WorldWideScience

Sample records for minimum energy points

  1. Improved initial guess for minimum energy path calculations

    International Nuclear Information System (INIS)

    Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt; Jónsson, Hannes

    2014-01-01

    A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used

  2. Minimum heat flux (MHF) point in pool and external-flow boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1983-01-01

    As for the boiling phenomena near a minimum heat flux (MHF) point to which attention has been paid recently concerning the safety analysis of LWR cores, the results of research have not been put in order sufficiently. Therefore in this explanation, the object is limited to pool boiling and external flow boiling, and it is attempted to rearrange the present knowledge on the phenomena near a MHF point from the viewpoint of the relation to the state of solid-liquid contact, the effect of various factors on a MHF point and the modeling of a MHF point. The heat transfer characteristics in boiling phenomena are represented by a curve with one maximum and one minimum points. The MHF point is called also minimum film boiling point. In a heat flux-controlled heating surface, temperature jump arises when heat flux is decreased at a MHF point. The phenomena near a MHF point and the technological background when a MHF point becomes a problem are explained. Near a MHF point, only partial, intermittent solid-liquid contact is maintained. The effects of solid-liquid contact mode, the geometry of a heating surface, pressure and others on a MHF point are discussed. (Kako, I.)

  3. Minimum energy consumption process synthesis for energy saving

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ping, Jia [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China); Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Fang, Wang; Shu-Guang, Xiang; Xin-Sun, Tan; Fang-Yu, Han [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China)

    2008-05-15

    The paper presents a synthesis strategy for the chemical processes with energy saving. The concept of minimum energy consumption process (MECP) is proposed. Three characteristics of MECP are introduced, including thermodynamic minimum energy demand, energy consumption efficiency and integration degree. These characteristics are evaluated according to quantitative thermodynamic analysis and qualitative knowledge rules. The procedure of synthesis strategy is proposed to support the generation of MECP alternatives, which combine flowsheet integration and heat integration. The cases studies will focus on how integration degrees of a process affect the energy-saving results. The separation sequences of the hydrodealkylation of toluene (HDA) process and ethanol distillation process as case studies are used to illustrate. (author)

  4. Study on minimum heat-flux point during boiling heat transfer on horizontal plates

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1985-01-01

    The characteristics of boiling heat transfer are usually shown by the boiling curve of N-shape having the maximum and minimum points. As for the limiting heat flux point, that is, the maximum point, there have been many reports so far, as it is related to the physical burn of heat flux-controlling type heating surfaces. But though the minimum heat flux point is related to the quench point as the problems in steel heat treatment, the core safety of LWRs, the operational stability of superconducting magnets, the start-up characteristics of low temperature machinery, the condition of vapor explosion occurrence and so on, the systematic information has been limited. In this study, the effects of transient property and the heat conductivity of heating surfaces on the minimum heat flux condition in the pool boiling on horizontal planes were experimentally examined by using liquid nitrogen. The experimental apparatuses for steady boiling, for unsteady boiling with a copper heating surface, and for unsteady boiling with a heating surface other than copper were employed. The boiling curves obtained with these apparatuses and the minimum heat flux point condition are discussed. (Kako, I.)

  5. Prediction technique for minimum-heat-flux (MHF)- point condition of saturated pool boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1987-01-01

    The temperature-controlled hypothesis for the minimum-heat-flux (MHF)-point condition, in which the MHF-point temperature is regarded as the controlling factor and is expected to be independent of surface configuration and dimensions, is inductively investigated for saturated pool-boiling. In this paper such features of the MHF-point condition are experimentally proved first. Secondly, a correlation of the MHF-point temperature is developed for the effect of system pressure. Finally, a simple technique based on this correlation is presented to estimate the effects of surface configuration, dimensions and system pressure on the minimum heat flux. (author)

  6. Minimum Propellant Low-Thrust Maneuvers near the Libration Points

    Science.gov (United States)

    Marinescu, A.; Dumitrache, M.

    equations of the extremals and integrating these differential equations we obtain the desired extremals which characterize the minimum propellant optimal manoeuvres of transfer from libration points to their orbits. By means of Legendre conditions for weak minimum and Weierstrass condition for strong minimum, is demonstrated that variational problem so formulated has sense and is a problem of minimum. The integration of extremal's differential equations system can not lead to analytical solutions easily to obtain and for this we have directed to a numerical integration. The problem is a bilocal one because the motion parameter values are predicted at the beginning and of the maneuver (the manoeuvre duration coincides with the combustion duration) the values of the Lagrange multipliers not being specified at the beginning and end of the manoeuvre. For determination of the velocities at any point on the libration point L4 and L2 has been elaborated the program of calculus on the integration of the motion equations without accelerations due thrust during a revolution period the coordinates and velocities to be equal, with which have been calculated the velocities at the apoapsis A and respectively A'. With these specifications, the final conditions (at the end of the maneuver) could be established, and the determination of optimal transfer parameters in the specified points could be determined. The calculus performed for the transfer from the libration points L4 and L2 to their orbits, shows that the evolution velocities on the orbits are in general small, the velocities on the L2 orbits being greater than the velocities on L 4 orbits having the same semimajor axis. This fact is explicable because the period of evolution on orbits of libration point L4 is greater than the period of orbits of the libration point L2. For the transfer in the apoapsis of both orbits (the points A. and A') on can remarque the fact the accelerations due thrust are greater for orbits around the

  7. The graph-theoretic minimum energy path problem for ionic conduction

    Directory of Open Access Journals (Sweden)

    Ippei Kishida

    2015-10-01

    Full Text Available A new computational method was developed to analyze the ionic conduction mechanism in crystals through graph theory. The graph was organized into nodes, which represent the crystal structures modeled by ionic site occupation, and edges, which represent structure transitions via ionic jumps. We proposed a minimum energy path problem, which is similar to the shortest path problem. An effective algorithm to solve the problem was established. Since our method does not use randomized algorithm and time parameters, the computational cost to analyze conduction paths and a migration energy is very low. The power of the method was verified by applying it to α-AgI and the ionic conduction mechanism in α-AgI was revealed. The analysis using single point calculations found the minimum energy path for long-distance ionic conduction, which consists of 12 steps of ionic jumps in a unit cell. From the results, the detailed theoretical migration energy was calculated as 0.11 eV by geometry optimization and nudged elastic band method. Our method can refine candidates for possible jumps in crystals and it can be adapted to other computational methods, such as the nudged elastic band method. We expect that our method will be a powerful tool for analyzing ionic conduction mechanisms, even for large complex crystals.

  8. Minimum free-energy paths for the self-organization of polymer brushes.

    Science.gov (United States)

    Gleria, Ignacio; Mocskos, Esteban; Tagliazucchi, Mario

    2017-03-22

    A methodology to calculate minimum free-energy paths based on the combination of a molecular theory and the improved string method is introduced and applied to study the self-organization of polymer brushes under poor solvent conditions. Polymer brushes in a poor solvent cannot undergo macroscopic phase separation due to the physical constraint imposed by the grafting points; therefore, they microphase separate forming aggregates. Under some conditions, the theory predicts that the homogeneous brush and the aggregates can exist as two different minima of the free energy. The theoretical methodology introduced in this work allows us to predict the minimum free-energy path connecting these two minima as well as the morphology of the system along the path. It is shown that the transition between the homogeneous brush and the aggregates may involve a free-energy barrier or be barrierless depending on the relative stability of the two morphologies and the chain length and grafting density of the polymer. In the case where a free-energy barrier exists, one of the morphologies is a metastable structure and, therefore, the properties of the brush as the quality of the solvent is cycled are expected to display hysteresis. The theory is also applied to study the adhesion/deadhesion transition between two opposing surfaces modified by identical polymer brushes and it is shown that this process may also require surpassing a free-energy barrier.

  9. Minimum airflow reset of single-duct VAV terminal boxes

    Science.gov (United States)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  10. Point Counts of Birds in Bottomland Hardwood Forests of the Mississippi Alluvial Valley: Duration, Minimum Sample Size, and Points Versus Visits

    Science.gov (United States)

    Winston Paul Smith; Daniel J. Twedt; David A. Wiedenfeld; Paul B. Hamel; Robert P. Ford; Robert J. Cooper

    1993-01-01

    To compare efficacy of point count sampling in bottomland hardwood forests, duration of point count, number of point counts, number of visits to each point during a breeding season, and minimum sample size are examined.

  11. Design for minimum energy in interstellar communication

    Science.gov (United States)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  12. Minimum energy control and optimal-satisfactory control of Boolean control network

    International Nuclear Information System (INIS)

    Li, Fangfei; Lu, Xiwen

    2013-01-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  13. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  14. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  15. Minimum wall pressure coefficient of orifice plate energy dissipater

    Directory of Open Access Journals (Sweden)

    Wan-zheng Ai

    2015-01-01

    Full Text Available Orifice plate energy dissipaters have been successfully used in large-scale hydropower projects due to their simple structure, convenient construction procedure, and high energy dissipation ratio. The minimum wall pressure coefficient of an orifice plate can indirectly reflect its cavitation characteristics: the lower the minimum wall pressure coefficient is, the better the ability of the orifice plate to resist cavitation damage is. Thus, it is important to study the minimum wall pressure coefficient of the orifice plate. In this study, this coefficient and related parameters, such as the contraction ratio, defined as the ratio of the orifice plate diameter to the flood-discharging tunnel diameter; the relative thickness, defined as the ratio of the orifice plate thickness to the tunnel diameter; and the Reynolds number of the flow through the orifice plate, were theoretically analyzed, and their relationships were obtained through physical model experiments. It can be concluded that the minimum wall pressure coefficient is mainly dominated by the contraction ratio and relative thickness. The lower the contraction ratio and relative thickness are, the larger the minimum wall pressure coefficient is. The effects of the Reynolds number on the minimum wall pressure coefficient can be neglected when it is larger than 105. An empirical expression was presented to calculate the minimum wall pressure coefficient in this study.

