WorldWideScience

Sample records for minimum orbital transfer

  1. High Power Orbit Transfer Vehicle

    National Research Council Canada - National Science Library

    Gulczinski, Frank

    2003-01-01

    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  2. Nuclear propulsion for orbital transfer

    International Nuclear Information System (INIS)

    Beale, G.A.; Lawrence, T.J.

    1989-01-01

    The state of the art in nuclear propulsion for orbital transfer is discussed. Cryogenic propulsion, electric propulsion, solar-thermal propulsion and direct nuclear propulsion are examined in this context. New technologies with exceptional promise are addressed, emphasizing the particle test bed nuclear engine

  3. Orbital Express fluid transfer demonstration system

    Science.gov (United States)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging

  4. Application of artificial intelligence to impulsive orbital transfers

    Science.gov (United States)

    Burns, Rowland E.

    1987-01-01

    A generalized technique for the numerical solution of any given class of problems is presented. The technique requires the analytic (or numerical) solution of every applicable equation for all variables that appear in the problem. Conditional blocks are employed to rapidly expand the set of known variables from a minimum of input. The method is illustrated via the use of the Hohmann transfer problem from orbital mechanics.

  5. Orbit Clustering Based on Transfer Cost

    Science.gov (United States)

    Gustafson, Eric D.; Arrieta-Camacho, Juan J.; Petropoulos, Anastassios E.

    2013-01-01

    We propose using cluster analysis to perform quick screening for combinatorial global optimization problems. The key missing component currently preventing cluster analysis from use in this context is the lack of a useable metric function that defines the cost to transfer between two orbits. We study several proposed metrics and clustering algorithms, including k-means and the expectation maximization algorithm. We also show that proven heuristic methods such as the Q-law can be modified to work with cluster analysis.

  6. A Survey of Ballistic Transfers to Low Lunar Orbit

    Science.gov (United States)

    Parker, Jeffrey S.; Anderson, Rodney L.; Peterson, Andrew

    2011-01-01

    A simple strategy is identified to generate ballistic transfers between the Earth and Moon, i.e., transfers that perform two maneuvers: a trans-lunar injection maneuver to depart the Earth and a Lunar Orbit Insertion maneuver to insert into orbit at the Moon. This strategy is used to survey the performance of numerous transfers between varying Earth parking orbits and varying low lunar target orbits. The transfers surveyed include short 3-6 day direct transfers, longer 3-4 month low energy transfers, and variants that include Earth phasing orbits and/or lunar flybys.

  7. An Integrated Tool for Low Thrust Optimal Control Orbit Transfers in Interplanetary Trajectories

    Science.gov (United States)

    Dargent, T.; Martinot, V.

    In the last recent years a significant progress has been made in optimal control orbit transfers using low thrust electrical propulsion for interplanetary missions. The system objective is always the same: decrease the transfer duration and increase the useful satellite mass. The optimum control strategy to perform the minimum time to orbit or the minimum fuel consumption requires the use of sophisticated mathematical tools, most of the time dedicated to a specific mission and therefore hardly reusable. To improve this situation and enable Alcatel Space to perform rather quick trajectory design as requested by mission analysis, we have developed a software tool T-3D dedicated to optimal control orbit transfers which integrates various initial and terminal rendezvous conditions - e.g. fixed arrival time for planet encounter - and engine thrust profiles -e.g. thrust law variation with respect to the distance to the Sun -. This single and quite versatile tool allows to perform analyses like minimum consumption for orbit insertions around a planet from an hyperbolic trajectory, interplanetary orbit transfers, low thrust minimum time multiple revolution orbit transfers, etc… From a mathematical point of view, the software relies on the minimum principle formulation to find the necessary conditions of optimality. The satellite dynamics is a two body model and relies of an equinoctial formulation of the Gauss equation. This choice has been made for numerical purpose and to solve more quickly the two point boundaries values problem. In order to handle the classical problem of co-state variables initialization, problems simpler than the actual one can be solved straight forward by the tool and the values of the co-state variables are kept as first guess for a more complex problem. Finally, a synthesis of the test cases is presented to illustrate the capacities of the tool, mixing examples of interplanetary mission, orbit insertion, multiple revolution orbit transfers

  8. Project Freebird: An orbital transfer vehicle

    Science.gov (United States)

    Aneses, Carlos A.; Blanchette, Ryan L.; Brann, David M.; Campos, Mario J.; Cohen, Lisa E.; Corcoran, Daniel J., III; Cox, James F.; Curtis, Trevor J.; Douglass, Deborah A.; Downard, Catherine L.

    1994-08-01

    Freebird is a space-based orbital transfer vehicle designed to repair and deorbit orbital assets. Freebird is based at International Space Station Alpha (ISSA) at an inclination of 51.6 deg and is capable of three types of missions: crewed and teleoperated LEO missions, and extended robotic missions. In a crewed local configuration, the vehicle can visit inclinations between 30.8 deg and 72.4 deg at altitudes close to 390 km. Adding extra fuel tanks extends this range of inclination up to 84.9 deg and down to 18.3 deg. Furthermore, removing the crew module, using the vehicle in a teleoperated manner, and operating with extra fuel tanks allows missions to polar and geosynchronous orbits. To allow for mission flexibility, the vehicle was designed in a semimodular configuration. The major system components include a crew module, a 'smart box' (which contains command, communications, guidance, and navigation equipment), a propulsion pack, extra fuel tanks, and a vehicle storage facility (VSF) for storage purposes. To minimize risk as well as development time and cost, the vehicle was designed using only proven technology or technology which is expected to be flight-qualified in time for the intended launch date of 2002. And, because Freebird carries crew and operates near the space station, it must meet or exceed the NASA reliability standard of 0.994, as well as other standard requirements for such vehicles. The Freebird program was conceived and designed as a way to provide important and currently unavailable satellite repair and replacement services of a value equal to or exceeding operational costs.

  9. Single Stage To Orbit Minimum Requirements Through Numerical Simulation

    Science.gov (United States)

    Teixeira, E.

    It is widely known that producing a single stage to orbit spacecraft is no easy task. It is also understood that it will be the first steady step towards spacecraft that operate in much the same way as today's airliners. This, in turn is believed to decrease the economical cost of reaching space through more efficient use of a single vehicle and higher launch rates. Space is then open to the common man, either through tourism or as a transportation medium. This paper is yet another study on the physical requirements of a SSTO spacecraft. It will begin with simple assumptions and gradually build up accuracy until reaching the use of a numerical simulation tool, so as to provide the necessary insight into it. The curvature of the Earth, its gravitational field, the exhaust pressure loss and atmospheric drag are a few of the considerations that the simulation takes into account. No attention was give to the actual details of the spacecraft such as propulsion type(s), winged or lifting body (aerodynamics), active or passive cooling (thermodynamics), stability and control. All these subsystems are considered to be included into the construction mass. The drag model is a simple textbook approximation and the propulsion force is given by a hypothetical propellant and engine so as to produce the assumed range of specific impulse. Even the construction mass is supposed to be futuristic so as to reach the lowest specified values. Not only vertical take-off will be simulated but also horizontal launching from altitude (from a towing aircraft, for example). The result of the paper shows the relationship between the construction mass and the specific impulse of a given spacecraft if it is to reach low earth orbit. This paper thus aims at bringing some light to the controversial discussion of how to make these vehicles a reality. The simulation program (Matlab) is available to students.

  10. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  11. Nuclear reactor power for an electrically powered orbital transfer vehicle

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  12. Nuclear reactor power for an electrically powered orbital transfer vehicle

    International Nuclear Information System (INIS)

    Jaffe, L.; Beatty, R.; Bhandari, P.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant

  13. Fuel-optimal trajectories of aeroassisted orbital transfer with plane change

    Science.gov (United States)

    Naidu, Desineni Subbaramaiah; Hibey, Joseph L.

    1989-06-01

    The problem of minimization of fuel consumption during the atmospheric portion of an aeroassisted, orbital transfer with plane change is addressed. The complete mission has required three characteristic velocities, a deorbit impulse at high earth orbit (HEO), a boost impulse at the atmospheric exit, and a reorbit impulse at low earth orbit (LEO). A performance index has been formulated as the sum of these three impulses. Application of optimal control principles has led to a nonlinear, two-point, boundary value problem which was solved by using a multiple shooting algorithm. The strategy for the atmospheric portion of the minimum-fuel transfer is to start initially with the maximum positive lift in order to recover from the downward plunge, and then to fly with a gradually decreasing lift such that the vehicle skips out of the atmosphere with a flight path angle near zero degrees.

  14. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung

    2015-04-06

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  15. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurelien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-01-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  16. Benefits of high aerodynamic efficiency to orbital transfer vehicles

    Science.gov (United States)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.

    1984-01-01

    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  17. The K-1 Active Dispenser for Orbit Transfer

    Science.gov (United States)

    Lai, G.; Cochran, D.; Curtis, R.

    2002-01-01

    Kistler Aerospace Corporation is building the K-1, the world's first fully reusable launch vehicle. The two-stage K- 1 is designed primarily to service the market for low-earth orbit (LEO) missions, due to Kistler's need to recover both stages. For customers requiring payload delivery to high-energy orbits, Kistler can outfit the payload with a K- 1 Active Dispenser (an expendable third stage). The K-1 second stage will deploy the Active Dispenser mated with its payload into a 200 km circular LEO parking orbit. From this orbit, the Active Dispenser would use its own propulsion to place its payload into the final desired drop-off orbit or earth-escape trajectory. This approach allows Kistler to combine the low-cost launch services offered by the reusable two-stage K-1 with the versatility of a restartable, expendable upper stage. Enhanced with an Active Dispenser, the K-1 will be capable of delivering 1,500 kg to a geosynchronous transfer orbit or up to approximately 1,000 kg into a Mars rendezvous trajectory. The list price of a K-1 Active Dispenser launch is 25 million (plus the price of mission unique integration services) significantly less than the price of any launch vehicle service in the world with comparable capability.

  18. An analytical optimization method for electric propulsion orbit transfer vehicles

    International Nuclear Information System (INIS)

    Oleson, S.R.

    1993-01-01

    Due to electric propulsion's inherent propellant mass savings over chemical propulsion, electric propulsion orbit transfer vehicles (EPOTVs) are a highly efficient mode of orbit transfer. When selecting an electric propulsion device (ion, MPD, or arcjet) and propellant for a particular mission, it is preferable to use quick, analytical system optimization methods instead of time intensive numerical integration methods. It is also of interest to determine each thruster's optimal operating characteristics for a specific mission. Analytical expressions are derived which determine the optimal specific impulse (Isp) for each type of electric thruster to maximize payload fraction for a desired thrusting time. These expressions take into account the variation of thruster efficiency with specific impulse. Verification of the method is made with representative electric propulsion values on a LEO-to-GEO mission. Application of the method to specific missions is discussed

  19. Modification of an impulse-factoring orbital transfer technique to account for orbit determination and maneuver execution errors

    Science.gov (United States)

    Kibler, J. F.; Green, R. N.; Young, G. R.; Kelly, M. G.

    1974-01-01

    A method has previously been developed to satisfy terminal rendezvous and intermediate timing constraints for planetary missions involving orbital operations. The method uses impulse factoring in which a two-impulse transfer is divided into three or four impulses which add one or two intermediate orbits. The periods of the intermediate orbits and the number of revolutions in each orbit are varied to satisfy timing constraints. Techniques are developed to retarget the orbital transfer in the presence of orbit-determination and maneuver-execution errors. Sample results indicate that the nominal transfer can be retargeted with little change in either the magnitude (Delta V) or location of the individual impulses. Additonally, the total Delta V required for the retargeted transfer is little different from that required for the nominal transfer. A digital computer program developed to implement the techniques is described.

  20. Future orbital transfer vehicle technology study. Volume 2: Technical report

    Science.gov (United States)

    Davis, E. E.

    1982-01-01

    Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.

  1. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    Science.gov (United States)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  2. A decay heat removal methodology for reuseable orbital transfer vehicles

    Science.gov (United States)

    McDaniel, Patrick J.; Perkins, David R.

    1992-07-01

    Operation of a nuclear thermal rocket(NTR) as the propulsion system for a reusable orbital transfer vehicle has been considered. This application is the most demanding in terms of designing a multiple restart capability for an NTR. The requirements on a NTR cooling system associated with the nuclear decay heat stored during operation have been evaluated, specifically for a Particle Bed Reactor(PBR) configuration. A three mode method of operation has been identified as required to adequately remove the nuclear decay heat.

  3. Laser propulsion for orbit transfer - Laser technology issues

    Science.gov (United States)

    Horvath, J. C.; Frisbee, R. H.

    1985-01-01

    Using reasonable near-term mission traffic models (1991-2000 being the assumed operational time of the system) and the most current unclassified laser and laser thruster information available, it was found that space-based laser propulsion orbit transfer vehicles (OTVs) can outperform the aerobraked chemical OTV over a 10-year life-cycle. The conservative traffic models used resulted in an optimum laser power of about 1 MW per laser. This is significantly lower than the power levels considered in other studies. Trip time was taken into account only to the extent that the system was sized to accomplish the mission schedule.

  4. Exploiting orbital effects for short-range extravehicular transfers

    Science.gov (United States)

    Williams, Trevor; Baughman, David

    The problem studied in this paper is that of using Simplified Aid for Extravehicular Activity (EVA) Rescue (SAFER) to carry out efficient short-range transfers from the payload bay of the Space Shuttle Orbiter to the vicinity of the underside of the vehicle, for instance for inspection and repair of thermal tiles or umbilical doors. Trajectories are shown to exist, for the shuttle flying noise forward and belly down, that take the astronaut to the vicinity of the underside with no thrusting after the initial push-off. However, these trajectories are too slow to be of practical interest, as they take roughly an hour to execute. Additionally, they are quite sensitive to errors in the initial push-off rates. To overcome both of these difficulties, trajectories are then studied which include a single in-flight impulse of small magnitude ( in the range 0.1 - 0.4 fps). For operational simplicity, this impulse is applied towards the Orbiter at the moment when the line-of -sight of the EVA crewmember is tangential to the underside of the vehicle. These trajectories are considerably faster than the non-impulsive ones: transit times of less than 10 minutes are achievable. Furthermore, the man-in-the-loop feedback scheme used for impulse timing greatly reduces the sensitivity to initial velocity errors. Finally, similar one-impulse trajectories are also shown to exist for the Orbiter in a gravity-gradient attitiude.

  5. The strv 1 microsatellite semes: Exploiting the geosynchronous transfer orbit

    Science.gov (United States)

    Blott, R. J.; Wells, N. S.; Eves, J.

    Following 3 successful years in orbit, the UK Defence Evaluation and Research Agency's two Space Technology Research Vehicle microsatellites (STRV) 1 a&b will be followed by a second mission. STRV 1 c&d are now in construction for a planned launch in 1999. The new mission, which includes 22 experimental payloads and developmental spacecraft bus technologies from European, US and Canadian military, civil and commercial sponsors, exploits the Geosynchronous Transfer Orbit (GTO) to offer an affordable, working space research tool for both government and industry. The STRV 1 programme objective is to promote the enhancement of military and civil space communications, remote sensing and navigation capabilities at reduced cost and risk. Additional aims are to help industry to achieve commercial benefit from investment in emerging technologies and to develop the synergy between government, commercial and civilian space applications. The paper explains how STRV 1 exploits the variable altitude and high radiation environment of GTO to investigate the performance of emerging technologies and techniques. This includes the accelerated life testing of components and materials, such as infra-red detectors, advanced microprocessors and solar cell technologies, and the prototyping of new techniques to improve communications and spacecraft autonomy. Experiments include implementing a secure version of the Consultative Committee for Space Data Systems (CCSDS) packet telecommand and telemetry standards, further development of the Internet-based Space Communication Protocol Standards (SCPS) and evaluating the exploitation of the Global Positioning System (GPS) in geosynchronous orbit. The new mission also builds on and extends the comprehensive environmental monitoring achieved by STRV 1 a&b.

  6. Future orbital transfer vehicle technology study. Volume 1: Executive summary

    Science.gov (United States)

    Davis, E. E.

    1982-01-01

    Reusable space and ground based LO2/LH2 OTV's, both advanced space engines and aero assist capability were compared. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. An all LO2/LH2 OTV fleet was also compared with a fleet of LO2/.H2 OTV's and electric OTV's. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. In this case, the LO2/LH2 OTV fleet provided a 23% advantage in total transportation cost. An accelerated technology LF2/LH2 OTV provided improvements in performance relative to LO2/.H2 OTV but has higher DDT&E cost which negated its cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but still did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on orbit propellant storage and transfer and on orbit maintenance capability.

  7. Robust approximate optimal guidance strategies for aeroassisted orbital transfer missions

    Science.gov (United States)

    Ilgen, Marc R.

    This thesis presents the application of game theoretic and regular perturbation methods to the problem of determining robust approximate optimal guidance laws for aeroassisted orbital transfer missions with atmospheric density and navigated state uncertainties. The optimal guidance problem is reformulated as a differential game problem with the guidance law designer and Nature as opposing players. The resulting equations comprise the necessary conditions for the optimal closed loop guidance strategy in the presence of worst case parameter variations. While these equations are nonlinear and cannot be solved analytically, the presence of a small parameter in the equations of motion allows the method of regular perturbations to be used to solve the equations approximately. This thesis is divided into five parts. The first part introduces the class of problems to be considered and presents results of previous research. The second part then presents explicit semianalytical guidance law techniques for the aerodynamically dominated region of flight. These guidance techniques are applied to unconstrained and control constrained aeroassisted plane change missions and Mars aerocapture missions, all subject to significant atmospheric density variations. The third part presents a guidance technique for aeroassisted orbital transfer problems in the gravitationally dominated region of flight. Regular perturbations are used to design an implicit guidance technique similar to the second variation technique but that removes the need for numerically computing an optimal trajectory prior to flight. This methodology is then applied to a set of aeroassisted inclination change missions. In the fourth part, the explicit regular perturbation solution technique is extended to include the class of guidance laws with partial state information. This methodology is then applied to an aeroassisted plane change mission using inertial measurements and subject to uncertainties in the initial value

  8. Orbit transfer rocket engine technology program: Automated preflight methods concept definition

    Science.gov (United States)

    Erickson, C. M.; Hertzberg, D. W.

    1991-01-01

    The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment.

  9. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    Science.gov (United States)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  10. Identification of Nilsson orbitals in the superdeformed minimum of {sup 237}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Thomas James

    2008-03-31

    In this thesis, a spectroscopy experiment in the second minimum of the double humped fission barrier of {sup 237}Pu is presented, in which, for the first time, single - particle states for a neutron - rich shape isomer with odd neutron number were identified and characterised by their Nilsson quantum numbers. While rotational ({sup 236f}U and {sup 240f}Pu) and vibrational excitations ({sup 240f}Pu) had already been identified earlier in the even-even neighbouring nuclei, now the fission isomers in {sup 237}Pu (t{sub 1/2}=115 ns/1.12 {mu}s) were investigated in a {gamma}-spectroscopy experiment at the Cologne Tandem accelerator. Using the {sup 235}U({alpha},2n) reaction with a pulsed R beam, states in the second minimum were populated. Following the prompt decay of excited states into the ground states of the two shape isomers, the nucleus decays with its halflife, the resulting fission fragments were detected in a specially built 4{pi} parallel plate detector. The extremely rare isomeric {gamma} decays were measured in coincidence with the fission fragments using the highly efficient MINIBALL spectrometer. The background-subtracted {gamma}-ray spectrum was disentangled into contributions from the two shape isomers and 9 excited rotational bands were identified built on the ground states of the two isomers. The ground state spins of the two shape isomers were determined to be I=5/2 (115 ns isomer) and I=9/2 (1120 ns isomer). From the 149 identified {gamma} transitions, independent level schemes were constructed for the two fission isomers in {sup 237}Pu. The consistency of these level schemes was supported by the connecting {gamma} transitions between rotational bands. Furthermore, both level schemes could be combined to a common level scheme, in which the ground state of the long-lived 9/2 isomer was placed 54.0(3) keV above the ground state of the short-lived 5/2 isomer. The resulting level scheme was compared to Hartree-Fock-Bogolyubov single

  11. Identification of Nilsson orbitals in the superdeformed minimum of 237Pu

    International Nuclear Information System (INIS)

    Morgan, Thomas James

    2008-01-01

    In this thesis, a spectroscopy experiment in the second minimum of the double humped fission barrier of 237 Pu is presented, in which, for the first time, single - particle states for a neutron - rich shape isomer with odd neutron number were identified and characterised by their Nilsson quantum numbers. While rotational ( 236f U and 240f Pu) and vibrational excitations ( 240f Pu) had already been identified earlier in the even-even neighbouring nuclei, now the fission isomers in 237 Pu (t 1/2 =115 ns/1.12 μs) were investigated in a γ-spectroscopy experiment at the Cologne Tandem accelerator. Using the 235 U(α,2n) reaction with a pulsed R beam, states in the second minimum were populated. Following the prompt decay of excited states into the ground states of the two shape isomers, the nucleus decays with its halflife, the resulting fission fragments were detected in a specially built 4π parallel plate detector. The extremely rare isomeric γ decays were measured in coincidence with the fission fragments using the highly efficient MINIBALL spectrometer. The background-subtracted γ-ray spectrum was disentangled into contributions from the two shape isomers and 9 excited rotational bands were identified built on the ground states of the two isomers. The ground state spins of the two shape isomers were determined to be I=5/2 (115 ns isomer) and I=9/2 (1120 ns isomer). From the 149 identified γ transitions, independent level schemes were constructed for the two fission isomers in 237 Pu. The consistency of these level schemes was supported by the connecting γ transitions between rotational bands. Furthermore, both level schemes could be combined to a common level scheme, in which the ground state of the long-lived 9/2 isomer was placed 54.0(3) keV above the ground state of the short-lived 5/2 isomer. The resulting level scheme was compared to Hartree-Fock-Bogolyubov single-particle calculations, Nilsson model and Woods-Saxon potential calculations. This

  12. Minimum number of transfer units and reboiler duty for multicomponent distillation columns

    International Nuclear Information System (INIS)

    Pleşu, Valentin; Bonet Ruiz, Alexandra Elena; Bonet, Jordi; Llorens, Joan; Iancu, Petrica

    2013-01-01

    Some guidelines to evaluate distillation columns, considering only basic thermodynamic data and principles, are provided in this paper. The method allows a first insight to the problem by simple calculations, without requiring column variables to ensure rational use of energy and low environmental impact. The separation system is approached by two complementary ways: minimum and infinite reflux flow rate. The minimum reflux provides the minimum energy requirements, and the infinite reflux provides the feasibility conditions. The difficulty of separation can be expressed in terms of number of transfer units (NTU). The applicability of the method is not mathematically limited by the number of components in the mixture. It is also applicable to reactive distillation. Several mixtures, including reactive distillation, are rigorously simulated as illustrative examples, to verify the applicability of the approach. The separation of the mixtures, performed by distillation columns, is feasible if a minimum NTU can be calculated between the distillate and bottom products. Once verified the feasibility of the separation, the maximum thermal efficiency depends only on boiling point of bottom and distillate streams. The minimum energy requirements corresponding to the reboiler can be calculated from the maximum thermal efficiency, and the variation of entropy and enthalpy of mixing between distillate and bottom streams. -- Highlights: • Feasibility analysis complemented with difficulty of separation parameters • Minimum and infinite reflux simplified models for distillation columns • Minimum number of transfer units (NTU) for packed columns at early design stages • Calculation of minimum energy distillation requirements at early design stages • Thermodynamic cycle approach and efficiency for distillation columns

  13. Modeling low-thrust transfers between periodic orbits about five libration points: Manifolds and hierarchical design

    Science.gov (United States)

    Zeng, Hao; Zhang, Jingrui

    2018-04-01

    The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.

  14. Sub-coulomb transfer method of a nucleon for measure orbital radii

    International Nuclear Information System (INIS)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.; Avila, O.

    1986-04-01

    The neutron transfer method is revised to measure neutron orbital radii and possible interest systems to apply it are determined. Its were carried out DWBA preliminary calculations for the system 209 Bi(d,t) 208 Bi. (Author)

  15. Study on minimum heat-flux point during boiling heat transfer on horizontal plates

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1985-01-01

    The characteristics of boiling heat transfer are usually shown by the boiling curve of N-shape having the maximum and minimum points. As for the limiting heat flux point, that is, the maximum point, there have been many reports so far, as it is related to the physical burn of heat flux-controlling type heating surfaces. But though the minimum heat flux point is related to the quench point as the problems in steel heat treatment, the core safety of LWRs, the operational stability of superconducting magnets, the start-up characteristics of low temperature machinery, the condition of vapor explosion occurrence and so on, the systematic information has been limited. In this study, the effects of transient property and the heat conductivity of heating surfaces on the minimum heat flux condition in the pool boiling on horizontal planes were experimentally examined by using liquid nitrogen. The experimental apparatuses for steady boiling, for unsteady boiling with a copper heating surface, and for unsteady boiling with a heating surface other than copper were employed. The boiling curves obtained with these apparatuses and the minimum heat flux point condition are discussed. (Kako, I.)

  16. Low-Thrust Orbital Transfers in the Two-Body Problem

    Directory of Open Access Journals (Sweden)

    A. A. Sukhanov

    2012-01-01

    Full Text Available Low-thrust transfers between given orbits within the two-body problem are considered; the thrust is assumed power limited. A simple method for obtaining the transfer trajectories based on the linearization of the motion near reference orbits is suggested. Required calculation accuracy can be reached by means of use of a proper number of the reference orbits. The method may be used in the case of a large number of the orbits around the attracting center; no averaging is necessary in this case. The suggested method also is applicable to the cases of partly given final orbit and if there are constraints on the thrust direction. The method gives an optimal solution to the linearized problem which is not optimal for the original nonlinear problem; the difference between the optimal solutions to the original and linearized problems is estimated using a numerical example. Also examples illustrating the method capacities are given.

  17. Robust localized-orbital transferability using the Harris functional

    International Nuclear Information System (INIS)

    Hierse, W.; Stechel, E.B.

    1996-01-01

    Replacing diagonalization in a density-functional code by an order-N algorithm does not automatically produce large efficiency gains, at least for system sizes accessible to the current generation of computers. However, both efficiency and conceptual advantages do arise from the transfer of local electronic structure between locally similar, but globally different systems. Order-N methods produce potentially transferable local electronic structure. For practical applications, it is desirable that electronic structure be transferable between subsystems of similar yet somewhat different geometry. We show, in the context of molecular deformations of a simple hydrocarbon system, that this can be accomplished by combining a transfer prescription with the Harris functional. We show proof of principle and discuss the resulting efficiency gains. copyright 1996 The American Physical Society

  18. CNDO/SCF molecular orbital structural studies and charge transfer ...

    African Journals Online (AJOL)

    dimethoxy- diquinone (DQ) has been discussed and compared with some related compounds. The electron transfer between DQ and uracil was studied in ethanol as an interaction medium. The ionization potentials and the electron affinities of the ...

  19. Superfluid helium on on-orbit transfer (SHOOT) flight experiment

    International Nuclear Information System (INIS)

    DiPirro, M.J.; Kittel, P.

    1988-01-01

    The SHOOT flight demonstration is being undertaken to verify component and system level technology necessary to resupply large superfluid helium dewars in space. The baseline configuration uses two identical 210 liter dewars connected by a transfer line which contains a quick disconnect coupling. The helium is transferred back and forth between the dewars under various conditions of flow rate, parasitic heat load, and temperature. An astronaut Extra-Vehicular Activity is also planned to manually mate and demate the coupling. The components necessary for the flight and currently being developed are described

  20. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  1. Transfer of orbital angular momentum to an optically trapped low-index particle

    International Nuclear Information System (INIS)

    Garces-Chavez, V.; Sibbett, W.; Dholakia, K.; Volke-Sepulveda, K.; Chavez-Cerda, S.

    2002-01-01

    We demonstrate the transfer of orbital angular momentum from a light beam to a trapped low-index particle. The particle is trapped in a dark annular region of a high-order Bessel beam and rotates around the beam axis due to scattering from the helical wave fronts of the light beam. A general theoretical geometrical optics model is developed that, applied to our specific situation, corroborates tweezing and transfer of orbital angular momentum to the low-index particle. Good quantitative agreement between theory and experiment for particle rotation rates is observed

  2. Ariane Transfer Vehicle in service of man in orbit

    Science.gov (United States)

    Deutscher, N.; Schefold, K.; Cougnet, C.

    1988-10-01

    The Ariane Transfer Vehicle (ATV), an unmanned propulsion system that is designed to be carried by the Ariane 5 launch vehicle, will undertake the logistical support required by the International Space Station and the Man-Tended Free Flyer, carrying both pressurized and unpressurized cargo to these spacecraft and carrying away wastes. The ATV is an expendable vehicle, disposed of by burn-up during reentry, and will be available for initial operations in 1996. In order to minimize development costs and recurrent costs, the ATV design will incorporate existing hardware and software.

  3. Orbital

    OpenAIRE

    Yourshaw, Matthew Stephen

    2017-01-01

    Orbital is a virtual reality gaming experience designed to explore the use of traditional narrative structure to enhance immersion in virtual reality. The story structure of Orbital was developed based on the developmental steps of 'The Hero's Journey,' a narrative pattern identified by Joseph Campbell. Using this standard narrative pattern, Orbital is capable of immersing the player quickly and completely for the entirety of play time. MFA

  4. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    Science.gov (United States)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  5. Sub-Coulomb heavy ion neutron transfer reactions and neutron orbit sizes

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1976-01-01

    Direct transfer reactions below the Coulomb barrier offer the best means of determining neutron densities near the nuclear surface. This paper describes how heavy ion sub-Coulomb transfer can be used to determine the rms radii of neutron orbits in certain nuclei. The theoretical background is outlined and problems associated with the comparison of experiment and theory are discussed. Experiments performed to calibrate sub-Coulomb heavy ion transfer reactions are presented, and some comments are made on the relative roles of light and heavy ion reactions. Preliminary values for the rms radii of neutron orbits and neutron excesses extracted from recent experiments are given, and some remarks are made concerning the implications of these results for the triton wave function and for the Coulomb energy difference anomaly. (author)

  6. Overload control of artificial gravity facility using spinning tether system for high eccentricity transfer orbits

    Science.gov (United States)

    Gou, Xing-wang; Li, Ai-jun; Tian, Hao-chang; Wang, Chang-qing; Lu, Hong-shi

    2018-06-01

    As the major part of space life supporting systems, artificial gravity requires further study before it becomes mature. Spinning tether system is a good alternative solution to provide artificial gravity for the whole spacecraft other than additional devices, and its longer tether length could significantly reduce spinning velocity and thus enhance comfortability. An approximated overload-based feedback method is proposed to provide estimated spinning velocity signals for controller, so that gravity level could be accurately controlled without complicated GPS modules. System behavior in high eccentricity transfer orbits is also studied to give a complete knowledge of the spinning stabilities. The application range of the proposed method is studied in various orbit cases and spinning velocities, indicating that it is accurate and reliable for most of the mission phases especially for the final constant gravity level phase. In order to provide stable gravity level for transfer orbit missions, a sliding mode controller based on estimated angular signals is designed for closed-loop control. Numerical results indicate that the combination of overload-based feedback and sliding mode controller could satisfy most of the long-term artificial gravity missions. It is capable of forming flexible gravity environment in relatively good accuracy even in the lowest possible orbital radiuses and high eccentricity orbits of crewed space missions. The proposed scheme provides an effective tether solution for the artificial gravity construction in interstellar travel.

  7. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    Science.gov (United States)

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  8. Nitrogen Transfer from Cover Crop Residues to Onion Grown under Minimum Tillage in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Leoncio de Paula Koucher

    2017-08-01

    Full Text Available ABSTRACT Nitrogen derived from cover crop residues may contribute to the nutrition of onion grown under minimum tillage (MT and cultivated in rotation. The aim of this study was to evaluate the N transferred from different cover crop residues to the onion crop cultivated under MT in southern Brazil. In June 2014, oilseed radish, black oat, and oilseed radish + black oat residues labeled with 15N were deposited on the soil surface before transplanting onions. During the growth season and at harvest, young expanded onion leaves, complete plants, and samples from different soil layers were collected and analyzed for recovery of 15N-labeled residue. Oilseed radish decomposed faster than other residues and 4 % of residue N was recovered in leaves and bulbs at harvest, but in general, N in plant organs was derived from sources other than the cover crop residues. In addition, leaf N was in the proper range for all treatments and was adequately mobilized to the bases for bulbing. The N derived from decomposing residues contributed little to onion development and the use of these plants should be chosen based on their advantages for physical and biological soil quality.

  9. Regularization and computational methods for precise solution of perturbed orbit transfer problems

    Science.gov (United States)

    Woollands, Robyn Michele

    The author has developed a suite of algorithms for solving the perturbed Lambert's problem in celestial mechanics. These algorithms have been implemented as a parallel computation tool that has broad applicability. This tool is composed of four component algorithms and each provides unique benefits for solving a particular type of orbit transfer problem. The first one utilizes a Keplerian solver (a-iteration) for solving the unperturbed Lambert's problem. This algorithm not only provides a "warm start" for solving the perturbed problem but is also used to identify which of several perturbed solvers is best suited for the job. The second algorithm solves the perturbed Lambert's problem using a variant of the modified Chebyshev-Picard iteration initial value solver that solves two-point boundary value problems. This method converges over about one third of an orbit and does not require a Newton-type shooting method and thus no state transition matrix needs to be computed. The third algorithm makes use of regularization of the differential equations through the Kustaanheimo-Stiefel transformation and extends the domain of convergence over which the modified Chebyshev-Picard iteration two-point boundary value solver will converge, from about one third of an orbit to almost a full orbit. This algorithm also does not require a Newton-type shooting method. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver to solve the perturbed two-impulse Lambert problem over multiple revolutions. The method of particular solutions is a shooting method but differs from the Newton-type shooting methods in that it does not require integration of the state transition matrix. The mathematical developments that underlie these four algorithms are derived in the chapters of this dissertation. For each of the algorithms, some orbit transfer test cases are included to provide insight on accuracy and efficiency of these

  10. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.

    2002-01-01

    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  11. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    International Nuclear Information System (INIS)

    Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.

    2011-01-01

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  12. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)

    2011-12-15

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  13. Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems

    Science.gov (United States)

    Nistor, Razvan A.

    The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high

  14. Charge transfer interaction using quasiatomic minimal-basis orbitals in the effective fragment potential method

    International Nuclear Information System (INIS)

    Xu, Peng; Gordon, Mark S.

    2013-01-01

    The charge transfer (CT) interaction, the most time-consuming term in the general effective fragment potential method, is made much more computationally efficient. This is accomplished by the projection of the quasiatomic minimal-basis-set orbitals (QUAMBOs) as the atomic basis onto the self-consistent field virtual molecular orbital (MO) space to select a subspace of the full virtual space called the valence virtual space. The diagonalization of the Fock matrix in terms of QUAMBOs recovers the canonical occupied orbitals and, more importantly, gives rise to the valence virtual orbitals (VVOs). The CT energies obtained using VVOs are generally as accurate as those obtained with the full virtual space canonical MOs because the QUAMBOs span the valence part of the virtual space, which can generally be regarded as “chemically important.” The number of QUAMBOs is the same as the number of minimal-basis MOs of a molecule. Therefore, the number of VVOs is significantly smaller than the number of canonical virtual MOs, especially for large atomic basis sets. This leads to a dramatic decrease in the computational cost

  15. Numerical analysis of orbital transfers to Mars using solar sails and attitude control

    Science.gov (United States)

    Pereira, M. C.; de Melo, C. F.; Meireles, L. G.

    2017-10-01

    Solar sails present a promising alternative method of propulsion for the coming phases of the space exploration. With the recent advances in materials engineering, the construction of lighter and more resistant materials capable of impelling spaceships with the use of solar radiation pressure has become increasingly viable technologically and economically. The studies, simulations and analysis of orbital transfers from Earth to Mars proposed in this work were implemented considering the use of a flat solar sail. Maneuvers considering the delivery of a sailcraft from a Low Earth Orbit to the border of the Earth’s sphere of influence and interplanetary trajectories to Mars were investigated. A set of simulations were implemented varying the attitude of the sail relative to the Sun. Results show that a sailcraft can carry out transfers with final velocity with respect to Mars smaller than the interplanetary Patched-conic approximation, although this requires a longer time of transfers, provided the attitude of the sailcraft relative to the Sun can be controlled in some points of the trajectories.

  16. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.

    Science.gov (United States)

    Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn

    2018-04-04

    In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.

  17. Searching for Orbits with Minimum Fuel Consumption for Station-Keeping Maneuvers: An Application to Lunisolar Perturbations

    Directory of Open Access Journals (Sweden)

    Antonio Fernando Bertachini de Almeida Prado

    2013-01-01

    Full Text Available The present paper has the goal of developing a new criterion to search for orbits that minimize the fuel consumption for station-keeping maneuvers. This approach is based on the integral over the time of the perturbing forces. This integral measures the total variation of velocity caused by the perturbations in the spacecraft, which corresponds to the equivalent variation of velocity that an engine should deliver to the spacecraft to compensate the perturbations and to keep its orbit Keplerian all the time. This integral is a characteristic of the orbit and the set of perturbations considered and does not depend on the type of engine used. In this sense, this integral can be seen as a criterion to select the orbit of the spacecraft. When this value becomes larger, more consumption of fuel is required for the station keeping, and, in this sense, less interesting is the orbit. This concept can be applied to any perturbation. In the present research, as an example, the perturbation caused by a third body is considered. Then, numerical simulations considering the effects of the Sun and the Moon in a satellite around the Earth are shown to exemplify the method.

  18. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Horn, F.L.

    1987-01-01

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ΔV missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined

  19. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    Science.gov (United States)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  20. 31 CFR 363.99 - What is the minimum amount of a bond that I may transfer or deliver as a gift in any one...

    Science.gov (United States)

    2010-07-01

    ... Savings Bonds Purchased Through TreasuryDirect Gifts § 363.99 What is the minimum amount of a bond that I may transfer or deliver as a gift in any one transaction? You may transfer or deliver gift bonds in... that I may transfer or deliver as a gift in any one transaction? 363.99 Section 363.99 Money and...

  1. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  2. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  3. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    Science.gov (United States)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  4. Thermal response of an aeroassisted orbital-transfer vehicle with a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1984-01-01

    As an aeroassisted orbital-transfer vehicle (AOTV) goes through an aerobraking maneuver, a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70 deg, conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of silica fabric. The heat-shield thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur in the vicinity of the interface between the body and the conical heat shield.

  5. Thermal Response of an Aeroassisted Orbital Transfer Vehicle with a Conical Drag Brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1985-01-01

    As an aeroassisted orbital transfer vehicle (AOTV) goes through an aerobraking maneuver a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70-deg, Conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of ceramic fabric its thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur In the vicinity of the interface between the body and the conical heat shield.

