff frequency, each time creating the improved model needed to produce convergence zero error up to the higher cutoff. Non-minimum phase systems present a difficult design challenge to the sister field of Iterative Learning Control. The third topic investigates to what extent the same challenges appear in RC. One challenge is that the intrinsic non-minimum phase zero mapped from continuous time is close to the pole of repetitive controller at +1 creating behavior similar to pole-zero cancellation. The near pole-zero cancellation causes slow learning at DC and low frequencies. The Min-Max cost function over the learning rate is presented. The Min-Max can be reformulated as a Quadratically Constrained Linear Programming problem. This approach is shown to be an RC design approach that addresses the main challenge of non-minimum phase systems to have a reasonable learning rate at DC. Although it was illustrated that using the Min-Max objective improves learning at DC and low frequencies compared to other designs, the method requires model accuracy at high frequencies. In the real world, models usually have error at high frequencies. The fourth topic addresses how one can merge the quadratic penalty to the Min-Max cost function to increase robustness at high frequencies. The topic also considers limiting the Min-Max optimization to some frequencies interval and applying an FIR zero-phase low-pass filter to cutoff the learning for frequencies above that interval.
Bell, Thomas L.; Kundu, Prasun K.; Einaudi, Franco (Technical Monitor)
2000-01-01
Estimates from TRMM satellite data of monthly total rainfall over an area are subject to substantial sampling errors due to the limited number of visits to the area by the satellite during the month. Quantitative comparisons of TRMM averages with data collected by other satellites and by ground-based systems require some estimate of the size of this sampling error. A method of estimating this sampling error based on the actual statistics of the TRMM observations and on some modeling work has been developed. "Sampling error" in TRMM monthly averages is defined here relative to the monthly total a hypothetical satellite permanently stationed above the area would have reported. "Sampling error" therefore includes contributions from the random and systematic errors introduced by the satellite remote sensing system. As part of our long-term goal of providing error estimates for each grid point accessible to the TRMM instruments, sampling error estimates for TRMM based on rain retrievals from TRMM microwave (TMI) data are compared for different times of the year and different oceanic areas (to minimize changes in the statistics due to algorithmic differences over land and ocean). Changes in sampling error estimates due to changes in rain statistics due 1) to evolution of the official algorithms used to process the data, and 2) differences from other remote sensing systems such as the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I), are analyzed.
Understanding the Minimum Wage: Issues and Answers.
Employment Policies Inst. Foundation, Washington, DC.
This booklet, which is designed to clarify facts regarding the minimum wage's impact on marketplace economics, contains a total of 31 questions and answers pertaining to the following topics: relationship between minimum wages and poverty; impacts of changes in the minimum wage on welfare reform; and possible effects of changes in the minimum wage…
Laboratory errors and patient safety.
Miligy, Dawlat A
2015-01-01
Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that
Long-Term Capital Goods Importation and Minimum Wage Relationship in Turkey: Bounds Testing Approach
Directory of Open Access Journals (Sweden)
Tastan Serkan
2015-04-01
Full Text Available In order to examine the long-term relationship between capital goods importation and minimum wage, autoregressive distributed lag (ARDL bounds testing approach to the cointegration is used in the study. According to bounds test results, a cointegration relation exists between the capital goods importation and the minimum wage. Therefore an ARDL(4,0 model is estimated in order to determine the long and short term relations between variables. According to the empirical analysis, there is a positive and significant relationship between the capital goods importation and the minimum wage in Turkey in the long term. A 1% increase in the minimum wage leads to a 0.8% increase in the capital goods importation in the long term. The result is similar for short term coefficients. The relationship observed in the long term is preserved in short term, though in a lower level. In terms of error correction model, it can be concluded that error correction mechanism works as the error correction term is negative and significant. Short term deviations might be resolved with the error correction mechanism in the long term. Accordingly, approximately 75% of any deviation from equilibrium which might arise in the previous six month period will be resolved in the current six month period. This means that returning to long term equilibrium progresses rapidly.
Parameters Tuning of Model Free Adaptive Control Based on Minimum Entropy
Institute of Scientific and Technical Information of China (English)
Chao Ji; Jing Wang; Liulin Cao; Qibing Jin
2014-01-01
Dynamic linearization based model free adaptive control(MFAC) algorithm has been widely used in practical systems, in which some parameters should be tuned before it is successfully applied to process industries. Considering the random noise existing in real processes, a parameter tuning method based on minimum entropy optimization is proposed,and the feature of entropy is used to accurately describe the system uncertainty. For cases of Gaussian stochastic noise and non-Gaussian stochastic noise, an entropy recursive optimization algorithm is derived based on approximate model or identified model. The extensive simulation results show the effectiveness of the minimum entropy optimization for the partial form dynamic linearization based MFAC. The parameters tuned by the minimum entropy optimization index shows stronger stability and more robustness than these tuned by other traditional index,such as integral of the squared error(ISE) or integral of timeweighted absolute error(ITAE), when the system stochastic noise exists.
van IJsseldijk, E A; Harman, M K; Luetzner, J; Valstar, E R; Stoel, B C; Nelissen, R G H H; Kaptein, B L
2014-10-01
Wear of polyethylene inserts plays an important role in failure of total knee replacement and can be monitored in vivo by measuring the minimum joint space width in anteroposterior radiographs. The objective of this retrospective cross-sectional study was to compare the accuracy and precision of a new model-based method with the conventional method by analysing the difference between the minimum joint space width measurements and the actual thickness of retrieved polyethylene tibial inserts. Before revision, the minimum joint space width values and their locations on the insert were measured in 15 fully weight-bearing radiographs. These measurements were compared with the actual minimum thickness values and locations of the retrieved tibial inserts after revision. The mean error in the model-based minimum joint space width measurement was significantly smaller than the conventional method for medial condyles (0.50 vs 0.94 mm, p model-based measurements was less than 10 mm in the medial direction in 12 cases and less in the lateral direction in 13 cases. The model-based minimum joint space width measurement method is more accurate than the conventional measurement with the same precision. Cite this article: Bone Joint Res 2014;3:289-96. ©2014 The British Editorial Society of Bone & Joint Surgery.
Design of Linear - and Minimum-phase FIR-equalizers
DEFF Research Database (Denmark)
Bysted, Tommy Kristensen; Jensen, K.J.; Gaunholt, Hans
1996-01-01
an error function which is quadratic in the filtercoefficients. The advantage of the quadratic function is the ability to find the optimal coefficients solving a system of linear equations without iterations.The transformation to a minimum-phase equalizer is carried out by homomorphic deconvolution...
A novel approach to error function minimization for feedforward neural networks
International Nuclear Information System (INIS)
Sinkus, R.
1995-01-01
Feedforward neural networks with error backpropagation are widely applied to pattern recognition. One general problem encountered with this type of neural networks is the uncertainty, whether the minimization procedure has converged to a global minimum of the cost function. To overcome this problem a novel approach to minimize the error function is presented. It allows to monitor the approach to the global minimum and as an outcome several ambiguities related to the choice of free parameters of the minimization procedure are removed. (orig.)
Estimating and localizing the algebraic and total numerical errors using flux reconstructions
Czech Academy of Sciences Publication Activity Database
Papež, Jan; Strakoš, Z.; Vohralík, M.
2018-01-01
Roč. 138, č. 3 (2018), s. 681-721 ISSN 0029-599X R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : numerical solution of partial differential equations * finite element method * a posteriori error estimation * algebraic error * discretization error * stopping criteria * spatial distribution of the error Subject RIV: BA - General Mathematics Impact factor: 2.152, year: 2016
Directory of Open Access Journals (Sweden)
Jinliang Xu
2013-06-01
Full Text Available This paper investigates the filtering problem for multivariate continuous nonlinear non-Gaussian systems based on an improved minimum error entropy (MEE criterion. The system is described by a set of nonlinear continuous equations with non-Gaussian system noises and measurement noises. The recently developed generalized density evolution equation is utilized to formulate the joint probability density function (PDF of the estimation errors. Combining the entropy of the estimation error with the mean squared error, a novel performance index is constructed to ensure the estimation error not only has small uncertainty but also approaches to zero. According to the conjugate gradient method, the optimal filter gain matrix is then obtained by minimizing the improved minimum error entropy criterion. In addition, the condition is proposed to guarantee that the estimation error dynamics is exponentially bounded in the mean square sense. Finally, the comparative simulation results are presented to show that the proposed MEE filter is superior to nonlinear unscented Kalman filter (UKF.
Simionescu, Olga; Blum, Andreas; Grigore, Mariana; Costache, Mariana; Avram, Alina; Testori, Alessandro
2016-09-01
The tracking and identification of errors in the detection and follow-up of melanoma are important because there is huge potential to increase awareness about the most vulnerable aspects of diagnosis and treatment, and to improve both from the perspective of healthcare economics. The present study was designed to identify where errors occur and to propose a minimum set of rules for the routine guidance of any specialist in melanoma management. This report describes the evaluation of a unique series of 33 cases in which errors applying to many steps in the diagnosis and treatment of melanoma were detected. Cases were collected at two centers in Romania, one public and one private, as part of a process of obtaining patient-requested second opinions. A total of 166 errors were identified across the 33 patients, most of which were treatment errors. The errors fell into six categories: clinical diagnostic errors (36 errors among 30 patients); primary surgical errors (31 errors among 16 patients); pathology errors (24 errors among 17 patients); sentinel lymph node biopsy errors (13 errors among 13 patients); staging errors (17 errors among 13 patients); and treatment or management errors (45 errors among 33 patients). Based on the present results, we propose that in countries lacking national guidelines, clinicians should adhere to international evidence-based guidelines for the diagnosis and treatment of melanoma. © 2015 The International Society of Dermatology.
Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K
2018-01-03
Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.
Kim, Changhwa; Shin, DongHyun
2017-05-12
There are wireless networks in which typically communications are unsafe. Most terrestrial wireless sensor networks belong to this category of networks. Another example of an unsafe communication network is an underwater acoustic sensor network (UWASN). In UWASNs in particular, communication failures occur frequently and the failure durations can range from seconds up to a few hours, days, or even weeks. These communication failures can cause data losses significant enough to seriously damage human life or property, depending on their application areas. In this paper, we propose a framework to reduce sensor data loss during communication failures and we present a formal approach to the Selection by Minimum Error and Pattern (SMEP) method that plays the most important role for the reduction in sensor data loss under the proposed framework. The SMEP method is compared with other methods to validate its effectiveness through experiments using real-field sensor data sets. Moreover, based on our experimental results and performance comparisons, the SMEP method has been validated to be better than others in terms of the average sensor data value error rate caused by sensor data loss.
Nowcasting daily minimum air and grass temperature
Savage, M. J.
2016-02-01
Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass
Kang, Sinkyu; Hong, Suk Young
2016-01-01
A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km(2). The lake area decreased by -9.3% at an annual rate of -53.7 km(2) yr(-1) during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability.
International Nuclear Information System (INIS)
Machac, J.; Horowitz, S.F.; Goldsmith, S.J.; Fuster, V.
1984-01-01
Indium-111 labeled platelet imaging is a tool for detection of thrombus formation in vascular spaces. Dual isotope blood pool subtraction may help differentiate focal platelet accumulation from blood pool activity. This study used a computer model to calculate the minimum excess-to-blood pool platelet ratio (EX/BP) and the optimum dual isotope imaging times under varied conditions of lesion size. The model simulated usual human imaging doses of 500 μCi of In-111 platelets and 5mCi of Tc-99m labeled RBCs giving a reference cardiac blood pool region (100cc) of 10000 cpm for Tc-99m and 500 cpm for In-111. The total imaging time was fixed at 20 minutes, while the two isotope imaging times (TIn/TTc) were varied, as were the simulated lesion size (cc) and EX/BP. The relative error of the excess counts was calculated using propagation of error theory. At the critical level of detection, where the excess lesion counts equal 3 times the standard deviation, the optimum TIn/TTc and minimum Ex/BP were determined for each lesion size. For the smallest lesion size (0.1cc), the minimum detectable EX/BP ratio was 1.6, with the best TIn/TTC ratio of 18/2 minutes, and for large lesions, an EX/BP of 0.1, with a TIn/TTc of 16/4. This model provides an estimate of the sensitivity and optimizes imaging times in dual isotope subtraction platelet imaging. The model is adaptable to varying isotope doses, total imaging times and lesion size. This information will be helpful in future in- vivo imaging studies of intravascular thrombi in humans
Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu; Yoshino, Kensuke; Suzuki, Mashiko
2018-05-01
The aim of this study was to determine factors that contribute to bone cutting errors of conventional instrumentation for tibial resection in total knee arthroplasty (TKA) as assessed by an image-free navigation system. The hypothesis is that preoperative varus alignment is a significant contributory factor to tibial bone cutting errors. This was a prospective study of a consecutive series of 72 TKAs. The amount of the tibial first-cut errors with reference to the planned cutting plane in both coronal and sagittal planes was measured by an image-free computer navigation system. Multiple regression models were developed with the amount of tibial cutting error in the coronal and sagittal planes as dependent variables and sex, age, disease, height, body mass index, preoperative alignment, patellar height (Insall-Salvati ratio) and preoperative flexion angle as independent variables. Multiple regression analysis showed that sex (male gender) (R = 0.25 p = 0.047) and preoperative varus alignment (R = 0.42, p = 0.001) were positively associated with varus tibial cutting errors in the coronal plane. In the sagittal plane, none of the independent variables was significant. When performing TKA in varus deformity, careful confirmation of the bone cutting surface should be performed to avoid varus alignment. The results of this study suggest technical considerations that can help a surgeon achieve more accurate component placement. IV.
Elango, Rajavel; Humayun, Mohammad A; Turner, Justine M; Rafii, Mahroukh; Langos, Veronika; Ball, Ronald O; Pencharz, Paul B
2017-10-01
Background: The total sulfur amino acid (TSAA) and minimum Met requirements have been previously determined in healthy children. TSAA metabolism is altered in kidney disease. Whether TSAA requirements are altered in children with chronic renal insufficiency (CRI) is unknown. Objective: We sought to determine the TSAA (Met in the absence of Cys) requirements and minimum Met (in the presence of excess Cys) requirements in children with CRI. Methods: Five children (4 boys, 1 girl) aged 10 ± 2.6 y with CRI were randomly assigned to receive graded intakes of Met (0, 5, 10, 15, 25, and 35 mg · kg -1 · d -1 ) with no Cys in the diet. Four of the children (3 boys, 1 girl) were then randomly assigned to receive graded dietary intakes of Met (0, 2.5, 5, 7.5, 10, and 15 mg · kg -1 · d -1 ) with 21 mg · kg -1 · d -1 Cys. The mean TSAA and minimum Met requirements were determined by measuring the oxidation of l-[1- 13 C]Phe to 13 CO 2 (F 13 CO 2 ). A 2-phase linear-regression crossover analysis of the F 13 CO 2 data identified a breakpoint at minimal F 13 CO 2 Urine samples collected from all study days and from previous studies of healthy children were measured for sulfur metabolites. Results: The mean and population-safe (upper 95% CI) intakes of TSAA and minimum Met in children with CRI were determined to be 12.6 and 15.9 mg · kg -1 · d -1 and 7.3 and 10.9 mg · kg -1 · d -1 , respectively. In healthy school-aged children the mean and upper 95% CI intakes of TSAA and minimum Met were determined to be 12.9 and 17.2 mg · kg -1 · d -1 and 5.8 and 7.3 mg · kg -1 · d -1 , respectively. A comparison of the minimum Met requirements between healthy children and children with CRI indicated significant ( P < 0.05) differences. Conclusion: These results suggest that children with CRI have a similar mean and population-safe TSAA to that of healthy children, suggesting adequate Cys synthesis via transsulfuration, but higher minimum Met requirement, suggesting reduced
The 95% confidence intervals of error rates and discriminant coefficients
Directory of Open Access Journals (Sweden)
Shuichi Shinmura
2015-02-01
Full Text Available Fisher proposed a linear discriminant function (Fisher’s LDF. From 1971, we analysed electrocardiogram (ECG data in order to develop the diagnostic logic between normal and abnormal symptoms by Fisher’s LDF and a quadratic discriminant function (QDF. Our four years research was inferior to the decision tree logic developed by the medical doctor. After this experience, we discriminated many data and found four problems of the discriminant analysis. A revised Optimal LDF by Integer Programming (Revised IP-OLDF based on the minimum number of misclassification (minimum NM criterion resolves three problems entirely [13, 18]. In this research, we discuss fourth problem of the discriminant analysis. There are no standard errors (SEs of the error rate and discriminant coefficient. We propose a k-fold crossvalidation method. This method offers a model selection technique and a 95% confidence intervals (C.I. of error rates and discriminant coefficients.
Bayesian ensemble approach to error estimation of interatomic potentials
DEFF Research Database (Denmark)
Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Brown, K.S.
2004-01-01
Using a Bayesian approach a general method is developed to assess error bars on predictions made by models fitted to data. The error bars are estimated from fluctuations in ensembles of models sampling the model-parameter space with a probability density set by the minimum cost. The method...... is applied to the development of interatomic potentials for molybdenum using various potential forms and databases based on atomic forces. The calculated error bars on elastic constants, gamma-surface energies, structural energies, and dislocation properties are shown to provide realistic estimates...
An Improved CO2-Crude Oil Minimum Miscibility Pressure Correlation
Directory of Open Access Journals (Sweden)
Hao Zhang
2015-01-01
Full Text Available Minimum miscibility pressure (MMP, which plays an important role in miscible flooding, is a key parameter in determining whether crude oil and gas are completely miscible. On the basis of 210 groups of CO2-crude oil system minimum miscibility pressure data, an improved CO2-crude oil system minimum miscibility pressure correlation was built by modified conjugate gradient method and global optimizing method. The new correlation is a uniform empirical correlation to calculate the MMP for both thin oil and heavy oil and is expressed as a function of reservoir temperature, C7+ molecular weight of crude oil, and mole fractions of volatile components (CH4 and N2 and intermediate components (CO2, H2S, and C2~C6 of crude oil. Compared to the eleven most popular and relatively high-accuracy CO2-oil system MMP correlations in the previous literature by other nine groups of CO2-oil MMP experimental data, which have not been used to develop the new correlation, it is found that the new empirical correlation provides the best reproduction of the nine groups of CO2-oil MMP experimental data with a percentage average absolute relative error (%AARE of 8% and a percentage maximum absolute relative error (%MARE of 21%, respectively.
Runge-Kutta methods with minimum storage implementations
Ketcheson, David I.
2010-03-01
Solution of partial differential equations by the method of lines requires the integration of large numbers of ordinary differential equations (ODEs). In such computations, storage requirements are typically one of the main considerations, especially if a high order ODE solver is required. We investigate Runge-Kutta methods that require only two storage locations per ODE. Existing methods of this type require additional memory if an error estimate or the ability to restart a step is required. We present a new, more general class of methods that provide error estimates and/or the ability to restart a step while still employing the minimum possible number of memory registers. Examples of such methods are found to have good properties. © 2009 Elsevier Inc. All rights reserved.
Minimum Q Electrically Small Antennas
DEFF Research Database (Denmark)
Kim, O. S.
2012-01-01
Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....
Invariance of the bit error rate in the ancilla-assisted homodyne detection
International Nuclear Information System (INIS)
Yoshida, Yuhsuke; Takeoka, Masahiro; Sasaki, Masahide
2010-01-01
We investigate the minimum achievable bit error rate of the discrimination of binary coherent states with the help of arbitrary ancillary states. We adopt homodyne measurement with a common phase of the local oscillator and classical feedforward control. After one ancillary state is measured, its outcome is referred to the preparation of the next ancillary state and the tuning of the next mixing with the signal. It is shown that the minimum bit error rate of the system is invariant under the following operations: feedforward control, deformations, and introduction of any ancillary state. We also discuss the possible generalization of the homodyne detection scheme.
Reference respiratory waveforms by minimum jerk model analysis
Energy Technology Data Exchange (ETDEWEB)
Anetai, Yusuke, E-mail: anetai@radonc.med.osaka-u.ac.jp; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita-shi, Osaka 565-0871 (Japan); Ota, Seiichi [Department of Medical Technology, Osaka University Hospital, Yamadaoka 2-15, Suita-shi, Osaka 565-0871 (Japan)
2015-09-15
Purpose: CyberKnife{sup ®} robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony{sup ®} mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife{sup ®}. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony{sup ®} mode, a tracking laser projection from CyberKnife{sup ®} was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy
Reference respiratory waveforms by minimum jerk model analysis
International Nuclear Information System (INIS)
Anetai, Yusuke; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko; Ota, Seiichi
2015-01-01
Purpose: CyberKnife"® robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony"® mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife"®. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony"® mode, a tracking laser projection from CyberKnife"® was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy affected by respiratory
Errors in the Total Testing Process in the Clinical Chemistry ...
African Journals Online (AJOL)
2018-03-01
Mar 1, 2018 ... testing processes impair the clinical decision-making process. Such errors are ... and external quality control exceeding the target range, (14.4%) and (51.4%) .... version 3.5.3 and transferred to Statistical. Package for the ...
ERF/ERFC, Calculation of Error Function, Complementary Error Function, Probability Integrals
International Nuclear Information System (INIS)
Vogel, J.E.
1983-01-01
1 - Description of problem or function: ERF and ERFC are used to compute values of the error function and complementary error function for any real number. They may be used to compute other related functions such as the normal probability integrals. 4. Method of solution: The error function and complementary error function are approximated by rational functions. Three such rational approximations are used depending on whether - x .GE.4.0. In the first region the error function is computed directly and the complementary error function is computed via the identity erfc(x)=1.0-erf(x). In the other two regions the complementary error function is computed directly and the error function is computed from the identity erf(x)=1.0-erfc(x). The error function and complementary error function are real-valued functions of any real argument. The range of the error function is (-1,1). The range of the complementary error function is (0,2). 5. Restrictions on the complexity of the problem: The user is cautioned against using ERF to compute the complementary error function by using the identity erfc(x)=1.0-erf(x). This subtraction may cause partial or total loss of significance for certain values of x
Fast Erasure and Error decoding of Algebraic Geometry Codes up to the Feng-Rao Bound
DEFF Research Database (Denmark)
Jensen, Helge Elbrønd; Sakata, S.; Leonard, D.
1996-01-01
This paper gives an errata(that is erasure-and error-) decoding algorithm of one-point algebraic geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-massey algorithm and the votin procedure of Feng and Rao.......This paper gives an errata(that is erasure-and error-) decoding algorithm of one-point algebraic geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-massey algorithm and the votin procedure of Feng and Rao....
Yousef, Nadin; Yousef, Farah
2017-09-04
Whereas one of the predominant causes of medication errors is a drug administration error, a previous study related to our investigations and reviews estimated that the incidences of medication errors constituted 6.7 out of 100 administrated medication doses. Therefore, we aimed by using six sigma approach to propose a way that reduces these errors to become less than 1 out of 100 administrated medication doses by improving healthcare professional education and clearer handwritten prescriptions. The study was held in a General Government Hospital. First, we systematically studied the current medication use process. Second, we used six sigma approach by utilizing the five-step DMAIC process (Define, Measure, Analyze, Implement, Control) to find out the real reasons behind such errors. This was to figure out a useful solution to avoid medication error incidences in daily healthcare professional practice. Data sheet was used in Data tool and Pareto diagrams were used in Analyzing tool. In our investigation, we reached out the real cause behind administrated medication errors. As Pareto diagrams used in our study showed that the fault percentage in administrated phase was 24.8%, while the percentage of errors related to prescribing phase was 42.8%, 1.7 folds. This means that the mistakes in prescribing phase, especially because of the poor handwritten prescriptions whose percentage in this phase was 17.6%, are responsible for the consequent) mistakes in this treatment process later on. Therefore, we proposed in this study an effective low cost strategy based on the behavior of healthcare workers as Guideline Recommendations to be followed by the physicians. This method can be a prior caution to decrease errors in prescribing phase which may lead to decrease the administrated medication error incidences to less than 1%. This improvement way of behavior can be efficient to improve hand written prescriptions and decrease the consequent errors related to administrated
Minimum BER Receiver Filters with Block Memory for Uplink DS-CDMA Systems
Directory of Open Access Journals (Sweden)
Debbah Mérouane
2008-01-01
Full Text Available Abstract The problem of synchronous multiuser receiver design in the case of direct-sequence single-antenna code division multiple access (DS-CDMA uplink networks is studied over frequency selective fading channels. An exact expression for the bit error rate (BER is derived in the case of BPSK signaling. Moreover, an algorithm is proposed for finding the finite impulse response (FIR receiver filters with block memory such that the exact BER of the active users is minimized. Several properties of the minimum BER FIR filters with block memory are identified. The algorithm performance is found for scenarios with different channel qualities, spreading code lengths, receiver block memory size, near-far effects, and channel mismatch. For the BPSK constellation, the proposed FIR receiver structure with block memory has significant better BER with respect to and near-far resistance than the corresponding minimum mean square error (MMSE filters with block memory.
Performance Analysis for Bit Error Rate of DS- CDMA Sensor Network Systems with Source Coding
Directory of Open Access Journals (Sweden)
Haider M. AlSabbagh
2012-03-01
Full Text Available The minimum energy (ME coding combined with DS-CDMA wireless sensor network is analyzed in order to reduce energy consumed and multiple access interference (MAI with related to number of user(receiver. Also, the minimum energy coding which exploits redundant bits for saving power with utilizing RF link and On-Off-Keying modulation. The relations are presented and discussed for several levels of errors expected in the employed channel via amount of bit error rates and amount of the SNR for number of users (receivers.
NQAR: Network Quality Aware Routing in Error-Prone Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Jaewon Choi
2010-01-01
Full Text Available We propose a network quality aware routing (NQAR mechanism to provide an enabling method of the delay-sensitive data delivery over error-prone wireless sensor networks. Unlike the existing routing methods that select routes with the shortest arrival latency or the minimum hop count, the proposed scheme adaptively selects the route based on the network qualities including link errors and collisions with minimum additional complexity. It is designed to avoid the paths with potential noise and collision that may cause many non-deterministic backoffs and retransmissions. We propose a generic framework to select a minimum cost route that takes the packet loss rate and collision history into account. NQAR uses a data centric approach to estimate a single-hop delay based on processing time, propagation delay, packet loss rate, number of backoffs, and the retransmission timeout between two neighboring nodes. This enables a source node to choose the shortest expected end-to-end delay path to send a delay-sensitive data. The experiment results show that NQAR reduces the end-to-end transfer delay up to approximately 50% in comparison with the latency-based directed diffusion and the hop count-based directed diffusion under the error-prone network environments. Moreover, NQAR shows better performance than those routing methods in terms of jitter, reachability, and network lifetime.
Development and application of α-hull and Voronoi diagrams in the assessment of roundness error
International Nuclear Information System (INIS)
Li, Xiuming; Liu, Hongqi; Li, Wei
2011-01-01
Computational geometry has been used to select effective data points from the measured data points for evaluating the roundness error to improve the computational complexity. However, for precision parts most of the measured points are on the vertices of the convex hull; it cannot have any effect on improving the computational complexity with the Voronoi diagrams. In this paper the roundness error is evaluated with α-hull and the Voronoi diagram instead of convex hull. An approach for constructing α-hull with the minimum radius separation is presented to determine the vertices of the Voronoi diagram. The experimental results showed that the roundness error of the minimum zone circle could be solved efficiently with α-hull and the Voronoi diagram
Directory of Open Access Journals (Sweden)
Masanori Fujii
2017-01-01
Full Text Available Objectives. To determine the minimum lateral bone coverage required for securing stable fixation of the porous-coated acetabular components (cups in hip dysplasia. Methods. In total, 215 primary total hip arthroplasties in 199 patients were reviewed. The average follow-up period was 49 months (range: 24–77 months. The lateral bone coverage of the cups was assessed by determining the cup center-edge (cup-CE angle and the bone coverage index (BCI from anteroposterior pelvic radiographs. Further, cup fixation was determined using the modified DeLee and Charnley classification system. Results. All cups were judged to show stable fixation by bone ingrowth. The cup-CE angle was less than 0° in 7 hips (3.3% and the minimum cup-CE angle was −9.2° (BCI: 48.8%. Thin radiolucent lines were observed in 5 hips (2.3%, which were not associated with decreased lateral bone coverage. Loosening, osteolysis, dislocation, or revision was not observed in any of the cases during the follow-up period. Conclusion. A cup-CE angle greater than −10° (BCI > 50% was acceptable for stable bony fixation of the cup. Considering possible errors in manual implantation, we recommend that the cup position be planned such that the cup-CE angle is greater than 0° (BCI > 60%.
Protograph based LDPC codes with minimum distance linearly growing with block size
Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy
2005-01-01
We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.
Minimum BER Receiver Filters with Block Memory for Uplink DS-CDMA Systems
Directory of Open Access Journals (Sweden)
Mérouane Debbah
2008-05-01
Full Text Available The problem of synchronous multiuser receiver design in the case of direct-sequence single-antenna code division multiple access (DS-CDMA uplink networks is studied over frequency selective fading channels. An exact expression for the bit error rate (BER is derived in the case of BPSK signaling. Moreover, an algorithm is proposed for finding the finite impulse response (FIR receiver filters with block memory such that the exact BER of the active users is minimized. Several properties of the minimum BER FIR filters with block memory are identified. The algorithm performance is found for scenarios with different channel qualities, spreading code lengths, receiver block memory size, near-far effects, and channel mismatch. For the BPSK constellation, the proposed FIR receiver structure with block memory has significant better BER with respect to Eb/N0 and near-far resistance than the corresponding minimum mean square error (MMSE filters with block memory.
International Nuclear Information System (INIS)
Achmad Suntoro
2014-01-01
A design to determine the minimum distance between the consecutive carriers at the trajectory of gamma irradiators IR-200K is implemented. Equilibrium between centrifugal force of a moving carrier in circular trajectory and its gravity force as well as carrier dimensions are used as parameters in determining such a minimum distance. The minimum distance between the consecutive carriers in the design is defined 1.2 meters. The distance is 11.5% greater than the minimum distance theoretically calculated, namely 1,076 meters. Errors tolerance in construction/installation of the trajectory and other unexpected things during irradiator's operation are part of the consideration to enlarge the minimum distance from its theoretical value. The distance between the consecutive carriers will not affect throughput and efficiency of using radiation due to the straight trajectory segments do not need to follow such the minimum distance between the carriers, as the trajectory segments around the i radiation sources are straight. (author)
Applicability of the minimum entropy generation method for optimizing thermodynamic cycles
Institute of Scientific and Technical Information of China (English)
Cheng Xue-Tao; Liang Xin-Gang
2013-01-01
Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations.In this paper,it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed.For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates,it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered.However,the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included,because the total heat into the system of interest is not fixed.An irreversible Carnot cycle and an irreversible Brayton cycle are analysed.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed.
Applicability of the minimum entropy generation method for optimizing thermodynamic cycles
International Nuclear Information System (INIS)
Cheng Xue-Tao; Liang Xin-Gang
2013-01-01
Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations. In this paper, it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed. For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates, it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered. However, the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included, because the total heat into the system of interest is not fixed. An irreversible Carnot cycle and an irreversible Brayton cycle are analysed. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed. (general)
A Short Introduction to Model Selection, Kolmogorov Complexity and Minimum Description Length (MDL)
Nannen, Volker
2010-01-01
The concept of overtting in model selection is explained and demon- strated. After providing some background information on information theory and Kolmogorov complexity, we provide a short explanation of Minimum Description Length and error minimization. We conclude with a discussion of the typical
Medication error detection in two major teaching hospitals: What are the types of errors?
Directory of Open Access Journals (Sweden)
Fatemeh Saghafi
2014-01-01
Full Text Available Background: Increasing number of reports on medication errors and relevant subsequent damages, especially in medical centers has become a growing concern for patient safety in recent decades. Patient safety and in particular, medication safety is a major concern and challenge for health care professionals around the world. Our prospective study was designed to detect prescribing, transcribing, dispensing, and administering medication errors in two major university hospitals. Materials and Methods: After choosing 20 similar hospital wards in two large teaching hospitals in the city of Isfahan, Iran, the sequence was randomly selected. Diagrams for drug distribution were drawn by the help of pharmacy directors. Direct observation technique was chosen as the method for detecting the errors. A total of 50 doses were studied in each ward to detect prescribing, transcribing and administering errors in each ward. The dispensing error was studied on 1000 doses dispensed in each hospital pharmacy. Results: A total of 8162 number of doses of medications were studied during the four stages, of which 8000 were complete data to be analyzed. 73% of prescribing orders were incomplete and did not have all six parameters (name, dosage form, dose and measuring unit, administration route, and intervals of administration. We found 15% transcribing errors. One-third of administration of medications on average was erroneous in both hospitals. Dispensing errors ranged between 1.4% and 2.2%. Conclusion: Although prescribing and administrating compromise most of the medication errors, improvements are needed in all four stages with regard to medication errors. Clear guidelines must be written and executed in both hospitals to reduce the incidence of medication errors.
The Achilles Heel of Normal Determinations via Minimum Variance Techniques: Worldline Dependencies
Ma, Z.; Scudder, J. D.; Omidi, N.
2002-12-01
Time series of data collected across current layers are usually organized by divining coordinate transformations (as from minimum variance) that permits a geometrical interpretation for the data collected. Almost without exception the current layer geometry is inferred by supposing that the current carrying layer is locally planar. Only after this geometry is ``determined'' can the various quantities predicted by theory calculated. The precision of reconnection rated ``measured'' and the quantitative support for or against component reconnection be evaluated. This paper defines worldline traversals across fully resolved Hall two fluid models of reconnecting current sheets (with varying sizes of guide fields) and across a 2-D hybrid solution of a super critical shock layer. Along each worldline various variance techniques are used to infer current sheet normals based on the data observed along this worldline alone. We then contrast these inferred normals with those known from the overview of the fully resolved spatial pictures of the layer. Absolute errors of 20 degrees in the normal are quite commonplace, but errors of 40-90 deg are also implied, especially for worldlines that make more and more oblique angles to the true current sheet normal. These mistaken ``inferences'' are traceable to the degree that the data collected sample 2-D variations within these layers or not. While it is not surprising that these variance techniques give incorrect errors in the presence of layers that possess 2-D variations, it is illuminating that such large errors need not be signalled by the traditional error formulae for the error cones on normals that have been previously used to estimate the errors of normal choices. Frequently the absolute errors that depend on worldline path can be 10 times the random error that formulae would predict based on eigenvalues of the covariance matrix. A given time series cannot be associated in any a priori way with a specific worldline
Evaluating the Appropriateness and Use of Domain Critical Errors
Directory of Open Access Journals (Sweden)
Chad W. Buckendahl
2012-10-01
Full Text Available The consequences associated with the uses and interpretations of scores for many credentialing testing programs have important implications for a range of stakeholders. Within licensure settings specifically, results from examination programs are often one of the final steps in the process of assessing whether individuals will be allowed to enter practice. This article focuses on the concept of domain critical errors and suggests a framework for considering their use in practice. Domain critical errors are defined here as knowledge, skills, abilities, or judgments that are essential to the definition of minimum qualifications in a testing program's pass-'fail decision-making process. Using domain critical errors has psychometric and policy implications, particularly for licensure programs that are mandatory for entry-level practice. Because these errors greatly influence pass-'fail decisions, the measurement community faces an ongoing challenge to promote defensible practices while concurrently providing assessment literacy development about the appropriate design and use of testing methods like domain critical errors.
Verification of surface minimum, mean, and maximum temperature forecasts in Calabria for summer 2008
Directory of Open Access Journals (Sweden)
S. Federico
2011-02-01
Full Text Available Since 2005, one-hour temperature forecasts for the Calabria region (southern Italy, modelled by the Regional Atmospheric Modeling System (RAMS, have been issued by CRATI/ISAC-CNR (Consortium for Research and Application of Innovative Technologies/Institute for Atmospheric and Climate Sciences of the National Research Council and are available online at http://meteo.crati.it/previsioni.html (every six hours. Beginning in June 2008, the horizontal resolution was enhanced to 2.5 km. In the present paper, forecast skill and accuracy are evaluated out to four days for the 2008 summer season (from 6 June to 30 September, 112 runs. For this purpose, gridded high horizontal resolution forecasts of minimum, mean, and maximum temperatures are evaluated against gridded analyses at the same horizontal resolution (2.5 km.
Gridded analysis is based on Optimal Interpolation (OI and uses the RAMS first-day temperature forecast as the background field. Observations from 87 thermometers are used in the analysis system. The analysis error is introduced to quantify the effect of using the RAMS first-day forecast as the background field in the OI analyses and to define the forecast error unambiguously, while spatial interpolation (SI analysis is considered to quantify the statistics' sensitivity to the verifying analysis and to show the quality of the OI analyses for different background fields.
Two case studies, the first one with a low (less than the 10th percentile root mean square error (RMSE in the OI analysis, the second with the largest RMSE of the whole period in the OI analysis, are discussed to show the forecast performance under two different conditions. Cumulative statistics are used to quantify forecast errors out to four days. Results show that maximum temperature has the largest RMSE, while minimum and mean temperature errors are similar. For the period considered
Estimation of Minimum DNBR Using Cascaded Fuzzy Neural Networks
International Nuclear Information System (INIS)
Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun
2015-01-01
This phenomenon of boiling crisis is called a departure from nucleate boiling (DNB). The DNB phenomena can influence the fuel cladding and fuel pellets. The DNB ratio (DNBR) is defined as the ratio of the expected DNB heat flux to the actual fuel rod heat flux. Since it is very important to monitor and predict the minimum DNBR in a reactor core to prevent the boiling crisis and clad melting, a number of researches have been conducted to predict DNBR values. The aim of this study is to estimate the minimum DNBR in a reactor core using the measured signals of the reactor coolant system (RCS) by applying cascaded fuzzy neural networks (CFNN) according to operating conditions. Reactor core monitoring and protection systems require minimum DNBR prediction. The CFNN can be used to optimize the minimum DNBR value through the process of adding fuzzy neural networks (FNN) repeatedly. The proposed algorithm is trained by using the data set prepared for training (development data) and verified by using another data set different (independent) from the development data. The developed CFNN models were applied to the first fuel cycle of OPR1000. The RMS errors are 0.23% and 0.12% for the positive and negative ASI, respectively
Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates
DEFF Research Database (Denmark)
Gal, A.; Hansen, Kristoffer Arnsfelt; Koucky, Michal
2013-01-01
We bound the minimum number w of wires needed to compute any (asymptotically good) error-correcting code C:{0,1}Ω(n)→{0,1}n with minimum distance Ω(n), using unbounded fan-in circuits of depth d with arbitrary gates. Our main results are: 1) if d=2, then w=Θ(n (lgn/lglgn)2); 2) if d=3, then w...
Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates
DEFF Research Database (Denmark)
Gál, Anna; Hansen, Kristoffer Arnsfelt; Koucký, Michal
2012-01-01
We bound the minimum number w of wires needed to compute any (asymptotically good) error-correcting code C:{0,1}Ω(n) -> {0,1}n with minimum distance Ω(n), using unbounded fan-in circuits of depth d with arbitrary gates. Our main results are: (1) If d=2 then w = Θ(n ({log n/ log log n})2). (2) If d...
Analysis of error patterns in clinical radiotherapy
International Nuclear Information System (INIS)
Macklis, Roger; Meier, Tim; Barrett, Patricia; Weinhous, Martin
1996-01-01
Purpose: Until very recently, prescription errors and adverse treatment events have rarely been studied or reported systematically in oncology. We wished to understand the spectrum and severity of radiotherapy errors that take place on a day-to-day basis in a high-volume academic practice and to understand the resource needs and quality assurance challenges placed on a department by rapid upswings in contract-based clinical volumes requiring additional operating hours, procedures, and personnel. The goal was to define clinical benchmarks for operating safety and to detect error-prone treatment processes that might function as 'early warning' signs. Methods: A multi-tiered prospective and retrospective system for clinical error detection and classification was developed, with formal analysis of the antecedents and consequences of all deviations from prescribed treatment delivery, no matter how trivial. A department-wide record-and-verify system was operational during this period and was used as one method of treatment verification and error detection. Brachytherapy discrepancies were analyzed separately. Results: During the analysis year, over 2000 patients were treated with over 93,000 individual fields. A total of 59 errors affecting a total of 170 individual treated fields were reported or detected during this period. After review, all of these errors were classified as Level 1 (minor discrepancy with essentially no potential for negative clinical implications). This total treatment delivery error rate (170/93, 332 or 0.18%) is significantly better than corresponding error rates reported for other hospital and oncology treatment services, perhaps reflecting the relatively sophisticated error avoidance and detection procedures used in modern clinical radiation oncology. Error rates were independent of linac model and manufacturer, time of day (normal operating hours versus late evening or early morning) or clinical machine volumes. There was some relationship to
Directory of Open Access Journals (Sweden)
Juan Mario Torres Nova
2008-09-01
Full Text Available Gaussian minimum shift keying (GMSK and differential binary phase shift keying (DBPSK are two digital modulation schemes which are -frequently used in radio communication systems; however, there is interdependence in the use of its benefits (spectral efficiency, low bit error rate, low inter symbol interference, etc. Optimising one parameter creates problems for another; for example, the GMSK scheme succeeds in reducing bandwidth when introducing a Gaussian filter into an MSK (minimum shift ke-ying modulator in exchange for increasing inter-symbol interference in the system. The DBPSK scheme leads to lower error pro-bability, occupying more bandwidth; it likewise facilitates synchronous data transmission due to the receiver’s bit delay when re-covering a signal.
Comparison between calorimeter and HLNC errors
International Nuclear Information System (INIS)
Goldman, A.S.; De Ridder, P.; Laszlo, G.
1991-01-01
This paper summarizes an error analysis that compares systematic and random errors of total plutonium mass estimated for high-level neutron coincidence counter (HLNC) and calorimeter measurements. This task was part of an International Atomic Energy Agency (IAEA) study on the comparison of the two instruments to determine if HLNC measurement errors met IAEA standards and if the calorimeter gave ''significantly'' better precision. Our analysis was based on propagation of error models that contained all known sources of errors including uncertainties associated with plutonium isotopic measurements. 5 refs., 2 tabs
Müller, Amanda
2015-01-01
This paper attempts to demonstrate the differences in writing between International English Language Testing System (IELTS) bands 6.0, 6.5 and 7.0. An analysis of exemplars provided from the IELTS test makers reveals that IELTS 6.0, 6.5 and 7.0 writers can make a minimum of 206 errors, 96 errors and 35 errors per 1000 words. The following section…
A Minimum Variance Algorithm for Overdetermined TOA Equations with an Altitude Constraint.
Energy Technology Data Exchange (ETDEWEB)
Romero, Louis A; Mason, John J.
2018-04-01
We present a direct (non-iterative) method for solving for the location of a radio frequency (RF) emitter, or an RF navigation receiver, using four or more time of arrival (TOA) measurements and an assumed altitude above an ellipsoidal earth. Both the emitter tracking problem and the navigation application are governed by the same equations, but with slightly different interpreta- tions of several variables. We treat the assumed altitude as a soft constraint, with a specified noise level, just as the TOA measurements are handled, with their respective noise levels. With 4 or more TOA measurements and the assumed altitude, the problem is overdetermined and is solved in the weighted least squares sense for the 4 unknowns, the 3-dimensional position and time. We call the new technique the TAQMV (TOA Altitude Quartic Minimum Variance) algorithm, and it achieves the minimum possible error variance for given levels of TOA and altitude estimate noise. The method algebraically produces four solutions, the least-squares solution, and potentially three other low residual solutions, if they exist. In the lightly overdermined cases where multiple local minima in the residual error surface are more likely to occur, this algebraic approach can produce all of the minima even when an iterative approach fails to converge. Algorithm performance in terms of solution error variance and divergence rate for bas eline (iterative) and proposed approach are given in tables.