  16. Minimum Energy Control of 2D Positive Continuous-Discrete Linear Systems

    Directory of Open Access Journals (Sweden)

    Kaczorek Tadeusz

    2014-09-01

    Full Text Available The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Necessary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero boundary conditions to given final state and minimizing the performance index for only one step (q = 1. A procedure for solving of the problem is proposed and illustrated by a numerical example.

  17. Solution for Nonlinear Three-Dimensional Intercept Problem with Minimum Energy

    Directory of Open Access Journals (Sweden)

    Henzeh Leeghim

    2013-01-01

    a minimum-energy application, which then generates both the desired initial interceptor velocity and the TOF for the minimum-energy transfer. The optimization problem is formulated by using the classical Lagrangian f and g coefficients, which map initial position and velocity vectors to future times, and a universal time variable x. A Newton-Raphson iteration algorithm is introduced for iteratively solving the problem. A generalized problem formulation is introduced for minimizing the TOF as part of the optimization problem. Several examples are presented, and the results are compared with the Hohmann transfer solution approaches. The resulting minimum-energy intercept solution algorithm is expected to be broadly useful as a starting iterative for applications spanning: targeting, rendezvous, interplanetary trajectory design, and so on.

  18. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Binary cluster collision dynamics and minimum energy conformations

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Rogan, José; Valdivia, J.A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Varas, A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Nano-Bio Spectroscopy Group, ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián (Spain); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile)

    2013-10-15

    The collision dynamics of one Ag or Cu atom impinging on a Au{sub 12} cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au{sub 12}→Au{sub 13} is mostly preserved by the resulting planar Au{sub 12}Ag and Au{sub 12}Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au{sub 12}Ag and 4483 Au{sub 12}Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously.

  20. Bistable minimum energy structures (BiMES) for binary robotics

    International Nuclear Information System (INIS)

    Follador, M; Conn, A T; Rossiter, J

    2015-01-01

    Bistable minimum energy structures (BiMES) are devices derived from the union of the concepts of dielectric elastomer minimum energy structures and bistable systems. This article presents this novel approach to active, elastic and bistable structures. BiMES are based on dielectric elastomer actuators (DEAs), which act as antagonists and provide the actuation for switching between the two equilibrium positions. A central elastic beam is the backbone of the structure and is buckled into the minimum energy configurations by the action of the two DEAs. The theory and the model of the device are presented, and also its fabrication process. BiMES are considered as fundamental units for more complex structures, which are presented and fabricated as proof of concept. Two different ways of combining the multiple units are proposed: a parallel configuration, to make a simple gripper, and a serial configuration, to generate a binary device. The possibility of using the bistable system as a continuous bender actuator, by modulating the actuation voltage of the two DEAs, was also investigated. (paper)

  1. Energy and environmental norms on Minimum Vital Flux

    International Nuclear Information System (INIS)

    Maran, S.

    2008-01-01

    By the end of the year will come into force the recommendations on Minimum Vital flow and operators of hydroelectric power plants will be required to make available part of water of their derivations in order to protect river ecosystems. In this article the major energy and environmental consequences of these rules, we report some quantitative evaluations and are discusses the proposals for overcoming the weaknesses of the approach in the estimation of Minimum Vital Flux [it

  2. Bounds on Minimum Energy per Bit for Optical Wireless Relay Channels

    Directory of Open Access Journals (Sweden)

    A. D. Raza

    2014-09-01

    Full Text Available An optical wireless relay channel (OWRC is the classical three node network consisting of source, re- lay and destination nodes with optical wireless connectivity. The channel law is assumed Gaussian. This paper studies the bounds on minimum energy per bit required for reliable communication over an OWRC. It is shown that capacity of an OWRC is concave and energy per bit is monotonically increasing in square of the peak optical signal power, and consequently the minimum energy per bit is inversely pro- portional to the square root of asymptotic capacity at low signal to noise ratio. This has been used to develop upper and lower bound on energy per bit as a function of peak signal power, mean to peak power ratio, and variance of channel noise. The upper and lower bounds on minimum energy per bit derived in this paper correspond respectively to the decode and forward lower bound and the min-max cut upper bound on OWRC capacity

  3. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    Science.gov (United States)

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  4. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali

    2015-08-12

    Process design and simulation of multi-stage membrane systems have been widely studied in many gas separation systems. However, general guidelines have not been developed yet for the attainability and the minimum energy consumption of a multi-stage membrane system. Such information is important for conceptual process design and thus it is the topic of this work. Using a well-mixed membrane model, it was determined that the attainability curve of multi-stage systems is defined by the pressure ratio and membrane selectivity. Using the constant recycle ratio scheme, the recycle ratio can shift the attainability behavior between single-stage and multi-stage membrane systems. When the recycle ratio is zero, all of the multi-stage membrane processes will decay to a single-stage membrane process. When the recycle ratio approaches infinity, the required selectivity and pressure ratio reach their absolute minimum values, which have a simple relationship with that of a single-stage membrane process, as follows: View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can significantly reduce the required membrane selectivity without substantial energy penalty. The energy envelope curve can provide a guideline from an energy perspective to determine the minimum required membrane selectivity in membrane process designs to compete with conventional separation processes, such as distillation.

  5. Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State

    OpenAIRE

    Regnier, S.; Priest, E. R.

    2008-01-01

    To understand the physics of solar flares, including the local reorganization of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We inves...

  6. Energy-minimum sub-threshold self-timed circuits using current-sensing completion detection

    DEFF Research Database (Denmark)

    Akgun, O. C.; Rodrigues, J. N.; Sparsø, Jens

    2011-01-01

    This study addresses the design of self-timed energy-minimum circuits, operating in the sub-VT domain and a generic implementation template using bundled-data circuitry and current sensing completion detection (CSCD). Furthermore, a fully decoupled latch controller was developed, which integrates......V. Spice simulations indicate a gain of 52.58% in throughput because of asynchronous operation. By trading the throughput improvement, energy dissipation is reduced by 16.8% at the energy-minimum supply voltage....

  7. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.

  8. A dual exterior point simplex type algorithm for the minimum cost network flow problem

    Directory of Open Access Journals (Sweden)

    Geranis George

    2009-01-01

    Full Text Available A new dual simplex type algorithm for the Minimum Cost Network Flow Problem (MCNFP is presented. The proposed algorithm belongs to a special 'exterior- point simplex type' category. Similarly to the classical network dual simplex algorithm (NDSA, this algorithm starts with a dual feasible tree-solution and reduces the primal infeasibility, iteration by iteration. However, contrary to the NDSA, the new algorithm does not always maintain a dual feasible solution. Instead, the new algorithm might reach a basic point (tree-solution outside the dual feasible area (exterior point - dual infeasible tree.

  9. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in the first

  10. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J.

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in

  11. Minimum beam-energy spread of a high-current rf linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Fraser, J.S.

    1987-01-01

    Energy spread is an important parameter of an electron linac and, usually, is determined by the time dependence of the external rf accelerating field. By using a combination of fundamental and higher harmonic frequencies, the accelerating field can be maintained approximately constant over a beam bunch with the resultant energy spread approximately zero. This technique is no longer adequate when the longitudinal wake field of the beam bunch is taken into account. The wake-field variation along the bunch length introduces an energy spread that cannot be exactly compensated for with the use of fundamental and higher harmonic frequencies. The achievable minimum energy spread including the wake-field effect is therefore limited. In this paper, we report the minimum energy spreads achievable using the fundamental and third-harmonic frequencies, calculated using a least-squares algorithm, for some typical structures in use at Los Alamos National Laboratory. The dependence of these results on bunch shape, bunch charge, and structure frequency is discussed. Also included are discussions of schemes for implementing the third-harmonic frequency and their effectiveness

  12. Favorable performance of the DFT methods in predicting the minimum-energy structure of the lowest triplet state of WF4

    International Nuclear Information System (INIS)

    Gutowski, M.; Univ. of Utah, Salt Lake City, UT

    1999-01-01

    The tetrahedral structure of the lowest triplet state of the WF 4 complex was examined using different variants of the density functional theory (DFT) and conventional ab initio methods. The low-level, conventional, ab initio methods, such as SCF, MP2, MP3, and CISD, predict the tetrahedral structure to be a minimum, whereas the DFT schemes predict an imaginary frequency for the e vibrational mode. Only after recovering electron correlation effects at the MP4 and higher levels, the conventional electronic structure methods also predict the T d structure to be a second-order stationary point. This is not the correlation but the exchange part of the DFT functionals which is responsible for the discrepancy between the DFT and low-level, conventional, ab initio predictions. The lowering of symmetry to C 2v leads to a minimum on the lowest triplet potential energy surface and the electronic energy difference between the T d and C 2v stationary points amounts to 0.85 and 0.96 kcal/mol at the B3LYP and CCSD(T) levels, respectively

  13. Search for Superconducting Energy Gap in UPt3 by Point-Contact Spectroscopy

    International Nuclear Information System (INIS)

    Gouchi, Jun; Sumiyama, Akihiko; Yamaguchi, Akira; Motoyama, Gaku; Kimura, Noriaki; Yamamoto, Etsuji; Haga, Yoshinori; Ōnuki, Yoshichika

    2015-01-01

    We have investigated the differential resistance of the point contacts between heavy-fermion superconductor UPt 3 and a normal metal Pt, which were fabricated using a commercial piezo-electric actuator, and retried the observation of the energy gap of UPt 3 . A V-shaped dip is observed in both normal and superconducting states and disappeared around T K ∼ 20 K, suggesting that it is related to the Kondo effect. Below the superconducting transition temperature, a shallow double-minimum structure, which indicates the energy gap, has been observed for the contacts on the faces perpendicular to the a-, b- and c-axes of UPt 3

  14. The Minimum Binding Energy and Size of Doubly Muonic D3 Molecule

    Science.gov (United States)

    Eskandari, M. R.; Faghihi, F.; Mahdavi, M.