  6. Simulation of the steady-state energy transfer in rigid bodies, with convective-radiative boundary conditions, employing a minimum principle

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-08-01

    The energy transfer phenomenon in a rigid and opaque body that exchanges energy, with the environment, by convection and by diffuse thermal radiation is studied. The considered phenomenon is described by a partial differential equation, subjected to (nonlinear) boundary conditions. A minimum principle, suitable for a large class of energy transfer problems is presented. Some particular cases are simulated. (author)

  7. An Investigation to Advance the Technology Readiness Level of the Centaur Derived On-orbit Propellant Storage and Transfer System

    Science.gov (United States)

    Silvernail, Nathan L.

    This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in

  8. Communication: electron transfer mediated decay enabled by spin-orbit interaction in small krypton/xenon clusters.

    Science.gov (United States)

    Zobel, J Patrick; Kryzhevoi, Nikolai V; Pernpointner, Markus

    2014-04-28

    In this work we study the influence of relativistic effects, in particular spin-orbit coupling, on electronic decay processes in KrXe2 clusters of various geometries. For the first time it is shown that inclusion of spin-orbit coupling has decisive influence on the accessibility of a specific decay pathway in these clusters. The radiationless relaxation process is initiated by a Kr 4s ionization followed by an electron transfer from xenon to krypton and a final second ionization of the system. We demonstrate the existence of competing electronic decay pathways depending in a subtle way on the geometry and level of theory. For our calculations a fully relativistic framework was employed where omission of spin-orbit coupling leads to closing of two decay pathways. These findings stress the relevance of an adequate relativistic description for clusters with heavy elements and their fragmentation dynamics.

  9. THE NASA-UC ETA-EARTH PROGRAM. II. A PLANET ORBITING HD 156668 WITH A MINIMUM MASS OF FOUR EARTH MASSES

    International Nuclear Information System (INIS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Johnson, John Asher; Fischer, Debra A.; Wright, Jason T.; Henry, Gregory W.; Valenti, Jeff A.; Anderson, Jay; Piskunov, Nikolai E.

    2011-01-01

    We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M P sin i = 4.15 M + . This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s -1 , is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P ∼ 2.3 years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of ∼3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.

  10. Sub-coulomb transfer method of a nucleon for measure orbital radii; Metodo de transferencia sub-coulombiana de un nucleon para medir radios orbitales

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.; Avila, O. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1986-04-15

    The neutron transfer method is revised to measure neutron orbital radii and possible interest systems to apply it are determined. Its were carried out DWBA preliminary calculations for the system {sup 209} Bi(d,t) {sup 208} Bi. (Author)

  11. Effect of orbital alignment on the forward and reverse electronic energy transfer Ca(4s5p 1P1)+Marrow-right-leftCa(4s5p 3P/sub J/)+M with rare gases

    International Nuclear Information System (INIS)

    Bussert, W.; Neuschaefer, D.; Leone, S.R.; Departments of Physics and Chemistry, University of Colorado, Boulder, Colorado 80309-0440)

    1987-01-01

    Effects of orbital alignment on the relative cross sections for electronic energy transfer are determined for the near resonant transfer between Ca(4s5p 1 P 1 ) and Ca(4s5p 3 P/sub J/) states with rare gas collision partners. The experiments are carried out by pulsed laser excitation in a crossed beam. The results for the forward direction, 1 P to 3 P, formulated in terms of the ratio of the maximum to minimum transfer probability are: 3 He 1.61 +- 0.05; He 1.60 +- 0.03; Ne 1.55 +- 0.10; Ar 1.52 +- 0.21; for Kr, transfer occurs, but no preference is distinguishable within 1 +- 0.2; Xe 1.44 +- 0.06. The results for He, Ne, and Ar indicate a clear preference in the transfer for the initially prepared molecular Pi state. For Xe the molecular Σ state is dominant. The energy transfer is also carried out in the reverse direction, 3 P 1 to 1 P, for He and Xe, obtaining 1.65 +- 0.10 and 1.94 +- 0.22, respectively. Analysis of the state preparation suggests that the reverse direction favors the asymptotic molecular Σ state for He and the molecular Pi state for Xe. These alignment results provide a first experimental determination of the dominant electronic states involved in a collisional energy transfer process

  12. Conjugate gradient determination of optimal plane changes for a class of three-impulse transfers between noncoplanar circular orbits

    Science.gov (United States)

    Burrows, R. R.

    1972-01-01

    A particular type of three-impulse transfer between two circular orbits is analyzed. The possibility of three plane changes is recognized, and the problem is to optimally distribute these plane changes to minimize the sum of the individual impulses. Numerical difficulties and their solution are discussed. Numerical results obtained from a conjugate gradient technique are presented for both the case where the individual plane changes are unconstrained and for the case where they are constrained. Possibly not unexpectedly, multiple minima are found. The techniques presented could be extended to the finite burn case, but primarily the contents are addressed to preliminary mission design and vehicle sizing.

  13. Numerical and Analytical Study of Optimal Low-Thrust Limited-Power Transfers between Close Circular Coplanar Orbits

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2007-01-01

    Full Text Available A numerical and analytical study of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous between close circular coplanar orbits in an inverse-square force field is presented. The numerical study is carried out by means of an indirect approach of the optimization problem in which the two-point boundary value problem, obtained from the set of necessary conditions describing the optimal solutions, is solved through a neighboring extremal algorithm based on the solution of the linearized two-point boundary value problem through Riccati transformation. The analytical study is provided by a linear theory which is expressed in terms of nonsingular elements and is determined through the canonical transformation theory. The fuel consumption is taken as the performance criterion and the analysis is carried out considering various radius ratios and transfer durations. The results are compared to the ones provided by a numerical method based on gradient techniques.

  14. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    Science.gov (United States)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  15. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    Science.gov (United States)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  16. Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements

    Science.gov (United States)

    Kofal, Allen E.

    1987-01-01

    The mission and system requirements for the concept definition and system analysis of the Orbital Transfer Vehicle (OTV) are established. The requirements set forth constitute the single authority for the selection, evaluation, and optimization of the technical performance and design of the OTV. This requirements document forms the basis for the Ground and Space Based OTV concept definition analyses and establishes the physical, functional, performance and design relationships to STS, Space Station, Orbital Maneuvering Vehicle (OMV), and payloads.

  17. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 2: Study results

    Science.gov (United States)

    1980-01-01

    Detailed computer models of the engine were developed to predict both the steady state and transient operation of the engine system. Mechanical design layout drawings were prepared for the following components: thrust chamber and nozzle; extendible nozzle actuating mechanism and seal; LOX turbopump and boost pump; hydrogen turbopump and boost pump; and the propellant control valves. The necessary heat transfer, stress, fluid flow, dynamic, and performance analyses were performed to support the mechanical design.

  18. Modeling Heat-Transfer in Animal Habitats in the Shuttle Orbiter Middeck

    Science.gov (United States)

    Eodice, Michael T.; Sun, Sid (Technical Monitor)

    2000-01-01

    A mathematical model has been developed to evaluate the heat transfer characteristics of an Animal Enclosure Module (AEM) in the microgravity environment. The AEM is a spaceflight habitat that provides life support for up to six rodents in the Space Shuttle Middeck. Currently, temperatures within the AEM are recorded in real time using a solid state data recorder; however, the data are only available for analysis post-flight. This temperature information is useful for characterizing the thermal environment of the AEM for researchers, but is unavailable during flight operations. Because animal health in microgravity is directly linked to the thermal environment, the ability to predict internal AEM temperatures is extremely useful to life science researchers. NASA flight crews typically carry hand-held temperature measurement devices which allow them to provide ground researchers with near real time readings of AEM inlet temperature; however, higher priority operations limit the frequency at which these measurements can be made and subsequently downlinked. The mathematical model developed allows users to predict internal cage volume temperatures based on knowledge of the ambient air temperature entering the AEM air intake ports. Additionally, an average convective heat transfer coefficient for the AEM has been determined to provide engineers with the requisite information to facilitate future design improvements and product upgrades. The model has been validated using empirical data from a series of three Space Shuttle missions.

  19. Detection of Orbital Debris Collision Risks for the Automated Transfer Vehicle

    Science.gov (United States)

    Peret, L.; Legendre, P.; Delavault, S.; Martin, T.

    2007-01-01

    In this paper, we present a general collision risk assessment method, which has been applied through numerical simulations to the Automated Transfer Vehicle (ATV) case. During ATV ascent towards the International Space Station, close approaches between the ATV and objects of the USSTRACOM catalog will be monitored through collision rosk assessment. Usually, collision risk assessment relies on an exclusion volume or a probability threshold method. Probability methods are more effective than exclusion volumes but require accurate covariance data. In this work, we propose to use a criterion defined by an adaptive exclusion area. This criterion does not require any probability calculation but is more effective than exclusion volume methods as demonstrated by our numerical experiments. The results of these studies, when confirmed and finalized, will be used for the ATV operations.

  20. Multi-step optimization strategy for fuel-optimal orbital transfer of low-thrust spacecraft

    Science.gov (United States)

    Rasotto, M.; Armellin, R.; Di Lizia, P.

    2016-03-01

    An effective method for the design of fuel-optimal transfers in two- and three-body dynamics is presented. The optimal control problem is formulated using calculus of variation and primer vector theory. This leads to a multi-point boundary value problem (MPBVP), characterized by complex inner constraints and a discontinuous thrust profile. The first issue is addressed by embedding the MPBVP in a parametric optimization problem, thus allowing a simplification of the set of transversality constraints. The second problem is solved by representing the discontinuous control function by a smooth function depending on a continuation parameter. The resulting trajectory optimization method can deal with different intermediate conditions, and no a priori knowledge of the control structure is required. Test cases in both the two- and three-body dynamics show the capability of the method in solving complex trajectory design problems.

  1. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system

    Science.gov (United States)

    Hu, Weipeng; Song, Mingzhe; Deng, Zichen

    2018-01-01

    For the Tethered Satellite System, the coupling between the platform system and the solar panel is a challenge in the dynamic analysis. In this paper, the coupling dynamic behaviors of the Tethered Satellite System that is idealized as a planar flexible damping beam-spring-mass composite system are investigated via a structure-preserving method. Considering the coupling between the plane motion of the system, the oscillation of the spring and the transverse vibration of the beam, the dynamic model of the composite system is established based on the Hamiltonian variational principle. A symplectic dimensionality reduction method is proposed to decouple the dynamic system into two subsystems approximately. Employing the complex structure-preserving approach presented in our previous work, numerical iterations are performed between the two subsystems with weak damping to study the energy dissipation/transfer in the composite system, the effect of the spring stiffness on the energy distribution and the effect of the particle mass on the stability of the composite system. The numerical results show that: the energy transfer approach is uniquely determined by the initial attitude angle, while the energy dissipation speed is mainly depending on the initial attitude angle and the spring stiffness besides the weak damping. In addition, the mass ratio between the platform system and the solar panel determines the stable state as well as the time needed to reach the stable state of the composite system. The numerical approach presented in this paper provides a new way to deal with the coupling dynamic system and the conclusions obtained give some useful advices on the overall design of the Tethered Satellite System.

  2. A Complete First-Order Analytical Solution for Optimal Low-Thrust Limited-Power Transfers Between Coplanar Orbits with Small Eccentricities

    Science.gov (United States)

    Da Silva Fernandes, Sandro; Das Chagas Carvalho, Francisco; Vilhena de Moraes, Rodolpho

    The purpose of this work is to present a complete first order analytical solution, which includes short periodic terms, for the problem of optimal low-thrust limited power trajectories with large amplitude transfers (no rendezvous) between coplanar orbits with small eccentricities in Newtonian central gravity field. The study of these transfers is particularly interesting because the orbits found in practice often have a small eccentricity and the problem of transferring a vehicle from a low earth orbit to a high earth orbit is frequently found. Besides, the analysis has been motivated by the renewed interest in the use of low-thrust propulsion systems in space missions verified in the last two decades. Several researchers have obtained numerical and sometimes analytical solutions for a number of specific initial orbits and specific thrust profiles. Averaging methods are also used in such researches. Firstly, the optimization problem associated to the space transfer problem is formulated as a Mayer problem of optimal control with Cartesian elements - position and velocity vectors - as state variables. After applying the Pontryagin Maximum Principle, successive Mathieu transformations are performed and suitable sets of orbital elements are introduced. The short periodic terms are eliminated from the maximum Hamiltonian function through an infinitesimal canonical transformation built through Hori method - a perturbation canonical method based on Lie series. The new Hamiltonian function, which results from the infinitesimal canonical transformation, describes the extremal trajectories for long duration maneuvers. Closed-form analytical solutions are obtained for the new canonical system by solving the Hamilton-Jacobi equation through the separation of variables technique. By applying the transformation equations of the algorithm of Hori method, a first order analytical solution for the problem is obtained in non-singular orbital elements. For long duration maneuvers

  3. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  4. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals - II. Application to Fe2+ --> Ti4+ charge transfer transitions in oxides and silicates

    Science.gov (United States)

    Sherman, David M.

    1987-01-01

    A molecular orbital description, based on Xα-Scattered wave calculations on a (FeTiO10)14− cluster, is given for Fe2+ → Ti4+ charge transfer transitions in minerals. The calculated energy for the lowest Fe2+ → Ti4+ metal-metal charge transfer transition is 18040 cm−1 in reasonable agreement with energies observed in the optical spectra of Fe-Ti oxides and silicates. As in the case of Fe2+ → Fe3+ charge transfer in mixed-valence iron oxides and silicates, Fe2+ → Ti4+ charge transfer is associated with Fe-Ti bonding across shared polyhedral edges. Such bonding results from the overlap of the Fe(t 2g ) and Ti(t 2g ) 3d orbitals.

  5. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    Science.gov (United States)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  6. Study of the nuclear spin-orbit interaction by performing the transfer reaction 36S(d,p)37S and 34Si(d,p)35Si

    International Nuclear Information System (INIS)

    Burgunder, G.

    2011-12-01

    The spin-orbit interaction depends on the spin orientation of the nucleons with respect to their angular momenta as well as on the derivative of the nuclear density. Even though this density dependence is used in all mean field model, it has never been tested yet due to the lack of data. We propose an original method to test this density dependence by comparing a bubble nucleus ( 34 Si) to a normal nucleus ( 36 S). The 34 Si exhibits a central density which is depleted by a factor of two which induces a non-zero central density derivative and should change the strength of the spin orbit interaction for the inner orbits such as the p orbits (L=1). By performing (d,p) transfer reactions with 36 S and 34 Si beams, the p(3/2) and p(1/2) spin orbit splitting can be inferred for these nuclei. Depending on the models, the spin-orbit splitting varies from 7% (VlowK interaction) up to 70% (Relativistic mean field approach). Beams of 36 S and 34 Si, produced at the LISE spectrometer at 20 A.MeV, were impinged onto a CD 2 target. Tracking the beam particles was achieved using 2 xy beam tracking gas detectors. Protons emitted were detected by 4 multi-segmented Si detectors (MUST2) placed at backwards angles. Gammas issued from the excited states decay were detected in the 4 EXOGAM segmented Germanium detectors. Transfer like nuclei were identified with an ionization chamber and a plastic detector. The excitation energy spectra of the 37 S and 35 Si are determined up to about 7 MeV. Spectroscopic factors and energies of p and f states are derived for the first time in 35 Si. The two nuclei show strong similarity for the f spin-orbit partners, whereas the p(3/2) - p(1/2) energy gap is reduced by 55%. (author)

  7. Using Static Percentiles of AE9/AP9 to Approximate Dynamic Monte Carlo Runs for Radiation Analysis of Spiral Transfer Orbits

    Science.gov (United States)

    Kwan, Betty P.; O'Brien, T. Paul

    2015-06-01

    The Aerospace Corporation performed a study to determine whether static percentiles of AE9/AP9 can be used to approximate dynamic Monte Carlo runs for radiation analysis of spiral transfer orbits. Solar panel degradation is a major concern for solar-electric propulsion because solar-electric propulsion depends on the power output of the solar panel. Different spiral trajectories have different radiation environments that could lead to solar panel degradation. Because the spiral transfer orbits only last weeks to months, an average environment does not adequately address the possible transient enhancements of the radiation environment that must be accounted for in optimizing the transfer orbit trajectory. Therefore, to optimize the trajectory, an ensemble of Monte Carlo simulations of AE9/AP9 would normally be run for every spiral trajectory to determine the 95th percentile radiation environment. To avoid performing lengthy Monte Carlo dynamic simulations for every candidate spiral trajectory in the optimization, we found a static percentile that would be an accurate representation of the full Monte Carlo simulation for a representative set of spiral trajectories. For 3 LEO to GEO and 1 LEO to MEO trajectories, a static 90th percentile AP9 is a good approximation of the 95th percentile fluence with dynamics for 4-10 MeV protons, and a static 80th percentile AE9 is a good approximation of the 95th percentile fluence with dynamics for 0.5-2 MeV electrons. While the specific percentiles chosen cannot necessarily be used in general for other orbit trade studies, the concept of determining a static percentile as a quick approximation to a full Monte Carlo ensemble of simulations can likely be applied to other orbit trade studies. We expect the static percentile to depend on the region of space traversed, the mission duration, and the radiation effect considered.

  8. Comparative molecular-orbital and atomic-orbital study of electron transfer and excitation in He++Na(3s) collisions at energies of 0.05 to 20 keV/amu

    International Nuclear Information System (INIS)

    Fritsch, W.; Kimura, M.; Lane, N.F.

    1990-01-01

    Electron transfer and excitation in 0.05- to 20-keV/amu He + +Na(3s) collisions is studied theoretically within the close-coupling method with two-electron molecular- and atomic-orbital expansion basis sets. Results agree with the trend of other information on this system. Remaining discrepancies that are larger than those in similar contemporary studies of one-electron systems are discussed with reference to the convergence of this two-electron study. Results for the integral alignment parameter A 20 are also presented as a guideline for future experimental study

  9. Abort Options for Human Missions to Earth-Moon Halo Orbits

    Science.gov (United States)

    Jesick, Mark C.

    2013-01-01

    Abort trajectories are optimized for human halo orbit missions about the translunar libration point (L2), with an emphasis on the use of free return trajectories. Optimal transfers from outbound free returns to L2 halo orbits are numerically optimized in the four-body ephemeris model. Circumlunar free returns are used for direct transfers, and cislunar free returns are used in combination with lunar gravity assists to reduce propulsive requirements. Trends in orbit insertion cost and flight time are documented across the southern L2 halo family as a function of halo orbit position and free return flight time. It is determined that the maximum amplitude southern halo incurs the lowest orbit insertion cost for direct transfers but the maximum cost for lunar gravity assist transfers. The minimum amplitude halo is the most expensive destination for direct transfers but the least expensive for lunar gravity assist transfers. The on-orbit abort costs for three halos are computed as a function of abort time and return time. Finally, an architecture analysis is performed to determine launch and on-orbit vehicle requirements for halo orbit missions.

  10. Preliminary investigations on a NTP cargo shuttle for earth to moon orbit payload transfer based on a particle bed reactor

    International Nuclear Information System (INIS)

    Raepsaet, X.; Proust, E.; Gervaise, F.; Baraer, L.; Naury, S.; Linet, F.L.

    1995-01-01

    MAPS, a 3-year study program on NTP has recently been launched at CEA following the conclusions of a preliminary scoping study of an NTP system for earth to moon orbit cargo shuttle missions. This paper presents the main results of this scoping study, and gives an outline of the MAPS program. (authors). 5 figs., 11 tabs., 7 refs

  11. Preliminary investigations on a NTP cargo shuttle for earth to moon orbit payload transfer based on a particle bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raepsaet, X; Proust, E; Gervaise, F; Baraer, L; Naury, S; Linet, F L [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Bresson, C F; Coriolis, C.C. de; Bergeron, I T.A.; Bourquin, L V; Clech, L V; Devaux, L V; Chevillot, L V; Augier, E V [EAMEA, 50 - Cherbourg (France)

    1995-12-01

    MAPS, a 3-year study program on NTP has recently been launched at CEA following the conclusions of a preliminary scoping study of an NTP system for earth to moon orbit cargo shuttle missions. This paper presents the main results of this scoping study, and gives an outline of the MAPS program. (authors). 5 figs., 11 tabs., 7 refs.

  12. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    Science.gov (United States)

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  13. Transfer

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Aarkrog, Vibe

    Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

  14. Estimation of land-atmosphere energy transfer over the Tibetan Plateau by a combination use of geostationary and polar-orbiting satellite data

    Science.gov (United States)

    Zhong, L.; Ma, Y.

    2017-12-01

    Land-atmosphere energy transfer is of great importance in land-atmosphere interactions and atmospheric boundary layer processes over the Tibetan Plateau (TP). The energy fluxes have high temporal variability, especially in their diurnal cycle, which cannot be acquired by polar-orbiting satellites alone because of their low temporal resolution. Therefore, it's of great practical significance to retrieve land surface heat fluxes by a combination use of geostationary and polar orbiting satellites. In this study, a time series of the hourly LST was estimated from thermal infrared data acquired by the Chinese geostationary satellite FengYun 2C (FY-2C) over the TP. The split window algorithm (SWA) was optimized using a regression method based on the observations from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) and Tibetan observation and research platform (TORP), the land surface emissivity (LSE) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the water vapor content from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) project. The 10-day composite hourly LST data were generated via the maximum value composite (MVC) method to reduce the cloud effects. The derived LST was validated by the field observations of CAMP/Tibet and TORP. The results show that the retrieved LST and in situ data have a very good correlation (with root mean square error (RMSE), mean bias (MB), mean absolute error (MAE) and correlation coefficient (R) values of 1.99 K, 0.83 K, 1.71 K, and 0.991, respectively). Together with other characteristic parameters derived from polar-orbiting satellites and meteorological forcing data, the energy balance budgets have been retrieved finally. The validation results showed there was a good consistency between estimation results and in-situ measurements over the TP, which prove the robustness of the proposed estimation

  15. Congenital orbital teratoma

    OpenAIRE

    Aiyub, Shereen; Chan, Weng Onn; Szetu, John; Sullivan, Laurence J; Pater, John; Cooper, Peter; Selva, Dinesh

    2013-01-01

    We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The p...

  16. Analysis and Optimisation of Orbit Correction Configurations Using Generalised Response Matrices and its Application to the LHC Injection Transfer Lines TI 2 and TI 8

    CERN Document Server

    Chao Yu Chiu

    2001-01-01

    The LHC injection transfer lines TI 2 and TI 8 will transport intense high-energy beams over considerable distances. In their regular part a FODO lattice is used with 4 bending magnets per half-cell and a half-cell length of 30.3 m, similar to that of the SPS. The relatively tight apertures in these lines require precise trajectory control. Following an earlier study a baseline correction scheme was chosen where two out of every four consecutive quadrupoles are complemented with correctors and beam position monitors ("2-in-4"). With the ordering of the equipment approaching, a further in-depth investigation has been made using a newly developed analytic method. This method evaluates, based on the design specifications, the global performance of an orbit correction system in terms of observability, correctability, correction range and response singularity. In addition, orbit and error envelopes are obtained over the full beam line in an efficient and rigorous manner, providing insights not easily accessible wi...

  17. Orbital-optimized coupled-electron pair theory and its analytic gradients: Accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions

    Science.gov (United States)

    Bozkaya, Uǧur; Sherrill, C. David

    2013-08-01

    Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm-1) is fortuitously even better than that of CCSD(T) (50 cm-1), while the MAEs of CEPA(0) (184 cm-1) and CCSD (84 cm-1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol-1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol-1), and comparing to MP2 (7.7 kcal mol-1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal

  18. Orbital transfer vehicle concept definition and system analysis study, 1985. Volume 2: OTV concept definition and evaluation. Book 4: Operations

    Science.gov (United States)

    Mitchell, Jack C.; Keeley, J. T.

    1985-01-01

    The benefits of the reusable Space Shuttle and the advent of the new Space Station hold promise for increasingly effective utilization of space by the scientific and commercial as well as military communities. A high energy reusable oribital transfer vehicle (OTV) represents an additional capability which also exhibits potential for enhancing space access by allowing more ambitious missions and at the same time reducing launch costs when compared to existing upper stages. This section, Vol. 2: Book 4, covers launch operations and flight operations. The launch operations section covers analyses of ground based and space based vehicles, launch site facilities, logistics requirements, propellant loading, space based maintenance and aft cargo carrier access options. The flight operations sections contain summary descriptions of ground based and space based OTV missions, operations and support requirements, and a discussion of fleet implications.

  19. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow

    Institute of Scientific and Technical Information of China (English)

    Siavashi Majid; Jamali Mohammad

    2017-01-01

    Heat transfer and entropy generation of developing laminar forced convection flow of water-Al2O3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.

  20. TRANSFER

    African Journals Online (AJOL)

    This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...

  1. Minimum Propellant Low-Thrust Maneuvers near the Libration Points

    Science.gov (United States)

    Marinescu, A.; Dumitrache, M.

    equations of the extremals and integrating these differential equations we obtain the desired extremals which characterize the minimum propellant optimal manoeuvres of transfer from libration points to their orbits. By means of Legendre conditions for weak minimum and Weierstrass condition for strong minimum, is demonstrated that variational problem so formulated has sense and is a problem of minimum. The integration of extremal's differential equations system can not lead to analytical solutions easily to obtain and for this we have directed to a numerical integration. The problem is a bilocal one because the motion parameter values are predicted at the beginning and of the maneuver (the manoeuvre duration coincides with the combustion duration) the values of the Lagrange multipliers not being specified at the beginning and end of the manoeuvre. For determination of the velocities at any point on the libration point L4 and L2 has been elaborated the program of calculus on the integration of the motion equations without accelerations due thrust during a revolution period the coordinates and velocities to be equal, with which have been calculated the velocities at the apoapsis A and respectively A'. With these specifications, the final conditions (at the end of the maneuver) could be established, and the determination of optimal transfer parameters in the specified points could be determined. The calculus performed for the transfer from the libration points L4 and L2 to their orbits, shows that the evolution velocities on the orbits are in general small, the velocities on the L2 orbits being greater than the velocities on L 4 orbits having the same semimajor axis. This fact is explicable because the period of evolution on orbits of libration point L4 is greater than the period of orbits of the libration point L2. For the transfer in the apoapsis of both orbits (the points A. and A') on can remarque the fact the accelerations due thrust are greater for orbits around the

  2. Orbiter OMS and RCS technology

    Science.gov (United States)

    Boudreaux, R. A.

    1982-01-01

    Orbiter Orbital Maneuver Subsystem (OMS) and Reaction Control Subsystem (RCS) tankage has proved to be highly successful in shuttle flights on-orbit propellant transfer tests were done. Tank qualification tests along with flight demonstrations were carried out future uses of storable propellants are cited.

  3. Aeroassisted orbital maneuvering using Lyapunov optimal feedback control

    Science.gov (United States)

    Grantham, Walter J.; Lee, Byoung-Soo

    1987-01-01

    A Liapunov optimal feedback controller incorporating a preferred direction of motion at each state of the system which is opposite to the gradient of a specified descent function is developed for aeroassisted orbital transfer from high-earth orbit to LEO. The performances of the Liapunov controller and a calculus-of-variations open-loop minimum-fuel controller, both of which are based on the 1962 U.S. Standard Atmosphere, are simulated using both the 1962 U.S. Standard Atmosphere and an atmosphere corresponding to the STS-6 Space Shuttle flight. In the STS-6 atmosphere, the calculus-of-variations open-loop controller fails to exit the atmosphere, while the Liapunov controller achieves the optimal minimum-fuel conditions, despite the + or - 40 percent fluctuations in the STS-6 atmosphere.

  4. The collection of a minimum dataset and the application of DSSAT (Decision Support System for Agrotechnology Transfer) for optimizing wheat yield in irrigated cropping systems

    International Nuclear Information System (INIS)

    Heng, L.K.; Baethgen, W.E.; Moutonnet, P.

    2000-01-01

    A minimum dataset for testing of the CERES-Wheat model within DSSAT was collected during the course of an IAEA Co-ordinated Research Project on 'The use of nuclear techniques for optimizing fertilizer application under irrigated wheat to increase the efficient use of nitrogen fertilizers and consequently reduce environmental pollution'. A database entitled which contained the following information was subsequently created: soil characteristics, average yield, fertilizer N recovered by crop and residual effect, grain protein content, regional average yield, relative grain yield at various fertilizer N rates, assessment of nitrate pollution, economics of irrigated wheat, water use by source, water use efficiency, atypical precipitation events, type and uniformity of irrigation, and chlorophyll meter readings. This article presents some of these overall results from the database, as well as simulated results from the CERES-Wheat model. Good agreement between observed and simulated results was obtained for most growth parameters in most of the simulations. The ability to validate the model means that it can be used to refine specific management strategies with respect to fertilizer applications, yield and other parameters. (author)

  5. Topology of tokamak orbits

    International Nuclear Information System (INIS)

    Rome, J.A.; Peng, Y.K.M.

    1978-09-01

    Guiding center orbits in noncircular axisymmetric tokamak plasmas are studied in the constants of motion (COM) space of (v, zeta, psi/sub m/). Here, v is the particle speed, zeta is the pitch angle with respect to the parallel equilibrium current, J/sub parallels/, and psi/sub m/ is the maximum value of the poloidal flux function (increasing from the magnetic axis) along the guiding center orbit. Two D-shaped equilibria in a flux-conserving tokamak having β's of 1.3% and 7.7% are used as examples. In this space, each confined orbit corresponds to one and only one point and different types of orbits (e.g., circulating, trapped, stagnation and pinch orbits) are represented by separate regions or surfaces in the space. It is also shown that the existence of an absolute minimum B in the higher β (7.7%) equilibrium results in a dramatically different orbit topology from that of the lower β case. The differences indicate the confinement of additional high energy (v → c, within the guiding center approximation) trapped, co- and countercirculating particles whose orbit psi/sub m/ falls within the absolute B well

  6. Solar sail time-optimal interplanetary transfer trajectory design

    International Nuclear Information System (INIS)

    Gong Shengpin; Gao Yunfeng; Li Junfeng

    2011-01-01

    The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables, which are normalized within a unit sphere. The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit. A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories. For the cases where no time-optimal transfer trajectories exist, first-order necessary conditions of the optimal control are proposed to obtain feasible solutions. The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration. For a solar sail with a small lightness number, the transfer time may be evaluated analytically for a three-phase transfer trajectory. The analytical results are compared with previous results and the associated numerical results. The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.

  7. Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2006-01-01

    Full Text Available In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space E_n are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space E_n. Orbit functions are solutions of the corresponding Laplace equation in E_n, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.

  8. Development of a focal-plane drift chamber for low-energetic pions and experimental determination of an inverse transfer matrix for the short-orbit spectrometer

    International Nuclear Information System (INIS)

    Ding, M.

    2004-10-01

    The three-spectrometer facility at the Mainz microtron MAMI was supplemented by an additional spectrometer, which is characterized by its short path-length and therefore is called Short Orbit Spectrometer (SOS). At nominal distance from target to SOS (66 cm) the particles to be detected cover a mean path-length between reaction point and detector of 165 cm. Thus for pion electroproduction close to threshold in comparison to the big spectrometers the surviving probability of charged pions with momentum 100 MeV/c raises from 15% to 73%. Consequently the systematic error (''myon contamination''), as for the proposed measurement of the weak form-factors G A (Q 2 ) and G P (Q 2 ), reduces significantly. The main subject of this thesis is the drift chamber for the SOS. Its small relative thickness (0.03% X 0 ), reducing multiple scattering, is optimized with regard to detecting low-energy pions. Due to the innovative character of the driftchamber geometry a dedicated software for track-reconstruction, efficiency-determination etc. had to be developed. A comfortable feature for calibrating the drift path-drift time-relation, represented by cubic splines, was implemented. The resolution of the track detector in the dispersive plane is 76 μaem for the spatial and 0.23 for the angular coordinate (most probable error) and, correspondingly, 110 μm and 0.29 in the non-dispersive plane. For backtracing the reaction quantities from the detector coordinates the inverse transfer-matrix of the spectrometer was determined. For this purpose electrons were scattered quasi-elastically from protons inside the 12 C-nucleus, thus defining the starting angles of the electrons by holes of a sieve collimator. The resulting experimental values for the angular resolution at the target amount to σ φ =1.3 mrad and σ θ =10.6 mrad resp. The momentum calibration of the SOS only can be achieved by quasi-elastic scattering (two-arm experiment). For this reason the contribution of the proton

  9. Congenital orbital teratoma.

    Science.gov (United States)

    Aiyub, Shereen; Chan, Wengonn; Szetu, John; Sullivan, Laurence J; Pater, John; Cooper, Peter; Selva, Dinesh

    2013-12-01

    We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The patient underwent a lid-sparing exenteration with frozen section control of the apical margin. A dermis fat graft from the groin was placed beneath the lid skin to provide volume. Histopathology revealed mature tissues from each of the three germ cell layers which confirmed the diagnosis of mature teratoma. We describe the successful use of demis fat graft in socket reconstruction following lid-sparing exenteration for congenital orbital teratoma.

  10. Congenital orbital teratoma

    Directory of Open Access Journals (Sweden)

    Shereen Aiyub

    2013-01-01

    Full Text Available We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The patient underwent a lid-sparing exenteration with frozen section control of the apical margin. A dermis fat graft from the groin was placed beneath the lid skin to provide volume. Histopathology revealed mature tissues from each of the three germ cell layers which confirmed the diagnosis of mature teratoma. We describe the successful use of demis fat graft in socket reconstruction following lid-sparing exenteration for congenital orbital teratoma.

  11. Large orbit neoclassical transport

    International Nuclear Information System (INIS)

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1997-01-01

    Neoclassical transport in the presence of large ion orbits is investigated. The study is motivated by the recent experimental results that ion thermal transport levels in enhanced confinement tokamak plasmas fall below the open-quotes irreducible minimum levelclose quotes predicted by standard neoclassical theory. This apparent contradiction is resolved in the present analysis by relaxing the basic neoclassical assumption that the ions orbital excursions are much smaller than the local toroidal minor radius and the equilibrium scale lengths of the system. Analytical and simulation results are in agreement with trends from experiments. The development of a general formalism for neoclassical transport theory with finite orbit width is also discussed. copyright 1997 American Institute of Physics

  12. ORBITAL INJURIES

    Directory of Open Access Journals (Sweden)

    Andrej Kansky

    2002-12-01

    Full Text Available Background. Orbit is involved in 40% of all facial fractures. There is considerable variety in severity, ranging from simple nondisplaced to complex comminuted fractures. Complex comminuted fractures (up to 20% are responsible for the majority of complications and unfavorable results. Orbital fractures are classified as internal orbital fractures, zygomatico-orbital fractures, naso-orbito-ethmoidal fractures and combined fractures. The ophtalmic sequelae of midfacial fractures are usually edema and ecchymosis of the soft tissues, subconjuctival hemorrhage, diplopia, iritis, retinal edema, ptosis, enophthalmos, ocular muscle paresis, mechanical restriction of ocular movement and nasolacrimal disturbances. More severe injuries such as optic nerve trauma and retinal detachments have also been reported. Within the wide range of orbital fractures small group of complex fractures causes most of the sequelae. Therefore identification of severe injuries and adequate treatment is of major importance. The introduction of craniofacial techniques made possible a wide exposure even of large orbital wall defects and their reconstruction by bone grafts. In spite of significant progress, repair of complex orbital wall defects remains a problem even for the experienced surgeons.Results. In 1999 121 facial injuries were treated at our department (Clinical Centre Ljubljana Dept. Of Maxillofacial and Oral Surgery. Orbit was involved in 65% of cases. Isolated inner orbital fractures presented 4% of all fractures. 17 (14% complex cases were treated, 5 of them being NOE, 5 orbital (frame and inner walls, 3 zygomatico-orbital, 2 FNO and 2 maxillo-orbital fractures.Conclusions. Final result of the surgical treatment depends on severity of maxillofacial trauma. Complex comminuted fractures are responsable for most of the unfavorable results and ocular function is often permanently damaged (up to 75% in these fractures.

  13. [Orbital inflammation].

    Science.gov (United States)

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. On periodic orbits in discrete-time cascade systems

    Directory of Open Access Journals (Sweden)

    Huimin Li

    2006-01-01

    Full Text Available We present some results on existence, minimum period, number of periodic orbits, and stability of periodic orbits in discrete-time cascade systems. Some examples are presented to illustrate these results.

  15. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2016-12-01

    Full Text Available In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI maneuver of the Korea Pathfinder Lunar Orbiter (KPLO mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground

  16. Minimum Wages and Poverty

    OpenAIRE

    Fields, Gary S.; Kanbur, Ravi

    2005-01-01

    Textbook analysis tells us that in a competitive labor market, the introduction of a minimum wage above the competitive equilibrium wage will cause unemployment. This paper makes two contributions to the basic theory of the minimum wage. First, we analyze the effects of a higher minimum wage in terms of poverty rather than in terms of unemployment. Second, we extend the standard textbook model to allow for incomesharing between the employed and the unemployed. We find that there are situation...

  17. Orbital angular momentum transfer and spin desalignment mechanisms in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.

    1984-10-01

    Angular momentum transfer and spin dealignment mechanisms have been studied in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method. This experimental technique consists to measure the angular distribution of the fission fragments of a heavy nucleus in coincidence with the reaction partner, and leads to a complete determination of the heavy nucleus spin distribution. High spin values are transferred to the heavy nucleus in the interaction and indicate that the dinuclear system has reached the rigid rotation limit. A theoretical model, taking into account the excitation of surface vibrations of the nuclei and the nucleon transfer between the two partners, is able to reproduce the high spin values measured in our experiments. The spin fluctuations are important, with values of the order of 15 to 20 h units. These fluctuations increase with the charge transfer from the projectile to the target and the total kinetic energy loss. The spin dealignment mechanisms act mainly in a plane approximately perpendicular to the heavy recoil direction in the laboratory system. These results are well described by a dynamical transport model based on the stochastic exchange of individual nucleons between the two nuclei during the interaction. The origin of the dealignment mechanisms in the spin transfer processes is then related to the statistical nature of the nucleon exchange. However other mechanisms can contribute to the spin dealignment as the surface vibrations, the nuclear deformations as well their relative orientations [fr

  18. Study of the deformation-driving νd5/2 orbital in 6728Ni39 using one-neutron transfer reactions

    Directory of Open Access Journals (Sweden)

    J. Diriken

    2014-09-01

    Full Text Available The νg9/2,d5/2,s1/2 orbitals are assumed to be responsible for the swift onset of collectivity observed in the region below 68Ni. Especially the single-particle energies and strengths of these orbitals are of importance. We studied such properties in the nearby 67Ni nucleus, by performing a (d,p-experiment in inverse kinematics employing a post-accelerated radioactive ion beam (RIB at the REX-ISOLDE facility. The experiment was performed at an energy of 2.95 MeV/u using a combination of the T-REX particle detectors, the Miniball γ-detection array and a newly-developed delayed-correlation technique as to investigate μs-isomers. Angular distributions of the ground state and multiple excited states in 67Ni were obtained and compared with DWBA cross-section calculations, leading to the identification of positive-parity states with substantial νg9/2 (1007 keV and νd5/2 (2207 keV and 3277 keV single-particle strengths up to an excitation energy of 5.8 MeV. 50% of the νd5/2 single-particle strength relative to the νg9/2-orbital is concentrated in and shared between the first two observed 5/2+ levels. A comparison with extended Shell Model calculations and equivalent (3He, d studies in the region around 9040Zr50 highlights similarities for the strength of the negative-parity pf and positive-parity g9/2 state, but differences are observed for the d5/2 single-particle strength.