C.M. Cobbaert (Christa); H. Baadenhuijsen; L. Zwang (Louwerens); C.W. Weykamp; P.N. Demacker; P.G.H. Mulder (Paul)
1999-01-01
textabstractBACKGROUND: Standardization of HDL-cholesterol is needed for risk assessment. We assessed for the first time the accuracy of HDL-cholesterol testing in The Netherlands and evaluated 11 candidate reference materials (CRMs). METHODS: The total error (TE) of
Error-transparent evolution: the ability of multi-body interactions to bypass decoherence
International Nuclear Information System (INIS)
Vy, Os; Jacobs, Kurt; Wang Xiaoting
2013-01-01
We observe that multi-body interactions, unlike two-body interactions, can implement any unitary operation on an encoded system in such a way that the evolution is uninterrupted by noise that the encoding is designed to protect against. Such ‘error-transparent’ evolution is distinct from that usually considered in quantum computing, as the latter is merely correctable. We prove that the minimum body-ness required to protect (i) a qubit from a single type of Pauli error, (ii) a target qubit from a controller with such errors and (iii) a single qubit from all errors is three-body, four-body and five-body, respectively. We also discuss applications to computing, coherent feedback control and quantum metrology. Finally, we evaluate the performance of error-transparent evolution for some examples using numerical simulations. (paper)
The Human Bathtub: Safety and Risk Predictions Including the Dynamic Probability of Operator Errors
International Nuclear Information System (INIS)
Duffey, Romney B.; Saull, John W.
2006-01-01
Reactor safety and risk are dominated by the potential and major contribution for human error in the design, operation, control, management, regulation and maintenance of the plant, and hence to all accidents. Given the possibility of accidents and errors, now we need to determine the outcome (error) probability, or the chance of failure. Conventionally, reliability engineering is associated with the failure rate of components, or systems, or mechanisms, not of human beings in and interacting with a technological system. The probability of failure requires a prior knowledge of the total number of outcomes, which for any predictive purposes we do not know or have. Analysis of failure rates due to human error and the rate of learning allow a new determination of the dynamic human error rate in technological systems, consistent with and derived from the available world data. The basis for the analysis is the 'learning hypothesis' that humans learn from experience, and consequently the accumulated experience defines the failure rate. A new 'best' equation has been derived for the human error, outcome or failure rate, which allows for calculation and prediction of the probability of human error. We also provide comparisons to the empirical Weibull parameter fitting used in and by conventional reliability engineering and probabilistic safety analysis methods. These new analyses show that arbitrary Weibull fitting parameters and typical empirical hazard function techniques cannot be used to predict the dynamics of human errors and outcomes in the presence of learning. Comparisons of these new insights show agreement with human error data from the world's commercial airlines, the two shuttle failures, and from nuclear plant operator actions and transient control behavior observed in transients in both plants and simulators. The results demonstrate that the human error probability (HEP) is dynamic, and that it may be predicted using the learning hypothesis and the minimum
Wu, Zedong
2018-04-05
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is is highly accurate and efficient.
PERFORMANCE OF THE ZERO FORCING PRECODING MIMO BROADCAST SYSTEMS WITH CHANNEL ESTIMATION ERRORS
Institute of Scientific and Technical Information of China (English)
Wang Jing; Liu Zhanli; Wang Yan; You Xiaohu
2007-01-01
In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum capacity and BER performance are consistent with those of the perfect Channel State Information (CSI)with only a performance degradation.
Tyo, J Scott; LaCasse, Charles F; Ratliff, Bradley M
2009-10-15
Microgrid polarimeters operate by integrating a focal plane array with an array of micropolarizers. The Stokes parameters are estimated by comparing polarization measurements from pixels in a neighborhood around the point of interest. The main drawback is that the measurements used to estimate the Stokes vector are made at different locations, leading to a false polarization signature owing to instantaneous field-of-view (IFOV) errors. We demonstrate for the first time, to our knowledge, that spatially band limited polarization images can be ideally reconstructed with no IFOV error by using a linear system framework.
Directory of Open Access Journals (Sweden)
Sharmila Vaz
Full Text Available The social skills rating system (SSRS is used to assess social skills and competence in children and adolescents. While its characteristics based on United States samples (US are published, corresponding Australian figures are unavailable. Using a 4-week retest design, we examined the internal consistency, retest reliability and measurement error (ME of the SSRS secondary student form (SSF in a sample of Year 7 students (N = 187, from five randomly selected public schools in Perth, western Australia. Internal consistency (IC of the total scale and most subscale scores (except empathy on the frequency rating scale was adequate to permit independent use. On the importance rating scale, most IC estimates for girls fell below the benchmark. Test-retest estimates of the total scale and subscales were insufficient to permit reliable use. ME of the total scale score (frequency rating for boys was equivalent to the US estimate, while that for girls was lower than the US error. ME of the total scale score (importance rating was larger than the error using the frequency rating scale. The study finding supports the idea of using multiple informants (e.g. teacher and parent reports, not just student as recommended in the manual. Future research needs to substantiate the clinical meaningfulness of the MEs calculated in this study by corroborating them against the respective Minimum Clinically Important Difference (MCID.
Vaz, Sharmila; Parsons, Richard; Passmore, Anne Elizabeth; Andreou, Pantelis; Falkmer, Torbjörn
2013-01-01
The social skills rating system (SSRS) is used to assess social skills and competence in children and adolescents. While its characteristics based on United States samples (US) are published, corresponding Australian figures are unavailable. Using a 4-week retest design, we examined the internal consistency, retest reliability and measurement error (ME) of the SSRS secondary student form (SSF) in a sample of Year 7 students (N = 187), from five randomly selected public schools in Perth, western Australia. Internal consistency (IC) of the total scale and most subscale scores (except empathy) on the frequency rating scale was adequate to permit independent use. On the importance rating scale, most IC estimates for girls fell below the benchmark. Test-retest estimates of the total scale and subscales were insufficient to permit reliable use. ME of the total scale score (frequency rating) for boys was equivalent to the US estimate, while that for girls was lower than the US error. ME of the total scale score (importance rating) was larger than the error using the frequency rating scale. The study finding supports the idea of using multiple informants (e.g. teacher and parent reports), not just student as recommended in the manual. Future research needs to substantiate the clinical meaningfulness of the MEs calculated in this study by corroborating them against the respective Minimum Clinically Important Difference (MCID).
Analysis of interactive fixed effects dynamic linear panel regression with measurement error
Nayoung Lee; Hyungsik Roger Moon; Martin Weidner
2011-01-01
This paper studies a simple dynamic panel linear regression model with interactive fixed effects in which the variable of interest is measured with error. To estimate the dynamic coefficient, we consider the least-squares minimum distance (LS-MD) estimation method.
On systematic and statistic errors in radionuclide mass activity estimation procedure
International Nuclear Information System (INIS)
Smelcerovic, M.; Djuric, G.; Popovic, D.
1989-01-01
One of the most important requirements during nuclear accidents is the fast estimation of the mass activity of the radionuclides that suddenly and without control reach the environment. The paper points to systematic errors in the procedures of sampling, sample preparation and measurement itself, that in high degree contribute to total mass activity evaluation error. Statistic errors in gamma spectrometry as well as in total mass alpha and beta activity evaluation are also discussed. Beside, some of the possible sources of errors in the partial mass activity evaluation for some of the radionuclides are presented. The contribution of the errors in the total mass activity evaluation error is estimated and procedures that could possibly reduce it are discussed (author)
The probability and the management of human error
International Nuclear Information System (INIS)
Dufey, R.B.; Saull, J.W.
2004-01-01
Embedded within modern technological systems, human error is the largest, and indeed dominant contributor to accident cause. The consequences dominate the risk profiles for nuclear power and for many other technologies. We need to quantify the probability of human error for the system as an integral contribution within the overall system failure, as it is generally not separable or predictable for actual events. We also need to provide a means to manage and effectively reduce the failure (error) rate. The fact that humans learn from their mistakes allows a new determination of the dynamic probability and human failure (error) rate in technological systems. The result is consistent with and derived from the available world data for modern technological systems. Comparisons are made to actual data from large technological systems and recent catastrophes. Best estimate values and relationships can be derived for both the human error rate, and for the probability. We describe the potential for new approaches to the management of human error and safety indicators, based on the principles of error state exclusion and of the systematic effect of learning. A new equation is given for the probability of human error (λ) that combines the influences of early inexperience, learning from experience (ε) and stochastic occurrences with having a finite minimum rate, this equation is λ 5.10 -5 + ((1/ε) - 5.10 -5 ) exp(-3*ε). The future failure rate is entirely determined by the experience: thus the past defines the future
Computing nonsimple polygons of minimum perimeter
Fekete, S.P.; Haas, A.; Hemmer, M.; Hoffmann, M.; Kostitsyna, I.; Krupke, D.; Maurer, F.; Mitchell, J.S.B.; Schmidt, A.; Schmidt, C.; Troegel, J.
2018-01-01
We consider the Minimum Perimeter Polygon Problem (MP3): for a given set V of points in the plane, find a polygon P with holes that has vertex set V , such that the total boundary length is smallest possible. The MP3 can be considered a natural geometric generalization of the Traveling Salesman
Characteristics of medication errors with parenteral cytotoxic drugs
Fyhr, A; Akselsson, R
2012-01-01
Errors involving cytotoxic drugs have the potential of being fatal and should therefore be prevented. The objective of this article is to identify the characteristics of medication errors involving parenteral cytotoxic drugs in Sweden. A total of 60 cases reported to the national error reporting systems from 1996 to 2008 were reviewed. Classification was made to identify cytotoxic drugs involved, type of error, where the error occurred, error detection mechanism, and consequences for the pati...
Adaptive control of nonlinear system using online error minimum neural networks.
Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei
2016-11-01
In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Finding beam focus errors automatically
International Nuclear Information System (INIS)
Lee, M.J.; Clearwater, S.H.; Kleban, S.D.
1987-01-01
An automated method for finding beam focus errors using an optimization program called COMFORT-PLUS. The steps involved in finding the correction factors using COMFORT-PLUS has been used to find the beam focus errors for two damping rings at the SLAC Linear Collider. The program is to be used as an off-line program to analyze actual measured data for any SLC system. A limitation on the application of this procedure is found to be that it depends on the magnitude of the machine errors. Another is that the program is not totally automated since the user must decide a priori where to look for errors
Anesthesiologists' perceptions of minimum acceptable work habits of nurse anesthetists.
Logvinov, Ilana I; Dexter, Franklin; Hindman, Bradley J; Brull, Sorin J
2017-05-01
Work habits are non-technical skills that are an important part of job performance. Although non-technical skills are usually evaluated on a relative basis (i.e., "grading on a curve"), validity of evaluation on an absolute basis (i.e., "minimum passing score") needs to be determined. Survey and observational study. None. None. The theme of "work habits" was assessed using a modification of Dannefer et al.'s 6-item scale, with scores ranging from 1 (lowest performance) to 5 (highest performance). E-mail invitations were sent to all consultant and fellow anesthesiologists at Mayo Clinic in Florida, Arizona, and Minnesota. Because work habits expectations can be generational, the survey was designed for adjustment based on all invited (responding or non-responding) anesthesiologists' year of graduation from residency. The overall mean±standard deviation of the score for anesthesiologists' minimum expectations of nurse anesthetists' work habits was 3.64±0.66 (N=48). Minimum acceptable scores were correlated with the year of graduation from anesthesia residency (linear regression P=0.004). Adjusting for survey non-response using all N=207 anesthesiologists, the mean of the minimum acceptable work habits adjusted for year of graduation was 3.69 (standard error 0.02). The minimum expectations for nurse anesthetists' work habits were compared with observational data obtained from the University of Iowa. Among 8940 individual nurse anesthetist work habits scores, only 2.6% were habits scores were significantly greater than the Mayo estimate (3.69) for the minimum expectations; all Phabits of nurse anesthetists within departments should not be compared with an appropriate minimum score (i.e., of 3.69). Instead, work habits scores should be analyzed based on relative reporting among anesthetists. Copyright © 2017 Elsevier Inc. All rights reserved.
Werneburg, Glenn T; Kongnyuy, Michael; Halpern, Daniel M; Salcedo, Jose M; Chen, Connie; LeSueur, Amanda; Kosinski, Kaitlin E; Schiff, Jeffrey T; Corcoran, Anthony T; Katz, Aaron E
2018-03-01
To investigate the effects of focal (hemiablation) or total cryotherapy and minimum tumor temperature on patient-reported quality of life (QoL) in patients with prostate cancer. An Institutional Review Board-approved database was reviewed for patients who underwent cryotherapy or active surveillance (AS). QoL questionnaire responses were collected and scores were analyzed for differences between focal and total cryotherapy and between very cold (total of 197 patients responded to a total of 547 questionnaires. Focal and total cryotherapy patients had initially lower sexual function scores relative to AS (year 1 mean difference focal: -31.7, P total: -48.1, P total cryotherapy sexual function scores were not statistically significantly different from the AS cohort by postprocedural year 4. Very cold and moderate-cold temperatures led to initially lower sexual function scores relative to AS (year 1 very cold: -38.1, P total cryotherapy and between very cold and moderate-cold temperature groups. Focal cryotherapy and moderate-cold (≥-76°C) temperature were associated with favorable sexual function relative to total cryotherapy and very cold temperature, respectively. No significant differences in urinary function or bowel habits were observed between groups. Copyright © 2017 Elsevier Inc. All rights reserved.
Ahmed, Qasim Zeeshan
2014-04-01
The ever growing demand of higher data rates can now be addressed by exploiting cooperative diversity. This form of diversity has become a fundamental technique for achieving spatial diversity by exploiting the presence of idle users in the network. This has led to new challenges in terms of designing new protocols and detectors for cooperative communications. Among various amplify-and-forward (AF) protocols, the half duplex non-orthogonal amplify-and-forward (NAF) protocol is superior to other AF schemes in terms of error performance and capacity. However, this superiority is achieved at the cost of higher receiver complexity. Furthermore, in order to exploit the full diversity of the system an optimal precoder is required. In this paper, an optimal joint linear transceiver is proposed for the NAF protocol. This transceiver operates on the principles of minimum bit error rate (BER), and is referred as joint bit error rate (JBER) detector. The BER performance of JBER detector is superior to all the proposed linear detectors such as channel inversion, the maximal ratio combining, the biased maximum likelihood detectors, and the minimum mean square error. The proposed transceiver also outperforms previous precoders designed for the NAF protocol. © 2002-2012 IEEE.
Sensitivity of Multicarrier Two-Dimensional Spreading Schemes to Synchronization Errors
Directory of Open Access Journals (Sweden)
Geneviève Jourdain
2008-06-01
Full Text Available This paper presents the impact of synchronization errors on the performance of a downlink multicarrier two-dimensional spreading OFDM-CDMA system. This impact is measured by the degradation of the signal to interference and noise ratio (SINR obtained after despreading and equalization. The contribution of this paper is twofold. First, we use some properties of random matrix and free probability theories to derive a new expression of the SINR. This expression is then independent of the actual value of the spreading codes while still accounting for the orthogonality between codes. This model is validated by means of Monte Carlo simulations. Secondly, the model is exploited to derive the SINR degradation of OFDM-CDMA systems due to synchronization errors which include a timing error, a carrier frequency offset, and a sampling frequency offset. It is also exploited to compare the sensitivities of MC-CDMA and MC-DS-CDMA systems to these errors in a frequency selective channel. This work is carried out for zero-forcing and minimum mean square error equalizers.
Research trend on human error reduction
International Nuclear Information System (INIS)
Miyaoka, Sadaoki
1990-01-01
Human error has been the problem in all industries. In 1988, the Bureau of Mines, Department of the Interior, USA, carried out the worldwide survey on the human error in all industries in relation to the fatal accidents in mines. There was difference in the results according to the methods of collecting data, but the proportion that human error took in the total accidents distributed in the wide range of 20∼85%, and was 35% on the average. The rate of occurrence of accidents and troubles in Japanese nuclear power stations is shown, and the rate of occurrence of human error is 0∼0.5 cases/reactor-year, which did not much vary. Therefore, the proportion that human error took in the total tended to increase, and it has become important to reduce human error for lowering the rate of occurrence of accidents and troubles hereafter. After the TMI accident in 1979 in USA, the research on man-machine interface became active, and after the Chernobyl accident in 1986 in USSR, the problem of organization and management has been studied. In Japan, 'Safety 21' was drawn up by the Advisory Committee for Energy, and also the annual reports on nuclear safety pointed out the importance of human factors. The state of the research on human factors in Japan and abroad and three targets to reduce human error are reported. (K.I.)
The impact of the UK National Minimum Wage on mental health
Directory of Open Access Journals (Sweden)
Christoph Kronenberg
2017-12-01
Full Text Available Despite an emerging literature, there is still sparse and mixed evidence on the wider societal benefits of Minimum Wage policies, including their effects on mental health. Furthermore, causal evidence on the relationship between earnings and mental health is limited. We focus on low-wage earners, who are at higher risk of psychological distress, and exploit the quasi-experiment provided by the introduction of the UK National Minimum Wage (NMW to identify the causal impact of wage increases on mental health. We employ difference-in-differences models and find that the introduction of the UK NMW had no effect on mental health. Our estimates do not appear to support earlier findings which indicate that minimum wages affect mental health of low-wage earners. A series of robustness checks accounting for measurement error, as well as treatment and control group composition, confirm our main results. Overall, our findings suggest that policies aimed at improving the mental health of low-wage earners should either consider the non-wage characteristics of employment or potentially larger wage increases.
The impact of the UK National Minimum Wage on mental health.
Kronenberg, Christoph; Jacobs, Rowena; Zucchelli, Eugenio
2017-12-01
Despite an emerging literature, there is still sparse and mixed evidence on the wider societal benefits of Minimum Wage policies, including their effects on mental health. Furthermore, causal evidence on the relationship between earnings and mental health is limited. We focus on low-wage earners, who are at higher risk of psychological distress, and exploit the quasi-experiment provided by the introduction of the UK National Minimum Wage (NMW) to identify the causal impact of wage increases on mental health. We employ difference-in-differences models and find that the introduction of the UK NMW had no effect on mental health. Our estimates do not appear to support earlier findings which indicate that minimum wages affect mental health of low-wage earners. A series of robustness checks accounting for measurement error, as well as treatment and control group composition, confirm our main results. Overall, our findings suggest that policies aimed at improving the mental health of low-wage earners should either consider the non-wage characteristics of employment or potentially larger wage increases.
Li, Yue (Inventor); Bruck, Jehoshua (Inventor)
2018-01-01
A data device includes a memory having a plurality of memory cells configured to store data values in accordance with a predetermined rank modulation scheme that is optional and a memory controller that receives a current error count from an error decoder of the data device for one or more data operations of the flash memory device and selects an operating mode for data scrubbing in accordance with the received error count and a program cycles count.
The uncorrected refractive error challenge
Directory of Open Access Journals (Sweden)
Kovin Naidoo
2016-11-01
Full Text Available Refractive error affects people of all ages, socio-economic status and ethnic groups. The most recent statistics estimate that, worldwide, 32.4 million people are blind and 191 million people have vision impairment. Vision impairment has been defined based on distance visual acuity only, and uncorrected distance refractive error (mainly myopia is the single biggest cause of worldwide vision impairment. However, when we also consider near visual impairment, it is clear that even more people are affected. From research it was estimated that the number of people with vision impairment due to uncorrected distance refractive error was 107.8 million,1 and the number of people affected by uncorrected near refractive error was 517 million, giving a total of 624.8 million people.
Tropical systematic and random error energetics based on NCEP ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Systematic error growth rate peak is observed at wavenumber 2 up to 4-day forecast then .... the influence of summer systematic error and ran- ... total exchange. When the error energy budgets are examined in spectral domain, one may ask ques- tions on the error growth at a certain wavenum- ber from its interaction with ...
Common patterns in 558 diagnostic radiology errors.
Donald, Jennifer J; Barnard, Stuart A
2012-04-01
As a Quality Improvement initiative our department has held regular discrepancy meetings since 2003. We performed a retrospective analysis of the cases presented and identified the most common pattern of error. A total of 558 cases were referred for discussion over 92 months, and errors were classified as perceptual or interpretative. The most common patterns of error for each imaging modality were analysed, and the misses were scored by consensus as subtle or non-subtle. Of 558 diagnostic errors, 447 (80%) were perceptual and 111 (20%) were interpretative errors. Plain radiography and computed tomography (CT) scans were the most frequent imaging modalities accounting for 246 (44%) and 241 (43%) of the total number of errors, respectively. In the plain radiography group 120 (49%) of the errors occurred in chest X-ray reports with perceptual miss of a lung nodule occurring in 40% of this subgroup. In the axial and appendicular skeleton missed fractures occurred most frequently, and metastatic bone disease was overlooked in 12 of 50 plain X-rays of the pelvis or spine. The majority of errors within the CT group were in reports of body scans with the commonest perceptual errors identified including 16 missed significant bone lesions, 14 cases of thromboembolic disease and 14 gastrointestinal tumours. Of the 558 errors, 312 (56%) were considered subtle and 246 (44%) non-subtle. Diagnostic errors are not uncommon and are most frequently perceptual in nature. Identification of the most common patterns of error has the potential to improve the quality of reporting by improving the search behaviour of radiologists. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.
Machine-learning-assisted correction of correlated qubit errors in a topological code
Directory of Open Access Journals (Sweden)
Paul Baireuther
2018-01-01
Full Text Available A fault-tolerant quantum computation requires an efficient means to detect and correct errors that accumulate in encoded quantum information. In the context of machine learning, neural networks are a promising new approach to quantum error correction. Here we show that a recurrent neural network can be trained, using only experimentally accessible data, to detect errors in a widely used topological code, the surface code, with a performance above that of the established minimum-weight perfect matching (or blossom decoder. The performance gain is achieved because the neural network decoder can detect correlations between bit-flip (X and phase-flip (Z errors. The machine learning algorithm adapts to the physical system, hence no noise model is needed. The long short-term memory layers of the recurrent neural network maintain their performance over a large number of quantum error correction cycles, making it a practical decoder for forthcoming experimental realizations of the surface code.
An Empirical State Error Covariance Matrix Orbit Determination Example
Frisbee, Joseph H., Jr.
2015-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance
Error field considerations for BPX
International Nuclear Information System (INIS)
LaHaye, R.J.
1992-01-01
Irregularities in the position of poloidal and/or toroidal field coils in tokamaks produce resonant toroidal asymmetries in the vacuum magnetic fields. Otherwise stable tokamak discharges become non-linearly unstable to disruptive locked modes when subjected to low level error fields. Because of the field errors, magnetic islands are produced which would not otherwise occur in tearing mode table configurations; a concomitant reduction of the total confinement can result. Poloidal and toroidal asymmetries arise in the heat flux to the divertor target. In this paper, the field errors from perturbed BPX coils are used in a field line tracing code of the BPX equilibrium to study these deleterious effects. Limits on coil irregularities for device design and fabrication are computed along with possible correcting coils for reducing such field errors
45 CFR 98.100 - Error Rate Report.
2010-10-01
... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND... the total dollar amount of payments made in the sample); the average amount of improper payment; and... not received. (e) Costs of Preparing the Error Rate Report—Provided the error rate calculations and...
A Generalized Pivotal Quantity Approach to Analytical Method Validation Based on Total Error.
Yang, Harry; Zhang, Jianchun
2015-01-01
The primary purpose of method validation is to demonstrate that the method is fit for its intended use. Traditionally, an analytical method is deemed valid if its performance characteristics such as accuracy and precision are shown to meet prespecified acceptance criteria. However, these acceptance criteria are not directly related to the method's intended purpose, which is usually a gurantee that a high percentage of the test results of future samples will be close to their true values. Alternate "fit for purpose" acceptance criteria based on the concept of total error have been increasingly used. Such criteria allow for assessing method validity, taking into account the relationship between accuracy and precision. Although several statistical test methods have been proposed in literature to test the "fit for purpose" hypothesis, the majority of the methods are not designed to protect the risk of accepting unsuitable methods, thus having the potential to cause uncontrolled consumer's risk. In this paper, we propose a test method based on generalized pivotal quantity inference. Through simulation studies, the performance of the method is compared to five existing approaches. The results show that both the new method and the method based on β-content tolerance interval with a confidence level of 90%, hereafter referred to as the β-content (0.9) method, control Type I error and thus consumer's risk, while the other existing methods do not. It is further demonstrated that the generalized pivotal quantity method is less conservative than the β-content (0.9) method when the analytical methods are biased, whereas it is more conservative when the analytical methods are unbiased. Therefore, selection of either the generalized pivotal quantity or β-content (0.9) method for an analytical method validation depends on the accuracy of the analytical method. It is also shown that the generalized pivotal quantity method has better asymptotic properties than all of the current
Determination of global and regional heart functions with minimum transit times
International Nuclear Information System (INIS)
Feinendegen, L.E.; Becker, V.; Vyska, K.; Freundlieb, C.; Bosiljanoff, P.
1980-01-01
The minimum transit time obviously represents the most constant flow parameter. By means of a constant, that was chosen to be 1.2 for cardiac flow, it is equal to the quotient of volume to flow and is also inversely related proportional to the fraction of ejection that is concerned. The first indicator passage through the heart is measured for the minimum cardiac transit time, whereby interesting regions were chosen for the two auricula, the two ventricula, the pulmonary artery and the aorta. The time activity characteristica obtained from the particular regions need a special smoothing by means of the gliding mean, so that the arrival times can easily be recognized. This way in one examination process the differences of arrival times respectively the minimal transit times can be obtained for each particular cardiac segment, the pulmonary circuit and the whole cardio-pulmonary circuit. The advantages of minimum cardiac transit time measurements are the simplicity and the speed of the noninvasive functional diagnostic with lower radiation load and accuracy and reproductability with low error limits, especially for the whole cardio-pulmonary MTT. The simultaneous acquisition of multiple cardiac segments is to emphasize a special way. For its particular values similar error widths were found as for the left ventricular function measurement with the triggered scintigraphy of the interior of the heart. A further advantage of the measurement is an almost problem-less application in body load. Therefore the MTT-measurement is especially useful for preventive diagnostics of coronary diseases. A combination of MTT-measurements of all segments of the small circuit with the triggered scintigraphy of the interior of the heart for analysis of regional left-ventricular ejection fractions and left-ventricular wall movements would essentially enrich the noninvasive cardiac diagnostics. (orig./APR) [de
Energy Technology Data Exchange (ETDEWEB)
Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-01-01
For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.
Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity
Zhang, Zhifeng; Drapaca, Corina; Chen, Xiaolin; Xu, Jie
2017-07-01
Models of a droplet passing through narrow constrictions have wide applications in science and engineering. In this paper, we report our findings on the minimum impulse (momentum change) of pushing a droplet through a narrow circular constriction. The existence of this minimum impulse is mathematically derived and numerically verified. The minimum impulse happens at a critical velocity when the time-averaged Young-Laplace pressure balances the total minor pressure loss in the constriction. Finally, numerical simulations are conducted to verify these concepts. These results could be relevant to problems of energy optimization and studies of chemical and biomedical systems.
Method of statistical estimation of temperature minimums in binary systems
International Nuclear Information System (INIS)
Mireev, V.A.; Safonov, V.V.
1985-01-01
On the basis of statistical processing of literature data the technique for evaluation of temperature minima on liquidus curves in binary systems with common ion chloride systems being taken as an example, is developed. The systems are formed by 48 chlorides of 45 chemical elements including alkali, alkaline earth, rare earth and transition metals as well as Cd, In, Th. It is shown that calculation error in determining minimum melting points depends on topology of the phase diagram. The comparison of calculated and experimental data for several previously nonstudied systems is given
Energy Technology Data Exchange (ETDEWEB)
Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hwang, Ching-Shiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan (China)
2016-08-01
The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.
Height-Error Analysis for the FAA-Air Force Replacement Radar Program (FARR)
1991-08-01
7719 Figure 1-7 CLIMATOLOGY ERRORS BY MONWTH PERCENT FREQUENCY TABLE OF ERROR BY MONTH ERROR MONTH Col Pc IJAl IFEB )MA IA R IAY JJ’N IJUL JAUG (SEP...MONTH Col Pct IJAN IFEB IMPJ JAPR 1 MM IJUN IJUL JAUG ISEP J--T IN~ IDEC I Total ----- -- - - --------------------------.. . -.. 4...MONTH ERROR MONTH Col Pct IJAN IFEB IM4AR IAPR IMAY jJum IJU JAUG ISEP JOCT IN JDEC I Total . .- 4
Minimum weight protection - Gradient method; Protection de poids minimum - Methode du gradient
Energy Technology Data Exchange (ETDEWEB)
Danon, R.
1958-12-15
After having recalled that, when considering a mobile installation, total weight has a crucial importance, and that, in the case of a nuclear reactor, a non neglectable part of weight is that of protection, this note presents an iterative method which results, for a given protection, to a configuration with a minimum weight. After a description of the problem, the author presents the theoretical formulation of the gradient method as it is applied to the concerned case. This application is then discussed, as well as its validity in terms of convergence and uniqueness. Its actual application is then reported, and possibilities of practical applications are evoked.
Fast converging minimum probability of error neural network receivers for DS-CDMA communications.
Matyjas, John D; Psaromiligkos, Ioannis N; Batalama, Stella N; Medley, Michael J
2004-03-01
We consider a multilayer perceptron neural network (NN) receiver architecture for the recovery of the information bits of a direct-sequence code-division-multiple-access (DS-CDMA) user. We develop a fast converging adaptive training algorithm that minimizes the bit-error rate (BER) at the output of the receiver. The adaptive algorithm has three key features: i) it incorporates the BER, i.e., the ultimate performance evaluation measure, directly into the learning process, ii) it utilizes constraints that are derived from the properties of the optimum single-user decision boundary for additive white Gaussian noise (AWGN) multiple-access channels, and iii) it embeds importance sampling (IS) principles directly into the receiver optimization process. Simulation studies illustrate the BER performance of the proposed scheme.
The Unusual Minimum of Cycle 23: Observations and Interpretation
Martens, Petrus C.; Nandy, D.; Munoz-Jaramillo, A.
2009-05-01
The current minimum of cycle 23 is unusual in its long duration, the very low level to which Total Solar Irradiance (TSI) has fallen, and the small flux of the open polar fields. The deep minimum of TSI seems to be related to an unprecedented dearth of polar faculae, and hence to the small amount of open flux. Based upon surface flux transport models it has been suggested that the causes of these phenomena may be an unusually vigorous meridional flow, or even a deviation from Joy's law resulting in smaller Joy angles than usual for emerging flux in cycle 23. There is also the possibility of a connection with the recently inferred emergence in polar regions of bipoles that systematically defy Hale's law. Much speculation has been going on as to the consequences of this exceptional minimum: are we entering another global minimum, is this the end of the 80 year period of exceptionally high solar activity, or is this just a statistical hiccup? Dynamo simulations are underway that may help answer this question. As an aside it must be mentioned that the current minimum of TSI puts an upper limit in the TSI input for global climate simulations during the Maunder minimum, and that a possible decrease in future solar activity will result in a very small but not insignificant reduction in the pace of global warming.
Automatic error compensation in dc amplifiers
International Nuclear Information System (INIS)
Longden, L.L.
1976-01-01
When operational amplifiers are exposed to high levels of neutron fluence or total ionizing dose, significant changes may be observed in input voltages and currents. These changes may produce large errors at the output of direct-coupled amplifier stages. Therefore, the need exists for automatic compensation techniques. However, previously introduced techniques compensate only for errors in the main amplifier and neglect the errors induced by the compensating circuitry. In this paper, the techniques introduced compensate not only for errors in the main operational amplifier, but also for errors induced by the compensation circuitry. Included in the paper is a theoretical analysis of each compensation technique, along with advantages and disadvantages of each. Important design criteria and information necessary for proper selection of semiconductor switches will also be included. Introduced in this paper will be compensation circuitry for both resistive and capacitive feedback networks
[Medication errors in Spanish intensive care units].
Merino, P; Martín, M C; Alonso, A; Gutiérrez, I; Alvarez, J; Becerril, F
2013-01-01
To estimate the incidence of medication errors in Spanish intensive care units. Post hoc study of the SYREC trial. A longitudinal observational study carried out during 24 hours in patients admitted to the ICU. Spanish intensive care units. Patients admitted to the intensive care unit participating in the SYREC during the period of study. Risk, individual risk, and rate of medication errors. The final study sample consisted of 1017 patients from 79 intensive care units; 591 (58%) were affected by one or more incidents. Of these, 253 (43%) had at least one medication-related incident. The total number of incidents reported was 1424, of which 350 (25%) were medication errors. The risk of suffering at least one incident was 22% (IQR: 8-50%) while the individual risk was 21% (IQR: 8-42%). The medication error rate was 1.13 medication errors per 100 patient-days of stay. Most incidents occurred in the prescription (34%) and administration (28%) phases, 16% resulted in patient harm, and 82% were considered "totally avoidable". Medication errors are among the most frequent types of incidents in critically ill patients, and are more common in the prescription and administration stages. Although most such incidents have no clinical consequences, a significant percentage prove harmful for the patient, and a large proportion are avoidable. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.
Error-related brain activity and error awareness in an error classification paradigm.
Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E
2016-10-01
Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
I PUTU EKA IRAWAN
2013-11-01
Full Text Available Principal Component Regression is a method to overcome multicollinearity techniques by combining principal component analysis with regression analysis. The calculation of classical principal component analysis is based on the regular covariance matrix. The covariance matrix is optimal if the data originated from a multivariate normal distribution, but is very sensitive to the presence of outliers. Alternatives are used to overcome this problem the method of Least Median Square-Minimum Covariance Determinant (LMS-MCD. The purpose of this research is to conduct a comparison between Principal Component Regression (RKU and Method of Least Median Square - Minimum Covariance Determinant (LMS-MCD in dealing with outliers. In this study, Method of Least Median Square - Minimum Covariance Determinant (LMS-MCD has a bias and mean square error (MSE is smaller than the parameter RKU. Based on the difference of parameter estimators, still have a test that has a difference of parameter estimators method LMS-MCD greater than RKU method.
Directory of Open Access Journals (Sweden)
Antonio Boldrini
2013-06-01
Full Text Available Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy. Results: In Neonatology the main error domains are: medication and total parenteral nutrition, resuscitation and respiratory care, invasive procedures, nosocomial infections, patient identification, diagnostics. Risk factors include patients’ size, prematurity, vulnerability and underlying disease conditions but also multidisciplinary teams, working conditions providing fatigue, a large variety of treatment and investigative modalities needed. Discussion and Conclusions: In our opinion, it is hardly possible to change the human beings but it is likely possible to change the conditions under they work. Voluntary errors report systems can help in preventing adverse events. Education and re-training by means of simulation can be an effective strategy too. In Pisa (Italy Nina (ceNtro di FormazIone e SimulazioNe NeonAtale is a simulation center that offers the possibility of a continuous retraining for technical and non-technical skills to optimize neonatological care strategies. Furthermore, we have been working on a novel skill trainer for mechanical ventilation (MEchatronic REspiratory System SImulator for Neonatal Applications, MERESSINA. Finally, in our opinion national health policy indirectly influences risk for errors. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research
Poster - 49: Assessment of Synchrony respiratory compensation error for CyberKnife liver treatment
International Nuclear Information System (INIS)
Liu, Ming; Cygler, Joanna; Vandervoort, Eric
2016-01-01
The goal of this work is to quantify respiratory motion compensation errors for liver tumor patients treated by the CyberKnife system with Synchrony tracking, to identify patients with the smallest tracking errors and to eventually help coach patient’s breathing patterns to minimize dose delivery errors. The accuracy of CyberKnife Synchrony respiratory motion compensation was assessed for 37 patients treated for liver lesions by analyzing data from system logfiles. A predictive model is used to modulate the direction of individual beams during dose delivery based on the positions of internally implanted fiducials determined using an orthogonal x-ray imaging system and the current location of LED external markers. For each x-ray pair acquired, system logfiles report the prediction error, the difference between the measured and predicted fiducial positions, and the delivery error, which is an estimate of the statistical error in the model overcoming the latency between x-ray acquisition and robotic repositioning. The total error was calculated at the time of each x-ray pair, for the number of treatment fractions and the number of patients, giving the average respiratory motion compensation error in three dimensions. The 99 th percentile for the total radial error is 3.85 mm, with the highest contribution of 2.79 mm in superior/inferior (S/I) direction. The absolute mean compensation error is 1.78 mm radially with a 1.27 mm contribution in the S/I direction. Regions of high total error may provide insight into features predicting groups of patients with larger or smaller total errors.
Poster - 49: Assessment of Synchrony respiratory compensation error for CyberKnife liver treatment
Energy Technology Data Exchange (ETDEWEB)
Liu, Ming [Carleton University (Canada); Cygler, Joanna [The Ottawa Hospital Cancer Centre, Carleton University, Ottawa University (Canada); Vandervoort, Eric [The Ottawa Hospital Cancer Centre, Ottawa University (Canada)
2016-08-15
The goal of this work is to quantify respiratory motion compensation errors for liver tumor patients treated by the CyberKnife system with Synchrony tracking, to identify patients with the smallest tracking errors and to eventually help coach patient’s breathing patterns to minimize dose delivery errors. The accuracy of CyberKnife Synchrony respiratory motion compensation was assessed for 37 patients treated for liver lesions by analyzing data from system logfiles. A predictive model is used to modulate the direction of individual beams during dose delivery based on the positions of internally implanted fiducials determined using an orthogonal x-ray imaging system and the current location of LED external markers. For each x-ray pair acquired, system logfiles report the prediction error, the difference between the measured and predicted fiducial positions, and the delivery error, which is an estimate of the statistical error in the model overcoming the latency between x-ray acquisition and robotic repositioning. The total error was calculated at the time of each x-ray pair, for the number of treatment fractions and the number of patients, giving the average respiratory motion compensation error in three dimensions. The 99{sup th} percentile for the total radial error is 3.85 mm, with the highest contribution of 2.79 mm in superior/inferior (S/I) direction. The absolute mean compensation error is 1.78 mm radially with a 1.27 mm contribution in the S/I direction. Regions of high total error may provide insight into features predicting groups of patients with larger or smaller total errors.
Muroi, Maki; Shen, Jay J; Angosta, Alona
2017-02-01
Registered nurses (RNs) play an important role in safe medication administration and patient safety. This study examined a total of 1276 medication error (ME) incident reports made by RNs in hospital inpatient settings in the southwestern region of the United States. The most common drug class associated with MEs was cardiovascular drugs (24.7%). Among this class, anticoagulants had the most errors (11.3%). The antimicrobials was the second most common drug class associated with errors (19.1%) and vancomycin was the most common antimicrobial that caused errors in this category (6.1%). MEs occurred more frequently in the medical-surgical and intensive care units than any other hospital units. Ten percent of MEs reached the patients with harm and 11% reached the patients with increased monitoring. Understanding the contributing factors related to MEs, addressing and eliminating risk of errors across hospital units, and providing education and resources for nurses may help reduce MEs. Copyright © 2016 Elsevier Inc. All rights reserved.
Errors generated with the use of rectangular collimation
International Nuclear Information System (INIS)
Parks, E.T.
1991-01-01
This study was designed to determine whether various techniques for achieving rectangular collimation generate different numbers and types of errors and remakes and to determine whether operator skill level influences errors and remakes. Eighteen students exposed full-mouth series of radiographs on manikins with the use of six techniques. The students were grouped according to skill level. The radiographs were evaluated for errors and remakes resulting from errors in the following categories: cone cutting, vertical angulation, and film placement. Significant differences were found among the techniques in cone cutting errors and remakes, vertical angulation errors and remakes, and total errors and remakes. Operator skill did not appear to influence the number or types of errors or remakes generated. Rectangular collimation techniques produced more errors than did the round collimation techniques. However, only one rectangular collimation technique generated significantly more remakes than the other techniques
Fast Erasure-and error decoding of algebraic geometry codes up to the Feng-Rao bound
DEFF Research Database (Denmark)
Høholdt, Tom; Jensen, Helge Elbrønd; Sakata, Shojiro
1998-01-01
This correspondence gives an errata (that is erasure-and error-) decoding algorithm of one-point algebraic-geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-Massey algorithm and the voting procedure of Feng and Rao....
Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.
2018-04-01
The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.
Inference on rare errors using asymptotic expansions and bootstrap calibration
R. Helmers (Roelof)
1998-01-01
textabstractThe number of items in error in an audit population is usually quite small, whereas the error distribution is typically highly skewed to the right. For applications in statistical auditing, where line item sampling is appropriate, a new upper confidence limit for the total error amount
Testing the inverse-square law of gravity: Error and design with the upward continuation integral
International Nuclear Information System (INIS)
Thomas, J.
1989-01-01
It has been reported that the inverse-square law of gravity is violated over a range of a few hundred meters. I present a different method for the analysis of the data from that experiment. In this method, the experimental error can be evaluated analytically and I confirm the previous analysis but show that it is a 2σ effect. The method can also be used to design new experiments that will yield minimum errors for a fixed number of data points
The common mode failures analysis of the redundent system with dependent human error
International Nuclear Information System (INIS)
Kim, M.K.; Chang, S.H.
1983-01-01
Common mode failures (CMFs) have been a serious concern in the nuclear power plant. Thereis a broad category of the failure mechanisms that can cause common mode failures. This paper is a theoretical investigation of the CMFs on the unavailability of the redundent system. It is assumed that the total CMFs consist of the potential CMFs and the dependent human error CMFs. As the human error dependency is higher, the total CMFs are more effected by the dependent human error. If the human error dependence is lower, the system unavailability strongly depends on the potential CMFs, rather than the mechanical failure or the dependent human error. And it is shown that the total CMFs are dominant factor to the unavailability of the redundent system. (Author)
Directory of Open Access Journals (Sweden)
2012-12-01
Full Text Available Introduction: Emergency situation is one of the influencing factors on human error. The aim of this research was purpose to evaluate human error in emergency situation of fire and explosion at the oil company warehouse in Hamadan city applying human error probability index (HEPI. . Material and Method: First, the scenario of emergency situation of those situation of fire and explosion at the oil company warehouse was designed and then maneuver against, was performed. The scaled questionnaire of muster for the maneuver was completed in the next stage. Collected data were analyzed to calculate the probability success for the 18 actions required in an emergency situation from starting point of the muster until the latest action to temporary sheltersafe. .Result: The result showed that the highest probability of error occurrence was related to make safe workplace (evaluation phase with 32.4 % and lowest probability of occurrence error in detection alarm (awareness phase with 1.8 %, probability. The highest severity of error was in the evaluation phase and the lowest severity of error was in the awareness and recovery phase. Maximum risk level was related to the evaluating exit routes and selecting one route and choosy another exit route and minimum risk level was related to the four evaluation phases. . Conclusion: To reduce the risk of reaction in the exit phases of an emergency situation, the following actions are recommended, based on the finding in this study: A periodic evaluation of the exit phase and modifying them if necessary, conducting more maneuvers and analyzing this results along with a sufficient feedback to the employees.
Designing an efficient LT-code with unequal error protection for image transmission
S. Marques, F.; Schwartz, C.; Pinho, M. S.; Finamore, W. A.
2015-10-01
recommended by CCSDS. In fact, to design a LT-code with an unequal error protection, the bit stream produced by the algorithm recommended by CCSDS must be partitioned in M disjoint sets of bits. Using the weighted approach, the LT-code produces M different failure probabilities for each set of bits, p1, ..., pM leading to a total probability of failure, p which is an average of p1, ..., pM. In general, the parameters of the LT-code with unequal error protection is chosen using a heuristic procedure. In this work, we analyze the problem of choosing the LT-code parameters to optimize two figure of merits: (a) the probability of achieving a minimum acceptable PSNR, and (b) the mean of PSNR, given that the minimum acceptable PSNR has been achieved. Given the rate-distortion curve achieved by CCSDS recommended algorithm, this work establishes a closed form of the mean of PSNR (given that the minimum acceptable PSNR has been achieved) as a function of p1, ..., pM. The main contribution of this work is the study of a criteria to select the parameters p1, ..., pM to optimize the performance of image transmission.
Centrality of collisions and total disintegration of nuclei
International Nuclear Information System (INIS)
Sulejmanov, M.K.; Abdinov, O.B.; Anoshin, A.I.; Bogdanowicz, J.; Kuznetsov, A.A.