    The minimum energy and size of doubly muonic D3 molecule, which two of the electrons are replaced by the much heavier muons, are calculated by the well-known variational method. The calculations show that the system possesses two minimum positions, one at typically muonic distance and the second at the atomic distance. It is shown that at the muonic distance, the effective charge, zeff is 2.9. We assumed a symmetric planar vibrational model between two minima and an oscillation potential energy is approximated in this region.

  15. Zero point energy of renormalized Wilson loops

    International Nuclear Information System (INIS)

    Hidaka, Yoshimasa; Pisarski, Robert D.

    2009-01-01

    The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point energy is negative, regardless of the sign of the extrinsic curvature term.

  16. Energy expenditure, economic growth, and the minimum EROI of society

    International Nuclear Information System (INIS)

    Fizaine, Florian; Court, Victor

    2016-01-01

    We estimate energy expenditure for the US and world economies from 1850 to 2012. Periods of high energy expenditure relative to GDP (from 1850 to 1945), or spikes (1973–74 and 1978–79) are associated with low economic growth rates, and periods of low or falling energy expenditure are associated with high and rising economic growth rates (e.g. 1945–1973). Over the period 1960–2010 for which we have continuous year-to-year data for control variables (capital formation, population, and unemployment rate) we estimate that, statistically, in order to enjoy positive growth, the US economy cannot afford to spend more than 11% of its GDP on energy. Given the current energy intensity of the US economy, this translates in a minimum societal EROI of approximately 11:1 (or a maximum tolerable average price of energy of twice the current level). Granger tests consistently reveal a one way causality running from the level of energy expenditure (as a fraction of GDP) to economic growth in the US between 1960 and 2010. A coherent economic policy should be founded on improving net energy efficiency. This would yield a “double dividend”: increased societal EROI (through decreased energy intensity of capital investment), and decreased sensitivity to energy price volatility. - Highlights: •We estimate energy expenditures as a fraction of GDP for the US, the world (1850–2012), and the UK (1300–2008). •Statistically speaking, the US economy cannot afford to allocate more than 11% of its GDP to energy expenditures in order to have a positive growth rate. •This corresponds to a maximum tolerable average price of energy of twice the current level. •In the same way, US growth is only possible if its primary energy system has at least a minimum EROI of approximately 11:1.

  17. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  18. A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems

    International Nuclear Information System (INIS)

    Dittrich, R.; Schrefl, T.; Suess, D.; Scholz, W.; Forster, H.; Fidler, J.

    2002-01-01

    Minimum energy paths and energy barriers are calculated for complex micromagnetic systems. The method is based on the nudged elastic band method and uses finite-element techniques to represent granular structures. The method was found to be robust and fast for both simple test problems as well as for large systems such as patterned granular media. The method is used to estimate the energy barriers in CoCr-based perpendicular recording media

  19. Zero Point Energy of Renormalized Wilson Loops

    OpenAIRE

    Hidaka, Yoshimasa; Pisarski, Robert D.

    2009-01-01

    The quark antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero wh...

  20. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    International Nuclear Information System (INIS)

    Kaya, Savaş; Kaya, Cemal; Islam, Nazmul

    2016-01-01

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  1. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Kaya, Cemal, E-mail: kaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Islam, Nazmul, E-mail: nazmul.islam786@gmail.com [Theoretical and Computational Chemistry Research Laboratory, Department of Basic Science and Humanities/Chemistry Techno Global-Balurghat, Balurghat, D. Dinajpur 733103 (India)

    2016-03-15

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  2. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali; Lai, Zhiping

    2015-01-01

    : View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can

  3. Cost-optimal levels of minimum energy performance requirements in the Danish Building Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Aggerholm, S.

    2013-09-15

    The purpose of the report is to analyse the cost optimality of the energy requirements in the Danish Building Regulations 2010, BR10 to new building and to existing buildings undergoing major renovation. The energy requirements in the Danish Building Regulations have by tradition always been based on the cost and benefits related to the private economical or financial perspective. Macro economical calculations have in the past only been made in addition. The cost optimum used in this report is thus based on the financial perspective. Due to the high energy taxes in Denmark there is a significant difference between the consumer price and the macro economical for energy. Energy taxes are also paid by commercial consumers when the energy is used for building operation e.g. heating, lighting, ventilation etc. In relation to the new housing examples the present minimum energy requirements in BR 10 all shows gaps that are negative with a deviation of up till 16 % from the point of cost optimality. With the planned tightening of the requirements to new houses in 2015 and in 2020, the energy requirements can be expected to be tighter than the cost optimal point, if the costs for the needed improvements don't decrease correspondingly. In relation to the new office building there is a gap of 31 % to the point of cost optimality in relation to the 2010 requirement. In relation to the 2015 and 2020 requirements there are negative gaps to the point of cost optimality based on today's prices. If the gaps for all the new buildings are weighted to an average based on mix of building types and heat supply for new buildings in Denmark there is a gap of 3 % in average for the new building. The excessive tightness with today's prices is 34 % in relation to the 2015 requirement and 49 % in relation to the 2020 requirement. The component requirement to elements in the building envelope and to installations in existing buildings adds up to significant energy efficiency

  4. Projected electricity savings from implementing minimum energy efficiency standard for household refrigerators in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Choudhury, I.A.; NoorLeha, A.R.

    2003-01-01

    The Malaysian economy has grown rapidly in the last two decades. This growth has increased the ownership of household electrical appliances, especially refrigerator-freezers. Almost every house in Malaysia owns a refrigerator-freezer. The Malaysia Energy Center considered implementing a minimum energy efficiency standard for household refrigerator-freezers sometime in the coming year. This paper attempts to predict the amount of energy savings in the residential sector by implementing a minimum energy efficiency standard for household refrigerator-freezers. The calculations are based on the growth of refrigerator-freezer ownership data in Malaysian households. By implementing the programs in 2004, about 8722 GWh will be saved in the year 2013. Therefore, efficiency improvement of this appliance will provide a significant impact in future electricity consumption in Malaysia

  5. Torsional shear flow of granular materials: shear localization and minimum energy principle

    Science.gov (United States)

    Artoni, Riccardo; Richard, Patrick

    2018-01-01

    The rheological properties of granular matter submitted to torsional shear are investigated numerically by means of discrete element method. The shear cell is made of a cylinder filled by grains which are sheared by a bumpy bottom and submitted to a vertical pressure which is applied at the top. Regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. The effects of the (i) the applied pressure, (ii) sidewall friction, and (iii) angular velocity are investigated. A model, based on the purely local μ (I)-rheology and a minimum energy principle is able to capture the effect of the two former quantities but unable to account the effect of the latter. Although, an ad hoc modification of the model allows to reproduce all the numerical results, our results point out the need for an alternative rheology.

  6. Zero-point energy in spheroidal geometries

    OpenAIRE

    Kitson, A. R.; Signal, A. I.

    2005-01-01

    We study the zero-point energy of a massless scalar field subject to spheroidal boundary conditions. Using the zeta-function method, the zero-point energy is evaluated for small ellipticity. Axially symmetric vector fields are also considered. The results are interpreted within the context of QCD flux tubes and the MIT bag model.

  7. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2010-01-01

    The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.

  8. Materializing a responsive interior: designing minimum energy structures

    DEFF Research Database (Denmark)

    Mossé, Aurélie; Kofod, Guggi; Ramsgaard Thomsen, Mette

    2011-01-01

    This paper discusses a series of design-led experiments investigating future possibilities for architectural materialization relying on minimum energy structures as an example of adaptive structure. The structures have been made as laminates of elastic membrane under high tension with flexible...... (Lendlein, Kelch 2002) or light (van Oosten, Bastiaansen et al. 2009). All in all, this approach could form a whole new design paradigm, in which efficient 2D-manufacturing can lead to highly flexible, low weight and adaptable 3D-structures. This is illustrated by the design and manufacture of electro...

  9. Communication: A new ab initio potential energy surface for HCl-H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction.