  19. Orbital transport

    International Nuclear Information System (INIS)

    Oertel, H. Jr.; Koerner, H.

    1993-01-01

    The Third Aerospace Symposium in Braunschweig presented, for the first time, the possibility of bringing together the classical disciplines of aerospace engineering and the natural science disciplines of meteorology and air chemistry in a european setting. In this way, aspects of environmental impact on the atmosphere could be examined quantitatively. An essential finding of the european conference, is the unrestricted agreement of the experts that the given launch frequencies of the present orbital transport result in a negligible amount of pollutants being released in the atmosphere. The symposium does, however, call attention to the increasing need to consider the effect of orbital and atmospheric environmental impact of a future increase in launch frequencies of orbital transport in connection with future space stations. The Third Aerospace Symposium, 'Orbital Transport, Technical, Meteorological and Chemical Aspects', constituted a first forum of discussion for engineers and scientists. Questions of new orbital transport technologies and their environmental impact were to be discussed towards a first consensus. Through the 34 reports and articles, the general problems of space transportation and environmental protection were addressed, as well as particular aspects of high temperatures during reentry in the atmosphere of the earth, precision navigation of flight vehicles or flow behavior and air chemistry in the stratosphere. (orig./CT). 342 figs

  20. Orbital floor reconstruction with free flaps after maxillectomy.

    Science.gov (United States)

    Sampathirao, Leela Mohan C S R; Thankappan, Krishnakumar; Duraisamy, Sriprakash; Hedne, Naveen; Sharma, Mohit; Mathew, Jimmy; Iyer, Subramania

    2013-06-01

    Background The purpose of this study is to evaluate the outcome of orbital floor reconstruction with free flaps after maxillectomy. Methods This was a retrospective analysis of 34 consecutive patients who underwent maxillectomy with orbital floor removal for malignancies, reconstructed with free flaps. A cross-sectional survey to assess the functional and esthetic outcome was done in 28 patients who were alive and disease-free, with a minimum of 6 months of follow-up. Results Twenty-six patients had bony reconstruction, and eight had soft tissue reconstruction. Free fibula flap was the commonest flap used (n = 14). Visual acuity was normal in 86%. Eye movements were normal in 92%. Abnormal globe position resulted in nine patients. Esthetic satisfaction was good in 19 patients (68%). Though there was no statistically significant difference in outcome of visual acuity, eye movement, and patient esthetic satisfaction between patients with bony and soft tissue reconstruction, more patients without bony reconstruction had abnormal globe position (p = 0.040). Conclusion Free tissue transfer has improved the results of orbital floor reconstruction after total maxillectomy, preserving the eye. Good functional and esthetic outcome was achieved. Though our study favors a bony orbital reconstruction, a larger study with adequate power and equal distribution of patients among the groups would be needed to determine this. Free fibula flap remains the commonest choice when a bony reconstruction is contemplated.

  1. Minimum critical mass systems

    International Nuclear Information System (INIS)

    Dam, H. van; Leege, P.F.A. de

    1987-01-01

    An analysis is presented of thermal systems with minimum critical mass, based on the use of materials with optimum neutron moderating and reflecting properties. The optimum fissile material distributions in the systems are obtained by calculations with standard computer codes, extended with a routine for flat fuel importance search. It is shown that in the minimum critical mass configuration a considerable part of the fuel is positioned in the reflector region. For 239 Pu a minimum critical mass of 87 g is found, which is the lowest value reported hitherto. (author)

  2. THREE PLANETS ORBITING WOLF 1061

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin, E-mail: duncan.wright@unsw.edu.au [Department of Astronomy and Australian Centre for Astrobiology, School of Physics, University of New South Wales, NSW 2052 (Australia)

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  3. Minimum entropy production principle

    Czech Academy of Sciences Publication Activity Database

    Maes, C.; Netočný, Karel

    2013-01-01

    Roč. 8, č. 7 (2013), s. 9664-9677 ISSN 1941-6016 Institutional support: RVO:68378271 Keywords : MINEP Subject RIV: BE - Theoretical Physics http://www.scholarpedia.org/article/Minimum_entropy_production_principle

  4. Tempered orbital energies and the potential curve within a molecule

    International Nuclear Information System (INIS)

    Anno, T.; Sakai, Y.

    1979-01-01

    It is shown that the sum of the tempered orbital energies behaves much the same way as does the some of the Hartree--Fock orbital energies. The H 2 moluecule in its minimum basis set description is chosen as an example and comparison of orbital energies is carried out

  5. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Flyckt, V M M; Raaymakers, B W; Lagendijk, J J W [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2006-10-07

    Prediction of the temperature distribution in the eye depends on how the impact of the blood flow is taken into account. Three methods will be compared: a simplified eye anatomy that applies a single heat transfer coefficient to describe all heat transport mechanisms between the sclera and the body core, a detailed eye anatomy in which the blood flow is accounted for either by the bioheat approach, or by including the discrete vasculature in the eye and the orbit. The comparison is done both for rabbit and human anatomies, normo-thermally and when exposed to homogeneous power densities. The first simplified model predicts much higher temperatures than the latter two. It was shown that the eye is very hard to heat when taking physiological perfusion correctly into account. It was concluded that the heat transfer coefficient describing the heat transport from the sclera to the body core reported in the literature for the first simplified model is too low. The bioheat approach is appropriate for a first-order approximation of the temperature distribution in the eye when exposed to a homogeneous power density, but the discrete vasculature down to 0.2 mm in diameter needs to be taken into account when the heterogeneity of the temperature distribution at a mm scale is of interest.

  6. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels

    International Nuclear Information System (INIS)

    Flyckt, V M M; Raaymakers, B W; Lagendijk, J J W

    2006-01-01

    Prediction of the temperature distribution in the eye depends on how the impact of the blood flow is taken into account. Three methods will be compared: a simplified eye anatomy that applies a single heat transfer coefficient to describe all heat transport mechanisms between the sclera and the body core, a detailed eye anatomy in which the blood flow is accounted for either by the bioheat approach, or by including the discrete vasculature in the eye and the orbit. The comparison is done both for rabbit and human anatomies, normo-thermally and when exposed to homogeneous power densities. The first simplified model predicts much higher temperatures than the latter two. It was shown that the eye is very hard to heat when taking physiological perfusion correctly into account. It was concluded that the heat transfer coefficient describing the heat transport from the sclera to the body core reported in the literature for the first simplified model is too low. The bioheat approach is appropriate for a first-order approximation of the temperature distribution in the eye when exposed to a homogeneous power density, but the discrete vasculature down to 0.2 mm in diameter needs to be taken into account when the heterogeneity of the temperature distribution at a mm scale is of interest

  7. Orbit analysis

    International Nuclear Information System (INIS)

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators

  8. Brane orbits

    CERN Document Server

    Bergshoeff, Eric A; Riccioni, Fabio

    2012-01-01

    We complete the classification of half-supersymmetric branes in toroidally compactified IIA/IIB string theory in terms of representations of the T-duality group. As a by-product we derive a last wrapping rule for the space-filling branes. We find examples of T-duality representations of branes in lower dimensions, suggested by supergravity, of which none of the component branes follow from the reduction of any brane in ten-dimensional IIA/IIB string theory. We discuss the constraints on the charges of half-supersymmetric branes, determining the corresponding T-duality and U-duality orbits.

  9. Orbit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  10. Lunar Cube Transfer Trajectory Options

    Science.gov (United States)

    Folta, David; Dichmann, Donald James; Clark, Pamela E.; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can b e considered which have a wide range of transfer duration, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO) geostationary transfer orbits (GTO) and higher energy direct lunar transfer and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  11. NASA Orbital Debris Baseline Populations

    Science.gov (United States)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  12. Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3 and Ammonia (NH3 Donor-Acceptor Complex

    Directory of Open Access Journals (Sweden)

    Dulal C. Ghosh

    2004-09-01

    Full Text Available The formation of the F3B–NH3 supermolecule by chemical interaction of its fragment parts, BF3 and NH3, and the dynamics of internal rotation about the ‘B–N’ bond have been studied in terms of parameters provided by the molecular orbital and density functional theories. It is found that the pairs of frontier orbitals of the interacting fragments have matching symmetry and are involved in the charge transfer interaction. The donation process stems from the HOMO of the donor into the LUMO of the acceptor and simultaneously, back donation stems from the HOMO of acceptor into the LUMO of the donor. The density functional computation of chemical activation in the donor and acceptor fragments, associated with the physical process of structural reorganization just prior to the event of chemical reaction, indicates that BF3 becomes more acidic and NH3 becomes more basic, compared to their separate equilibrium states. Theoretically it is observed that the chemical reaction event of the formation of the supermolecule from its fragment parts is in accordance with the chemical potential equalization principle of the density functional theory and the electronegativity equalization principle of Sanderson. The energetics of the chemical reaction, the magnitude of the net charge transfer and the energy of the newly formed bond are quite consistent, both internally and with the principle of maximum hardness, PMH. The dynamics of the internal rotation of one part with respect to the other part of the supermolecule about the ‘B–N’ bond mimics the pattern of the conformational isomerism of the isostructural ethane molecule. It is also observed that the dynamics and evolution of molecular conformations as a function of dihedral angles is also in accordance with the principle of maximum hardness, PMH. Quite consistent with spectroscopic predictions, the height of the molecule

  13. Light-Time Effect and Mass Transfer in the Triple Star SW Lyncis

    Directory of Open Access Journals (Sweden)

    Chun-Hwey Kim

    1999-06-01

    Full Text Available In this paper all the photoelectric times of minimum for the triple star SW Lyn have been analyzed in terms of light-time e ect due to the third-body and secular period decreases induced by mass transfer process. The light-time orbit determined recently by Ogloza et al.(1998 were modi ed and improved. And it is found that the orbital period of SW Lyn have been decreasing secularly. The third-body revolves around the mass center of triple stars every 5y.77 in a highly eccentric elliptical orbit(e=0.61. The third-body with a minimum mass of 1.13M may be a binary or a white dwarf. The rate of secular period-decrease were obtained as ¡âP/P = -12.45 x 10^-11, implying the mass-transfer from the massive primary star to the secondary. The mass losing rate from the primary were calculated as about 1.24 x 10^-8M /y. It is noticed that the mass-transfer in SW Lyn system is opposite in direction to that deduced from it's Roche geometry by previous investigators.

  14. Rising above the Minimum Wage.

    Science.gov (United States)

    Even, William; Macpherson, David

    An in-depth analysis was made of how quickly most people move up the wage scale from minimum wage, what factors influence their progress, and how minimum wage increases affect wage growth above the minimum. Very few workers remain at the minimum wage over the long run, according to this study of data drawn from the 1977-78 May Current Population…

  15. Minimum Error Entropy Classification

    CERN Document Server

    Marques de Sá, Joaquim P; Santos, Jorge M F; Alexandre, Luís A

    2013-01-01

    This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.

  16. Do Minimum Wages Fight Poverty?

    OpenAIRE

    David Neumark; William Wascher

    1997-01-01

    The primary goal of a national minimum wage floor is to raise the incomes of poor or near-poor families with members in the work force. However, estimates of employment effects of minimum wages tell us little about whether minimum wages are can achieve this goal; even if the disemployment effects of minimum wages are modest, minimum wage increases could result in net income losses for poor families. We present evidence on the effects of minimum wages on family incomes from matched March CPS s...

  17. Displaced Electric Sail Orbits Design and Transition Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Naiming Qi

    2014-01-01

    Full Text Available Displaced orbits for spacecraft propelled by electric sails are investigated as an alternative to the use of solar sails. The orbital dynamics of electric sails based spacecraft are studied within a spherical coordinate system, which permits finding the solutions of displaced electric sail orbits and optimize transfer trajectory. Transfer trajectories from Earth's orbit to displaced orbit are also studied in an optimal framework, by using genetic algorithm and Gauss pseudospectral method. The initial guesses for the state and control histories used in the Gauss pseudospectral method are interpolated from the best solution of a genetic algorithm. Numerical simulations show that the electric sail is able to perform the transfer from Earth’s orbit to displaced orbit in acceptable time, and the hybrid optimization method has the capability to search the feasible and optimal solution without any initial value guess.

  18. Reusable Orbit Transfer Vehicle Propulsion Technology Considerations

    National Research Council Canada - National Science Library

    Perkins, Dave

    1998-01-01

    .... ROTV propulsion technologies to consider chemical rockets have limited mission capture, solar thermal rockets capture most missions but LH2 issues, and electric has highest PL without volume constraint...

  19. ERS orbit control

    Science.gov (United States)

    Rosengren, Mats

    1991-12-01

    The European remote sensing mission orbit control is addressed. For the commissioning phase, the orbit is defined by the following requirements: Sun synchronous, local time of descending node 10:30; three days repeat cycle with 43 orbital revolutions; overhead Venice tower (12.508206 deg east, 45.314222 deg north). The launch, maneuvers for the initial acquisition of the operational orbit, orbit maintenance maneuvers, evaluation of the orbit control, and the drift of the inclination are summarized.

  20. Employment effects of minimum wages

    OpenAIRE

    Neumark, David

    2014-01-01

    The potential benefits of higher minimum wages come from the higher wages for affected workers, some of whom are in low-income families. The potential downside is that a higher minimum wage may discourage employers from using the low-wage, low-skill workers that minimum wages are intended to help. Research findings are not unanimous, but evidence from many countries suggests that minimum wages reduce the jobs available to low-skill workers.

  1. Planetary tides during the Maunder sunspot minimum

    International Nuclear Information System (INIS)

    Smythe, C.M.; Eddy, J.A.

    1977-01-01

    Sun-centered planetary conjunctions and tidal potentials are here constructed for the AD1645 to 1715 period of sunspot absence, referred to as the 'Maunder Minimum'. These are found to be effectively indistinguishable from patterns of conjunctions and power spectra of tidal potential in the present era of a well established 11 year sunspot cycle. This places a new and difficult restraint on any tidal theory of sunspot formation. Problems arise in any direct gravitational theory due to the apparently insufficient forces and tidal heights involved. Proponents of the tidal hypothesis usually revert to trigger mechanisms, which are difficult to criticise or test by observation. Any tidal theory rests on the evidence of continued sunspot periodicity and the substantiation of a prolonged period of solar anomaly in the historical past. The 'Maunder Minimum' was the most drastic change in the behaviour of solar activity in the last 300 years; sunspots virtually disappeared for a 70 year period and the 11 year cycle was probably absent. During that time, however, the nine planets were all in their orbits, and planetary conjunctions and tidal potentials were indistinguishable from those of the present era, in which the 11 year cycle is well established. This provides good evidence against the tidal theory. The pattern of planetary tidal forces during the Maunder Minimum was reconstructed to investigate the possibility that the multiple planet forces somehow fortuitously cancelled at the time, that is that the positions of the slower moving planets in the 17th and early 18th centuries were such that conjunctions and tidal potentials were at the time reduced in number and force. There was no striking dissimilarity between the time of the Maunder Minimum and any period investigated. The failure of planetary conjunction patterns to reflect the drastic drop in sunspots during the Maunder Minimum casts doubt on the tidal theory of solar activity, but a more quantitative test

  2. 75 FR 6151 - Minimum Capital

    Science.gov (United States)

    2010-02-08

    ... capital and reserve requirements to be issued by order or regulation with respect to a product or activity... minimum capital requirements. Section 1362(a) establishes a minimum capital level for the Enterprises... entities required under this section.\\6\\ \\3\\ The Bank Act's current minimum capital requirements apply to...

  3. Pursuit/evasion in orbit

    Science.gov (United States)

    Kelley, H. J.; Cliff, E. M.; Lutze, F. H.

    1981-01-01

    Maneuvers available to a spacecraft having sufficient propellant to escape an antisatellite satellite (ASAT) attack are examined. The ASAT and the evading spacecraft are regarded as being in circular orbits, and equations of motion are developed for the ASAT to commence a two-impulse maneuver sequence. The ASAT employs thrust impulses which yield a minimum-time-to-rendezvous, considering available fuel. Optimal evasion is shown to involve only in-plane maneuvers, and begins as soon as the ASAT launch information is gathered and thrust activation can be initiated. A closest approach, along with a maximum evasion by the target spacecraft, is calculated to be 14,400 ft. Further research to account for ASATs in parking orbit and for generalization of a continuous control-modeled differential game is indicated.

  4. CONGENITAL ORBITAL TERATOMA

    African Journals Online (AJOL)

    was done without contrast and 3mm/5mm/10mm slices were obtained to cover the orbit, skull base and brain. The findings included a soft tissue mass arising from the orbit. The left eye ball was extra orbital. There was no defect .... love's Short Practice of Surgery. 7 Edition,. Levis London, 1997; 45-64. 2. Orbital tumor Part 1, ...

  5. Radiovolumetry of the orbit

    International Nuclear Information System (INIS)

    Abujamra, S.

    1983-01-01

    The authors present a method called ''Radiovolumetry of the orbit'' that permits the evaluation of the orbital volume from anteroposterior skull X-Rays (CALDWELL 30 0 position). The research was based in the determination of the orbital volume with lead spheres, in 1010 orbits of 505 dry skulls of Anatomy Museums. After the dry skulls was X-rayed six frontal orbital diameters were made, with care to correct the radiographic amplification. PEARSON correlation coeficient test was applied between the mean orbital diameter and the orbital volume. The result was r = 0,8 with P [pt

  6. Orbital period changes in RW CrA, DX Vel and V0646 Cen

    Science.gov (United States)

    Volkov, I. M.; Chochol, D.; Grygar, J.; Mašek, M.; Juryšek, J.

    2017-06-01

    We aim to determine the absolute parameters of the components of southern Algol-type binaries with deep eclipses RW CrA, DX Vel, V0646 Cen and interpret their orbital period changes. The data analysis is based on a high quality Walraven photoelectric photometry, obtained in the 1960-70s, our recent CCD photometry, ASAS (Pojmanski, 2002), and Hipparcos (Perryman et al., 1997) photometry of the objects. Their light curves were analyzed using the PHOEBE program with fixed effective temperatures of the primary components, found from disentangling the Walraven (B-U) and (V-B) colour indices. We found the absolute parameters of the components of all three objects. All reliable observed times of minimum light were used to construct and analyze the Eclipse Time Variation (ETV) diagrams. We interpreted the ETV diagrams of the detached binary RW CrA and the semi-detached binary DX Vel by a LIght-Time Effect (LITE), estimated parameters of their orbits and masses of their third bodies. We suggest a long term variation of the inclination angle of both eclipsing binaries, caused by a non-coplanar orientation of their third body orbits. We interpreted the detected orbital period increase in the semi-detached binary V0646 Cen by a mass transfer from the less to more massive component with the rate M⊙ = 6.08×10-9 M⊙/yr.

  7. Dealing with Uncertainties in Initial Orbit Determination

    Science.gov (United States)

    Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato

    2015-01-01

    A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.

  8. Methods of orbit correction system optimization

    International Nuclear Information System (INIS)

    Chao, Yu-Chiu.

    1997-01-01

    Extracting optimal performance out of an orbit correction system is an important component of accelerator design and evaluation. The question of effectiveness vs. economy, however, is not always easily tractable. This is especially true in cases where betatron function magnitude and phase advance do not have smooth or periodic dependencies on the physical distance. In this report a program is presented using linear algebraic techniques to address this problem. A systematic recipe is given, supported with quantitative criteria, for arriving at an orbit correction system design with the optimal balance between performance and economy. The orbit referred to in this context can be generalized to include angle, path length, orbit effects on the optical transfer matrix, and simultaneous effects on multiple pass orbits

  9. Evaluation of the synchrotron close orbit

    International Nuclear Information System (INIS)

    Bashmakov, Yu.A.; Karpov, V.A.

    1991-01-01

    The knowledge of the closed orbit position is an essential condition for the effective work of any accelerator. Therefore questions of calculations, measurements and controls have great importance. For example, during injection of particles into a synchrotron, the amplitudes of their betatron oscillations may become commensurable with the working region of the synchrotron. This makes one pay attention at the problem of formation of the optimum orbit with use of correcting optical elements. In addition, it is often necessary to calculate such an orbit at the end of the acceleration cycle when particles are deposited at internal targets or removed from the synchrotron. In this paper, the computation of the close orbit is reduced to a determination at an arbitrarily chosen azimuth of the eigenvector of the total transfer matrix of the synchrotron ring and to tracing with this vector desired orbit. The eigenvector is found as a result of an iteration

  10. NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

    Science.gov (United States)

    Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.; Bult, P. M.; Chakrabarty, D.; Enoto, T.; Gendreau, K. C.; Guillot, S.; Harding, A. K.; Ho, W. C. G.; Homan, J.; Jaisawal, G. K.; Keek, L.; Kerr, M.; Mahmoodifar, S.; Markwardt, C. B.; Ransom, S. M.; Ray, P. S.; Remillard, R.; Wolff, M. T.

    2018-05-01

    We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062‑6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5.3-day span in 2017 August, and again for 14 and 11 ks in 2017 October and November, respectively. A power spectral analysis of the August exposure confirms the previous detection of pulsations at 163.656 Hz in Rossi X-ray Timing Explorer (RXTE) data, and reveals phase modulation due to orbital motion of the neutron star. A coherent search for the orbital solution using the Z 2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period for an AMXP. The mass function is 9.12 × 10‑8 M ⊙, presently the smallest known for a stellar binary. The minimum donor mass ranges from ≈0.005 to 0.007 M ⊙ for a neutron star mass from 1.2 to 2 M ⊙. Assuming mass transfer is driven by gravitational radiation, we find donor mass and binary inclination bounds of 0.0175–0.0155 M ⊙ and 19° < i < 27.°5, where the lower and upper bounds correspond to 1.4 and 2 M ⊙ neutron stars, respectively. Folding the data accounting for the orbital modulation reveals a sinusoidal profile with fractional amplitude 2.04 ± 0.11% (0.3–3.2 keV).

  11. Orbit selection of nanosatellite formation in term of fuel consumption

    Science.gov (United States)

    Pimnoo, Ammarin; Hiraki, Koju

    In nanosatellite formation mission design, orbit selection is a necessary factor. Fuel consumption is also necessary to maintain the orbit. Therefore, the best orbit should be the one of minimum fuel consumption for nanosatellite formation. The purpose of this paper is to provide a convenient way to estimate fuel consumption for a nanosatellite to keep formation flying. The formation is disturbed by J _{2} perturbation and other perturbing accelerations. Firstly, the Hill-Clohessy-Wiltshire equations are used in the analysis. Gaussian variation of parameters is included into the Hill’s equation to analyze the variation of Kaplerian orbital elements. The J _{2} perturbation and other perturbing accelerations such as atmospheric drag, solar-radiation pressure and third-body perturbations are considered. Thus, a linear model based on Hill’s equation is established to estimate fuel consumption. Finally, an example of the best orbit for formation flying with minimum fuel consumption shall be presented.

  12. A NEW SUB-PERIOD-MINIMUM CATACLYSMIC VARIABLE WITH PARTIAL HYDROGEN DEPLETION AND EVIDENCE OF SPIRAL DISK STRUCTURE

    International Nuclear Information System (INIS)

    Littlefield, C.; Garnavich, P.; Magno, K.; Applegate, A.; Pogge, R.; Irwin, J.; Marion, G. H.; Kirshner, R.; Vinkó, J.

    2013-01-01

    We present time-resolved spectroscopy and photometry of CSS 120422:111127+571239 (=SBS 1108+574), a recently discovered SU UMa-type dwarf nova whose 55 minute orbital period is well below the cataclysmic variable (CV) period minimum of ∼78 minutes. In contrast with most other known CVs, its spectrum features He I emission of comparable strength to the Balmer lines, implying a hydrogen abundance less than 0.1 of long-period CVs—but still at least 10 times higher than that in AM CVn stars. Together, the short orbital period and remarkable helium-to-hydrogen ratio suggest that mass transfer in CSS 120422 began near the end of the donor star's main-sequence lifetime, meaning that this CV is a strong candidate progenitor of an AM CVn system as described by Podsiadlowski et al. Moreover, a Doppler tomogram of the Hα line reveals two distinct regions of enhanced emission. While one is the result of the stream-disk impact, the other is probably attributable to spiral disk structure generated when material in the outer disk achieves a 2:1 orbital resonance with respect to the donor.

  13. Traumatic orbital CSF leak

    Science.gov (United States)

    Borumandi, Farzad

    2013-01-01

    Compared to the cerebrospinalfluid (CSF) leak through the nose and ear, the orbital CSF leak is a rare and underreported condition following head trauma. We present the case of a 49-year-old woman with oedematous eyelid swelling and ecchymosis after a seemingly trivial fall onto the right orbit. Apart from the above, she was clinically unremarkable. The CT scan revealed a minimally displaced fracture of the orbital roof with no emphysema or intracranial bleeding. The fractured orbital roof in combination with the oedematous eyelid swelling raised the suspicion for orbital CSF leak. The MRI of the neurocranium demonstrated a small-sized CSF fistula extending from the anterior cranial fossa to the right orbit. The patient was treated conservatively and the lid swelling resolved completely after 5 days. Although rare, orbital CSF leak needs to be included in the differential diagnosis of periorbital swelling following orbital trauma. PMID:24323381

  14. Microscopic Stern-Gerlach effect and spin-orbit pendulum

    International Nuclear Information System (INIS)

    Rozmej, P.; Arvieu, R.

    1996-01-01

    The motion of a particle with spin in spherical harmonic oscillator potential with spin-orbit interaction is discussed. The attention is focused on the spatial motion of wave packets. The particular case of wave packets moving along the circular orbits for which the most transparent and pedagogical description is possible is considered. The splitting of the wave packets into two components moving differently along classical orbits reflects a strong analogy with the Stern-Gerlach experiment. The periodic transfer of average angular momentum between spin and orbital subspaces accompanying this time evolution is called the spin-orbit pendulum. (author). 6 refs, 3 figs

  15. Eye and orbital cavity

    International Nuclear Information System (INIS)

    Panfilova, G.V.; Koval', G.Yu.

    1984-01-01

    Radioanatomy of eyes and orbit is described. Diseases of the orbit (developmental anomalies, inflammatory diseases, lacrimal apparatus deseases, toxoplasmosis, tumors and cysts et al.), methods of foreign body localization in the eye are considered. Roentgenograms of the orbit and calculation table for foreign body localization in spherical eyes of dissimilar diameter are presented

  16. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  17. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  18. Nontraumatic orbital roof encephalocele.

    Science.gov (United States)

    Hoang, Amber; Maugans, Todd; Ngo, Thang; Ikeda, Jamie

    2017-02-01

    Intraorbital meningoencephaloceles occur most commonly as a complication of traumatic orbital roof fractures. Nontraumatic congenital orbital meningoncephaloceles are very rare, with most secondary to destructive processes affecting the orbit and primary skull defects. Treatment for intraorbital meningoencephaloceles is surgical repair, involving the excision of herniated brain parenchyma and meninges and reconstruction of the osseous defect. Most congenital lesions present in infancy with obvious globe and orbital deformities; we report an orbital meningoencephalocele in a 3-year-old girl who presented with ptosis. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  19. Deadly Sunflower Orbits

    Science.gov (United States)

    Hamilton, Douglas P.

    2018-04-01

    Solar radiation pressure is usually very effective at removing hazardous millimeter-sized debris from distant orbits around asteroidsand other small solar system bodies (Hamilton and Burns 1992). Theprimary loss mechanism, driven by the azimuthal component of radiationpressure, is eccentricity growth followed by a forced collision withthe central body. One large class of orbits, however, neatly sidestepsthis fate. Orbits oriented nearly perpendicular to the solar directioncan maintain their face-on geometry, oscillating slowly around a stableequilibrium orbit. These orbits, designated sunflower orbits, arerelated to terminator orbits studied by spacecraft mission designers(Broschart etal. 2014).Destabilization of sunflower orbits occurs only for particles smallenough that radiation pressure is some tens of percent the strength ofthe central body's direct gravity. This greatly enhanced stability,which follows from the inability of radiation incident normal to theorbit to efficiently drive eccentricities, presents a threat tospacecraft missions, as numerous dangerous projectiles are potentiallyretained in orbit. We have investigated sunflower orbits insupport of the New Horizons, Aida, and Lucy missions and find thatthese orbits are stable for hazardous particle sizes at asteroids,comets, and Kuiper belt objects of differing dimensions. Weinvestigate the sources and sinks for debris that might populate suchorbits, estimate timescales and equilibrium populations, and willreport on our findings.

  20. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  1. UBV photometry of dwarf novae in the brightness minimum

    International Nuclear Information System (INIS)

    Voloshina, I.B.; Lyutyj, V.M.

    1983-01-01

    Photoelectric one-night observations of the dwarf novae SS Cyg at minimum light evidence for the existence of eclipses in this system at the moments of conjuctions. The orbital inclination of the system is estimated to be i approximately 70 deg C. The components of this system are low-massive (white and red dwarf stars) and low-luminous objects. As the optical luminosity of the dwarf novae at the minimum light is dependent on the accretion disk and hot spot at its periphery, where the substance jet run out from a nondegenerated component falls, eclipses should be associated with the disk and hot spot. The white dwarf star contributes greatly to the luminosity at the minimum light, but its eclipses are possible only at i approximately 90 deg

  2. POET: Planetary Orbital Evolution due to Tides

    Science.gov (United States)

    Penev, Kaloyan

    2014-08-01

    POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

  3. Automated low-thrust guidance for the orbital maneuvering vehicle

    Science.gov (United States)

    Rose, Richard E.; Schmeichel, Harry; Shortwell, Charles P.; Werner, Ronald A.

    1988-01-01

    This paper describes the highly autonomous OMV Guidance Navigation and Control system. Emphasis is placed on a key feature of the design, the low thrust guidance algorithm. The two guidance modes, orbit change guidance and rendezvous guidance, are discussed in detail. It is shown how OMV will automatically transfer from its initial orbit to an arbitrary target orbit and reach a specified rendezvous position relative to the target vehicle.

  4. Passive dosimetry aboard the Mir Orbital Station: internal measurements

    International Nuclear Information System (INIS)

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2002-01-01

    Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET ∞ H 2 O≥5 keV/μm. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment

  5. Three Temperate Neptunes Orbiting Nearby Stars

    Science.gov (United States)

    Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B.

    2016-10-01

    We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 {M}\\oplus , a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 {M}\\oplus and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 {M}\\oplus , and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘I, the University of California, and NASA.

  6. Pictorial essay: Orbital tuberculosis

    International Nuclear Information System (INIS)

    Narula, Mahender K; Chaudhary, Vikas; Baruah, Dhiraj; Kathuria, Manoj; Anand, Rama

    2010-01-01

    Tuberculosis of the orbit is rare, even in places where tuberculosis is endemic. The disease may involve soft tissue, the lacrimal gland, or the periosteum or bones of the orbital wall. Intracranial extension, in the form of extradural abscess, and infratemporal fossa extension has been described. This pictorial essay illustrates the imaging findings of nine histopathologically confirmed cases of orbital tuberculosis. All these patients responded to antituberculous treatment

  7. Radiology of orbital trauma

    International Nuclear Information System (INIS)

    Kelly, J.K.; Lazo, A.; Metes, J.J.

    1988-01-01

    Computed tomography has become the gold standard against which to measure orbital imaging modalities. The simultaneous display of bone, soft tissues, paranasal sinuses, and intracranial structures is a unique advantage. Radiation dose and cost have been cited as disadvantages. These would suggest that CT be reserved for the patient with significant orbital injury or difficult diagnostic problems. Magnetic resonance is limited in the investigation of orbital trauma

  8. Neonatal orbital abscess

    Directory of Open Access Journals (Sweden)

    Khalil M Al-Salem

    2014-01-01

    Full Text Available Orbital complications due to ethmoiditis are rare in neonates. A case of orbital abscess due to acute ethmoiditis in a 28-day-old girl is presented. A Successful outcome was achieved following antimicrobial therapy alone; spontaneous drainage of the abscess occurred from the lower lid without the need for surgery. From this case report, we intend to emphasize on eyelid retraction as a sign of neonatal orbital abscess, and to review all the available literature of similar cases.

  9. Periodic orbits around areostationary points in the Martian gravity field

    International Nuclear Information System (INIS)

    Liu Xiaodong; Baoyin Hexi; Ma Xingrui

    2012-01-01

    This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.

  10. Orbital glass in HTSC

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-10-01

    The physical reasons why the orbital glass may exist in granular high-temperature superconductors and the existing experimental data appeared recently are discussed. The orbital glass is characterized by the coexistence of the orbital paramagnetic state with the superconducting state and occurs at small magnetic fields H c0 c1 . The transition in orbital glass arises at the critical field H c0 which is inversely proportional to the surface cross-area S of an average grain. In connection with theoretical predictions the possible experiments are proposed. (author). 10 refs

  11. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  12. Orbital period variations of two W UMa-type binaries: UY UMa and EF Boo

    Science.gov (United States)

    Yu, Yun-Xia; Zhang, Xu-Dong; Hu, Ke; Xiang, Fu-Yuan

    2017-08-01

    The orbital period variations of two W UMa-type contact binaries, UY UMa and EF Boo, are analyzed by using all available times of light minimum. It is detected that the general trends of their (O - C) curves show an upward parabolic variation, which reveals their continuous period increases at the rates of dP / dt = 2.545 ×10-7 days yr-1 and dP / dt = 2.623 ×10-7 days yr-1 , respectively. Meanwhile, UY UMa also shows a cyclic period variation with a small amplitude of A = 0.0026 days superposed on the long-term increase. Due to their contact configurations, the secular period increases are interpreted as a result of mass transfer from the less massive component to the more massive one. The cyclic period variation of UY UMa may be interpreted in terms of either the magnetic activity or the light time effect.

  13. Congenital orbital encephalocele, orbital dystopia, and exophthalmos.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon

    2012-07-01

    We present here an exceedingly rare variant of a nonmidline basal encephalocele of the spheno-orbital type, and this was accompanied with orbital dystopia in a 56-year-old man. On examination, his left eye was located more inferolaterally than his right eye, and the patient said this had been this way since his birth. The protrusion of his left eye was aggravated when he is tired. His naked visual acuity was 0.7/0.3, and the ocular pressure was 14/12 mm Hg. The exophthalmometry was 10/14 to 16 mm. His eyeball motion was not restricted, yet diplopia was present in all directions. The distance from the midline to the medial canthus was 20/15 mm. The distance from the midline to the midpupillary line was 35/22 mm. The vertical dimension of the palpebral fissure was 12/9 mm. The height difference of the upper eyelid margin was 11 mm, and the height difference of the lower eyelid margin was 8 mm. Facial computed tomography and magnetic resonance imaging showed left sphenoid wing hypoplasia and herniation of the left anterior temporal pole and dura mater into the orbit, and this resulted into left exophthalmos and encephalomalacia in the left anterior temporal pole. To the best of our knowledge, our case is the second case of basal encephalocele and orbital dystopia.

  14. Fermat and the Minimum Principle

    Indian Academy of Sciences (India)

    Arguably, least action and minimum principles were offered or applied much earlier. This (or these) principle(s) is/are among the fundamental, basic, unifying or organizing ones used to describe a variety of natural phenomena. It considers the amount of energy expended in performing a given action to be the least required ...

  15. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  16. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  17. Orbital and adnexal sarcoidosis

    NARCIS (Netherlands)

    Prabhakaran, Venkatesh C.; Saeed, Perooz; Esmaeli, Bita; Sullivan, Timothy J.; Mcnab, Alan; Davis, Garry; Valenzuela, Alejandra; Leibovitch, Igal; Kesler, Anat; Sivak-Callcott, Jennifer; Hoyama, Erika; Selva, Dinesh

    2007-01-01

    To present the clinical features and management in a series of patients with orbital and adnexal sarcoidosis. This multicenter retrospective study included patients with biopsy-proven noncaseating granuloma involving the orbit or adnexa and evidence of systemic sarcoidosis. Clinical records were

  18. Update on orbital reconstruction.

    Science.gov (United States)

    Chen, Chien-Tzung; Chen, Yu-Ray

    2010-08-01

    Orbital trauma is common and frequently complicated by ocular injuries. The recent literature on orbital fracture is analyzed with emphasis on epidemiological data assessment, surgical timing, method of approach and reconstruction materials. Computed tomographic (CT) scan has become a routine evaluation tool for orbital trauma, and mobile CT can be applied intraoperatively if necessary. Concomitant serious ocular injury should be carefully evaluated preoperatively. Patients presenting with nonresolving oculocardiac reflex, 'white-eyed' blowout fracture, or diplopia with a positive forced duction test and CT evidence of orbital tissue entrapment require early surgical repair. Otherwise, enophthalmos can be corrected by late surgery with a similar outcome to early surgery. The use of an endoscope-assisted approach for orbital reconstruction continues to grow, offering an alternative method. Advances in alloplastic materials have improved surgical outcome and shortened operating time. In this review of modern orbital reconstruction, several controversial issues such as surgical indication, surgical timing, method of approach and choice of reconstruction material are discussed. Preoperative fine-cut CT image and thorough ophthalmologic examination are key elements to determine surgical indications. The choice of surgical approach and reconstruction materials much depends on the surgeon's experience and the reconstruction area. Prefabricated alloplastic implants together with image software and stereolithographic models are significant advances that help to more accurately reconstruct the traumatized orbit. The recent evolution of orbit reconstruction improves functional and aesthetic results and minimizes surgical complications.

  19. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  20. Peripheral orbit model

    CERN Document Server

    Hara, Yasuo

    1975-01-01

    Peripheral orbit model, in which an incoming hadron is assumed to revolve in a peripheral orbit around a target hadron, is discussed. The non-diffractive parts of two-body reaction amplitudes of hadrons are expressed in terms of the radius, width an absorptivity of the orbit. The radius of the orbit is about 1 fm and the width of the orbit is determined by the range of the interaction between the hadrons. The model reproduces all available experimental data on differential cross-sections and polarizations of $K^{-}p\\to K^{-}p$ and $\\bar K^{\\circ}n$ reactions for all angles successfully. This contribution is not included in the proceedings since it will appear in Progress of Theoretical Physics Vol. 51 (1974) No 2. Any person interested in the subject may apply for reprints to the author.