1998-01-01
The interrelation of the processes of total disintegration of nuclei with the process, characterized by the 'centrality' of collisions and a minimum flow of energy of secondary particles emitted at a zero angle in pC, dC, 4 HeC and 12 CC interactions, is investigated at 4.2 A · GeV/c. The events with total disintegration of nuclei are characterized by a high degree 'centrality' of collisions and similar to the events having a minimum flow of energy of particles emitted at a zero angle
Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods
Czech Academy of Sciences Publication Activity Database
Paige, C. C.; Strakoš, Zdeněk
2002-01-01
Roč. 23, č. 6 (2002), s. 1899-1924 ISSN 1064-8275 R&D Projects: GA AV ČR IAA1030103 Institutional research plan: AV0Z1030915 Keywords : linear equations * eigenproblem * large sparse matrices * iterative solutions * Krylov subspace methods * Arnoldi method * GMRES * modified Gram-Schmidt * least squares * total least squares * singular values Subject RIV: BA - General Mathematics Impact factor: 1.291, year: 2002
Ekin, Jack W.; Cheggour, Najib; Goodrich, Loren; Splett, Jolene
2017-03-01
In Part 2 of these articles, an extensive analysis of pinning-force curves and raw scaling data was used to derive the Extrapolative Scaling Expression (ESE). This is a parameterization of the Unified Scaling Law (USL) that has the extrapolation capability of fundamental unified scaling, coupled with the application ease of a simple fitting equation. Here in Part 3, the accuracy of the ESE relation to interpolate and extrapolate limited critical-current data to obtain complete I c(B,T,ɛ) datasets is evaluated and compared with present fitting equations. Accuracy is analyzed in terms of root mean square (RMS) error and fractional deviation statistics. Highlights from 92 test cases are condensed and summarized, covering most fitting protocols and proposed parameterizations of the USL. The results show that ESE reliably extrapolates critical currents at fields B, temperatures T, and strains ɛ that are remarkably different from the fitted minimum dataset. Depending on whether the conductor is moderate-J c or high-J c, effective RMS extrapolation errors for ESE are in the range 2-5 A at 12 T, which approaches the I c measurement error (1-2%). The minimum dataset for extrapolating full I c(B,T,ɛ) characteristics is also determined from raw scaling data. It consists of one set of I c(B,ɛ) data at a fixed temperature (e.g., liquid helium temperature), and one set of I c(B,T) data at a fixed strain (e.g., zero applied strain). Error analysis of extrapolations from the minimum dataset with different fitting equations shows that ESE reduces the percentage extrapolation errors at individual data points at high fields, temperatures, and compressive strains down to 1/10th to 1/40th the size of those for extrapolations with present fitting equations. Depending on the conductor, percentage fitting errors for interpolations are also reduced to as little as 1/15th the size. The extrapolation accuracy of the ESE relation offers the prospect of straightforward implementation of
Do Minimum Wages Fight Poverty?
David Neumark; William Wascher
1997-01-01
The primary goal of a national minimum wage floor is to raise the incomes of poor or near-poor families with members in the work force. However, estimates of employment effects of minimum wages tell us little about whether minimum wages are can achieve this goal; even if the disemployment effects of minimum wages are modest, minimum wage increases could result in net income losses for poor families. We present evidence on the effects of minimum wages on family incomes from matched March CPS s...
International Nuclear Information System (INIS)
Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee
2003-01-01
ALPO is an Average Leaf Pair Opening (the concept of ALPO was previously introduced by us in Med. Phys. 28, 2220-2226 (2001). Therefore, dose errors associated with RLP errors are larger for fields requiring small leaf gaps. For an N-field IMRT plan, we demonstrate that the total fluence error (if we neglect inhomogeneities and scatter) is proportional to 1/√(N), where N is the number of fields, which slightly reduces the impact of RLP errors of individual fields on the total fluence error. We tested and applied the analytical apparatus in the context of commercial inverse treatment planning systems used in our clinics (Helios TM and BrainScan TM ). We determined the actual distribution of leaf-positional errors by studying MLC controller (Varian Mark II and Brainlab Novalis MLCs) log files created by the controller after each field delivery. The analytically derived relationship between fluence error and RLP errors was confirmed by numerical simulations. The equivalence of relative fluence error to relative dose error was verified by a direct dose calculation. We also experimentally verified the truthfulness of fluences derived from the log file data by comparing them to film data
Nursing Errors in Intensive Care Unit by Human Error Identification in Systems Tool: A Case Study
Directory of Open Access Journals (Sweden)
Nezamodini
2016-03-01
Full Text Available Background Although health services are designed and implemented to improve human health, the errors in health services are a very common phenomenon and even sometimes fatal in this field. Medical errors and their cost are global issues with serious consequences for the patients’ community that are preventable and require serious attention. Objectives The current study aimed to identify possible nursing errors applying human error identification in systems tool (HEIST in the intensive care units (ICUs of hospitals. Patients and Methods This descriptive research was conducted in the intensive care unit of a hospital in Khuzestan province in 2013. Data were collected through observation and interview by nine nurses in this section in a period of four months. Human error classification was based on Rose and Rose and Swain and Guttmann models. According to HEIST work sheets the guide questions were answered and error causes were identified after the determination of the type of errors. Results In total 527 errors were detected. The performing operation on the wrong path had the highest frequency which was 150, and the second rate with a frequency of 136 was doing the tasks later than the deadline. Management causes with a frequency of 451 were the first rank among identified errors. Errors mostly occurred in the system observation stage and among the performance shaping factors (PSFs, time was the most influencing factor in occurrence of human errors. Conclusions Finally, in order to prevent the occurrence and reduce the consequences of identified errors the following suggestions were proposed : appropriate training courses, applying work guidelines and monitoring their implementation, increasing the number of work shifts, hiring professional workforce, equipping work space with appropriate facilities and equipment.
Directory of Open Access Journals (Sweden)
Yuriy YATSUK
2015-06-01
Full Text Available Since during design it is impossible to use the uncertainty approach because the measurement results are still absent and as noted the error approach that can be successfully applied taking as true the nominal value of instruments transformation function. Limiting possibilities of additive error correction of measuring instruments for Cyber-Physical Systems are studied basing on general and special methods of measurement. Principles of measuring circuit maximal symmetry and its minimal reconfiguration are proposed for measurement or/and calibration. It is theoretically justified for the variety of correction methods that minimum additive error of measuring instruments exists under considering the real equivalent parameters of input electronic switches. Terms of self-calibrating and verification the measuring instruments in place are studied.
Action errors, error management, and learning in organizations.
Frese, Michael; Keith, Nina
2015-01-03
Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.
Modeling coherent errors in quantum error correction
Greenbaum, Daniel; Dutton, Zachary
2018-01-01
Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.
Heckman, S.
2015-12-01
Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.
Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy
International Nuclear Information System (INIS)
Parsai, Homayon; Cho, Paul S; Phillips, Mark H; Giansiracusa, Robert S; Axen, David
2003-01-01
This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of ±0.5 mm were shown to result in significant dosimetric deviations
Error amplification to promote motor learning and motivation in therapy robotics.
Shirzad, Navid; Van der Loos, H F Machiel
2012-01-01
To study the effects of different feedback error amplification methods on a subject's upper-limb motor learning and affect during a point-to-point reaching exercise, we developed a real-time controller for a robotic manipulandum. The reaching environment was visually distorted by implementing a thirty degrees rotation between the coordinate systems of the robot's end-effector and the visual display. Feedback error amplification was provided to subjects as they trained to learn reaching within the visually rotated environment. Error amplification was provided either visually or through both haptic and visual means, each method with two different amplification gains. Subjects' performance (i.e., trajectory error) and self-reports to a questionnaire were used to study the speed and amount of adaptation promoted by each error amplification method and subjects' emotional changes. We found that providing haptic and visual feedback promotes faster adaptation to the distortion and increases subjects' satisfaction with the task, leading to a higher level of attentiveness during the exercise. This finding can be used to design a novel exercise regimen, where alternating between error amplification methods is used to both increase a subject's motor learning and maintain a minimum level of motivational engagement in the exercise. In future experiments, we will test whether such exercise methods will lead to a faster learning time and greater motivation to pursue a therapy exercise regimen.
Frecuencia de errores de los pacientes con su medicación Frequency of medication errors by patients
Directory of Open Access Journals (Sweden)
José Joaquín Mira
2012-02-01
Full Text Available OBJETIVO: Analizar la frecuencia de errores de medicación que son cometidos e informados por los pacientes. MÉTODOS: Estudio descriptivo basado en encuestas telefónicas a una muestra aleatoria de pacientes adultos del nivel primario de salud del sistema público español. Respondieron un total de 1 247 pacientes (tasa de respuesta, 75%. El 63% eran mujeres y 29% eran mayores de 70 años. RESULTADOS: Mientras 37 pacientes (3%, IC 95%: 2-4 sufrieron complicaciones asociadas a la medicación en el curso del tratamiento, 241 (19,4%, IC 95%: 17-21 informaron haber cometido algún error con la medicación. Un menor tiempo de consulta (P OBJECTIVE: Analyze the frequency of medication errors committed and reported by patients. METHODS: Descriptive study based on a telephone survey of a random sample of adult patients from the primary care level of the Spanish public health care system. A total of 1 247 patients responded (75% response rate; 63% were women and 29% were older than 70 years. RESULTS: While 37 patients (3%, 95% CI: 2-4 experienced complications associated with medication in the course of treatment, 241 (19.4%, 95% CI: 17-21 reported having made some mistake with their medication. A shorter consultation time (P < 0.01 and a worse assessment of the information provided by the physician (P < 0.01 were associated with the fact that during pharmacy dispensing the patient was told that the prescribed treatment was not appropriate. CONCLUSIONS: In addition to the known risks of an adverse event due to a health intervention resulting from a system or practitioner error, there are risks associated with patient errors in the self-administration of medication. Patients who were unsatisfied with the information provided by the physician reported a greater number of errors.
Errors in causal inference: an organizational schema for systematic error and random error.
Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji
2016-11-01
To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Bin Xu
2013-01-01
Full Text Available We used micro-double-staged laminated object manufacturing process (micro-DLOM to fabricate 3D micromold. Moreover, the error of the micro-DLOM was also studied. Firstly, we got the principle error of the micro-DLOM. Based on the mathematical expression, it can be deduced that the smaller the opening angle α and the steel foil thickness h are, the smaller the principle error δ is. Secondly, we studied the error of femtosecond laser cutting. Through the experimental results, we know that the error of femtosecond laser cutting is 0.5 μm under 110 mW femtosecond laser power, 100 μm/s cutting speed, and 0.75 μm dimension compensation. Finally, we researched the error of microelectric resistance slip welding. Based on the research results, we can know that the minimum error of microcavity mold in the height direction is only 0.22 μm when welding voltage is 0.21 V and the number of slip welding discharge is 160.
NLO error propagation exercise: statistical results
International Nuclear Information System (INIS)
Pack, D.J.; Downing, D.J.
1985-09-01
Error propagation is the extrapolation and cumulation of uncertainty (variance) above total amounts of special nuclear material, for example, uranium or 235 U, that are present in a defined location at a given time. The uncertainty results from the inevitable inexactness of individual measurements of weight, uranium concentration, 235 U enrichment, etc. The extrapolated and cumulated uncertainty leads directly to quantified limits of error on inventory differences (LEIDs) for such material. The NLO error propagation exercise was planned as a field demonstration of the utilization of statistical error propagation methodology at the Feed Materials Production Center in Fernald, Ohio from April 1 to July 1, 1983 in a single material balance area formed specially for the exercise. Major elements of the error propagation methodology were: variance approximation by Taylor Series expansion; variance cumulation by uncorrelated primary error sources as suggested by Jaech; random effects ANOVA model estimation of variance effects (systematic error); provision for inclusion of process variance in addition to measurement variance; and exclusion of static material. The methodology was applied to material balance area transactions from the indicated time period through a FORTRAN computer code developed specifically for this purpose on the NLO HP-3000 computer. This paper contains a complete description of the error propagation methodology and a full summary of the numerical results of applying the methodlogy in the field demonstration. The error propagation LEIDs did encompass the actual uranium and 235 U inventory differences. Further, one can see that error propagation actually provides guidance for reducing inventory differences and LEIDs in future time periods
Systematic errors of EIT systems determined by easily-scalable resistive phantoms.
Hahn, G; Just, A; Dittmar, J; Hellige, G
2008-06-01
We present a simple method to determine systematic errors that will occur in the measurements by EIT systems. The approach is based on very simple scalable resistive phantoms for EIT systems using a 16 electrode adjacent drive pattern. The output voltage of the phantoms is constant for all combinations of current injection and voltage measurements and the trans-impedance of each phantom is determined by only one component. It can be chosen independently from the input and output impedance, which can be set in order to simulate measurements on the human thorax. Additional serial adapters allow investigation of the influence of the contact impedance at the electrodes on resulting errors. Since real errors depend on the dynamic properties of an EIT system, the following parameters are accessible: crosstalk, the absolute error of each driving/sensing channel and the signal to noise ratio in each channel. Measurements were performed on a Goe-MF II EIT system under four different simulated operational conditions. We found that systematic measurement errors always exceeded the error level of stochastic noise since the Goe-MF II system had been optimized for a sufficient signal to noise ratio but not for accuracy. In time difference imaging and functional EIT (f-EIT) systematic errors are reduced to a minimum by dividing the raw data by reference data. This is not the case in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale. We conclude that a reduction of systematic errors has to be one major goal in future system design.
Systematic errors of EIT systems determined by easily-scalable resistive phantoms
International Nuclear Information System (INIS)
Hahn, G; Just, A; Dittmar, J; Hellige, G
2008-01-01
We present a simple method to determine systematic errors that will occur in the measurements by EIT systems. The approach is based on very simple scalable resistive phantoms for EIT systems using a 16 electrode adjacent drive pattern. The output voltage of the phantoms is constant for all combinations of current injection and voltage measurements and the trans-impedance of each phantom is determined by only one component. It can be chosen independently from the input and output impedance, which can be set in order to simulate measurements on the human thorax. Additional serial adapters allow investigation of the influence of the contact impedance at the electrodes on resulting errors. Since real errors depend on the dynamic properties of an EIT system, the following parameters are accessible: crosstalk, the absolute error of each driving/sensing channel and the signal to noise ratio in each channel. Measurements were performed on a Goe-MF II EIT system under four different simulated operational conditions. We found that systematic measurement errors always exceeded the error level of stochastic noise since the Goe-MF II system had been optimized for a sufficient signal to noise ratio but not for accuracy. In time difference imaging and functional EIT (f-EIT) systematic errors are reduced to a minimum by dividing the raw data by reference data. This is not the case in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale. We conclude that a reduction of systematic errors has to be one major goal in future system design
Directory of Open Access Journals (Sweden)
Daniel Bourgault
Full Text Available Two fundamental sign errors were found in a computer code used for studying the oxygen minimum zone (OMZ and hypoxia in the Estuary and Gulf of St. Lawrence. These errors invalidate the conclusions drawn from the model, and call into question a proposed mechanism for generating OMZ that challenges classical understanding. The study in question is being cited frequently, leading the discipline in the wrong direction.
Feeney, Joanne; Savva, George M; O'Regan, Claire; King-Kallimanis, Bellinda; Cronin, Hilary; Kenny, Rose Anne
2016-05-31
Knowing the reliability of cognitive tests, particularly those commonly used in clinical practice, is important in order to interpret the clinical significance of a change in performance or a low score on a single test. To report the intra-class correlation (ICC), standard error of measurement (SEM) and minimum detectable change (MDC) for the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Color Trails Test (CTT) among community dwelling older adults. 130 participants aged 55 and older without severe cognitive impairment underwent two cognitive assessments between two and four months apart. Half the group changed rater between assessments and half changed time of day. Mean (standard deviation) MMSE was 28.1 (2.1) at baseline and 28.4 (2.1) at repeat. Mean (SD) MoCA increased from 24.8 (3.6) to 25.2 (3.6). There was a rater effect on CTT, but not on the MMSE or MoCA. The SEM of the MMSE was 1.0, leading to an MDC (based on a 95% confidence interval) of 3 points. The SEM of the MoCA was 1.5, implying an MDC95 of 4 points. MoCA (ICC = 0.81) was more reliable than MMSE (ICC = 0.75), but all tests examined showed substantial within-patient variation. An individual's score would have to change by greater than or equal to 3 points on the MMSE and 4 points on the MoCA for the rater to be confident that the change was not due to measurement error. This has important implications for epidemiologists and clinicians in dementia screening and diagnosis.
The effect of experimental sleep fragmentation on error monitoring.
Ko, Cheng-Hung; Fang, Ya-Wen; Tsai, Ling-Ling; Hsieh, Shulan
2015-01-01
Experimental sleep fragmentation (SF) is characterized by frequent brief arousals without reduced total sleep time and causes daytime sleepiness and impaired neurocognitive processes. This study explored the impact of SF on error monitoring. Thirteen adults underwent auditory stimuli-induced high-level (H) and low-level (L) SF nights. Flanker task performance and electroencephalogram data were collected in the morning following SF nights. Compared to LSF, HSF induced more arousals and stage N1 sleep, decreased slow wave sleep and rapid-eye-movement sleep (REMS), decreased subjective sleep quality, increased daytime sleepiness, and decreased amplitudes of P300 and error-related positivity (Pe). SF effects on N1 sleep were negatively correlated with SF effects on the Pe amplitude. Furthermore, as REMS was reduced by SF, post-error accuracy compensations were greatly reduced. In conclusion, attentional processes and error monitoring were impaired following one night of frequent sleep disruptions, even when total sleep time was not reduced. Copyright © 2014 Elsevier B.V. All rights reserved.
Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum
Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.
2001-01-01
The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.
Conversion and matched filter approximations for serial minimum-shift keyed modulation
Ziemer, R. E.; Ryan, C. R.; Stilwell, J. H.
1982-01-01
Serial minimum-shift keyed (MSK) modulation, a technique for generating and detecting MSK using series filtering, is ideally suited for high data rate applications provided the required conversion and matched filters can be closely approximated. Low-pass implementations of these filters as parallel inphase- and quadrature-mixer structures are characterized in this paper in terms of signal-to-noise ratio (SNR) degradation from ideal and envelope deviation. Several hardware implementation techniques utilizing microwave devices or lumped elements are presented. Optimization of parameter values results in realizations whose SNR degradation is less than 0.5 dB at error probabilities of .000001.
Barriers to Medical Error Reporting for Physicians and Nurses.
Soydemir, Dilek; Seren Intepeler, Seyda; Mert, Hatice
2017-10-01
The purpose of the study was to determine what barriers to error reporting exist for physicians and nurses. The study, of descriptive qualitative design, was conducted with physicians and nurses working at a training and research hospital. In-depth interviews were held with eight physicians and 15 nurses, a total of 23 participants. Physicians and nurses do not choose to report medical errors that they experience or witness. When barriers to error reporting were examined, it was seen that there were four main themes involved: fear, the attitude of administration, barriers related to the system, and the employees' perceptions of error. It is important in terms of preventing medical errors to identify the barriers that keep physicians and nurses from reporting errors.
Pablo Mejía Reyes
2007-01-01
Se modela la dinámica de las importaciones totales y de carne de cerdo de México para el periodo de vigencia del TLCAN. Asimismo, partiendo de un marco convencional, se analiza la existencia de cointegración entre las importaciones de cada tipo, la producción nacional y los precios relativos. Posteriormente, se modela la dinámica de corto plazo de cada tipo de importaciones mediante un modelo de corrección de error empleando las mismas variables explicatorias. Los resultados sugieren que las ...
Reliability of the minimum basic dataset for diagnoses of cerebrovascular disease.
Hernández Medrano, I; Guillán, M; Masjuan, J; Alonso Cánovas, A; Gogorcena, M A
2017-03-01
The minimum basic dataset is the largest available hospital care administrative database that is used in clinical studies and hospital management in association with diagnosis-related groups (DRGs). In 2011, the quality of the national MBDS in hospital discharges was audited, in order to assess its reliability. This paper presents a sub-analysis of the results from that analysis which are referred to cerebrovascular disease (CVD). Using all discharge reports from the Spanish MBDS in 2009, a representative sample was obtained by stratified sampling and 11 209 records were evaluated. Outcome indicators were obtained to measure any differences observed between the national MBDS being evaluated and the hospital's original MBDS. Analysis of codes for CVD as a primary diagnosis was performed for ICD-9-CM diagnostic categories 430 through 438. We evaluated error rates in the selection and classification of main diagnoses, as well as in DRG assignment. There were 397 discharges of cases of CVD which included 21 different DRGs. Diagnostic coding showed a concordance rate of 81.87%; the selection error rate was 2.26% and the classification error rate was 15.87%. The error rate in the DRG was 16.12% and associated with the greatest impact on the mortality risk level. While the errors we observed must be taken into account, data suggest that the quality of the MBDS for CVD is sufficient to ensure delivery of valid information. The hospital discharge registry serves as a valuable tool for use in studies of this disease. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Evaluation of measurement precision errors at different bone density values
International Nuclear Information System (INIS)
Wilson, M.; Wong, J.; Bartlett, M.; Lee, N.
2002-01-01
Full text: The precision error commonly used in serial monitoring of BMD values using Dual Energy X Ray Absorptometry (DEXA) is 0.01-0.015g/cm - for both the L2 L4 lumbar spine and total femur. However, this limit is based on normal individuals with bone densities similar to the population mean. The purpose of this study was to systematically evaluate precision errors over the range of bone density values encountered in clinical practice. In 96 patients a BMD scan of the spine and femur was immediately repeated by the same technologist with the patient taken off the bed and repositioned between scans. Nine technologists participated. Values were obtained for the total femur and spine. Each value was classified as low range (0.75-1.05 g/cm ) and medium range (1.05- 1.35g/cm ) for the spine, low range (0.55 0. 85 g/cm ) and medium range (0.85-1.15 g/cm ) for the total femur. Results show that the precision error was significantly lower in the medium range for total femur results with the medium range value at 0.015 g/cm - and the low range at 0.025 g/cm - (p<0.01). No significant difference was found for the spine results. We also analysed precision errors between three technologists and found a significant difference (p=0.05) occurred between only two technologists and this was seen in the spine data only. We conclude that there is some evidence that the precision error increases at the outer limits of the normal bone density range. Also, the results show that having multiple trained operators does not greatly increase the BMD precision error. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc
Rising above the Minimum Wage.
Even, William; Macpherson, David
An in-depth analysis was made of how quickly most people move up the wage scale from minimum wage, what factors influence their progress, and how minimum wage increases affect wage growth above the minimum. Very few workers remain at the minimum wage over the long run, according to this study of data drawn from the 1977-78 May Current Population…
Error Correction for Non-Abelian Topological Quantum Computation
Directory of Open Access Journals (Sweden)
James R. Wootton
2014-03-01
Full Text Available The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However, the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here, we address this issue by considering the properties of non-Abelian error correction, in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of D(S_{3}. This shares many properties with important models such as the Fibonacci anyons, making our method more generally applicable. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of 7% for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.
Schurr, Karl; Sherrington, Catherine; Wallbank, Geraldine; Pamphlett, Patricia; Olivetti, Lynette
2012-07-01
To determine the reliability of the minimum sit-to-stand height test, its responsiveness and its relationship to leg muscle strength among rehabilitation unit inpatients and outpatients. Reliability study using two measurers and two test occasions. Secondary analysis of data from two clinical trials. Inpatient and outpatient rehabilitation services in three public hospitals. Eighteen hospital patients and five others participated in the reliability study. Seventy-two rehabilitation unit inpatients and 80 outpatients participated in the clinical trials. The minimum sit-to-stand height test was assessed using a standard procedure. For the reliability study, a second tester repeated the minimum sit-to-stand height test on the same day. In the inpatient clinical trial the measures were repeated two weeks later. In the outpatient trial the measures were repeated five weeks later. Knee extensor muscle strength was assessed in the clinical trials using a hand-held dynamometer. The reliability for the minimum sit-to-stand height test was excellent (intraclass correlation coefficient (ICC) 0.91, 95% confidence interval (CI) 0.81-0.96). The standard error of measurement was 34 mm. Responsiveness was moderate in the inpatient trial (effect size: 0.53) but small in the outpatient trial (effect size: 0.16). A small proportion (8-17%) of variability in minimum sit-to-stand height test was explained by knee extensor muscle strength. The minimum sit-to-stand height test has excellent reliability and moderate responsiveness in an inpatient rehabilitation setting. Responsiveness in an outpatient rehabilitation setting requires further investigation. Performance is influenced by factors other than knee extensor muscle strength.
Automated drug dispensing system reduces medication errors in an intensive care setting.
Chapuis, Claire; Roustit, Matthieu; Bal, Gaëlle; Schwebel, Carole; Pansu, Pascal; David-Tchouda, Sandra; Foroni, Luc; Calop, Jean; Timsit, Jean-François; Allenet, Benoît; Bosson, Jean-Luc; Bedouch, Pierrick
2010-12-01
We aimed to assess the impact of an automated dispensing system on the incidence of medication errors related to picking, preparation, and administration of drugs in a medical intensive care unit. We also evaluated the clinical significance of such errors and user satisfaction. Preintervention and postintervention study involving a control and an intervention medical intensive care unit. Two medical intensive care units in the same department of a 2,000-bed university hospital. Adult medical intensive care patients. After a 2-month observation period, we implemented an automated dispensing system in one of the units (study unit) chosen randomly, with the other unit being the control. The overall error rate was expressed as a percentage of total opportunities for error. The severity of errors was classified according to National Coordinating Council for Medication Error Reporting and Prevention categories by an expert committee. User satisfaction was assessed through self-administered questionnaires completed by nurses. A total of 1,476 medications for 115 patients were observed. After automated dispensing system implementation, we observed a reduced percentage of total opportunities for error in the study compared to the control unit (13.5% and 18.6%, respectively; perror (20.4% and 13.5%; perror showed a significant impact of the automated dispensing system in reducing preparation errors (perrors caused no harm (National Coordinating Council for Medication Error Reporting and Prevention category C). The automated dispensing system did not reduce errors causing harm. Finally, the mean for working conditions improved from 1.0±0.8 to 2.5±0.8 on the four-point Likert scale. The implementation of an automated dispensing system reduced overall medication errors related to picking, preparation, and administration of drugs in the intensive care unit. Furthermore, most nurses favored the new drug dispensation organization.
Correct statistical evaluation for total dose in rural settlement
International Nuclear Information System (INIS)
Vlasova, N.G.; Skryabin, A.M.
2001-01-01
Statistical evaluation of dose reduced to the determination of an average value and its error. If an average value of a total dose in general can be determined by simple summarizing of the averages of its external and internal components, the evaluation of an error can be received only from its distribution. Herewith, considering that both components of the dose are interdependent, to summarize their distributions, as a last ones of a random independent variables, is incorrect. It follows that an evaluation of the parameters of the total dose distribution, including an error, in general, cannot be received empirically, particularly, at the lack or absence of the data on one of the components of the last one, that constantly is happens in practice. If the evaluation of an average for total dose was defined somehow, as the best, as an average of a distribution of the values of individual total doses, as summarizing the individual external and internal doses by the random type, that an error of evaluation had not been produced. The methodical approach to evaluation of the total dose distribution at the lack of dosimetric information was designed. The essence of it is original way of an interpolation of an external dose distribution, using data on an internal dose
Error begat error: design error analysis and prevention in social infrastructure projects.
Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M
2012-09-01
Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.
Gräfenstein, Jürgen; Kraka, Elfi; Cremer, Dieter
2004-01-08
Self-interaction corrected density functional theory was used to determine the self-interaction error for dissociating one-electron bonds. The self-interaction error of the unpaired electron mimics nondynamic correlation effects that have no physical basis where these effects increase for increasing separation distance. For short distances the magnitude of the self-interaction error takes a minimum and increases then again for decreasing R. The position of the minimum of the magnitude of the self-interaction error influences the equilibrium properties of the one-electron bond in the radical cations H2+ (1), B2H4+ (2), and C2H6+ (3), which differ significantly. These differences are explained by hyperconjugative interactions in 2 and 3 that are directly reflected by the self-interaction error and its orbital contributions. The density functional theory description of the dissociating radical cations suffers not only from the self-interaction error but also from the simplified description of interelectronic exchange. The calculated differences between ionic and covalent dissociation for 1, 2, and 3 provide an excellent criterion for determining the basic failures of density functional theory, self-interaction corrected density functional theory, and other methods. Pure electronic, orbital relaxation, and geometric relaxation contributions to the self-interaction error are discussed. The relevance of these effects for the description of transition states and charge transfer complexes is shown. Suggestions for the construction of new exchange-correlation functionals are given. In this connection, the disadvantages of recently suggested self-interaction error-free density functional theory methods are emphasized. (c) 2004 American Institute of Physics
Early results of Latitude primary total elbow replacement with a minimum follow-up of 2 years.
Mehta, Saurabh S; Watts, Adam C; Talwalkar, Sumedh C; Birch, Ann; Nuttall, David; Trail, Ian A
2017-10-01
The aim of this study was to present outcomes of primary Latitude total elbow replacement (TER) with a minimum follow-up of 2 years. A retrospective cohort study was undertaken with prospective outcome data collection for the latest outcome. Included were 63 consecutive primary Latitude TERs in 58 patients performed during a period of 5 years at a specialist orthopedic hospital. The mean age of the patients was 62 years (33-85 years). Five primary TERs (4 patients) were lost to follow-up. The primary diagnosis was rheumatoid arthritis in 49, osteoarthritis in 8, and trauma in 6 elbows. The mean flexion-extension arc was 75° preoperatively and 97° postoperatively. Mean postoperative Elbex pain score was 19/100, and function score was 37/100. Mean postoperative scores were 42/100 for the Quick Disabilities of the Arm, Shoulder, and Hand and 38/50 for the elbow-specific American Shoulder and Elbow Surgeons assessment. Four patients died of unrelated causes, and 8 of 63 underwent further surgical intervention, including explantation and conversion from unlinked to linked implant. On radiographic review of 41 surviving TERs, aseptic radiologic loosening was observed of the humeral component in 4 elbows and of the ulnar component in 9. Seven elbows had no radial component, and of the remaining 34 elbows, 16 (47%) had signs of loosening of the radial implant. Complications included 1 heterotopic ossification, 1 olecranon fracture, and 3 further procedures for ulnar nerve entrapment. The results indicate that the early outcome of Latitude TER is comparable to that of other prostheses. There is concern about early radiologic loosening of the radial component. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Soury, Hamza
2015-01-07
This work considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox’s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations [1].
Soury, Hamza; Alouini, Mohamed-Slim
2015-01-01
This work considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox’s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations [1].
Logical error rate scaling of the toric code
International Nuclear Information System (INIS)
Watson, Fern H E; Barrett, Sean D
2014-01-01
To date, a great deal of attention has focused on characterizing the performance of quantum error correcting codes via their thresholds, the maximum correctable physical error rate for a given noise model and decoding strategy. Practical quantum computers will necessarily operate below these thresholds meaning that other performance indicators become important. In this work we consider the scaling of the logical error rate of the toric code and demonstrate how, in turn, this may be used to calculate a key performance indicator. We use a perfect matching decoding algorithm to find the scaling of the logical error rate and find two distinct operating regimes. The first regime admits a universal scaling analysis due to a mapping to a statistical physics model. The second regime characterizes the behaviour in the limit of small physical error rate and can be understood by counting the error configurations leading to the failure of the decoder. We present a conjecture for the ranges of validity of these two regimes and use them to quantify the overhead—the total number of physical qubits required to perform error correction. (paper)
Samsiah, A; Othman, Noordin; Jamshed, Shazia; Hassali, Mohamed Azmi; Wan-Mohaina, W M
2016-12-01
Reporting and analysing the data on medication errors (MEs) is important and contributes to a better understanding of the error-prone environment. This study aims to examine the characteristics of errors submitted to the National Medication Error Reporting System (MERS) in Malaysia. A retrospective review of reports received from 1 January 2009 to 31 December 2012 was undertaken. Descriptive statistics method was applied. A total of 17,357 MEs reported were reviewed. The majority of errors were from public-funded hospitals. Near misses were classified in 86.3 % of the errors. The majority of errors (98.1 %) had no harmful effects on the patients. Prescribing contributed to more than three-quarters of the overall errors (76.1 %). Pharmacists detected and reported the majority of errors (92.1 %). Cases of erroneous dosage or strength of medicine (30.75 %) were the leading type of error, whilst cardiovascular (25.4 %) was the most common category of drug found. MERS provides rich information on the characteristics of reported MEs. Low contribution to reporting from healthcare facilities other than government hospitals and non-pharmacists requires further investigation. Thus, a feasible approach to promote MERS among healthcare providers in both public and private sectors needs to be formulated and strengthened. Preventive measures to minimise MEs should be directed to improve prescribing competency among the fallible prescribers identified.
International Nuclear Information System (INIS)
Kim, Jae Whan; Park, Jin Kyun
2010-01-01
Periodic or non-periodic test and maintenance (T and M) activities in large, complex systems such as nuclear power plants (NPPs) are essential for sustaining stable and safe operation of the systems. On the other hand, it also has been raised that human erroneous actions that might occur during T and M activities has the possibility of incurring unplanned reactor trips (RTs) or power derate, making safety-related systems unavailable, or making the reliability of components degraded. Contribution of human errors during normal and abnormal activities of NPPs to the unplanned RTs is known to be about 20% of the total events. This paper introduces a procedure for predictively analyzing human error potentials when maintenance personnel perform T and M tasks based on a work procedure or their work plan. This procedure helps plant maintenance team prepare for plausible human errors. The procedure to be introduced is focusing on the recurrent error forms (or modes) in execution-based errors such as wrong object, omission, too little, and wrong action
Employment effects of minimum wages
Neumark, David
2014-01-01
The potential benefits of higher minimum wages come from the higher wages for affected workers, some of whom are in low-income families. The potential downside is that a higher minimum wage may discourage employers from using the low-wage, low-skill workers that minimum wages are intended to help. Research findings are not unanimous, but evidence from many countries suggests that minimum wages reduce the jobs available to low-skill workers.
Technology and medication errors: impact in nursing homes.
Baril, Chantal; Gascon, Viviane; St-Pierre, Liette; Lagacé, Denis
2014-01-01
The purpose of this paper is to study a medication distribution technology's (MDT) impact on medication errors reported in public nursing homes in Québec Province. The work was carried out in six nursing homes (800 patients). Medication error data were collected from nursing staff through a voluntary reporting process before and after MDT was implemented. The errors were analysed using: totals errors; medication error type; severity and patient consequences. A statistical analysis verified whether there was a significant difference between the variables before and after introducing MDT. The results show that the MDT detected medication errors. The authors' analysis also indicates that errors are detected more rapidly resulting in less severe consequences for patients. MDT is a step towards safer and more efficient medication processes. Our findings should convince healthcare administrators to implement technology such as electronic prescriber or bar code medication administration systems to improve medication processes and to provide better healthcare to patients. Few studies have been carried out in long-term healthcare facilities such as nursing homes. The authors' study extends what is known about MDT's impact on medication errors in nursing homes.
Radon measurements-discussion of error estimates for selected methods
International Nuclear Information System (INIS)
Zhukovsky, Michael; Onischenko, Alexandra; Bastrikov, Vladislav
2010-01-01
The main sources of uncertainties for grab sampling, short-term (charcoal canisters) and long term (track detectors) measurements are: systematic bias of reference equipment; random Poisson and non-Poisson errors during calibration; random Poisson and non-Poisson errors during measurements. The origins of non-Poisson random errors during calibration are different for different kinds of instrumental measurements. The main sources of uncertainties for retrospective measurements conducted by surface traps techniques can be divided in two groups: errors of surface 210 Pb ( 210 Po) activity measurements and uncertainties of transfer from 210 Pb surface activity in glass objects to average radon concentration during this object exposure. It's shown that total measurement error of surface trap retrospective technique can be decreased to 35%.
Fault Estimation for Fuzzy Delay Systems: A Minimum Norm Least Squares Solution Approach.
Huang, Sheng-Juan; Yang, Guang-Hong
2017-09-01
This paper mainly focuses on the problem of fault estimation for a class of Takagi-Sugeno fuzzy systems with state delays. A minimum norm least squares solution (MNLSS) approach is first introduced to establish a fault estimation compensator, which is able to optimize the fault estimator. Compared with most of the existing fault estimation methods, the MNLSS-based fault estimation method can effectively decrease the effect of state errors on the accuracy of fault estimation. Finally, three examples are given to illustrate the effectiveness and merits of the proposed method.
Error Analysis of Ia Supernova and Query on Cosmic Dark Energy ...
Indian Academy of Sciences (India)
2007), we find that. 3.796% of the data is an outline of 2.6σ based on the average total observational error of the distance modulus of SNIa, 0.31 m . Obviously, the distance modulus error deviates Gaussian distribution seriously, and it is not suitable to calculate the system- atic error σsys of SNIa by the χ2 check test method.
Errors, error detection, error correction and hippocampal-region damage: data and theories.
MacKay, Donald G; Johnson, Laura W
2013-11-01
This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kooistra, B.W.; Willems, W.J.H.; Lemmens, E.; Hartel, B.P.; Bekerom, M.P. van den; Deurzen, D.F.P. van
2017-01-01
BACKGROUND: Compared with total shoulder arthroplasty (TSA), total shoulder surface replacement (TSSR) may offer the advantage of preservation of bone stock and shorter surgical time, possibly at the expense of glenoid component positioning and increasing lateral glenohumeral offset. We hypothesized
Fields, Gary S.; Kanbur, Ravi
2005-01-01
Textbook analysis tells us that in a competitive labor market, the introduction of a minimum wage above the competitive equilibrium wage will cause unemployment. This paper makes two contributions to the basic theory of the minimum wage. First, we analyze the effects of a higher minimum wage in terms of poverty rather than in terms of unemployment. Second, we extend the standard textbook model to allow for incomesharing between the employed and the unemployed. We find that there are situation...
Nonresponse Error in Mail Surveys: Top Ten Problems
Directory of Open Access Journals (Sweden)
Jeanette M. Daly
2011-01-01
Full Text Available Conducting mail surveys can result in nonresponse error, which occurs when the potential participant is unwilling to participate or impossible to contact. Nonresponse can result in a reduction in precision of the study and may bias results. The purpose of this paper is to describe and make readers aware of a top ten list of mailed survey problems affecting the response rate encountered over time with different research projects, while utilizing the Dillman Total Design Method. Ten nonresponse error problems were identified, such as inserter machine gets sequence out of order, capitalization in databases, and mailing discarded by postal service. These ten mishaps can potentiate nonresponse errors, but there are ways to minimize their frequency. Suggestions offered stem from our own experiences during research projects. Our goal is to increase researchers' knowledge of nonresponse error problems and to offer solutions which can decrease nonresponse error in future projects.
Soury, Hamza
2014-06-01
This paper considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox\\'s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations. © 2014 IEEE.
Soury, Hamza; Alouini, Mohamed-Slim
2014-01-01
This paper considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox's H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations. © 2014 IEEE.
Björkstén, Karin Sparring; Bergqvist, Monica; Andersén-Karlsson, Eva; Benson, Lina; Ulfvarson, Johanna
2016-08-24
Many studies address the prevalence of medication errors but few address medication errors serious enough to be regarded as malpractice. Other studies have analyzed the individual and system contributory factor leading to a medication error. Nurses have a key role in medication administration, and there are contradictory reports on the nurses' work experience in relation to the risk and type for medication errors. All medication errors where a nurse was held responsible for malpractice (n = 585) during 11 years in Sweden were included. A qualitative content analysis and classification according to the type and the individual and system contributory factors was made. In order to test for possible differences between nurses' work experience and associations within and between the errors and contributory factors, Fisher's exact test was used, and Cohen's kappa (k) was performed to estimate the magnitude and direction of the associations. There were a total of 613 medication errors in the 585 cases, the most common being "Wrong dose" (41 %), "Wrong patient" (13 %) and "Omission of drug" (12 %). In 95 % of the cases, an average of 1.4 individual contributory factors was found; the most common being "Negligence, forgetfulness or lack of attentiveness" (68 %), "Proper protocol not followed" (25 %), "Lack of knowledge" (13 %) and "Practice beyond scope" (12 %). In 78 % of the cases, an average of 1.7 system contributory factors was found; the most common being "Role overload" (36 %), "Unclear communication or orders" (30 %) and "Lack of adequate access to guidelines or unclear organisational routines" (30 %). The errors "Wrong patient due to mix-up of patients" and "Wrong route" and the contributory factors "Lack of knowledge" and "Negligence, forgetfulness or lack of attentiveness" were more common in less experienced nurses. The experienced nurses were more prone to "Practice beyond scope of practice" and to make errors in spite of "Lack of adequate
Soft errors in dynamic random access memories - a basis for dosimetry
International Nuclear Information System (INIS)
Haque, A.K.M.M.; Yates, J.; Stevens, D.
1986-01-01
The soft error rates of a number of 64k and 256k dRAMs from several manufacturers have been measured, employing a MC 68000 microprocessor. For this 'accelerated test' procedure, a 37 kBq (1 μCi) 241 Am alpha emitting source was used. Both 64k and 256k devices exhibited widely differing error rates. It was generally observed that the spread of errors over a particular device/manufacturer was much smaller than the differences between device families and manufacturers. Bit line errors formed a significant part of the total for 64k dRAMs, whereas in 256k dRAMs cell errors dominated; the latter also showed an enhanced sensitivity to integrated dose leading to total failure, and a time-dependent recovery. Although several theoretical models explain soft error mechanisms and predict responses which are compatible with our experimental results, it is considered that microdosimetric and track structure methods should be applied to the problem for its better appreciation. Finally, attention is drawn to the need for further studies of dRAMs, with a view to their use as digital dosemeters. (author)
2010-02-08
... capital and reserve requirements to be issued by order or regulation with respect to a product or activity... minimum capital requirements. Section 1362(a) establishes a minimum capital level for the Enterprises... entities required under this section.\\6\\ \\3\\ The Bank Act's current minimum capital requirements apply to...
A Pareto-Improving Minimum Wage
Eliav Danziger; Leif Danziger
2014-01-01
This paper shows that a graduated minimum wage, in contrast to a constant minimum wage, can provide a strict Pareto improvement over what can be achieved with an optimal income tax. The reason is that a graduated minimum wage requires high-productivity workers to work more to earn the same income as low-productivity workers, which makes it more difficult for the former to mimic the latter. In effect, a graduated minimum wage allows the low-productivity workers to benefit from second-degree pr...
A Human Error Analysis with Physiological Signals during Utilizing Digital Devices
Energy Technology Data Exchange (ETDEWEB)
Lee, Yong Hee; Oh, Yeon Ju; Shin, Kwang Hyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2011-10-15
The introduction of advanced MCR is accompanied with lots of changes and different forms and features through the virtue of new digital technologies. There are various kinds of digital devices such as flat panel displays, touch screens, and so on. The characteristics of these digital devices give many chances to the interface management, and can be integrated into a compact single workstation in an advanced MCR so that workers can operate the plant with minimum burden during any operating condition. However, these devices may introduce new types of human errors, and thus we need a means to evaluate and prevent such error, especially those related to the digital devices. Human errors have been retrospectively assessed for accident reviews and quantitatively evaluated through HRA for PSA. However, the ergonomic verification and validation is an important process to defend all human error potential in the NPP design. HRA is a crucial part of a PSA, and helps in preparing a countermeasure for design by drawing potential human error items that affect the overall safety of NPPs. Various HRA techniques are available however: they reveal shortages of the HMI design in the digital era. - HRA techniques depend on PSFs: this means that the scope dealing with human factors is previously limited, and thus all attributes of new digital devices may not be considered in HRA. - The data used to HRA are not close to the evaluation items. So, human error analysis is not easy to apply to design by several individual experiments and cases. - The results of HRA are not statistically meaningful because accidents including human errors in NPPs are rare and have been estimated as having an extremely low probability
Error identification in a high-volume clinical chemistry laboratory: Five-year experience.