    Science.gov (United States)

    Mancini, John S; Bowman, Joel M

    2013-03-28

    We report a global, full-dimensional, ab initio potential energy surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44,000 CCSD(T)-F12b∕aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm(-1). The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm(-1), in good agreement with the recent experimentally reported value of 1334 ± 10 cm(-1) [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010)]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C(2v) double-well saddle point and not the C(s) global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm(-1) above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm(-1), which we hope will stand as a benchmark for future experimental work.

  10. Tapping the zero-point energy as an energy source

    International Nuclear Information System (INIS)

    King, M.B.

    1991-01-01

    This paper reports that the hypothesis for tapping the zero-point energy (ZPE) arises by combining the theories of the ZPE with the theories of system self-organization. The vacuum polarization of atomic nuclei might allow their synchronous motion to activate a ZPE coherence. Experimentally observed plasma ion-acoustic anomalies as well as inventions utilizing cycloid ion motions may offer supporting evidence. The suggested experiment of rapidly circulating a charged plasma in a vortex ring might induce a sufficient zero-point energy interaction to manifest a gravitational anomaly. An invention utilizing abrupt E field rotation to create virtual charge exhibits excessive energy output

  11. Deformed special relativity with an energy barrier of a minimum speed

    International Nuclear Information System (INIS)

    Nassif, Claudio

    2011-01-01

    Full text: This research aims to introduce a new principle of symmetry in the flat space-time by means of the elimination of the classical idea of rest, and by including a universal minimum limit of speed in the quantum world. Such a limit, unattainable by the particles, represents a preferred inertial reference frame associated with a universal background field that breaks Lorentz symmetry. So there emerges a new relativistic dynamics where a minimum speed forms an inferior energy barrier. One of the interesting implications of the existence of such a minimum speed is that it prevents the absolute zero temperature for an ultracold gas, according to the third law of thermodynamics. So we will be able to provide a fundamental dynamical explanation for the third law by means of a connection between such a phenomenological law and the new relativistic dynamics with a minimum speed. In other words we say that our relevant investigation is with respect to the problem of the absolute zero temperature in the thermodynamics of an ideal gas. We have made a connection between the 3 rd law of Thermodynamics and the new dynamics with a minimum speed by means of a relation between the absolute zero temperature (T = 0 deg K) and a minimum average speed (V) for a gas with N particles (molecules or atoms). Since T = 0 deg K is thermodynamically unattainable, we have shown this is due to the impossibility of reaching V from the new dynamics standpoint. (author)

  12. Minimum number of transfer units and reboiler duty for multicomponent distillation columns

    International Nuclear Information System (INIS)

    Pleşu, Valentin; Bonet Ruiz, Alexandra Elena; Bonet, Jordi; Llorens, Joan; Iancu, Petrica

    2013-01-01

    Some guidelines to evaluate distillation columns, considering only basic thermodynamic data and principles, are provided in this paper. The method allows a first insight to the problem by simple calculations, without requiring column variables to ensure rational use of energy and low environmental impact. The separation system is approached by two complementary ways: minimum and infinite reflux flow rate. The minimum reflux provides the minimum energy requirements, and the infinite reflux provides the feasibility conditions. The difficulty of separation can be expressed in terms of number of transfer units (NTU). The applicability of the method is not mathematically limited by the number of components in the mixture. It is also applicable to reactive distillation. Several mixtures, including reactive distillation, are rigorously simulated as illustrative examples, to verify the applicability of the approach. The separation of the mixtures, performed by distillation columns, is feasible if a minimum NTU can be calculated between the distillate and bottom products. Once verified the feasibility of the separation, the maximum thermal efficiency depends only on boiling point of bottom and distillate streams. The minimum energy requirements corresponding to the reboiler can be calculated from the maximum thermal efficiency, and the variation of entropy and enthalpy of mixing between distillate and bottom streams. -- Highlights: • Feasibility analysis complemented with difficulty of separation parameters • Minimum and infinite reflux simplified models for distillation columns • Minimum number of transfer units (NTU) for packed columns at early design stages • Calculation of minimum energy distillation requirements at early design stages • Thermodynamic cycle approach and efficiency for distillation columns

  13. CONCEPT OF THE MINIMUM ENERGY PASSENGER CAR WITH USE OF UNCONVENTIONAL ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    V. A. Gabrinets

    2014-06-01

    Full Text Available Purpose. The paper is aimed to consider the concept of creation of the minimum energy passenger car with use of nonconventional energy sources and the walls that have enhanced thermal insulation properties. Мethodology. The types of heat losses, as well as their value were analyzed. The alternative sources of energy are considered for heating. Their potential contribution to the overall energy balance of the passenger car is analyzed. Impact on the car design of the enhanced wall thermal insulation, solar energy inflow through the transparent windows and energy release of passengers are quantitatively evaluated. Findings. With the maximum possible use of all unconventional energy sources and the rational scheme solutions of conditioning and heating systems energy the costs for these needs for a passenger car can be reduced by 40-50%. Originality. New types of energy to maintain the heat balance of the car in the winter period is proposed to use firstly. New schematics solutions for environmental control system of the car both in winter and in summer periods were offered. Practical value. Introduction of the proposed scheme solutions and approaches to ensure the comfortable conditions for passengers may be implemented on an existing park of passenger cars and do not require a major re-equipment of systems that have already been installed.

  14. Maximum power point tracking: a cost saving necessity in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Enslin, J H.R. [Stellenbosch Univ. (South Africa). Dept. of Electrical and Electronic Engineering

    1992-12-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking (MPPT) can improve cost effectiveness, has a higher reliability and can improve the quality of life in remote areas. A high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of between 15 and 25% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply (RAPS) systems. The advantages at large temperature variations and high power rated systems are much higher. Other advantages include optimal sizing and system monitor and control. (author).

  15. Investigation on Minimum Film Boiling Point of Highly Heated Vertical Metal Rod in Aqueous Surfactant Solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young; Kim, Jae Han [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2017-09-15

    In this study, experiments were conducted on the MFB(minimum film boiling) point of highly heated vertical metal rod quenched in aqueous surfactant solution at various temperature conditions. The aqueous Triton X-100 solution(100 wppm) and pure water were used as the liquid pool. Their temperatures ranged from 77 °C to 100 °C. A stainless steel vertical rod of initial center temperature of 500 °C was used as a test specimen. In both liquid pools, as the liquid temperature decreased, the time to reach the MFB point decreased with a parallel increase in the temperature and heat flux of the MFB point. However, over the whole present temperature range, in the aqueous Triton X-100 solution, the time to reach the MFB point was longer, while the temperature and heat flux of the MFB point were reduced when compared with pure water. Based on the present experimental data, this study proposed the empirical correlations to predict the MFB temperature of a high temperature vertical metal rod in pure water and in aqueous Triton X-100 solution.

  16. Gravitational Zero Point Energy induces Physical Observables

    OpenAIRE

    Garattini, Remo

    2010-01-01

    We consider the contribution of Zero Point Energy on the induced Cosmological Constant and on the induced Electric/Magnetic charge in absence of matter fields. The method is applicable to every spherically symmetric background. Extensions to a generic $f(R) $ theory are also allowed. Only the graviton appears to be fundamental to the determination of Zero Point Energy.

  17. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe 2

    KAUST Repository

    Zhang, Chendong; Chen, Yuxuan; Johnson, Amber; Li, Ming-yang; Li, Lain-Jong; Mende, Patrick C.; Feenstra, Randall M.; Shih, Chih Kang

    2015-01-01

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  18. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe 2

    KAUST Repository

    Zhang, Chendong

    2015-09-21

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  19. Energy gap in La/sub 1. 85/Sr/sub 0. 15/CuO/sub 4-//sub y/ from point-contact tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Gray, K.E.; Capone II, D.W.; Hinks, D.G.

    1987-05-01

    Point-contact tunneling into the high-T/sub c/ superconductor La/sub 1.85/Sr/sub 0.15/CuO/sub 4-//sub y/ reveals the first direct measure of the energy gap. Values range from 8 to 14 meV with the variation perhaps due to impurity phases, pressure-induced changes, or anisotropy. Even the minimum value indicates a strong-coupling superconductor.

  20. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  1. UST-ID robotics: Wireless communication and minimum conductor technology, and end-point tracking technology surveys

    International Nuclear Information System (INIS)

    Holliday, M.A.

    1993-10-01

    This report is a technology review of the current state-of-the-art in two technologies applicable to the Underground Storage Tank (UST) program at the Hanford Nuclear Reservation. The first review is of wireless and minimal conductor technologies for in-tank communications. The second review is of advanced concepts for independent tool-point tracking. This study addresses the need to provide wireless transmission media or minimum conductor technology for in-tank communications and robot control. At present, signals are conducted via contacting transmission media, i.e., cables. Replacing wires with radio frequencies or invisible light are commonplace in the communication industry. This technology will be evaluated for its applicability to the needs of robotics. Some of these options are radio signals, leaky coax, infrared, microwave, and optical fiber systems. Although optical fiber systems are contacting transmission media, they will be considered because of their ability to reduce the number of conductors. In this report we will identify, evaluate, and recommend the requirements for wireless and minimum conductor technology to replace the present cable system. The second section is a technology survey of concepts for independent end-point tracking (tracking the position of robot end effectors). The position of the end effector in current industrial robots is determined by computing that position from joint information, which is basically a problem of locating a point in three-dimensional space. Several approaches are presently being used in industrial robotics, including: stereo-triangulation with a theodolite network and electrocamera system, photogrammetry, and multiple-length measurement with laser interferometry and wires. The techniques that will be evaluated in this survey are advanced applications of the aforementioned approaches. These include laser tracking (3-D and 5-D), ultrasonic tracking, vision-guided servoing, and adaptive robotic visual tracking

  2. Zero-point energy in early quantum theory

    International Nuclear Information System (INIS)

    Milonni, P.W.; Shih, M.-L.