  1. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  2. Quantum mechanics the theoretical minimum

    CERN Document Server

    Susskind, Leonard

    2014-01-01

    From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

  3. Minimum resolvable power contrast model

    Science.gov (United States)

    Qian, Shuai; Wang, Xia; Zhou, Jingjing

    2018-01-01

    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  4. Understanding the Minimum Wage: Issues and Answers.

    Science.gov (United States)

    Employment Policies Inst. Foundation, Washington, DC.

    This booklet, which is designed to clarify facts regarding the minimum wage's impact on marketplace economics, contains a total of 31 questions and answers pertaining to the following topics: relationship between minimum wages and poverty; impacts of changes in the minimum wage on welfare reform; and possible effects of changes in the minimum wage…

  5. 5 CFR 551.301 - Minimum wage.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Minimum wage. 551.301 Section 551.301... FAIR LABOR STANDARDS ACT Minimum Wage Provisions Basic Provision § 551.301 Minimum wage. (a)(1) Except... employees wages at rates not less than the minimum wage specified in section 6(a)(1) of the Act for all...

  6. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  7. Thrombosis of orbital varices

    International Nuclear Information System (INIS)

    Boschi Oyhenart, J.; Tenyi, A.; Boschi Pau, J.

    2002-01-01

    Orbital varices are venous malformations produced by an abnormal dilatation of one or more orbital veins, probably associated with congenital weakness of the vascular wall. They are rare lesions, usually occurring in young patients, that produce intermittent proptosis related to the increase in the systemic venous pressure. The presence of hemorrhage or thrombosis is associated with rapid development of proptosis, pain and decreased ocular motility. We report the cases of two adult patients with orbital varices complicated by thrombosis in whom the diagnosis was based on computed tomography. The ultrasound and magnetic resonance findings are also discussed. (Author) 16 refs

  8. TRANSFERENCE BEFORE TRANSFERENCE.

    Science.gov (United States)

    Bonaminio, Vincenzo

    2017-10-01

    This paper is predominantly a clinical presentation that describes the transmigration of one patient's transference to another, with the analyst functioning as a sort of transponder. It involves an apparently accidental episode in which there was an unconscious intersection between two patients. The author's aim is to show how transference from one case may affect transference in another, a phenomenon the author calls transference before transference. The author believes that this idea may serve as a tool for understanding the unconscious work that takes place in the clinical situation. In a clinical example, the analyst finds himself caught up in an enactment involving two patients in which he becomes the medium of what happens in session. © 2017 The Psychoanalytic Quarterly, Inc.

  9. Charge-spin-orbital dynamics of one-dimensional two-orbital Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Hiroaki [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2010-01-15

    We study the real-time evolution of a charge-excited state in a one-dimensional e{sub g}-orbital degenerate Hubbard model, by a time-dependent density-matrix renormalization group method. Considering a chain along the z direction, electrons hop between adjacent 3z{sup 2}-r{sup 2} orbitals, while x{sup 2}-y{sup 2} orbitals are localized. For the charge-excited state, a holon-doublon pair is introduced into the ground state at quarter filling. At initial time, there is no electron in a holon site, while a pair of electrons occupies 3z{sup 2}-r{sup 2} orbital in a doublon site. As the time evolves, the holon motion is governed by the nearest-neighbor hopping, but the electron pair can transfer between 3z{sup 2}-r{sup 2} orbital and x{sup 2}-y{sup 2} orbital through the pair hopping in addition to the nearest-neighbor hopping. Thus holon and doublon propagate at different speed due to the pair hopping that is characteristic of multi-orbital systems.

  10. Optimization of high-inclination orbits using planetary flybys for a zodiacal light-imaging mission

    Science.gov (United States)

    Soto, Gabriel; Lloyd, James; Savransky, Dmitry; Grogan, Keith; Sinha, Amlan

    2017-09-01

    The zodiacal light caused by interplanetary dust grains is the second-most luminous source in the solar system. The dust grains coalesce into structures reminiscent of early solar system formation; their composition has been predicted through simulations and some edge-on observations but better data is required to validate them. Scattered light from these dust grains presents challenges to exoplanet imaging missions: resolution of their stellar environment is hindered by exozodiacal emissions and therefore sets the size and scope of these imaging missions. Understanding the composition of this interplanetary dust in our solar system requires an imaging mission from a vantage point above the ecliptic plane. The high surface brightness of the zodiacal light requires only a small aperture with moderate sensitivity; therefore a 3cm camera is enough to meet the science goals of the mission at an orbital height of 0.1AU above the ecliptic. A 6U CubeSat is the target mass for this mission which will be a secondary payload detaching from an existing interplanetary mission. Planetary flybys are utilized to produce most of the plane change Δv deep space corrective maneuvers are implemented to optimize each planetary flyby. We developed an algorithm which determines the minimum Δv required to place the CubeSat on a transfer orbit to a planet's sphere of influence and maximizes the resultant orbital height with respect to the ecliptic plane. The satellite could reach an orbital height of 0.22 AU with an Earth gravity assist in late 2024 by boarding the Europa Clipper mission.

  11. PS Booster Orbit Correction

    CERN Document Server

    Chanel, M; Rumolo, G; Tomás, R; CERN. Geneva. AB Department

    2008-01-01

    At the end of the 2007 run, orbit measurements were carried out in the 4 rings of the PS Booster (PSB) for different working points and beam energies. The aim of these measurements was to provide the necessary input data for a PSB realignment campaign during the 2007/2008 shutdown. Currently, only very few corrector magnets can be operated reliably in the PSB; therefore the orbit correction has to be achieved by displacing (horizontally and vertically) and/or tilting some of the defocusing quadrupoles (QDs). In this report we first describe the orbit measurements, followed by a detailed explanation of the orbit correction strategy. Results and conclusions are presented in the last section.

  12. Antisymmetric Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2007-02-01

    Full Text Available In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform. Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  13. Local orbit feedback

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Critically aligned experiments are sensitive to small changes in the electron beam orbit. At the NSLS storage rings, the electron beam and photon beam motions have been monitored over the past several years. In the survey conducted in 1986 by the NSLS Users Executive Committee, experimenters requested the vertical beam position variation and the vertical angle variation, within a given fill, remain within 10 μm and 10 μr, respectively. This requires improvement in the beam stability by about one order of magnitude. At the NSLS and SSRL storage rings, the beam that is originally centered on the position monitor by a dc orbit correction is observed to have two kinds of motion: a dc drift over a storage period of several hours and a beam bounce about its nominal position. These motions are a result of the equilibrium orbit not being held perfectly stable due to time-varying errors introduced into the magnetic guide field by power supplies, mechanical vibration of the magnets, cooling water temperature variations, etc. The approach to orbit stabilization includes (1) identifying and suppressing as many noise sources on the machine as possible, (2) correcting the beam position globally (see Section 6) by controlling a number of correctors around the circumference of the machine, and (3) correcting the beam position and angle at a given source location by position feedback using local detectors and local orbit bumps. The third approach, called Local Orbit Feedback will be discussed in this section

  14. Minimum weight passive insulation requirements for hypersonic cruise vehicles.

    Science.gov (United States)

    Ardema, M. D.

    1972-01-01

    Analytical solutions are derived for two representative cases of the transient heat conduction equation to determine the minimum weight requirements for passive insulation systems of hypersonic cruise vehicles. The cases discussed are the wet wall case with the interior wall temperature held to that of the boiling point of the fuel throughout the flight, and the dry wall case where the heat transferred through the insulation is absorbed by the interior structure whose temperature is allowed to rise.

  15. Hierarchy of on-orbit servicing interfaces

    Science.gov (United States)

    Moe, Rud V.

    1989-01-01

    A series of equipment interfaces is involved in on-orbit servicing operations. The end-to-end hierarchy of servicing interfaces is presented. The interface concepts presented include structure and handling, and formats for transfer of resources (power, data, fluids, etc.). Consequences on cost, performance, and service ability of the use of standard designs or unique designs with interface adapters are discussed. Implications of the interface designs compatibility with remote servicing using telerobotic servicers are discussed.

  16. Second Law Analysis of the Optimal Fin by Minimum Entropy Generation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the entropy generation concept of thermodynamics, this paper established a general theoretical model for the analysis of entropy generation to optimize fms, in which the minimum entropy generation was selected as the object to be studied. The irreversibility due to heat transfer and friction was taken into account so that the minimum entropygeneration number has been analyzed with respect to second law of thermodynamics in the forced cross-flow. The optimum dimensions of cylinder pins were discussed. It's found that the minimum entropy generation number depends on parameters related to the fluid and fin physical parameters. Variations of the minimum entropy generation number with different parameters were analyzed.

  17. Minimum Time Path Planning for Robotic Manipulator in Drilling/ Spot Welding Tasks

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-04-01

    Full Text Available In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

  18. The minimum yield in channeling

    International Nuclear Information System (INIS)

    Uguzzoni, A.; Gaertner, K.; Lulli, G.; Andersen, J.U.

    2000-01-01

    A first estimate of the minimum yield was obtained from Lindhard's theory, with the assumption of a statistical equilibrium in the transverse phase-space of channeled particles guided by a continuum axial potential. However, computer simulations have shown that this estimate should be corrected by a fairly large factor, C (approximately equal to 2.5), called the Barrett factor. We have shown earlier that the concept of a statistical equilibrium can be applied to understand this result, with the introduction of a constraint in phase-space due to planar channeling of axially channeled particles. Here we present an extended test of these ideas on the basis of computer simulation of the trajectories of 2 MeV α particles in Si. In particular, the gradual trend towards a full statistical equilibrium is studied. We also discuss the introduction of this modification of standard channeling theory into descriptions of the multiple scattering of channeled particles (dechanneling) by a master equation and show that the calculated minimum yields are in very good agreement with the results of a full computer simulation

  19. Minimum Bias Trigger in ATLAS

    International Nuclear Information System (INIS)

    Kwee, Regina

    2010-01-01

    Since the restart of the LHC in November 2009, ATLAS has collected inelastic pp collisions to perform first measurements on charged particle densities. These measurements will help to constrain various models describing phenomenologically soft parton interactions. Understanding the trigger efficiencies for different event types are therefore crucial to minimize any possible bias in the event selection. ATLAS uses two main minimum bias triggers, featuring complementary detector components and trigger levels. While a hardware based first trigger level situated in the forward regions with 2.2 < |η| < 3.8 has been proven to select pp-collisions very efficiently, the Inner Detector based minimum bias trigger uses a random seed on filled bunches and central tracking detectors for the event selection. Both triggers were essential for the analysis of kinematic spectra of charged particles. Their performance and trigger efficiency measurements as well as studies on possible bias sources will be presented. We also highlight the advantage of these triggers for particle correlation analyses. (author)

  20. E-Orbit Functions

    Directory of Open Access Journals (Sweden)

    Jiri Patera

    2008-01-01

    Full Text Available We review and further develop the theory of $E$-orbit functions. They are functions on the Euclidean space $E_n$ obtained from the multivariate exponential function by symmetrization by means of an even part $W_{e}$ of a Weyl group $W$, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. They are closely related to symmetric and antisymmetric orbit functions which are received from exponential functions by symmetrization and antisymmetrization procedure by means of a Weyl group $W$. The $E$-orbit functions, determined by integral parameters, are invariant withrespect to even part $W^{aff}_{e}$ of the affine Weyl group corresponding to $W$. The $E$-orbit functions determine a symmetrized Fourier transform, where these functions serve as a kernel of the transform. They also determine a transform on a finite set of points of the fundamental domain $F^{e}$ of the group $W^{aff}_{e}$ (the discrete $E$-orbit function transform.

  1. Ariane transfer vehicle scenario

    Science.gov (United States)

    Deutscher, Norbert; Cougnet, Claude

    1990-10-01

    ESA's Ariane Transfer Vehicle (ATV) is a vehicle design concept for the transfer of payloads from Ariane 5 launch vehicle orbit insertion to a space station, on the basis of the Ariane 5 program-developed Upper Stage Propulsion Module and Vehicle Equipment Bay. The ATV is conceived as a complement to the Hermes manned vehicle for lower cost unmanned carriage of logistics modules and other large structural elements, as well as waste disposal. It is also anticipated that the ATV will have an essential role in the building block transportation logistics of any prospective European space station.

  2. [Secondary orbital lymphoma].

    Science.gov (United States)

    Basanta, I; Sevillano, C; Álvarez, M D

    2015-09-01

    A case is presented of an 85 year-old Caucasian female with lymphoma that recurred in the orbit (secondary ocular adnexal lymphoma). The orbital tumour was a diffuse large B-cell lymphoma according to the REAL classification (Revised European-American Lymphoma Classification). Orbital lymphomas are predominantly B-cell proliferations of a variety of histological types, and most are low-grade tumours. Patients are usually middle-aged or elderly, and it is slightly more common in women. A palpable mass, proptosis and blepharoptosis are the most common signs of presentation. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Orbital welding technique

    International Nuclear Information System (INIS)

    Hoeschen, W.

    2003-01-01

    The TIG (Tungsten-inert gas) orbital welding technique is applied in all areas of pipe welding. The process is mainly used for austenitic and ferritic materials but also for materials like aluminium, nickel, and titanium alloys are commonly welded according to this technique. Thin-walled as well as thick-walled pipes are welded economically. The application of orbital welding is of particular interest in the area of maintenance of thick-walled pipes that is described in this article. (orig.) [de

  4. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-11-09

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  5. Approximating the minimum cycle mean

    Directory of Open Access Journals (Sweden)

    Krishnendu Chatterjee

    2013-07-01

    Full Text Available We consider directed graphs where each edge is labeled with an integer weight and study the fundamental algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions are twofold: (1 First we show that the algorithmic question is reducible in O(n^2 time to the problem of a logarithmic number of min-plus matrix multiplications of n-by-n matrices, where n is the number of vertices of the graph. (2 Second, when the weights are nonnegative, we present the first (1 + ε-approximation algorithm for the problem and the running time of our algorithm is ilde(O(n^ω log^3(nW/ε / ε, where O(n^ω is the time required for the classic n-by-n matrix multiplication and W is the maximum value of the weights.

  6. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-01-08

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  7. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong; Sundaramoorthi, Ganesh

    2017-01-01

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  8. Mean Orbital Elements for Geosynchronous Orbit - II - Orbital inclination, longitude of ascending node, mean longitude

    Directory of Open Access Journals (Sweden)

    Kyu-Hong Choi

    1990-06-01

    Full Text Available The osculating orbital elements include the mean, secular, long period, and short period terms. The iterative algorithm used for conversion of osculating orbital elements to mean orbital elements is described. The mean orbital elements of Wc, Ws, and L are obtained.

  9. Isospin dependence of the spin-orbit splitting in nuclei

    International Nuclear Information System (INIS)

    Isakov, V.I.

    2007-01-01

    The analysis has been made of experimental data on level spectra, single-nucleon transfer reactions near closed shells, and data on polarization effects in charge-exchange (p, n) reactions between isoanalogous states of nuclei with even A. It is concluded that there is a significant difference between the spin-orbit splittings of neutrons and protons in identical orbitals. This conclusion is confirmed in the frame work of different theoretical approaches [ru

  10. Reactivity index based on orbital energies.

    Science.gov (United States)

    Tsuneda, Takao; Singh, Raman K

    2014-05-30

    This study shows that the chemical reactivities depend on the orbital energy gaps contributing to the reactions. In the process where a reaction only makes progress through charge transfer with the minimal structural transformation of the reactant, the orbital energy gap gradient (OEGG) between the electron-donating and electron-accepting orbitals is proven to be very low. Using this relation, a normalized reaction diagram is constructed by plotting the normalized orbital energy gap with respect to the normalized intrinsic reaction coordinate. Application of this reaction diagram to 43 fundamental reactions showed that the majority of the forward reactions provide small OEGGs in the initial stages, and therefore, the initial processes of the forward reactions are supposed to proceed only through charge transfer. Conversely, more than 60% of the backward reactions are found to give large OEGGs implying very slow reactions associated with considerable structural transformations. Focusing on the anti-activation-energy reactions, in which the forward reactions have higher barriers than those of the backward ones, most of these reactions are shown to give large OEGGs for the backward reactions. It is also found that the reactions providing large OEGGs in the forward directions inconsistent with the reaction rate constants are classified into SN 2, symmetric, and methyl radical reactions. Interestingly, several large-OEGG reactions are experimentally established to get around the optimum pathways. This indicates that the reactions can take significantly different pathways from the optimum ones provided no charge transfer proceeds spontaneously without the structural transformations of the reactants. Copyright © 2014 Wiley Periodicals, Inc.

  11. Youth minimum wages and youth employment

    NARCIS (Netherlands)

    Marimpi, Maria; Koning, Pierre

    2018-01-01

    This paper performs a cross-country level analysis on the impact of the level of specific youth minimum wages on the labor market performance of young individuals. We use information on the use and level of youth minimum wages, as compared to the level of adult minimum wages as well as to the median

  12. Do Some Workers Have Minimum Wage Careers?

    Science.gov (United States)

    Carrington, William J.; Fallick, Bruce C.

    2001-01-01

    Most workers who begin their careers in minimum-wage jobs eventually gain more experience and move on to higher paying jobs. However, more than 8% of workers spend at least half of their first 10 working years in minimum wage jobs. Those more likely to have minimum wage careers are less educated, minorities, women with young children, and those…

  13. Does the Minimum Wage Affect Welfare Caseloads?

    Science.gov (United States)

    Page, Marianne E.; Spetz, Joanne; Millar, Jane

    2005-01-01

    Although minimum wages are advocated as a policy that will help the poor, few studies have examined their effect on poor families. This paper uses variation in minimum wages across states and over time to estimate the impact of minimum wage legislation on welfare caseloads. We find that the elasticity of the welfare caseload with respect to the…

  14. Minimum income protection in the Netherlands

    NARCIS (Netherlands)

    van Peijpe, T.

    2009-01-01

    This article offers an overview of the Dutch legal system of minimum income protection through collective bargaining, social security, and statutory minimum wages. In addition to collective agreements, the Dutch statutory minimum wage offers income protection to a small number of workers. Its

  15. Bohr orbit theory revisited

    International Nuclear Information System (INIS)

    Harcourt, R.D.

    1987-01-01

    Bohr orbit theory is used to calculate energies for the 1S, 2P, 3D, 4F and 5G states of the helium muonic atom, when the muon is excited. These energies are close to those which have been calculated variationally by Huang (1977, Phys. Rev. A 15 1832-8). (author)

  16. Meteoroid Orbits from Observations

    Science.gov (United States)

    Campbell-Brown, Margaret

    2018-04-01

    Millions of orbits of meteoroids have been measured over the last few decades, and they comprise the largest sample of orbits of solar system bodies which exists. The orbits of these objects can shed light on the distribution and evolution of comets and asteroids in near-Earth space (e.g. Neslusan et al. 2016). If orbits can be measured at sufficiently high resolution, individual meteoroids can be traced back to their parent bodies and, in principle, even to their ejection time (Rudawska et al. 2012). Orbits can be measured with multi-station optical observations or with radar observations.The most fundamental measured quantities are the speed of the meteor and the two angles of the radiant, or point in the sky from which the meteor appears to come. There are many methods used to determine these from observations, but not all produce the most accurate results (Egal et al. 2017). These three measured quantities, along with the time and location of the observation, are sufficient to obtain an orbit (see, e.g., Clark & Wiegert 2011), but the measurements must be corrected for the deceleration of the meteoroid in the atmosphere before it was detected, the rotation of the Earth, and the gravitational attraction of the Earth (including higher order moments if great precision is necessary).Once meteor orbits have been determined, studies of the age and origin of meteor showers (Bruzzone et al., 2015), the parent bodies of sporadic sources (Pokorny et al. 2014), and the dynamics of the meteoroid complex as a whole can be constrained.Bruzzone, J. S., Brown, P., Weryk, R., Campbell-Brown, M., 2015. MNRAS 446, 1625.Clark, D., Wiegert, P., 2011. M&PS 46, 1217.Egal, A., Gural, P., Vaubaillon, J., Colas, F., Thuillot, W., 2017. Icarus 294, 43.Neslusan, L., Vaubaillon, J., Hajdukova, M., 2016. A&A 589, id.A100.Pokorny, P., Vokrouhlicky, D., Nesvorny, D., Campbell-Brown, M., Brown, P., 2014. ApJ 789, id.25.Rudawska, R., Vaubaillon, J., Atreya, P., 2012. A&A 541, id.A2

  17. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    Science.gov (United States)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  18. Minimum wage development in the Russian Federation

    OpenAIRE

    Bolsheva, Anna

    2012-01-01

    The aim of this paper is to analyze the effectiveness of the minimum wage policy at the national level in Russia and its impact on living standards in the country. The analysis showed that the national minimum wage in Russia does not serve its original purpose of protecting the lowest wage earners and has no substantial effect on poverty reduction. The national subsistence minimum is too low and cannot be considered an adequate criterion for the setting of the minimum wage. The minimum wage d...

  19. Dexter energy transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  20. Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft

    Science.gov (United States)

    Medina, Alberto; Tomassini, Angelo; Suatoni, Matteo; Avilés, Marcos; Solway, Nick; Coxhill, Ian; Paraskevas, Iosif S.; Rekleitis, Georgios; Papadopoulos, Evangelos; Krenn, Rainer; Brito, André; Sabbatinelli, Beatrice; Wollenhaupt, Birk; Vidal, Christian; Aziz, Sarmad; Visentin, Gianfranco

    2017-05-01

    Exploitation of space must benefit from the latest advances in robotics. On-orbit servicing is a clear candidate for the application of autonomous rendezvous and docking mechanisms. However, during the last three decades most of the trials took place combining extravehicular activities (EVAs) with telemanipulated robotic arms. The European Space Agency (ESA) considers that grasping and refuelling are promising near-mid-term capabilities that could be performed by servicing spacecraft. Minimal add-ons on spacecraft to enhance their serviceability may protect them for a changing future in which satellite servicing may become mainstream. ESA aims to conceive and promote standard refuelling provisions that can be installed in present and future European commercial geostationary orbit (GEO) satellite platforms and scientific spacecraft. For this purpose ESA has started the ASSIST activity addressing the analysis, design and validation of internal provisions (such as modifications to fuel, gas, electrical and data architecture to allow servicing) and external provisions (such as integrated berthing fixtures with peripheral electrical, gas, liquid connectors, leak check systems and corresponding optical and radio markers for cooperative rendezvous and docking). This refuelling approach is being agreed with European industry (OHB, Thales Alenia Space) and expected to be consolidated with European commercial operators as a first step to become an international standard; this approach is also being considered for on-orbit servicing spacecraft, such as the SpaceTug, by Airbus DS. This paper describes in detail the operational means, structure, geometry and accommodation of the system. Internal and external provisions will be designed with the minimum possible impact on the current architecture of GEO satellites without introducing additional risks in the development and commissioning of the satellite. End-effector and berthing fixtures are being designed in the range of few

  1. ORBITAL EVOLUTION OF COMPACT WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Steinfadt, Justin D. R., E-mail: kaplan@uwm.edu, E-mail: bildsten@kitp.ucsb.edu, E-mail: jdrsteinfadt@gmail.com [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-10-10

    The newfound prevalence of extremely low mass (ELM, M{sub He} < 0.2 M{sub Sun }) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (M{sub env} {approx} 10{sup -3} M{sub Sun }) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 10{sup 6} yr period of continued inspiral with mass transfer of H-rich matter and highlight the fact that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H-burning stage.

  2. An Orbit And Dispersion Correction Scheme for the PEP II

    International Nuclear Information System (INIS)

    Cai, Y.; Donald, M.; Shoaee, H.; White, G.; Yasukawa, L.A.

    2011-01-01

    To achieve optimum luminosity in a storage ring it is vital to control the residual vertical dispersion. In the original PEP storage ring, a scheme to control the residual dispersion function was implemented using the ring orbit as the controlling element. The 'best' orbit not necessarily giving the lowest vertical dispersion. A similar scheme has been implemented in both the on-line control code and in the simulation code LEGO. The method involves finding the response matrices (sensitivity of orbit/dispersion at each Beam-Position-Monitor (BPM) to each orbit corrector) and solving in a least squares sense for minimum orbit, dispersion function or both. The optimum solution is usually a subset of the full least squares solution. A scheme of simultaneously correcting the orbits and dispersion has been implemented in the simulation code and on-line control system for PEP-II. The scheme is based on the eigenvector decomposition method. An important ingredient of the scheme is to choose the optimum eigenvectors that minimize the orbit, dispersion and corrector strength. Simulations indicate this to be a very effective way to control the vertical residual dispersion.

  3. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-05-14

    This thesis presents a general framework and method for detection of an object in a video based on apparent motion. The object moves, at some unknown time, differently than the “background” motion, which can be induced from camera motion. The goal of proposed method is to detect and segment the object as soon it moves in an online manner. Since motion estimation can be unreliable between frames, more than two frames are needed to reliably detect the object. Observing more frames before declaring a detection may lead to a more accurate detection and segmentation, since more motion may be observed leading to a stronger motion cue. However, this leads to greater delay. The proposed method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms, defined as declarations of detection before the object moves or incorrect or inaccurate segmentation at the detection time. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  4. Investigation of the core-halo structure of the neutron-rich nuclei {sup 6}He and {sup 8}He by intermediate-energy elastic proton scattering at high momentum transfer; Etude de la structure coeur-halo des noyaux riches en neutron {sup 6}He et {sup 8}He par la diffusion elastique de protons aux energies intermediaires etendue a la region du premier minimum de diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Aksouh, F

    2002-12-01

    The elastic proton scattering from the halo nuclei {sup 6}He and {sup 8}He was investigated in inverse kinematics at energies around 700 MeV/u with the aim to deduce the differential cross sections for the region of high momentum transfer, covering the first diffraction minimum. For this purpose, a liquid-hydrogen target was specially developed and used for the first time allowing to obtain low-background data as compared to commonly used targets made from C-H compounds. Previous data taken in the region of small momentum transfer were sensitive to the size and the peripheral shape of the total nuclear matter density distribution but not to the inner part. The present data allow for a more detailed insight in the structure of the alike core in {sup 6,8}He through a better determination of the matter density distributions. Several density distributions calculated from different microscopic models were used to derive elastic scattering cross sections which are compared with the obtained data. (author)

  5. Local orbitals by minimizing powers of the orbital variance

    DEFF Research Database (Denmark)

    Jansik, Branislav; Høst, Stinne; Kristensen, Kasper

    2011-01-01

    's correlation consistent basis sets, it is seen that for larger penalties, the virtual orbitals become more local than the occupied ones. We also show that the local virtual HF orbitals are significantly more local than the redundant projected atomic orbitals, which often have been used to span the virtual...

  6. Fuel optimization for low-thrust Earth-Moon transfer via indirect optimal control

    Science.gov (United States)

    Pérez-Palau, Daniel; Epenoy, Richard

    2018-02-01

    The problem of designing low-energy transfers between the Earth and the Moon has attracted recently a major interest from the scientific community. In this paper, an indirect optimal control approach is used to determine minimum-fuel low-thrust transfers between a low Earth orbit and a Lunar orbit in the Sun-Earth-Moon Bicircular Restricted Four-Body Problem. First, the optimal control problem is formulated and its necessary optimality conditions are derived from Pontryagin's Maximum Principle. Then, two different solution methods are proposed to overcome the numerical difficulties arising from the huge sensitivity of the problem's state and costate equations. The first one consists in the use of continuation techniques. The second one is based on a massive exploration of the set of unknown variables appearing in the optimality conditions. The dimension of the search space is reduced by considering adapted variables leading to a reduction of the computational time. The trajectories found are classified in several families according to their shape, transfer duration and fuel expenditure. Finally, an analysis based on the dynamical structure provided by the invariant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth-Moon and Sun-Earth is presented leading to a physical interpretation of the different families of trajectories.

  7. A comparative study between control strategies for a solar sailcraft in an Earth-Mars transfer

    Science.gov (United States)

    Mainenti-Lopes, I.; Souza, L. C. Gadelha; De Sousa, Fabiano. L.

    2016-10-01

    The goal of this work was a comparative study of solar sail trajectory optimization using different control strategies. Solar sailcraft is propulsion system with great interest in space engineering, since it uses solar radiation to propulsion. So there is no need for propellant to be used, thus it can remains active throughout the entire transfer maneuver. This type of propulsion system opens the possibility to reduce the cost of exploration missions in the solar system. In its simplest configuration, a Flat Solar Sail (FSS) consists of a large and thin structure generally composed by a film fixed to flexible rods. The performance of these vehicles depends largely on the sails attitude relative to the Sun. Using a FSS as propulsion, an Earth-Mars transfer optimization problem was tackled by the algorithms GEOreal1 and GEOreal2 (Generalized Extremal Optimization with real codification). Those algorithms are Evolutionary Algorithms (AE) based on the theory of Self-Organized Criticality. They were used to optimize the FSS attitude angle so it could reach Mars orbit in minimum time. It was considered that the FSS could perform up to ten attitude maneuvers during orbital transfer. Moreover, the time between maneuvers can be different. So, the algorithms had to optimize an objective function with 20 design variables. The results obtained in this work were compared with previously results that considered constant values of time between maneuvers.

  8. GOC: General Orbit Code

    International Nuclear Information System (INIS)

    Maddox, L.B.; McNeilly, G.S.

    1979-08-01

    GOC (General Orbit Code) is a versatile program which will perform a variety of calculations relevant to isochronous cyclotron design studies. In addition to the usual calculations of interest (e.g., equilibrium and accelerated orbits, focusing frequencies, field isochronization, etc.), GOC has a number of options to calculate injections with a charge change. GOC provides both printed and plotted output, and will follow groups of particles to allow determination of finite-beam properties. An interactive PDP-10 program called GIP, which prepares input data for GOC, is available. GIP is a very easy and convenient way to prepare complicated input data for GOC. Enclosed with this report are several microfiche containing source listings of GOC and other related routines and the printed output from a multiple-option GOC run

  9. Orbital debris: a technical assessment

    National Research Council Canada - National Science Library

    Committee on Space Debris, National Research Council

    ..., and other debris created as a byproduct of space operations. Orbital Debris examines the methods we can use to characterize orbital debris, estimates the magnitude of the debris population, and assesses the hazard that this population poses to spacecraft...

  10. Minimum Additive Waste Stabilization (MAWS)

    International Nuclear Information System (INIS)

    1994-02-01

    In the Minimum Additive Waste Stabilization(MAWS) concept, actual waste streams are utilized as additive resources for vitrification, which may contain the basic components (glass formers and fluxes) for making a suitable glass or glassy slag. If too much glass former is present, then the melt viscosity or temperature will be too high for processing; while if there is too much flux, then the durability may suffer. Therefore, there are optimum combinations of these two important classes of constituents depending on the criteria required. The challenge is to combine these resources in such a way that minimizes the use of non-waste additives yet yields a processable and durable final waste form for disposal. The benefit to this approach is that the volume of the final waste form is minimized (waste loading maximized) since little or no additives are used and vitrification itself results in volume reduction through evaporation of water, combustion of organics, and compaction of the solids into a non-porous glass. This implies a significant reduction in disposal costs due to volume reduction alone, and minimizes future risks/costs due to the long term durability and leach resistance of glass. This is accomplished by using integrated systems that are both cost-effective and produce an environmentally sound waste form for disposal. individual component technologies may include: vitrification; thermal destruction; soil washing; gas scrubbing/filtration; and, ion-exchange wastewater treatment. The particular combination of technologies will depend on the waste streams to be treated. At the heart of MAWS is vitrification technology, which incorporates all primary and secondary waste streams into a final, long-term, stabilized glass wasteform. The integrated technology approach, and view of waste streams as resources, is innovative yet practical to cost effectively treat a broad range of DOE mixed and low-level wastes

  11. Minimum emittance of three-bend achromats

    International Nuclear Information System (INIS)

    Li Xiaoyu; Xu Gang

    2012-01-01

    The calculation of the minimum emittance of three-bend achromats (TBAs) made by Mathematical software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space. The minimum scaling factors of two kinds of widely used TBA lattices are obtained. Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor, when the TBA lattice achieves its minimum emittance. The procedure of analysis and the results can be widely used in achromats lattices, because the calculation is not restricted by the actual lattice. (authors)

  12. A Pareto-Improving Minimum Wage

    OpenAIRE

    Eliav Danziger; Leif Danziger

    2014-01-01

    This paper shows that a graduated minimum wage, in contrast to a constant minimum wage, can provide a strict Pareto improvement over what can be achieved with an optimal income tax. The reason is that a graduated minimum wage requires high-productivity workers to work more to earn the same income as low-productivity workers, which makes it more difficult for the former to mimic the latter. In effect, a graduated minimum wage allows the low-productivity workers to benefit from second-degree pr...

  13. The minimum wage in the Czech enterprises

    OpenAIRE

    Eva Lajtkepová

    2010-01-01

    Although the statutory minimum wage is not a new category, in the Czech Republic we encounter the definition and regulation of a minimum wage for the first time in the 1990 amendment to Act No. 65/1965 Coll., the Labour Code. The specific amount of the minimum wage and the conditions of its operation were then subsequently determined by government regulation in February 1991. Since that time, the value of minimum wage has been adjusted fifteenth times (the last increase was in January 2007). ...

  14. Radiation therapy for primary orbital lymphoma

    International Nuclear Information System (INIS)

    Chao, Cliff K.S.; Lin Hsiusan; Rao Devineni, V.; Smith, Morton

    1995-01-01

    Purpose: The influence of tumor size, grade, thoroughness of staging workup, and radiation dose on disease control, radiation-related complications, and incidence of systemic progression of primary orbital lymphoma is analyzed. Methods and Materials: Twenty patients with Stage I primary orbital lymphoma were treated from August 1976 through August 1991 at Mallinckrodt Institute of Radiology. Staging workups included physical examination, chest x-ray, complete blood count (CBC), liver function test, and computerized tomography (CT) scan of the orbit, abdomen, and pelvis. Nineteen patients had bone marrow biopsy. The histological types based on the National Cancer Institute working formulation were 9 low-grade and 11 intermediate-grade, including five lymphocytic lymphomas of intermediate differentiation. The extension of disease and the volume of tumor were evaluated by CT scan of the orbit. The most commonly used radiation therapy technique was single anterior direct field with 4 MV or 6 MV photons. Lens was shielded or not treated in eight patients. Dose ranged from 20 to 43.2 Gy. Thirteen of 20 patients received 30 Gy. Minimum follow-up was 24 months (median, 4 years). Results: Local control was achieved in all 20 patients. One patient with lymphocytic lymphoma with intermediate differentiation developed disseminated disease. Actuarial disease-free survival (DFS) was 100% and 90% at 2 and 5 years, respectively. No retinopathy was observed. Cataracts were noted in seven patients at 1 to 10 years following irradiation (median, 2 years). Three patients developed lacrimal function disorder, however, no corneal ulceration occurred. Conclusions: Thirty Gy in 15 fractions appears to be a sufficient dose for local control with acceptable morbidity, especially for low-grade, as well as certain types of intermediate-grade lymphomas, such as diffuse small cleaved cell and lymphocytic lymphoma of intermediate differentiation. Systemic dissemination is minimal, provided local

  15. Radiation therapy for primary orbital lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Cliff K.S.; Hsiusan, Lin; Rao Devineni, V; Smith, Morton

    1995-02-15

    Purpose: The influence of tumor size, grade, thoroughness of staging workup, and radiation dose on disease control, radiation-related complications, and incidence of systemic progression of primary orbital lymphoma is analyzed. Methods and Materials: Twenty patients with Stage I primary orbital lymphoma were treated from August 1976 through August 1991 at Mallinckrodt Institute of Radiology. Staging workups included physical examination, chest x-ray, complete blood count (CBC), liver function test, and computerized tomography (CT) scan of the orbit, abdomen, and pelvis. Nineteen patients had bone marrow biopsy. The histological types based on the National Cancer Institute working formulation were 9 low-grade and 11 intermediate-grade, including five lymphocytic lymphomas of intermediate differentiation. The extension of disease and the volume of tumor were evaluated by CT scan of the orbit. The most commonly used radiation therapy technique was single anterior direct field with 4 MV or 6 MV photons. Lens was shielded or not treated in eight patients. Dose ranged from 20 to 43.2 Gy. Thirteen of 20 patients received 30 Gy. Minimum follow-up was 24 months (median, 4 years). Results: Local control was achieved in all 20 patients. One patient with lymphocytic lymphoma with intermediate differentiation developed disseminated disease. Actuarial disease-free survival (DFS) was 100% and 90% at 2 and 5 years, respectively. No retinopathy was observed. Cataracts were noted in seven patients at 1 to 10 years following irradiation (median, 2 years). Three patients developed lacrimal function disorder, however, no corneal ulceration occurred. Conclusions: Thirty Gy in 15 fractions appears to be a sufficient dose for local control with acceptable morbidity, especially for low-grade, as well as certain types of intermediate-grade lymphomas, such as diffuse small cleaved cell and lymphocytic lymphoma of intermediate differentiation. Systemic dissemination is minimal, provided local

  16. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  17. Multi-GNSS orbit determination using satellite laser ranging

    Science.gov (United States)

    Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław

    2018-04-01

    Galileo, BeiDou, QZSS, and NavIC are emerging global navigation satellite systems (GNSSs) and regional navigation satellite systems all of which are equipped with laser retroreflector arrays for range measurements. This paper summarizes the GNSS-intensive tracking campaigns conducted by the International Laser Ranging Service and provides results from multi-GNSS orbit determination using solely SLR observations. We consider the whole constellation of GLONASS, all active Galileo, four BeiDou satellites: 1 MEO, 3 IGSO, and one QZSS. We analyze the influence of the number of SLR observations on the quality of the 3-day multi-GNSS orbit solution. About 60 SLR observations are needed for obtaining MEO orbits of sufficient quality with the root mean square (RMS) of 3 cm for the radial component when compared to microwave-based orbits. From the analysis of a minimum number of tracking stations, when considering the 3-day arcs, 5 SLR stations do not provide a sufficient geometry of observations. The solution obtained using ten stations is characterized with RMS of 4, 9, and 18 cm in the radial, along-track, and cross-track direction, respectively, for MEO satellites. We also investigate the impact of the length of orbital arc on the quality of SLR-derived orbits. Hence, 5- and 7-day arcs constitute the best solution, whereas 3-day arcs are of inferior quality due to an insufficient number of SLR observations and 9-day arcs deteriorate the along-track component. The median RMS from the comparison between 7-day orbital arcs determined using SLR data with microwave-based orbits assumes values in the range of 3-4, 11-16, and 15-27 cm in radial, along-track, and cross-track, respectively, for MEO satellites. BeiDou IGSO and QZSS are characterized by RMS values higher by a factor of 8 and 24, respectively, than MEO orbits.

  18. Nucleon transfer between heavy nuclei

    International Nuclear Information System (INIS)

    Von Oertzen, W.