Jafri, Lena; Khan, Aysha Habib; Ghani, Farooq; Shakeel, Shahid; Raheem, Ahmed; Siddiqui, Imran
2015-07-01
Quality indicators for assessing the performance of a laboratory require a systematic and continuous approach in collecting and analyzing data. The aim of this study was to determine the frequency of errors utilizing the quality indicators in a clinical chemistry laboratory and to convert errors to the Sigma scale. Five-year quality indicator data of a clinical chemistry laboratory was evaluated to describe the frequency of errors. An 'error' was defined as a defect during the entire testing process from the time requisition was raised and phlebotomy was done until the result dispatch. An indicator with a Sigma value of 4 was considered good but a process for which the Sigma value was 5 (i.e. 99.977% error-free) was considered well controlled. In the five-year period, a total of 6,792,020 specimens were received in the laboratory. Among a total of 17,631,834 analyses, 15.5% were from within hospital. Total error rate was 0.45% and of all the quality indicators used in this study the average Sigma level was 5.2. Three indicators - visible hemolysis, failure of proficiency testing and delay in stat tests - were below 5 on the Sigma scale and highlight the need to rigorously monitor these processes. Using Six Sigma metrics quality in a clinical laboratory can be monitored more effectively and it can set benchmarks for improving efficiency.
The minimum work required for air conditioning process
International Nuclear Information System (INIS)
Alhazmy, Majed M.
2006-01-01
This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 o C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods
Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris
2014-07-01
Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to
International Nuclear Information System (INIS)
Dam, H. van; Leege, P.F.A. de
1987-01-01
An analysis is presented of thermal systems with minimum critical mass, based on the use of materials with optimum neutron moderating and reflecting properties. The optimum fissile material distributions in the systems are obtained by calculations with standard computer codes, extended with a routine for flat fuel importance search. It is shown that in the minimum critical mass configuration a considerable part of the fuel is positioned in the reflector region. For 239 Pu a minimum critical mass of 87 g is found, which is the lowest value reported hitherto. (author)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
Medication prescribing errors in a public teaching hospital in India: A prospective study.
Directory of Open Access Journals (Sweden)
Pote S
2007-03-01
Full Text Available Background: To prevent medication errors in prescribing, one needs to know their types and relative occurrence. Such errors are a great cause of concern as they have the potential to cause patient harm. The aim of this study was to determine the nature and types of medication prescribing errors in an Indian setting.Methods: The medication errors were analyzed in a prospective observational study conducted in 3 medical wards of a public teaching hospital in India. The medication errors were analyzed by means of Micromedex Drug-Reax database.Results: Out of 312 patients, only 304 were included in the study. Of the 304 cases, 103 (34% cases had at least one error. The total number of errors found was 157. The drug-drug interactions were the most frequently (68.2% occurring type of error, which was followed by incorrect dosing interval (12% and dosing errors (9.5%. The medication classes involved most were antimicrobial agents (29.4%, cardiovascular agents (15.4%, GI agents (8.6% and CNS agents (8.2%. The moderate errors contributed maximum (61.8% to the total errors when compared to the major (25.5% and minor (12.7% errors. The results showed that the number of errors increases with age and number of medicines prescribed.Conclusion: The results point to the establishment of medication error reporting at each hospital and to share the data with other hospitals. The role of clinical pharmacist in this situation appears to be a strong intervention; and the clinical pharmacist, initially, could confine to identification of the medication errors.
Directory of Open Access Journals (Sweden)
Mohammed Nuruzzaman
2018-01-01
Full Text Available The present study investigates the writing errors of ninety Saudi non-English major undergraduate students of different proficiency levels from three faculties, who studied English as a foundation course at the English Language Center in the College of Languages &Translation at King Khalid University, Saudi Arabia in the academic year 2016-17. The findings reveal that the common errors the Saudi EFL students make in writing English paragraphs fall under four categories namely grammar, lexis, semantics and mechanics. Then it compares the categories, types and frequency of errors committed by these three groups of students. Among these categories, grammar has been observed as the most error-prone area where students commit errors the most. The study also posits that among the three groups, the students of the College of Medicine make the minimum errors in all the types and the highest number of errors is committed by the students of Engineering College. The College of Computer Science is in the second position in making errors. The frequency of error types is also found different among these three groups.
Shim, HyungSub; Hurley, Robert S.; Rogalski, Emily; Mesulam, M.-Marsel
2012-01-01
This study evaluates spelling errors in the three subtypes of primary progressive aphasia (PPA): agrammatic (PPA-G), logopenic (PPA-L), and semantic (PPA-S). Forty-one PPA patients and 36 age-matched healthy controls were administered a test of spelling. The total number of errors and types of errors in spelling to dictation of regular words,…
International Nuclear Information System (INIS)
Bilbao, L.; Bruzzone, H.; Grondona, D.
1994-01-01
The reliable determination of a plasma electron structure requires a good knowledge of the errors affecting the employed technique. A technique based on the measurements of the absolute light intensity emitted by travelling plasma structures in plasma focus devices has been used, but it can be easily modified to other geometries and even to stationary plasma structures with time-varying plasma densities. The purpose of this work is to discuss in some detail the errors and limits of this technique. Three separate errors are shown: the minimum size of the density structure that can be resolved, an overall error in the measurements themselves, and an uncertainty in the shape of the density profile. (author)
Proposed frustrated-total-reflection acoustic sensing method
International Nuclear Information System (INIS)
Hull, J.R.
1981-01-01
Modulation of electromagnetic energy transmission through a frustrated-total-reflection device by pressure-induced changes in the index of refraction is proposed for use as an acoustic detector. Maximum sensitivity occurs for angles of incidence near the critical angle. The minimum detectable pressure in air is limited by Brownian noise. Acoustic propagation losses and diffraction of the optical beam by the acoustic signal limit the minimum acoustic wavelength to lengths of the order of the spatial extent of the optical beam. The response time of the method is fast enough to follow individual acoustic waves
Prevalence and cost of hospital medical errors in the general and elderly United States populations.
Mallow, Peter J; Pandya, Bhavik; Horblyuk, Ruslan; Kaplan, Harold S
2013-12-01
The primary objective of this study was to quantify the differences in the prevalence rate and costs of hospital medical errors between the general population and an elderly population aged ≥65 years. Methods from an actuarial study of medical errors were modified to identify medical errors in the Premier Hospital Database using data from 2009. Visits with more than four medical errors were removed from the population to avoid over-estimation of cost. Prevalence rates were calculated based on the total number of inpatient visits. There were 3,466,596 total inpatient visits in 2009. Of these, 1,230,836 (36%) occurred in people aged ≥ 65. The prevalence rate was 49 medical errors per 1000 inpatient visits in the general cohort and 79 medical errors per 1000 inpatient visits for the elderly cohort. The top 10 medical errors accounted for more than 80% of the total in the general cohort and the 65+ cohort. The most costly medical error for the general population was postoperative infection ($569,287,000). Pressure ulcers were most costly ($347,166,257) in the elderly population. This study was conducted with a hospital administrative database, and assumptions were necessary to identify medical errors in the database. Further, there was no method to identify errors of omission or misdiagnoses within the database. This study indicates that prevalence of hospital medical errors for the elderly is greater than the general population and the associated cost of medical errors in the elderly population is quite substantial. Hospitals which further focus their attention on medical errors in the elderly population may see a significant reduction in costs due to medical errors as a disproportionate percentage of medical errors occur in this age group.
Medication errors: prescribing faults and prescription errors.
Velo, Giampaolo P; Minuz, Pietro
2009-06-01
1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Minimum wage. 551.301 Section 551.301... FAIR LABOR STANDARDS ACT Minimum Wage Provisions Basic Provision § 551.301 Minimum wage. (a)(1) Except... employees wages at rates not less than the minimum wage specified in section 6(a)(1) of the Act for all...
Evaluation and Error Analysis for a Solar thermal Receiver
Energy Technology Data Exchange (ETDEWEB)
Pfander, M.
2001-07-01
In the following study a complete balance over the REFOS receiver module, mounted on the tower power plant CESA-1 at the Plataforma Solar de Almeria (PSA), is carried out. Additionally an error inspection of the various measurement techniques used in the REFOS project is made. Especially the flux measurement system Prohermes that is used to determine the total entry power of the receiver module and known as a major error source is analysed in detail. Simulations and experiments on the particular instruments are used to determine and quantify possible error sources. After discovering the origin of the errors they are reduced and included in the error calculation. the ultimate result is presented as an overall efficiency of the receiver module in dependence on the flux density at the receiver module's entry plane and the receiver operating temperature. (Author) 26 refs.
Evaluation and Error Analysis for a Solar Thermal Receiver
International Nuclear Information System (INIS)
Pfander, M.
2001-01-01
In the following study a complete balance over the REFOS receiver module, mounted on the tower power plant CESA-1 at the Plataforma Solar de Almeria (PSA), is carried out. Additionally an error inspection of the various measurement techniques used in the REFOS project is made. Especially the flux measurement system Pro hermes that is used to determine the total entry power of the receiver module and known as a major error source is analysed in detail. Simulations and experiments on the particular instruments are used to determine and quantify possible error sources. After discovering the origin of the errors they are reduced and included in the error calculation. The ultimate result is presented as an overall efficiency of the receiver module in dependence on the flux density at the receiver modules entry plane and the receiver operating temperature. (Author) 26 refs
Sensitivity of risk parameters to human errors in reactor safety study for a PWR
International Nuclear Information System (INIS)
Samanta, P.K.; Hall, R.E.; Swoboda, A.L.
1981-01-01
Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study (RSS) for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study. The code employed point estimate approach and ignored the smoothing technique applied in RSS. It computed the point estimates for the system unavailabilities from the median values of the component failure rates and proceeded in terms of point values to obtain the point estimates for the accident sequence probabilities, core melt probability, and release category probabilities. The sensitivity measure used was the ratio of the top event probability before and after the perturbation of the constituent events. Core melt probability per reactor year showed significant increase with the increase in the human error rates, but did not show similar decrease with the decrease in the human error rates due to the dominance of the hardware failures. When the Minimum Human Error Rate (M.H.E.R.) used is increased to 10 -3 , the base case human error rates start sensitivity to human errors. This effort now allows the evaluation of new error rate data along with proposed changes in the man machine interface
Centered Differential Waveform Inversion with Minimum Support Regularization
Kazei, Vladimir
2017-05-26
Time-lapse full-waveform inversion has two major challenges. The first one is the reconstruction of a reference model (baseline model for most of approaches). The second is inversion for the time-lapse changes in the parameters. Common model approach is utilizing the information contained in all available data sets to build a better reference model for time lapse inversion. Differential (Double-difference) waveform inversion allows to reduce the artifacts introduced into estimates of time-lapse parameter changes by imperfect inversion for the baseline-reference model. We propose centered differential waveform inversion (CDWI) which combines these two approaches in order to benefit from both of their features. We apply minimum support regularization commonly used with electromagnetic methods of geophysical exploration. We test the CDWI method on synthetic dataset with random noise and show that, with Minimum support regularization, it provides better resolution of velocity changes than with total variation and Tikhonov regularizations in time-lapse full-waveform inversion.
Propagation of Radiosonde Pressure Sensor Errors to Ozonesonde Measurements
Stauffer, R. M.; Morris, G.A.; Thompson, A. M.; Joseph, E.; Coetzee, G. J. R.; Nalli, N. R.
2014-01-01
Several previous studies highlight pressure (or equivalently, pressure altitude) discrepancies between the radiosonde pressure sensor and that derived from a GPS flown with the radiosonde. The offsets vary during the ascent both in absolute and percent pressure differences. To investigate this problem further, a total of 731 radiosonde-ozonesonde launches from the Southern Hemisphere subtropics to Northern mid-latitudes are considered, with launches between 2005 - 2013 from both longer-term and campaign-based intensive stations. Five series of radiosondes from two manufacturers (International Met Systems: iMet, iMet-P, iMet-S, and Vaisala: RS80-15N and RS92-SGP) are analyzed to determine the magnitude of the pressure offset. Additionally, electrochemical concentration cell (ECC) ozonesondes from three manufacturers (Science Pump Corporation; SPC and ENSCI-Droplet Measurement Technologies; DMT) are analyzed to quantify the effects these offsets have on the calculation of ECC ozone (O3) mixing ratio profiles (O3MR) from the ozonesonde-measured partial pressure. Approximately half of all offsets are 0.6 hPa in the free troposphere, with nearly a third 1.0 hPa at 26 km, where the 1.0 hPa error represents 5 persent of the total atmospheric pressure. Pressure offsets have negligible effects on O3MR below 20 km (96 percent of launches lie within 5 percent O3MR error at 20 km). Ozone mixing ratio errors above 10 hPa (30 km), can approach greater than 10 percent ( 25 percent of launches that reach 30 km exceed this threshold). These errors cause disagreement between the integrated ozonesonde-only column O3 from the GPS and radiosonde pressure profile by an average of +6.5 DU. Comparisons of total column O3 between the GPS and radiosonde pressure profiles yield average differences of +1.1 DU when the O3 is integrated to burst with addition of the McPeters and Labow (2012) above-burst O3 column climatology. Total column differences are reduced to an average of -0.5 DU when
On the maximum and minimum of two modified Gamma-Gamma variates with applications
Al-Quwaiee, Hessa
2014-04-01
In this work, we derive the statistical characteristics of the maximum and the minimum of two modified1 Gamma-Gamma variates in closed-form in terms of Meijer\\'s G-function and the extended generalized bivariate Meijer\\'s G-function. Then, we rely on these new results to present the performance analysis of (i) a dual-branch free-space optical selection combining diversity undergoing independent but not necessarily identically distributed Gamma-Gamma fading under the impact of pointing errors and of (ii) a dual-hop free-space optical relay transmission system. Computer-based Monte-Carlo simulations verify our new analytical results.
Directory of Open Access Journals (Sweden)
Finch Stephen J
2005-04-01
Full Text Available Abstract Background Phenotype error causes reduction in power to detect genetic association. We present a quantification of phenotype error, also known as diagnostic error, on power and sample size calculations for case-control genetic association studies between a marker locus and a disease phenotype. We consider the classic Pearson chi-square test for independence as our test of genetic association. To determine asymptotic power analytically, we compute the distribution's non-centrality parameter, which is a function of the case and control sample sizes, genotype frequencies, disease prevalence, and phenotype misclassification probabilities. We derive the non-centrality parameter in the presence of phenotype errors and equivalent formulas for misclassification cost (the percentage increase in minimum sample size needed to maintain constant asymptotic power at a fixed significance level for each percentage increase in a given misclassification parameter. We use a linear Taylor Series approximation for the cost of phenotype misclassification to determine lower bounds for the relative costs of misclassifying a true affected (respectively, unaffected as a control (respectively, case. Power is verified by computer simulation. Results Our major findings are that: (i the median absolute difference between analytic power with our method and simulation power was 0.001 and the absolute difference was no larger than 0.011; (ii as the disease prevalence approaches 0, the cost of misclassifying a unaffected as a case becomes infinitely large while the cost of misclassifying an affected as a control approaches 0. Conclusion Our work enables researchers to specifically quantify power loss and minimum sample size requirements in the presence of phenotype errors, thereby allowing for more realistic study design. For most diseases of current interest, verifying that cases are correctly classified is of paramount importance.
Human error identification for laparoscopic surgery: Development of a motion economy perspective.
Al-Hakim, Latif; Sevdalis, Nick; Maiping, Tanaphon; Watanachote, Damrongpan; Sengupta, Shomik; Dissaranan, Charuspong
2015-09-01
This study postulates that traditional human error identification techniques fail to consider motion economy principles and, accordingly, their applicability in operating theatres may be limited. This study addresses this gap in the literature with a dual aim. First, it identifies the principles of motion economy that suit the operative environment and second, it develops a new error mode taxonomy for human error identification techniques which recognises motion economy deficiencies affecting the performance of surgeons and predisposing them to errors. A total of 30 principles of motion economy were developed and categorised into five areas. A hierarchical task analysis was used to break down main tasks of a urological laparoscopic surgery (hand-assisted laparoscopic nephrectomy) to their elements and the new taxonomy was used to identify errors and their root causes resulting from violation of motion economy principles. The approach was prospectively tested in 12 observed laparoscopic surgeries performed by 5 experienced surgeons. A total of 86 errors were identified and linked to the motion economy deficiencies. Results indicate the developed methodology is promising. Our methodology allows error prevention in surgery and the developed set of motion economy principles could be useful for training surgeons on motion economy principles. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Bandwagon effects and error bars in particle physics
Jeng, Monwhea
2007-02-01
We study historical records of experiments on particle masses, lifetimes, and widths, both for signs of expectation bias, and to compare actual errors with reported error bars. We show that significant numbers of particle properties exhibit "bandwagon effects": reported values show trends and clustering as a function of the year of publication, rather than random scatter about the mean. While the total amount of clustering is significant, it is also fairly small; most individual particle properties do not display obvious clustering. When differences between experiments are compared with the reported error bars, the deviations do not follow a normal distribution, but instead follow an exponential distribution for up to ten standard deviations.
Bandwagon effects and error bars in particle physics
International Nuclear Information System (INIS)
Jeng, Monwhea
2007-01-01
We study historical records of experiments on particle masses, lifetimes, and widths, both for signs of expectation bias, and to compare actual errors with reported error bars. We show that significant numbers of particle properties exhibit 'bandwagon effects': reported values show trends and clustering as a function of the year of publication, rather than random scatter about the mean. While the total amount of clustering is significant, it is also fairly small; most individual particle properties do not display obvious clustering. When differences between experiments are compared with the reported error bars, the deviations do not follow a normal distribution, but instead follow an exponential distribution for up to ten standard deviations
International Nuclear Information System (INIS)
Ebert, M.A.; Zavgorodni, S.F.; Kendrick, L.A.; Weston, S.; Harper, C.S.
2001-01-01
Purpose: This investigation examined the effect of alignment and localization errors on dose distributions in stereotactic radiotherapy (SRT) with arced circular fields. In particular, it was desired to determine the effect of systematic and random localization errors on multi-isocenter treatments. Methods and Materials: A research version of the FastPlan system from Surgical Navigation Technologies was used to generate a series of SRT plans of varying complexity. These plans were used to examine the influence of random setup errors by recalculating dose distributions with successive setup errors convolved into the off-axis ratio data tables used in the dose calculation. The influence of systematic errors was investigated by displacing isocenters from their planned positions. Results: For single-isocenter plans, it is found that the influences of setup error are strongly dependent on the size of the target volume, with minimum doses decreasing most significantly with increasing random and systematic alignment error. For multi-isocenter plans, similar variations in target dose are encountered, with this result benefiting from the conventional method of prescribing to a lower isodose value for multi-isocenter treatments relative to single-isocenter treatments. Conclusions: It is recommended that the systematic errors associated with target localization in SRT be tracked via a thorough quality assurance program, and that random setup errors be minimized by use of a sufficiently robust relocation system. These errors should also be accounted for by incorporating corrections into the treatment planning algorithm or, alternatively, by inclusion of sufficient margins in target definition
Enhancement of Unequal Error Protection Properties of LDPC Codes
Directory of Open Access Journals (Sweden)
Poulliat Charly
2007-01-01
Full Text Available It has been widely recognized in the literature that irregular low-density parity-check (LDPC codes exhibit naturally an unequal error protection (UEP behavior. In this paper, we propose a general method to emphasize and control the UEP properties of LDPC codes. The method is based on a hierarchical optimization of the bit node irregularity profile for each sensitivity class within the codeword by maximizing the average bit node degree while guaranteeing a minimum degree as high as possible. We show that this optimization strategy is efficient, since the codes that we optimize show better UEP capabilities than the codes optimized for the additive white Gaussian noise channel.
Error Cost Escalation Through the Project Life Cycle
Stecklein, Jonette M.; Dabney, Jim; Dick, Brandon; Haskins, Bill; Lovell, Randy; Moroney, Gregory
2004-01-01
It is well known that the costs to fix errors increase as the project matures, but how fast do those costs build? A study was performed to determine the relative cost of fixing errors discovered during various phases of a project life cycle. This study used three approaches to determine the relative costs: the bottom-up cost method, the total cost breakdown method, and the top-down hypothetical project method. The approaches and results described in this paper presume development of a hardware/software system having project characteristics similar to those used in the development of a large, complex spacecraft, a military aircraft, or a small communications satellite. The results show the degree to which costs escalate, as errors are discovered and fixed at later and later phases in the project life cycle. If the cost of fixing a requirements error discovered during the requirements phase is defined to be 1 unit, the cost to fix that error if found during the design phase increases to 3 - 8 units; at the manufacturing/build phase, the cost to fix the error is 7 - 16 units; at the integration and test phase, the cost to fix the error becomes 21 - 78 units; and at the operations phase, the cost to fix the requirements error ranged from 29 units to more than 1500 units
Optimization of Trade-offs in Error-free Image Transmission
Cox, Jerome R.; Moore, Stephen M.; Blaine, G. James; Zimmerman, John B.; Wallace, Gregory K.
1989-05-01
The availability of ubiquitous wide-area channels of both modest cost and higher transmission rate than voice-grade lines promises to allow the expansion of electronic radiology services to a larger community. The band-widths of the new services becoming available from the Integrated Services Digital Network (ISDN) are typically limited to 128 Kb/s, almost two orders of magnitude lower than popular LANs can support. Using Discrete Cosine Transform (DCT) techniques, a compressed approximation to an image may be rapidly transmitted. However, intensity or resampling transformations of the reconstructed image may reveal otherwise invisible artifacts of the approximate encoding. A progressive transmission scheme reported in ISO Working Paper N800 offers an attractive solution to this problem by rapidly reconstructing an apparently undistorted image from the DCT coefficients and then subse-quently transmitting the error image corresponding to the difference between the original and the reconstructed images. This approach achieves an error-free transmission without sacrificing the perception of rapid image delivery. Furthermore, subsequent intensity and resampling manipulations can be carried out with confidence. DCT coefficient precision affects the amount of error information that must be transmitted and, hence the delivery speed of error-free images. This study calculates the overall information coding rate for six radiographic images as a function of DCT coefficient precision. The results demonstrate that a minimum occurs for each of the six images at an average coefficient precision of between 0.5 and 1.0 bits per pixel (b/p). Apparently undistorted versions of these six images can be transmitted with a coding rate of between 0.25 and 0.75 b/p while error-free versions can be transmitted with an overall coding rate between 4.5 and 6.5 b/p.
Totally optimal decision rules
Amin, Talha
2017-11-22
Optimality of decision rules (patterns) can be measured in many ways. One of these is referred to as length. Length signifies the number of terms in a decision rule and is optimally minimized. Another, coverage represents the width of a rule’s applicability and generality. As such, it is desirable to maximize coverage. A totally optimal decision rule is a decision rule that has the minimum possible length and the maximum possible coverage. This paper presents a method for determining the presence of totally optimal decision rules for “complete” decision tables (representations of total functions in which different variables can have domains of differing values). Depending on the cardinalities of the domains, we can either guarantee for each tuple of values of the function that totally optimal rules exist for each row of the table (as in the case of total Boolean functions where the cardinalities are equal to 2) or, for each row, we can find a tuple of values of the function for which totally optimal rules do not exist for this row.
Totally optimal decision rules
Amin, Talha M.; Moshkov, Mikhail
2017-01-01
Optimality of decision rules (patterns) can be measured in many ways. One of these is referred to as length. Length signifies the number of terms in a decision rule and is optimally minimized. Another, coverage represents the width of a rule’s applicability and generality. As such, it is desirable to maximize coverage. A totally optimal decision rule is a decision rule that has the minimum possible length and the maximum possible coverage. This paper presents a method for determining the presence of totally optimal decision rules for “complete” decision tables (representations of total functions in which different variables can have domains of differing values). Depending on the cardinalities of the domains, we can either guarantee for each tuple of values of the function that totally optimal rules exist for each row of the table (as in the case of total Boolean functions where the cardinalities are equal to 2) or, for each row, we can find a tuple of values of the function for which totally optimal rules do not exist for this row.
Highlights of TOMS Version 9 Total Ozone Algorithm
Bhartia, Pawan; Haffner, David
2012-01-01
The fundamental basis of TOMS total ozone algorithm was developed some 45 years ago by Dave and Mateer. It was designed to estimate total ozone from satellite measurements of the backscattered UV radiances at few discrete wavelengths in the Huggins ozone absorption band (310-340 nm). Over the years, as the need for higher accuracy in measuring total ozone from space has increased, several improvements to the basic algorithms have been made. They include: better correction for the effects of aerosols and clouds, an improved method to account for the variation in shape of ozone profiles with season, latitude, and total ozone, and a multi-wavelength correction for remaining profile shape errors. These improvements have made it possible to retrieve total ozone with just 3 spectral channels of moderate spectral resolution (approx. 1 nm) with accuracy comparable to state-of-the-art spectral fitting algorithms like DOAS that require high spectral resolution measurements at large number of wavelengths. One of the deficiencies of the TOMS algorithm has been that it doesn't provide an error estimate. This is a particular problem in high latitudes when the profile shape errors become significant and vary with latitude, season, total ozone, and instrument viewing geometry. The primary objective of the TOMS V9 algorithm is to account for these effects in estimating the error bars. This is done by a straightforward implementation of the Rodgers optimum estimation method using a priori ozone profiles and their error covariances matrices constructed using Aura MLS and ozonesonde data. The algorithm produces a vertical ozone profile that contains 1-2.5 pieces of information (degrees of freedom of signal) depending upon solar zenith angle (SZA). The profile is integrated to obtain the total column. We provide information that shows the altitude range in which the profile is best determined by the measurements. One can use this information in data assimilation and analysis. A side
A framework to assess diagnosis error probabilities in the advanced MCR
Energy Technology Data Exchange (ETDEWEB)
Kim, Ar Ryum; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Kim, Jong Hyun [Chosun University, Gwangju (Korea, Republic of); Jang, Inseok; Park, Jinkyun [Korea Atomic Research Institute, Daejeon (Korea, Republic of)
2016-10-15
The Institute of Nuclear Power Operations (INPO)’s operating experience database revealed that about 48% of the total events in world NPPs for 2 years (2010-2011) happened due to human errors. The purposes of human reliability analysis (HRA) method are to evaluate the potential for, and mechanism of, human errors that may affect plant safety. Accordingly, various HRA methods have been developed such as technique for human error rate prediction (THERP), simplified plant analysis risk human reliability assessment (SPAR-H), cognitive reliability and error analysis method (CREAM) and so on. Many researchers have asserted that procedure, alarm, and display are critical factors to affect operators’ generic activities, especially for diagnosis activities. None of various HRA methods was explicitly designed to deal with digital systems. SCHEME (Soft Control Human error Evaluation MEthod) considers only for the probability of soft control execution error in the advanced MCR. The necessity of developing HRA methods in various conditions of NPPs has been raised. In this research, the framework to estimate diagnosis error probabilities in the advanced MCR was suggested. The assessment framework was suggested by three steps. The first step is to investigate diagnosis errors and calculate their probabilities. The second step is to quantitatively estimate PSFs’ weightings in the advanced MCR. The third step is to suggest the updated TRC model to assess the nominal diagnosis error probabilities. Additionally, the proposed framework was applied by using the full-scope simulation. Experiments conducted in domestic full-scope simulator and HAMMLAB were used as data-source. Total eighteen tasks were analyzed and twenty-three crews participated in.
RISIKO KEJADIAN MEDICATION ERROR DI INSTALASI RAWAT INAP RUMAH SAKIT UNIVERSITAS HASANUDDIN
Ningsih, Yunita; Maidin, Alimin; Kapalawi, Irwandy
2015-01-01
Kejadian medication error merupakan indikator penting keselamatan pasien. Medication error yang terjadi di Rumah Sakit Universitas Hasanuddin tahun 2013 terdapat 4 kasus dan tahun 2014 terdapat 1 kasus. Penelitian ini bertujuan mengetahui gambaran risiko kejadian medication error.Jenis penelitian yang digunakan penelitian deskriptif. Teknik pengambilan sampel yang digunakan yaitu teknik total sampling sebanyak 115 responden. Analisis data yang dilakukan adalah analisis univariat. Hasil peneli...
Relationship Between Technical Errors and Decision-Making Skills in the Junior Resident.
Nathwani, Jay N; Fiers, Rebekah M; Ray, Rebecca D; Witt, Anna K; Law, Katherine E; DiMarco, ShannonM; Pugh, Carla M
The purpose of this study is to coevaluate resident technical errors and decision-making capabilities during placement of a subclavian central venous catheter (CVC). We hypothesize that there would be significant correlations between scenario-based decision-making skills and technical proficiency in central line insertion. We also predict residents would face problems in anticipating common difficulties and generating solutions associated with line placement. Participants were asked to insert a subclavian central line on a simulator. After completion, residents were presented with a real-life patient photograph depicting CVC placement and asked to anticipate difficulties and generate solutions. Error rates were analyzed using chi-square tests and a 5% expected error rate. Correlations were sought by comparing technical errors and scenario-based decision-making skills. This study was performed at 7 tertiary care centers. Study participants (N = 46) largely consisted of first-year research residents who could be followed longitudinally. Second-year research and clinical residents were not excluded. In total, 6 checklist errors were committed more often than anticipated. Residents committed an average of 1.9 errors, significantly more than the 1 error, at most, per person expected (t(44) = 3.82, p technical errors committed negatively correlated with the total number of commonly identified difficulties and generated solutions (r (33) = -0.429, p = 0.021, r (33) = -0.383, p = 0.044, respectively). Almost half of the surgical residents committed multiple errors while performing subclavian CVC placement. The correlation between technical errors and decision-making skills suggests a critical need to train residents in both technique and error management. Copyright Â© 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Challenge and Error: Critical Events and Attention-Related Errors
Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel
2011-01-01
Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…
Chung, Jong-Kyun; Jee, Geonhwa; Lee, Chi-Na
2011-12-01
The total electron content (TEC) using global positioning system (GPS) is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13' S, longitude 58° 47' W, corrected geomagnetic latitude 48° S) in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February), the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU) in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006) to 1.4 TECU (2008-2009). However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August), the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the a! nnual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT). The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.
Directory of Open Access Journals (Sweden)
Jong-Kyun Chung
2011-12-01
Full Text Available The total electron content (TEC using global positioning system (GPS is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13′ S, longitude 58° 47′ W, corrected geomagnetic latitude 48° S in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February, the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006 to 1.4 TECU (2008-2009. However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August, the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the annual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT. The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.
Ahmed, Qasim Zeeshan
2013-01-01
In this letter, a new detector is proposed for amplifyand- forward (AF) relaying system when communicating with the assistance of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the receiver. The probability density function is estimated with the help of kernel density technique. A generalized Gaussian kernel is proposed. This new kernel provides more flexibility and encompasses Gaussian and uniform kernels as special cases. The optimal window width of the kernel is calculated. Simulations results show that a gain of more than 1 dB can be achieved in terms of BER performance as compared to the minimum mean square error (MMSE) receiver when communicating over Rayleigh fading channels.
Error forecasting schemes of error correction at receiver
International Nuclear Information System (INIS)
Bhunia, C.T.
2007-08-01
To combat error in computer communication networks, ARQ (Automatic Repeat Request) techniques are used. Recently Chakraborty has proposed a simple technique called the packet combining scheme in which error is corrected at the receiver from the erroneous copies. Packet Combining (PC) scheme fails: (i) when bit error locations in erroneous copies are the same and (ii) when multiple bit errors occur. Both these have been addressed recently by two schemes known as Packet Reversed Packet Combining (PRPC) Scheme, and Modified Packet Combining (MPC) Scheme respectively. In the letter, two error forecasting correction schemes are reported, which in combination with PRPC offer higher throughput. (author)
Radiology errors: are we learning from our mistakes?
International Nuclear Information System (INIS)
Mankad, K.; Hoey, E.T.D.; Jones, J.B.; Tirukonda, P.; Smith, J.T.
2009-01-01
Aim: To question practising radiologists and radiology trainees at a large international meeting in an attempt to survey individuals about error reporting. Materials and methods: Radiologists attending the 2007 Radiological Society of North America (RSNA) annual meeting were approached to fill in a written questionnaire. Participants were questioned as to their grade, country in which they practised, and subspecialty interest. They were asked whether they kept a personal log of their errors (with an error defined as 'a mistake that has management implications for the patient'), how many errors they had made in the preceding 12 months, and the types of errors that had occurred. They were also asked whether their local department held regular discrepancy/errors meetings, how many they had attended in the preceding 12 months, and the perceived atmosphere at these meetings (on a qualitative scale). Results: A total of 301 radiologists with a wide range of specialty interests from 32 countries agreed to take part. One hundred and sixty-six of 301 (55%) of responders were consultant/attending grade. One hundred and thirty-five of 301 (45%) were residents/fellows. Fifty-nine of 301 (20%) of responders kept a personal record of their errors. The number of errors made per person per year ranged from none (2%) to 16 or more (7%). The majority (91%) reported making between one and 15 errors/year. Overcalls (40%), under-calls (25%), and interpretation error (15%) were the predominant error types. One hundred and seventy-eight of 301 (59%) of participants stated that their department held regular errors meeting. One hundred and twenty-seven of 301 (42%) had attended three or more meetings in the preceding year. The majority (55%) who had attended errors meetings described the atmosphere as 'educational.' Only a small minority (2%) described the atmosphere as 'poor' meaning non-educational and/or blameful. Conclusion: Despite the undeniable importance of learning from errors
An Analysis and Quantification Method of Human Errors of Soft Controls in Advanced MCRs
International Nuclear Information System (INIS)
Lee, Seung Jun; Kim, Jae Whan; Jang, Seung Cheol
2011-01-01
In this work, a method was proposed for quantifying human errors that may occur during operation executions using soft control. Soft controls of advanced main control rooms (MCRs) have totally different features from conventional controls, and thus they may have different human error modes and occurrence probabilities. It is important to define the human error modes and to quantify the error probability for evaluating the reliability of the system and preventing errors. This work suggests a modified K-HRA method for quantifying error probability
Accounting for covariate measurement error in a Cox model analysis of recurrence of depression.
Liu, K; Mazumdar, S; Stone, R A; Dew, M A; Houck, P R; Reynolds, C F
2001-01-01
When a covariate measured with error is used as a predictor in a survival analysis using the Cox model, the parameter estimate is usually biased. In clinical research, covariates measured without error such as treatment procedure or sex are often used in conjunction with a covariate measured with error. In a randomized clinical trial of two types of treatments, we account for the measurement error in the covariate, log-transformed total rapid eye movement (REM) activity counts, in a Cox model analysis of the time to recurrence of major depression in an elderly population. Regression calibration and two variants of a likelihood-based approach are used to account for measurement error. The likelihood-based approach is extended to account for the correlation between replicate measures of the covariate. Using the replicate data decreases the standard error of the parameter estimate for log(total REM) counts while maintaining the bias reduction of the estimate. We conclude that covariate measurement error and the correlation between replicates can affect results in a Cox model analysis and should be accounted for. In the depression data, these methods render comparable results that have less bias than the results when measurement error is ignored.
Minimum income protection in the Netherlands
van Peijpe, T.
2009-01-01
This article offers an overview of the Dutch legal system of minimum income protection through collective bargaining, social security, and statutory minimum wages. In addition to collective agreements, the Dutch statutory minimum wage offers income protection to a small number of workers. Its
International Nuclear Information System (INIS)
Hirotsu, Yuko; Suzuki, Kunihiko; Takano, Kenichi; Kojima, Mitsuhiro
2000-01-01
It is essential for preventing the recurrence of human error incidents to analyze and evaluate them with the emphasis on human factor. Detailed and structured analyses of all incidents at domestic nuclear power plants (NPPs) reported during last 31 years have been conducted based on J-HPES, in which total 193 human error cases are identified. Results obtained by the analyses have been stored into the J-HPES database. In the previous study, by applying multivariate analysis to above case studies, it was suggested that there were several occurrence patterns identified of how errors occur at NPPs. It was also clarified that the causes related to each human error are different depending on age of their occurrence. This paper described the obtained results in respects of periodical transition of human error occurrence patterns. By applying multivariate analysis to the above data, it was suggested there were two types of error occurrence patterns as to each human error type. First type is common occurrence patterns, not depending on the age, and second type is the one influenced by periodical characteristics. (author)
Wagar, Elizabeth A; Tamashiro, Lorraine; Yasin, Bushra; Hilborne, Lee; Bruckner, David A
2006-11-01
Patient safety is an increasingly visible and important mission for clinical laboratories. Attention to improving processes related to patient identification and specimen labeling is being paid by accreditation and regulatory organizations because errors in these areas that jeopardize patient safety are common and avoidable through improvement in the total testing process. To assess patient identification and specimen labeling improvement after multiple implementation projects using longitudinal statistical tools. Specimen errors were categorized by a multidisciplinary health care team. Patient identification errors were grouped into 3 categories: (1) specimen/requisition mismatch, (2) unlabeled specimens, and (3) mislabeled specimens. Specimens with these types of identification errors were compared preimplementation and postimplementation for 3 patient safety projects: (1) reorganization of phlebotomy (4 months); (2) introduction of an electronic event reporting system (10 months); and (3) activation of an automated processing system (14 months) for a 24-month period, using trend analysis and Student t test statistics. Of 16,632 total specimen errors, mislabeled specimens, requisition mismatches, and unlabeled specimens represented 1.0%, 6.3%, and 4.6% of errors, respectively. Student t test showed a significant decrease in the most serious error, mislabeled specimens (P patient safety projects. Trend analysis demonstrated decreases in all 3 error types for 26 months. Applying performance-improvement strategies that focus longitudinally on specimen labeling errors can significantly reduce errors, therefore improving patient safety. This is an important area in which laboratory professionals, working in interdisciplinary teams, can improve safety and outcomes of care.
Learning from errors in radiology to improve patient safety.
Saeed, Shaista Afzal; Masroor, Imrana; Shafqat, Gulnaz
2013-10-01
To determine the views and practices of trainees and consultant radiologists about error reporting. Cross-sectional survey. Radiology trainees and consultant radiologists in four tertiary care hospitals in Karachi approached in the second quarter of 2011. Participants were enquired as to their grade, sub-specialty interest, whether they kept a record/log of their errors (defined as a mistake that has management implications for the patient), number of errors they made in the last 12 months and the predominant type of error. They were also asked about the details of their department error meetings. All duly completed questionnaires were included in the study while the ones with incomplete information were excluded. A total of 100 radiologists participated in the survey. Of them, 34 were consultants and 66 were trainees. They had a wide range of sub-specialty interest like CT, Ultrasound, etc. Out of the 100 responders, 49 kept a personal record/log of their errors. In response to the recall of approximate errors they made in the last 12 months, 73 (73%) of participants recorded a varied response with 1 - 5 errors mentioned by majority i.e. 47 (64.5%). Most of the radiologists (97%) claimed receiving information about their errors through multiple sources like morbidity/mortality meetings, patients' follow-up, through colleagues and consultants. Perceptual error 66 (66%) were the predominant error type reported. Regular occurrence of error meetings and attending three or more error meetings in the last 12 months was reported by 35% participants. Majority among these described the atmosphere of these error meetings as informative and comfortable (n = 22, 62.8%). It is of utmost importance to develop a culture of learning from mistakes by conducting error meetings and improving the process of recording and addressing errors to enhance patient safety.
Lucke, Robert L.; Sirlin, Samuel W.; San Martin, A. M.
1992-01-01
For most imaging sensors, a constant (dc) pointing error is unimportant (unless large), but time-dependent (ac) errors degrade performance by either distorting or smearing the image. When properly quantified, the separation of the root-mean-square effects of random line-of-sight motions into dc and ac components can be used to obtain the minimum necessary line-of-sight stability specifications. The relation between stability requirements and sensor resolution is discussed, with a view to improving communication between the data analyst and the control systems engineer.
International Nuclear Information System (INIS)
Knuefer; Lindauer
1980-01-01
Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)
Medication errors in outpatient care in Colombia, 2005-2013.
Machado-Alba, Jorge E; Moncada, Juan Carlos; Moreno-Gutiérrez, Paula Andrea
2016-06-03
Medication errors outside the hospital have been poorly studied despite representing an important threat to patient safety. To describe the characteristics of medication errors in outpatient dispensing pharmacists reported in a pharmaco-surveillance system between 2005 and 2013 in Colombia. We conducted a descriptive study by reviewing and categorizing medication error reports from outpatient pharmacy services to a national medication dispensing company between January, 2005 and September, 2013. Variables considered included: process involved (administration, dispensing, prescription and transcription), wrong drug, time delay for the report, error type, cause and severity. The analysis was conducted in the SPSS® software, version 22.0. A total of 14,873 medication errors were reviewed, of which 67.2% in fact occurred, 15.5% reached the patient and 0.7% caused harm. Administration (OR=93.61, CI 95%: 48.510-180.655, perrors (OR=5.64; CI 95%: 3.488-9.142, perror reaching the patient. It is necessary to develop surveillance systems for medication errors in ambulatory care, focusing on the prescription, transcription and dispensation processes. Special strategies are needed for the prevention of medication errors related to anti-infective drugs.
Incorporating measurement error in n = 1 psychological autoregressive modeling
Schuurman, Noémi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30–50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters. PMID:26283988
Rate-compatible protograph LDPC code families with linear minimum distance
Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J. (Inventor); Jones, Christopher R. (Inventor)
2012-01-01
Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds.
IMRT QA: Selecting gamma criteria based on error detection sensitivity
Energy Technology Data Exchange (ETDEWEB)
Steers, Jennifer M. [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048 and Physics and Biology in Medicine IDP, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095 (United States); Fraass, Benedick A., E-mail: benedick.fraass@cshs.org [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048 (United States)
2016-04-15
Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose
How Do Simulated Error Experiences Impact Attitudes Related to Error Prevention?
Breitkreuz, Karen R; Dougal, Renae L; Wright, Melanie C
2016-10-01
The objective of this project was to determine whether simulated exposure to error situations changes attitudes in a way that may have a positive impact on error prevention behaviors. Using a stratified quasi-randomized experiment design, we compared risk perception attitudes of a control group of nursing students who received standard error education (reviewed medication error content and watched movies about error experiences) to an experimental group of students who reviewed medication error content and participated in simulated error experiences. Dependent measures included perceived memorability of the educational experience, perceived frequency of errors, and perceived caution with respect to preventing errors. Experienced nursing students perceived the simulated error experiences to be more memorable than movies. Less experienced students perceived both simulated error experiences and movies to be highly memorable. After the intervention, compared with movie participants, simulation participants believed errors occurred more frequently. Both types of education increased the participants' intentions to be more cautious and reported caution remained higher than baseline for medication errors 6 months after the intervention. This study provides limited evidence of an advantage of simulation over watching movies describing actual errors with respect to manipulating attitudes related to error prevention. Both interventions resulted in long-term impacts on perceived caution in medication administration. Simulated error experiences made participants more aware of how easily errors can occur, and the movie education made participants more aware of the devastating consequences of errors.
Subclinical naming errors in mild cognitive impairment: A semantic deficit?
Directory of Open Access Journals (Sweden)
Indra F. Willers
Full Text Available Abstract Mild cognitive impairment (MCI is the transitional stage between normal aging and Alzheimer's disease (AD. Impairments in semantic memory have been demonstrated to be a critical factor in early AD. The Boston Naming Test (BNT is a straightforward method of examining semantic or visuo-perceptual processing and therefore represents a potential diagnostic tool. The objective of this study was to examine naming ability and identify error types in patients with amnestic mild cognitive impairment (aMCI. Methods: Twenty aMCI patients, twenty AD patients and twenty-one normal controls, matched by age, sex and education level were evaluated. As part of a further neuropsychological evaluation, all subjects performed the BNT. A comprehensive classification of error types was devised in order to compare performance and ascertain semantic or perceptual origin of errors. Results: AD patients obtained significantly lower total scores on the BNT than aMCI patients and controls. aMCI patients did not obtain significant differences in total scores, but showed significantly higher semantic errors compared to controls. Conclusion: This study reveals that semantic processing is impaired during confrontation naming in aMCI.