    1991-01-01

    In modern physics the vacuum is not a tranquil void but a quantum state with fluctuations having observable consequences. The present concept of the vacuum has its roots in the zero-point energy of harmonic oscillators and the electromagnetic field, and arose before the development of the formalism of quantum mechanics. This article discusses these roots in the blackbody research of Planck and Einstein in 1912--1913, and the relation to Bose--Einstein statistics and the first indication of wave--particle duality uncovered by Einstein's fluctuation formula. Also considered are the Einstein--Stern theory of specific heats, which invoked zero-point energy in a way which turned out to be incorrect, and the experimental implications of zero-point energy recognized by Mulliken and Debye in vibrational spectroscopy and x-ray diffraction

  3. A fast tomographic method for searching the minimum free energy path

    International Nuclear Information System (INIS)

    Chen, Changjun; Huang, Yanzhao; Xiao, Yi; Jiang, Xuewei

    2014-01-01

    Minimum Free Energy Path (MFEP) provides a lot of important information about the chemical reactions, like the free energy barrier, the location of the transition state, and the relative stability between reactant and product. With MFEP, one can study the mechanisms of the reaction in an efficient way. Due to a large number of degrees of freedom, searching the MFEP is a very time-consuming process. Here, we present a fast tomographic method to perform the search. Our approach first calculates the free energy surfaces in a sequence of hyperplanes perpendicular to a transition path. Based on an objective function and the free energy gradient, the transition path is optimized in the collective variable space iteratively. Applications of the present method to model systems show that our method is practical. It can be an alternative approach for finding the state-to-state MFEP

  4. Lorentz invariance and the zero-point stress-energy tensor

    OpenAIRE

    Visser, Matt

    2016-01-01

    Some 65 years ago (1951) Wolfgang Pauli noted that the net zero-point energy density could be set to zero by a carefully fine-tuned cancellation between bosons and fermions. In the current article I will argue in a slightly different direction: The zero-point energy density is only one component of the zero-point stress energy tensor, and it is this tensor quantity that is in many ways the more fundamental object of interest. I shall demonstrate that Lorentz invariance of the zero-point stres...

  5. Improvement in minimum detectable activity for low energy gamma by optimization in counting geometry

    Directory of Open Access Journals (Sweden)

    Anil Gupta

    2017-01-01

    Full Text Available Gamma spectrometry for environmental samples of low specific activities demands low minimum detection levels of measurement. An attempt has been made to lower the gamma detection level of measurement by optimizing the sample geometry, without compromising on the sample size. Gamma energy of 50–200 keV range was chosen for the study, since low energy gamma photons suffer the most self-attenuation within matrix. The simulation study was carried out using MCNP based software “EffCalcMC” for silica matrix and cylindrical geometries. A volume of 250 ml sample geometry of 9 cm diameter is optimized as the best suitable geometry for use, against the in-practice 7 cm diameter geometry of same volume. An increase in efficiency of 10%–23% was observed for the 50–200 keV gamma energy range and a corresponding lower minimum detectable activity of 9%–20% could be achieved for the same.

  6. Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  7. Zero-point energy of confined fermions

    International Nuclear Information System (INIS)

    Milton, K.A.

    1980-01-01

    A closed form for the reduced Green's function of massless fermions in the interior of a spherical bag is obtained. In terms of this Green's function, the corresponding zero-point or Casimir energy is computed. It is proposed that a resulting quadratic divergence can be absorbed by renormalizing a suitable parameter in the bag model (that is, absorbed by a contact term). The residual Casimir stress is attractive, but smaller than the repulsive Casimir stress of gluons in the model. The result for the total zero-point energy is in substantial disagreement with bag model phenomenological values

  8. Cost-benefit analysis of implementing minimum energy efficiency standards for household refrigerator-freezers in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Amalina, M.A.

    2004-01-01

    The ownership of household electrical appliances especially refrigerator-freezer has increased rapidly in Malaysia. Almost every household in this country has a refrigerator-freezer. To reduce energy consumption in this sector the refrigerator is one of the top priorities of the energy efficiency program for household appliances. Malaysian authority is considering implementing minimum energy efficiency standards for refrigerator-freezer sometime in the coming year. This paper attempts to analyze cost-benefit of implementing minimum energy efficiency standards for household refrigerator-freezers in Malaysia. The calculations were made based on growth of ownership data for refrigerators in Malaysian households. The number of refrigerator-freezer has increased from 175,842 units in 1970 to 4,196,486 in 2000 and it will be about 11,293,043 in the year of 2020. Meanwhile it has accounted for about 26.3% of electricity consumption in a single household. Therefore, efficiency improvement of this appliance will give a significant impact in the future of electricity consumption in this country. Furthermore, it has been found that implementing an energy efficiency standard for household refrigerator-freezers is economically justified

  9. Zero-point energy and the Eoetvoes experiment

    International Nuclear Information System (INIS)

    Ross, D.K.

    1999-01-01

    The paper shows that the modification of the electromagnetic zero-point energy inside a solid aluminum ball ia large enough to be detected by a feasible Eoetvoes-type experiment improved only a factor of 100 over earlier experiments. Because of the uncertainties surrounding the relationship of the zero-point energy to the cosmological constant and to renormalization effects in general relativity that such an experiment might give a non-null result. This would be a test of the weak equivalence principle and of general relativity itself in regard to a very special purely quantum-mechanical form of energy

  10. Comparative Studies of Traditional (Non-Energy Integration and Energy Integration of Catalytic Reforming Unit using Pinch Analysis

    Directory of Open Access Journals (Sweden)

    M. Alta

    2012-12-01

    Full Text Available Energy Integration of Catalytic Reforming Unit (CRU of Kaduna Refinery and petrochemicals Company Kaduna Nigeria was carried out using Pinch Technology. The pinch analysis was carried out using Maple. Optimum minimum approach temperature of 20 °C was used to determine the energy target. The pinch point temperature was found to be 278 °C. The utilities targets for the minimum approach temperature were found to be 72711839.47 kJ/hr and 87105834.43 kJ/hr for hot and cold utilities respectively. Pinch analysis as an energy integration technique was found to save more energy and utilities cost than the traditional energy technique. Key words: Pinch point, CRU, Energy Target, Maple

  11. Concentrated energy addition for active drag reduction in hypersonic flow regime

    Science.gov (United States)

    Ashwin Ganesh, M.; John, Bibin

    2018-01-01

    Numerical optimization of hypersonic drag reduction technique based on concentrated energy addition is presented in this study. A reduction in wave drag is realized through concentrated energy addition in the hypersonic flowfield upstream of the blunt body. For the exhaustive optimization presented in this study, an in-house high precision inviscid flow solver has been developed. Studies focused on the identification of "optimum energy addition location" have revealed the existence of multiple minimum drag points. The wave drag coefficient is observed to drop from 0.85 to 0.45 when 50 Watts of energy is added to an energy bubble of 1 mm radius located at 74.7 mm upstream of the stagnation point. A direct proportionality has been identified between energy bubble size and wave drag coefficient. Dependence of drag coefficient on the upstream added energy magnitude is also revealed. Of the observed multiple minimum drag points, the energy deposition point (EDP) that offers minimum wave drag just after a sharp drop in drag is proposed as the most optimum energy addition location.

  12. 75 FR 16201 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Exemption

    Science.gov (United States)

    2010-03-31

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-266 and 50-301; NRC-2010-0123] FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Exemption 1.0 Background FPL Energy Point Beach.... Borchardt (NRC) to M. S. Fertel (Nuclear Energy Institute) dated June 4, 2009. The licensee's request for an...

  13. SU-F-T-78: Minimum Data Set of Measurements for TG 71 Based Electron Monitor-Unit Calculations

    International Nuclear Information System (INIS)

    Xu, H; Guerrero, M; Prado, K; Yi, B

    2016-01-01

    Purpose: Building up a TG-71 based electron monitor-unit (MU) calculation protocol usually involves massive measurements. This work investigates a minimum data set of measurements and its calculation accuracy and measurement time. Methods: For 6, 9, 12, 16, and 20 MeV of our Varian Clinac-Series linear accelerators, the complete measurements were performed at different depth using 5 square applicators (6, 10, 15, 20 and 25 cm) with different cutouts (2, 3, 4, 6, 10, 15 and 20 cm up to applicator size) for 5 different SSD’s. For each energy, there were 8 PDD scans and 150 point measurements for applicator factors, cutout factors and effective SSDs that were then converted to air-gap factors for SSD 99–110cm. The dependence of each dosimetric quantity on field size and SSD was examined to determine the minimum data set of measurements as a subset of the complete measurements. The “missing” data excluded in the minimum data set were approximated by linear or polynomial fitting functions based on the included data. The total measurement time and the calculated electron MU using the minimum and the complete data sets were compared. Results: The minimum data set includes 4 or 5 PDD’s and 51 to 66 point measurements for each electron energy, and more PDD’s and fewer point measurements are generally needed as energy increases. Using only <50% of complete measurement time, the minimum data set generates acceptable MU calculation results compared to those with the complete data set. The PDD difference is within 1 mm and the calculated MU difference is less than 1.5%. Conclusion: Data set measurement for TG-71 electron MU calculations can be minimized based on the knowledge of how each dosimetric quantity depends on various setup parameters. The suggested minimum data set allows acceptable MU calculation accuracy and shortens measurement time by a few hours.