    1984-02-01

    Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation

  19. Investigation of electrodynamic stabilization and control of long orbiting tethers

    Science.gov (United States)

    Colombo, G.; Arnold, D.

    1984-01-01

    The state-of-the-art in tether modelling among participants in the Tethered Satellite System (TSS) Program, the slack tether and its behavior, and certain advanced applications of the tether to problems in orbital mechanics are identified. The features and applications of the TSS software set are reviewed. Modelling the slack tether analytically with as many as 50 mass points and the application of this new model to a study of the behavior of a broken tether near the Shuttle are described. A reel control algorithm developed by SAO and examples of its use are described, including an example which also demonstrates the use of the tether in transferring a heavy payload from a low-orbiting Shuttle to a high circular orbit. Capture of a low-orbiting payload by a Space Station in high circular orbit is described. Energy transfer within a dumbbell-type spacecraft by cyclical reeling operations or gravitational effects on the natural elasticity of the connecting tether, it is shown, can circularize the orbit of the spacecraft.

  20. Minimum energy control and optimal-satisfactory control of Boolean control network

    International Nuclear Information System (INIS)

    Li, Fangfei; Lu, Xiwen

    2013-01-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  1. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  2. Linear orbit parameters for the exact equations of motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  3. Orbit Determination of GPS and Koreasat 2 Satellite Using Angle-Only Data and Requirements for Optical Tracking System

    Directory of Open Access Journals (Sweden)

    Woo-Kyoung Lee

    2004-09-01

    Full Text Available Gauss method for the initial orbit determination was tested using angle-only data obtained by orbit propagation using TLE and SGP4/SDP4 orbit propagation model. As the analysis of this simulation, a feasible time span between observation time of satellite resulting the minimum error to the true orbit was found. Initial orbit determination is performed using observational data of GPS 26 and Koreasat 2 from 0.6m telescope of KAO(Korea Astronomy Observatory and precise orbit determination is also performed using simulated data. The result of precise orbit determination shows that the accuracy of resulting orbit is related to the accuracy of the observations and the number of data.

  4. Stochastic variational approach to minimum uncertainty states

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, F.; Viola, L. [Dipartimento di Fisica, Padova Univ. (Italy)

    1995-05-21

    We introduce a new variational characterization of Gaussian diffusion processes as minimum uncertainty states. We then define a variational method constrained by kinematics of diffusions and Schroedinger dynamics to seek states of local minimum uncertainty for general non-harmonic potentials. (author)

  5. Zero forcing parameters and minimum rank problems

    NARCIS (Netherlands)

    Barioli, F.; Barrett, W.; Fallat, S.M.; Hall, H.T.; Hogben, L.; Shader, B.L.; Driessche, van den P.; Holst, van der H.

    2010-01-01

    The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero

  6. 30 CFR 281.30 - Minimum royalty.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Minimum royalty. 281.30 Section 281.30 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.30 Minimum royalty...

  7. New Minimum Wage Research: A Symposium.

    Science.gov (United States)

    Ehrenberg, Ronald G.; And Others

    1992-01-01

    Includes "Introduction" (Ehrenberg); "Effect of the Minimum Wage [MW] on the Fast-Food Industry" (Katz, Krueger); "Using Regional Variation in Wages to Measure Effects of the Federal MW" (Card); "Do MWs Reduce Employment?" (Card); "Employment Effects of Minimum and Subminimum Wages" (Neumark,…

  8. Minimum Wage Effects in the Longer Run

    Science.gov (United States)

    Neumark, David; Nizalova, Olena

    2007-01-01

    Exposure to minimum wages at young ages could lead to adverse longer-run effects via decreased labor market experience and tenure, and diminished education and training, while beneficial longer-run effects could arise if minimum wages increase skill acquisition. Evidence suggests that as individuals reach their late 20s, they earn less the longer…

  9. Science Planning and Orbit Classification for Solar Probe Plus

    Science.gov (United States)

    Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.

    2016-12-01

    There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.

  10. A Typical Presentation of Orbital Pseudotumor Mimicking Orbital Cellulitis

    Directory of Open Access Journals (Sweden)

    J. Ayatollahi

    2013-10-01

    Full Text Available Introduction: Orbital pseudotumor, also known as idiopathic orbital inflammatory syndrome (IOIS, is a benign, non- infective inflammatory condition of the orbit without identifiable local or systemic causes. The disease may mimics a variety of pathologic conditions. We pre-sent a case of pseudotumor observed in a patient admitted under the name of orbital celluli-ties. Case Report: A 26-year-old woman reffered to our hospital with the history of left ocular pain and headache 2 days before her visit.. Ophthalmological examination of the patient was normal except for the redness and lid edema, mild chemosis and conjunctival injection. Gen-eral assessment was normal but a low grade fever was observed. She was hospitalized as an orbital cellulitis patient. She was treated with intravenous antibiotics. On the third day , sud-denly diplopia, proptosis in her left eye and ocular pain in her right side appeared. MRI re-vealed bilateral enlargement of extraocular muscles. Diagnosis of orbital pseudotumor was made and the patient was treated with oral steroid.She responded promptly to the treatment. Antibiotics were discontinued and steroid was tapered in one month period under close fol-low up. Conclusion: The clinical features of orbital pseudotumor vary widely . Orbital pseudotumor and orbital cellulitis can occasionally demonstrate overlapping features.. Despite complete physical examination and appropriate imaging, sometimes correct diagnosis of the disease would be difficult (Sci J Hamadan Univ Med Sci 2013; 20 (3:256-259

  11. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  12. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  13. Minimum period and the gap in periods of Cataclysmic binaries

    International Nuclear Information System (INIS)

    Paczynski, B.; Sienkiewicz, R.

    1983-01-01

    The 81 minute cutoff to the orbital periods of hydrogen-rich cataclysmic binaries is consistent with evolution of those systems being dominated by angular momentum losses due to gravitational radiation. Unfortunately, many uncertainties, mainly poorly known atmospheric opacities below 2000 K, make is physically impossible to verify the quadrupole formula for gravitational radiation by using the observed cutoff at 81 minutes. The upper boundary of the gap in orbital periods observed at about 3 hours is almost certainly due to enhanced angular momentum losses from cataclysmic binaries which have longer periods. The physical mechanism of those losses is not identified, but a possible importance of stellar winds is pointed out. The lower boundary of the gap may be explained with the oldest cataclysmic binaries, whose periods evolved past the minimum at 81 minutes and reached the value of 2 hours within about 12 x 10 9 years after the binary had formed. Those binaries should have secondary components of only 0.02 solar masses, and their periods could be used to estimate ages of the oldest cataclysmic stars, and presumably the age of Galaxy. An alternative explanation for the gap requires that binaries should be detached while crossing the gap. A possible mechanism for this phenomenon is discussed. It requires the secondary components to be about 0.2 solar masses in the binaries just below the gap

  14. Transfer Pricing

    DEFF Research Database (Denmark)

    Nielsen, Søren Bo

    2014-01-01

    Against a background of rather mixed evidence about transfer pricing practices in multinational enterprises (MNEs) and varying attitudes on the part of tax authorities, this paper explores how multiple aims in transfer pricing can be pursued across four different transfer pricing regimes. A MNE h...

  15. Orbital preservation in a maxillectomy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Katsuhiko; Nishikawa, Hitomi; Kumagai, Masahiko; Dosaka, Yoshihiro; Kuroda, Toru; Atago, Yoshihiro; Nishio, Masamichi [Sapporo National Hospital (Japan)

    1999-07-01

    In the past 9 years, 38 patients of the maxillary cancer were treated by a combination of radiation and surgery. Sixteen patients showed the orbital involvement as confirmed by a CT scan and/or MRI. An orbital excenteration was necessary in 6 patients, due mainly to deep intraorbital invasion, while in 10, the orbital contents were preserved despite the involvement of the orbital capsule. The local rate of the orbital region in the latter patients evaluated at 48 months after the initial surgery was 44%. For the treatment of the recurrence at the orbital capsule. The application of gold grain (Au{sup 198}) thus appeared to be a useful tool for further preserving the eye. (author)

  16. Orbital preservation in a maxillectomy

    International Nuclear Information System (INIS)

    Tanaka, Katsuhiko; Nishikawa, Hitomi; Kumagai, Masahiko; Dosaka, Yoshihiro; Kuroda, Toru; Atago, Yoshihiro; Nishio, Masamichi

    1999-01-01

    In the past 9 years, 38 patients of the maxillary cancer were treated by a combination of radiation and surgery. Sixteen patients showed the orbital involvement as confirmed by a CT scan and/or MRI. An orbital excenteration was necessary in 6 patients, due mainly to deep intraorbital invasion, while in 10, the orbital contents were preserved despite the involvement of the orbital capsule. The local rate of the orbital region in the latter patients evaluated at 48 months after the initial surgery was 44%. For the treatment of the recurrence at the orbital capsule. The application of gold grain (Au 198 ) thus appeared to be a useful tool for further preserving the eye. (author)

  17. Molecular orbitals for properties and spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Vincent [Laboratoire de Chimie Quantique, Institut de Chimie, Université de Strasbourg, 1 rue Blaise Pascal 67000 Strasbourg-France (France); Domingo, Alex [Quantum Chemistry and Physical Chemistry Celestijnenlaan 200f, 3001 Heverlee - Belgium (Belgium); Braunstein, Pierre; Danopoulos, Andreas; Monakhov, Kirill [Laboratoire de Chimie de Coordination, Institut de Chimie, Université de Strasbourg, 4 rue Blaise Pascal 67081 Strasbourg-France (France)

    2015-12-31

    The description and clarification of spectroscopies and properties goes through ab initio calculations. Wave function based calculations (CASSCF/CASPT2) are particularly appealing since they offer spectroscopic accuracy and means of interpretation. we performed such calculations to elucidate the origin of unusual structural changes and intramolecular electron transfer phenomenon. Based on optimized molecular orbitals and a reading of the multireference wave function, it is suggested that intimate interactions are likely to considerably modify the standard pictures. A so-called PIMA (polarization-induced metalâĹŠarene) interaction similar to the more familiar anion-π interaction is responsible for a significant deviation from sp{sup 3} geometry and an energetic stabilization of 50 kJ/mol in Cr(II) benzyl organometallic complexes. In a similar fashion, it is proposed that the energetic profile of the IVCT (inter valence charge transfer) exhibits strong similarities to the Marcus’ theory, suggesting a response behaviour of the ensemble of electrons as electron transfer occurs in Fe{sup 2+}/Fe{sup 3+} bimetallic compound. The electronic reorganization induced by the IVCT process accounts for 11.8 eV, a very large effect that reduces the transfer energy down to 0.89 eV, in very good agreement with experiments.

  18. Exploratory orbit analysis

    International Nuclear Information System (INIS)

    Michelotti, L.

    1989-03-01

    Unlike the other documents in these proceedings, this paper is neither a scientific nor a technical report. It is, rather, a short personal essay which attempts to describe an Exploratory Orbit Analysis (EOA) environment. Analyzing the behavior of a four or six dimensional nonlinear dynamical system is at least as difficult as analyzing events in high-energy collisions; the consequences of doing it badly, or slowly, would be at least as devastating; and yet the level of effort and expenditure invested in the latter, the very attention paid to it by physicists at large, must be two orders of magnitude greater than that given to the former. It is difficult to choose the model which best explains the behavior of a physical device if one does not first understand the behavior of the available models. The time is ripe for the development of a functioning EOA environment, which I will try to describe in this paper to help us achieve this goal

  19. Orbiting radiation stars

    International Nuclear Information System (INIS)

    Foster, Dean P; Langford, John; Perez-Giz, Gabe

    2016-01-01

    We study a spherically symmetric solution to the Einstein equations in which the source, which we call an orbiting radiation star (OR-star), is a compact object consisting of freely falling null particles. The solution avoids quantum scale regimes and hence neither relies upon nor ignores the interaction of quantum mechanics and gravitation. The OR-star spacetime exhibits a deep gravitational well yet remains singularity free. In fact, it is geometrically flat in the vicinity of the origin, with the flat region being of any desirable scale. The solution is observationally distinct from a black hole because a photon from infinity aimed at an OR-star escapes to infinity with a time delay. (paper)

  20. Exploratory orbit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, L.

    1989-03-01

    Unlike the other documents in these proceedings, this paper is neither a scientific nor a technical report. It is, rather, a short personal essay which attempts to describe an Exploratory Orbit Analysis (EOA) environment. Analyzing the behavior of a four or six dimensional nonlinear dynamical system is at least as difficult as analyzing events in high-energy collisions; the consequences of doing it badly, or slowly, would be at least as devastating; and yet the level of effort and expenditure invested in the latter, the very attention paid to it by physicists at large, must be two orders of magnitude greater than that given to the former. It is difficult to choose the model which best explains the behavior of a physical device if one does not first understand the behavior of the available models. The time is ripe for the development of a functioning EOA environment, which I will try to describe in this paper to help us achieve this goal.

  1. Orbital Eccrine Hidrocystoma

    Directory of Open Access Journals (Sweden)

    Deniz Marangoz

    2016-10-01

    Full Text Available A 29-year-old female patient presented with a painless mass on her upper eyelid medially. She noticed the mass 4 years earlier and it had increased in size over time. She had no diplopia, eyelid swelling, skin lesion overlying the mass, or visual disturbances. On ocular examination, eye movements and funduscopy were normal. The mass was movable and painless with palpation. Magnetic resonance imaging with contrast showed a 12x8x7 mm well-circumscribed cystic lesion with no contrast dye appearance. Surgical removal was performed delicately and no capsular rupture occured. Pathological examination revealed an eccrine hidrocystoma. Our aim is to underline that eccrine hidrocystoma should be included in differential diagnosis of orbital masses.

  2. Solitonic natural orbitals

    Science.gov (United States)

    Cioslowski, Jerzy

    2018-04-01

    The dependence of the natural amplitudes of the harmonium atom in its ground state on the confinement strength ω is thoroughly investigated. A combination of rigorous analysis and extensive, highly accurate numerical calculations reveals the presence of only one positive-valued natural amplitude ("the normal sign pattern") for all ω ≥1/2 . More importantly, it is shown that unusual, weakly occupied natural orbitals (NOs) corresponding to additional positive-valued natural amplitudes emerge upon sufficient weakening of the confinement. These solitonic NOs, whose shapes remain almost invariant as their radial positions drift toward infinity upon the critical values of ω being approached from below, exhibit strong radial localization. Their asymptotic properties are extracted from the numerical data and their relevance to calculations on fully Coulombic systems is discussed.

  3. Minimum emittance in TBA and MBA lattices

    Science.gov (United States)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  4. Minimum emittance in TBA and MBA lattices

    International Nuclear Information System (INIS)

    Xu Gang; Peng Yuemei

    2015-01-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 3 1/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design. (authors)

  5. Who Benefits from a Minimum Wage Increase?

    OpenAIRE

    John W. Lopresti; Kevin J. Mumford

    2015-01-01

    This paper addresses the question of how a minimum wage increase affects the wages of low-wage workers. Most studies assume that there is a simple mechanical increase in the wage for workers earning a wage between the old and the new minimum wage, with some studies allowing for spillovers to workers with wages just above this range. Rather than assume that the wages of these workers would have remained constant, this paper estimates how a minimum wage increase impacts a low-wage worker's wage...

  6. Wage inequality, minimum wage effects and spillovers

    OpenAIRE

    Stewart, Mark B.

    2011-01-01

    This paper investigates possible spillover effects of the UK minimum wage. The halt in the growth in inequality in the lower half of the wage distribution (as measured by the 50:10 percentile ratio) since the mid-1990s, in contrast to the continued inequality growth in the upper half of the distribution, suggests the possibility of a minimum wage effect and spillover effects on wages above the minimum. This paper analyses individual wage changes, using both a difference-in-differences estimat...

  7. Stellar orbits around Sgr A*

    International Nuclear Information System (INIS)

    Trippe, S; Gillessen, S; Ott, T; Eisenhauer, F; Paumard, T; Martins, F; Genzel, R; Schoedel, R; Eckart, A; Alexander, T

    2006-01-01

    In this article we present and discuss the latest results from the observations of stars (''S-stars'') orbiting Sgr A* . With improving data quality the number of observed S-stars has increased substantially in the last years. The combination of radial velocity and proper motion information allows an ever more precise determination of orbital parameters and of the mass of and the distance to the supermassive black hole in the centre of the Milky Way. Additionally, the orbital solutions allow us to verify an agreement between the NIR source Sgr A* and the dynamical centre of the stellar orbits to within 2 mas

  8. Accelerated testing for synchronous orbits

    Science.gov (United States)

    Mcdermott, P.

    1981-01-01

    Degradation of batteries during synchronous orbits is analyzed. Discharge and recharge rates are evaluated. The functional relationship between charge rate and degradation is mathematically determined.

  9. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  10. MIT Orbital Transfer Vehicle (MOTV): CASTOR Satellite: Design Document

    Science.gov (United States)

    2010-11-18

    that Z93 should be applied on the back of the panels and on the engine. Z93 is a type of white paint that has a low absorptive coefficient and can...PART COMPANY PRODUCT MASS [kg] COST [USD] Tank Luxfor L45J 2.95 350 Stainless Tube McMaster SS316 Tube 0.1 23.84 Pressure Regulator GO Regulator... McMaster 7833K95 0.51 50 TANK AND TANK ADAPTER The cylindrical tank will hold 5.2kg of Xenon to achieve mission requirements, although it is

  11. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  12. Radiation measurements on the Mir Orbital Station

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Atwell, W.; Reitz, G.; Beaujean, R.; Heinrich, W.

    2002-01-01

    Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250x10 4 Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 μGy day -1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0±0.5 deg. W, and 1.6±0.5 deg. N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources

  13. How unprecedented a solar minimum was it?

    Science.gov (United States)

    Russell, C T; Jian, L K; Luhmann, J G

    2013-05-01

    The end of the last solar cycle was at least 3 years late, and to date, the new solar cycle has seen mainly weaker activity since the onset of the rising phase toward the new solar maximum. The newspapers now even report when auroras are seen in Norway. This paper is an update of our review paper written during the deepest part of the last solar minimum [1]. We update the records of solar activity and its consequent effects on the interplanetary fields and solar wind density. The arrival of solar minimum allows us to use two techniques that predict sunspot maximum from readings obtained at solar minimum. It is clear that the Sun is still behaving strangely compared to the last few solar minima even though we are well beyond the minimum phase of the cycle 23-24 transition.

  14. Impact of the Minimum Wage on Compression.

    Science.gov (United States)

    Wolfe, Michael N.; Candland, Charles W.

    1979-01-01

    Assesses the impact of increases in the minimum wage on salary schedules, provides guidelines for creating a philosophy to deal with the impact, and outlines options and presents recommendations. (IRT)

  15. Quantitative Research on the Minimum Wage

    Science.gov (United States)

    Goldfarb, Robert S.

    1975-01-01

    The article reviews recent research examining the impact of minimum wage requirements on the size and distribution of teenage employment and earnings. The studies measure income distribution, employment levels and effect on unemployment. (MW)

  16. Determining minimum lubrication film for machine parts

    Science.gov (United States)

    Hamrock, B. J.; Dowson, D.

    1978-01-01

    Formula predicts minimum film thickness required for fully-flooded ball bearings, gears, and cams. Formula is result of study to determine complete theoretical solution of isothermal elasto-hydrodynamic lubrication of fully-flooded elliptical contacts.

  17. Long Term Care Minimum Data Set (MDS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Long-Term Care Minimum Data Set (MDS) is a standardized, primary screening and assessment tool of health status that forms the foundation of the comprehensive...

  18. PyORBIT: A Python Shell For ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.

  19. Orbital Chondroma: A rare mesenchymal tumor of orbit

    Directory of Open Access Journals (Sweden)

    Ruchi S Kabra

    2015-01-01

    Full Text Available While relatively common in the skeletal system, cartilaginous tumors are rarely seen originating from the orbit. Here, we report a rare case of an orbital chondroma. A 27-year-old male patient presented with a painless hard mass in the superonasal quadrant (SNQ of left orbit since 3 months. On examination, best-corrected visual acuity of both eyes was 20/20, with normal anterior and posterior segment with full movements of eyeballs and normal intraocular pressure. Computerized tomography scan revealed well defined soft tissue density lesion in SNQ of left orbit. Patient was operated for anteromedial orbitotomy under general anesthesia. Mass was excised intact and sent for histopathological examination (HPE. HPE report showed lobular aggregates of benign cartilaginous cells with mild atypia suggesting of benign cartilaginous tumor - chondroma. Very few cases of orbital chondroma have been reported in literature so far.

  20. PyORBIT: A Python Shell For ORBIT

    International Nuclear Information System (INIS)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-01-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability

  1. The SME gauge sector with minimum length

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Louzada, H.L.C. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil)

    2017-12-15

    We study the gauge sector of the Standard Model Extension (SME) with the Lorentz covariant deformed Heisenberg algebra associated to the minimum length. In order to find and estimate corrections, we clarify whether the violation of Lorentz symmetry and the existence of a minimum length are independent phenomena or are, in some way, related. With this goal, we analyze the dispersion relations of this theory. (orig.)

  2. The SME gauge sector with minimum length

    Science.gov (United States)

    Belich, H.; Louzada, H. L. C.

    2017-12-01

    We study the gauge sector of the Standard Model Extension (SME) with the Lorentz covariant deformed Heisenberg algebra associated to the minimum length. In order to find and estimate corrections, we clarify whether the violation of Lorentz symmetry and the existence of a minimum length are independent phenomena or are, in some way, related. With this goal, we analyze the dispersion relations of this theory.

  3. The minimum amount of "matrix " needed for matrix-assisted pulsed laser deposition of biomolecules

    DEFF Research Database (Denmark)

    Tabetah, Marshall; Matei, Andreea; Constantinescu, Catalin

    2014-01-01

    The ability of matrix-assisted pulsed laser evaporation (MAPLE) technique to transfer and deposit high-quality thin organic, bioorganic, and composite films with minimum chemical modification of the target material has been utilized in numerous applications. One of the outstanding problems in MAPLE...

  4. In-Flight Operation of the Dawn Ion Propulsion System Through Survey Science Orbit at Ceres

    Science.gov (United States)

    Garner, Charles E.; Rayman, Marc D.

    2015-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt objects, Vesta and Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H- 9.5 (Delta-II Heavy) rocket that placed the 1218-kg spacecraft onto an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide a total delta V of 11 km/s for the heliocentric transfer to Vesta, orbit capture at Vesta, transfer between Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer between Ceres science orbits. Full-power thrusting from December 2007 through October 2008 was used to successfully target a Mars gravity assist flyby in February 2009 that provided an additional delta V of 2.6 km/s. Deterministic thrusting for the heliocentric transfer to Vesta resumed in June 2009 and concluded with orbit capture at Vesta on July 16, 2011. From July 2011 through September 2012 the IPS was used to transfer to all the different science orbits at Vesta and to escape from Vesta orbit. Cruise for a rendezvous with Ceres began in September 2012 and concluded with the start of the approach to Ceres phase on December 26, 2015, leading to orbit capture on March 6, 2015. Deterministic thrusting continued during approach to place the spacecraft in its first science orbit, called RC3, which was achieved on April 23, 2015. Following science operations at RC3 ion thrusting was resumed for twenty-five days leading to arrival to the next science orbit, called survey orbit, on June 3, 2015. The IPS will be used for all subsequent orbit transfers and trajectory correction maneuvers until completion of the primary mission in approximately June 2016. To date the IPS has been operated for over 46,774 hours, consumed approximately 393 kg of xenon, and provided

  5. Solution for Nonlinear Three-Dimensional Intercept Problem with Minimum Energy

    Directory of Open Access Journals (Sweden)

    Henzeh Leeghim

    2013-01-01

    a minimum-energy application, which then generates both the desired initial interceptor velocity and the TOF for the minimum-energy transfer. The optimization problem is formulated by using the classical Lagrangian f and g coefficients, which map initial position and velocity vectors to future times, and a universal time variable x. A Newton-Raphson iteration algorithm is introduced for iteratively solving the problem. A generalized problem formulation is introduced for minimizing the TOF as part of the optimization problem. Several examples are presented, and the results are compared with the Hohmann transfer solution approaches. The resulting minimum-energy intercept solution algorithm is expected to be broadly useful as a starting iterative for applications spanning: targeting, rendezvous, interplanetary trajectory design, and so on.

  6. Infected orbital cyst following exenteration.

    Science.gov (United States)

    Barak, A; Hirsh, A; Rosner, M; Rosen, N

    1996-09-01

    An orbital cyst is a rare complication of orbital trauma and exenteration. Infections of such cysts have not been described, and are potentially dangerous unless treated immediately. The authors describe a case of delayed treatment of such an infected cyst, which resolved following surgical drainage. The potentially hazardous outcome makes knowledge of such cases important.

  7. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...

  8. Diplopia and Orbital Wall Fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  9. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  10. CASTOR: Cathode/Anode Satellite Thruster for Orbital Repositioning

    Science.gov (United States)

    Mruphy, Gloria A.

    2010-01-01

    The purpose of CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite is to demonstrate in Low Earth Orbit (LEO) a nanosatellite that uses a Divergent Cusped Field Thruster (DCFT) to perform orbital maneuvers representative of an orbital transfer vehicle. Powered by semi-deployable solar arrays generating 165W of power, CASTOR will achieve nearly 1 km/s of velocity increment over one year. As a technology demonstration mission, success of CASTOR in LEO will pave the way for a low cost, high delta-V orbital transfer capability for small military and civilian payloads in support of Air Force and NASA missions. The educational objective is to engage graduate and undergraduate students in critical roles in the design, development, test, carrier integration and on-orbit operations of CASTOR as a supplement to their curricular activities. This program is laying the foundation for a long-term satellite construction program at MIT. The satellite is being designed as a part of AFRL's University Nanosatellite Program, which provides the funding and a framework in which student satellite teams compete for a launch to orbit. To this end, the satellite must fit within an envelope of 50cmx50cmx60cm, have a mass of less than 50kg, and meet stringent structural and other requirements. In this framework, the CASTOR team successfully completed PDR in August 2009 and CDR in April 2010 and will compete at FCR (Flight Competition Review) in January 2011. The complexity of the project requires implementation of many systems engineering techniques which allow for development of CASTOR from conception through FCR and encompass the full design, fabrication, and testing process.

  11. Nonadiabatic anharmonic electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P. P. [Molecular Physics Research, 6547 Kristina Ursula Court, Falls Church, Virginia 22044 (United States)

    2013-03-28

    The effect of an inner sphere, local mode vibration on an electron transfer is modeled using the nonadiabatic transition probability (rate) expression together with both the anharmonic Morse and the harmonic oscillator potential. For an anharmonic inner sphere mode, a variational analysis uses harmonic oscillator basis functions to overcome the difficulties evaluating Morse-model Franck-Condon overlap factors. Individual matrix elements are computed with the use of new, fast, robust, and flexible recurrence relations. The analysis therefore readily addresses changes in frequency and/or displacement of oscillator minimums in the different electron transfer states. Direct summation of the individual Boltzmann weighted Franck-Condon contributions avoids the limitations inherent in the use of the familiar high-temperature, Gaussian form of the rate constant. The effect of harmonic versus anharmonic inner sphere modes on the electron transfer is readily seen, especially in the exoergic, inverted region. The behavior of the transition probability can also be displayed as a surface for all temperatures and values of the driving force/exoergicity {Delta}=-{Delta}G. The temperature insensitivity of the transfer rate is clearly seen when the exoergicity equals the collective reorganization energy ({Delta}={Lambda}{sub s}) along a maximum ln (w) vs. {Delta} ridge of the surface. The surface also reveals additional regions for {Delta} where ln (w) appears to be insensitive to temperature, or effectively activationless, for some kinds of inner sphere contributions.

  12. Transfer Pricing

    DEFF Research Database (Denmark)

    Rohde, Carsten; Rossing, Christian Plesner

    trade internally as the units have to decide what prices should be paid for such inter-unit transfers. One important challenge is to uncover the consequences that different transfer prices have on the willingness in the organizational units to coordinate activities and trade internally. At the same time...... the determination of transfer price will affect the size of the profit or loss in the organizational units and thus have an impact on the evaluation of managers‟ performance. In some instances the determination of transfer prices may lead to a disagreement between coordination of the organizational units...

  13. Project ECHO: Electronic Communications from Halo Orbit

    Science.gov (United States)

    Borrelli, Jason; Cooley, Bryan; Debole, Marcy; Hrivnak, Lance; Nielsen, Kenneth; Sangmeister, Gary; Wolfe, Matthew

    1994-01-01

    The design of a communications relay to provide constant access between the Earth and the far side of the Moon is presented. Placement of the relay in a halo orbit about the L2 Earth-Moon Lagrange point allows the satellite to maintain constant simultaneous communication between Earth and scientific payloads on the far side of the Moon. The requirements of NASA's Discovery-class missions adopted and modified for this design are: total project cost should not exceed $150 million excluding launch costs, launch must be provided by Delta-class vehicle, and the satellite should maintain an operational lifetime of 10 to 15 years. The spacecraft will follow a transfer trajectory to the L2 point, after launch by a Delta II 7925 vehicle in 1999. Low-level thrust is used for injection into a stationkeeping-free halo orbit once the spacecraft reaches the L2 point. The shape of this halo orbit is highly elliptical with the maximum excursion from the L2 point being 35000 km. A spun section and despun section connected through a bearing and power transfer assembly (BAPTA) compose the structure of the spacecraft. Communications equipment is placed on the despun section to provide for a stationary dual parabolic offset-feed array antenna system. The dual system is necessary to provide communications coverage during portions of maximum excursion on the halo orbit. Transmissions to the NASA Deep Space Network 34 m antenna include six channels (color video, two voice, scientific data from lunar payloads, satellite housekeeping and telemetry and uplinked commands) using the S- and X-bands. Four radioisotope thermoelectric generators (RTG's) provide a total of 1360 W to power onboard systems and any two of the four Hughes 13 cm ion thrusters at once. Output of the ion thrusters is approximately 17.8 mN each with xenon as the propellant. Presence of torques generated by solar pressure on the antenna dish require the addition of a 'skirt' extending from the spun section of the satellite

  14. A simulation study of the global orbit feedback system for Pohang light source

    International Nuclear Information System (INIS)

    Kim, Kukhee; Shim, Kyuyeol; Cho, Moohyun; Namkung, Won; Ko, In Soo; Choi, Jinhyuk

    2000-01-01

    This paper describes the simulation of the global orbit feedback system using the singular value decomposition (SVD) method, the error minimization method, and the neural network method. Instead of facing unacceptable correction result raised occasionally in the SVD method, we choose the error minimization method for the global orbit feedback. This method provides minimum orbit errors while avoiding unacceptable corrections, and keeps the orbit within the dynamic aperture of the storage ring. We simulate the Pohang Light Source (PLS) storage ring using the Methodical Accelerator Design (MAD) code that generates the orbit distortions for the error minimization method and the learning data set for neural network method. In order to compare the effectiveness of the neural network method with others, a neural network is trained by the learning algorithm using the learning data set. The global response matrix with a minimum error and the trained neural network are used to the global orbit feedback system. The simulation shows that a selection of beam position monitors (BPMs) is very sensitive in the reduction of rms orbit distortions, and the random choice gives better results than any other cases. (author)

  15. The minimum wage in the Czech enterprises

    Directory of Open Access Journals (Sweden)

    Eva Lajtkepová

    2010-01-01

    Full Text Available Although the statutory minimum wage is not a new category, in the Czech Republic we encounter the definition and regulation of a minimum wage for the first time in the 1990 amendment to Act No. 65/1965 Coll., the Labour Code. The specific amount of the minimum wage and the conditions of its operation were then subsequently determined by government regulation in February 1991. Since that time, the value of minimum wage has been adjusted fifteenth times (the last increase was in January 2007. The aim of this article is to present selected results of two researches of acceptance of the statutory minimum wage by Czech enterprises. The first research makes use of the data collected by questionnaire research in 83 small and medium-sized enterprises in the South Moravia Region in 2005, the second one the data of 116 enterprises in the entire Czech Republic (in 2007. The data have been processed by means of the standard methods of descriptive statistics and of the appropriate methods of the statistical analyses (Spearman correlation coefficient of sequential correlation, Kendall coefficient, χ2 - independence test, Kruskal-Wallis test, and others.

  16. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis

    Directory of Open Access Journals (Sweden)

    Sumeet Jain

    2016-01-01

    Full Text Available Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  17. Orbit and geometry constraints on the design and operation of a long-life SIRTF mission. [Shuttle Infrared Telescope Facility

    Science.gov (United States)

    Jackson, R. W.

    1984-01-01

    For a long-life SIRTF mission, the ability of the telescope to observe targets everywhere in the sky is an important requirement. For low-inclination orbits, a telescope aperture shade must be designed for Sun and Earth Limb avoidance angles of 50 deg to 60 deg to prevent unwanted radiation from entering the telescope. The minimum orbit inclination depends on the Earth Limb avoidance angle. About 30 percent of the sky will be prohibited for observations during any day in orbit, with about 100 days in orbit required to observe the entire sky.

  18. Characterizing the Survey Strategy and Initial Orbit Determination Abilities of the NASA MCAT Telescope for Geosynchronous Orbital Debris Environmental Studies

    Science.gov (United States)

    Frith, J.; Barker, E.; Cowardin, H.; Buckalew, B.; Anz-Meador, P.; Lederer, S.

    The National Aeronautics and Space Administration (NASA) Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT’s known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment, including collected weather data and the proposed observational data collection cadence. To optimize observing cadences and probability of detection, on-going work using a simulated GEO debris population sampled at various cadences are run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT’s ability to determine accurately the orbits of debris at various sample rates. The goal of this work is to discriminate GEO and near-GEO objects from GEO transfer orbit objects that can appear as GEO objects in the environmental models due to the short arc observation and an assumed circular orbit. The specific methods and results are presented here.

  19. DETECTION OF KOI-13.01 USING THE PHOTOMETRIC ORBIT

    International Nuclear Information System (INIS)

    Shporer, Avi; Jenkins, Jon M.; Seader, Shawn E.; Smith, Jeffrey C.; Thompson, Susan E.; Twicken, Joseph D.; Rowe, Jason F.; Sanderfer, Dwight T.; Still, Martin D.; Welsh, William F.

    2011-01-01

    We use the KOI-13 transiting star-planet system as a test case for the recently developed BEER algorithm, aimed at identifying non-transiting low-mass companions by detecting the photometric variability induced by the companion along its orbit. Such photometric variability is generated by three mechanisms: the beaming effect, tidal ellipsoidal distortion, and reflection/heating. We use data from three Kepler quarters, from the first year of the mission, while ignoring measurements within the transit and occultation, and show that the planet's ephemeris is clearly detected. We fit for the amplitude of each of the three effects and use the beaming effect amplitude to estimate the planet's minimum mass, which results in M p sin i = 9.2 ± 1.1 M J (assuming the host star parameters derived by Szabo et al.). Our results show that non-transiting star-planet systems similar to KOI-13.01 can be detected in Kepler data, including a measurement of the orbital ephemeris and the planet's minimum mass. Moreover, we derive a realistic estimate of the amplitudes uncertainties, and use it to show that data obtained during the entire lifetime of the Kepler mission of 3.5 years will allow detecting non-transiting close-in low-mass companions orbiting bright stars, down to the few Jupiter mass level. Data from the Kepler Extended Mission, if funded by NASA, will further improve the detection capabilities.

  20. Orbital express capture system: concept to reality

    Science.gov (United States)

    Stamm, Shane; Motaghedi, Pejmun

    2004-08-01

    The development of autonomous servicing of on-orbit spacecraft has been a sought after objective for many years. A critical component of on-orbit servicing involves the ability to successfully capture, institute mate, and perform electrical and fluid transfers autonomously. As part of a Small Business Innovation Research (SBIR) grant, Starsys Research Corporation (SRC) began developing such a system. Phase I of the grant started in 1999, with initial work focusing on simultaneously defining the parameters associated with successful docking while designing to those parameters. Despite the challenge of working without specific requirements, SRC completed development of a prototype design in 2000. Throughout the following year, testing was conducted on the prototype to characterize its performance. Having successfully completed work on the prototype, SRC began a Phase II SBIR effort in mid-2001. The focus of the second phase was a commercialization effort designed to augment the prototype model into a more flight-like design. The technical requirements, however, still needed clear definition for the design to progress. The advent of the Orbital Express (OE) program provided much of that definition. While still in the proposal stages of the OE program, SRC began tailoring prototype redesign efforts to the OE program requirements. A primary challenge involved striking a balance between addressing the technical requirements of OE while designing within the scope of the SBIR. Upon award of the OE contract, the Phase II SBIR design has been fully developed. This new design, designated the Mechanical Docking System (MDS), successfully incorporated many of the requirements of the OE program. SRC is now completing dynamic testing on the MDS hardware, with a parallel effort of developing a flight design for OE. As testing on the MDS progresses, the design path that was once common to both SBIR effort and the OE program begins to diverge. The MDS will complete the scope of the

  1. Orbital Evolution and Orbital Phase Resolved Spectroscopy of the ...

    Indian Academy of Sciences (India)

    binary. We have carried out orbital phase resolved spectroscopy to mea- ... agreement with a simple model of a spherically symmetric stellar wind from the .... has a set of Narrow Field Instruments (NFI) comprising one Low Energy Concen-.

  2. Orbital Infarction due to Sickle Cell Disease without Orbital Pain

    Directory of Open Access Journals (Sweden)

    Cameron L. McBride

    2016-01-01

    Full Text Available Sickle cell disease is a hemoglobinopathy that results in paroxysmal arteriolar occlusion and tissue infarction that can manifest in a plurality of tissues. Rarely, these infarcted crises manifest in the bony orbit. Orbital infarction usually presents with acute onset of periorbital tenderness, swelling, erythema, and pain. Soft tissue swelling can result in proptosis and attenuation of extraocular movements. Expedient diagnosis of sickle cell orbital infarction is crucial because this is a potentially sight-threatening entity. Diagnosis can be delayed since the presentation has physical and radiographic findings mimicking various infectious and traumatic processes. We describe a patient who presented with sickle cell orbital crisis without pain. This case highlights the importance of maintaining a high index of suspicion in patients with known sickle cell disease or of African descent born outside the United States in a region where screening for hemoglobinopathy is not routine, even when the presentation is not classic.

  3. Computed tomography of orbital myositis

    International Nuclear Information System (INIS)

    Dresner, S.C.; Rothfus, W.E.; Slamovits, T.L.; Kennerdell, J.S.; Curtin, H.D.