AN ANALYSIS OF ACEHNESE EFL STUDENTS’ GRAMMATICAL ERRORS IN WRITING RECOUNT TEXTS
Directory of Open Access Journals (Sweden)
Qudwatin Nisak M. Isa
2017-11-01
Full Text Available This study aims at finding empirical evidence of the most common types of grammatical errors and sources of errors in recount texts written by the first-year students of SMAS Babul Maghfirah, Aceh Besar. The subject of the study was a collection of students’ personal writing documents of recount texts about their lives experience. The students’ recount texts were analyzed by referring to Betty S. Azar classification and Richard’s theory on sources of errors. The findings showed that the total number of error is 436. Two frequent types of grammatical errors were Verb Tense and Word Choice. The major sources of error were Intralingual Error, Interference Error and Developmental Error respectively. Furthermore, the findings suggest that it is necessary for EFL teachers to apply appropriate techniques and strategies in teaching recount texts, which focus on past tense and language features of the text in order to reduce the possible errors to be made by the students.
Economic impact of medication error: a systematic review.
Walsh, Elaine K; Hansen, Christina Raae; Sahm, Laura J; Kearney, Patricia M; Doherty, Edel; Bradley, Colin P
2017-05-01
Medication error is a significant source of morbidity and mortality among patients. Clinical and cost-effectiveness evidence are required for the implementation of quality of care interventions. Reduction of error-related cost is a key potential benefit of interventions addressing medication error. The aim of this review was to describe and quantify the economic burden associated with medication error. PubMed, Cochrane, Embase, CINAHL, EconLit, ABI/INFORM, Business Source Complete were searched. Studies published 2004-2016 assessing the economic impact of medication error were included. Cost values were expressed in Euro 2015. A narrative synthesis was performed. A total of 4572 articles were identified from database searching, and 16 were included in the review. One study met all applicable quality criteria. Fifteen studies expressed economic impact in monetary terms. Mean cost per error per study ranged from €2.58 to €111 727.08. Healthcare costs were used to measure economic impact in 15 of the included studies with one study measuring litigation costs. Four studies included costs incurred in primary care with the remaining 12 measuring hospital costs. Five studies looked at general medication error in a general population with 11 studies reporting the economic impact of an individual type of medication error or error within a specific patient population. Considerable variability existed between studies in terms of financial cost, patients, settings and errors included. Many were of poor quality. Assessment of economic impact was conducted predominantly in the hospital setting with little assessment of primary care impact. Limited parameters were used to establish economic impact. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Factors associated with reporting nursing errors in Iran: a qualitative study
Directory of Open Access Journals (Sweden)
Hashemi Fatemeh
2012-10-01
Full Text Available Abstract Background Reporting the professional errors for improving patient safety is considered essential not only in hospitals, but also in ambulatory care centers. Unfortunately, a great number of nurses, similar to most clinicians, do not report their errors. Therefore, the present study aimed to clarify the factors associated with reporting the nursing errors through the experiences of clinical nurses and nursing managers. Methods A total of 115 nurses working in the hospitals and specialized clinics affiliated to Tehran and Shiraz Universities of Medical Sciences, Iran participated in this qualitative study. The study data were collected through a semi-structured group discussion conducted in 17 sessions and analyzed by inductive content analysis approach. Results The main categories emerged in this study were: a general approaches of the nurses towards errors, b barriers in reporting the nursing errors, and c motivators in error reporting. Conclusion Error reporting provides extremely valuable information for preventing future errors and improving the patient safety. Overall, regarding motivators and barriers in reporting the nursing errors, it is necessary to enact regulations in which the ways of reporting the error and its constituent elements, such as the notion of the error, are clearly identified.
A step-up test procedure to find the minimum effective dose.
Wang, Weizhen; Peng, Jianan
2015-01-01
It is of great interest to find the minimum effective dose (MED) in dose-response studies. A sequence of decreasing null hypotheses to find the MED is formulated under the assumption of nondecreasing dose response means. A step-up multiple test procedure that controls the familywise error rate (FWER) is constructed based on the maximum likelihood estimators for the monotone normal means. When the MED is equal to one, the proposed test is uniformly more powerful than Hsu and Berger's test (1999). Also, a simulation study shows a substantial power improvement for the proposed test over four competitors. Three R-codes are provided in Supplemental Materials for this article. Go to the publishers online edition of Journal of Biopharmaceutical Statistics to view the files.
Davarian, F.
1994-01-01
The LOOP computer program was written to simulate the Automatic Frequency Control (AFC) subsystem of a Differential Minimum Shift Keying (DMSK) receiver with a bit rate of 2400 baud. The AFC simulated by LOOP is a first order loop configuration with a first order R-C filter. NASA has been investigating the concept of mobile communications based on low-cost, low-power terminals linked via geostationary satellites. Studies have indicated that low bit rate transmission is suitable for this application, particularly from the frequency and power conservation point of view. A bit rate of 2400 BPS is attractive due to its applicability to the linear predictive coding of speech. Input to LOOP includes the following: 1) the initial frequency error; 2) the double-sided loop noise bandwidth; 3) the filter time constants; 4) the amount of intersymbol interference; and 5) the bit energy to noise spectral density. LOOP output includes: 1) the bit number and the frequency error of that bit; 2) the computed mean of the frequency error; and 3) the standard deviation of the frequency error. LOOP is written in MS SuperSoft FORTRAN 77 for interactive execution and has been implemented on an IBM PC operating under PC DOS with a memory requirement of approximately 40K of 8 bit bytes. This program was developed in 1986.
Scientific Opinion on the essential composition of total diet replacements for weight control
DEFF Research Database (Denmark)
Tetens, Inge
2015-01-01
or authoritative bodies. Derived from the minimum content of macronutrients, the Panel proposed a minimum energy content of total diet replacements for weight control of 2 510 kJ/day (600 kcal/day). The Panel also advised on potential conditions and restrictions of use for these products....
Understanding errors in EIA projections of energy demand
Energy Technology Data Exchange (ETDEWEB)
Fischer, Carolyn; Herrnstadt, Evan; Morgenstern, Richard [Resources for the Future, 1616 P St. NW, Washington, DC 20036 (United States)
2009-08-15
This paper investigates the potential for systematic errors in the Energy Information Administration's (EIA) widely used Annual Energy Outlook, focusing on the near- to mid-term projections of energy demand. Based on analysis of the EIA's 22-year projection record, we find a fairly modest but persistent tendency to underestimate total energy demand by an average of 2 percent per year after controlling for projection errors in gross domestic product, oil prices, and heating/cooling degree days. For 14 individual fuels/consuming sectors routinely reported by the EIA, we observe a great deal of directional consistency in the errors over time, ranging up to 7 percent per year. Electric utility renewables, electric utility natural gas, transportation distillate, and residential electricity show significant biases on average. Projections for certain other sectors have significant unexplained errors for selected time horizons. Such independent evaluation can be useful for validating analytic efforts and for prioritizing future model revisions. (author)
Statistical errors in Monte Carlo estimates of systematic errors
Energy Technology Data Exchange (ETDEWEB)
Roe, Byron P. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: byronroe@umich.edu
2007-01-01
For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k{sup 2}.
Statistical errors in Monte Carlo estimates of systematic errors
International Nuclear Information System (INIS)
Roe, Byron P.
2007-01-01
For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k 2
Decreasing patient identification band errors by standardizing processes.
Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie
2013-04-01
Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.
Telesh, Irena V; Schubert, Hendrik; Skarlato, Sergei O
2016-11-01
This study analyses three decades of the peculiar bloom-formation history of the potentially toxic invasive planktonic dinoflagellates Prorocentrum minimum (Pavillard) Schiller in the SW Baltic Sea. We tested a research hypothesis that the unexpectedly long delay (nearly two decades) in population development of P. minimum prior to its first bloom was caused by competition with one or several closely related native dinoflagellate species due to ecological niche partitioning which hampered the spread and bloom-forming potential of the invader. We applied the ecological niche concept to a large, long-term phytoplankton database and analysed the invasion history and population dynamics of P. minimum in the SW Baltic Sea coastal waters using the data on phytoplankton composition, abundance and biomass. The ecological niche dimensions of P. minimum and its congener P. balticum were identified as the optimum environmental conditions for the species during the bloom events based on water temperature, salinity, pH, concentration of nutrients (PO 4 3- ; total phosphorus, TP; total nitrogen, TN; SiO 4 4- ), TN/TP-ratio and habitat type. The data on spatial distribution and ecological niche dimensions of P. minimum have contributed to the development of the "protistan species maximum concept". High microplankton diversity at critical salinities in the Baltic Sea may be considered as a possible reason for the significant niche overlap and strong competitive interactions among congeners leading to prolonged delay in population growth of P. minimum preceding its first bloom in the highly variable brackishwater environment. Copyright © 2016 Elsevier B.V. All rights reserved.
EPIC: an Error Propagation/Inquiry Code
International Nuclear Information System (INIS)
Baker, A.L.
1985-01-01
The use of a computer program EPIC (Error Propagation/Inquiry Code) will be discussed. EPIC calculates the variance of a materials balance closed about a materials balance area (MBA) in a processing plant operated under steady-state conditions. It was designed for use in evaluating the significance of inventory differences in the Department of Energy (DOE) nuclear plants. EPIC rapidly estimates the variance of a materials balance using average plant operating data. The intent is to learn as much as possible about problem areas in a process with simple straightforward calculations assuming a process is running in a steady-state mode. EPIC is designed to be used by plant personnel or others with little computer background. However, the user should be knowledgeable about measurement errors in the system being evaluated and have a limited knowledge of how error terms are combined in error propagation analyses. EPIC contains six variance equations; the appropriate equation is used to calculate the variance at each measurement point. After all of these variances are calculated, the total variance for the MBA is calculated using a simple algebraic sum of variances. The EPIC code runs on any computer that accepts a standard form of the BASIC language. 2 refs., 1 fig., 6 tabs
Ownsworth, Tamara; Fleming, Jennifer; Tate, Robyn; Beadle, Elizabeth; Griffin, Janelle; Kendall, Melissa; Schmidt, Julia; Lane-Brown, Amanda; Chevignard, Mathilde; Shum, David H K
2017-12-01
Errorless learning (ELL) and error-based learning (EBL) are commonly used approaches to rehabilitation for people with traumatic brain injury (TBI). However, it is unknown whether making errors is beneficial in the learning process to promote skills generalization after severe TBI. To compare the efficacy of ELL and EBL for improving skills generalization, self-awareness, behavioral competency, and psychosocial functioning after severe TBI. A total of 54 adults (79% male; mean age = 38.0 years, SD = 13.4) with severe TBI were randomly allocated to ELL or EBL and received 8 × 1.5-hour therapy sessions that involved meal preparation and other goal-directed activities. The primary outcome was total errors on the Cooking Task (near-transfer). Secondary outcome measures included the Zoo Map Test (far-transfer), Awareness Questionnaire, Patient Competency Rating Scale, Sydney Psychosocial Reintegration Scale, and Care and Needs Scale. Controlling for baseline performance and years of education, participants in the EBL group made significantly fewer errors at postintervention (mean = 36.25; 95% CI = 32.5-40.0) than ELL participants (mean = 42.57; 95% CI = 38.8-46.3). EBL participants also demonstrated greater self-awareness and behavioral competency at postintervention than ELL participants ( P .05), or at the 6-month follow-up assessment. EBL was found to be more effective than ELL for enhancing skills generalization on a task related to training and improving self-awareness and behavioral competency.
Prevalence and type of errors in dual-energy X-ray absorptiometry
Energy Technology Data Exchange (ETDEWEB)
Messina, Carmelo; Bandirali, Michele; D' Alonzo, Nathascja Katia [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Sconfienza, Luca Maria; Sardanelli, Francesco [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy); Di Leo, Giovanni; Papini, Giacomo Davide Edoardo [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Ulivieri, Fabio Massimo [IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Servizio di Medicina Nucleare, Milano (Italy)
2015-05-01
Pitfalls in dual-energy x-ray absorptiometry (DXA) are common. Our aim was to assess rate and type of errors in DXA examinations/reports, evaluating a consecutive series of DXA images of patients examined elsewhere and later presenting to our institution for a follow-up DXA. After ethics committee approval, a radiologist retrospectively reviewed all DXA images provided by patients presenting at our institution for a new DXA. Errors were categorized as patient positioning (PP), data analysis (DA), artefacts and/or demographics. Of 2,476 patients, 1,198 had no previous DXA, while 793 had a previous DXA performed in our institution. The remaining 485 (20 %) patients entered the study (38 men and 447 women; mean age ± standard deviation, 68 ± 9 years). Previous DXA examinations were performed at a total of 37 centres. Of 485 reports, 451 (93 %) had at least one error out of a total of 558 errors distributed as follows: 441 (79 %) were DA, 66 (12 %) PP, 39 (7 %) artefacts and 12 (2 %) demographics. About 20 % of patients did not undergo DXA at the same institution as previously. More than 90 % of DXA presented at least one error, mainly of DA. International Society for Clinical Densitometry guidelines are very poorly adopted. (orig.)
Management of hypocalcemia following total thyroidectomy
International Nuclear Information System (INIS)
Pahuja, D.N.; Patwardhan, U.N.; Samuel, A.M.
1999-01-01
A retrospective analysis of calcemic status of 500 randomly selected patients, who underwent total thyroidectomy (TTx) for differentiated thyroid carcinoma (DTC) was studied. These patients were followed up from a minimum of 2-3 years, to a maximum of 15-20 years, and calcemic status was ascertained at varying times following their surgery and radioiodine ( 131 ) therapy
Minimum relative entropy, Bayes and Kapur
Woodbury, Allan D.
2011-04-01
The focus of this paper is to illustrate important philosophies on inversion and the similarly and differences between Bayesian and minimum relative entropy (MRE) methods. The development of each approach is illustrated through the general-discrete linear inverse. MRE differs from both Bayes and classical statistical methods in that knowledge of moments are used as ‘data’ rather than sample values. MRE like Bayes, presumes knowledge of a prior probability distribution and produces the posterior pdf itself. MRE attempts to produce this pdf based on the information provided by new moments. It will use moments of the prior distribution only if new data on these moments is not available. It is important to note that MRE makes a strong statement that the imposed constraints are exact and complete. In this way, MRE is maximally uncommitted with respect to unknown information. In general, since input data are known only to within a certain accuracy, it is important that any inversion method should allow for errors in the measured data. The MRE approach can accommodate such uncertainty and in new work described here, previous results are modified to include a Gaussian prior. A variety of MRE solutions are reproduced under a number of assumed moments and these include second-order central moments. Various solutions of Jacobs & van der Geest were repeated and clarified. Menke's weighted minimum length solution was shown to have a basis in information theory, and the classic least-squares estimate is shown as a solution to MRE under the conditions of more data than unknowns and where we utilize the observed data and their associated noise. An example inverse problem involving a gravity survey over a layered and faulted zone is shown. In all cases the inverse results match quite closely the actual density profile, at least in the upper portions of the profile. The similar results to Bayes presented in are a reflection of the fact that the MRE posterior pdf, and its mean
Energy Technology Data Exchange (ETDEWEB)
Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))
1990-01-01
The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.
Youth minimum wages and youth employment
Marimpi, Maria; Koning, Pierre
2018-01-01
This paper performs a cross-country level analysis on the impact of the level of specific youth minimum wages on the labor market performance of young individuals. We use information on the use and level of youth minimum wages, as compared to the level of adult minimum wages as well as to the median
Symbol Error Rate of MPSK over EGK Channels Perturbed by a Dominant Additive Laplacian Noise
Souri, Hamza; Alouini, Mohamed-Slim
2015-01-01
The Laplacian noise has received much attention during the recent years since it affects many communication systems. We consider in this paper the probability of error of an M-ary phase shift keying (PSK) constellation operating over a generalized fading channel in presence of a dominant additive Laplacian noise. In this context, the decision regions of the receiver are determined using the maximum likelihood and the minimum distance detectors. Once the decision regions are extracted, the resulting symbol error rate expressions are computed and averaged over an Extended Generalized-K fading distribution. Generic closed form expressions of the conditional and the average probability of error are obtained in terms of the Fox’s H function. Simplifications for some special cases of fading are presented and the resulting formulas end up being often expressed in terms of well known elementary functions. Finally, the mathematical formalism is validated using some selected analytical-based numerical results as well as Monte- Carlo simulation-based results.
Symbol Error Rate of MPSK over EGK Channels Perturbed by a Dominant Additive Laplacian Noise
Souri, Hamza
2015-06-01
The Laplacian noise has received much attention during the recent years since it affects many communication systems. We consider in this paper the probability of error of an M-ary phase shift keying (PSK) constellation operating over a generalized fading channel in presence of a dominant additive Laplacian noise. In this context, the decision regions of the receiver are determined using the maximum likelihood and the minimum distance detectors. Once the decision regions are extracted, the resulting symbol error rate expressions are computed and averaged over an Extended Generalized-K fading distribution. Generic closed form expressions of the conditional and the average probability of error are obtained in terms of the Fox’s H function. Simplifications for some special cases of fading are presented and the resulting formulas end up being often expressed in terms of well known elementary functions. Finally, the mathematical formalism is validated using some selected analytical-based numerical results as well as Monte- Carlo simulation-based results.
Quantitative estimation of the human error probability during soft control operations
International Nuclear Information System (INIS)
Lee, Seung Jun; Kim, Jaewhan; Jung, Wondea
2013-01-01
Highlights: ► An HRA method to evaluate execution HEP for soft control operations was proposed. ► The soft control tasks were analyzed and design-related influencing factors were identified. ► An application to evaluate the effects of soft controls was performed. - Abstract: In this work, a method was proposed for quantifying human errors that can occur during operation executions using soft controls. Soft controls of advanced main control rooms have totally different features from conventional controls, and thus they may have different human error modes and occurrence probabilities. It is important to identify the human error modes and quantify the error probability for evaluating the reliability of the system and preventing errors. This work suggests an evaluation framework for quantifying the execution error probability using soft controls. In the application result, it was observed that the human error probabilities of soft controls showed both positive and negative results compared to the conventional controls according to the design quality of advanced main control rooms
Discretization of space and time: determining the values of minimum length and minimum time
Roatta , Luca
2017-01-01
Assuming that space and time can only have discrete values, we obtain the expression of the minimum length and the minimum time interval. These values are found to be exactly coincident with the Planck's length and the Planck's time but for the presence of h instead of ħ .
Minimum wage development in the Russian Federation
Bolsheva, Anna
2012-01-01
The aim of this paper is to analyze the effectiveness of the minimum wage policy at the national level in Russia and its impact on living standards in the country. The analysis showed that the national minimum wage in Russia does not serve its original purpose of protecting the lowest wage earners and has no substantial effect on poverty reduction. The national subsistence minimum is too low and cannot be considered an adequate criterion for the setting of the minimum wage. The minimum wage d...
An information-guided channel-hopping scheme for block-fading channels with estimation errors
Yang, Yuli
2010-12-01
Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.
Minimum emittance of three-bend achromats
International Nuclear Information System (INIS)
Li Xiaoyu; Xu Gang
2012-01-01
The calculation of the minimum emittance of three-bend achromats (TBAs) made by Mathematical software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space. The minimum scaling factors of two kinds of widely used TBA lattices are obtained. Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor, when the TBA lattice achieves its minimum emittance. The procedure of analysis and the results can be widely used in achromats lattices, because the calculation is not restricted by the actual lattice. (authors)
Medical Errors in Cyprus: The 2005 Eurobarometer Survey
Directory of Open Access Journals (Sweden)
Andreas Pavlakis
2012-01-01
Full Text Available Background: Medical errors have been highlighted in recent years by different agencies, scientific bodies and research teams alike. We sought to explore the issue of medical errors in Cyprus using data from the Eurobarometer survey.Methods: Data from the special Eurobarometer survey conducted in 2005 across all European Union countries (EU-25 and the acceding countries were obtained from the corresponding EU office. Statisticalanalyses including logistic regression models were performed using SPSS.Results: A total of 502 individuals participated in the Cyprus survey. About 90% reported that they had often or sometimes heard about medical errors, while 22% reported that a family member or they had suffered a serious medical error in a local hospital. In addition, 9.4% reported a serious problem from a prescribed medicine. We also found statistically significant differences across different ages and gender and in rural versus urban residents. Finally, using multivariable-adjusted logistic regression models, wefound that residents in rural areas were more likely to have suffered a serious medical error in a local hospital or from a prescribed medicine.Conclusion: Our study shows that the vast majority of residents in Cyprus in parallel with the other Europeans worry about medical errors and a significant percentage report having suffered a serious medical error at a local hospital or from a prescribed medicine. The results of our study could help the medical community in Cyprus and the society at large to enhance its vigilance with respect to medical errors in order to improve medical care.
Yohay Carmel; Curtis Flather; Denis Dean
2006-01-01
This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...
30 CFR 57.19021 - Minimum rope strength.
2010-07-01
... feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail...
30 CFR 56.19021 - Minimum rope strength.
2010-07-01
... feet: Minimum Value=Static Load×(7.0-0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...
Nurses' attitude and intention of medication administration error reporting.
Hung, Chang-Chiao; Chu, Tsui-Ping; Lee, Bih-O; Hsiao, Chia-Chi
2016-02-01
The Aims of this study were to explore the effects of nurses' attitudes and intentions regarding medication administration error reporting on actual reporting behaviours. Underreporting of medication errors is still a common occurrence. Whether attitude and intention towards medication administration error reporting connect to actual reporting behaviours remain unclear. This study used a cross-sectional design with self-administered questionnaires, and the theory of planned behaviour was used as the framework for this study. A total of 596 staff nurses who worked in general wards and intensive care units in a hospital were invited to participate in this study. The researchers used the instruments measuring nurses' attitude, nurse managers' and co-workers' attitude, report control, and nurses' intention to predict nurses' actual reporting behaviours. Data were collected from September-November 2013. Path analyses were used to examine the hypothesized model. Of the 596 nurses invited to participate, 548 (92%) completed and returned a valid questionnaire. The findings indicated that nurse managers' and co-workers' attitudes are predictors for nurses' attitudes towards medication administration error reporting. Nurses' attitudes also influenced their intention to report medication administration errors; however, no connection was found between intention and actual reporting behaviour. The findings reflected links among colleague perspectives, nurses' attitudes, and intention to report medication administration errors. The researchers suggest that hospitals should increase nurses' awareness and recognition of error occurrence. Regardless of nurse managers' and co-workers' attitudes towards medication administration error reporting, nurses are likely to report medication administration errors if they detect them. Management of medication administration errors should focus on increasing nurses' awareness and recognition of error occurrence. © 2015 John Wiley & Sons Ltd.
Statistical errors in Monte Carlo estimates of systematic errors
Roe, Byron P.
2007-01-01
For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.
Medication Errors in Patients with Enteral Feeding Tubes in the Intensive Care Unit.
Sohrevardi, Seyed Mojtaba; Jarahzadeh, Mohammad Hossein; Mirzaei, Ehsan; Mirjalili, Mahtabalsadat; Tafti, Arefeh Dehghani; Heydari, Behrooz
2017-01-01
Most patients admitted to Intensive Care Units (ICU) have problems in using oral medication or ingesting solid forms of drugs. Selecting the most suitable dosage form in such patients is a challenge. The current study was conducted to assess the frequency and types of errors of oral medication administration in patients with enteral feeding tubes or suffering swallowing problems. A cross-sectional study was performed in the ICU of Shahid Sadoughi Hospital, Yazd, Iran. Patients were assessed for the incidence and types of medication errors occurring in the process of preparation and administration of oral medicines. Ninety-four patients were involved in this study and 10,250 administrations were observed. Totally, 4753 errors occurred among the studied patients. The most commonly used drugs were pantoprazole tablet, piracetam syrup, and losartan tablet. A total of 128 different types of drugs and nine different oral pharmaceutical preparations were prescribed for the patients. Forty-one (35.34%) out of 116 different solid drugs (except effervescent tablets and powders) could be substituted by liquid or injectable forms. The most common error was the wrong time of administration. Errors of wrong dose preparation and administration accounted for 24.04% and 25.31% of all errors, respectively. In this study, at least three-fourth of the patients experienced medication errors. The occurrence of these errors can greatly impair the quality of the patients' pharmacotherapy, and more attention should be paid to this issue.
Error analysis in predictive modelling demonstrated on mould data.
Baranyi, József; Csernus, Olívia; Beczner, Judit
2014-01-17
The purpose of this paper was to develop a predictive model for the effect of temperature and water activity on the growth rate of Aspergillus niger and to determine the sources of the error when the model is used for prediction. Parallel mould growth curves, derived from the same spore batch, were generated and fitted to determine their growth rate. The variances of replicate ln(growth-rate) estimates were used to quantify the experimental variability, inherent to the method of determining the growth rate. The environmental variability was quantified by the variance of the respective means of replicates. The idea is analogous to the "within group" and "between groups" variability concepts of ANOVA procedures. A (secondary) model, with temperature and water activity as explanatory variables, was fitted to the natural logarithm of the growth rates determined by the primary model. The model error and the experimental and environmental errors were ranked according to their contribution to the total error of prediction. Our method can readily be applied to analysing the error structure of predictive models of bacterial growth models, too. © 2013.
International Nuclear Information System (INIS)
Husen, S.; Clinton, J. F.; Kissling, E.
2011-01-01
One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)
Energy Technology Data Exchange (ETDEWEB)
Husen, S.; Clinton, J. F. [Swiss Seismological Service, ETH Zuerich, Zuerich (Switzerland); Kissling, E. [Institute of Geophysics, ETH Zuerich, Zuerich (Switzerland)
2011-10-15
One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)
30 CFR 77.1431 - Minimum rope strength.
2010-07-01
... feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...
Vinay BC; Nikhitha MK; Patel Sunil B
2015-01-01
In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.
A Phosphate Minimum in the Oxygen Minimum Zone (OMZ) off Peru
Paulmier, A.; Giraud, M.; Sudre, J.; Jonca, J.; Leon, V.; Moron, O.; Dewitte, B.; Lavik, G.; Grasse, P.; Frank, M.; Stramma, L.; Garcon, V.
2016-02-01
The Oxygen Minimum Zone (OMZ) off Peru is known to be associated with the advection of Equatorial SubSurface Waters (ESSW), rich in nutrients and poor in oxygen, through the Peru-Chile UnderCurrent (PCUC), but this circulation remains to be refined within the OMZ. During the Pelágico cruise in November-December 2010, measurements of phosphate revealed the presence of a phosphate minimum (Pmin) in various hydrographic stations, which could not be explained so far and could be associated with a specific water mass. This Pmin, localized at a relatively constant layer ( 20minimum with a mean vertical phosphate decrease of 0.6 µM but highly variable between 0.1 and 2.2 µM. In average, these Pmin are associated with a predominant mixing of SubTropical Under- and Surface Waters (STUW and STSW: 20 and 40%, respectively) within ESSW ( 25%), complemented evenly by overlying (ESW, TSW: 8%) and underlying waters (AAIW, SPDW: 7%). The hypotheses and mechanisms leading to the Pmin formation in the OMZ are further explored and discussed, considering the physical regional contribution associated with various circulation pathways ventilating the OMZ and the local biogeochemical contribution including the potential diazotrophic activity.
Hoede, C.; Li, Z.
2001-01-01
In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,
Directory of Open Access Journals (Sweden)
Eric Z. Chen
2015-01-01
Full Text Available Error control codes have been widely used in data communications and storage systems. One central problem in coding theory is to optimize the parameters of a linear code and construct codes with best possible parameters. There are tables of best-known linear codes over finite fields of sizes up to 9. Recently, there has been a growing interest in codes over $\\mathbb{F}_{13}$ and other fields of size greater than 9. The main purpose of this work is to present a database of best-known linear codes over the field $\\mathbb{F}_{13}$ together with upper bounds on the minimum distances. To find good linear codes to establish lower bounds on minimum distances, an iterative heuristic computer search algorithm is employed to construct quasi-twisted (QT codes over the field $\\mathbb{F}_{13}$ with high minimum distances. A large number of new linear codes have been found, improving previously best-known results. Tables of $[pm, m]$ QT codes over $\\mathbb{F}_{13}$ with best-known minimum distances as well as a table of lower and upper bounds on the minimum distances for linear codes of length up to 150 and dimension up to 6 are presented.
Sirgo, Gonzalo; Esteban, Federico; Gómez, Josep; Moreno, Gerard; Rodríguez, Alejandro; Blanch, Lluis; Guardiola, Juan José; Gracia, Rafael; De Haro, Lluis; Bodí, María
2018-04-01
Big data analytics promise insights into healthcare processes and management, improving outcomes while reducing costs. However, data quality is a major challenge for reliable results. Business process discovery techniques and an associated data model were used to develop data management tool, ICU-DaMa, for extracting variables essential for overseeing the quality of care in the intensive care unit (ICU). To determine the feasibility of using ICU-DaMa to automatically extract variables for the minimum dataset and ICU quality indicators from the clinical information system (CIS). The Wilcoxon signed-rank test and Fisher's exact test were used to compare the values extracted from the CIS with ICU-DaMa for 25 variables from all patients attended in a polyvalent ICU during a two-month period against the gold standard of values manually extracted by two trained physicians. Discrepancies with the gold standard were classified into plausibility, conformance, and completeness errors. Data from 149 patients were included. Although there were no significant differences between the automatic method and the manual method, we detected differences in values for five variables, including one plausibility error and two conformance and completeness errors. Plausibility: 1) Sex, ICU-DaMa incorrectly classified one male patient as female (error generated by the Hospital's Admissions Department). Conformance: 2) Reason for isolation, ICU-DaMa failed to detect a human error in which a professional misclassified a patient's isolation. 3) Brain death, ICU-DaMa failed to detect another human error in which a professional likely entered two mutually exclusive values related to the death of the patient (brain death and controlled donation after circulatory death). Completeness: 4) Destination at ICU discharge, ICU-DaMa incorrectly classified two patients due to a professional failing to fill out the patient discharge form when thepatients died. 5) Length of continuous renal replacement
Hypocalcaemia following total thyroidectomy: An analysis of 806 patients
Nair, C. Gopalakrishnan; Babu, Misha J. C.; Menon, Riju; Jacob, Pradeep
2013-01-01
Background: Permanent hypocalcaemia following thyroidectomy causes considerable morbidity. This prospective observational study aims to define the factors likely to predict hypocalcaemia following total thyroidectomy. Materials and Methods: Patients who were subjected to total thyroidectomy during January 2005 to December 2009 were followed up for a minimum period of 1 year. Efficacy of an intraoperative parathyroid hormone assay to predict hypocalcaemia was validated. Results: Overall incide...
A Method and Support Tool for the Analysis of Human Error Hazards in Digital Devices
International Nuclear Information System (INIS)
Lee, Yong Hee; Kim, Seon Soo; Lee, Yong Hee
2012-01-01
In recent years, many nuclear power plants have adopted modern digital I and C technologies since they are expected to significantly improve their performance and safety. Modern digital technologies were expected to significantly improve both the economical efficiency and safety of nuclear power plants. However, the introduction of an advanced main control room (MCR) is accompanied with lots of changes in forms and features and differences through virtue of new digital devices. Many user-friendly displays and new features in digital devices are not enough to prevent human errors in nuclear power plants (NPPs). It may be an urgent to matter find the human errors potentials due to digital devices, and their detailed mechanisms. We can then consider them during the design of digital devices and their interfaces. The characteristics of digital technologies and devices may give many opportunities to the interface management, and can be integrated into a compact single workstation in an advanced MCR, such that workers can operate the plant with minimum burden under any operating condition. However, these devices may introduce new types of human errors, and thus we need a means to evaluate and prevent such errors, especially within digital devices for NPPs. This research suggests a new method named HEA-BIS (Human Error Analysis based on Interaction Segment) to confirm and detect human errors associated with digital devices. This method can be facilitated by support tools when used to ensure the safety when applying digital devices in NPPs
Characteristics of pediatric chemotherapy medication errors in a national error reporting database.
Rinke, Michael L; Shore, Andrew D; Morlock, Laura; Hicks, Rodney W; Miller, Marlene R
2007-07-01
Little is known regarding chemotherapy medication errors in pediatrics despite studies suggesting high rates of overall pediatric medication errors. In this study, the authors examined patterns in pediatric chemotherapy errors. The authors queried the United States Pharmacopeia MEDMARX database, a national, voluntary, Internet-accessible error reporting system, for all error reports from 1999 through 2004 that involved chemotherapy medications and patients aged error reports, 85% reached the patient, and 15.6% required additional patient monitoring or therapeutic intervention. Forty-eight percent of errors originated in the administering phase of medication delivery, and 30% originated in the drug-dispensing phase. Of the 387 medications cited, 39.5% were antimetabolites, 14.0% were alkylating agents, 9.3% were anthracyclines, and 9.3% were topoisomerase inhibitors. The most commonly involved chemotherapeutic agents were methotrexate (15.3%), cytarabine (12.1%), and etoposide (8.3%). The most common error types were improper dose/quantity (22.9% of 327 cited error types), wrong time (22.6%), omission error (14.1%), and wrong administration technique/wrong route (12.2%). The most common error causes were performance deficit (41.3% of 547 cited error causes), equipment and medication delivery devices (12.4%), communication (8.8%), knowledge deficit (6.8%), and written order errors (5.5%). Four of the 5 most serious errors occurred at community hospitals. Pediatric chemotherapy errors often reached the patient, potentially were harmful, and differed in quality between outpatient and inpatient areas. This study indicated which chemotherapeutic agents most often were involved in errors and that administering errors were common. Investigation is needed regarding targeted medication administration safeguards for these high-risk medications. Copyright (c) 2007 American Cancer Society.
Errors resulting from assuming opaque Lambertian clouds in TOMS ozone retrieval
International Nuclear Information System (INIS)
Liu, X.; Newchurch, M.J.; Loughman, R.; Bhartia, P.K.
2004-01-01
Accurate remote sensing retrieval of atmospheric constituents over cloudy areas is very challenging because of insufficient knowledge of cloud parameters. Cloud treatments are highly idealized in most retrieval algorithms. Using a radiative transfer model treating clouds as scattering media, we investigate the effects of assuming opaque Lambertian clouds and employing a Partial Cloud Model (PCM) on Total Ozone Mapping Spectrometer (TOMS) ozone retrievals, especially for tropical high-reflectivity clouds. Assuming angularly independent cloud reflection is good because the Ozone Retrieval Errors (OREs) are within 1.5% of the total ozone (i.e., within TOMS retrieval precision) when Cloud Optical Depth (COD)≥20. Because of Intra-Cloud Ozone Absorption ENhancement (ICOAEN), assuming opaque clouds can introduce large OREs even for optically thick clouds. For a water cloud of COD 40 spanning 2-12 km with 20.8 Dobson Unit (DU) ozone homogeneously distributed in the cloud, the ORE is 17.8 DU in the nadir view. The ICOAEN effect depends greatly on solar zenith angle, view zenith angle, and intra-cloud ozone amount and distribution. The TOMS PCM is good because negative errors from the cloud fraction being underestimated partly cancel other positive errors. At COD≤5, the TOMS algorithm retrieves approximately the correct total ozone because of compensating errors. With increasing COD up to 20-40, the overall positive ORE increases and is finally dominated by the ICOAEN effect. The ICOAEN effect is typically 5-13 DU on average over the Atlantic and Africa and 1-7 DU over the Pacific for tropical high-altitude (cloud top pressure ≤300 hPa) and high-reflectivity (reflectivity ≥ 80%) clouds. Knowledge of TOMS ozone retrieval errors has important implications for remote sensing of ozone/trace gases from other satellite instruments
An Empirical State Error Covariance Matrix for Batch State Estimation
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the
Evaluation of analytical errors in a clinical chemistry laboratory: a 3 year experience.
Sakyi, As; Laing, Ef; Ephraim, Rk; Asibey, Of; Sadique, Ok
2015-01-01
Proficient laboratory service is the cornerstone of modern healthcare systems and has an impact on over 70% of medical decisions on admission, discharge, and medications. In recent years, there is an increasing awareness of the importance of errors in laboratory practice and their possible negative impact on patient outcomes. We retrospectively analyzed data spanning a period of 3 years on analytical errors observed in our laboratory. The data covered errors over the whole testing cycle including pre-, intra-, and post-analytical phases and discussed strategies pertinent to our settings to minimize their occurrence. We described the occurrence of pre-analytical, analytical and post-analytical errors observed at the Komfo Anokye Teaching Hospital clinical biochemistry laboratory during a 3-year period from January, 2010 to December, 2012. Data were analyzed with Graph Pad Prism 5(GraphPad Software Inc. CA USA). A total of 589,510 tests was performed on 188,503 outpatients and hospitalized patients. The overall error rate for the 3 years was 4.7% (27,520/58,950). Pre-analytical, analytical and post-analytical errors contributed 3.7% (2210/58,950), 0.1% (108/58,950), and 0.9% (512/58,950), respectively. The number of tests reduced significantly over the 3-year period, but this did not correspond with a reduction in the overall error rate (P = 0.90) along with the years. Analytical errors are embedded within our total process setup especially pre-analytical and post-analytical phases. Strategic measures including quality assessment programs for staff involved in pre-analytical processes should be intensified.
PERANCANGAN COMPUTER AIDED SYSTEM DALAM MENGANALISA HUMAN ERROR DI PERKERETAAPIAN INDONESIA
Directory of Open Access Journals (Sweden)
Wiwik Budiawan
2013-06-01
Full Text Available Kecelakaan kereta api (KA yang terjadi secara beruntun di Indonesia sudah berada pada tingkat kritis. Berdasarkan data dari Direktorat Jendral Perkeretaapian, dalam kurun 5 tahun terakhir (2005-2009 total terdapat 611 kecelakaan KA. Banyak faktor yang berkontribusi menyebabkan terjadinya kecelakaan, antara lain: sarana, prasarana, SDM operator (human error, eksternal, dan alam. Kegagalan manusia (Human error merupakan salah satu faktor yang berpotensi menyebabkan terjadinya suatu kecelakaan KA dan dinyatakan sebagai faktor utama penyebab terjadinya suatu kecelakaan kereta api di Indonesia. Namun, tidak jelas bagaimana teknik analisis ini dilakukan. Kajian human error yang dilakukan Komite Nasional Keselamatan Transportasi (KNKT masih relatif terbatas, tidak dilengkapi dengan metode yang sistematis. Terdapat beberapa metode yang telah dikembangkan saat ini, tetapi untuk moda transportasi kereta api masih belum banyak dikembangkan. Human Factors Analysis and Classification System (HFACS merupakan metode analisis human error yang dikembangkan dan disesuaikan dengan sistem perkeretaapian Indonesia. Guna meningkatkan keandalan dalam analisis human error, HFACS kemudian dikembangkan dalam bentuk aplikasi berbasis web yang dapat diakses di komputer maupun smartphone. Hasil penelitian ini dapat dimanfaatkan oleh KNKT sebagai metode analisis kecelakaan kereta api khususnya terkait dengan human error. Kata kunci : human error, HFACS, CAS, kereta api Abstract Train wreck (KA which occurred in quick succession in Indonesia already at a critical level. Based on data from the Directorate General of Railways, during the last 5 years (2005-2009 there were a total of 611 railway accidents. Many factors contribute to cause accidents, such as: facilities, infrastructure, human operator (human error, external, and natural. Human failure (Human error is one of the factors that could potentially cause a train accident and expressed as the main factors causing
Yoon, Jung-Ro; Yang, Jae-Hyuk
2018-03-20
The purpose of this retrospective study was to analyze and compare the clinical and radiologic outcomes of fixed bearing ultracongruent (UC) insert total knee arthroplasty (TKA) and mobile bearing (MB) floating platform TKA using the navigation-assisted gap balancing technique with a minimum follow-up of five years. The study retrospectively enrolled 105 patients who received the UC type fixed bearing insert (group 1) and 95 patients who received the floating platform MB insert (group 2) during the period from August 2009 to June 2012. All surgery was performed using the navigation-assisted gap balancing technique. For strict assessment of gap measurements, the offset-type-force-controlled-spreader-system was used. Radiologic and clinical outcomes were assessed before operation and at the most recent follow-up using the Knee Society Score (KSS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score. For statistical analysis, paired sample t tests were used. A p value less than 0.05 was considered significant. Although the radiologic alignments were satisfactory for both groups (99/105 [94%] cases were neutral for group 1 and 90/95 [94%] for group 2), the functional and total WOMAC scores were inferior in group 2 (p bearing exchange. The Kaplan-Meier survivorship rates for groups 1 and 2 at 77 months were 100.0 and 97.9%, respectively. Second-generation MB floating platform TKA cases did not have satisfactory outcomes. There were two cases of insert breakage, which required bearing exchange. Other patients who underwent surgery with second-generation MB floating platform were encouraged to avoid high knee flexion activities, resulting in lower clinical performance.
Using snowball sampling method with nurses to understand medication administration errors.
Sheu, Shuh-Jen; Wei, Ien-Lan; Chen, Ching-Huey; Yu, Shu; Tang, Fu-In
2009-02-01
We aimed to encourage nurses to release information about drug administration errors to increase understanding of error-related circumstances and to identify high-alert situations. Drug administration errors represent the majority of medication errors, but errors are underreported. Effective ways are lacking to encourage nurses to actively report errors. Snowball sampling was conducted to recruit participants. A semi-structured questionnaire was used to record types of error, hospital and nurse backgrounds, patient consequences, error discovery mechanisms and reporting rates. Eighty-five nurses participated, reporting 328 administration errors (259 actual, 69 near misses). Most errors occurred in medical surgical wards of teaching hospitals, during day shifts, committed by nurses working fewer than two years. Leading errors were wrong drugs and doses, each accounting for about one-third of total errors. Among 259 actual errors, 83.8% resulted in no adverse effects; among remaining 16.2%, 6.6% had mild consequences and 9.6% had serious consequences (severe reaction, coma, death). Actual errors and near misses were discovered mainly through double-check procedures by colleagues and nurses responsible for errors; reporting rates were 62.5% (162/259) vs. 50.7% (35/69) and only 3.5% (9/259) vs. 0% (0/69) were disclosed to patients and families. High-alert situations included administration of 15% KCl, insulin and Pitocin; using intravenous pumps; and implementation of cardiopulmonary resuscitation (CPR). Snowball sampling proved to be an effective way to encourage nurses to release details concerning medication errors. Using empirical data, we identified high-alert situations. Strategies for reducing drug administration errors by nurses are suggested. Survey results suggest that nurses should double check medication administration in known high-alert situations. Nursing management can use snowball sampling to gather error details from nurses in a non
Directory of Open Access Journals (Sweden)
Peter Winkler
2001-05-01
Full Text Available During the total eclipse of August 11, 1999 frequent showers occurred due to a unstable stratification of the air mass. At different observation sites, meteorological effects from the eclipse (99.4% coverage at Hohenpeißenberg and from showers were superimposed making it partly difficult to unambiguously interpret the observations. The weather radar at Hohenpeißenberg observatory provided a general overview of the distribution of clouds and precipitation in this area (200 km diameter. From the Garching site in the zone of totality (100% temperature and wind data taken on a 50 m mast were evaluated. By selecting periods with relatively low cloud cover it was possible to approximately follow the development of the vertical temperature and wind profiles during the eclipse. The minimum temperature at Hohenpeißenberg (about 450 m above the altitude of Garching during the eclipse was comparable to that during the previous night, the corresponding value measured at Garching remained about 2 K above the minimum observed during clear sky conditions in the previous night. Showers before, during or after the eclipse may have induced vertical exchange of air parcels. Temperatures during a shower change towards the same direction at all altitudes, thus no inversion forms. Additionally, air parcels with relatively lower concentrations of trace constituents were transported down from aloft for time periods of 1015 minutes. These mixing processes significantly determined the temporal variations of various trace substances measured during the eclipse. Total ozone measurements at Hohenpeißenberg were performed with both DOBSON and BREWER spectrophotometers and at another site within the zone of totality by using a portable Microtops II filter instrument. Different results were obtained for both sites. These differences can be to a large extend, but not exclusively, attributed to eclipse induced shifts (limb darkening and straylight effects in the atmosphere
12 CFR 564.4 - Minimum appraisal standards.
2010-01-01
... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Minimum appraisal standards. 564.4 Section 564.4 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPRAISALS § 564.4 Minimum appraisal standards. For federally related transactions, all appraisals shall, at a minimum: (a...