  14. SU-F-T-78: Minimum Data Set of Measurements for TG 71 Based Electron Monitor-Unit Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H; Guerrero, M; Prado, K; Yi, B [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: Building up a TG-71 based electron monitor-unit (MU) calculation protocol usually involves massive measurements. This work investigates a minimum data set of measurements and its calculation accuracy and measurement time. Methods: For 6, 9, 12, 16, and 20 MeV of our Varian Clinac-Series linear accelerators, the complete measurements were performed at different depth using 5 square applicators (6, 10, 15, 20 and 25 cm) with different cutouts (2, 3, 4, 6, 10, 15 and 20 cm up to applicator size) for 5 different SSD’s. For each energy, there were 8 PDD scans and 150 point measurements for applicator factors, cutout factors and effective SSDs that were then converted to air-gap factors for SSD 99–110cm. The dependence of each dosimetric quantity on field size and SSD was examined to determine the minimum data set of measurements as a subset of the complete measurements. The “missing” data excluded in the minimum data set were approximated by linear or polynomial fitting functions based on the included data. The total measurement time and the calculated electron MU using the minimum and the complete data sets were compared. Results: The minimum data set includes 4 or 5 PDD’s and 51 to 66 point measurements for each electron energy, and more PDD’s and fewer point measurements are generally needed as energy increases. Using only <50% of complete measurement time, the minimum data set generates acceptable MU calculation results compared to those with the complete data set. The PDD difference is within 1 mm and the calculated MU difference is less than 1.5%. Conclusion: Data set measurement for TG-71 electron MU calculations can be minimized based on the knowledge of how each dosimetric quantity depends on various setup parameters. The suggested minimum data set allows acceptable MU calculation accuracy and shortens measurement time by a few hours.

  15. Principle of Minimum Energy in Magnetic Reconnection in a Self-organized Critical Model for Solar Flares

    Science.gov (United States)

    Farhang, Nastaran; Safari, Hossein; Wheatland, Michael S.

    2018-05-01

    Solar flares are an abrupt release of magnetic energy in the Sun’s atmosphere due to reconnection of the coronal magnetic field. This occurs in response to turbulent flows at the photosphere that twist the coronal field. Similar to earthquakes, solar flares represent the behavior of a complex system, and expectedly their energy distribution follows a power law. We present a statistical model based on the principle of minimum energy in a coronal loop undergoing magnetic reconnection, which is described as an avalanche process. We show that the distribution of peaks for the flaring events in this self-organized critical system is scale-free. The obtained power-law index of 1.84 ± 0.02 for the peaks is in good agreement with satellite observations of soft X-ray flares. The principle of minimum energy can be applied for general avalanche models to describe many other phenomena.

  16. Reliability analysis of minimum energy on target for laser facilities with more beam lines

    International Nuclear Information System (INIS)

    Chen Guangyu

    2008-01-01

    Shot reliability performance measures of laser facilities with more beam lines pertain to three categories: minimum-energy-on-target, power balance, and shot diagnostics. Accounting for symmetry of NIF beam line design and similarity of subset reliability in a same partition, a fault tree of meeting minimum-energy-on-target for the large laser facility shot of type K and a simplified method are presented, which are used to analyze hypothetic reliability of partition subsets in order to get trends of influences increasing number of beam lines and diverse shot types of large laser facilities on their shot reliability. Finally, it finds that improving component reliability is more crucial for laser facilities with more beam lines in comparison with those with beam lines and functional diversity from design flexibility is greatly helpful for improving shot reliability. (authors)

  17. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  18. Energy and thermodynamic considerations involving electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Cole, Daniel C.

    1999-01-01

    There has been recent speculation and controversy regarding whether electromagnetic zero-point radiation might be the next candidate in the progression of plentiful energy sources, ranging, for example, from hydrodynamic, chemical, and nuclear energy sources. Certainly, however, extracting energy from the vacuum seems counter intuitive to most people. Here, these ideas are clarified, drawing on simple and common examples. Known properties of electromagnetic zero-point energy are qualitatively discussed. An outlook on the success of utilizing this energy source is then discussed

  19. An application of the 'end-point' method to the minimum critical mass problem in two group transport theory

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2003-01-01

    A two group integral equation derived using transport theory, which describes the fuel distribution necessary for a flat thermal flux and minimum critical mass, is solved by the classical end-point method. This method has a number of advantages and in particular highlights the changing behaviour of the fissile mass distribution function in the neighbourhood of the core-reflector interface. We also show how the reflector thermal flux behaves and explain the origin of the maximum which arises when the critical size is less than that corresponding to minimum critical mass. A comparison is made with diffusion theory and the necessary and somewhat artificial presence of surface delta functions in the fuel distribution is shown to be analogous to the edge transients that arise naturally in transport theory

  20. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen.

    Science.gov (United States)

    Andersen, J; Voute, A; Mihrin, D; Heimdal, J; Berg, R W; Torsson, M; Wugt Larsen, R

    2017-06-28

    The true global potential energy minimum configuration of the formaldehyde dimer (CH 2 O) 2 , including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of C s and C 2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar C s configuration of (CH 2 O) 2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol -1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol -1 for the dissociation energy D 0 of this global potential energy minimum.

  1. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  2. Minimum Time Path Planning for Robotic Manipulator in Drilling/ Spot Welding Tasks

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-04-01

    Full Text Available In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

  3. Minimum Energy Dwelling (MED) workbook: an investigation of techniques and materials for energy conscious design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This workbook is based upon information gathered during the design phase of the Minimum Energy Dwelling. The objective of the project, sponsored by the Southern California Gas Co., Department of Energy, and Mission Viejo is to substantially reduce energy use by the incorporation of energy conservation and solar techniques in a single-family detached dwelling. The Project will demonstrate to builders, as well as to the general public, a number of technological innovations that can, at reasonable cost, be included in a dwelling design. The problem facing Southern California Gas Co., along with most other gas utilities, is ever-decreasing amounts of gas at increasing prices. The dwelling designed has approximately 1,150 ft/sup 2/, consistent with current home-building trends. Through the optimum use of energy-conserving appliances, insulation, window and wall shading, exterior coloring, and thermal mass, the yearly energy usage has been reduced by over 50%. Of the remaining 50% of the energy required for heating, cooling, and domestic hot water, the majority is supplied by the solar-energy system. Three hundred twenty square feet (270 effective) of evacuated tube collector are incorporated into the building structure. The hot water provided by the collectors is used to run an absorption chiller for cooling, the domestic hot water, and the heating system. The remaining energy requirements are met by an auxiliary natural gas energy system and a cool-air-economizer cycle.

  4. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Todd [West Virginia Univ., Morgantown, WV (United States)

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

  5. Energy Efficiency: The Implementation of Minimum Energy Performance Standard (MEPS Application on Home Appliances for Residential

    Directory of Open Access Journals (Sweden)

    Rahman K.A

    2016-01-01

    Full Text Available Generally, Minimum Energy Performance Standard (MEPS has been widespread across the country especially developed country. However, most consumers do not even know about the MEPS. Without sufficient knowledge, much energy have been wasted before this. The aim of this study is to review the implementation of MEPS of Asia country and to compare electricity consumption of home appliances with star rating and without star rating. In order to fulfil the objectives of the study, the equipment must be chosen correctly and must be learned properly. The home appliances that will be used also need to be chosen so that the comparison between the appliances will be matched correctly. To understand the results, the analysis was done using graphs and table. The purpose of using graph and table is to understand the comparison between appliances more clearly. The results show that home appliances with MEPS is more efficient on energy saving rather than without MEPS. This is the evidence as a method to educate a consumer on energy saving.

  6. Nuclear energy option, as seen from the economic point of view

    International Nuclear Information System (INIS)

    Kuehne, K.

    1980-01-01

    The attempt is made to assess realistically the prospects of utilizing nuclear energy. The emphasis is more on realization probabilities in connection with other energy sources than on strategies and planning. In doing so, safety and environmental issues are left out. The developments of nearly two decades are outlined. The data presented come from quotations of numerous recognized studies. As a result, the author is sceptical vis-a-vis the minimum and maximum values set up for individual energy sources by the year 2000. A few critical remarks are made on the economy of nuclear energy compared to coal and petroleum. (UA) [de

  7. An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands

    CERN Document Server

    Takala, E; Bremer, J; Balle, C; Bottura, L; Rossi, L

    2012-01-01

    Magneto-thermal instability may affect high critical current density Nb$_{3}$Sn superconducting strands that can quench even though the transport current is low compared to the critical current with important implications in the design of next generation superconducting magnets. The instability is initiated by a small perturbation energy which is considerably lower than the Minimum Quench Energy (MQE). At CERN, a new experimental setup was developed to measure the smallest perturbation energy (Minimum Trigger Energy, MTE) which is able to trigger the magneto-thermal instability in superconducting Nb$_{3}$Sn-strands. The setup is based on Q-switched laser technology which is able to provide a localized perturbation in nano-second time scale. Using this technique the energy deposition into the strand is well defined and reliable. The laser is located outside the cryostat at room temperature. The beam is guided from room temperature on to the superconducting strand by using a UV-enhanced fused silica fibre. The ...