    1984-01-01

    The computerized tomographic (CT) scans of 11 consecutive patients with orbital myositis were reviewed to better characterize the CT appearance of this condition. The findings in this series differed from those of previous reports in several ways. Multiple muscle involvement predominated. Bilateral involvement was more frequent than previously reported. Enlargement of the tendon as well as the muscle was a frequent finding, but a normal tendinous insertion did not preclude the diagnosis of orbital myositis. Although the CT appearance of orbital myositis is often helpful, the findings are not pathognomonic; correlation with history, clinical findings, and therapeutic response must be considered in making the diagnosis

  4. Risk control and the minimum significant risk

    International Nuclear Information System (INIS)

    Seiler, F.A.; Alvarez, J.L.

    1996-01-01

    Risk management implies that the risk manager can, by his actions, exercise at least a modicum of control over the risk in question. In the terminology of control theory, a management action is a control signal imposed as feedback on the system to bring about a desired change in the state of the system. In the terminology of risk management, an action is taken to bring a predicted risk to lower values. Even if it is assumed that the management action taken is 100% effective and that the projected risk reduction is infinitely well known, there is a lower limit to the desired effects that can be achieved. It is based on the fact that all risks, such as the incidence of cancer, exhibit a degree of variability due to a number of extraneous factors such as age at exposure, sex, location, and some lifestyle parameters such as smoking or the consumption of alcohol. If the control signal is much smaller than the variability of the risk, the signal is lost in the noise and control is lost. This defines a minimum controllable risk based on the variability of the risk over the population considered. This quantity is the counterpart of the minimum significant risk which is defined by the uncertainties of the risk model. Both the minimum controllable risk and the minimum significant risk are evaluated for radiation carcinogenesis and are shown to be of the same order of magnitude. For a realistic management action, the assumptions of perfectly effective action and perfect model prediction made above have to be dropped, resulting in an effective minimum controllable risk which is determined by both risk limits. Any action below that effective limit is futile, but it is also unethical due to the ethical requirement of doing more good than harm. Finally, some implications of the effective minimum controllable risk on the use of the ALARA principle and on the evaluation of remedial action goals are presented

  5. JSC Orbital Debris Website Description

    Science.gov (United States)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  6. Minimum qualifications for nuclear criticality safety professionals

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1990-01-01

    A Nuclear Criticality Technology and Safety Training Committee has been established within the U.S. Department of Energy (DOE) Nuclear Criticality Safety and Technology Project to review and, if necessary, develop standards for the training of personnel involved in nuclear criticality safety (NCS). The committee is exploring the need for developing a standard or other mechanism for establishing minimum qualifications for NCS professionals. The development of standards and regulatory guides for nuclear power plant personnel may serve as a guide in developing the minimum qualifications for NCS professionals

  7. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  8. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  9. Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system

    Science.gov (United States)

    Yuan, Jianping; Gao, Chen; Zhang, Junhua

    2018-02-01

    In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.

  10. Binary cluster collision dynamics and minimum energy conformations

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Rogan, José; Valdivia, J.A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Varas, A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Nano-Bio Spectroscopy Group, ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián (Spain); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile)

    2013-10-15

    The collision dynamics of one Ag or Cu atom impinging on a Au{sub 12} cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au{sub 12}→Au{sub 13} is mostly preserved by the resulting planar Au{sub 12}Ag and Au{sub 12}Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au{sub 12}Ag and 4483 Au{sub 12}Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously.

  11. Discretization of space and time: determining the values of minimum length and minimum time

    OpenAIRE

    Roatta , Luca

    2017-01-01

    Assuming that space and time can only have discrete values, we obtain the expression of the minimum length and the minimum time interval. These values are found to be exactly coincident with the Planck's length and the Planck's time but for the presence of h instead of ħ .

  12. Cost Per Pound From Orbit

    Science.gov (United States)

    Merriam, M. L.

    2002-01-01

    Traditional studies of Reusable Launch Vehicle (RLV) designs have focused on designs that are completely reusable except for the fuel. This may not be realistic with current technology . An alternate approach is to look at partially reusable launch vehicles. This raises the question of which parts should be reused and which parts should be expendable. One approach is to consider the cost/pound of returning these parts from orbit. With the shuttle, this cost is about three times the cost/pound of launching payload into orbit. A subtle corollary is that RLVs are much less practical for higher orbits, such as the one on which the International Space Station resides, than they are for low earth orbits.

  13. Lidar Orbital Angular Momentum Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — The recognition in recent decades that electromagnetic fields have angular momentum (AM) in the form of not only polarization (or spin AM) but also orbital (OAM) has...

  14. Real and Hybrid Atomic Orbitals.

    Science.gov (United States)

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  15. RR Tel: Determination of Dust Properties During Minimum Obscuration

    Directory of Open Access Journals (Sweden)

    Jurkić T.

    2012-06-01

    Full Text Available the ISO infrared spectra and the SAAO long-term JHKL photometry of RR Tel in the epochs during minimum obscuration are studied in order to construct a circumstellar dust model. the spectral energy distribution in the near- and the mid-IR spectral range (1–15 μm was obtained for an epoch without the pronounced dust obscuration. the DUSTY code was used to solve the radiative transfer through the dust and to determine the circumstellar dust properties of the inner dust regions around the Mira component. Dust temperature, maximum grain size, dust density distribution, mass-loss rate, terminal wind velocity and optical depth are determined. the spectral energy distribution and the long-term JHKL photometry during an epoch of minimum obscuration show almost unattenuated stellar source and strong dust emission which cannot be explained by a single dust shell model. We propose a two-component model consisting of an optically thin circmustellar dust shell and optically thick dust outside the line of sight in some kind of a flattened geometry, which is responsible for most of the observed dust thermal emission.

  16. "Transfer Shock" or "Transfer Ecstasy?"

    Science.gov (United States)

    Nickens, John M.

    The alleged characteristic drop in grade point average (GPA) of transfer students and the subsequent rise in GPA was investigated in this study. No statistically significant difference was found in first term junior year GPA between junior college transfers and native Florida State University students after the variance accounted for by the…

  17. Adopting Internet Standards for Orbital Use

    Science.gov (United States)

    Wood, Lloyd; Ivancic, William; da Silva Curiel, Alex; Jackson, Chris; Stewart, Dave; Shell, Dave; Hodgson, Dave

    2005-01-01

    After a year of testing and demonstrating a Cisco mobile access router intended for terrestrial use onboard the low-Earth-orbiting UK-DMC satellite as part of a larger merged ground/space IP-based internetwork, we reflect on and discuss the benefits and drawbacks of integration and standards reuse for small satellite missions. Benefits include ease of operation and the ability to leverage existing systems and infrastructure designed for general use, as well as reuse of existing, known, and well-understood security and operational models. Drawbacks include cases where integration work was needed to bridge the gaps in assumptions between different systems, and where performance considerations outweighed the benefits of reuse of pre-existing file transfer protocols. We find similarities with the terrestrial IP networks whose technologies we have adopted and also some significant differences in operational models and assumptions that must be considered.

  18. Topological imprint for periodic orbits

    International Nuclear Information System (INIS)

    Martín, Jesús San; Moscoso, Ma José; Gómez, A González

    2012-01-01

    The more self-crossing points an orbit has the more complex it is. We introduce the topological imprint to characterize crossing points and focus on the period-doubling cascade. The period-doubling cascade topological imprint determines the topological imprint for orbits in chaotic bands. In addition, there is a closer link between this concept and the braids studied by Lettelier et al (2000 J. Phys. A: Math. Gen. 33 1809–25). (paper)

  19. MINIMUM AREAS FOR ELEMENTARY SCHOOL BUILDING FACILITIES.

    Science.gov (United States)

    Pennsylvania State Dept. of Public Instruction, Harrisburg.

    MINIMUM AREA SPACE REQUIREMENTS IN SQUARE FOOTAGE FOR ELEMENTARY SCHOOL BUILDING FACILITIES ARE PRESENTED, INCLUDING FACILITIES FOR INSTRUCTIONAL USE, GENERAL USE, AND SERVICE USE. LIBRARY, CAFETERIA, KITCHEN, STORAGE, AND MULTIPURPOSE ROOMS SHOULD BE SIZED FOR THE PROJECTED ENROLLMENT OF THE BUILDING IN ACCORDANCE WITH THE PROJECTION UNDER THE…

  20. Dirac's minimum degree condition restricted to claws

    NARCIS (Netherlands)

    Broersma, Haitze J.; Ryjacek, Z.; Schiermeyer, I.

    1997-01-01

    Let G be a graph on n 3 vertices. Dirac's minimum degree condition is the condition that all vertices of G have degree at least . This is a well-known sufficient condition for the existence of a Hamilton cycle in G. We give related sufficiency conditions for the existence of a Hamilton cycle or a

  1. 7 CFR 33.10 - Minimum requirements.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... ISSUED UNDER AUTHORITY OF THE EXPORT APPLE ACT Regulations § 33.10 Minimum requirements. No person shall... shipment of apples to any foreign destination unless: (a) Apples grade at least U.S. No. 1 or U.S. No. 1...

  2. Minimum Risk Pesticide: Definition and Product Confirmation

    Science.gov (United States)

    Minimum risk pesticides pose little to no risk to human health or the environment and therefore are not subject to regulation under FIFRA. EPA does not do any pre-market review for such products or labels, but violative products are subject to enforcement.

  3. The Minimum Distance of Graph Codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Justesen, Jørn

    2011-01-01

    We study codes constructed from graphs where the code symbols are associated with the edges and the symbols connected to a given vertex are restricted to be codewords in a component code. In particular we treat such codes from bipartite expander graphs coming from Euclidean planes and other...... geometries. We give results on the minimum distances of the codes....

  4. Minimum maintenance solar pump | Assefa | Zede Journal

    African Journals Online (AJOL)

    A minimum maintenance solar pump (MMSP), Fig 1, has been simulated for Addis Ababa, taking solar meteorological data of global radiation, diffuse radiation and ambient air temperature as input to a computer program that has been developed. To increase the performance of the solar pump, by trapping the long-wave ...

  5. Context quantization by minimum adaptive code length

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Wu, Xiaolin

    2007-01-01

    Context quantization is a technique to deal with the issue of context dilution in high-order conditional entropy coding. We investigate the problem of context quantizer design under the criterion of minimum adaptive code length. A property of such context quantizers is derived for binary symbols....

  6. 7 CFR 35.13 - Minimum quantity.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Minimum quantity. 35.13 Section 35.13 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... part, transport or receive for transportation to any foreign destination, a shipment of 25 packages or...

  7. Minimum impact house prototype for sustainable building

    NARCIS (Netherlands)

    Götz, E.; Klenner, K.; Lantelme, M.; Mohn, A.; Sauter, S.; Thöne, J.; Zellmann, E.; Drexler, H.; Jauslin, D.

    2010-01-01

    The Minihouse is a prototupe for a sustainable townhouse. On a site of only 29 sqm it offers 154 sqm of urban life. The project 'Minimum Impact House' adresses two important questions: How do we provide living space in the cities without distroying the landscape? How to improve sustainably the

  8. 49 CFR 639.27 - Minimum criteria.

    Science.gov (United States)

    2010-10-01

    ... dollar value to any non-financial factors that are considered by using performance-based specifications..., DEPARTMENT OF TRANSPORTATION CAPITAL LEASES Cost-Effectiveness § 639.27 Minimum criteria. In making the... used where possible and appropriate: (a) Operation costs; (b) Reliability of service; (c) Maintenance...

  9. Computing nonsimple polygons of minimum perimeter

    NARCIS (Netherlands)

    Fekete, S.P.; Haas, A.; Hemmer, M.; Hoffmann, M.; Kostitsyna, I.; Krupke, D.; Maurer, F.; Mitchell, J.S.B.; Schmidt, A.; Schmidt, C.; Troegel, J.

    2018-01-01

    We consider the Minimum Perimeter Polygon Problem (MP3): for a given set V of points in the plane, find a polygon P with holes that has vertex set V , such that the total boundary length is smallest possible. The MP3 can be considered a natural geometric generalization of the Traveling Salesman

  10. Minimum-B mirrors plus EBT principles

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1983-01-01

    Electrons are heated at the minimum B location(s) created by the multipole field and the toroidal field. Resulting hot electrons can assist plasma confinement by (1) providing mirror, (2) creating azimuthally symmetric toroidal confinement, or (3) creating modified bumpy torus

  11. Completeness properties of the minimum uncertainty states

    Science.gov (United States)

    Trifonov, D. A.

    1993-01-01

    The completeness properties of the Schrodinger minimum uncertainty states (SMUS) and of some of their subsets are considered. The invariant measures and the resolution unity measures for the set of SMUS are constructed and the representation of squeezing and correlating operators and SMUS as superpositions of Glauber coherent states on the real line is elucidated.

  12. Minimum Description Length Shape and Appearance Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling is reviewed. It solves the point correspondence problem of selecting points on shapes defined as curves so that the points correspond across a data set. An efficient numerical implementation is presented and made available as open s...

  13. Faster Fully-Dynamic minimum spanning forest

    DEFF Research Database (Denmark)

    Holm, Jacob; Rotenberg, Eva; Wulff-Nilsen, Christian

    2015-01-01

    We give a new data structure for the fully-dynamic minimum spanning forest problem in simple graphs. Edge updates are supported in O(log4 n/log logn) expected amortized time per operation, improving the O(log4 n) amortized bound of Holm et al. (STOC’98, JACM’01).We also provide a deterministic data...

  14. Minimum Wage Effects throughout the Wage Distribution

    Science.gov (United States)

    Neumark, David; Schweitzer, Mark; Wascher, William

    2004-01-01

    This paper provides evidence on a wide set of margins along which labor markets can adjust in response to increases in the minimum wage, including wages, hours, employment, and ultimately labor income. Not surprisingly, the evidence indicates that low-wage workers are most strongly affected, while higher-wage workers are little affected. Workers…

  15. Asymptotics for the minimum covariance determinant estimator

    NARCIS (Netherlands)

    Butler, R.W.; Davies, P.L.; Jhun, M.

    1993-01-01

    Consistency is shown for the minimum covariance determinant (MCD) estimators of multivariate location and scale and asymptotic normality is shown for the former. The proofs are made possible by showing a separating ellipsoid property for the MCD subset of observations. An analogous property is shown

  16. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering

    OpenAIRE

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-01-01

    Abstract: Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delit...

  17. Heat transfer assembly for a fluorescent lamp and fixture

    Science.gov (United States)

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  18. Full particle orbit effects in regular and stochastic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shun, E-mail: shun.ogawa@cpt.univ-mrs.fr [Aix Marseille Univ., Univ. Toulon, CNRS, CPT, Marseille (France); CEA, IRFM, F-13108 St. Paul-lez-Durance Cedex (France); Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel [Aix Marseille Univ., Univ. Toulon, CNRS, CPT, Marseille (France); Castillo-Negrete, Diego del [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); Dif-Pradalier, Guilhem; Garbet, Xavier [CEA, IRFM, F-13108 St. Paul-lez-Durance Cedex (France)

    2016-07-15

    We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the

  19. Orbital Dynamics of a Simple Solar Photon Thruster

    Directory of Open Access Journals (Sweden)

    Anna D. Guerman

    2009-01-01

    Full Text Available We study orbital dynamics of a compound solar sail, namely, a Simple Solar Photon Thruster and compare its behavior to that of a common version of sailcraft. To perform this analysis, development of a mathematical model for force created by light reflection on all sailcraft elements is essential. We deduce the equations of sailcraft's motion and compare performance of two schemes of solar propulsion for two test time-optimal control problems of trajectory transfer.

  20. Orbital Dynamics of a Simple Solar Photon Thruster

    OpenAIRE

    Guerman, Anna D.; Smirnov, Georgi V.; Pereira, Maria Cecilia

    2009-01-01

    We study orbital dynamics of a compound solar sail, namely, a Simple Solar Photon Thruster and compare its behavior to that of a common version of sailcraft. To perform this analysis, development of a mathematical model for force created by light reflection on all sailcraft elements is essential. We deduce the equations of sailcraft's motion and compare performance of two schemes of solar propulsion for two test time-optimal control problems of trajectory transfer.

  1. Research on orbit prediction for solar-based calibration proper satellite

    Science.gov (United States)

    Chen, Xuan; Qi, Wenwen; Xu, Peng

    2018-03-01

    Utilizing the mathematical model of the orbit mechanics, the orbit prediction is to forecast the space target's orbit information of a certain time based on the orbit of the initial moment. The proper satellite radiometric calibration and calibration orbit prediction process are introduced briefly. On the basis of the research of the calibration space position design method and the radiative transfer model, an orbit prediction method for proper satellite radiometric calibration is proposed to select the appropriate calibration arc for the remote sensor and to predict the orbit information of the proper satellite and the remote sensor. By analyzing the orbit constraint of the proper satellite calibration, the GF-1solar synchronous orbit is chose as the proper satellite orbit in order to simulate the calibration visible durance for different satellites to be calibrated. The results of simulation and analysis provide the basis for the improvement of the radiometric calibration accuracy of the satellite remote sensor, which lays the foundation for the high precision and high frequency radiometric calibration.

  2. Application of Steenbeck's minimum principle for three-dimensional modelling of DC arc plasma torches

    International Nuclear Information System (INIS)

    Li Heping; Pfender, E; Chen, Xi

    2003-01-01

    In this paper, physical/mathematical models for the three-dimensional, quasi-steady modelling of the plasma flow and heat transfer inside a non-transferred DC arc plasma torch are described in detail. The Steenbeck's minimum principle (Finkelnburg W and Maecker H 1956 Electric arcs and thermal plasmas Encyclopedia of Physics vol XXII (Berlin: Springer)) is employed to determine the axial position of the anode arc-root at the anode surface. This principle postulates a minimum arc voltage for a given arc current, working gas flow rate, and torch configuration. The modelling results show that the temperature and flow fields inside the DC non-transferred arc plasma torch show significant three-dimensional features. The predicted anode arc-root attachment position and the arc shape by employing Steenbeck's minimum principle are reasonably consistent with experimental observations. The thermal efficiency and the torch power distribution are also calculated in this paper. The results show that the thermal efficiency of the torch always ranges from 30% to 45%, i.e. more than half of the total power input is taken away by the cathode and anode cooling water. The special heat transfer mechanisms at the plasma-anode interface, such as electron condensation, electron enthalpy and radiative heat transfer from the bulk plasma to the anode inner surface, are taken into account in this paper. The calculated results show that besides convective heat transfer, the contributions of electron condensation, electron enthalpy and radiation to the anode heat transfer are also important (∼30% for parameter range of interest in this paper). Additional effects, such as the non-local thermodynamic equilibrium plasma state near the electrodes, the transient phenomena, etc, need to be considered in future physical/mathematical models, including corresponding measurements

  3. Station Transfers

    Data.gov (United States)

    Department of Homeland Security — ixed rail transit external system transfers for systems within the Continental United States, Alaska, Hawaii, the District of Columbia, and Puerto Rico. The modes of...

  4. Technology transfer

    International Nuclear Information System (INIS)

    1998-01-01

    On the base of technological opportunities and of the environmental target of the various sectors of energy system this paper intend to conjugate the opportunity/objective with economic and social development through technology transfer and information dissemination [it

  5. [Idiopathic orbital inflammatory syndrome: Report of 24 cases].

    Science.gov (United States)

    Khochtali, S; Zayani, M; Ksiaa, I; Ben Meriem, I; Zaouali, S; Jelliti, B; Khairallah, M

    2018-04-01

    Idiopathic orbital inflammatory syndrome (IOIS) is an inflammatory condition of unknown etiology. The inflammation may affect all the structures within the orbit (anterior, diffuse, apical, myositic, dacryoadenitis) and corresponds to uniquely orbital inflammation without an identifiable local cause or systemic disease. The goal of this study is to describe the clinical and radiographic characteristics of IOIS and discuss the role of orbital biopsy in this condition. This is a retrospective review of the charts of 24 patients diagnosed with IOIS at Fattouma Bourguiba hospital, Monastir, Tunisia, from January 2007 to December 2015. This study included all patients with IOIS and a minimum follow-up of six months. All patients had a complete ophthalmological examination and orbital and head CT scan and/or MRI. A work-up was performed in all cases to rule out local causes and systemic disease. Only 11 patients underwent biopsy. The diagnosis of the clinical entity IOIS was made according to the Rootman criteria. Oral steroids were the first line therapy. A bolus of intravenous methylprednisolone was administered first in vision-threatening cases. Response to treatment was defined as disappearance of signs and symptoms of IOIS. Orbital pain was the most common symptom (62.5%), followed by proptosis and decreased vision (37.5% each). Best-corrected visual acuity (BCVA) was greater than 5/10 in 70.7% of patients. Lacrimal gland enlargement was observed in 3 patients. Oculomotor disorders were present in 70% of cases and 20.8% of patients had compressive optic neuropathy. Orbital imaging showed, in most cases, oculomotor muscle inflammation (87.5%) involving particularly the superior rectus muscle (54.2%) and inflammation of orbital fat (66.7%). Fifty percent had myositic inflammation. Biopsy was performed in 11 patients, showing nonspecific inflammation (n=10) and the sclerosing form (n=1). A total of 83.3% of patients received oral corticosteroids for a mean duration of

  6. Effect of Weight Transfer on a Vehicle's Stopping Distance.

    Science.gov (United States)

    Whitmire, Daniel P.; Alleman, Timothy J.

    1979-01-01

    An analysis of the minimum stopping distance problem is presented taking into account the effect of weight transfer on nonskidding vehicles and front- or rear-wheels-skidding vehicles. Expressions for the minimum stopping distances are given in terms of vehicle geometry and the coefficients of friction. (Author/BB)

  7. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  8. Angles-only relative orbit determination in low earth orbit

    Science.gov (United States)

    Ardaens, Jean-Sébastien; Gaias, Gabriella

    2018-06-01

    The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.

  9. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  10. Particle orbits in W VII-X configurations

    International Nuclear Information System (INIS)

    Wobig, H.

    1987-01-01

    It is shown that magnetic coordinates are very convenient for describing particle orbits and neoclassical losses in stellarator studies. In the configurations considered (WVII-A and AS, Helias, Heliac, and BSX) plateau losses can be reduced by a factor of 3-4 compared with an equivalent tokamak. It is possible to reduce plateau losses and bootstrap current simultaneously. The bootstrap current can be made negligibly small. The Heliac configuration shows larger plateau losses than the equivalent tokamak. It is possible to localize trapped particles in a region of minimum radial drift velocity. The Er fields strongly reduce localized particle losses

  11. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  12. Detecting a Subsurface Ocean From Periodic Orbits at Enceladus

    Science.gov (United States)

    Casotto, S.; Padovan, S.; Russell, R. P.; Lara, M.

    2008-12-01

    from the tiger- stripes. Near-circular, low altitude highly inclined orbits with arbitrary initial conditions will impact Enceladus if uncontrolled in about 1 to 2 days. To reduce risk and station-keeping requirements we choose periodic orbits in the Hill's plus non-spherical Enceladus model. Despite the instability, the repeat ground track solutions represent equilibria in the dominant terms of the dynamics and therefore extend the uncontrolled lifetimes to ~7 to ~10 days. Round-trip transfers between the two orbital phases is expected to conservatively cost between ~50 and ~100 m/s. We use orbits of different altitudes and inclinations to simulate Earth-based ranging to the orbiter and altimeter measurements to the surface of Enceladus. The simulations are made assuming different tidal responses by adopting different values of the Love numbers. The synthetic measurements are then inverted and the tidal parameters h2 and k2 estimated. Results will be presented in terms of sensitivity of detection of Love numbers to the different orbital geometries. Indications will thus be provided for optimized orbit planning of future exploration missions aimed at investigating the internal structure of the satellite and the detection of its putative subcrustal ocean.

  13. THE SOUTHERN ARGENTINA AGILE METEOR RADAR ORBITAL SYSTEM (SAAMER-OS): AN INITIAL SPORADIC METEOROID ORBITAL SURVEY IN THE SOUTHERN SKY

    Energy Technology Data Exchange (ETDEWEB)

    Janches, D.; Swarnalingam, N. [Space Weather Laboratory, Mail Code 674, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Close, S. [Space Environment and Satellite Systems Laboratory, Department of Aeronautics and Astronautics, Stanford University, Palo Alto, CA (United States); Hormaechea, J. L. [Estacion Astronomica Rio Grande, Rio Grande, Tierra del Fuego (Argentina); Murphy, A.; O’Connor, D.; Vandepeer, B.; Fuller, B. [Genesis Software Pty Ltd, Adelaide (Australia); Fritts, D. C. [GATS Inc., Boulder CO (United States); Brunini, C., E-mail: diego.janches@nasa.gov, E-mail: nimalan.swarnalingam@nasa.gov, E-mail: sigridc@stanford.edu, E-mail: jlhormaechea@untdf.edu.ar, E-mail: amurphy@gsoft.com.au, E-mail: doconnor@gsoft.com.au, E-mail: bvandepe@gsoft.com.au, E-mail: bfuller@gsoft.com.au, E-mail: dave@gats-inc.com, E-mail: claudiobrunini@yahoo.com [Departmento de Astronomia y Geofísica, Universidad Nacional de La Plata, La Plata (Argentina)

    2015-08-10

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  14. The Southern Argentina Agile Meteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky

    Science.gov (United States)

    Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.

    2015-01-01

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteoroid applications. The outcomes of this work show that, given SAAMERs location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  15. Orbital apex syndrome associated with herpes zoster ophthalmicus

    Directory of Open Access Journals (Sweden)

    Kurimoto T

    2011-11-01

    Full Text Available Takuji Kurimoto1, Masahiro Tonari1, Norihiko Ishizaki1, Mitsuhiro Monta2, Saori Hirata2, Hidehiro Oku1, Jun Sugasawa1, Tsunehiko Ikeda11Department of Ophthalmology, Osaka Medical College, 2Department of Ophthalmology, Shitennoji Hospital, Osaka, JapanAbstract: We report our findings for a patient with orbital apex syndrome associated with herpes zoster ophthalmicus. Our patient was initially admitted to a neighborhood hospital because of nausea and loss of appetite of 10 days' duration. The day after hospitalization, she developed skin vesicles along the first division of the trigeminal nerve, with severe lid swelling and conjunctival injection. On suspicion of meningoencephalitis caused by varicella zoster virus, antiviral therapy with vidarabine and betamethasone was started. Seventeen days later, complete ptosis and ophthalmoplegia developed in the right eye. The light reflex in the right eye was absent and anisocoria was present, with the right pupil larger than the left. Fat-suppressed enhanced T1-weighted magnetic resonance images showed high intensity areas in the muscle cone, cavernous sinus, and orbital optic nerve sheath. Our patient was diagnosed with orbital apex syndrome, and because of skin vesicles in the first division of the trigeminal nerve, the orbital apex syndrome was considered to be caused by herpes zoster ophthalmicus. After the patient was transferred to our hospital, prednisolone 60 mg and vidarabine antiviral therapy was started, and fever and headaches disappeared five days later. The ophthalmoplegia and optic neuritis, but not the anisocoria, gradually resolved during tapering of oral therapy. From the clinical findings and course, the cause of the orbital apex syndrome was most likely invasion of the orbital apex and cavernous sinus by the herpes virus through the trigeminal nerve ganglia.Keywords: varicella zoster virus, orbital apex syndrome, herpes zoster ophthalmicus, complete ophthalmoplegia

  16. Nowcasting daily minimum air and grass temperature

    Science.gov (United States)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  17. Heat transfer physics

    CERN Document Server

    Kaviany, Massoud

    2014-01-01

    This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers that enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum tr...

  18. Measurement of Minimum Bias Observables with ATLAS

    CERN Document Server

    Kvita, Jiri; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes. It has also a significant relevance for the simulation of the environment at the LHC with many concurrent pp interactions (“pileup”). The ATLAS collaboration has provided new measurements of the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center of mass energies of 8 TeV and 13 TeV. The measurements cover a wide spectrum using charged particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities.

  19. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  20. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  1. Protocol for the verification of minimum criteria

    International Nuclear Information System (INIS)

    Gaggiano, M.; Spiccia, P.; Gaetano Arnetta, P.

    2014-01-01

    This Protocol has been prepared with reference to the provisions of article 8 of the Legislative Decree of May 26, 2000 No. 187. Quality controls of radiological equipment fit within the larger 'quality assurance Program' and are intended to ensure the correct operation of the same and the maintenance of that State. The pursuit of this objective guarantees that the radiological equipment subjected to those controls also meets the minimum criteria of acceptability set out in annex V of the aforementioned legislative decree establishing the conditions necessary to allow the functions to which each radiological equipment was designed, built and for which it is used. The Protocol is established for the purpose of quality control of radiological equipment of Cone Beam Computer Tomography type and reference document, in the sense that compliance with stated tolerances also ensures the subsistence minimum acceptability requirements, where applicable.

  2. Low Streamflow Forcasting using Minimum Relative Entropy

    Science.gov (United States)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  3. Minimum Wage Laws and the Distribution of Employment.

    Science.gov (United States)

    Lang, Kevin

    The desirability of raising the minimum wage long revolved around just one question: the effect of higher minimum wages on the overall level of employment. An even more critical effect of the minimum wage rests on the composition of employment--who gets the minimum wage job. An examination of employment in eating and drinking establishments…

  4. Minimum intervention dentistry: periodontics and implant dentistry.

    Science.gov (United States)

    Darby, I B; Ngo, L

    2013-06-01

    This article will look at the role of minimum intervention dentistry in the management of periodontal disease. It will discuss the role of appropriate assessment, treatment and risk factors/indicators. In addition, the role of the patient and early intervention in the continuing care of dental implants will be discussed as well as the management of peri-implant disease. © 2013 Australian Dental Association.

  5. Minimum quality standards and international trade

    DEFF Research Database (Denmark)

    Baltzer, Kenneth Thomas

    2011-01-01

    This paper investigates the impact of a non-discriminating minimum quality standard (MQS) on trade and welfare when the market is characterized by imperfect competition and asymmetric information. A simple partial equilibrium model of an international Cournot duopoly is presented in which a domes...... prefer different levels of regulation. As a result, international trade disputes are likely to arise even when regulation is non-discriminating....

  6. ''Reduced'' magnetohydrodynamics and minimum dissipation rates

    International Nuclear Information System (INIS)

    Montgomery, D.

    1992-01-01

    It is demonstrated that all solutions of the equations of ''reduced'' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs

  7. Minimum K_2,3-saturated Graphs

    OpenAIRE

    Chen, Ya-Chen

    2010-01-01

    A graph is K_{2,3}-saturated if it has no subgraph isomorphic to K_{2,3}, but does contain a K_{2,3} after the addition of any new edge. We prove that the minimum number of edges in a K_{2,3}-saturated graph on n >= 5 vertices is sat(n, K_{2,3}) = 2n - 3.

  8. Minimum degree and density of binary sequences

    DEFF Research Database (Denmark)

    Brandt, Stephan; Müttel, J.; Rautenbach, D.

    2010-01-01

    For d,k∈N with k ≤ 2d, let g(d,k) denote the infimum density of binary sequences (x)∈{0,1} which satisfy the minimum degree condition σ(x+) ≥ k for all i∈Z with xi=1. We reduce the problem of computing g(d,k) to a combinatorial problem related to the generalized k-girth of a graph G which...

  9. ROGER a potential orbital space debris removal system

    Science.gov (United States)

    Starke, Juergen; Bischof, Bernd; Foth, W.-O.; -J., J.; Günther

    The previous activities in the field of On Orbit Servicing studied in the 1990's included in partic-ular the capability of vehicles in GEO to capture and support satellites (mainly communication satellites) to enable repair and continuation of operations, and finally the controlled transfer the target into a permanent graveyard orbit. The specific capture tools for these applications were mostly based on robotic systems to capture and fix the target under specific dynamic constraints (e.g. slowly tumbling target) without damage, and to allow the stabilization, re-orientation and potential repair of the target and subsequent release or transport to the final disposal orbit. Due to the drastically increasing number of debris particularly in the Low Earth Orbits (SSO) the active debris removal is now necessary to counteract to the predicted debris production cascade (Kessler Syndrome), which means the pollution of the total sphere in low earth orbit and not only the SSO area. In most of the debris congresses it was recommended to start removal with the still integrated systems as soon as possible. In the case of large debris objects, the soft capture system can be replaced by a simpler and robust system able to operate from a safe distance to the target and flexible enough to capture and hold different types of targets such as deactivated and/or defective satellites, upper stages and big fragments. These nominally non -cooperative targets might be partially destroyed by the capture process, but the production of additional debris shall be avoided. A major argument for the commercial applications is a multi-target mission potential, which is possible at GEO because the transfer propellant requirement to the disposal orbit and the return to the orbit of the next potential target is relative low (orbits with similar inclination and altitude). The proposed ROGER system is designed as a spacecraft with rendezvous capabilities including inspection in the vicinity of the

  10. Design for minimum energy in interstellar communication

    Science.gov (United States)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  11. The Eccentric Behavior of Nearly Frozen Orbits

    Science.gov (United States)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  12. The method of coadjoint orbits

    International Nuclear Information System (INIS)

    Delius, G.W.; Van Nieuwenhuizen, P.; Rodgers, V.G.J.

    1990-01-01

    The method of coadjoint orbits produces for any infinite dimensional Lie (super) algebra A with nontrivial central charge an action for scalar (super) fields which has at least the symmetry A. In this article, the authors try to make this method accessible to a larger audience by analyzing several examples in more detail than in the literature. After working through the Kac-Moody and Virasoro cases, we apply the method to the super Virasoro algebra and reobtain the super-symmetric extension of Polyakov's local nonpolynomial action for two-dimensional quantum gravity. As in the Virasoro case this action corresponds to the coadjoint orbit of a pure central extension. The authors further consider the actions corresponding to the other orbits of the super Virasoro algebra. As a new result the authors construct the actions for the N = 2 super Virasoro algebra

  13. Gravity Probe B orbit determination

    International Nuclear Information System (INIS)

    Shestople, P; Ndili, A; Parkinson, B W; Small, H; Hanuschak, G

    2015-01-01

    The Gravity Probe B (GP-B) satellite was equipped with a pair of redundant Global Positioning System (GPS) receivers used to provide navigation solutions for real-time and post-processed orbit determination (OD), as well as to establish the relation between vehicle time and coordinated universal time. The receivers performed better than the real-time position requirement of 100 m rms per axis. Post-processed solutions indicated an rms position error of 2.5 m and an rms velocity error of 2.2 mm s −1 . Satellite laser ranging measurements provided independent verification of the GPS-derived GP-B orbit. We discuss the modifications and performance of the Trimble Advance Navigation System Vector III GPS receivers. We describe the GP-B precision orbit and detail the OD methodology, including ephemeris errors and the laser ranging measurements. (paper)

  14. MRI of orbital hydroxyapatite implants

    International Nuclear Information System (INIS)

    Flanders, A.E.; De Potter P.; Rao, V.M.; Tom, B.M.; Shields, C.L.; Shields, J.A.

    1996-01-01

    Our aim was to use MRI for the postsurgical assessment of a new form of integrated orbital implant composed of a porous calcium phosphate hydroxyapatite substrate. We studied ten patients 24-74 years of age who underwent enucleation and implantation of a hydroxyapatite ball; 5-13 months after surgery, each patient was examined by spin-echo MRI, with fat suppression and gadolinium enhancement. Fibrovascular ingrowth was demonstrated in all ten patients as areas of enhancement at the periphery of the hydroxyapatite sphere that extended to the center to a variable degree. The radiologist should aware of the MRI appearances of the coralline hydroxyapatite orbital implant since it is now widely used following enucleation. MRI is a useful means to determine successful incorporation of the substrate into the orbital tissues. The normal pattern of contrast enhancement should not be mistaken for recurrent tumor or infection. (orig.)

  15. Orbits on bodies of rotation

    Science.gov (United States)

    Schröer, H.

    Orbits of small balls on revolutions solid shells are examined. Which velocity is necessary to stay in balance? The angular velocity remains constant. General revolution solid, revolution cone, revolution ellipsoid, ball, paraboloid and hyperboloid are treated. Chapter 1 represents the frictionless case. Chapter 2 deals with the friction case. The transformation from velocity to the belonging orbit height is calculated in chapter 3. In chapter 4 and 5 the macro revolution solids follow (without and with friction)is treated. The assumption of a homogeneous field is not possible here. The radial gravitational field must be used. In the last chapter we have orbits with non constant angular velocity that can be derived with the Lagrange-equations of the second kind in the frictionless case. Here is also possible to view different revolution solids. The book is recommended to all experimental-, theoretical and mathematical physicists. There is an english and a german edition.

  16. Orbital periods of recurrent novae

    International Nuclear Information System (INIS)

    Schaefer, B.E.

    1990-01-01

    The class of recurrent novae (RN) with thermonuclear runaways contains only three systems (T Pyx, U Sco, and V394 CrA), for which no orbital periods are known. This paper presents a series of photometric observations where the orbital periods for all three systems are discovered. T Pyx is found to have sinusoidal modulation with an amplitude of 0.08 mag and a period of 2.3783 h (with a possible alias of 2.6403 h). U Sco is found to be an eclipsing system with an eclipse amplitude of roughly 1.5 mag and an orbital period of 1.2344 days. V394 CrA is found to have sinusoidal modulation with an amplitude of 0.5 mag and a period of 0.7577 days. Thus two out of three RN with thermonuclear runaways (or five out of six for all RN) have evolved companions. 16 refs

  17. MR imaging of orbital disease

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Yasuyuki; Sato, Ryuiti; Sakamoto, Yuji; Kojima, Ryutaro; Takahashi, Mutsumasa; Maruoka, Syouko; Okamura, Ryoichi; Oguni, Tatsuro.

    1989-05-01

    Sixty five cases with orbital and ocular lesions were evaluated by MRI in comparison with high resolution CT. MRI was performed with spin echo techniques (short TR/TE and long TR/TE) using a 0.22 tesla resistive unit (Toshiba MRT-22A) or a 1.5 tesla superconductive unit (Siemens Magnetom). MRI was superior to CT in (1) detecting ocular lesions and vitreous changes, (2) differentiating a tumor from the adjacent extraocular muscles and optic nerves, (3) identifying the lesion in the orbital apex and demonstrating the posterior extent of the tumor and (4) detecting the abnormal flow in the orbital vascular structures. Although some tumors had specific signal intensities including hemangioma, menigioma, and pseudotumor, majority of tumors revealed non-sepcific signal intensities. CT was superior to MRI in detection for small and calcified lesions as well as visualization of bone details. (author).

  18. Mass transfer dynamics in double degenerate binary systems

    International Nuclear Information System (INIS)

    Dan, M; Rosswog, S; Brueggen, M

    2009-01-01

    We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.