The minimum wage in the Czech enterprises
Eva Lajtkepová
2010-01-01
Although the statutory minimum wage is not a new category, in the Czech Republic we encounter the definition and regulation of a minimum wage for the first time in the 1990 amendment to Act No. 65/1965 Coll., the Labour Code. The specific amount of the minimum wage and the conditions of its operation were then subsequently determined by government regulation in February 1991. Since that time, the value of minimum wage has been adjusted fifteenth times (the last increase was in January 2007). ...
Error studies for SNS Linac. Part 1: Transverse errors
International Nuclear Information System (INIS)
Crandall, K.R.
1998-01-01
The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll)
MORIKAWA Masayuki
2013-01-01
This paper, using prefecture level panel data, empirically analyzes 1) the recent evolution of price-adjusted regional minimum wages and 2) the effects of minimum wages on firm profitability. As a result of rapid increases in minimum wages in the metropolitan areas since 2007, the regional disparity of nominal minimum wages has been widening. However, the disparity of price-adjusted minimum wages has been shrinking. According to the analysis of the effects of minimum wages on profitability us...
The cost of anchoring on credit-card minimum repayments
Stewart, Neil
2009-01-01
About three quarters of credit card accounts attract interest charges. In the US, credit card debt is $951.7 billion of a total of $2,539.7 billion of consumer credit. In the UK, credit card debt is £55.1 billion of £174.4 billion of consumer credit. The 2005 US Bankruptcy Abuse Prevention and Consumer Protection Act and the 2003 UK Treasury Select Committee's report require lenders to collect a minimum payment of at least the interest accrued each month. Thus people are protected from the ef...
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.
Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2016-01-01
Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (Pcutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.
Detection of minimum-ionizing particles in hydrogenated amorphous silicon
International Nuclear Information System (INIS)
Kaplan, S.N.; Fujieda, I.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.
1987-09-01
Based on previously-reported results of the successful detection of alpha particles and 1- and 2-MeV protons with hydrogenated amorphous silicon (a-Si : H) diodes, detection of a single minimum-ionizing particle will require a total sensitive thickness of approximately 100 to 150 μm, either in the form of a single thick diode, or as a stack of several thinner diodes. Signal saturation at high dE/dx makes it necessary to simulate minimum ionization in order to evaluate present detectors. Two techniques, using pulsed infrared light, and pulsed x-rays, give single-pulse signals large enough for direct measurements. A third, using beta rays, requires multiple-transit signal averaging to produce signals measurable above noise. Signal amplitudes from the a-Si : H limit at 60% of the signal size from Si crystals extrapolated to the same thickness. This is consistent with an a-Si : H radiation ionization energy, W = 6 eV/electron-hole pair. Beta-ray signals are observed at the expected amplitude
International Nuclear Information System (INIS)
Jong, E. de J. de; Bosch, J.J. ten
1985-01-01
The microradiographic method, used to measure the mineral content in slices of mineralised tissues as a function of position, is analysed. The total error in the measured mineral content is split into systematic errors per microradiogram and random noise errors. These errors are measured quantitatively. Predominant contributions to systematic errors appear to be x-ray beam inhomogeneity, the determination of the step wedge thickness and stray light in the densitometer microscope, while noise errors are under the influence of the choice of film, the value of the optical film transmission of the microradiographic image and the area of the densitometer window. Optimisation criteria are given. The authors used these criteria, together with the requirement that the method be fast and easy to build an optimised microradiographic system. (author)
41 CFR 50-201.1101 - Minimum wages.
2010-07-01
... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Minimum wages. 50-201... Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 201-GENERAL REGULATIONS § 50-201.1101 Minimum wages. Determinations of prevailing minimum wages or changes therein will be published in the Federal Register by the...
Minimum Wage Laws and the Distribution of Employment.
Lang, Kevin
The desirability of raising the minimum wage long revolved around just one question: the effect of higher minimum wages on the overall level of employment. An even more critical effect of the minimum wage rests on the composition of employment--who gets the minimum wage job. An examination of employment in eating and drinking establishments…
International Nuclear Information System (INIS)
Zhang, Hao H; D'Souza, Warren D; Meyer, Robert R; Shi Leyuan
2010-01-01
IMRT treatment planning requires consideration of two competing objectives: achieving the required amount of radiation for the planning target volume and minimizing the amount of radiation delivered to all other tissues. It is important for planners to understand the tradeoff between competing factors so that the time-consuming human interaction loop (plan-evaluate-modify) can be eliminated. Treatment-plan-surface models have been proposed as a decision support tool to aid treatment planners and clinicians in choosing between rival treatment plans in a multi-plan environment. In this paper, an empirical approach is introduced to determine the minimum number of treatment plans (minimum knowledge base) required to build accurate representations of the IMRT plan surface in order to predict organ-at-risk (OAR) dose-volume (DV) levels and complications as a function of input DV constraint settings corresponding to all involved OARs in the plan. We have tested our approach on five head and neck patients and five whole pelvis/prostate patients. Our results suggest that approximately 30 plans were sufficient to predict DV levels with less than 3% relative error in both head and neck and whole pelvis/prostate cases. In addition, approximately 30-60 plans were sufficient to predict saliva flow rate with less than 2% relative error and to classify rectal bleeding with an accuracy of 90%.
29 CFR 505.3 - Prevailing minimum compensation.
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Prevailing minimum compensation. 505.3 Section 505.3 Labor... HUMANITIES § 505.3 Prevailing minimum compensation. (a)(1) In the absence of an alternative determination...)(2) of this section, the prevailing minimum compensation required to be paid under the Act to the...
Error-related anterior cingulate cortex activity and the prediction of conscious error awareness
Directory of Open Access Journals (Sweden)
Catherine eOrr
2012-06-01
Full Text Available Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate activity (ACC as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al. 2011 have found a contrary pattern of greater dorsal ACC activity (in the form of the error-related negativity during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability and or individual variability (e.g., statistical power. We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task, a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors, or unaware (Unaware errors. Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however in contrast to previous studies, including our own smaller sample studies using the same task, error-related dorsal ACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dorsal ACC activity and the error RT difference. The data suggests that individual variability in error awareness is associated with error-related dorsal ACC activity, and therefore this region may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.
ERROR BOUNDS FOR SURFACE AREA ESTIMATORS BASED ON CROFTON’S FORMULA
Directory of Open Access Journals (Sweden)
Markus Kiderlen
2011-05-01
Full Text Available According to Crofton's formula, the surface area S(A of a sufficiently regular compact set A in Rd is proportional to the mean of all total projections pA (u on a linear hyperplane with normal u, uniformly averaged over all unit vectors u. In applications, pA (u is only measured in k directions and the mean is approximated by a finite weighted sum bS(A of the total projections in these directions. The choice of the weights depends on the selected quadrature rule. We define an associated zonotope Z (depending only on the projection directions and the quadrature rule, and show that the relative error bS (A/S (A is bounded from below by the inradius of Z and from above by the circumradius of Z. Applying a strengthened isoperimetric inequality due to Bonnesen, we show that the rectangular quadrature rule does not give the best possible error bounds for d =2. In addition, we derive asymptotic behavior of the error (with increasing k in the planar case. The paper concludes with applications to surface area estimation in design-based digital stereology where we show that the weights due to Bonnesen's inequality are better than the usual weights based on the rectangular rule and almost optimal in the sense that the relative error of the surface area estimator is very close to the minimal error.
A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.
Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema
2016-01-01
A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.
Kartush, J M
1996-11-01
Practicing medicine successfully requires that errors in diagnosis and treatment be minimized. Malpractice laws encourage litigators to ascribe all medical errors to incompetence and negligence. There are, however, many other causes of unintended outcomes. This article describes common causes of errors and suggests ways to minimize mistakes in otologic practice. Widespread dissemination of knowledge about common errors and their precursors can reduce the incidence of their occurrence. Consequently, laws should be passed to allow for a system of non-punitive, confidential reporting of errors and "near misses" that can be shared by physicians nationwide.
E-Prescribing Errors in Community Pharmacies: Exploring Consequences and Contributing Factors
Stone, Jamie A.; Chui, Michelle A.
2014-01-01
Objective To explore types of e-prescribing errors in community pharmacies and their potential consequences, as well as the factors that contribute to e-prescribing errors. Methods Data collection involved performing 45 total hours of direct observations in five pharmacies. Follow-up interviews were conducted with 20 study participants. Transcripts from observations and interviews were subjected to content analysis using NVivo 10. Results Pharmacy staff detected 75 e-prescription errors during the 45 hour observation in pharmacies. The most common e-prescribing errors were wrong drug quantity, wrong dosing directions, wrong duration of therapy, and wrong dosage formulation. Participants estimated that 5 in 100 e-prescriptions have errors. Drug classes that were implicated in e-prescribing errors were antiinfectives, inhalers, ophthalmic, and topical agents. The potential consequences of e-prescribing errors included increased likelihood of the patient receiving incorrect drug therapy, poor disease management for patients, additional work for pharmacy personnel, increased cost for pharmacies and patients, and frustrations for patients and pharmacy staff. Factors that contribute to errors included: technology incompatibility between pharmacy and clinic systems, technology design issues such as use of auto-populate features and dropdown menus, and inadvertently entering incorrect information. Conclusion Study findings suggest that a wide range of e-prescribing errors are encountered in community pharmacies. Pharmacists and technicians perceive that causes of e-prescribing errors are multidisciplinary and multifactorial, that is to say e-prescribing errors can originate from technology used in prescriber offices and pharmacies. PMID:24657055
evaluation of total annual costs of heat exchanger networks using
African Journals Online (AJOL)
user
after solving the first problem using RPA based heat integration gave a minimum total annual cost (TAC) of $237, ... mathematical programming and non-RPA based Hint software. ... The concept of pinch analysis evolved over the years.
A.H. Gold-Nöteberg (Anna); U. Gronewold (Ulfert); S. Salterio (Steve)
2010-01-01
textabstractWe examine factors affecting the auditor’s willingness to report their own or their peers’ self-discovered errors in working papers subsequent to detailed working paper review. Prior research has shown that errors in working papers are detected in the review process; however, such
Sandberg, Mattias
2015-01-07
The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with log normal distributed diffusion coefficients, e.g. modelling ground water flow. Typical models use log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. This talk will address how the total error can be estimated by the computable error.
Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs
Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.
1980-01-01
In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.
Technical Note: Does Core Inflation Help Forecast Total Inflation? Evidence from Colombia
John Thornton
1998-01-01
In Colombia core and total inflation are both (1) series, and core inflation is cointegrated with total inflation. Granger causality tests using error correction methodology indicate that divergence of total inflation from core inflation is quickly revers
Martínez-Legaz, Juan Enrique; Soubeyran, Antoine
2003-01-01
We present a model of learning in which agents learn from errors. If an action turns out to be an error, the agent rejects not only that action but also neighboring actions. We find that, keeping memory of his errors, under mild assumptions an acceptable solution is asymptotically reached. Moreover, one can take advantage of big errors for a faster learning.
If not properly account for, auto-correlated errors in observations can lead to inaccurate results in soil moisture data analysis and reanalysis. Here, we propose a more generalized form of the triple collocation algorithm (GTC) capable of decomposing the total error variance of remotely-sensed surf...
Error Field Correction in DIII-D Ohmic Plasmas With Either Handedness
International Nuclear Information System (INIS)
Park, Jong-Kyu; Schaffer, Michael J.; La Haye, Robert J.; Scoville, Timothy J.; Menard, Jonathan E.
2011-01-01
Error field correction results in DIII-D plasmas are presented in various configurations. In both left-handed and right-handed plasma configurations, where the intrinsic error fields become different due to the opposite helical twist (handedness) of the magnetic field, the optimal error correction currents and the toroidal phases of internal(I)-coils are empirically established. Applications of the Ideal Perturbed Equilibrium Code to these results demonstrate that the field component to be minimized is not the resonant component of the external field, but the total field including ideal plasma responses. Consistency between experiment and theory has been greatly improved along with the understanding of ideal plasma responses, but non-ideal plasma responses still need to be understood to achieve the reliable predictability in tokamak error field correction.
Solar Backscatter UV (SBUV total ozone and profile algorithm
Directory of Open Access Journals (Sweden)
P. K. Bhartia
2013-10-01
Full Text Available We describe the algorithm that has been applied to develop a 42 yr record of total ozone and ozone profiles from eight Solar Backscatter UV (SBUV instruments launched on NASA and NOAA satellites since April 1970. The Version 8 (V8 algorithm was released more than a decade ago and has been in use since then at NOAA to produce their operational ozone products. The current algorithm (V8.6 is basically the same as V8, except for updates to instrument calibration, incorporation of new ozone absorption cross-sections, and new ozone and cloud height climatologies. Since the V8 algorithm has been optimized for deriving monthly zonal mean (MZM anomalies for ozone assessment and model comparisons, our emphasis in this paper is primarily on characterizing the sources of errors that are relevant for such studies. When data are analyzed this way the effect of some errors, such as vertical smoothing of short-term variability, and noise due to clouds and aerosols diminish in importance, while the importance of others, such as errors due to vertical smoothing of the quasi-biennial oscillation (QBO and other periodic and aperiodic variations, become more important. With V8.6 zonal mean data we now provide smoothing kernels that can be used to compare anomalies in SBUV profile and partial ozone columns with models. In this paper we show how to use these kernels to compare SBUV data with Microwave Limb Sounder (MLS ozone profiles. These kernels are particularly useful for comparisons in the lower stratosphere where SBUV profiles have poor vertical resolution but partial column ozone values have high accuracy. We also provide our best estimate of the smoothing errors associated with SBUV MZM profiles. Since smoothing errors are the largest source of uncertainty in these profiles, they can be treated as error bars in deriving interannual variability and trends using SBUV data and for comparing with other measurements. In the V8 and V8.6 algorithms we derive total
Error Probability Analysis of Hardware Impaired Systems with Asymmetric Transmission
Javed, Sidrah; Amin, Osama; Ikki, Salama S.; Alouini, Mohamed-Slim
2018-01-01
Error probability study of the hardware impaired (HWI) systems highly depends on the adopted model. Recent models have proved that the aggregate noise is equivalent to improper Gaussian signals. Therefore, considering the distinct noise nature and self-interfering (SI) signals, an optimal maximum likelihood (ML) receiver is derived. This renders the conventional minimum Euclidean distance (MED) receiver as a sub-optimal receiver because it is based on the assumptions of ideal hardware transceivers and proper Gaussian noise in communication systems. Next, the average error probability performance of the proposed optimal ML receiver is analyzed and tight bounds and approximations are derived for various adopted systems including transmitter and receiver I/Q imbalanced systems with or without transmitter distortions as well as transmitter or receiver only impaired systems. Motivated by recent studies that shed the light on the benefit of improper Gaussian signaling in mitigating the HWIs, asymmetric quadrature amplitude modulation or phase shift keying is optimized and adapted for transmission. Finally, different numerical and simulation results are presented to support the superiority of the proposed ML receiver over MED receiver, the tightness of the derived bounds and effectiveness of asymmetric transmission in dampening HWIs and improving overall system performance
Error Probability Analysis of Hardware Impaired Systems with Asymmetric Transmission
Javed, Sidrah
2018-04-26
Error probability study of the hardware impaired (HWI) systems highly depends on the adopted model. Recent models have proved that the aggregate noise is equivalent to improper Gaussian signals. Therefore, considering the distinct noise nature and self-interfering (SI) signals, an optimal maximum likelihood (ML) receiver is derived. This renders the conventional minimum Euclidean distance (MED) receiver as a sub-optimal receiver because it is based on the assumptions of ideal hardware transceivers and proper Gaussian noise in communication systems. Next, the average error probability performance of the proposed optimal ML receiver is analyzed and tight bounds and approximations are derived for various adopted systems including transmitter and receiver I/Q imbalanced systems with or without transmitter distortions as well as transmitter or receiver only impaired systems. Motivated by recent studies that shed the light on the benefit of improper Gaussian signaling in mitigating the HWIs, asymmetric quadrature amplitude modulation or phase shift keying is optimized and adapted for transmission. Finally, different numerical and simulation results are presented to support the superiority of the proposed ML receiver over MED receiver, the tightness of the derived bounds and effectiveness of asymmetric transmission in dampening HWIs and improving overall system performance
Do Some Workers Have Minimum Wage Careers?
Carrington, William J.; Fallick, Bruce C.
2001-01-01
Most workers who begin their careers in minimum-wage jobs eventually gain more experience and move on to higher paying jobs. However, more than 8% of workers spend at least half of their first 10 working years in minimum wage jobs. Those more likely to have minimum wage careers are less educated, minorities, women with young children, and those…
Does the Minimum Wage Affect Welfare Caseloads?
Page, Marianne E.; Spetz, Joanne; Millar, Jane
2005-01-01
Although minimum wages are advocated as a policy that will help the poor, few studies have examined their effect on poor families. This paper uses variation in minimum wages across states and over time to estimate the impact of minimum wage legislation on welfare caseloads. We find that the elasticity of the welfare caseload with respect to the…
29 CFR 4.159 - General minimum wage.
2010-07-01
... 29 Labor 1 2010-07-01 2010-07-01 true General minimum wage. 4.159 Section 4.159 Labor Office of... General minimum wage. The Act, in section 2(b)(1), provides generally that no contractor or subcontractor... a contract less than the minimum wage specified under section 6(a)(1) of the Fair Labor Standards...
Yang, Liang
2014-12-01
In this study, we consider a relay-assisted free-space optical communication scheme over strong atmospheric turbulence channels with misalignment-induced pointing errors. The links from the source to the destination are assumed to be all-optical links. Assuming a variable gain relay with amplify-and-forward protocol, the electrical signal at the source is forwarded to the destination with the help of this relay through all-optical links. More specifically, we first present a cumulative density function (CDF) analysis for the end-to-end signal-to-noise ratio. Based on this CDF, the outage probability, bit-error rate, and average capacity of our proposed system are derived. Results show that the system diversity order is related to the minimum value of the channel parameters.
Determination of total uranium by mass spectrometry utilizing the isotopic dilution technique
International Nuclear Information System (INIS)
Cretella, R.F.; Noutary, C.J.; Servant, R.E.
1981-01-01
The isotopic dilution associated to mass spectrometry is a high-sensitivity technique that allows to work with microquantities of the sample, making it possible to analize the content in highly radioactive solutions with excellent accuracy and minimum risk. The proposed technique is described and its results are discussed through the analysis of: 1) A synthetic sample that simulates dissolved spent fuel elements; 2) Uranium dioxide of nuclear purity and 3) Uranium concentrate. 233 U(ORNL) was employed as a tracer and a Nuclide 12-90-SU mass spectrometer of simple magnetic focus as measurement instrument. The accuracy reached in the analyses is better than 0.5% with a reliability of 95%. The analysis of the errors shows that their main contributing source are the errors in the measurement of the isotopic ratios. (M.E.L.) [es
New simple spectrophotometric assay of total carotenes in margarines
Luterotti, S.; Bicanic, D.D.; Pozgaj, R.
2006-01-01
Direct and reliable spectrophotometric method for assaying total carotenes (TC) in margarines with the minimum of sample manipulation is proposed. For the first time saponification step used in determination of carotenes in margarines was omitted leading to a substantial cost saving and reduction of
Two-component model application for error calculus in the environmental monitoring data analysis
International Nuclear Information System (INIS)
Carvalho, Maria Angelica G.; Hiromoto, Goro
2002-01-01
Analysis and interpretation of results of an environmental monitoring program is often based on the evaluation of the mean value of a particular set of data, which is strongly affected by the analytical errors associated with each measurement. A model proposed by Rocke and Lorenzato assumes two error components, one additive and one multiplicative, to deal with lower and higher concentration values in a single model. In this communication, an application of this method for re-evaluation of the errors reported in a large set of results of total alpha measurements in a environmental sample is presented. The results show that the mean values calculated taking into account the new errors is higher than as obtained with the original errors, being an indicative that the analytical errors reported before were underestimated in the region of lower concentrations. (author)
Error Detection and Error Classification: Failure Awareness in Data Transfer Scheduling
Energy Technology Data Exchange (ETDEWEB)
Louisiana State University; Balman, Mehmet; Kosar, Tevfik
2010-10-27
Data transfer in distributed environment is prone to frequent failures resulting from back-end system level problems, like connectivity failure which is technically untraceable by users. Error messages are not logged efficiently, and sometimes are not relevant/useful from users point-of-view. Our study explores the possibility of an efficient error detection and reporting system for such environments. Prior knowledge about the environment and awareness of the actual reason behind a failure would enable higher level planners to make better and accurate decisions. It is necessary to have well defined error detection and error reporting methods to increase the usability and serviceability of existing data transfer protocols and data management systems. We investigate the applicability of early error detection and error classification techniques and propose an error reporting framework and a failure-aware data transfer life cycle to improve arrangement of data transfer operations and to enhance decision making of data transfer schedulers.
Energy Technology Data Exchange (ETDEWEB)
Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich
2016-04-15
Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.
International Nuclear Information System (INIS)
Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich
2016-01-01
Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.
Directory of Open Access Journals (Sweden)
Saadat Delfani
2012-06-01
Full Text Available Medication errors account for about 78% of serious medical errors in intensive care unit (ICU. So far no study has been performed in Iran to evaluate all type of possible medication errors in ICU. Therefore the objective of this study was to reveal the frequency, type and consequences of all type of errors in an ICU of a large teaching hospital. The prospective observational study was conducted in an 11 bed internal ICU of a university hospital in Shiraz. In each shift all processes that were performed on one selected patient was observed and recorded by a trained pharmacist. Observer would intervene only if medication error would cause substantial harm. The data was evaluated and then were entered in a form that was designed for this purpose. The study continued for 38 shifts. During this period, a total of 442 errors per 5785 opportunities for errors (7.6% occurred. Of those, there were 9.8% administration errors, 6.8% prescribing errors, 3.3% transcription errors and, 2.3% dispensing errors. Totally 45 interventions were made, 40% of interventions result in the correction of errors. The most common causes of errors were observed to be: rule violations, slip and memory lapses and lack of drug knowledge. According to our results, the rate of errors is alarming and requires implementation of a serious solution. Since our system lacks a well-organize detection and reporting mechanism, there is no means for preventing errors in the first place. Hence, as the first step we must implement a system where errors are routinely detected and reported.
Clarke, D L; Kong, V Y; Naidoo, L C; Furlong, H; Aldous, C
2013-01-01
Acute surgical patients are particularly vulnerable to human error. The Acute Physiological Support Team (APST) was created with the twin objectives of identifying high-risk acute surgical patients in the general wards and reducing both the incidence of error and impact of error on these patients. A number of error taxonomies were used to understand the causes of human error and a simple risk stratification system was adopted to identify patients who are particularly at risk of error. During the period November 2012-January 2013 a total of 101 surgical patients were cared for by the APST at Edendale Hospital. The average age was forty years. There were 36 females and 65 males. There were 66 general surgical patients and 35 trauma patients. Fifty-six patients were referred on the day of their admission. The average length of stay in the APST was four days. Eleven patients were haemo-dynamically unstable on presentation and twelve were clinically septic. The reasons for referral were sepsis,(4) respiratory distress,(3) acute kidney injury AKI (38), post-operative monitoring (39), pancreatitis,(3) ICU down-referral,(7) hypoxia,(5) low GCS,(1) coagulopathy.(1) The mortality rate was 13%. A total of thirty-six patients experienced 56 errors. A total of 143 interventions were initiated by the APST. These included institution or adjustment of intravenous fluids (101), blood transfusion,(12) antibiotics,(9) the management of neutropenic sepsis,(1) central line insertion,(3) optimization of oxygen therapy,(7) correction of electrolyte abnormality,(8) correction of coagulopathy.(2) CONCLUSION: Our intervention combined current taxonomies of error with a simple risk stratification system and is a variant of the defence in depth strategy of error reduction. We effectively identified and corrected a significant number of human errors in high-risk acute surgical patients. This audit has helped understand the common sources of error in the general surgical wards and will inform
Pan, X.; Yang, Y.; Liu, Y.; Fan, X.; Shan, L.; Zhang, X.
2018-04-01
Error source analyses are critical for the satellite-retrieved surface net radiation (Rn) products. In this study, we evaluate the Rn error sources in the Clouds and the Earth's Radiant Energy System (CERES) project at 43 sites from July in 2007 to December in 2007 in China. The results show that cloud fraction (CF), land surface temperature (LST), atmospheric temperature (AT) and algorithm error dominate the Rn error, with error contributions of -20, 15, 10 and 10 W/m2 (net shortwave (NSW)/longwave (NLW) radiation), respectively. For NSW, the dominant error source is algorithm error (more than 10 W/m2), particularly in spring and summer with abundant cloud. For NLW, due to the high sensitivity of algorithm and large LST/CF error, LST and CF are the largest error sources, especially in northern China. The AT influences the NLW error large in southern China because of the large AT error in there. The total precipitable water has weak influence on Rn error even with the high sensitivity of algorithm. In order to improve Rn quality, CF and LST (AT) error in northern (southern) China should be decreased.
Generalized Gaussian Error Calculus
Grabe, Michael
2010-01-01
For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...
New Minimum Wage Research: A Symposium.
Ehrenberg, Ronald G.; And Others
1992-01-01
Includes "Introduction" (Ehrenberg); "Effect of the Minimum Wage [MW] on the Fast-Food Industry" (Katz, Krueger); "Using Regional Variation in Wages to Measure Effects of the Federal MW" (Card); "Do MWs Reduce Employment?" (Card); "Employment Effects of Minimum and Subminimum Wages" (Neumark,…
Linguistic Error Analysis on Students' Thesis Proposals
Pescante-Malimas, Mary Ann; Samson, Sonrisa C.
2017-01-01
This study identified and analyzed the common linguistic errors encountered by Linguistics, Literature, and Advertising Arts majors in their Thesis Proposal classes in the First Semester 2016-2017. The data were the drafts of the thesis proposals of the students from the three different programs. A total of 32 manuscripts were analyzed which was…
International Nuclear Information System (INIS)
Kim, J G; Liu, H
2007-01-01
Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO 2 ), deoxyhaemoglobin (Hb) and total haemoglobin (Hb total ) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO 2 and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hb total ]. The error calculation has shown that even a small variation (0.01 cm -1 mM -1 ) in extinction coefficients can produce appreciable relative errors in quantification of Δ[HbO 2 ], Δ[Hb] and Δ[Hb total ]. We have also observed that the error of Δ[Hb total ] is not always larger than those of Δ[HbO 2 ] and Δ[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of Δ[HbO 2 ], Δ[Hb] and Δ[Hb total ] from in vivo tissue measurements
Teaching the Minimum Wage in Econ 101 in Light of the New Economics of the Minimum Wage.
Krueger, Alan B.
2001-01-01
Argues that the recent controversy over the effect of the minimum wage on employment offers an opportunity for teaching introductory economics. Examines eight textbooks to determine topic coverage but finds little consensus. Describes how minimum wage effects should be taught. (RLH)
Refractive Errors in State Junior High School Students in Bandung
Directory of Open Access Journals (Sweden)
Sabila Tasyakur Nikmah
2016-12-01
Full Text Available Background: Uncorrected refractive error is one of the avoidable causes of vision impairment in children and adults. Vision problem in children has been shown to affect their psychological and academic performance. This study aims at identifying and gaining more insights on the characteristic of the refractive errors in state junior high school students in Bandung to avoid uncorrected refractive errors. Methods: A cross-sectional study was conducted in September–November 2015 in state junior high schools in Bandung, West Java, Indonesia. Sample was selected using multistage random sampling technique. Children were examined using tumbling E examination; then students with visual acuity worse than 6/12 underwent Snellen Chart test, refractometry without pupil dilatation, correction with trial lens, then was followed by direct ophthalmoscopy. Results: From a total of 435 children who completed all the examination, 80 children (18.39% had refractive errors; consisted of 151 eyes (94.38% with myopia and 9 eyes (5.62% with astigmatism. Refractive errors were found to be more common in female children (73.7% than male children (26.3%. Among those with refractive errors, 45 children (56.3% did not use any corrective glasses before the examination. Conclusions: Routine refractive error test in vision screening examination is needed for students. It is equally important to raise more awareness toward eye disease in community.
Research on calibration error of carrier phase against antenna arraying
Sun, Ke; Hou, Xiaomin
2016-11-01
It is the technical difficulty of uplink antenna arraying that signals from various quarters can not be automatically aligned at the target in deep space. The size of the far-field power combining gain is directly determined by the accuracy of carrier phase calibration. It is necessary to analyze the entire arraying system in order to improve the accuracy of the phase calibration. This paper analyzes the factors affecting the calibration error of carrier phase of uplink antenna arraying system including the error of phase measurement and equipment, the error of the uplink channel phase shift, the position error of ground antenna, calibration receiver and target spacecraft, the error of the atmospheric turbulence disturbance. Discuss the spatial and temporal autocorrelation model of atmospheric disturbances. Each antenna of the uplink antenna arraying is no common reference signal for continuous calibration. So it must be a system of the periodic calibration. Calibration is refered to communication of one or more spacecrafts in a certain period. Because the deep space targets are not automatically aligned to multiplexing received signal. Therefore the aligned signal should be done in advance on the ground. Data is shown that the error can be controlled within the range of demand by the use of existing technology to meet the accuracy of carrier phase calibration. The total error can be controlled within a reasonable range.
Mrazik, Martin; Janzen, Troy M.; Dombrowski, Stefan C.; Barford, Sean W.; Krawchuk, Lindsey L.
2012-01-01
A total of 19 graduate students enrolled in a graduate course conducted 6 consecutive administrations of the Wechsler Intelligence Scale for Children, 4th edition (WISC-IV, Canadian version). Test protocols were examined to obtain data describing the frequency of examiner errors, including administration and scoring errors. Results identified 511…
A Hybrid Unequal Error Protection / Unequal Error Resilience ...
African Journals Online (AJOL)
The quality layers are then assigned an Unequal Error Resilience to synchronization loss by unequally allocating the number of headers available for synchronization to them. Following that Unequal Error Protection against channel noise is provided to the layers by the use of Rate Compatible Punctured Convolutional ...
30 CFR 75.1431 - Minimum rope strength.
2010-07-01
..., including rotation resistant). For rope lengths less than 3,000 feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet...
Estimating pole/zero errors in GSN-IRIS/USGS network calibration metadata
Ringler, A.T.; Hutt, C.R.; Aster, R.; Bolton, H.; Gee, L.S.; Storm, T.
2012-01-01
Mapping the digital record of a seismograph into true ground motion requires the correction of the data by some description of the instrument's response. For the Global Seismographic Network (Butler et al., 2004), as well as many other networks, this instrument response is represented as a Laplace domain pole–zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. This Laplace representation assumes that the seismometer behaves as a linear system, with any abrupt changes described adequately via multiple time-invariant epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We present an iterative three-step method to estimate the instrument response parameters (poles and zeros) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least-squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least-squares best-fit Laplace pole–zero–gain model. Third, by applying the central limit theorem, we estimate the errors in this pole–zero model by solving the inverse problem at each frequency in a two-thirds octave band centered at each best-fit pole–zero frequency. This procedure yields error estimates of the 99% confidence interval. We demonstrate the method by applying it to a number of recent Incorporated Research Institutions in Seismology/United States Geological Survey (IRIS/USGS) network calibrations (network code IU).
Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy
Mehrubeoglu, Mehrube; McLauchlan, Lifford
2010-08-01
In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.
Learning from prescribing errors
Dean, B
2002-01-01
The importance of learning from medical error has recently received increasing emphasis. This paper focuses on prescribing errors and argues that, while learning from prescribing errors is a laudable goal, there are currently barriers that can prevent this occurring. Learning from errors can take place on an individual level, at a team level, and across an organisation. Barriers to learning from prescribing errors include the non-discovery of many prescribing errors, lack of feedback to th...
Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan
2015-01-01
This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129
Integration of error tolerance into the design of control rooms of nuclear power plants
International Nuclear Information System (INIS)
Sepanloo, Kamran
1998-08-01
Many complex technological systems' failures have been attributed to human errors. Today, based on extensive research on the role of human element in technological systems it is known that human error can not totally be eliminated in modern, flexible, or changing work environments by conventional style design strategies(e.g. defence in depth), or better instructions nor should they be. Instead, the operators' ability to explore degrees of freedom should be supported and means for recovering from the effects of errors should be included. This calls for innovative error tolerant design of technological systems. Integration of error tolerant concept into the design, construction, startup, and operation of nuclear power plants provides an effective means of reducing human error occurrence during all stages of life of it and therefore leads to considerable enhancement of plant's safety
Patanwala, Asad E; Sanders, Arthur B; Thomas, Michael C; Acquisto, Nicole M; Weant, Kyle A; Baker, Stephanie N; Merritt, Erica M; Erstad, Brian L
2012-05-01
The primary objective of this study is to determine the activities of pharmacists that lead to medication error interception in the emergency department (ED). This was a prospective, multicenter cohort study conducted in 4 geographically diverse academic and community EDs in the United States. Each site had clinical pharmacy services. Pharmacists at each site recorded their medication error interceptions for 250 hours of cumulative time when present in the ED (1,000 hours total for all 4 sites). Items recorded included the activities of the pharmacist that led to medication error interception, type of orders, phase of medication use process, and type of error. Independent evaluators reviewed all medication errors. Descriptive analyses were performed for all variables. A total of 16,446 patients presented to the EDs during the study, resulting in 364 confirmed medication error interceptions by pharmacists. The pharmacists' activities that led to medication error interception were as follows: involvement in consultative activities (n=187; 51.4%), review of medication orders (n=127; 34.9%), and other (n=50; 13.7%). The types of orders resulting in medication error interceptions were written or computerized orders (n=198; 54.4%), verbal orders (n=119; 32.7%), and other (n=47; 12.9%). Most medication error interceptions occurred during the prescribing phase of the medication use process (n=300; 82.4%) and the most common type of error was wrong dose (n=161; 44.2%). Pharmacists' review of written or computerized medication orders accounts for only a third of medication error interceptions. Most medication error interceptions occur during consultative activities. Copyright © 2011. Published by Mosby, Inc.
Measurement of tokamak error fields using plasma response and its applicability to ITER
International Nuclear Information System (INIS)
Strait, E.J.; Buttery, R.J.; Chu, M.S.; Garofalo, A.M.; La Haye, R.J.; Schaffer, M.J.; Casper, T.A.; Gribov, Y.; Hanson, J.M.; Reimerdes, H.; Volpe, F.A.
2014-01-01
The nonlinear response of a low-beta tokamak plasma to non-axisymmetric fields offers an alternative to direct measurement of the non-axisymmetric part of the vacuum magnetic fields, often termed ‘error fields’. Possible approaches are discussed for determination of error fields and the required current in non-axisymmetric correction coils, with an emphasis on two relatively new methods: measurement of the torque balance on a saturated magnetic island, and measurement of the braking of plasma rotation in the absence of an island. The former is well suited to ohmically heated discharges, while the latter is more appropriate for discharges with a modest amount of neutral beam heating to drive rotation. Both can potentially provide continuous measurements during a discharge, subject to the limitation of a minimum averaging time. The applicability of these methods to ITER is discussed, and an estimate is made of their uncertainties in light of the specifications of ITER's diagnostic systems. The use of plasma response-based techniques in normal ITER operational scenarios may allow identification of the error field contributions by individual central solenoid coils, but identification of the individual contributions by the outer poloidal field coils or other sources is less likely to be feasible. (paper)
Salt-and-pepper noise removal using modified mean filter and total variation minimization
Aghajarian, Mickael; McInroy, John E.; Wright, Cameron H. G.
2018-01-01
The search for effective noise removal algorithms is still a real challenge in the field of image processing. An efficient image denoising method is proposed for images that are corrupted by salt-and-pepper noise. Salt-and-pepper noise takes either the minimum or maximum intensity, so the proposed method restores the image by processing the pixels whose values are either 0 or 255 (assuming an 8-bit/pixel image). For low levels of noise corruption (less than or equal to 50% noise density), the method employs the modified mean filter (MMF), while for heavy noise corruption, noisy pixels values are replaced by the weighted average of the MMF and the total variation of corrupted pixels, which is minimized using convex optimization. Two fuzzy systems are used to determine the weights for taking average. To evaluate the performance of the algorithm, several test images with different noise levels are restored, and the results are quantitatively measured by peak signal-to-noise ratio and mean absolute error. The results show that the proposed scheme gives considerable noise suppression up to a noise density of 90%, while almost completely maintaining edges and fine details of the original image.
Quantitative analysis of scaling error compensation methods in dimensional X-ray computed tomography
DEFF Research Database (Denmark)
Müller, P.; Hiller, Jochen; Dai, Y.
2015-01-01
X-ray Computed Tomography (CT) has become an important technology for quality control of industrial components. As with other technologies, e.g., tactile coordinate measurements or optical measurements, CT is influenced by numerous quantities which may have negative impact on the accuracy...... errors of the manipulator system (magnification axis). This article also introduces a new compensation method for scaling errors using a database of reference scaling factors and discusses its advantages and disadvantages. In total, three methods for the correction of scaling errors – using the CT ball...
30 CFR 281.30 - Minimum royalty.
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Minimum royalty. 281.30 Section 281.30 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.30 Minimum royalty...
WE-G-BRA-04: Common Errors and Deficiencies in Radiation Oncology Practice
Energy Technology Data Exchange (ETDEWEB)
Kry, S; Dromgoole, L; Alvarez, P; Lowenstein, J; Molineu, A; Taylor, P; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)
2015-06-15
Purpose: Dosimetric errors in radiotherapy dose delivery lead to suboptimal treatments and outcomes. This work reviews the frequency and severity of dosimetric and programmatic errors identified by on-site audits performed by the IROC Houston QA center. Methods: IROC Houston on-site audits evaluate absolute beam calibration, relative dosimetry data compared to the treatment planning system data, and processes such as machine QA. Audits conducted from 2000-present were abstracted for recommendations, including type of recommendation and magnitude of error when applicable. Dosimetric recommendations corresponded to absolute dose errors >3% and relative dosimetry errors >2%. On-site audits of 1020 accelerators at 409 institutions were reviewed. Results: A total of 1280 recommendations were made (average 3.1/institution). The most common recommendation was for inadequate QA procedures per TG-40 and/or TG-142 (82% of institutions) with the most commonly noted deficiency being x-ray and electron off-axis constancy versus gantry angle. Dosimetrically, the most common errors in relative dosimetry were in small-field output factors (59% of institutions), wedge factors (33% of institutions), off-axis factors (21% of institutions), and photon PDD (18% of institutions). Errors in calibration were also problematic: 20% of institutions had an error in electron beam calibration, 8% had an error in photon beam calibration, and 7% had an error in brachytherapy source calibration. Almost all types of data reviewed included errors up to 7% although 20 institutions had errors in excess of 10%, and 5 had errors in excess of 20%. The frequency of electron calibration errors decreased significantly with time, but all other errors show non-significant changes. Conclusion: There are many common and often serious errors made during the establishment and maintenance of a radiotherapy program that can be identified through independent peer review. Physicists should be cautious, particularly
WE-G-BRA-04: Common Errors and Deficiencies in Radiation Oncology Practice
International Nuclear Information System (INIS)
Kry, S; Dromgoole, L; Alvarez, P; Lowenstein, J; Molineu, A; Taylor, P; Followill, D
2015-01-01
Purpose: Dosimetric errors in radiotherapy dose delivery lead to suboptimal treatments and outcomes. This work reviews the frequency and severity of dosimetric and programmatic errors identified by on-site audits performed by the IROC Houston QA center. Methods: IROC Houston on-site audits evaluate absolute beam calibration, relative dosimetry data compared to the treatment planning system data, and processes such as machine QA. Audits conducted from 2000-present were abstracted for recommendations, including type of recommendation and magnitude of error when applicable. Dosimetric recommendations corresponded to absolute dose errors >3% and relative dosimetry errors >2%. On-site audits of 1020 accelerators at 409 institutions were reviewed. Results: A total of 1280 recommendations were made (average 3.1/institution). The most common recommendation was for inadequate QA procedures per TG-40 and/or TG-142 (82% of institutions) with the most commonly noted deficiency being x-ray and electron off-axis constancy versus gantry angle. Dosimetrically, the most common errors in relative dosimetry were in small-field output factors (59% of institutions), wedge factors (33% of institutions), off-axis factors (21% of institutions), and photon PDD (18% of institutions). Errors in calibration were also problematic: 20% of institutions had an error in electron beam calibration, 8% had an error in photon beam calibration, and 7% had an error in brachytherapy source calibration. Almost all types of data reviewed included errors up to 7% although 20 institutions had errors in excess of 10%, and 5 had errors in excess of 20%. The frequency of electron calibration errors decreased significantly with time, but all other errors show non-significant changes. Conclusion: There are many common and often serious errors made during the establishment and maintenance of a radiotherapy program that can be identified through independent peer review. Physicists should be cautious, particularly
Profile of drug administration errors in anesthesia among anesthesiologists from Santa Catarina
Directory of Open Access Journals (Sweden)
Thomas Rolf Erdmann
2016-02-01
Full Text Available INTRODUCTION: Anesthesiology is the only medical specialty that prescribes, dilutes, and administers drugs without conferral by another professional. Adding to the high frequency of drug administration, a propitious scenario to errors is created. OBJECTIVE: Access the prevalence of drug administration errors during anesthesia among anesthesiologists from Santa Catarina, the circumstances in which they occurred, and possible associated factors. MATERIALS AND METHODS: An electronic questionnaire was sent to all anesthesiologists from Sociedade de Anestesiologia do Estado de Santa Catarina, with direct or multiple choice questions on responder demographics and anesthesia practice profile; prevalence of errors, type and consequence of error; and factors that may have contributed to the errors. RESULTS: Of the respondents, 91.8% reported they had committed administration errors, adding the total error of 274 and mean of 4.7 (6.9 errors per respondent. The most common error was replacement (68.4%, followed by dose error (49.1%, and omission (35%. Only 7% of respondents reported neuraxial administration error. Regarding circumstances of errors, they mainly occurred in the morning (32.7%, in anesthesia maintenance (49%, with 47.8% without harm to the patient and 1.75% with the highest morbidity and irreversible damage, and 87.3% of cases with immediate identification. As for possible contributing factors, the most frequent were distraction and fatigue (64.9% and misreading of labels, ampoules, or syringes (54.4%. CONCLUSION: Most respondents committed more than one error in anesthesia administration, mainly justified as a distraction or fatigue, and of low gravity.
Effectiveness of Toyota process redesign in reducing thyroid gland fine-needle aspiration error.
Raab, Stephen S; Grzybicki, Dana Marie; Sudilovsky, Daniel; Balassanian, Ronald; Janosky, Janine E; Vrbin, Colleen M
2006-10-01
Our objective was to determine whether the Toyota Production System process redesign resulted in diagnostic error reduction for patients who underwent cytologic evaluation of thyroid nodules. In this longitudinal, nonconcurrent cohort study, we compared the diagnostic error frequency of a thyroid aspiration service before and after implementation of error reduction initiatives consisting of adoption of a standardized diagnostic terminology scheme and an immediate interpretation service. A total of 2,424 patients underwent aspiration. Following terminology standardization, the false-negative rate decreased from 41.8% to 19.1% (P = .006), the specimen nondiagnostic rate increased from 5.8% to 19.8% (P Toyota process change led to significantly fewer diagnostic errors for patients who underwent thyroid fine-needle aspiration.
State cigarette minimum price laws - United States, 2009.
2010-04-09
Cigarette price increases reduce the demand for cigarettes and thereby reduce smoking prevalence, cigarette consumption, and youth initiation of smoking. Excise tax increases are the most effective government intervention to increase the price of cigarettes, but cigarette manufacturers use trade discounts, coupons, and other promotions to counteract the effects of these tax increases and appeal to price-sensitive smokers. State cigarette minimum price laws, initiated by states in the 1940s and 1950s to protect tobacco retailers from predatory business practices, typically require a minimum percentage markup to be added to the wholesale and/or retail price. If a statute prohibits trade discounts from the minimum price calculation, these laws have the potential to counteract discounting by cigarette manufacturers. To assess the status of cigarette minimum price laws in the United States, CDC surveyed state statutes and identified those states with minimum price laws in effect as of December 31, 2009. This report summarizes the results of that survey, which determined that 25 states had minimum price laws for cigarettes (median wholesale markup: 4.00%; median retail markup: 8.00%), and seven of those states also expressly prohibited the use of trade discounts in the minimum retail price calculation. Minimum price laws can help prevent trade discounting from eroding the positive effects of state excise tax increases and higher cigarette prices on public health.