  8. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen

    DEFF Research Database (Denmark)

    Andersen, Jonas; Voute, A.; Mihrin, Dmytro

    2017-01-01

    )2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol−1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic......The true global potential energy minimum configuration of the formaldehyde dimer (CH2O)2, including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima...... conformations of Cs and C2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs...

  9. An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes

    Directory of Open Access Journals (Sweden)

    Israr Ullah

    2017-11-01

    Full Text Available In the smart home environment, efficient energy management is a challenging task. Solutions are needed to achieve a high occupant comfort level with minimum energy consumption. User comfort is measured in terms of three fundamental parameters: (a thermal comfort, (b visual comfort and (c air quality. Temperature, illumination and CO 2 sensors are used to collect indoor contextual information. In this paper, we have proposed an improved optimization function to achieve maximum user comfort in the building environment with minimum energy consumption. A comprehensive formulation is done for energy optimization with detailed analysis. The Kalman filter algorithm is used to remove noise in sensor readings by predicting actual parameter values. For optimization, we have used genetic algorithm (GA and particle swarm optimization (PSO algorithms and performed comparative analysis with a baseline scheme on real data collected for a one-month duration in our lab’s indoor environment. Experimental results show that the proposed optimization function has achieved a 27 . 32 % and a 31 . 42 % reduction in energy consumption with PSO and GA, respectively. The user comfort index was also improved by 10 % i.e., from 0 . 86 to 0 . 96 . GA-based optimization results were better than PSO, as it has achieved almost the same user comfort with 4 . 19 % reduced energy consumption. Results show that the proposed optimization function gives better results than the baseline scheme in terms of user comfort and the amount of consumed energy. The proposed system can help with collecting the data about user preferences and energy consumption for long-term analysis and better decision making in the future for efficient resource utilization and overall profit maximization.

  10. Three key points along an intrinsic reaction coordinate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The concept of the reaction force is presented and discussed in detail. For typical processes with energy barriers, it has a universal form which defines three key points along an intrinsic reaction co- ordinate: the force minimum, zero and maximum. We suggest that the resulting four zones be interpreted as involving ...

  11. Atom-surface interaction: Zero-point energy formalism

    International Nuclear Information System (INIS)

    Paranjape, V.V.

    1985-01-01

    The interaction energy between an atom and a surface formed by a polar medium is derived with use of a new approach based on the zero-point energy formalism. It is shown that the energy depends on the separation Z between the atom and the surface. With increasing Z, the energy decreases according to 1/Z 3 , while with decreasing Z the energy saturates to a finite value. It is also shown that the energy is affected by the velocity of the atom, but this correction is small. Our result for large Z is consistent with the work of Manson and Ritchie [Phys. Rev. B 29, 1084 (1984)], who follow a more traditional approach to the problem

  12. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  13. Electricity savings from implementation of minimum energy efficiency standard for TVs in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M.; Masjuki, H.H.; Mahlia, T.M.I. [University of Malaya, Kuala Lumpur (Malaysia). Department of Mechanical Engineering

    2005-06-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD in Malaysia are poised to have a large impact on overall TV electricity consumption in the country. With the increasing of overall TV energy consumption, energy efficiency standards are one of highly effective policies for decreasing electricity consumption in the residential sector. Energy efficiency standards are also capable of reducing consumer's electricity bill and contribute towards positive environmental impacts. This paper attempts to predict the amount of energy that can be saved in the residential sector by implementing minimum energy efficiency standard for television sets in Malaysia. Over the past 30 years, television ownership in Malaysian residents has increased from 186,036 units in 1970 to 2,741,640 units in 1991. This figure is expected to reach 6,201,316 units in the year 2010. Hence, efficiency improvement for this appliance will have a significant impact on the future of electricity consumption in this country. (author)

  14. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  15. Determination of minimum impact parameter by modified touching spheres schemes for intermediate energy Coulomb excitation experiments

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh

    2016-01-01

    The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)

  16. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    Science.gov (United States)

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  17. Zero Point Energy and the Dirac Equation

    OpenAIRE

    Forouzbakhsh, Farshid

    2007-01-01

    Zero Point Energy (ZPE) describes the random electromagnetic oscillations that are left in the vacuum after all other energy has been removed. One way to explain this is by means of the uncertainty principle of quantum physics, which implies that it is impossible to have a zero energy condition.I this article, the ZPE is explained by using a novel description of the graviton. This is based on the behavior of photons in gravitational field, leading to a new definition of the graviton. In effec...

  18. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    International Nuclear Information System (INIS)

    Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao

    2009-01-01

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  19. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    Science.gov (United States)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  20. Energy-dependent point interactions in one dimension

    International Nuclear Information System (INIS)

    Coutinho, F A B; Nogami, Y; Tomio, Lauro; Toyama, F M

    2005-01-01

    We consider a new type of point interaction in one-dimensional quantum mechanics. It is characterized by a boundary condition at the origin that involves the second and/or higher order derivatives of the wavefunction. The interaction is effectively energy dependent. It leads to a unitary S-matrix for the transmission-reflection problem. The energy dependence of the interaction can be chosen such that any given unitary S-matrix (or the transmission and reflection coefficients) can be reproduced at all energies. Generalization of the results to coupled-channel cases is discussed

  1. The impact of minimum wage adjustments on Vietnamese wage inequality

    DEFF Research Database (Denmark)

    Hansen, Henrik; Rand, John; Torm, Nina

    Using Vietnamese Labour Force Survey data we analyse the impact of minimum wage changes on wage inequality. Minimum wages serve to reduce local wage inequality in the formal sectors by decreasing the gap between the median wages and the lower tail of the local wage distributions. In contrast, local...... wage inequality is increased in the informal sectors. Overall, the minimum wages decrease national wage inequality. Our estimates indicate a decrease in the wage distribution Gini coefficient of about 2 percentage points and an increase in the 10/50 wage ratio of 5-7 percentage points caused...... by the adjustment of the minimum wages from 2011to 2012 that levelled the minimum wage across economic sectors....

  2. Touching points in the energy band structure of bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C Huy; Nguyen, V Lien

    2014-01-01

    The energy band structure of the bilayer graphene superlattices with zero-averaged periodic δ-function potentials are studied within the four-band continuum model. Using the transfer matrix method, the study is mainly focused on examining the touching points between adjacent minibands. For the zero-energy touching points the dispersion relation derived shows a Dirac-like double-cone shape with the group velocity which is periodic in the potential strength P with the period of π and becomes anisotropic at relatively large P. From the finite-energy touching points we have identified those located at zero wave-number. It was shown that for these finite-energy touching points the dispersion is direction-dependent in the sense that it is linear or parabolic in the direction parallel or perpendicular to the superlattice direction, respectively. We have also calculated the density of states and the conductivity which demonstrates a manifestation of the touching points examined. (paper)

  3. Finite field-energy of a point charge in QED

    International Nuclear Information System (INIS)

    Costa, Caio V; Gitman, Dmitry M; Shabad, Anatoly E

    2015-01-01

    We consider a simple nonlinear (quartic in the fields) gauge-invariant modification of classical electrodynamics, to show that it possesses a regularizing ability sufficient to make the field energy of a point charge finite. The model is exactly solved in the class of static central-symmetric electric fields. Collation with quantum electrodynamics (QED) results in the total field energy of a point elementary charge about twice the electron mass. The proof of the finiteness of the field energy is extended to include any polynomial selfinteraction, thereby the one that stems from the truncated expansion of the Euler–Heisenberg local Lagrangian in QED in powers of the field strength. (paper)

  4. ENERGY DISSIPATION IN MAGNETIC NULL POINTS AT KINETIC SCALES

    International Nuclear Information System (INIS)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Divin, Andrey; Eriksson, Elin; Markidis, Stefano

    2015-01-01

    We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5–10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission

  5. Minimum Description Length Shape and Appearance Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling is reviewed. It solves the point correspondence problem of selecting points on shapes defined as curves so that the points correspond across a data set. An efficient numerical implementation is presented and made available as open s...

  6. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    Science.gov (United States)

    2017-06-05

    potential; bulk materials; total energy calculations; entropy; strained- layer superlattice (SLS) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED- LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED- LAYER SUPERLATTICES

  7. Subjective well-being and minimum wages: Evidence from U.S. states.

    Science.gov (United States)

    Kuroki, Masanori

    2018-02-01

    This paper investigates whether increases in minimum wages are associated with higher life satisfaction by using monthly-level state minimum wages and individual-level data from the 2005-2010 Behavioral Risk Factor Surveillance System. The magnitude I find suggests that a 10% increase in the minimum wage is associated with a 0.03-point increase in life satisfaction for workers without a high school diploma, on a 4-point scale. Contrary to popular belief that higher minimum wages hurt business owners, I find little evidence that higher minimum wages lead to the loss of well-being among self-employed people. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Gravity and Zero Point Energy

    Science.gov (United States)

    Massie, U. W.