  19. Orbital computed tomography for exophthalmos

    International Nuclear Information System (INIS)

    Kim, Ok Keun; Lee, Hyun; Sol, Chang Hyo; Kim, Byung Soo

    1987-01-01

    Since exophthalmos is caused by any decrease in the size of bony orbit or occurrence of mass within the rigid orbit, the accurate diagnosis of its causes are essential in determining the therapeutic aims. Exophthalmos is one of the important signs being the indication for orbital computed tomography along with periorbital swelling, visual loss, orbital trauma and diplopia. CT as the diagnostic tool for the cause of exophthalmos not only displays a superb role with uncomparable quality in comparison to any conventional diagnostic methods but also has a decisive role in determining the therapeutic aims and the appropriate operative method when the operation is indicated. The orbital CT was performed from May in 1983 to May in 1985 whose with chief complaints were exophthalmos and 23 cases were confirmed by operation, biopsy, clinical progression or other diagnostic procedures. Here was report thoroughly analyzed 23 cases. The results were as follows : 1. The etiologic disease of exophthalmos were 6 cases of pseudotumor, 4 cases of thyroid ophthalmopathy, 4 cases of maxill ary sinus and nasal cavity Ca., 3 cases of mucocele and 1 case of alveolar soft part sarcoma, osteoma, dermoid cyst, pleomorphic adenoma, meningioma, and C.C.F. each. 2. The origin of the etiologic diseases of exophthalmos were 13 cases of primary within bony orbit and 10 cases of secondary from adjacent structure. 3. The site of lesions were 11 cases of intraconal and extraconal, 10 cases of extraconal, and 2 cases of intraconal origin. 4. The degree of exophthalmos in CT scan was in proportion to the volume of the mass except in the case of thyroid ophthalmopathy. The upper limit of normal range by CT scan using regression line equation was 16.2 mm in approximation. 5. CT was a very useful diagnostic tool in the accurate assessment of the kinds of lesion, its location, and its relationship to adjacent structures in the diagnosis of etiologic diseases of exophthalmos

  20. Theory of orbital magnetoelectric response

    International Nuclear Information System (INIS)

    Malashevich, Andrei; Souza, Ivo; Coh, Sinisa; Vanderbilt, David

    2010-01-01

    We extend the recently developed theory of bulk orbital magnetization to finite electric fields, and use it to calculate the orbital magnetoelectric (ME) response of periodic insulators. Working in the independent-particle framework, we find that the finite-field orbital magnetization can be written as a sum of three gauge-invariant contributions, one of which has no counterpart at zero field. The extra contribution is collinear with and explicitly dependent on the electric field. The expression for the orbital magnetization is suitable for first-principles implementations, allowing one to calculate the ME response coefficients by numerical differentiation. Alternatively, perturbation-theory techniques may be used, and for that purpose we derive an expression directly for the linear ME tensor by taking the first field-derivative analytically. Two types of terms are obtained. One, the 'Chern-Simons' term, depends only on the unperturbed occupied orbitals and is purely isotropic. The other, 'Kubo' terms, involve the first-order change in the orbitals and give isotropic as well as anisotropic contributions to the response. In ordinary ME insulators all terms are generally present, while in strong Z 2 topological insulators only the Chern-Simons term is allowed, and is quantized. In order to validate the theory, we have calculated under periodic boundary conditions the linear ME susceptibility for a 3D tight-binding model of an ordinary ME insulator, using both the finite-field and perturbation-theory expressions. The results are in excellent agreement with calculations on bounded samples.

  1. Orbital computed tomography for exophthalmos

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ok Keun; Lee, Hyun; Sol, Chang Hyo; Kim, Byung Soo [College of Medicine, Pusan National University, Busan (Korea, Republic of)

    1987-06-15

    Since exophthalmos is caused by any decrease in the size of bony orbit or occurrence of mass within the rigid orbit, the accurate diagnosis of its causes are essential in determining the therapeutic aims. Exophthalmos is one of the important signs being the indication for orbital computed tomography along with periorbital swelling, visual loss, orbital trauma and diplopia. CT as the diagnostic tool for the cause of exophthalmos not only displays a superb role with uncomparable quality in comparison to any conventional diagnostic methods but also has a decisive role in determining the therapeutic aims and the appropriate operative method when the operation is indicated. The orbital CT was performed from May in 1983 to May in 1985 whose with chief complaints were exophthalmos and 23 cases were confirmed by operation, biopsy, clinical progression or other diagnostic procedures. Here was report thoroughly analyzed 23 cases. The results were as follows : 1. The etiologic disease of exophthalmos were 6 cases of pseudotumor, 4 cases of thyroid ophthalmopathy, 4 cases of maxill ary sinus and nasal cavity Ca., 3 cases of mucocele and 1 case of alveolar soft part sarcoma, osteoma, dermoid cyst, pleomorphic adenoma, meningioma, and C.C.F. each. 2. The origin of the etiologic diseases of exophthalmos were 13 cases of primary within bony orbit and 10 cases of secondary from adjacent structure. 3. The site of lesions were 11 cases of intraconal and extraconal, 10 cases of extraconal, and 2 cases of intraconal origin. 4. The degree of exophthalmos in CT scan was in proportion to the volume of the mass except in the case of thyroid ophthalmopathy. The upper limit of normal range by CT scan using regression line equation was 16.2 mm in approximation. 5. CT was a very useful diagnostic tool in the accurate assessment of the kinds of lesion, its location, and its relationship to adjacent structures in the diagnosis of etiologic diseases of exophthalmos.

  2. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  3. GLONASS orbit/clock combination in VNIIFTRI

    Science.gov (United States)

    Bezmenov, I.; Pasynok, S.

    2015-08-01

    An algorithm and a program for GLONASS satellites orbit/clock combination based on daily precise orbits submitted by several Analytic Centers were developed. Some theoretical estimates for combine orbit positions RMS were derived. It was shown that under condition that RMS of satellite orbits provided by the Analytic Centers during a long time interval are commensurable the RMS of combine orbit positions is no greater than RMS of other satellite positions estimated by any of the Analytic Centers.

  4. Precise GPS orbits for geodesy

    Science.gov (United States)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  5. Primary orbital squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ana L. Campos Arbulú

    2017-02-01

    Full Text Available Primary orbital squamous cell carcinoma is a rare entity. There is little published literature. We report a case of primary squamous cell carcinoma of the orbital soft tissues. Surgical resection offered the best treatment for the patient. Complete resection of the lesion was achieved. The patient received adjuvant radiotherapy due to the proximity of the lesion to the surgical margins. Surgical treatment is feasible and should be considered as part of the surgeon's arsenal. However, therapeutic decisions must be made on a case-by-case basis

  6. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  7. Orbital effects in actinide systems

    International Nuclear Information System (INIS)

    Lander, G.H.

    1983-01-01

    Actinide magnetism presents a number of important challenges; in particular, the proximity of 5f band to the Fermi energy gives rise to strong interaction with both d and s like conduction electrons, and the extended nature of the 5f electrons means that they can interact with electron orbitals from neighboring atoms. Theory has recently addressed these problems. Often neglected, however, is the overwhelming evidence for large orbital contributions to the magnetic properties of actinides. Some experimental evidence for these effects are presented briefly in this paper. They point, clearly incorrectly, to a very localized picture for the 5f electrons. This dichotomy only enhances the nature of the challenge

  8. AA, closed orbit observation pickup

    CERN Multimedia

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The small ones, like the one we see here, were inserted into the vacuum chamber of the BLG (long and narrow) bending magnets. See also 8001372, 8010042, 8010045

  9. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The wide ones (very wide indeed: 70 cm), like the one we see here, were placed inside the vacuum chamber of the wide quadrupoles QFW, at maximum dispersion. See also 8001372, 8001383, 8010045

  10. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The wide ones (very wide indeed: 70 cm), like the one we see here, were placed inside the vacuum chamber of the wide quadrupoles, QFW, at maximum dispersion. See also 8001372,8001383, 8010042

  11. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The small ones, like the one we see here, were inserted into the vacuum chamber of the BLG (long and narrow) bending magnets. Werner Sax contemplates his achievement. See also 8001383, 8010042, 8010045.

  12. Energy and the Elliptical Orbit

    Science.gov (United States)

    Nettles, Bill

    2009-03-01

    In the January 2007 issue of The Physics Teacher, Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and important. This paper presents an exercise which uses an energy/angular momentum conservation model for elliptical orbits. This exercise can be done easily by an individual student and on regular notebook-sized paper.

  13. Minimum and Full Fluidization Velocity for Alumina Used in the Aluminum Smelter

    Directory of Open Access Journals (Sweden)

    Paulo Douglas S. de Vasconcelos

    2011-11-01

    Full Text Available Fluidization is an engineering unit operation that occurs when a fluid (liquid or gas ascends through a bed of particles, and these particles get a velocity of minimum fluidization enough to stay in suspension, but without carrying them in the ascending flow. As from this moment the powder behaves as liquid at boiling point, hence the term “fluidization”. This operation is widely used in the aluminum smelter processes, for gas dry scrubbing (mass transfer and in a modern plant for continuous alumina pot feeding (particles’ momentum transfer. The understanding of the alumina fluoride rheology is of vital importance in the design of fluidized beds for gas treatment and fluidized pipelines for pot feeding. This paper shows the results of the experimental and theoretical values of the minimum and full fluidization velocities for the alumina fluoride used to project the state of the art round non‐metallic air‐fluidized conveyor of multiples outlets.

  14. Thermochemistry of the reactions of PH +2 ( 1A 1) and PH +2 ( 3B 1) with CO. A G2 molecular orbital study

    Science.gov (United States)

    Esseffar, M.; Luna, A.; Mó, O.; Yáñez, M.

    1994-06-01

    The Gaussian-2 (G2) theoretical procedure, based on ab initio molecular orbital theory, is used to study the potential energy surfaces corresponding to gas phase reactions between PH +2 singlet and triplet state cations with carbon monoxide. Important differences between singlets and triplets, both regarding their bonding and their stabilities have been found. The most outstanding result is that, although the first 3B 1 excited state of PH +2 is only about 20 kcal/mol above the 1A 1 ground state, the singlet global minimum of the [H 2, P, C, O] + potential energy surface lies 61 kcal/mol below the triplet global minimum. This is so because, in general, triplet state cations are ion—dipole complexes, while the singlets are covalently bound species. In agreement with experimental evidence, only the formation of the adduct is exothermic, while all processes yielding PO or PC containing species as well as the proton transfer reaction, are strongly endothermic. Estimates of the heats of formation of H 2PO + and HCP species are given.

  15. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    Science.gov (United States)

    Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.

    2010-01-01

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  16. A plasma solenoid driven by an Orbital Angular Momentum laser beam

    OpenAIRE

    Nuter, R.; Korneev, Ph.; Thiele, I.; Tikhonchuk, V.

    2018-01-01

    A tens of Tesla quasi-static axial magnetic field can be produced in the interaction of a short intense laser beam carrying an Orbital Angular Momentum with an underdense plasma. Three-dimensional "Particle In Cell" simulations and analytical model demonstrate that orbital angular momentum is transfered from a tightly focused radially polarized laser beam to electrons without any dissipative effect. A theoretical model describing the balistic interaction of electrons with laser shows that par...

  17. Orbital Maneuvers for Spacecrafts Travelling to/from the Lagrangian Points

    Science.gov (United States)

    Bertachini, A.

    The well-known Lagrangian points that appear in the planar restricted three-body problem (Szebehely, 1967) are very important for astronautical applications. They are five points of equilibrium in the equations of motion, what means that a particle located at one of those points with zero velocity will remain there indefinitely. The collinear points (L1, L2 and L3) are always unstable and the triangular points (L4 and L5) are stable in the present case studied (Sun-Earth system). They are all very good points to locate a space-station, since they require a small amount of V (and fuel), the control to be used for station-keeping. The triangular points are specially good for this purpose, since they are stable equilibrium points. In this paper, the planar restricted three-body problem is regularized (using Lemaître regularization) and combined with numerical integration and gradient methods to solve the two point boundary value problem (the Lambert's three-body problem). This combination is applied to the search of families of transfer orbits between the Lagrangian points and the Earth, in the Sun-Earth system, with the minimum possible cost of the control used. So, the final goal of this paper is to find the magnitude and direction of the two impulses to be applied in the spacecraft to complete the transfer: the first one when leaving/arriving at the Lagrangian point and the second one when arriving/living at the Earth. This paper is a continuation of two previous papers that studied transfers in the Earth-Moon system: Broucke (1979), that studied transfer orbits between the Lagrangian points and the Moon and Prado (1996), that studied transfer orbits between the Lagrangian points and the Earth. So, the equations of motion are: whereis the pseudo-potential given by: To solve the TPBVP in the regularized variables the following steps are used: i) Guess a initial velocity Vi, so together with the initial prescribed position ri the complete initial state is known; ii

  18. Two-craft Coulomb formation study about circular orbits and libration points

    Science.gov (United States)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the

  19. Reliability and Minimum Detectable Change of Temporal-Spatial, Kinematic, and Dynamic Stability Measures during Perturbed Gait.

    Directory of Open Access Journals (Sweden)

    Christopher A Rábago

    Full Text Available Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1-50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the

  20. Technology transfer

    International Nuclear Information System (INIS)

    Boury, C.

    1986-01-01

    This paper emphasizes in the specific areas of design, engineering and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  1. Orbital computed tomography: technical aspects

    International Nuclear Information System (INIS)

    Beck, T.J.; Rosenbaum, A.E.; Miller, N.R.

    1982-01-01

    Computed tomographic scanning has revolutionized the diagnosis and management of orbital disease. The best use of this methodology requires knowledge of the principles and appropriate attention to scanning protocols. Computed tomographic scanning of the orbit is a demanding technique requiring thin sections through planes precisely positioned from the topographical anatomy. Ideally, orbital CT should include both transverse axial and coronal sections: The pathological condition and its plane of growth will influence the selection of the optimal plane or section. Coronal sections may be obtained either directly or indirectly by computer reconstruction from contiguous transverse images. Sagittal or oblique sections or both also are useful and may be obtained directly or indirectly. Difficulty in patient positioning may preclude direct sagittal imaging, however. The use of intravenous contrast enhancement is not necessary as a routine technique unless a mass is identified or suspected. Where surgical resection or biopsy of a space-occupying lesion is contemplated, contrast enhancement can be valuable in assessing relative vascularity and aiding diagnostic specificity. It should be continually emphasized that CT is a powerful technology which, in orbital diagnosis, produces the highest yield when clinician and radiologist collaborate in the radiodiagnostic workup. The clinical information supplied by the referring ophthalmologist is used by the radiologist both in the selection of the appropriate techniques for investigation and in striving to achieve the most specific conclusion

  2. Getting a Crew into Orbit

    Science.gov (United States)

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  3. Closed orbit analysis for RHIC

    International Nuclear Information System (INIS)

    Milutinovic, J.; Ruggiero, A.G.

    1989-01-01

    We examine the effects of four types of errors in the RHIC dipoles and quadrupoles on the on-momentum closed orbit in the machine. We use PATRIS both to handle statistically the effects of kick-modeled errors and to check the performance of the Fermilab correcting scheme in a framework of a more realistic modeling. On the basis of the accepted rms values of the lattice errors, we conclude that in about 40% of all studied cases the lattice must be to some extent pre-corrected in the framework of the so-called ''first turn around strategy,'' in order to get a closed orbit within the aperture limitations at all and, furthermore, for approximately 2/3 of the remaining cases we find that a single pass algorithm of the Fermilab scheme is not sufficient to bring closed orbit distortions down to acceptable levels. We have modified the scheme and have allowed repeated applications of the otherwise unchanged three bump method and in doing so we have been able to correct the orbit in a satisfactory manner. 4 refs., 2 figs., 3 tabs

  4. DOT strategies versus orbiter strategies

    NARCIS (Netherlands)

    Rutten, R.J.

    2001-01-01

    The Dutch Open Telescope is a high-resolution solar imager coming on-line at La Palma. The definition of the DOT science niche, strategies, and requirements resemble Solar Orbiter considerations and deliberations. I discuss the latter in the light of the former, and claim that multi-line observation

  5. CONGENITAI, ORBITAL, TERATOMIA IN A

    African Journals Online (AJOL)

    Plastic and Reconstructive Surgery Unit, National Orthopaedic Hospital, Enugu, Nigeria. ABSTRAC"H". Congenital orbital teratomas are rare. This is a case report of an otherwise .... aspirate showed fairly cloudy, blood-tinged straw- coloured fluid with no malignant cells or organisms. Two histopathology reports of 3cm/ ...

  6. Orbital meningioma, the Utrecht experience

    NARCIS (Netherlands)

    Mourits, Maarten Ph.; Berkelbach van der Sprenkel, Jan Willem

    2001-01-01

    AIMS. 1) To evaluate epidemiological data (age, gender, initial complaints, and ophthalmic findings) of a patient cohort with a primary or secondary orbital meningioma. 2) To evaluate the clinical course of these patients. 3) To evaluate the outcome of treatment. PATIENTS AND METHODS. All

  7. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    Science.gov (United States)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  8. Broadening of ICRH produced fast ion profiles due to orbit effects

    International Nuclear Information System (INIS)

    Eriksson, L.-G.; Porcelli, F.

    1991-01-01

    In the JET tokamak, minority ions accelerated by ICRH reach energies in the MeV range. Near the plasma magnetic axis, the standard trapped particle ''banana'' orbit is distorted into a ''potato'' or ''fat banana'' orbit. The zero banana width approximation which is used in most Fokker-Planck calculations of velocity distributions of resonating ions is often not valid in JET. The inclusion of finite banana width effects will, in general, lead to a lowering of the averaged tail energy and a broadening of pressure profiles, power transfer profiles etc. A model for calculating orbit broadened profiles is presented. (Author)

  9. Spin torque on the surface of graphene in the presence of spin orbit splitting

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2013-06-01

    Full Text Available We study theoretically the spin transfer torque of a ferromagnetic layer coupled to (deposited onto a graphene surface in the presence of the Rashba spin orbit coupling (RSOC. We show that the RSOC induces an effective magnetic field, which will result in the spin precession of conduction electrons. We derive correspondingly the generalized Landau-Lifshitz-Gilbert (LLG equation, which describes the precessional motion of local magnetization under the influence of the spin orbit effect. Our theoretical estimate indicates that the spin orbit spin torque may have significant effect on the magnetization dynamics of the ferromagnetic layer coupled to the graphene surface.

  10. Subdecoherence time generation and detection of orbital entanglement in quantum dots.

    Science.gov (United States)

    Brange, F; Malkoc, O; Samuelsson, P

    2015-05-01

    Recent experiments have demonstrated subdecoherence time control of individual single-electron orbital qubits. Here we propose a quantum-dot-based scheme for generation and detection of pairs of orbitally entangled electrons on a time scale much shorter than the decoherence time. The electrons are entangled, via two-particle interference, and transferred to the detectors during a single cotunneling event, making the scheme insensitive to charge noise. For sufficiently long detector dot lifetimes, cross-correlation detection of the dot charges can be performed with real-time counting techniques, providing for an unambiguous short-time Bell inequality test of orbital entanglement.

  11. Orbital roof encephalocele mimicking a destructive neoplasm.

    Science.gov (United States)

    Alsuhaibani, Adel H; Hitchon, Patrick W; Smoker, Wendy R K; Lee, Andrew G; Nerad, Jeffrey A

    2011-01-01

    The purpose of this case report is to report an orbital roof encephalocele mimicking a destructive orbital neoplasm. Orbital roof encephalocele is uncommon but can mimic neoplasm. One potential mechanism for the orbital roof destruction is a post-traumatic "growing orbital roof fracture." The growing fracture has been reported mostly in children but can occur in adults. Alternative potential etiologies for the encephalocele are discussed, including Gorham syndrome. Orbital roof encephalocele is uncommon in adults, and the findings can superficially resemble an orbital neoplasm. Radiographic and clinical features that might suggest the correct diagnosis include a prior history of trauma, overlying frontal lobe encephalomalacia without significant mass effect or edema, and an orbital roof defect. The "growing fracture" mechanism may be a potential explanation for the orbital roof destruction in some cases.

  12. Decentralized Pricing in Minimum Cost Spanning Trees

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moulin, Hervé; Østerdal, Lars Peter

    In the minimum cost spanning tree model we consider decentralized pricing rules, i.e. rules that cover at least the ecient cost while the price charged to each user only depends upon his own connection costs. We de ne a canonical pricing rule and provide two axiomatic characterizations. First......, the canonical pricing rule is the smallest among those that improve upon the Stand Alone bound, and are either superadditive or piece-wise linear in connection costs. Our second, direct characterization relies on two simple properties highlighting the special role of the source cost....

  13. The Risk Management of Minimum Return Guarantees

    Directory of Open Access Journals (Sweden)

    Antje Mahayni

    2008-05-01

    Full Text Available Contracts paying a guaranteed minimum rate of return and a fraction of a positive excess rate, which is specified relative to a benchmark portfolio, are closely related to unit-linked life-insurance products and can be considered as alternatives to direct investment in the underlying benchmark. They contain an embedded power option, and the key issue is the tractable and realistic hedging of this option, in order to rigorously justify valuation by arbitrage arguments and prevent the guarantees from becoming uncontrollable liabilities to the issuer. We show how to determine the contract parameters conservatively and implement robust risk-management strategies.

  14. Iterative Regularization with Minimum-Residual Methods

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Hansen, Per Christian

    2007-01-01

    subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....

  15. Iterative regularization with minimum-residual methods

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Hansen, Per Christian

    2006-01-01

    subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES - their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....

  16. The Orbit of X Persei and Its Neutron Star Companion

    Science.gov (United States)

    Delgado-Martí, Hugo; Levine, Alan M.; Pfahl, Eric; Rappaport, Saul A.

    2001-01-01

    We have observed the Be/X-ray pulsar binary system X Per/4U 0352+30 on 61 occasions spanning an interval of 600 days with the PCA instrument on board the Rossi X-Ray Timing Explorer (RXTE). Pulse timing analyses of the 837 s pulsations yield strong evidence for the presence of orbital Doppler delays. We confirm the Doppler delays by using measurements made with the All Sky Monitor (ASM) on RXTE. We infer that the orbit is characterized by a period Porb=250 days, a projected semimajor axis of the neutron star axsini=454 lt-s, a mass function f(M)=1.61 Msolar, and a modest eccentricity e=0.11. The measured orbital parameters, together with the known properties of the classical Be star X Per, imply a semimajor axis a=1.8-2.2 AU and an orbital inclination i~26deg-33deg. We discuss the formation of the system in the context of the standard evolutionary scenario for Be/X-ray binaries. We find that the system most likely formed from a pair of massive progenitor stars and probably involved a quasi-stable and nearly conservative transfer of mass from the primary to the secondary. We find that the He star remnant of the primary most likely had a mass probability of a system like that of X Per forming with an orbital eccentricity e<~0.11. We speculate that there may be a substantial population of neutron stars formed with little or no kick. Finally, we discuss the connected topics of the wide orbit and accretion by the neutron star from a stellar wind.

  17. The globe and orbit in Laron syndrome.

    Science.gov (United States)

    Kornreich, L; Konen, O; Lilos, P; Laron, Z

    2011-09-01

    Patients with LS have an inborn growth hormone resistance, resulting in failure to generate IGF-1. The purpose of this study was to evaluate the size of the eye and orbit in LS. We retrospectively reviewed the MR imaging of the brain in 9 patients with LS for the following parameters: axial diameter of the globe, interzygomatic distance, perpendicular distance from the interzygomatic line to margins of the globe, medial-to-lateral diameter of the orbit at the anterior orbital rim, distance from the anterior orbital rim to the anterior globe, maximal distance between the medial walls of the orbits, lateral orbital wall angle, lateral orbital wall length, and mediolateral thickness of the intraorbital fat in the most cranial image of the orbit. All measurements were made bilaterally. Twenty patients referred for MR imaging for unrelated reasons served as control subjects. Compared with the control group, the patients with LS had a significantly smaller maximal globe diameter and shallower but wider orbits due to a shorter lateral wall, a smaller medial distance between the orbits, and a larger angle of the orbit. The ratio between the most anterior orbital diameter and the globe was greater than that in controls. The position of the globe was more anterior in relation to the interzygomatic line. Shallow and wide orbits and small globes relative to orbital size are seen in LS and may be secondary to IGF-1 deficiency.

  18. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye, Huanchun; Breizman, B.N.

    1991-07-01

    The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width triangle b is much larger than the mode thickness triangle m , we obtain a new compact expression for the linear power transfer. When triangle m /triangle b much-lt 1, the banana orbit effect reduces the power transfer by a factor of triangle m /triangle b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (|υ parallel | = υ A is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (|υ parallel |) = υ A /(2 ell - 1) with ell ≥ 2) is substantially reduced. 10 refs

  19. Manipulation and application of orbital ordering

    International Nuclear Information System (INIS)

    Sheng Zhigao; Sun Yuping

    2014-01-01

    Under certain conditions, the orbits of the outmost shell electrons in strong correlated materials can be localized in order, which gives birth to so-called orbital ordering. During the construction or destruction of the orbital ordering, strongly correlated materials show fruitful quantum critical phenomena with great potential for future applications. We first present the mechanism for the construction of orbital ordering. Then, some physical properties associated with orbits are discussed. Finally, we emphasize the key points and progress in the research of orbital ordering controlling. (authors)

  20. Feedback brake distribution control for minimum pitch

    Science.gov (United States)

    Tavernini, Davide; Velenis, Efstathios; Longo, Stefano

    2017-06-01

    The distribution of brake forces between front and rear axles of a vehicle is typically specified such that the same level of brake force coefficient is imposed at both front and rear wheels. This condition is known as 'ideal' distribution and it is required to deliver the maximum vehicle deceleration and minimum braking distance. For subcritical braking conditions, the deceleration demand may be delivered by different distributions between front and rear braking forces. In this research we show how to obtain the optimal distribution which minimises the pitch angle of a vehicle and hence enhances driver subjective feel during braking. A vehicle model including suspension geometry features is adopted. The problem of the minimum pitch brake distribution for a varying deceleration level demand is solved by means of a model predictive control (MPC) technique. To address the problem of the undesirable pitch rebound caused by a full-stop of the vehicle, a second controller is designed and implemented independently from the braking distribution in use. An extended Kalman filter is designed for state estimation and implemented in a high fidelity environment together with the MPC strategy. The proposed solution is compared with the reference 'ideal' distribution as well as another previous feed-forward solution.

  1. Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Illustrated by the example of the FRG's nuclear energy exports, it is shown that the nuclear technology transfer leads to new dimensions of intergovernmental relations, which hold within themselves on account of multiple state-to-state, scientific, industrial and - last but not least - personal contacts the chance of far-reaching friendships between countries and people. If the chance is taken, this can also be seen as an important contribution towards maintaining the peace. (orig.) [de

  2. Secular Orbit and Spin Variations of Asteroid (16) Psyche

    Science.gov (United States)

    Bills, B. G.; Park, R. S.; Scott, B.

    2016-12-01

    The obliquity, or angular separation between spin and orbit poles, of asteroid (16) Psyche is currently 95 degrees. We are interested in knowing how much that angular separation varies, on time scales of 104 to 106 years. To answer that question, we have done several related analyses. On short time scales, the orbital element variations of Psyche are dominated by perturbations from Jupiter. Jupiter's dominance has two basic causes: first is the large mass and relatively close position of Jupiter, and second is a 19:8 mean motion resonance. Jupiter completes 8 orbits in 94.9009 years, while Psyche takes 94.9107 years to complete 19 orbits. As a result of this, all of the orbital elements of Psyche exhibit significant periodic variations, with a 94.9 year period dominating. There are also significant variations at the synodic period, which is 8.628 years, or 1/11 of the resonant period. Over a 1000 year time span, centered on the present, the eccentricity varies from 0.133 to 0.140, and the inclination varies from 2.961 to 3.229 degrees. On longer time scales, the orbital elements of Psyche vary considerably more than that, due to secular perturbations from the planets. The secular variations are modeled as the response of interacting mass rings, rather than point masses. Again, Jupiter is the main perturbing influence on Psyche. The eccentricity and inclination both oscillate, with dominant periods of 18.667 kyr. The range of values seen over a million year time span, is 0.057 to 0.147 for eccentricity, and 0.384 to 4.777 degrees for inclination. Using a recent shape model, and assumption of uniform density, to constrain relevant moments of inertia, we estimate the spin pole precession rate parameter to be 8.53 arcsec/year. The current spin pole is at ecliptic {lon, lat} = { 32, -7} deg, whereas the orbit pole is at {lon, lat} = {60.47, 86.91} deg. The current obliquity is thus 94.3 degree. Using nominal values of the input parameters, the recovered spin pole

  3. Magneto-Spin-Orbit Graphene: Interplay between Exchange and Spin-Orbit Couplings.

    Science.gov (United States)

    Rybkin, Artem G; Rybkina, Anna A; Otrokov, Mikhail M; Vilkov, Oleg Yu; Klimovskikh, Ilya I; Petukhov, Anatoly E; Filianina, Maria V; Voroshnin, Vladimir Yu; Rusinov, Igor P; Ernst, Arthur; Arnau, Andrés; Chulkov, Evgueni V; Shikin, Alexander M

    2018-03-14

    A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.

  4. Transfer Zymography.

    Science.gov (United States)

    Pan, Daniel; Wilson, Karl A; Tan-Wilson, Anna

    2017-01-01

    The technique described here, transfer zymography, was developed to overcome two limitations of conventional zymography. When proteolytic enzymes are resolved by nonreducing SDS-PAGE into a polyacrylamide gel with copolymerized protein substrate, the presence of the protein substrate can result in anomalous, often slower, migration of the protease and an estimated mass higher than its actual mass. A further drawback is that the presence of a high background of substrate protein interferes with proteomic analysis of the protease band by excision, tryptic digestion, and LC-MS/MS analysis. In transfer zymography, the proteolytic enzymes are resolved by conventional nonreducing SDS-PAGE, without protein substrate in the gel. The proteins in the resolving gel are then electrophoretically transferred to a receiving gel that contains the protein substrate, by a process similar to western blotting. The receiving gel is then processed in a manner similar to conventional zymography. SDS is removed by Triton X-100 and incubated in conditions suitable for the proteolytic activity. After protein staining, followed by destaining, bands representing regions with active protease are visualized as clear bands in a darkly stained background. For proteomic analysis, electrophoresis is carried out simultaneously on a second resolving gel, and the bands corresponding to the clear regions in the receiving gel after zymogram development are excised for proteomic analysis.

  5. Liquid metal heat transfer issues

    International Nuclear Information System (INIS)

    Hoffman, H.W.; Yoder, G.L.

    1984-01-01

    An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept

  6. 23 CFR 420.107 - What is the minimum required expenditure of State planning and research funds for research...

    Science.gov (United States)

    2010-04-01

    ... RESEARCH PROGRAM ADMINISTRATION Administration of FHWA Planning and Research Funds § 420.107 What is the... 23 Highways 1 2010-04-01 2010-04-01 false What is the minimum required expenditure of State planning and research funds for research development and technology transfer? 420.107 Section 420.107...

  7. Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism

    Science.gov (United States)

    Liu, Mengnan; Xu, Liping; Wan, Yong; Yan, Xu

    2018-02-01

    Based on Stoner model for itinerant ferromagnet, effects of spin-orbit coupling (SOC) on ferromagnetism were investigated at zero temperature. It was found that SOC will enhance the critical ferromagnetic exchange interaction for spontaneous magnetization, and then suppress ferromagnetism. In case of the coexistence of Rashba and Dresselhaus SOCs, the mixture of the two spin-orbit couplings showed stronger suppressed effect on ferromagnetism than only one kind of SOC alone. When the two SOCs mixed with equal magnitude, ferromagnetism in itinerant ferromagnet was suppressed to minimum.

  8. A digital feedback system for transverse orbit stabilization in the NSLS rings

    International Nuclear Information System (INIS)

    Friedman, A.; Bozoki, E.

    1993-01-01

    We are reporting on the design and preliminary results of a prototype digital feedback system for the storage rings at the NSLS. the system will use a nolinear eigenvector decomposition algorithm. It will have a wide dynamic range and will be able to correct noise in the orbit over a bandwidth in excess of 60 Hz. A Motorola-162 CPU board is used to sample the PUE's at a minimum rate of 200 Hz and an HP-742rt board is used to read the sampled signals and to generate a correction signal for the orbit correctors

  9. Spin-orbit-coupling induced torque in ballistic domain walls: Equivalence of charge-pumping and nonequilibrium magnetization formalisms

    NARCIS (Netherlands)

    Yuan, Z.; Kelly, Paul J.

    2016-01-01

    To study the effect of spin-orbit coupling (SOC) on spin-transfer torque in magnetic materials, we have implemented two theoretical formalisms that can accommodate SOC. Using the “charge-pumping” formalism, we find two contributions to the out-of-plane spin-transfer torque parameter β in ballistic

  10. Neutron stars with orbiting light

    International Nuclear Information System (INIS)

    Lukacs, B.

    1987-11-01

    There is a wide-spread belief in the literature of relativistic astrophysics concerning nonsingular final states of the stellar evolution: the external gravitational field of a physically nonsingular central symmetric body (e.g. a neutron star) is asymptotically empty and simple, i.e. there are no closed or trapped light-like causal geodesics. Present paper shows that this belief is false: some examples are presented for nonsingular bodies with various equations of state, around which there are closed light-like trajectories: 'orbiting light'. The reality of the used equations of state is discussed in detail. Present state of particle physics does not establish the existence of matter with such equations of state, but the hypothetical subquark level of matter may have such equation of state, thus 'subquark-stars' may exist with orbiting light around them. So the criterion of 'nonsingularity' must be further analyzed and accurately defined. (D.Gy.) 24 refs.; 5 figs

  11. Orbit monitoring in the SLC

    International Nuclear Information System (INIS)

    Sanchez-Chopitea, L.; Emma, P.; Van Olst, D.

    1991-05-01

    Beam orbits in the SLC are monitored in real time and the data is stored for future trend and correlation analysis. A background process acquires Beam Position Monitor (BPM) and Toroid data on a periodic basis and saves the general quantities such as orbit RMS and beam intensity in addition to the individual readings. Some of this data is archived by the SLC History Buffer facility and the rest is saved in files for later analysis. This has permitted the tracing of interaction point instabilities to specific devices as far away as the damping rings. In addition, the data is displayed for the operators both in summary and in full form. The different displays can be configured from the control consoles. 2 refs., 5 figs

  12. [Orbital decompression in Grave's ophtalmopathy].

    Science.gov (United States)

    Longueville, E

    2010-01-01

    Graves disease orbitopathy is a complex progressive inflammatory disease. Medical treatment remains in all cases the proposed treatment of choice. Surgical treatment by bone decompression can be considered as an emergency mainly in cases of optic neuropathy or ocular hypertension not being controlled medically or in post-traumatic exophthalmos stage. Emergency bone decompression eliminates compression or stretching of the optic nerve allowing visual recovery. The uncontrolled ocular hypertension will benefit from decompression. The normalization of intraocular pressure may be obtained by this surgery or if needed by the use of postoperative antiglaucoma drops or even filtration surgery. In all operated cases, the IOP was normalized with an average decrease of 7.71 mmHg and a cessation of eye drops in 3/7 cases. Regarding sequelae, our therapeutic strategy involves consecutively surgery of the orbit, extraocular muscles and eyelids. The orbital expansion gives excellent results on the cosmetic level and facilitates the implementation of subsequent actions.

  13. Do minimum wages reduce poverty? Evidence from Central America ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-16

    Dec 16, 2010 ... Raising minimum wages has traditionally been considered a way to protect poor ... However, the effect of raising minimum wages remains an empirical question ... ​More than 70 of Vietnamese entrepreneurs choose to start a ...

  14. Robustness analysis method for orbit control

    Science.gov (United States)

    Zhang, Jingrui; Yang, Keying; Qi, Rui; Zhao, Shuge; Li, Yanyan

    2017-08-01

    Satellite orbits require periodical maintenance due to the presence of perturbations. However, random errors caused by inaccurate orbit determination and thrust implementation may lead to failure of the orbit control strategy. Therefore, it is necessary to analyze the robustness of the orbit control methods. Feasible strategies which are tolerant to errors of a certain magnitude can be developed to perform reliable orbit control for the satellite. In this paper, first, the orbital dynamic model is formulated by Gauss' form of the planetary equation using the mean orbit elements; the atmospheric drag and the Earth's non-spherical perturbations are taken into consideration in this model. Second, an impulsive control strategy employing the differential correction algorithm is developed to maintain the satellite trajectory parameters in given ranges. Finally, the robustness of the impulsive control method is analyzed through Monte Carlo simulations while taking orbit determination error and thrust error into account.

  15. Management of ocular, orbital, and adnexal trauma

    International Nuclear Information System (INIS)

    Spoor, T.C.; Nesi, F.A.

    1988-01-01

    This book contains 20 chapters. Some of the chapter titles are: The Ruptured Globe: Primary Care; Corneal Trauma, Endophthalmitis; Antibiotic Usage; Radiology of Orbital Trauma; Maxillofacial Fractures; Orbital Infections; and Basic Management of Soft Tissue Injury

  16. Dynamique des orbites fortement elliptiques

    OpenAIRE

    Lion , Guillaume

    2013-01-01

    Most of the orbits of artificial satellites around the Earth have relatively low eccentricities. The calculation of their trajectories is very well under control, either by means of numerical methods when it comes to focus on accuracy and comparing observations, or either through analytical or semi-analytical theories to optimize the speed of calculations. This second category is used, in particular, for computing many long-term trajectories that could help to ensure the security and safety o...

  17. Superbanana orbits in stellarator geometries

    International Nuclear Information System (INIS)

    Derr, J.A.; Shohet, J.L.

    1979-04-01

    The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron

  18. Orbital Volumetry in Graves' Orbitopathy

    DEFF Research Database (Denmark)

    Al-Bakri, Moug; Rasmussen, Åse Krogh; Thomsen, Carsten

    2014-01-01

    were retrospectively analyzed. Thirteen patients imaged for unilateral orbital fractures served as controls. Results. The retrobulbar muscle volume was 2.1 ± 0.5 cm(3) (mean ± SD) in controls, 4.3 ± 1.5 cm(3) in GO without DON, and 4.7 ± 1.7 cm(3) in GO with DON. The retrobulbar fat volume was 5.4 ± 1...

  19. CryoSat/SIRAL Cal1 Calibration Orbits

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2017-04-01

    The main payload of CryoSat is a Ku band pulsewidth limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for SAR processing. This allows to reach an along track resolution that is significantly improved with respect to traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed. In fact, not only corrections for transfer function, gain and instrument path delay have to be computed (as in previous altimeters), but also corrections for phase (SAR/SARIn) and phase difference between the two receiving chains (SARIN only). Recalling that the CryoSat's orbit has a high inclination of 92° and it is non-sun-synchronous, the temperature of the SIRAL changes continuously along the orbit with a period of about 480 days and it is also function of the ascending/descending passes. By analysis of the CAL1 calibration corrections, it has been verified that the internal path delay and the instrument gain variation measured on the SIRAL are affected by the thermal status of the instrument and as a consequence they are expected to vary along the orbit. In order to gain knowledge on the calibration corrections (i.e. the instrument behavior) as function of latitude and temperature, it has been planned to command a few number of orbits where only CAL1 calibration acquisitions are continuously performed. The analysis of the CAL1 calibration corrections produced along the Calibration orbits can be also useful to verify whether the current calibration plan is able to provide sufficiently accurate corrections for the instrument acquisitions at any latitude. In 2016, the CryoSat/SIRAL Cal1 Calibration Orbits have been commanded two times, a first time the 20th of July 2016 and a second time the 24th of November 2016, and they

  20. 30 CFR 56.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0-0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...