Furutani, Eiko; Nishigaki, Yuki; Kanda, Chiaki; Takeda, Toshihiro; Shirakami, Gotaro
2013-01-01
This paper proposes a novel hypnosis control method using Auditory Evoked Potential Index (aepEX) as a hypnosis index. In order to avoid side effects of an anesthetic drug, it is desirable to reduce the amount of an anesthetic drug during surgery. For this purpose many studies of hypnosis control systems have been done. Most of them use Bispectral Index (BIS), another hypnosis index, but it has problems of dependence on anesthetic drugs and nonsmooth change near some particular values. On the other hand, aepEX has an ability of clear distinction between patient consciousness and unconsciousness and independence of anesthetic drugs. The control method proposed in this paper consists of two elements: estimating the minimum effect-site concentration for maintaining appropriate hypnosis and adjusting infusion rate of an anesthetic drug, propofol, using model predictive control. The minimum effect-site concentration is estimated utilizing the property of aepEX pharmacodynamics. The infusion rate of propofol is adjusted so that effect-site concentration of propofol may be kept near and always above the minimum effect-site concentration. Simulation results of hypnosis control using the proposed method show that the minimum concentration can be estimated appropriately and that the proposed control method can maintain hypnosis adequately and reduce the total infusion amount of propofol.
Tsao, Tsu-Yu; Konty, Kevin J; Van Wye, Gretchen; Barbot, Oxiris; Hadler, James L; Linos, Natalia; Bassett, Mary T
2016-06-01
To assess potential reductions in premature mortality that could have been achieved in 2008 to 2012 if the minimum wage had been $15 per hour in New York City. Using the 2008 to 2012 American Community Survey, we performed simulations to assess how the proportion of low-income residents in each neighborhood might change with a hypothetical $15 minimum wage under alternative assumptions of labor market dynamics. We developed an ecological model of premature death to determine the differences between the levels of premature mortality as predicted by the actual proportions of low-income residents in 2008 to 2012 and the levels predicted by the proportions of low-income residents under a hypothetical $15 minimum wage. A $15 minimum wage could have averted 2800 to 5500 premature deaths between 2008 and 2012 in New York City, representing 4% to 8% of total premature deaths in that period. Most of these avertable deaths would be realized in lower-income communities, in which residents are predominantly people of color. A higher minimum wage may have substantial positive effects on health and should be considered as an instrument to address health disparities.
Energy Technology Data Exchange (ETDEWEB)
Kim, J G; Liu, H [Joint Graduate Program in Biomedical Engineering, University of Texas at Arlington/University of Texas Southwestern Medical Center at Dallas, Arlington, TX 76019 (United States)
2007-10-21
Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO{sub 2}), deoxyhaemoglobin (Hb) and total haemoglobin (Hb{sub total}) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO{sub 2} and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hb{sub total}]. The error calculation has shown that even a small variation (0.01 cm{sup -1} mM{sup -1}) in extinction coefficients can produce appreciable relative errors in quantification of {delta}[HbO{sub 2}], {delta}[Hb] and {delta}[Hb{sub total}]. We have also observed that the error of {delta}[Hb{sub total}] is not always larger than those of {delta}[HbO{sub 2}] and {delta}[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of {delta}[HbO{sub 2}], {delta}[Hb] and {delta}[Hb{sub total}] from in vivo tissue measurements.
Rosman, Mohamad; Wong, Tien Y; Tay, Wan-Ting; Tong, Louis; Saw, Seang-Mei
2009-08-01
To describe the prevalence and the risk factors of undercorrected refractive error in an adult urban Malay population. This population-based, cross-sectional study was conducted in Singapore in 3280 Malay adults, aged 40 to 80 years. All individuals were examined at a centralized clinic and underwent standardized interviews and assessment of refractive errors and presenting and best corrected visual acuities. Distance presenting visual acuity was monocularly measured by using a logarithm of the minimum angle of resolution (logMAR) number chart at a distance of 4 m, with the participants wearing their "walk-in" optical corrections (spectacles or contact lenses), if any. Refraction was determined by subjective refraction by trained, certified study optometrists. Best corrected visual acuity was monocularly assessed and recorded in logMAR scores using the same test protocol as was used for presenting visual acuity. Undercorrected refractive error was defined as an improvement of at least 0.2 logMAR (2 lines equivalent) in the best corrected visual acuity compared with the presenting visual acuity in the better eye. The mean age of the subjects included in our study was 58 +/- 11 years, and 52% of the subjects were women. The prevalence rate of undercorrected refractive error among Singaporean Malay adults in our study (n = 3115) was 20.4% (age-standardized prevalence rate, 18.3%). More of the women had undercorrected refractive error than the men (21.8% vs. 18.8%, P = 0.04). Undercorrected refractive error was also more common in subjects older than 50 years than in subjects aged 40 to 49 years (22.6% vs. 14.3%, P Malay adults with refractive errors was higher than that of the Singaporean Chinese adults with refractive errors. Undercorrected refractive error is a significant cause of correctable visual impairment among Singaporean Malay adults, affecting one in five persons.
[Monitoring medication errors in an internal medicine service].
Smith, Ann-Loren M; Ruiz, Inés A; Jirón, Marcela A
2014-01-01
Patients admitted to internal medicine services receive multiple drugs and thus are at risk of medication errors. To determine the frequency of medication errors (ME) among patients admitted to an internal medicine service of a high complexity hospital. A prospective observational study conducted in 225 patients admitted to an internal medicine service. Each stage of drug utilization system (prescription, transcription, dispensing, preparation and administration) was directly observed by trained pharmacists not related to hospital staff during three months. ME were described and categorized according to the National Coordinating Council for Medication Error Reporting and Prevention. In each stage of medication use, the frequency of ME and their characteristics were determined. A total of 454 drugs were prescribed to the studied patients. In 138 (30,4%) indications, at least one ME occurred, involving 67 (29,8%) patients. Twenty four percent of detected ME occurred during administration, mainly due to wrong time schedules. Anticoagulants were the therapeutic group with the highest occurrence of ME. At least one ME occurred in approximately one third of patients studied, especially during the administration stage. These errors could affect the medication safety and avoid achieving therapeutic goals. Strategies to improve the quality and safe use of medications can be implemented using this information.
Finding Minimum-Power Broadcast Trees for Wireless Networks
Arabshahi, Payman; Gray, Andrew; Das, Arindam; El-Sharkawi, Mohamed; Marks, Robert, II
2004-01-01
Some algorithms have been devised for use in a method of constructing tree graphs that represent connections among the nodes of a wireless communication network. These algorithms provide for determining the viability of any given candidate connection tree and for generating an initial set of viable trees that can be used in any of a variety of search algorithms (e.g., a genetic algorithm) to find a tree that enables the network to broadcast from a source node to all other nodes while consuming the minimum amount of total power. The method yields solutions better than those of a prior algorithm known as the broadcast incremental power algorithm, albeit at a slightly greater computational cost.
9 CFR 147.51 - Authorized laboratory minimum requirements.
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Authorized laboratory minimum requirements. 147.51 Section 147.51 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Authorized Laboratories and Approved Tests § 147.51 Authorized laboratory minimum requirements. These minimum...
Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich
2016-04-15
The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.
Commers, Tessa; Swindells, Susan; Sayles, Harlan; Gross, Alan E; Devetten, Marcel; Sandkovsky, Uriel
2014-01-01
Errors in prescribing antiretroviral therapy (ART) often occur with the hospitalization of HIV-infected patients. The rapid identification and prevention of errors may reduce patient harm and healthcare-associated costs. A retrospective review of hospitalized HIV-infected patients was carried out between 1 January 2009 and 31 December 2011. Errors were documented as omission, underdose, overdose, duplicate therapy, incorrect scheduling and/or incorrect therapy. The time to error correction was recorded. Relative risks (RRs) were computed to evaluate patient characteristics and error rates. A total of 289 medication errors were identified in 146/416 admissions (35%). The most common was drug omission (69%). At an error rate of 31%, nucleoside reverse transcriptase inhibitors were associated with an increased risk of error when compared with protease inhibitors (RR 1.32; 95% CI 1.04-1.69) and co-formulated drugs (RR 1.59; 95% CI 1.19-2.09). Of the errors, 31% were corrected within the first 24 h, but over half (55%) were never remedied. Admissions with an omission error were 7.4 times more likely to have all errors corrected within 24 h than were admissions without an omission. Drug interactions with ART were detected on 51 occasions. For the study population (n = 177), an increased risk of admission error was observed for black (43%) compared with white (28%) individuals (RR 1.53; 95% CI 1.16-2.03) but no significant differences were observed between white patients and other minorities or between men and women. Errors in inpatient ART were common, and the majority were never detected. The most common errors involved omission of medication, and nucleoside reverse transcriptase inhibitors had the highest rate of prescribing error. Interventions to prevent and correct errors are urgently needed.
Hall, Eric
2016-01-09
The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with lognormal distributed diffusion coefficients, e.g. modeling ground water flow. Typical models use lognormal diffusion coefficients with H´ older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. We address how the total error can be estimated by the computable error.
ecco: An error correcting comparator theory.
Ghirlanda, Stefano
2018-03-08
Building on the work of Ralph Miller and coworkers (Miller and Matzel, 1988; Denniston et al., 2001; Stout and Miller, 2007), I propose a new formalization of the comparator hypothesis that seeks to overcome some shortcomings of existing formalizations. The new model, dubbed ecco for "Error-Correcting COmparisons," retains the comparator process and the learning of CS-CS associations based on contingency. ecco assumes, however, that learning of CS-US associations is driven by total error correction, as first introduced by Rescorla and Wagner (1972). I explore ecco's behavior in acquisition, compound conditioning, blocking, backward blocking, and unovershadowing. In these paradigms, ecco appears capable of avoiding the problems of current comparator models, such as the inability to solve some discriminations and some paradoxical effects of stimulus salience. At the same time, ecco exhibits the retrospective revaluation phenomena that are characteristic of comparator theory. Copyright © 2018 Elsevier B.V. All rights reserved.
Cause analysis and preventives for human error events in Daya Bay NPP
International Nuclear Information System (INIS)
Huang Weigang; Zhang Li
1998-01-01
Daya Bay Nuclear Power Plant is put into commercial operation in 1994 Until 1996, there are 368 human error events in operating and maintenance area, occupying 39% of total events. These events occurred mainly in the processes of maintenance, test equipment isolation and system on-line, in particular in refuelling and maintenance. The author analyses root causes for human errorievents, which are mainly operator omission or error procedure deficiency; procedure not followed; lack of training; communication failures; work management inadequacy. The protective measures and treatment principle for human error events are also discussed, and several examples applying them are given. Finally, it is put forward that key to prevent human error event lies in the coordination and management, person in charge of work, and good work habits of staffs
Uncorrected refractive errors.
Naidoo, Kovin S; Jaggernath, Jyoti
2012-01-01
Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.
Directory of Open Access Journals (Sweden)
Kovin S Naidoo
2012-01-01
Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.
Estonian total ozone climatology
Directory of Open Access Journals (Sweden)
K. Eerme
Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.
Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology
Prevalence of refraction errors and color blindness in heavy vehicle drivers.
Erdoğan, Haydar; Ozdemir, Levent; Arslan, Seher; Cetin, Ilhan; Ozeç, Ayşe Vural; Cetinkaya, Selma; Sümer, Haldun
2011-01-01
To investigate the frequency of eye disorders in heavy vehicle drivers. A cross-sectional type study was conducted between November 2004 and September 2006 in 200 driver and 200 non-driver persons. A complete ophthalmologic examination was performed, including visual acuity, and dilated examination of the posterior segment. We used the auto refractometer for determining refractive errors. According to eye examination results, the prevalence of the refractive error was 21.5% and 31.3% in study and control groups respectively (P<0.05). The most common type of refraction error in the study group was myopic astigmatism (8.3%) while in the control group simple myopia (12.8%). Prevalence of dyschromatopsia in the rivers, control group and total group was 2.2%, 2.8% and 2.6% respectively. A considerably high number of drivers are in lack of optimal visual acuity. Refraction errors in drivers may impair the traffic security.
Detected-jump-error-correcting quantum codes, quantum error designs, and quantum computation
International Nuclear Information System (INIS)
Alber, G.; Mussinger, M.; Beth, Th.; Charnes, Ch.; Delgado, A.; Grassl, M.
2003-01-01
The recently introduced detected-jump-correcting quantum codes are capable of stabilizing qubit systems against spontaneous decay processes arising from couplings to statistically independent reservoirs. These embedded quantum codes exploit classical information about which qubit has emitted spontaneously and correspond to an active error-correcting code embedded in a passive error-correcting code. The construction of a family of one-detected-jump-error-correcting quantum codes is shown and the optimal redundancy, encoding, and recovery as well as general properties of detected-jump-error-correcting quantum codes are discussed. By the use of design theory, multiple-jump-error-correcting quantum codes can be constructed. The performance of one-jump-error-correcting quantum codes under nonideal conditions is studied numerically by simulating a quantum memory and Grover's algorithm
Direct measurement of the poliovirus RNA polymerase error frequency in vitro
International Nuclear Information System (INIS)
Ward, C.D.; Stokes, M.A.M.; Flanegan, J.B.
1988-01-01
The fidelity of RNA replication by the poliovirus-RNA-dependent RNA polymerase was examined by copying homopolymeric RNA templates in vitro. The poliovirus RNA polymerase was extensively purified and used to copy poly(A), poly(C), or poly(I) templates with equimolar concentrations of noncomplementary and complementary ribonucleotides. The error frequency was expressed as the amount of a noncomplementary nucleotide incorporated divided by the total amount of complementary and noncomplementary nucleotide incorporated. The polymerase error frequencies were very high, depending on the specific reaction conditions. The activity of the polymerase on poly(U) and poly(G) was too low to measure error frequencies on these templates. A fivefold increase in the error frequency was observed when the reaction conditions were changed from 3.0 mM Mg 2+ (pH 7.0) to 7.0 mM Mg 2+ (pH 8.0). This increase in the error frequency correlates with an eightfold increase in the elongation rate that was observed under the same conditions in a previous study
Energy Technology Data Exchange (ETDEWEB)
Barbee, D; McCarthy, A; Galavis, P; Xu, A [NYU Langone Medical Center, New York, NY (United States)
2016-06-15
Purpose: Errors found during initial physics plan checks frequently require replanning and reprinting, resulting decreased departmental efficiency. Additionally, errors may be missed during physics checks, resulting in potential treatment errors or interruption. This work presents a process control created using the Eclipse Scripting API (ESAPI) enabling dosimetrists and physicists to detect potential errors in the Eclipse treatment planning system prior to performing any plan approvals or printing. Methods: Potential failure modes for five categories were generated based on available ESAPI (v11) patient object properties: Images, Contours, Plans, Beams, and Dose. An Eclipse script plugin (PlanCheck) was written in C# to check errors most frequently observed clinically in each of the categories. The PlanCheck algorithms were devised to check technical aspects of plans, such as deliverability (e.g. minimum EDW MUs), in addition to ensuring that policy and procedures relating to planning were being followed. The effect on clinical workflow efficiency was measured by tracking the plan document error rate and plan revision/retirement rates in the Aria database over monthly intervals. Results: The number of potential failure modes the PlanCheck script is currently capable of checking for in the following categories: Images (6), Contours (7), Plans (8), Beams (17), and Dose (4). Prior to implementation of the PlanCheck plugin, the observed error rates in errored plan documents and revised/retired plans in the Aria database was 20% and 22%, respectively. Error rates were seen to decrease gradually over time as adoption of the script improved. Conclusion: A process control created using the Eclipse scripting API enabled plan checks to occur within the planning system, resulting in reduction in error rates and improved efficiency. Future work includes: initiating full FMEA for planning workflow, extending categories to include additional checks outside of ESAPI via Aria
The frequency of diagnostic errors in radiologic reports depends on the patient's age
International Nuclear Information System (INIS)
Diaz, Sandra; Ekberg, Olle
2010-01-01
Background: Patients who undergo treatment may suffer preventable medical errors. Some of these errors are due to diagnostic imaging procedures. Purpose: To compare the frequency of diagnostic errors in different age groups in an urban European population. Material and Methods: A total of 19 129 reported radiologic examinations were included. During a 6-month period, the analyzed age groups were: children (aged 0-9 years), adults (40-49 years), and elderly (86-95 years). Results: The frequency of radiologic examinations per year was 0.3 in children, 0.6 in adults, and 1.1 in elderly. Significant errors were significantly more frequent in the elderly (1.7%) and children (1.4%) compared with adults (0.8%). There were 60 false-positive reports and 232 false-negative reports. Most errors were made by staff radiologists after hours when they reported on examinations outside their area of expertise. Conclusion: Diagnostic errors are more frequent in children and the elderly compared with middle-aged adults
Medication Errors: New EU Good Practice Guide on Risk Minimisation and Error Prevention.
Goedecke, Thomas; Ord, Kathryn; Newbould, Victoria; Brosch, Sabine; Arlett, Peter
2016-06-01
A medication error is an unintended failure in the drug treatment process that leads to, or has the potential to lead to, harm to the patient. Reducing the risk of medication errors is a shared responsibility between patients, healthcare professionals, regulators and the pharmaceutical industry at all levels of healthcare delivery. In 2015, the EU regulatory network released a two-part good practice guide on medication errors to support both the pharmaceutical industry and regulators in the implementation of the changes introduced with the EU pharmacovigilance legislation. These changes included a modification of the 'adverse reaction' definition to include events associated with medication errors, and the requirement for national competent authorities responsible for pharmacovigilance in EU Member States to collaborate and exchange information on medication errors resulting in harm with national patient safety organisations. To facilitate reporting and learning from medication errors, a clear distinction has been made in the guidance between medication errors resulting in adverse reactions, medication errors without harm, intercepted medication errors and potential errors. This distinction is supported by an enhanced MedDRA(®) terminology that allows for coding all stages of the medication use process where the error occurred in addition to any clinical consequences. To better understand the causes and contributing factors, individual case safety reports involving an error should be followed-up with the primary reporter to gather information relevant for the conduct of root cause analysis where this may be appropriate. Such reports should also be summarised in periodic safety update reports and addressed in risk management plans. Any risk minimisation and prevention strategy for medication errors should consider all stages of a medicinal product's life-cycle, particularly the main sources and types of medication errors during product development. This article
Directory of Open Access Journals (Sweden)
Vazin A
2014-12-01
Full Text Available Afsaneh Vazin,1 Zahra Zamani,1 Nahid Hatam2 1Department of Clinical Pharmacy, Faculty of Pharmacy, 2School of Management and Medical Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran Abstract: This study was conducted with the purpose of determining the frequency of medication errors (MEs occurring in tertiary care emergency department (ED of a large academic hospital in Iran. The incidence of MEs was determined through the disguised direct observation method conducted by a trained observer. A total of 1,031 medication doses administered to 202 patients admitted to the tertiary care ED were observed over a course of 54 6-hour shifts. Following collection of the data and analysis of the errors with the assistance of a clinical pharmacist, frequency of errors in the different stages was reported and analyzed in SPSS-21 software. For the 202 patients and the 1,031 medication doses evaluated in the present study, 707 (68.5% MEs were recorded in total. In other words, 3.5 errors per patient and almost 0.69 errors per medication are reported to have occurred, with the highest frequency of errors pertaining to cardiovascular (27.2% and antimicrobial (23.6% medications. The highest rate of errors occurred during the administration phase of the medication use process with a share of 37.6%, followed by errors of prescription and transcription with a share of 21.1% and 10% of errors, respectively. Omission (7.6% and wrong time error (4.4% were the most frequent administration errors. The less-experienced nurses (P=0.04, higher patient-to-nurse ratio (P=0.017, and the morning shifts (P=0.035 were positively related to administration errors. Administration errors marked the highest share of MEs occurring in the different medication use processes. Increasing the number of nurses and employing the more experienced of them in EDs can help reduce nursing errors. Addressing the shortcomings with further research should result in reduction
Minimum Price Guarantees In a Consumer Search Model
M.C.W. Janssen (Maarten); A. Parakhonyak (Alexei)
2009-01-01
textabstractThis paper is the first to examine the effect of minimum price guarantees in a sequential search model. Minimum price guarantees are not advertised and only known to consumers when they come to the shop. We show that in such an environment, minimum price guarantees increase the value of
Perceptual learning eases crowding by reducing recognition errors but not position errors.
Xiong, Ying-Zi; Yu, Cong; Zhang, Jun-Yun
2015-08-01
When an observer reports a letter flanked by additional letters in the visual periphery, the response errors (the crowding effect) may result from failure to recognize the target letter (recognition errors), from mislocating a correctly recognized target letter at a flanker location (target misplacement errors), or from reporting a flanker as the target letter (flanker substitution errors). Crowding can be reduced through perceptual learning. However, it is not known how perceptual learning operates to reduce crowding. In this study we trained observers with a partial-report task (Experiment 1), in which they reported the central target letter of a three-letter string presented in the visual periphery, or a whole-report task (Experiment 2), in which they reported all three letters in order. We then assessed the impact of training on recognition of both unflanked and flanked targets, with particular attention to how perceptual learning affected the types of errors. Our results show that training improved target recognition but not single-letter recognition, indicating that training indeed affected crowding. However, training did not reduce target misplacement errors or flanker substitution errors. This dissociation between target recognition and flanker substitution errors supports the view that flanker substitution may be more likely a by-product (due to response bias), rather than a cause, of crowding. Moreover, the dissociation is not consistent with hypothesized mechanisms of crowding that would predict reduced positional errors.
Total Quality Management in Libraries: A Sourcebook.
O'Neil, Rosanna M., Comp.
Total Quality Management (TQM) brings together the best aspects of organizational excellence by driving out fear, offering customer-driven products and services, doing it right the first time by eliminating error, and maintaining inventory control without waste. Libraries are service organizations which are constantly trying to improve service.…
Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics
International Nuclear Information System (INIS)
Sarovar, Mohan; Young, Kevin C
2013-01-01
While adiabatic quantum computing (AQC) has some robustness to noise and decoherence, it is widely believed that encoding, error suppression and error correction will be required to scale AQC to large problem sizes. Previous works have established at least two different techniques for error suppression in AQC. In this paper we derive a model for describing the dynamics of encoded AQC and show that previous constructions for error suppression can be unified with this dynamical model. In addition, the model clarifies the mechanisms of error suppression and allows the identification of its weaknesses. In the second half of the paper, we utilize our description of non-equilibrium dynamics in encoded AQC to construct methods for error correction in AQC by cooling local degrees of freedom (qubits). While this is shown to be possible in principle, we also identify the key challenge to this approach: the requirement of high-weight Hamiltonians. Finally, we use our dynamical model to perform a simplified thermal stability analysis of concatenated-stabilizer-code encoded many-body systems for AQC or quantum memories. This work is a companion paper to ‘Error suppression and error correction in adiabatic quantum computation: techniques and challenges (2013 Phys. Rev. X 3 041013)’, which provides a quantum information perspective on the techniques and limitations of error suppression and correction in AQC. In this paper we couch the same results within a dynamical framework, which allows for a detailed analysis of the non-equilibrium dynamics of error suppression and correction in encoded AQC. (paper)
Wage inequality, minimum wage effects and spillovers
Stewart, Mark B.
2011-01-01
This paper investigates possible spillover effects of the UK minimum wage. The halt in the growth in inequality in the lower half of the wage distribution (as measured by the 50:10 percentile ratio) since the mid-1990s, in contrast to the continued inequality growth in the upper half of the distribution, suggests the possibility of a minimum wage effect and spillover effects on wages above the minimum. This paper analyses individual wage changes, using both a difference-in-differences estimat...
Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi
2018-02-14
This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.
Refractive Errors in Primary School Children in Nigeria | Faderin ...
African Journals Online (AJOL)
The study was carried out to determine the prevalence of refractive errors in primary school children in the Nigerian Army children school. Bonny Camp, Lagos, Nigeria. A total of 919 pupils from two primary schools (one private school and one public school) were screened. The schools and classes were selected using ...
Minimum Variance Portfolios in the Brazilian Equity Market
Directory of Open Access Journals (Sweden)
Alexandre Rubesam
2013-03-01
Full Text Available We investigate minimum variance portfolios in the Brazilian equity market using different methods to estimate the covariance matrix, from the simple model of using the sample covariance to multivariate GARCH models. We compare the performance of the minimum variance portfolios to those of the following benchmarks: (i the IBOVESPA equity index, (ii an equally-weighted portfolio, (iii the maximum Sharpe ratio portfolio and (iv the maximum growth portfolio. Our results show that the minimum variance portfolio has higher returns with lower risk compared to the benchmarks. We also consider long-short 130/30 minimum variance portfolios and obtain similar results. The minimum variance portfolio invests in relatively few stocks with low βs measured with respect to the IBOVESPA index, being easily replicable by individual and institutional investors alike.
Carter, Jeffrey R.; Simon, Wayne E.
1990-08-01
Neural networks are trained using Recursive Error Minimization (REM) equations to perform statistical classification. Using REM equations with continuous input variables reduces the required number of training experiences by factors of one to two orders of magnitude over standard back propagation. Replacing the continuous input variables with discrete binary representations reduces the number of connections by a factor proportional to the number of variables reducing the required number of experiences by another order of magnitude. Undesirable effects of using recurrent experience to train neural networks for statistical classification problems are demonstrated and nonrecurrent experience used to avoid these undesirable effects. 1. THE 1-41 PROBLEM The statistical classification problem which we address is is that of assigning points in ddimensional space to one of two classes. The first class has a covariance matrix of I (the identity matrix) the covariance matrix of the second class is 41. For this reason the problem is known as the 1-41 problem. Both classes have equal probability of occurrence and samples from both classes may appear anywhere throughout the ddimensional space. Most samples near the origin of the coordinate system will be from the first class while most samples away from the origin will be from the second class. Since the two classes completely overlap it is impossible to have a classifier with zero error. The minimum possible error is known as the Bayes error and
A Robust Ultra-Low Voltage CPU Utilizing Timing-Error Prevention
Directory of Open Access Journals (Sweden)
Markus Hiienkari
2015-04-01
Full Text Available To minimize energy consumption of a digital circuit, logic can be operated at sub- or near-threshold voltage. Operation at this region is challenging due to device and environment variations, and resulting performance may not be adequate to all applications. This article presents two variants of a 32-bit RISC CPU targeted for near-threshold voltage. Both CPUs are placed on the same die and manufactured in 28 nm CMOS process. They employ timing-error prevention with clock stretching to enable operation with minimal safety margins while maximizing performance and energy efficiency at a given operating point. Measurements show minimum energy of 3.15 pJ/cyc at 400 mV, which corresponds to 39% energy saving compared to operation based on static signoff timing.
Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors
International Nuclear Information System (INIS)
Gordon, J J; Siebers, J V
2007-01-01
The van Herk margin formula (VHMF) relies on the accuracy of the convolution method (CM) to determine clinical target volume (CTV) to planning target volume (PTV) margins. This work (1) evaluates the accuracy of the CM and VHMF as a function of the number of fractions N and other parameters, and (2) proposes an alternative margin algorithm which ensures target coverage for a wider range of parameter values. Dose coverage was evaluated for a spherical target with uniform margin, using the same simplified dose model and CTV coverage criterion as were used in development of the VHMF. Systematic and random setup errors were assumed to be normally distributed with standard deviations Σ and σ. For clinically relevant combinations of σ, Σ and N, margins were determined by requiring that 90% of treatment course simulations have a CTV minimum dose greater than or equal to the static PTV minimum dose. Simulation results were compared with the VHMF and the alternative margin algorithm. The CM and VHMF were found to be accurate for parameter values satisfying the approximate criterion: σ[1 - γN/25] 0.2, because they failed to account for the non-negligible dose variability associated with random setup errors. These criteria are applicable when σ ∼> σ P , where σ P = 0.32 cm is the standard deviation of the normal dose penumbra. (Qualitative behaviour of the CM and VHMF will remain the same, though the criteria might vary if σ P takes values other than 0.32 cm.) When σ P , dose variability due to random setup errors becomes negligible, and the CM and VHMF are valid regardless of the values of Σ and N. When σ ∼> σ P , consistent with the above criteria, it was found that the VHMF can underestimate margins for large σ, small Σ and small N. A potential consequence of this underestimate is that the CTV minimum dose can fall below its planned value in more than the prescribed 10% of treatments. The proposed alternative margin algorithm provides better margin
Team errors: definition and taxonomy
International Nuclear Information System (INIS)
Sasou, Kunihide; Reason, James
1999-01-01
In error analysis or error management, the focus is usually upon individuals who have made errors. In large complex systems, however, most people work in teams or groups. Considering this working environment, insufficient emphasis has been given to 'team errors'. This paper discusses the definition of team errors and its taxonomy. These notions are also applied to events that have occurred in the nuclear power industry, aviation industry and shipping industry. The paper also discusses the relations between team errors and Performance Shaping Factors (PSFs). As a result, the proposed definition and taxonomy are found to be useful in categorizing team errors. The analysis also reveals that deficiencies in communication, resource/task management, excessive authority gradient, excessive professional courtesy will cause team errors. Handling human errors as team errors provides an opportunity to reduce human errors
Minimum Covers of Fixed Cardinality in Weighted Graphs.
White, Lee J.
Reported is the result of research on combinatorial and algorithmic techniques for information processing. A method is discussed for obtaining minimum covers of specified cardinality from a given weighted graph. By the indicated method, it is shown that the family of minimum covers of varying cardinality is related to the minimum spanning tree of…
The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning.
Popa, Laurentiu S; Streng, Martha L; Hewitt, Angela L; Ebner, Timothy J
2016-04-01
The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model.
Video Error Correction Using Steganography
Robie, David L.; Mersereau, Russell M.
2002-12-01
The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.
Rotational error in path integration: encoding and execution errors in angle reproduction.
Chrastil, Elizabeth R; Warren, William H
2017-06-01
Path integration is fundamental to human navigation. When a navigator leaves home on a complex outbound path, they are able to keep track of their approximate position and orientation and return to their starting location on a direct homebound path. However, there are several sources of error during path integration. Previous research has focused almost exclusively on encoding error-the error in registering the outbound path in memory. Here, we also consider execution error-the error in the response, such as turning and walking a homebound trajectory. In two experiments conducted in ambulatory virtual environments, we examined the contribution of execution error to the rotational component of path integration using angle reproduction tasks. In the reproduction tasks, participants rotated once and then rotated again to face the original direction, either reproducing the initial turn or turning through the supplementary angle. One outstanding difficulty in disentangling encoding and execution error during a typical angle reproduction task is that as the encoding angle increases, so does the required response angle. In Experiment 1, we dissociated these two variables by asking participants to report each encoding angle using two different responses: by turning to walk on a path parallel to the initial facing direction in the same (reproduction) or opposite (supplementary angle) direction. In Experiment 2, participants reported the encoding angle by turning both rightward and leftward onto a path parallel to the initial facing direction, over a larger range of angles. The results suggest that execution error, not encoding error, is the predominant source of error in angular path integration. These findings also imply that the path integrator uses an intrinsic (action-scaled) rather than an extrinsic (objective) metric.
Who Benefits from a Minimum Wage Increase?
John W. Lopresti; Kevin J. Mumford
2015-01-01
This paper addresses the question of how a minimum wage increase affects the wages of low-wage workers. Most studies assume that there is a simple mechanical increase in the wage for workers earning a wage between the old and the new minimum wage, with some studies allowing for spillovers to workers with wages just above this range. Rather than assume that the wages of these workers would have remained constant, this paper estimates how a minimum wage increase impacts a low-wage worker's wage...
Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs
Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken
2015-09-01
To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.
On the Optimal Detection and Error Performance Analysis of the Hardware Impaired Systems
Javed, Sidrah; Amin, Osama; Ikki, Salama S.; Alouini, Mohamed-Slim
2018-01-01
The conventional minimum Euclidean distance (MED) receiver design is based on the assumption of ideal hardware transceivers and proper Gaussian noise in communication systems. Throughout this study, an accurate statistical model of various hardware impairments (HWIs) is presented. Then, an optimal maximum likelihood (ML) receiver is derived considering the distinct characteristics of the HWIs comprised of additive improper Gaussian noise and signal distortion. Next, the average error probability performance of the proposed optimal ML receiver is analyzed and tight bounds are derived. Finally, different numerical and simulation results are presented to support the superiority of the proposed ML receiver over MED receiver and the tightness of the derived bounds.
On the Optimal Detection and Error Performance Analysis of the Hardware Impaired Systems
Javed, Sidrah
2018-01-15
The conventional minimum Euclidean distance (MED) receiver design is based on the assumption of ideal hardware transceivers and proper Gaussian noise in communication systems. Throughout this study, an accurate statistical model of various hardware impairments (HWIs) is presented. Then, an optimal maximum likelihood (ML) receiver is derived considering the distinct characteristics of the HWIs comprised of additive improper Gaussian noise and signal distortion. Next, the average error probability performance of the proposed optimal ML receiver is analyzed and tight bounds are derived. Finally, different numerical and simulation results are presented to support the superiority of the proposed ML receiver over MED receiver and the tightness of the derived bounds.
Martis, Walston R; Hannam, Jacqueline A; Lee, Tracey; Merry, Alan F; Mitchell, Simon J
2016-09-09
A new approach to administering the surgical safety checklist (SSC) at our institution using wall-mounted charts for each SSC domain coupled with migrated leadership among operating room (OR) sub-teams, led to improved compliance with the Sign Out domain. Since surgical specimens are reviewed at Sign Out, we aimed to quantify any related change in surgical specimen labelling errors. Prospectively maintained error logs for surgical specimens sent to pathology were examined for the six months before and after introduction of the new SSC administration paradigm. We recorded errors made in the labelling or completion of the specimen pot and on the specimen laboratory request form. Total error rates were calculated from the number of errors divided by total number of specimens. Rates from the two periods were compared using a chi square test. There were 19 errors in 4,760 specimens (rate 3.99/1,000) and eight errors in 5,065 specimens (rate 1.58/1,000) before and after the change in SSC administration paradigm (P=0.0225). Improved compliance with administering the Sign Out domain of the SSC can reduce surgical specimen errors. This finding provides further evidence that OR teams should optimise compliance with the SSC.
International Nuclear Information System (INIS)
Johannessen, Eivind; Rosjorde, Audun
2007-01-01
We show that the theorem of equipartition of entropy production is important for the understanding of the state of minimum entropy production in diabatic distillation. The theorem is not valid in a strictly mathematical sense. We explain why, when and in what sense this theorem is a good approximation to the optimal state in diabatic distillation. In order to make these predictions, we use a hypothesis for the state of minimum entropy production of an optimally controlled system, which was formulated on the basis of results of entropy production minimisation in chemical reactors. The hypothesis says that the state of minimum entropy production is characterised by approximately constant local entropy production and thermodynamic forces, given that there is sufficient freedom in the system. We present numerical results which are in agreement with the predictions. The results show that a column with constant tray entropy production in the stripping section and in the rectifying section is a good approximation to the optimal column, except when the total heat transfer area is low. The agreement between the two columns becomes better and better as the total heat transfer area and the number of trays increase. The fact that the predictions and the numerical results agree very well gives support to the validity of the hypothesis
Video Error Correction Using Steganography
Directory of Open Access Journals (Sweden)
Robie David L
2002-01-01
Full Text Available The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.
International Nuclear Information System (INIS)
Picard, R.R.
1989-01-01
Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process
The minimum wage in the Czech enterprises
Directory of Open Access Journals (Sweden)
Eva Lajtkepová
2010-01-01
Full Text Available Although the statutory minimum wage is not a new category, in the Czech Republic we encounter the definition and regulation of a minimum wage for the first time in the 1990 amendment to Act No. 65/1965 Coll., the Labour Code. The specific amount of the minimum wage and the conditions of its operation were then subsequently determined by government regulation in February 1991. Since that time, the value of minimum wage has been adjusted fifteenth times (the last increase was in January 2007. The aim of this article is to present selected results of two researches of acceptance of the statutory minimum wage by Czech enterprises. The first research makes use of the data collected by questionnaire research in 83 small and medium-sized enterprises in the South Moravia Region in 2005, the second one the data of 116 enterprises in the entire Czech Republic (in 2007. The data have been processed by means of the standard methods of descriptive statistics and of the appropriate methods of the statistical analyses (Spearman correlation coefficient of sequential correlation, Kendall coefficient, χ2 - independence test, Kruskal-Wallis test, and others.
How unprecedented a solar minimum was it?
Russell, C T; Jian, L K; Luhmann, J G
2013-05-01
The end of the last solar cycle was at least 3 years late, and to date, the new solar cycle has seen mainly weaker activity since the onset of the rising phase toward the new solar maximum. The newspapers now even report when auroras are seen in Norway. This paper is an update of our review paper written during the deepest part of the last solar minimum [1]. We update the records of solar activity and its consequent effects on the interplanetary fields and solar wind density. The arrival of solar minimum allows us to use two techniques that predict sunspot maximum from readings obtained at solar minimum. It is clear that the Sun is still behaving strangely compared to the last few solar minima even though we are well beyond the minimum phase of the cycle 23-24 transition.
Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding
Wu, Han-Zhou; Wang, Hong-Xia; Shi, Yun-Qing
2016-01-01
This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on th...
Totally parallel multilevel algorithms
Frederickson, Paul O.
1988-01-01
Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.
Minimum-Cost Reachability for Priced Timed Automata
DEFF Research Database (Denmark)
Behrmann, Gerd; Fehnker, Ansgar; Hune, Thomas Seidelin
2001-01-01
This paper introduces the model of linearly priced timed automata as an extension of timed automata, with prices on both transitions and locations. For this model we consider the minimum-cost reachability problem: i.e. given a linearly priced timed automaton and a target state, determine...... the minimum cost of executions from the initial state to the target state. This problem generalizes the minimum-time reachability problem for ordinary timed automata. We prove decidability of this problem by offering an algorithmic solution, which is based on a combination of branch-and-bound techniques...
Diagnostic errors in pediatric radiology
International Nuclear Information System (INIS)
Taylor, George A.; Voss, Stephan D.; Melvin, Patrice R.; Graham, Dionne A.
2011-01-01
Little information is known about the frequency, types and causes of diagnostic errors in imaging children. Our goals were to describe the patterns and potential etiologies of diagnostic error in our subspecialty. We reviewed 265 cases with clinically significant diagnostic errors identified during a 10-year period. Errors were defined as a diagnosis that was delayed, wrong or missed; they were classified as perceptual, cognitive, system-related or unavoidable; and they were evaluated by imaging modality and level of training of the physician involved. We identified 484 specific errors in the 265 cases reviewed (mean:1.8 errors/case). Most discrepancies involved staff (45.5%). Two hundred fifty-eight individual cognitive errors were identified in 151 cases (mean = 1.7 errors/case). Of these, 83 cases (55%) had additional perceptual or system-related errors. One hundred sixty-five perceptual errors were identified in 165 cases. Of these, 68 cases (41%) also had cognitive or system-related errors. Fifty-four system-related errors were identified in 46 cases (mean = 1.2 errors/case) of which all were multi-factorial. Seven cases were unavoidable. Our study defines a taxonomy of diagnostic errors in a large academic pediatric radiology practice and suggests that most are multi-factorial in etiology. Further study is needed to define effective strategies for improvement. (orig.)
Horner, Neilann K; Patterson, Ruth E; Neuhouser, Marian L; Lampe, Johanna W; Beresford, Shirley A; Prentice, Ross L
2002-10-01
Errors in self-reported dietary intake threaten inferences from studies relying on instruments such as food-frequency questionnaires (FFQs), food records, and food recalls. The objective was to quantify the magnitude, direction, and predictors of errors associated with energy intakes estimated from the Women's Health Initiative FFQ. Postmenopausal women (n = 102) provided data on sociodemographic and psychosocial characteristics that relate to errors in self-reported energy intake. Energy intake was objectively estimated as total energy expenditure, physical activity expenditure, and the thermic effect of food (10% addition to other components of total energy expenditure). Participants underreported energy intake on the FFQ by 20.8%; this error trended upward with younger age (P = 0.07) and social desirability (P = 0.09) but was not associated with body mass index (P = 0.95). The correlation coefficient between reported energy intake and total energy expenditure was 0.24; correlations were higher among women with less education, higher body mass index, and greater fat-free mass, social desirability, and dissatisfaction with perceived body size (all P diet and disease association studies.
Stochastic variational approach to minimum uncertainty states
Energy Technology Data Exchange (ETDEWEB)
Illuminati, F.; Viola, L. [Dipartimento di Fisica, Padova Univ. (Italy)
1995-05-21
We introduce a new variational characterization of Gaussian diffusion processes as minimum uncertainty states. We then define a variational method constrained by kinematics of diffusions and Schroedinger dynamics to seek states of local minimum uncertainty for general non-harmonic potentials. (author)
Detection and correction of prescription errors by an emergency department pharmacy service.
Stasiak, Philip; Afilalo, Marc; Castelino, Tanya; Xue, Xiaoqing; Colacone, Antoinette; Soucy, Nathalie; Dankoff, Jerrald
2014-05-01
Emergency departments (EDs) are recognized as a high-risk setting for prescription errors. Pharmacist involvement may be important in reviewing prescriptions to identify and correct errors. The objectives of this study were to describe the frequency and type of prescription errors detected by pharmacists in EDs, determine the proportion of errors that could be corrected, and identify factors associated with prescription errors. This prospective observational study was conducted in a tertiary care teaching ED on 25 consecutive weekdays. Pharmacists reviewed all documented prescriptions and flagged and corrected errors for patients in the ED. We collected information on patient demographics, details on prescription errors, and the pharmacists' recommendations. A total of 3,136 ED prescriptions were reviewed. The proportion of prescriptions in which a pharmacist identified an error was 3.2% (99 of 3,136; 95% confidence interval [CI] 2.5-3.8). The types of identified errors were wrong dose (28 of 99, 28.3%), incomplete prescription (27 of 99, 27.3%), wrong frequency (15 of 99, 15.2%), wrong drug (11 of 99, 11.1%), wrong route (1 of 99, 1.0%), and other (17 of 99, 17.2%). The pharmacy service intervened and corrected 78 (78 of 99, 78.8%) errors. Factors associated with prescription errors were patient age over 65 (odds ratio [OR] 2.34; 95% CI 1.32-4.13), prescriptions with more than one medication (OR 5.03; 95% CI 2.54-9.96), and those written by emergency medicine residents compared to attending emergency physicians (OR 2.21, 95% CI 1.18-4.14). Pharmacists in a tertiary ED are able to correct the majority of prescriptions in which they find errors. Errors are more likely to be identified in prescriptions written for older patients, those containing multiple medication orders, and those prescribed by emergency residents.