  1. Does increasing the minimum wage reduce poverty in developing countries?

    OpenAIRE

    Gindling, T. H.

    2014-01-01

    Do minimum wage policies reduce poverty in developing countries? It depends. Raising the minimum wage could increase or decrease poverty, depending on labor market characteristics. Minimum wages target formal sector workers—a minority of workers in most developing countries—many of whom do not live in poor households. Whether raising minimum wages reduces poverty depends not only on whether formal sector workers lose jobs as a result, but also on whether low-wage workers live in poor househol...

  2. On a Minimum Problem in Smectic Elastomers

    International Nuclear Information System (INIS)

    Buonsanti, Michele; Giovine, Pasquale

    2008-01-01

    Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress

  3. Minimum DNBR Prediction Using Artificial Intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Su; Kim, Ju Hyun; Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2011-05-15

    The minimum DNBR (MDNBR) for prevention of the boiling crisis and the fuel clad melting is very important factor that should be consistently monitored in safety aspects. Artificial intelligence methods have been extensively and successfully applied to nonlinear function approximation such as the problem in question for predicting DNBR values. In this paper, support vector regression (SVR) model and fuzzy neural network (FNN) model are developed to predict the MDNBR using a number of measured signals from the reactor coolant system. Also, two models are trained using a training data set and verified against test data set, which does not include training data. The proposed MDNBR estimation algorithms were verified by using nuclear and thermal data acquired from many numerical simulations of the Yonggwang Nuclear Power Plant Unit 3 (YGN-3)

  4. Image Segmentation Using Minimum Spanning Tree

    Science.gov (United States)

    Dewi, M. P.; Armiati, A.; Alvini, S.

    2018-04-01

    This research aim to segmented the digital image. The process of segmentation is to separate the object from the background. So the main object can be processed for the other purposes. Along with the development of technology in digital image processing application, the segmentation process becomes increasingly necessary. The segmented image which is the result of the segmentation process should accurate due to the next process need the interpretation of the information on the image. This article discussed the application of minimum spanning tree on graph in segmentation process of digital image. This method is able to separate an object from the background and the image will change to be the binary images. In this case, the object that being the focus is set in white, while the background is black or otherwise.

  5. A new kinematical definition of orbital eccentricity

    Directory of Open Access Journals (Sweden)

    Ninković S.

    2009-01-01

    Full Text Available A new concept of orbital eccentricity is given. The dimensionless quantities proposed in the present paper to serve as orbital eccentricities have a kinematical nature. The purpose is to use them in describing the motion for the case of three-dimensional orbits. A comparison done for nearly planar orbits shows that the values of the eccentricities proposed here do not differ significantly from those corresponding to the eccentricities of geometric nature usually applied.

  6. An Ontological Architecture for Orbital Debris Data

    OpenAIRE

    Rovetto, Robert J.

    2017-01-01

    The orbital debris problem presents an opportunity for inter-agency and international cooperation toward the mutually beneficial goals of debris prevention, mitigation, remediation, and improved space situational awareness (SSA). Achieving these goals requires sharing orbital debris and other SSA data. Toward this, I present an ontological architecture for the orbital debris domain, taking steps in the creation of an orbital debris ontology (ODO). The purpose of this ontological system is to ...

  7. Algorithms for orbit control on SPEAR

    International Nuclear Information System (INIS)

    Corbett, J.; Keeley, D.; Hettel, R.; Linscott, I.; Sebek, J.

    1994-06-01

    A global orbit feedback system has been installed on SPEAR to help stabilize the position of the photon beams. The orbit control algorithms depend on either harmonic reconstruction of the orbit or eigenvector decomposition. The orbit motion is corrected by dipole corrector kicks determined from the inverse corrector-to-bpm response matrix. This paper outlines features of these control algorithms as applied to SPEAR

  8. Minimum pressure for sustained combustion in AN-based emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Goldthorp, S.; Turcotte, R.; Badeen, C.M. [Natural Resources Canada, Ottawa, ON (Canada). Canadian Explosives Research Laboratory; Chan, S.K. [Orica Canada Inc., Brownsburg-Chatham, PQ (Canada)

    2008-04-15

    AN-based emulsions have been involved in a relatively high number of accidental explosions related to pumping operations during their manufacture, transfer and handling. The minimum burning pressure (MBP) of emulsions is used to estimate safe operating pressures for pumping and mixing equipment. This study examined testing protocols conducted to measure MBP values. Factors contributing to uncertainties in MBP data were examined, and a measurement methodology designed to incorporate the uncertainties was presented. MBP measurements obtained for 5 different AN-based emulsions in high pressure vessels were also provided, and the impact of various ingredients on MBP values was discussed. Bench-scale experiments and time current pulse tests were conducted to examine thermal ignition behaviour. The emulsions exhibited MBP values that ranged from 580 to 6510 kPa. Results of the study suggested that ingredients play a significant role on MBP values. A relatively high energy flux was required to induce stable combustion fronts in the emulsions. Large air voids containing flammable atmospheres were able to provide sufficient energy to ignite the emulsions. It was concluded that a knowledge of the MBP of emulsions is needed to ensure that corresponding pumping operations are conducted at pressures below the MBP. 11 refs., 2 tabs., 8 figs.

  9. Statistical physics when the minimum temperature is not absolute zero

    Science.gov (United States)

    Chung, Won Sang; Hassanabadi, Hassan

    2018-04-01

    In this paper, the nonzero minimum temperature is considered based on the third law of thermodynamics and existence of the minimal momentum. From the assumption of nonzero positive minimum temperature in nature, we deform the definitions of some thermodynamical quantities and investigate nonzero minimum temperature correction to the well-known thermodynamical problems.

  10. 12 CFR 564.4 - Minimum appraisal standards.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Minimum appraisal standards. 564.4 Section 564.4 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPRAISALS § 564.4 Minimum appraisal standards. For federally related transactions, all appraisals shall, at a minimum: (a...

  11. 29 CFR 505.3 - Prevailing minimum compensation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Prevailing minimum compensation. 505.3 Section 505.3 Labor... HUMANITIES § 505.3 Prevailing minimum compensation. (a)(1) In the absence of an alternative determination...)(2) of this section, the prevailing minimum compensation required to be paid under the Act to the...

  12. An Empirical Analysis of the Relationship between Minimum Wage ...

    African Journals Online (AJOL)

    An Empirical Analysis of the Relationship between Minimum Wage, Investment and Economic Growth in Ghana. ... In addition, the ratio of public investment to tax revenue must increase as minimum wage increases since such complementary changes are more likely to lead to economic growth. Keywords: minimum wage ...

  13. Minimum Covers of Fixed Cardinality in Weighted Graphs.

    Science.gov (United States)

    White, Lee J.

    Reported is the result of research on combinatorial and algorithmic techniques for information processing. A method is discussed for obtaining minimum covers of specified cardinality from a given weighted graph. By the indicated method, it is shown that the family of minimum covers of varying cardinality is related to the minimum spanning tree of…

  14. Minimum Price Guarantees In a Consumer Search Model

    NARCIS (Netherlands)

    M.C.W. Janssen (Maarten); A. Parakhonyak (Alexei)

    2009-01-01

    textabstractThis paper is the first to examine the effect of minimum price guarantees in a sequential search model. Minimum price guarantees are not advertised and only known to consumers when they come to the shop. We show that in such an environment, minimum price guarantees increase the value of

  15. Employment Effects of Minimum and Subminimum Wages. Recent Evidence.

    Science.gov (United States)

    Neumark, David

    Using a specially constructed panel data set on state minimum wage laws and labor market conditions, Neumark and Wascher (1992) presented evidence that countered the claim that minimum wages could be raised with no cost to employment. They concluded that estimates indicating that minimum wages reduced employment on the order of 1-2 percent for a…

  16. Minimum Wages and Skill Acquisition: Another Look at Schooling Effects.

    Science.gov (United States)

    Neumark, David; Wascher, William

    2003-01-01

    Examines the effects of minimum wage on schooling, seeking to reconcile some of the contradictory results in recent research using Current Population Survey data from the late 1970s through the 1980s. Findings point to negative effects of minimum wages on school enrollment, bolstering the findings of negative effects of minimum wages on enrollment…

  17. Minimum Wage Effects on Educational Enrollments in New Zealand

    Science.gov (United States)

    Pacheco, Gail A.; Cruickshank, Amy A.

    2007-01-01

    This paper empirically examines the impact of minimum wages on educational enrollments in New Zealand. A significant reform to the youth minimum wage since 2000 has resulted in some age groups undergoing a 91% rise in their real minimum wage over the last 10 years. Three panel least squares multivariate models are estimated from a national sample…

  18. 41 CFR 50-201.1101 - Minimum wages.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Minimum wages. 50-201... Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 201-GENERAL REGULATIONS § 50-201.1101 Minimum wages. Determinations of prevailing minimum wages or changes therein will be published in the Federal Register by the...

  19. 29 CFR 4.159 - General minimum wage.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true General minimum wage. 4.159 Section 4.159 Labor Office of... General minimum wage. The Act, in section 2(b)(1), provides generally that no contractor or subcontractor... a contract less than the minimum wage specified under section 6(a)(1) of the Fair Labor Standards...

  20. 29 CFR 783.43 - Computation of seaman's minimum wage.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Computation of seaman's minimum wage. 783.43 Section 783.43...'s minimum wage. Section 6(b) requires, under paragraph (2) of the subsection, that an employee...'s minimum wage requirements by reason of the 1961 Amendments (see §§ 783.23 and 783.26). Although...

  1. 24 CFR 891.145 - Owner deposit (Minimum Capital Investment).

    Science.gov (United States)

    2010-04-01

    ... General Program Requirements § 891.145 Owner deposit (Minimum Capital Investment). As a Minimum Capital... Investment shall be one-half of one percent (0.5%) of the HUD-approved capital advance, not to exceed $25,000. ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Owner deposit (Minimum Capital...

  2. 12 CFR 931.3 - Minimum investment in capital stock.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Minimum investment in capital stock. 931.3... CAPITAL STANDARDS FEDERAL HOME LOAN BANK CAPITAL STOCK § 931.3 Minimum investment in capital stock. (a) A Bank shall require each member to maintain a minimum investment in the capital stock of the Bank, both...

  3. 9 CFR 147.51 - Authorized laboratory minimum requirements.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Authorized laboratory minimum requirements. 147.51 Section 147.51 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Authorized Laboratories and Approved Tests § 147.51 Authorized laboratory minimum requirements. These minimum...

  4. Quantum maps from transfer operators

    International Nuclear Information System (INIS)

    Bogomolny, E.B.; Carioli, M.

    1992-09-01

    The Selberg zeta function ζ S (s) yields an exact relationship between the periodic orbits of a fully chaotic Hamiltonian system (the geodesic flow on surfaces of constant negative curvature) and the corresponding quantum system (the spectrum of the Laplace-Beltrami operator on the same manifold). It was found that for certain manifolds, ζ S (s) can be exactly rewritten as the Fredholm-Grothendieck determinant det(1-T s ), where T s is a generalization of the Ruelle-Perron-Frobenius transfer operator. An alternative derivation of this result is given, yielding a method to find not only the spectrum but also the eigenfunctions of the Laplace-Beltrami operator in terms of eigenfunctions of T s . Various properties of the transfer operator are investigated both analytically and numerically for several systems. (author) 30 refs.; 16 figs.; 2 tabs

  5. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    Science.gov (United States)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  6. THE REGULARITY OF INFLUENCE OF TRAFFIC PARAMETERS ON THE PROBABILITY OF REALISATION OF PLANNED PASSENGER TRANSFER AT TRANSFER NODES

    Directory of Open Access Journals (Sweden)

    G. Samchuk

    2017-06-01

    Full Text Available The article deals with the definition of traffic parameters that ensure the minimum value of the transfer waiting time for passengers. On the basis of experimental studies results, a regression equation to determine the probability of realisation of the planned transfer between a pair of vehicles was proposed. Using the identified regression equation, the transfer waiting time can be assessed for any headway exceeding 7,5 min.

  7. Traumatic orbital encephalocele: Presentation and imaging.

    Science.gov (United States)

    Wei, Leslie A; Kennedy, Tabassum A; Paul, Sean; Wells, Timothy S; Griepentrog, Greg J; Lucarelli, Mark J

    2016-01-01

    Traumatic orbital encephalocele is a rare but severe complication of orbital roof fractures. We describe 3 cases of orbital encephalocele due to trauma in children. Retrospective case series from the University of Wisconsin - Madison and Medical College of Wisconsin. Three cases of traumatic orbital encephalocele in pediatric patients were found. The mechanism of injury was motor vehicle accident in 2 patients and accidental self-inflicted gunshot wound in 1 patient. All 3 patients sustained orbital roof fractures (4 mm to 19 mm in width) and frontal lobe contusions with high intracranial pressure. A key finding in all 3 cases was progression of proptosis and globe displacement 4 to 11 days after initial injury. On initial CT, all were diagnosed with extraconal hemorrhage adjacent to the roof fractures, with subsequent enlargement of the mass and eventual diagnosis of encephalocele. Orbital encephalocele is a severe and sight-threatening complication of orbital roof fractures. Post-traumatic orbital encephalocele can be challenging to diagnose on CT as patients with this condition often have associated orbital and intracranial hematoma, which can be difficult to distinguish from herniated brain tissue. When there is a high index of suspicion for encephalocele, an MRI of the orbits and brain with contrast should be obtained for additional characterization. Imaging signs that should raise suspicion for traumatic orbital encephalocele include an enlarging heterogeneous orbital mass in conjunction with a roof fracture and/or widening fracture segments.

  8. [1012.5676] The Exoplanet Orbit Database

    Science.gov (United States)

    : The Exoplanet Orbit Database Authors: Jason T Wright, Onsi Fakhouri, Geoffrey W. Marcy, Eunkyu Han present a database of well determined orbital parameters of exoplanets. This database comprises parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets

  9. Facilitating Transfers

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    to specific logics of temporalisation and spatial expansion of a diverse set of social processes in relation to, for example, the economy, politics, science and the mass media. On this background, the paper will more concretely develop a conceptual framework for classifying different contextual orders...... that the essential functional and normative purpose of regulatory governance is to facilitate, stabilise and justify the transfer of condensed social components (such as economic capital and products, political decisions, legal judgements, religious beliefs and scientific knowledge) from one social contexts...

  10. The orbital record in stratigraphy

    Science.gov (United States)

    Fischer, Alfred G.

    1992-01-01

    Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity

  11. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  12. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

    Science.gov (United States)

    Chang, Xue-Ping; Fang, Qiu; Cui, Ganglong

    2014-10-01

    Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones. We have employed the complete active space self-consistent field and its multi-state second-order perturbation methods to study its photodissociation mechanism in the S0, T1, and S1 states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S1 system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S1/S0 conical intersection funnels the S1 to S0 state. Then, some trajectories continue completing the decarboxylation reaction in the S0 state; the remaining trajectories via a reverse hydrogen transfer return to the S0 minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S1 -T1 energy gap and a large S1/T1 spin-orbit coupling, an efficient S1 → T1 intersystem crossing process happens again near this S1/S0 conical intersection. When decaying to T1 state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S1 system first decays to the T1 state via an S1 → T1 intersystem crossing; then, the T1 system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T1 decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T1 ESIPT process, there also exists a comparable Norrish type I reaction in the T1 state, which forms the ground-state products of CH3CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S1-T1 and S1-S0 energy gaps, effecting an S1/T1/S0 three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.

  13. Parameningeal rhabdomyosarcoma (including the orbit): results of orbital irradiation

    International Nuclear Information System (INIS)

    Jereb, B.; Haik, B.G.; Ong, R.; Ghavimi, F.

    1985-01-01

    Twenty-three patients with parameningeal (including orbital rhabdomyosarcoma (RMS)) were treated at Memorial Sloan-Kettering Cancer Center (MSKCC) between July 1971 and January 1983. Twenty were children with a mean age of 6 and 3 were adults. In 6 patients, the primary tumor was from the orbit, whereas the remaining 17 had other parameningeal primary sites. The tumors were in a very progressive local stage, with extensive destruction of the facial bones in 19 patients. Eight patients were treated with T2 chemotherapy protocol and 15 received T6. Seven patients received 5,000 to 7,200 rad delivered to the primary tumor in 11-16 weeks, 15 patients received between 4,500 to 5,000 rad in 4-7 weeks, and 1 patient received 3,000 rad in 3 weeks for residual microscopic disease following surgery. Two patients were treated with radiation to the whole brain; no patients received radiation of the whole central nervous axis (CNA). Fifteen of the 23 patients (65%) are alive and well with a medical follow-up time of 5 years. Two patients died of therapeutic complications and six died of tumor spread. In five patients, involvement of the central nervous system (CNS) was the cause of death. The prognosis of orbital RMS with parameningeal involvement is no better than in other tumors of parameningeal sites. In those patients who had impaired vision because of optic nerve damage prior to treatment, the vision did not improve following treatment. There was no impaired vision seen due to radiation damage of eye structures except in the lens

  14. Spin orbit torque based electronic neuron

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-04-06

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.

  15. Spin orbit torque based electronic neuron

    International Nuclear Information System (INIS)

    Sengupta, Abhronil; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik

    2015-01-01

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset

  16. Shell structure and orbit bifurcations in finite fermion systems

    Science.gov (United States)

    Magner, A. G.; Yatsyshyn, I. S.; Arita, K.; Brack, M.

    2011-10-01

    We first give an overview of the shell-correction method which was developed by V.M. Strutinsky as a practicable and efficient approximation to the general self-consistent theory of finite fermion systems suggested by A.B. Migdal and collaborators. Then we present in more detail a semiclassical theory of shell effects, also developed by Strutinsky following original ideas of M.C. Gutzwiller. We emphasize, in particular, the influence of orbit bifurcations on shell structure. We first give a short overview of semiclassical trace formulae, which connect the shell oscillations of a quantum system with a sum over periodic orbits of the corresponding classical system, in what is usually called the "periodic orbit theory". We then present a case study in which the gross features of a typical double-humped nuclear fission barrier, including the effects of mass asymmetry, can be obtained in terms of the shortest periodic orbits of a cavity model with realistic deformations relevant for nuclear fission. Next we investigate shell structures in a spheroidal cavity model which is integrable and allows for far-going analytical computation. We show, in particular, how period-doubling bifurcations are closely connected to the existence of the so-called "superdeformed" energy minimum which corresponds to the fission isomer of actinide nuclei. Finally, we present a general class of radial power-law potentials which approximate well the shape of a Woods-Saxon potential in the bound region, give analytical trace formulae for it and discuss various limits (including the harmonic oscillator and the spherical box potentials).

  17. Radionuclide transfer

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1993-01-01

    The research project described here had the aim to obtain further information on the transfer of nuclides during pregnancy and lactation. The tests were carried out in mini-pigs and rats receiving unchanging doses of radionuclides with the food. The following findings were revealed for the elements examined: Fe, Se, Cs and Zn were characterized by very high transfer levels in the mother, infant and foetus. A substantial uptake by the mother alone was observed for Co, Ag and Mn. The uptake by the foetus and infant here was 1 to 10 times lower. A preferential concentration in certain tissues was seen for Sr and Tc; the thyroid levels of Tc were about equally high in mothers and infants, while Sr showed less accumulation in the maternal bone. The lanthanide group of substances (Ce, Eu and Gd as well as Y and Ru) were only taken up to a very limited extent. The uptake of the examined radionuclides (Fe, Co, Ag, Ce) with the food ingested was found here to be ten times greater in rats as compared to mini-pigs. This showed that great caution must be observed, if the behaviour of radionuclides in man is extrapolated from relevant data obtained in rodents. (orig./MG) [de

  18. Similarity in Bilateral Isolated Internal Orbital Fractures.

    Science.gov (United States)

    Chen, Hung-Chang; Cox, Jacob T; Sanyal, Abanti; Mahoney, Nicholas R

    2018-04-13

    In evaluating patients sustaining bilateral isolated internal orbital fractures, the authors have observed both similar fracture locations and also similar expansion of orbital volumes. In this study, we aim to investigate if there is a propensity for the 2 orbits to fracture in symmetrically similar patterns when sustaining similar trauma. A retrospective chart review was performed studying all cases at our institution of bilateral isolated internal orbital fractures involving the medial wall and/or the floor at the time of presentation. The similarity of the bilateral fracture locations was evaluated using the Fisher's exact test. The bilateral expanded orbital volumes were analyzed using the Wilcoxon signed-rank test to assess for orbital volume similarity. Twenty-four patients with bilateral internal orbital fractures were analyzed for fracture location similarity. Seventeen patients (70.8%) had 100% concordance in the orbital subregion fractured, and the association between the right and the left orbital fracture subregion locations was statistically significant (P < 0.0001). Fifteen patients were analyzed for orbital volume similarity. The average orbital cavity volume was 31.2 ± 3.8 cm on the right and 32.0 ± 3.7 cm on the left. There was a statistically significant difference between right and left orbital cavity volumes (P = 0.0026). The data from this study suggest that an individual who suffers isolated bilateral internal orbital fractures has a statistically significant similarity in the location of their orbital fractures. However, there does not appear to be statistically significant similarity in the expansion of the orbital volumes in these patients.

  19. Quantum structural approach to high-Tc superconductivity theory: Herzberg-Teller, Renner-Teller, Jahn-Teller effects and intervalent geminal charge transfer

    International Nuclear Information System (INIS)

    Chiu, Y.

    1997-01-01

    We use quantum molecular structure and spectroscopic thoughts of various possible vibronic interactions for the position space of two-electron geminal orbitals with Bloch sums. Our geminals have different degeneracy from one-electron molecular orbitals and are different from the momentum space of BCS free electrons. Based on Herzberg-Teller expansions, our consideration of the aspect of the Renner-Teller effect for cyclic boundary crystals (instead of the usual linear molecules) involves first-order vibronic interaction with isotope effects different from the second-order electron-phonon energy of BCS theory, bipolaron theory, etc. Our consideration of the Jahn-Teller effect with equal-minimum double-well potential leads to the intervalent charge transfer between two degenerate vibrationally affected electronic structures. Our considerations of different style vibrations other than the antisymmetric vibration for the nearest neighbor (e.g., displaced oscillator, etc.) may possibly be related to the case of special chemical structures with special doping and special coherence length. Our simple structural illustrations of such different vibronic Renner-Teller, Jahn-Teller effects and intervalent charge transfer (of La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 7-x ) may promote some possible thoughts of quantum chemical structures compared and mixed with the physical treatments of special high-T c superconductors. copyright 1997 The American Physical Society

  20. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J.

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in

  1. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in the first

  2. Molecular orbitals of nucleons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1986-05-01

    A formalism for the dynamical treatment of the molecular orbitals of valence nucleons in nucleus-nucleus collisions at low bombarding energy is developed with the use of the coupled-reaction-channel (CRC) method. The Coriolis coupling effects as well as the finite mass effects of the nucleon are taken into account in this model, of rotating molecular orbitals, RMO. First, the validity of the concept is examined from the view point of the multi-step processes in a standard CRC calculation for systems containing two identical [core] nuclei. The calculations show strong CRC effects particularly in the case where the mixing of different l-parity orbitals - called hybridization in atomic physics - occurs. Then, the RMO representation for active nucleons is applied to the same systems and compared to the CRC results. Its validity is investigated with respect to the radial motion (adiabaticity) and the rotation of the molecular axis (radial and rotational coupling). Characteristic molecular orbitals of covalent molecules appear as rotationally stable states (K = 1/2) with good adiabaticity. Using the RMO's we obtain a new interpretation of various scattering phenomena. Dynamically induced changes in the effective Q-values (or scaling of energies), dynamically induced moments of inertia and an dynamically induced effective (L · S) interaction are obtained as a result of the molecular orbital formation. Various experimental data on transfer and subbarrier fusion reactions are understood in terms of the RMO's and their adiabatic potentials. Landau-Zener transitions, which strongly depend on the total angular momentum of the system, definitely predict the observation of characteristic changes in the cross sections for the inelastic scattering 13 C( 12 C, 12 C) 13 C* (3.086 MeV, 1/2 + ) with the change of the bombarding energy. (author)

  3. Oxygen minimum seafloor ecological (mal) functioning

    Digital Repository Service at National Institute of Oceanography (India)

    Moodley, L.; Nigam, R.; Ingole, B.S.; PrakashBabu, C.; Panchang, R.; Nanajkar, M.; Sivadas, S.; van Breugel, P.; van Ijzerloo, L.; Rutgers, R.; Heip, C.H.R.; Soetaert, K.; Middelburg, J.J.

    OM transformation is hampered (“batteries not included”, Lane 2006) resulting in rapid/immediate OM transfer out of the fast- biological cycle into the “slow (geological)” carbon cycle. From a biogeochemical point of view, the question of what..., N., 2006. Batteries not included, what can’t bacteria do? Nature, 441, 274-277. Law, G.T.W., Shimmield, T.M., Shimmield, G.B., Cowie, G.L. Breuer, E.R., Harvey, S.M., 2009. Manganese, iron, and sulphur cycling on the Pakistan margin. Deep Sea...

  4. Scout: orbit analysis and hazard assessment for NEOCP objects

    Science.gov (United States)

    Farnocchia, Davide; Chesley, Steven R.; Chamberlin, Alan B.

    2016-10-01

    It typically takes a few days for a newly discovered asteroid to be officially recognized as a real object. During this time, the tentative discovery is published on the Minor Planet Center's Near-Earth Object Confirmation Page (NEOCP) until additional observations confirm that the object is a real asteroid rather than an observational artifact or an artificial object. Also, NEOCP objects could have a limited observability window and yet be scientifically interesting, e.g., radar and lightcurve targets, mini-moons (temporary Earth captures), mission accessible targets, close approachers or even impactors. For instance, the only two asteroids discovered before an impact, 2008 TC3 and 2014 AA, both reached the Earth less than a day after discovery. For these reasons we developed Scout, an automated system that provides an orbital and hazard assessment for NEOCP objects within minutes after the observations are available. Scout's rapid analysis increases the chances of securing the trajectory of interesting NEOCP objects before the ephemeris uncertainty grows too large or the observing geometry becomes unfavorable. The generally short observation arcs, perhaps only a few hours or even less, lead severe degeneracies in the orbit estimation process. To overcome these degeneracies Scout relies on systematic ranging, a technique that derives possible orbits by scanning a grid in the poorly constrained space of topocentric range and range rate, while the plane-of-sky position and motion are directly tied to the recorded observations. This scan allows us to derive a distribution of the possible orbits and in turn identify the NEOCP objects of most interest to prioritize followup efforts. In particular, Scout ranks objects according to the likelihood of an impact, estimates the close approach distance, the Earth-relative minimum orbit intersection distance and v-infinity, and computes scores to identify objects more likely to be an NEO, a km-sized NEO, a Potentially

  5. Orbital storage and supply of subcritical liquid nitrogen

    Science.gov (United States)

    Aydelott, John C.

    1990-01-01

    Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.

  6. Minimum relative entropy, Bayes and Kapur

    Science.gov (United States)

    Woodbury, Allan D.

    2011-04-01

    The focus of this paper is to illustrate important philosophies on inversion and the similarly and differences between Bayesian and minimum relative entropy (MRE) methods. The development of each approach is illustrated through the general-discrete linear inverse. MRE differs from both Bayes and classical statistical methods in that knowledge of moments are used as ‘data’ rather than sample values. MRE like Bayes, presumes knowledge of a prior probability distribution and produces the posterior pdf itself. MRE attempts to produce this pdf based on the information provided by new moments. It will use moments of the prior distribution only if new data on these moments is not available. It is important to note that MRE makes a strong statement that the imposed constraints are exact and complete. In this way, MRE is maximally uncommitted with respect to unknown information. In general, since input data are known only to within a certain accuracy, it is important that any inversion method should allow for errors in the measured data. The MRE approach can accommodate such uncertainty and in new work described here, previous results are modified to include a Gaussian prior. A variety of MRE solutions are reproduced under a number of assumed moments and these include second-order central moments. Various solutions of Jacobs & van der Geest were repeated and clarified. Menke's weighted minimum length solution was shown to have a basis in information theory, and the classic least-squares estimate is shown as a solution to MRE under the conditions of more data than unknowns and where we utilize the observed data and their associated noise. An example inverse problem involving a gravity survey over a layered and faulted zone is shown. In all cases the inverse results match quite closely the actual density profile, at least in the upper portions of the profile. The similar results to Bayes presented in are a reflection of the fact that the MRE posterior pdf, and its mean

  7. NEW EVIDENCE FOR CHARGE-SIGN-DEPENDENT MODULATION DURING THE SOLAR MINIMUM OF 2006 TO 2009

    Energy Technology Data Exchange (ETDEWEB)

    Di Felice, V. [INFN, Sezione di Roma “Tor Vergata,” I-00133 Rome (Italy); Munini, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Vos, E. E.; Potgieter, M. S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-01-01

    The PAMELA space experiment, in orbit since 2006, has measured cosmic rays (CRs) through the most recent period of minimum solar activity with the magnetic field polarity as A  < 0. During this entire time, galactic electrons and protons have been detected down to 70 MV and 400 MV, respectively, and their differential variation in intensity with time has been monitored with unprecedented accuracy. These observations are used to show how differently electrons and protons responded to the quiet modulation conditions that prevailed from 2006 to 2009. It is well known that particle drifts, as one of four major mechanisms for the solar modulation of CRs, cause charge-sign-dependent solar modulation. Periods of minimum solar activity provide optimal conditions in which to study these drift effects. The observed behavior is compared to the solutions of a three-dimensional model for CRs in the heliosphere, including drifts. The numerical results confirm that the difference in the evolution of electron and proton spectra during the last prolonged solar minimum is attributed to a large extent to particle drifts. We therefore present new evidence of charge-sign-dependent solar modulation, with a perspective on its peculiarities for the observed period from 2006 to 2009.

  8. Orbits in weak and strong bars

    CERN Document Server

    Contopoulos, George

    1980-01-01

    The authors study the plane orbits in simple bar models embedded in an axisymmetric background when the bar density is about 1% (weak), 10% (intermediate) or 100% (strong bar) of the axisymmetric density. Most orbits follow the stable periodic orbits. The basic families of periodic orbits are described. In weak bars with two Inner Lindblad Resonances there is a family of stable orbits extending from the center up to the Outer Lindblad Resonance. This family contains the long period orbits near corotation. Other stable families appear between the Inner Lindblad Resonances, outside the Outer Lindblad Resonance, around corotation (short period orbits) and around the center (retrograde). Some families become unstable or disappear in strong bars. A comparison is made with cases having one or no Inner Lindblad Resonance. (12 refs).

  9. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  10. Facilitating Transfers

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2018-01-01

    Departing from the paradox that globalisation has implied an increase, rather than a decrease, in contextual diversity, this paper re-assesses the function, normative purpose and location of Regulatory Governance Frameworks in world society. Drawing on insights from sociology of law and world...... society studies, the argument advanced is that Regulatory Governance Frameworks are oriented towards facilitating transfers of condensed social components, such as economic capital and products, legal acts, political decisions and scientific knowledge, from one legally-constituted normative order, i.......e. contextual setting, to another. Against this background, it is suggested that Regulatory Governance Frameworks can be understood as schemes which act as ‘rites of passage’ aimed at providing legal stabilisation to social processes characterised by liminality, i.e ambiguity, hybridity and in-betweenness....

  11. Computerized tomography of orbital lesions

    International Nuclear Information System (INIS)

    Kuroiwa, Mayumi

    1981-01-01

    Two different types of computerized tomography scanners (CT scanner), i.e. a whole-body CT scanner (GE-CT/T8800) and a cerebral CT scanner (EMI-1010), were compared in the assessment and diagnosis of various orbital lesions. The whole-body CT scanner was found to be advantageous over the cerebral CT scanner for the following reasons: (1) CT images were more informative due to thinner slices associated with smaller-sized and larger-numbered matrices; (2) less artifacts derived from motion of the head or eyeball were produced because of the shorter scanning time; (3) with a devised gantry, coronal dissections were available whenever demanded. (author)

  12. Orbiter fuel cell improvement assessment

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1981-08-01

    The history of fuel cells and the theory of fuel cells is given. Expressions for thermodynamic and electrical efficiencies are developed. The voltage losses due to electrode activation, ohmic resistance and ionic diffusion are discussed. Present limitations of the Orbiter Fuel Cell, as well as proposed enhancements, are given. These enhancements are then evaluated and recommendations are given for fuel cell enhancement both for short-range as well as long-range performance improvement. Estimates of reliability and cost savings are given for enhancements where possible

  13. On-Orbit Software Analysis

    Science.gov (United States)

    Moran, Susanne I.

    2004-01-01

    The On-Orbit Software Analysis Research Infusion Project was done by Intrinsyx Technologies Corporation (Intrinsyx) at the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC). The Project was a joint collaborative effort between NASA Codes IC and SL, Kestrel Technology (Kestrel), and Intrinsyx. The primary objectives of the Project were: Discovery and verification of software program properties and dependencies, Detection and isolation of software defects across different versions of software, and Compilation of historical data and technical expertise for future applications

  14. Classification of particle orbits near the magnetic axis in a tokamak by using constants of motion

    International Nuclear Information System (INIS)

    Satake, Shinsuke; Sugama, Hideo; Okamoto, Masao; Wakatani, Masahiro

    2001-01-01

    A classification of particle orbits near the magnetic axis in a tokamak is presented in a space of constants of motion (COM), which is important to apply Lagrangian formulation of neoclassical transport theory to the region near the axis. Orbit types are distinguished by the number of the turning points of σsub(parallel)=υsub(parallel)/|υsub(parallel)| and σ θ =θ-bar/|θ-bar| on each orbit, where υsub(parallel) is the velocity parallel to the magnetic field, and θ-bar(≡v·∇θ) is the poloidal angular velocity. As a set of COM, (ε, μ, ) is taken, where ε is the energy of a particle, μ is the magnetic moment, and is the bounce-averaged minor radius position of a particle orbit. Compared with a familiar set of COM (υ, ξ s , r s ), where υ is the particle velocity, r s is the minor radius at which an orbit crosses the mid-plane, and ξ s =υsub(parallel)/υ evaluated at the crossing point, the set of COM (ε, μ, ) is more suitable in practice for Lagrangian formulation of neoclassical transport theory, in which the particle diffusion is described by the change of average position of particles by collisions. Near the magnetic axis, it is found that there are overlaps in regions of orbit types in the (ε, μ, ) space and that has a minimum value for a given ε. (author)

  15. Propagation of orbital angular momentum carrying beams through a perturbing medium

    CSIR Research Space (South Africa)

    Chaibi, A

    2013-09-01

    Full Text Available The orbital angular momentum of light has been suggested as a means of information transfer over free-space, yet the detected optical vortex is known to be sensitive to perturbation. Such effects have been studied theoretically, in particular...

  16. The Sturmian expansion: A well-depth-method for orbitals in a deformed potential

    International Nuclear Information System (INIS)

    Bang, J.M.; Vaagen, J.S.

    1980-01-01

    The Sturmian expansion method has over the years successfully been used to generate orbitals in a deformed potential. In this paper we review the method in detail including more recent extentions. The convergence properties are discussed in terms of examples of current interest for nucleon-transfer reactions. Comparisons with other methods are also made. (orig.)

  17. Neutron orbital radii in {sup 13} C; Radios orbitales neutronicos en {sup 13} C

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.J.; Avila, O.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1988-01-15

    In this work its were carried out experimental measurements of the reaction {sup 12}C(d,p) {sup 13}C at low energy. Preliminary results of a DWBA analysis of the data are presented, and the possibility of using this reaction to obtain the orbital radius of the transferred neutron is investigated. (Author)

  18. Minimum Bias Measurements at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00022031; The ATLAS collaboration

    2016-01-01

    Inclusive charged particle measurements at hadron colliders probe the low-energy nonperturbative region of QCD. Pseudorapidity distributions of charged-particles produced in pp collisions at 13 TeV have been measured by the CMS experiment. The ATLAS collaboration has measured the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam current, recorded at a center-of-mass energy of 13 TeV. The measurements present the first detailed studies in inclusive phase spaces with a minimum transverse momentum of 100 MeV and 500 MeV. The distribution of electromagnetic and hadronic energy in the very forward phase-space has been measured with the CASTOR calorimeters located at a pseudorapidity of -5.2 to -6.6 in the very forward region of CMS. The energy distributions are very powerful benchmarks to study the performance of MPI in hadronic interactions models at 13 TeV collision energy. All measurements are compared with predictions of ...

  19. Topside measurements at Jicamarca during solar minimum

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2009-01-01

    Full Text Available Long-pulse topside radar data acquired at Jicamarca and processed using full-profile analysis are compared to data processed using more conventional, range-gated approaches and with analytic and computational models. The salient features of the topside observations include a dramatic increase in the Te/Ti temperature ratio above the F peak at dawn and a local minimum in the topside plasma temperature in the afternoon. The hydrogen ion fraction was found to exhibit hyperbolic tangent-shaped profiles that become shallow (gradually changing above the O+-H+ transition height during the day. The profile shapes are generally consistent with diffusive equilibrium, although shallowing to the point of changes in inflection can only be accounted for by taking the effects of E×B drifts and meridional winds into account. The SAMI2 model demonstrates this as well as the substantial effect that drifts and winds can have on topside temperatures. Significant quiet-time variability in the topside composition and temperatures may be due to variability in the mechanical forcing. Correlations between topside measurements and magnetometer data at Jicamarca support this hypothesis.

  20. Topside measurements at Jicamarca during solar minimum

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2009-01-01

    Full Text Available Long-pulse topside radar data acquired at Jicamarca and processed using full-profile analysis are compared to data processed using more conventional, range-gated approaches and with analytic and computational models. The salient features of the topside observations include a dramatic increase in the Te/Ti temperature ratio above the F peak at dawn and a local minimum in the topside plasma temperature in the afternoon. The hydrogen ion fraction was found to exhibit hyperbolic tangent-shaped profiles that become shallow (gradually changing above the O+-H+ transition height during the day. The profile shapes are generally consistent with diffusive equilibrium, although shallowing to the point of changes in inflection can only be accounted for by taking the effects of E×B drifts and meridional winds into account. The SAMI2 model demonstrates this as well as the substantial effect that drifts and winds can have on topside temperatures. Significant quiet-time variability in the topside composition and temperatures may be due to variability in the mechanical forcing. Correlations between topside measurements and magnetometer data at Jicamarca support this hypothesis.