Cassidy, Nicola; Duggan, Edel; Williams, David J P; Tracey, Joseph A
2011-07-01
Medication errors are widely reported for hospitalised patients, but limited data are available for medication errors that occur in community-based and clinical settings. Epidemiological data from poisons information centres enable characterisation of trends in medication errors occurring across the healthcare spectrum. The objective of this study was to characterise the epidemiology and type of medication errors reported to the National Poisons Information Centre (NPIC) of Ireland. A 3-year prospective study on medication errors reported to the NPIC was conducted from 1 January 2007 to 31 December 2009 inclusive. Data on patient demographics, enquiry source, location, pharmaceutical agent(s), type of medication error, and treatment advice were collated from standardised call report forms. Medication errors were categorised as (i) prescribing error (i.e. physician error), (ii) dispensing error (i.e. pharmacy error), and (iii) administration error involving the wrong medication, the wrong dose, wrong route, or the wrong time. Medication errors were reported for 2348 individuals, representing 9.56% of total enquiries to the NPIC over 3 years. In total, 1220 children and adolescents under 18 years of age and 1128 adults (≥ 18 years old) experienced a medication error. The majority of enquiries were received from healthcare professionals, but members of the public accounted for 31.3% (n = 736) of enquiries. Most medication errors occurred in a domestic setting (n = 2135), but a small number occurred in healthcare facilities: nursing homes (n = 110, 4.68%), hospitals (n = 53, 2.26%), and general practitioner surgeries (n = 32, 1.36%). In children, medication errors with non-prescription pharmaceuticals predominated (n = 722) and anti-pyretics and non-opioid analgesics, anti-bacterials, and cough and cold preparations were the main pharmaceutical classes involved. Medication errors with prescription medication predominated for adults (n = 866) and the major medication
LENUS (Irish Health Repository)
Cassidy, Nicola
2012-02-01
INTRODUCTION: Medication errors are widely reported for hospitalised patients, but limited data are available for medication errors that occur in community-based and clinical settings. Epidemiological data from poisons information centres enable characterisation of trends in medication errors occurring across the healthcare spectrum. AIM: The objective of this study was to characterise the epidemiology and type of medication errors reported to the National Poisons Information Centre (NPIC) of Ireland. METHODS: A 3-year prospective study on medication errors reported to the NPIC was conducted from 1 January 2007 to 31 December 2009 inclusive. Data on patient demographics, enquiry source, location, pharmaceutical agent(s), type of medication error, and treatment advice were collated from standardised call report forms. Medication errors were categorised as (i) prescribing error (i.e. physician error), (ii) dispensing error (i.e. pharmacy error), and (iii) administration error involving the wrong medication, the wrong dose, wrong route, or the wrong time. RESULTS: Medication errors were reported for 2348 individuals, representing 9.56% of total enquiries to the NPIC over 3 years. In total, 1220 children and adolescents under 18 years of age and 1128 adults (>\\/= 18 years old) experienced a medication error. The majority of enquiries were received from healthcare professionals, but members of the public accounted for 31.3% (n = 736) of enquiries. Most medication errors occurred in a domestic setting (n = 2135), but a small number occurred in healthcare facilities: nursing homes (n = 110, 4.68%), hospitals (n = 53, 2.26%), and general practitioner surgeries (n = 32, 1.36%). In children, medication errors with non-prescription pharmaceuticals predominated (n = 722) and anti-pyretics and non-opioid analgesics, anti-bacterials, and cough and cold preparations were the main pharmaceutical classes involved. Medication errors with prescription medication predominated for
Al-Quwaiee, Hessa
2016-01-07
In this work, we derive the exact statistical characteristics of the maximum and the minimum of two modified1 double generalized gamma variates in closed-form in terms of Meijer’s G-function, Fox’s H-function, the extended generalized bivariate Meijer’s G-function and H-function in addition to simple closed-form asymptotic results in terms of elementary functions. Then, we rely on these new results to present the performance analysis of (i) a dual-branch free-space optical selection combining diversity and of (ii) a dual-hop free-space optical relay transmission system over double generalized gamma fading channels with the impact of pointing errors. In addition, we provide asymptotic results of the bit error rate of the two systems at high SNR regime. Computer-based Monte-Carlo simulations verify our new analytical results.
Al-Quwaiee, Hessa; Ansari, Imran Shafique; Alouini, Mohamed-Slim
2016-01-01
In this work, we derive the exact statistical characteristics of the maximum and the minimum of two modified1 double generalized gamma variates in closed-form in terms of Meijer’s G-function, Fox’s H-function, the extended generalized bivariate Meijer’s G-function and H-function in addition to simple closed-form asymptotic results in terms of elementary functions. Then, we rely on these new results to present the performance analysis of (i) a dual-branch free-space optical selection combining diversity and of (ii) a dual-hop free-space optical relay transmission system over double generalized gamma fading channels with the impact of pointing errors. In addition, we provide asymptotic results of the bit error rate of the two systems at high SNR regime. Computer-based Monte-Carlo simulations verify our new analytical results.
Minimum entropy production principle
Czech Academy of Sciences Publication Activity Database
Maes, C.; Netočný, Karel
2013-01-01
Roč. 8, č. 7 (2013), s. 9664-9677 ISSN 1941-6016 Institutional support: RVO:68378271 Keywords : MINEP Subject RIV: BE - Theoretical Physics http://www.scholarpedia.org/article/Minimum_entropy_production_principle
LEARNING FROM MISTAKES Error Analysis in the English Speech of Indonesian Tertiary Students
Directory of Open Access Journals (Sweden)
Imelda Gozali
2017-12-01
Full Text Available This study is part of a series of Classroom Action Research conducted with the aim of improving the English speech of students in one of the tertiary institutes in Indonesia. After some years of teaching English conversation, the writer noted that students made various types of errors in their speech, which can be classified generally into morphological, phonological, and lexical. While some of the errors are still generally acceptable, some others elicit laughter or inhibit comprehension altogether. Therefore, the writer is keen to analyze the more common errors made by the students, so as to be able to compile a teaching material that could be utilized to address those errors more effectively in future classes. This research used Error Analysis by Richards (1971 as the basis of classification. It was carried out in five classes with a total number of 80 students for a period of one semester (14 weeks. The results showed that most of the errors were phonological (errors in pronunciation, while others were morphological or grammatical in nature. This prompted the writer to design simple Phonics lessons for future classes.
International Nuclear Information System (INIS)
Hirschfeld, T.; Honigs, D.; Hieftje, G.
1985-01-01
Optical absorbance levels for quantiative analysis in the presence of photometric error have been described in the past. In newer instrumentation, such as FT-IR and NIRA spectrometers, the photometric error is no longer limiting. In these instruments, pathlength error due to cell or sampling irreproducibility is often a major concern. One can derive optimal absorbance by taking both pathlength and photometric errors into account. This paper analyzes the cases of pathlength error >> photometric error (trivial) and various cases in which the pathlength errors and the photometric error are of the same order: adjustable concentration (trivial until dilution errors are considered), constant relative pathlength error (trivial), and constant absolute pathlength error. The latter, in particular, is analyzed in detail to give the behavior of the error, the behavior of the optimal absorbance in its presence, and the total error levels attainable
International Nuclear Information System (INIS)
Ostapchenko, S.
2011-01-01
The model-dependence of the relation between the inelastic and various minimum-bias proton-proton cross sections is analyzed, paying a special attention to the sensitivity of minimum-bias triggers to diffractive collisions. Concentrating on the trigger selections of the ATLAS experiment, the measured cross sections are compared to predictions of a number of hadronic Monte Carlo models used in the cosmic ray field. It is demonstrated that the ATLAS results are able to discriminate between different models and between certain theoretical approaches for soft multi-particle production. On the other hand, the strong model-dependence of the selection efficiency of the minimum-bias triggers prevents one from inferring high mass diffraction rate from the discussed data. Moreover, the measured cross sections prove to be insensitive to the production of low mass diffractive states in proton-proton collisions. Consequently, a reliable determination of the total inelastic cross section requires forward proton tracking by a dedicated experiment.
Refractive error and visual impairment in school children in Northern Ireland.
O'Donoghue, L; McClelland, J F; Logan, N S; Rudnicka, A R; Owen, C G; Saunders, K J
2010-09-01
To describe the prevalence of refractive error (myopia and hyperopia) and visual impairment in a representative sample of white school children. The Northern Ireland Childhood Errors of Refraction study, a population-based cross-sectional study, examined 661 white 12-13-year-old and 392 white 6-7-year-old children between 2006 and 2008. Procedures included assessment of monocular logarithm of the minimum angle of resolution (logMAR), visual acuity (unaided and presenting) and binocular open-field cycloplegic (1% cyclopentolate) autorefraction. Myopia was defined as -0.50DS or more myopic spherical equivalent refraction (SER) in either eye, hyperopia as > or =+2.00DS SER in either eye if not previously classified as myopic. Visual impairment was defined as >0.30 logMAR units (equivalent to 6/12). Levels of myopia were 2.8% (95% CI 1.3% to 4.3%) in younger and 17.7% (95% CI 13.2% to 22.2%) in older children: corresponding levels of hyperopia were 26% (95% CI 20% to 33%) and 14.7% (95% CI 9.9% to 19.4%). The prevalence of presenting visual impairment in the better eye was 3.6% in 12-13-year-old children compared with 1.5% in 6-7-year-old children. Almost one in four children fails to bring their spectacles to school. This study is the first to provide robust population-based data on the prevalence of refractive error and visual impairment in Northern Irish school children. Strategies to improve compliance with spectacle wear are required.
Minimum emittance in TBA and MBA lattices
Xu, Gang; Peng, Yue-Mei
2015-03-01
For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.
Minimum emittance in TBA and MBA lattices
International Nuclear Information System (INIS)
Xu Gang; Peng Yuemei
2015-01-01
For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 3 1/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design. (authors)
Error review: Can this improve reporting performance?
International Nuclear Information System (INIS)
Tudor, Gareth R.; Finlay, David B.
2001-01-01
AIM: This study aimed to assess whether error review can improve radiologists' reporting performance. MATERIALS AND METHODS: Ten Consultant Radiologists reported 50 plain radiographs, in which the diagnoses were established. Eighteen of the radiographs were normal, 32 showed an abnormality. The radiologists were shown their errors and then re-reported the series of radiographs after an interval of 4-5 months. The accuracy of the reports to the established diagnoses was assessed. Chi-square test was used to calculate the difference between the viewings. RESULTS: On re-reporting the radiographs, seven radiologists improved their accuracy score, two had a lower score and one radiologist showed no score difference. Mean accuracy pre-education was 82.2%, (range 78-92%) and post-education was 88%, (range 76-96%). Individually, two of the radiologists showed a statistically significant improvement post-education (P < 0.01,P < 0.05). Assessing the group as a whole, there was a trend for improvement post-education but this did not reach statistical significance. Assessing only the radiographs where errors were made on the initial viewing, for the group as a whole there was a 63% improvement post-education. CONCLUSION: We suggest that radiologists benefit from error review, although there was not a statistically significant improvement for the series of radiographs in total. This is partly explained by the fact that some radiologists gave incorrect responses post-education that had initially been correct, thus masking the effect of the educational intervention. Tudor, G.R. and Finlay, D.B. (2001
A Posteriori Error Estimation for Finite Element Methods and Iterative Linear Solvers
Energy Technology Data Exchange (ETDEWEB)
Melboe, Hallgeir
2001-10-01
This thesis addresses a posteriori error estimation for finite element methods and iterative linear solvers. Adaptive finite element methods have gained a lot of popularity over the last decades due to their ability to produce accurate results with limited computer power. In these methods a posteriori error estimates play an essential role. Not only do they give information about how large the total error is, they also indicate which parts of the computational domain should be given a more sophisticated treatment in order to reduce the error. A posteriori error estimates are traditionally aimed at estimating the global error, but more recently so called goal oriented error estimators have been shown a lot of interest. The name reflects the fact that they estimate the error in user-defined local quantities. In this thesis the main focus is on global error estimators for highly stretched grids and goal oriented error estimators for flow problems on regular grids. Numerical methods for partial differential equations, such as finite element methods and other similar techniques, typically result in a linear system of equations that needs to be solved. Usually such systems are solved using some iterative procedure which due to a finite number of iterations introduces an additional error. Most such algorithms apply the residual in the stopping criterion, whereas the control of the actual error may be rather poor. A secondary focus in this thesis is on estimating the errors that are introduced during this last part of the solution procedure. The thesis contains new theoretical results regarding the behaviour of some well known, and a few new, a posteriori error estimators for finite element methods on anisotropic grids. Further, a goal oriented strategy for the computation of forces in flow problems is devised and investigated. Finally, an approach for estimating the actual errors associated with the iterative solution of linear systems of equations is suggested. (author)
Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas
Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.
1990-01-01
The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.
Bit error rate testing of fiber optic data links for MMIC-based phased array antennas
Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.
1990-01-01
The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.
Antonio Boldrini; Rosa T. Scaramuzzo; Armando Cuttano
2013-01-01
Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy). Results: In Neonatology the main err...
Evaluation of roundness error using a new method based on a small displacement screw
International Nuclear Information System (INIS)
Nouira, Hichem; Bourdet, Pierre
2014-01-01
In relation to industrial need and the progress of technology, LNE would like to improve the measurement of its primary pressure, spherical and flick standards. The spherical and flick standards are respectively used to calibrate the spindle motion error and the probe which equips commercial conventional cylindricity measuring machines. The primary pressure standards are obtained using pressure balances equipped with rotary pistons with an uncertainty of 5 nm for a piston diameter of 10 mm. Conventional machines are not able to reach such an uncertainty level. That is why the development of a new machine is necessary. To ensure such a level of uncertainty, both stability and performance of the machine are not sufficient, and the data processing should also be done with accuracy less than a nanometre. In this paper, a new method based on the small displacement screw (SDS) model is proposed. A first validation of this method is proposed on a theoretical dataset published by the European Community Bureau of Reference (BCR) in report no 3327. Then, an experiment is prepared in order to validate the new method on real datasets. Specific environment conditions are taken into account and many precautions are considered. The new method is applied to analyse the least-squares circle, minimum zone circle, maximum inscribed circle and minimum circumscribed circle. The results are compared to those done by the reference Chebyshev best-fit method and reveal perfect agreement. The sensibilities of the SDS and Chebyshev methodologies are investigated, and it is revealed that results remain unchanged when the value of the diameter exceeds 700 times the form error. (paper)
Modeling the Error of the Medtronic Paradigm Veo Enlite Glucose Sensor.
Biagi, Lyvia; Ramkissoon, Charrise M; Facchinetti, Andrea; Leal, Yenny; Vehi, Josep
2017-06-12
Continuous glucose monitors (CGMs) are prone to inaccuracy due to time lags, sensor drift, calibration errors, and measurement noise. The aim of this study is to derive the model of the error of the second generation Medtronic Paradigm Veo Enlite (ENL) sensor and compare it with the Dexcom SEVEN PLUS (7P), G4 PLATINUM (G4P), and advanced G4 for Artificial Pancreas studies (G4AP) systems. An enhanced methodology to a previously employed technique was utilized to dissect the sensor error into several components. The dataset used included 37 inpatient sessions in 10 subjects with type 1 diabetes (T1D), in which CGMs were worn in parallel and blood glucose (BG) samples were analyzed every 15 ± 5 min Calibration error and sensor drift of the ENL sensor was best described by a linear relationship related to the gain and offset. The mean time lag estimated by the model is 9.4 ± 6.5 min. The overall average mean absolute relative difference (MARD) of the ENL sensor was 11.68 ± 5.07% Calibration error had the highest contribution to total error in the ENL sensor. This was also reported in the 7P, G4P, and G4AP. The model of the ENL sensor error will be useful to test the in silico performance of CGM-based applications, i.e., the artificial pancreas, employing this kind of sensor.
41 CFR 50-202.2 - Minimum wage in all industries.
2010-07-01
... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Minimum wage in all... Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 202-MINIMUM WAGE DETERMINATIONS Groups of Industries § 50-202.2 Minimum wage in all industries. In all industries, the minimum wage applicable to...
Errors in abdominal computed tomography
International Nuclear Information System (INIS)
Stephens, S.; Marting, I.; Dixon, A.K.
1989-01-01
Sixty-nine patients are presented in whom a substantial error was made on the initial abdominal computed tomography report. Certain features of these errors have been analysed. In 30 (43.5%) a lesion was simply not recognised (error of observation); in 39 (56.5%) the wrong conclusions were drawn about the nature of normal or abnormal structures (error of interpretation). The 39 errors of interpretation were more complex; in 7 patients an abnormal structure was noted but interpreted as normal, whereas in four a normal structure was thought to represent a lesion. Other interpretive errors included those where the wrong cause for a lesion had been ascribed (24 patients), and those where the abnormality was substantially under-reported (4 patients). Various features of these errors are presented and discussed. Errors were made just as often in relation to small and large lesions. Consultants made as many errors as senior registrar radiologists. It is like that dual reporting is the best method of avoiding such errors and, indeed, this is widely practised in our unit. (Author). 9 refs.; 5 figs.; 1 tab
Use of total body electrical conductivity (TOBEC) to determine total body water
International Nuclear Information System (INIS)
Cochran, W.; Wong, W.; Sheng, H.P.; Klein, P.; Klish, W.
1986-01-01
Total body electrical conductivity (TOBEC) has been introduced as a safe and rapid method to estimate body composition in infants and adults. Recently, a second generation instrument that operates in a scanning mode has been developed. A study was undertaken to calibrate this new instrument and to assess the feasibility of its use in estimating total body water. Six healthy adults, 3 males and 3 females, ranging in age from 25 to 57 years, and in weight from 43.3 to 104.7 kg were analyzed. Simultaneously, determinations of total body water were made by standard dilutional techniques using H 2 18 O. A baseline plasma sample was obtained and 60 mg 18 O/kg was given orally as H 2 18 O. Five hr later, a postdose plasma sample was obtained. The 18 O/ 16 O ratio in the plasma samples was determined as CO 2 by gas-isotope-ratio mass spectrometry and used to calculate the H 2 18 O volume of distribution. The total body water values ranged from 26.35 to 58.02 and represented 51 to 58% of body weight. There was good linear correlation between the total body water measurement and its phase average (TOBEC number) with a linear correlation coefficient of 0.998. The standard error of the estimate was 0.98. In addition to estimating fat and fat-free mass, the TOBEC method also estimates total body water with excellent correlation to physical dilutions methods
29 CFR 525.13 - Renewal of special minimum wage certificates.
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Renewal of special minimum wage certificates. 525.13... minimum wage certificates. (a) Applications may be filed for renewal of special minimum wage certificates.... (c) Workers with disabilities may not continue to be paid special minimum wages after notice that an...
Minimum Cycle Basis and All-Pairs Min Cut of a Planar Graph in Subquadratic Time
DEFF Research Database (Denmark)
Wulff-Nilsen, Christian
2009-01-01
equivalent to the minimum cycle basis problem for planar graphs. We also obtain O(n3/2 log n) time and O(n3/2) space algorithms for finding, respectively, the weight vector and a Gomory-Hu tree of G. The previous best time and space bound for these two problems was quadratic. From our Gomory-Hu tree...... show that this is optimal if an explicit represen- tation of the basis is required. We then present an O(n3/2 log n) time and O(n3/2) space algorithm that computes a minimum cycle basis implicitly. From this result, we obtain an output-sensitive algorithm that explicitly computes a minimum cycle basis...... in O(n3/2 log n + C) time and O(n3/2 + C) space, where C is the total size (number of edges and vertices) of the cycles in the basis. These bounds reduce to O(n3/2 log n) and O(n3/2), respectively, when G is unweighted. We get similar results for the all-pairs min cut problem since it is dual...
Scaling prediction errors to reward variability benefits error-driven learning in humans.
Diederen, Kelly M J; Schultz, Wolfram
2015-09-01
Effective error-driven learning requires individuals to adapt learning to environmental reward variability. The adaptive mechanism may involve decays in learning rate across subsequent trials, as shown previously, and rescaling of reward prediction errors. The present study investigated the influence of prediction error scaling and, in particular, the consequences for learning performance. Participants explicitly predicted reward magnitudes that were drawn from different probability distributions with specific standard deviations. By fitting the data with reinforcement learning models, we found scaling of prediction errors, in addition to the learning rate decay shown previously. Importantly, the prediction error scaling was closely related to learning performance, defined as accuracy in predicting the mean of reward distributions, across individual participants. In addition, participants who scaled prediction errors relative to standard deviation also presented with more similar performance for different standard deviations, indicating that increases in standard deviation did not substantially decrease "adapters'" accuracy in predicting the means of reward distributions. However, exaggerated scaling beyond the standard deviation resulted in impaired performance. Thus efficient adaptation makes learning more robust to changing variability. Copyright © 2015 the American Physiological Society.
An Empirical Analysis of the Relationship between Minimum Wage ...
African Journals Online (AJOL)
An Empirical Analysis of the Relationship between Minimum Wage, Investment and Economic Growth in Ghana. ... In addition, the ratio of public investment to tax revenue must increase as minimum wage increases since such complementary changes are more likely to lead to economic growth. Keywords: minimum wage ...
General Vertex-Distinguishing Total Coloring of Graphs
Directory of Open Access Journals (Sweden)
Chanjuan Liu
2014-01-01
Full Text Available The general vertex-distinguishing total chromatic number of a graph G is the minimum integer k, for which the vertices and edges of G are colored using k colors such that any two vertices have distinct sets of colors of them and their incident edges. In this paper, we figure out the exact value of this chromatic number of some special graphs and propose a conjecture on the upper bound of this chromatic number.
Sirriyeh, Reema; Lawton, Rebecca; Gardner, Peter; Armitage, Gerry
2010-12-01
Previous research has established health professionals as secondary victims of medical error, with the identification of a range of emotional and psychological repercussions that may occur as a result of involvement in error.2 3 Due to the vast range of emotional and psychological outcomes, research to date has been inconsistent in the variables measured and tools used. Therefore, differing conclusions have been drawn as to the nature of the impact of error on professionals and the subsequent repercussions for their team, patients and healthcare institution. A systematic review was conducted. Data sources were identified using database searches, with additional reference and hand searching. Eligibility criteria were applied to all studies identified, resulting in a total of 24 included studies. Quality assessment was conducted with the included studies using a tool that was developed as part of this research, but due to the limited number and diverse nature of studies, no exclusions were made on this basis. Review findings suggest that there is consistent evidence for the widespread impact of medical error on health professionals. Psychological repercussions may include negative states such as shame, self-doubt, anxiety and guilt. Despite much attention devoted to the assessment of negative outcomes, the potential for positive outcomes resulting from error also became apparent, with increased assertiveness, confidence and improved colleague relationships reported. It is evident that involvement in a medical error can elicit a significant psychological response from the health professional involved. However, a lack of literature around coping and support, coupled with inconsistencies and weaknesses in methodology, may need be addressed in future work.
Directory of Open Access Journals (Sweden)
Bruno Dutra Roos
2012-01-01
Full Text Available Dentre as opções para reconstrução femoral em cirurgias de revisão de artroplastia total do quadril (RATQ em defeitos circunferenciais extensos está a utilização de aloenxerto de fêmur proximal. O seu uso permite a correção do mecanismo abdutor do quadril e da discrepância de comprimento dos membros inferiores, além de apresentar potencial osteocondutivo. Os autores relatam os achados clínicos e radiográficos de dois casos de RATQ com uso desta técnica, em seguimento mínimo de 20 anos.Among the options for femoral reconstruction in total hip arthroplasty (THA revision procedures, in cases of extensive circumferential defects, is the use of proximal femoral allografts. This technique makes it possible to correct the hip abductor mechanism and the leg length discrepancy, as well as presenting osteoconductive potential. The authors report the clinical and radiographic results from two cases of THA revision using this technique, with a minimum follow-up of 20 years.
12 CFR 3.6 - Minimum capital ratios.
2010-01-01
... should have well-diversified risks, including no undue interest rate risk exposure; excellent control... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Minimum capital ratios. 3.6 Section 3.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY MINIMUM CAPITAL RATIOS; ISSUANCE...
12 CFR 615.5330 - Minimum surplus ratios.
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Minimum surplus ratios. 615.5330 Section 615.5330 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM FUNDING AND FISCAL AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Surplus and Collateral Requirements § 615.5330 Minimum...
Gao, J.
2014-12-01
Reducing modeling error is often a major concern of empirical geophysical models. However, modeling errors can be defined in different ways: When the response variable is continuous, the most commonly used metrics are squared (SQ) and absolute (ABS) errors. For most applications, ABS error is the more natural, but SQ error is mathematically more tractable, so is often used as a substitute with little scientific justification. Existing literature has not thoroughly investigated the implications of using SQ error in place of ABS error, especially not geospatially. This study compares the two metrics through the lens of bias-variance decomposition (BVD). BVD breaks down the expected modeling error of each model evaluation point into bias (systematic error), variance (model sensitivity), and noise (observation instability). It offers a way to probe the composition of various error metrics. I analytically derived the BVD of ABS error and compared it with the well-known SQ error BVD, and found that not only the two metrics measure the characteristics of the probability distributions of modeling errors differently, but also the effects of these characteristics on the overall expected error are different. Most notably, under SQ error all bias, variance, and noise increase expected error, while under ABS error certain parts of the error components reduce expected error. Since manipulating these subtractive terms is a legitimate way to reduce expected modeling error, SQ error can never capture the complete story embedded in ABS error. I then empirically compared the two metrics with a supervised remote sensing model for mapping surface imperviousness. Pair-wise spatially-explicit comparison for each error component showed that SQ error overstates all error components in comparison to ABS error, especially variance-related terms. Hence, substituting ABS error with SQ error makes model performance appear worse than it actually is, and the analyst would more likely accept a
Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun
2018-03-01
Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.
Abnormal error monitoring in math-anxious individuals: evidence from error-related brain potentials.
Directory of Open Access Journals (Sweden)
Macarena Suárez-Pellicioni
Full Text Available This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA and seventeen low math-anxious (LMA individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN, the error positivity component (Pe, classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants' math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.
Heuristic errors in clinical reasoning.
Rylander, Melanie; Guerrasio, Jeannette
2016-08-01
Errors in clinical reasoning contribute to patient morbidity and mortality. The purpose of this study was to determine the types of heuristic errors made by third-year medical students and first-year residents. This study surveyed approximately 150 clinical educators inquiring about the types of heuristic errors they observed in third-year medical students and first-year residents. Anchoring and premature closure were the two most common errors observed amongst third-year medical students and first-year residents. There was no difference in the types of errors observed in the two groups. Errors in clinical reasoning contribute to patient morbidity and mortality Clinical educators perceived that both third-year medical students and first-year residents committed similar heuristic errors, implying that additional medical knowledge and clinical experience do not affect the types of heuristic errors made. Further work is needed to help identify methods that can be used to reduce heuristic errors early in a clinician's education. © 2015 John Wiley & Sons Ltd.
A Minimum Shuffle Core Design Strategy for ESBWR
International Nuclear Information System (INIS)
Karve, A.A.; Fawcett, R.M.
2008-01-01
The Economic Simplified Boiling Water Reactor (ESBWR) is GEH's next evolution of advanced BWR technology. There are 1132 fuel bundles in the core and the thermal power is 4500 MWt. Similar to conventional plants there is an outage after a specified period of operation, when the plant shuts down. During the outage a specified fraction of fuel bundles are discharged from the core, it is loaded with the same fraction of fresh fuel, and fuel is shuffled to obtain an optimum core design that meets the goals for a successful operation of the next cycle. The discharge, load, and the associated shuffles are time-consuming and expensive tasks that impact the overall outage schedule and costs. Therefore, there is an incentive to keep maneuvers to a minimum and to perform them more efficiently. The benefits for a large core, such as the ESBWR with 1132 fuel bundles, are escalated. This study focuses on a core reload design strategy to minimize the total number of shuffles during an outage. A traditional equilibrium cycle is used as a reference basis, which sets the reference number of shuffles. In the minimum shuffle core design however, a set of two equilibrium cycles (N and N+1, referred to as a 'bi- equilibrium' cycle) is envisioned where the fresh fuel of cycle N (that becomes the once-burnt fuel of cycle N+1) ideally does not move in the two cycles. The cost of fuel efficiency is determined for obtaining such a core loading by comparing it to the traditional equilibrium cycle. There are several additional degrees of freedom when designing a bi-equilibrium cycle that could be utilized, and the potential benefits of these flexibilities are assessed. In summary, the feasibility of a minimum shuffle fuel cycle and core design for an ESBWR is studied. The cost of fuel efficiency is assessed in comparison to the traditional design. (authors)
Awareness of technology-induced errors and processes for identifying and preventing such errors.
Bellwood, Paule; Borycki, Elizabeth M; Kushniruk, Andre W
2015-01-01
There is a need to determine if organizations working with health information technology are aware of technology-induced errors and how they are addressing and preventing them. The purpose of this study was to: a) determine the degree of technology-induced error awareness in various Canadian healthcare organizations, and b) identify those processes and procedures that are currently in place to help address, manage, and prevent technology-induced errors. We identified a lack of technology-induced error awareness among participants. Participants identified there was a lack of well-defined procedures in place for reporting technology-induced errors, addressing them when they arise, and preventing them.
The Causes of Medical Error from the Perspective of Nurses
Directory of Open Access Journals (Sweden)
Oguz Isik
2012-08-01
Full Text Available This study was conducted as a descriptive study in order to determine the medical errors in hospital services and preventive measures that could be taken to reduce these errors, from the perspective of nurses. The population of the study is composed of nurses working in 2 public hospitals in center of the province of Sakarya. We haven’t selected sample and it was aimed to reach as many nurses as possible in the study. A total of 441 questionnaires were send and 324 were returned. A questionnaire as a means of data collection was prepared and used by the authors. Structural Equation Modeling, confirmatory factor analysis, descriptive statistical methods, the significance control test between compared means and ANOVA test were used in statistical analysis. Physicians, nurses, work environment and lack of communication are stated as possible causes of medical error. According to nurses, the major causes of medical errors, in order of their frequency, were inadequate number of health personnel, excessive work stress, high number of patients per nurse, the weariness due to the behavior and attitudes of superiors and the pressure to care so many patients in a very short period of time, and long time of study. Compensation of medical error is very difficult in health care. A great amount of health care is provided in hospitals and medical errors in hospital services must be prevented. In order to prevent these errors which directly affect human life, it is thought that adequate number of staff should be employed in hospitals and the attitude of superiors towards the employees should be motivating. [TAF Prev Med Bull 2012; 11(4.000: 421-430
Flouri, Eirini; Panourgia, Constantina
2011-06-01
The aim of this study was to test for gender differences in how negative cognitive errors (overgeneralizing, catastrophizing, selective abstraction, and personalizing) mediate the association between adverse life events and adolescents' emotional and behavioural problems (measured with the Strengths and Difficulties Questionnaire). The sample consisted of 202 boys and 227 girls (aged 11-15 years) from three state secondary schools in disadvantaged areas in one county in the South East of England. Control variables were age, ethnicity, special educational needs, exclusion history, family structure, family socio-economic disadvantage, and verbal cognitive ability. Adverse life events were measured with Tiet et al.'s (1998) Adverse Life Events Scale. For both genders, we assumed a pathway from adverse life events to emotional and behavioural problems via cognitive errors. We found no gender differences in life adversity, cognitive errors, total difficulties, peer problems, or hyperactivity. In both boys and girls, even after adjustment for controls, cognitive errors were related to total difficulties and emotional symptoms, and life adversity was related to total difficulties and conduct problems. The life adversity/conduct problems association was not explained by negative cognitive errors in either gender. However, we found gender differences in how adversity and cognitive errors produced hyperactivity and internalizing problems. In particular, life adversity was not related, after adjustment for controls, to hyperactivity in girls and to peer problems and emotional symptoms in boys. Cognitive errors fully mediated the effect of life adversity on hyperactivity in boys and on peer and emotional problems in girls.
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.
2015-04-01
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere
5 CFR 551.601 - Minimum age standards.
2010-01-01
... ADMINISTRATION UNDER THE FAIR LABOR STANDARDS ACT Child Labor § 551.601 Minimum age standards. (a) 16-year... subject to its child labor provisions, with certain exceptions not applicable here. (b) 18-year minimum... occupation found and declared by the Secretary of Labor to be particularly hazardous for the employment of...
12 CFR 932.8 - Minimum liquidity requirements.
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Minimum liquidity requirements. 932.8 Section... CAPITAL STANDARDS FEDERAL HOME LOAN BANK CAPITAL REQUIREMENTS § 932.8 Minimum liquidity requirements. In addition to meeting the deposit liquidity requirements contained in § 965.3 of this chapter, each Bank...
Asher, Anthony L; Kerezoudis, Panagiotis; Mummaneni, Praveen V; Bisson, Erica F; Glassman, Steven D; Foley, Kevin T; Slotkin, Jonathan; Potts, Eric A; Shaffrey, Mark E; Shaffrey, Christopher I; Coric, Domagoj; Knightly, John J; Park, Paul; Fu, Kai-Ming; Devin, Clinton J; Archer, Kristin R; Chotai, Silky; Chan, Andrew K; Virk, Michael S; Bydon, Mohamad
2018-01-01
OBJECTIVE Patient-reported outcomes (PROs) play a pivotal role in defining the value of surgical interventions for spinal disease. The concept of minimum clinically important difference (MCID) is considered the new standard for determining the effectiveness of a given treatment and describing patient satisfaction in response to that treatment. The purpose of this study was to determine the MCID associated with surgical treatment for degenerative lumbar spondylolisthesis. METHODS The authors queried the Quality Outcomes Database registry from July 2014 through December 2015 for patients who underwent posterior lumbar surgery for grade I degenerative spondylolisthesis. Recorded PROs included scores on the Oswestry Disability Index (ODI), EQ-5D, and numeric rating scale (NRS) for leg pain (NRS-LP) and back pain (NRS-BP). Anchor-based (using the North American Spine Society satisfaction scale) and distribution-based (half a standard deviation, small Cohen's effect size, standard error of measurement, and minimum detectable change [MDC]) methods were used to calculate the MCID for each PRO. RESULTS A total of 441 patients (80 who underwent laminectomies alone and 361 who underwent fusion procedures) from 11 participating sites were included in the analysis. The changes in functional outcome scores between baseline and the 1-year postoperative evaluation were as follows: 23.5 ± 17.4 points for ODI, 0.24 ± 0.23 for EQ-5D, 4.1 ± 3.5 for NRS-LP, and 3.7 ± 3.2 for NRS-BP. The different calculation methods generated a range of MCID values for each PRO: 3.3-26.5 points for ODI, 0.04-0.3 points for EQ-5D, 0.6-4.5 points for NRS-LP, and 0.5-4.2 points for NRS-BP. The MDC approach appeared to be the most appropriate for calculating MCID because it provided a threshold greater than the measurement error and was closest to the average change difference between the satisfied and not-satisfied patients. On subgroup analysis, the MCID thresholds for laminectomy-alone patients were
Peak-counts blood flow model-errors and limitations
International Nuclear Information System (INIS)
Mullani, N.A.; Marani, S.K.; Ekas, R.D.; Gould, K.L.
1984-01-01
The peak-counts model has several advantages, but its use may be limited due to the condition that the venous egress may not be negligible at the time of peak-counts. Consequently, blood flow measurements by the peak-counts model will depend on the bolus size, bolus duration, and the minimum transit time of the bolus through the region of interest. The effect of bolus size on the measurement of extraction fraction and blood flow was evaluated by injecting 1 to 30ml of rubidium chloride in the femoral vein of a dog and measuring the myocardial activity with a beta probe over the heart. Regional blood flow measurements were not found to vary with bolus sizes up to 30ml. The effect of bolus duration was studied by injecting a 10cc bolus of tracer at different speeds in the femoral vein of a dog. All intravenous injections undergo a broadening of the bolus duration due to the transit time of the tracer through the lungs and the heart. This transit time was found to range from 4-6 second FWHM and dominates the duration of the bolus to the myocardium for up to 3 second injections. A computer simulation has been carried out in which the different parameters of delay time, extraction fraction, and bolus duration can be changed to assess the errors in the peak-counts model. The results of the simulations show that the error will be greatest for short transit time delays and for low extraction fractions
[Hospitals failing minimum volumes in 2004: reasons and consequences].
Geraedts, M; Kühnen, C; Cruppé, W de; Blum, K; Ohmann, C
2008-02-01
In 2004 Germany introduced annual minimum volumes nationwide on five surgical procedures: kidney, liver, stem cell transplantation, complex oesophageal, and pancreatic interventions. Hospitals that fail to reach the minimum volumes are no longer allowed to perform the respective procedures unless they raise one of eight legally accepted exceptions. The goal of our study was to investigate how many hospitals fell short of the minimum volumes in 2004, whether and how this was justified, and whether hospitals that failed the requirements experienced any consequences. We analysed data on meeting the minimum volume requirements in 2004 that all German hospitals were obliged to publish as part of their biannual structured quality reports. We performed telephone interviews: a) with all hospitals not achieving the minimum volumes for complex oesophageal, and pancreatic interventions, and b) with the national umbrella organisations of all German sickness funds. In 2004, one quarter of all German acute care hospitals (N=485) performed 23,128 procedures where minimum volumes applied. 197 hospitals (41%) did not meet at least one of the minimum volumes. These hospitals performed N=715 procedures (3.1%) where the minimum volumes were not met. In 43% of these cases the hospitals raised legally accepted exceptions. In 33% of the cases the hospitals argued using reasons that were not legally acknowledged. 69% of those hospitals that failed to achieve the minimum volumes for complex oesophageal and pancreatic interventions did not experience any consequences from the sickness funds. However, one third of those hospitals reported that the sickness funds addressed the issue and partially announced consequences for the future. The sickness funds' umbrella organisations stated that there were only sparse activities related to the minimum volumes and that neither uniform registrations nor uniform proceedings in case of infringements of the standards had been agreed upon. In spite of the
The Distribution of the Sample Minimum-Variance Frontier
Raymond Kan; Daniel R. Smith
2008-01-01
In this paper, we present a finite sample analysis of the sample minimum-variance frontier under the assumption that the returns are independent and multivariate normally distributed. We show that the sample minimum-variance frontier is a highly biased estimator of the population frontier, and we propose an improved estimator of the population frontier. In addition, we provide the exact distribution of the out-of-sample mean and variance of sample minimum-variance portfolios. This allows us t...
Estimation of daily minimum land surface air temperature using MODIS data in southern Iran
Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza
2017-11-01
Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference ( RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons ( RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.
Pollutant forecasting error based on persistence of wind direction
International Nuclear Information System (INIS)
Cooper, R.E.
1978-01-01
The purpose of this report is to provide a means of estimating the reliability of forecasts of downwind pollutant concentrations from atmospheric puff releases. These forecasts are based on assuming the persistence of wind direction as determined at the time of release. This initial forecast will be used to deploy survey teams, to predict population centers that may be affected, and to estimate the amount of time available for emergency response. Reliability of forecasting is evaluated by developing a cumulative probability distribution of error as a function of lapsed time following an assumed release. The cumulative error is determined by comparing the forecast pollutant concentration with the concentration measured by sampling along the real-time meteorological trajectory. It may be concluded that the assumption of meteorological persistence for emergency response is not very good for periods longer than 3 hours. Even within this period, the possibiity for large error exists due to wind direction shifts. These shifts could affect population areas totally different from those areas first indicated
Farag, Amany; Blegen, Mary; Gedney-Lose, Amalia; Lose, Daniel; Perkhounkova, Yelena
2017-05-01
Medication errors are one of the most frequently occurring errors in health care settings. The complexity of the ED work environment places patients at risk for medication errors. Most hospitals rely on nurses' voluntary medication error reporting, but these errors are under-reported. The purpose of this study was to examine the relationship among work environment (nurse manager leadership style and safety climate), social capital (warmth and belonging relationships and organizational trust), and nurses' willingness to report medication errors. A cross-sectional descriptive design using a questionnaire with a convenience sample of emergency nurses was used. Data were analyzed using descriptive, correlation, Mann-Whitney U, and Kruskal-Wallis statistics. A total of 71 emergency nurses were included in the study. Emergency nurses' willingness to report errors decreased as the nurses' years of experience increased (r = -0.25, P = .03). Their willingness to report errors increased when they received more feedback about errors (r = 0.25, P = .03) and when their managers used a transactional leadership style (r = 0.28, P = .01). ED nurse managers can modify their leadership style to encourage error reporting. Timely feedback after an error report is particularly important. Engaging experienced nurses to understand error root causes could increase voluntary error reporting. Published by Elsevier Inc.
International Nuclear Information System (INIS)
Winterflood, A.H.
1980-01-01
In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)
Law, Katherine E; Ray, Rebecca D; D'Angelo, Anne-Lise D; Cohen, Elaine R; DiMarco, Shannon M; Linsmeier, Elyse; Wiegmann, Douglas A; Pugh, Carla M
The study aim was to determine whether residents' error management strategies changed across 2 simulated laparoscopic ventral hernia (LVH) repair procedures after receiving feedback on their initial performance. We hypothesize that error detection and recovery strategies would improve during the second procedure without hands-on practice. Retrospective review of participant procedural performances of simulated laparoscopic ventral herniorrhaphy. A total of 3 investigators reviewed procedure videos to identify surgical errors. Errors were deconstructed. Error management events were noted, including error identification and recovery. Residents performed the simulated LVH procedures during a course on advanced laparoscopy. Participants had 30 minutes to complete a LVH procedure. After verbal and simulator feedback, residents returned 24 hours later to perform a different, more difficult simulated LVH repair. Senior (N = 7; postgraduate year 4-5) residents in attendance at the course participated in this study. In the first LVH procedure, residents committed 121 errors (M = 17.14, standard deviation = 4.38). Although the number of errors increased to 146 (M = 20.86, standard deviation = 6.15) during the second procedure, residents progressed further in the second procedure. There was no significant difference in the number of errors committed for both procedures, but errors shifted to the late stage of the second procedure. Residents changed the error types that they attempted to recover (χ 2 5 =24.96, perrors, but decreased for strategy errors. Residents also recovered the most errors in the late stage of the second procedure (p error management strategies changed between procedures following verbal feedback on their initial performance and feedback from the simulator. Errors and recovery attempts shifted to later steps during the second procedure. This may reflect residents' error management success in the earlier stages, which allowed further progression in the
Controlling errors in unidosis carts
Directory of Open Access Journals (Sweden)
Inmaculada Díaz Fernández
2010-01-01
Full Text Available Objective: To identify errors in the unidosis system carts. Method: For two months, the Pharmacy Service controlled medication either returned or missing from the unidosis carts both in the pharmacy and in the wards. Results: Uncorrected unidosis carts show a 0.9% of medication errors (264 versus 0.6% (154 which appeared in unidosis carts previously revised. In carts not revised, the error is 70.83% and mainly caused when setting up unidosis carts. The rest are due to a lack of stock or unavailability (21.6%, errors in the transcription of medical orders (6.81% or that the boxes had not been emptied previously (0.76%. The errors found in the units correspond to errors in the transcription of the treatment (3.46%, non-receipt of the unidosis copy (23.14%, the patient did not take the medication (14.36%or was discharged without medication (12.77%, was not provided by nurses (14.09%, was withdrawn from the stocks of the unit (14.62%, and errors of the pharmacy service (17.56% . Conclusions: It is concluded the need to redress unidosis carts and a computerized prescription system to avoid errors in transcription.Discussion: A high percentage of medication errors is caused by human error. If unidosis carts are overlooked before sent to hospitalization units, the error diminishes to 0.3%.
A description of medication errors reported by pharmacists in a neonatal intensive care unit.
Pawluk, Shane; Jaam, Myriam; Hazi, Fatima; Al Hail, Moza Sulaiman; El Kassem, Wessam; Khalifa, Hanan; Thomas, Binny; Abdul Rouf, Pallivalappila
2017-02-01
Background Patients in the Neonatal Intensive Care Unit (NICU) are at an increased risk for medication errors. Objective The objective of this study is to describe the nature and setting of medication errors occurring in patients admitted to an NICU in Qatar based on a standard electronic system reported by pharmacists. Setting Neonatal intensive care unit, Doha, Qatar. Method This was a retrospective cross-sectional study on medication errors reported electronically by pharmacists in the NICU between January 1, 2014 and April 30, 2015. Main outcome measure Data collected included patient information, and incident details including error category, medications involved, and follow-up completed. Results A total of 201 NICU pharmacists-reported medication errors were submitted during the study period. All reported errors did not reach the patient and did not cause harm. Of the errors reported, 98.5% occurred in the prescribing phase of the medication process with 58.7% being due to calculation errors. Overall, 53 different medications were documented in error reports with the anti-infective agents being the most frequently cited. The majority of incidents indicated that the primary prescriber was contacted and the error was resolved before reaching the next phase of the medication process. Conclusion Medication errors reported by pharmacists occur most frequently in the prescribing phase of the medication process. Our data suggest that error reporting systems need to be specific to the population involved. Special attention should be paid to frequently used medications in the NICU as these were responsible for the greatest numbers of medication errors.
24 CFR 891.145 - Owner deposit (Minimum Capital Investment).
2010-04-01
... General Program Requirements § 891.145 Owner deposit (Minimum Capital Investment). As a Minimum Capital... Investment shall be one-half of one percent (0.5%) of the HUD-approved capital advance, not to exceed $25,000. ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Owner deposit (Minimum Capital...