    When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.

  9. Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy

    International Nuclear Information System (INIS)

    Trushin, O; Maras, E; Jónsson, H; Ala-Nissila, T; Stukowski, A; Granato, E; Ying, S C

    2016-01-01

    A possible mechanism for the formation of a 90° misfit dislocation at the Ge/Si(0 0 1) interface through homogeneous nucleation is identified from atomic scale calculations where a minimum energy path connecting the coherent epitaxial state and a final state with a 90° misfit dislocation is found using the nudged elastic band method. The initial path is generated using a repulsive bias activation procedure in a model system including 75 000 atoms. The energy along the path exhibits two maxima in the energy. The first maximum occurs as a 60° dislocation nucleates. The intermediate minimum corresponds to an extended 60° dislocation. The subsequent energy maximum occurs as a second 60° dislocation nucleates in a complementary, mirror glide plane, simultaneously starting from the surface and from the first 60° dislocation. The activation energy of the nucleation of the second dislocation is 30% lower than that of the first one showing that the formation of the second 60° dislocation is aided by the presence of the first one. The simulations represent a step towards unraveling the formation mechanism of 90° dislocations, an important issue in the design of growth procedures for strain released Ge overlayers on Si(1 0 0) surfaces, and more generally illustrate an approach that can be used to gain insight into the mechanism of complex nucleation paths of extended defects in solids. (paper)

  10. Simulation of the steady-state energy transfer in rigid bodies, with convective-radiative boundary conditions, employing a minimum principle

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-08-01

    The energy transfer phenomenon in a rigid and opaque body that exchanges energy, with the environment, by convection and by diffuse thermal radiation is studied. The considered phenomenon is described by a partial differential equation, subjected to (nonlinear) boundary conditions. A minimum principle, suitable for a large class of energy transfer problems is presented. Some particular cases are simulated. (author)

  11. Zero-point quantum fluctuations and dark energy

    International Nuclear Information System (INIS)

    Maggiore, Michele

    2011-01-01

    In the Hamiltonian formulation of general relativity, the energy associated to an asymptotically flat space-time with metric g μν is related to the Hamiltonian H GR by E=H GR [g μν ]-H GR [η μν ], where the subtraction of the flat-space contribution is necessary to get rid of an otherwise divergent boundary term. This classic result indicates that the energy associated to flat space does not gravitate. We apply the same principle to study the effect of the zero-point fluctuations of quantum fields in cosmology, proposing that their contribution to cosmic expansion is obtained computing the vacuum energy of quantum fields in a Friedmann-Robertson-Walker space-time with Hubble parameter H(t) and subtracting from it the flat-space contribution. Then the term proportional to Λ c 4 (where Λ c is the UV cutoff) cancels, and the remaining (bare) value of the vacuum energy density is proportional to Λ c 2 H 2 (t). After renormalization, this produces a renormalized vacuum energy density ∼M 2 H 2 (t), where M is the scale where quantum gravity sets is, so for M of the order of the Planck mass a vacuum energy density of the order of the critical density can be obtained without any fine-tuning. The counterterms can be chosen so that the renormalized energy density and pressure satisfy p=wρ, with w a parameter that can be fixed by comparison to the observed value, so, in particular, one can choose w=-1. An energy density evolving in time as H 2 (t) is however observationally excluded as an explanation for the dominant dark energy component that is responsible for the observed acceleration of the Universe. We rather propose that zero-point vacuum fluctuations provide a new subdominant ''dark'' contribution to the cosmic expansion that, for a UV scale M slightly smaller than the Planck mass, is consistent with existing limits and potentially detectable.

  12. Minimum energy control for a two-compartment neuron to extracellular electric fields

    Science.gov (United States)

    Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin

    2016-11-01

    The energy optimization of extracellular electric field (EF) stimulus for a neuron is considered in this paper. We employ the optimal control theory to design a low energy EF input for a reduced two-compartment model. It works by driving the neuron to closely track a prescriptive spike train. A cost function is introduced to balance the contradictory objectives, i.e., tracking errors and EF stimulus energy. By using the calculus of variations, we transform the minimization of cost function to a six-dimensional two-point boundary value problem (BVP). Through solving the obtained BVP in the cases of three fundamental bifurcations, it is shown that the control method is able to provide an optimal EF stimulus of reduced energy for the neuron to effectively track a prescriptive spike train. Further, the feasibility of the adopted method is interpreted from the point of view of the biophysical basis of spike initiation. These investigations are conducive to designing stimulating dose for extracellular neural stimulation, which are also helpful to interpret the effects of extracellular field on neural activity.

  13. Minimum Energy of a Prismatic Joint with out: Actuator: Application on RRP Robot

    OpenAIRE

    Tawiwat V.; Tosapolporn P.; Kedit J.

    2009-01-01

    This research proposes the state of art on how to control or find the trajectory paths of the RRP robot when the prismatic joint is malfunction. According to this situation, the minimum energy of the dynamic optimization is applied. The RRP robot or similar systems have been used in many areas such as fire fighter truck, laboratory equipment and military truck for example a rocket launcher. In order to keep on task that assigned, the trajectory paths must be computed. Here, the open loop cont...

  14. Feedwater line break accident analysis for SMART in the view point of minimum departure from nucleate boiling ratio

    International Nuclear Information System (INIS)

    Kim Soo Hyoung; Bae, Kyoo Hwan; Chung, Young Jong; Kim, Keung Koo

    2012-01-01

    KAERI and KEPCO consortium had performed standard design of SMART(System integrated Modular Advanced ReacTor) from 2009 to 2011 and obtained standard design approval in July 2012. To confirm the safety of SMART design, all of the safety related design basis events were analyzed. A feedwater line break (FLB) is a postulated accident and is a limiting accident for a decrease in the heat removal by the secondary system in the view point of the peak RCS pressure. It is well known that departure from nucleate boiling ratio (DNBR) increases with the increase of the system pressure for conventional nuclear power plants. But SMART has comparatively lower RCS flow rate, and there is a possibility to show different DNBR behavior depending on the system pressure. To confirm that SMART is safe in case of FLB accident, the Korean nuclear regulatory body required to perform the safety analysis in the view point of minimum DNBR (MDNBR) during the licensing review process for standard design approval (SDA) of SMART design. In this paper, the safety analysis results of the FLB accident for SMART in the view point of MDNBR is described

  15. Feedwater line break accident analysis for SMART in the view point of minimum departure from nucleate boiling ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kim Soo Hyoung; Bae, Kyoo Hwan; Chung, Young Jong; Kim, Keung Koo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    KAERI and KEPCO consortium had performed standard design of SMART(System integrated Modular Advanced ReacTor) from 2009 to 2011 and obtained standard design approval in July 2012. To confirm the safety of SMART design, all of the safety related design basis events were analyzed. A feedwater line break (FLB) is a postulated accident and is a limiting accident for a decrease in the heat removal by the secondary system in the view point of the peak RCS pressure. It is well known that departure from nucleate boiling ratio (DNBR) increases with the increase of the system pressure for conventional nuclear power plants. But SMART has comparatively lower RCS flow rate, and there is a possibility to show different DNBR behavior depending on the system pressure. To confirm that SMART is safe in case of FLB accident, the Korean nuclear regulatory body required to perform the safety analysis in the view point of minimum DNBR (MDNBR) during the licensing review process for standard design approval (SDA) of SMART design. In this paper, the safety analysis results of the FLB accident for SMART in the view point of MDNBR is described.

  16. Measurement of β-decay end point energy with planar HPGe detector

    Science.gov (United States)

    Bhattacharjee, T.; Pandit, Deepak; Das, S. K.; Chowdhury, A.; Das, P.; Banerjee, D.; Saha, A.; Mukhopadhyay, S.; Pal, S.; Banerjee, S. R.

    2014-12-01

    The β - γ coincidence measurement has been performed with a segmented planar Hyper-Pure Germanium (HPGe) detector and a single coaxial HPGe detector to determine the end point energies of nuclear β-decays. The experimental end point energies have been determined for some of the known β-decays in 106Rh →106Pd. The end point energies corresponding to three weak branches in 106Rh →106Pd decay have been measured for the first time. The γ ray and β particle responses for the planar HPGe detector were simulated using the Monte Carlo based code GEANT3. The experimentally obtained β spectra were successfully reproduced with the simulation.

  17. Potential minimum cost of electricity of superconducting coil tokamak power reactors

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y-K. M.

    1989-01-01

    The potential minimum cost of electricity (COE) for superconducting tokamak power reactors is estimated by increasing the physics (confinement, beta limit, bootstrap current fraction) and technology [neutral beam energy, toroidal field (TF) coil allowable stresses, divertor heat flux, superconducting coil critical field, critical temperature, and quench temperature rise] constraints far beyond those assumed for ITER until the point of diminishing returns is reached. A version of the TETRA systems code, calibrated with the ITER design and modified for power reactors, is used for this analysis, limiting this study to reactors with the same basic device configuration and costing algorithms as ITER. A minimum COE is reduced from >200 to about 80 mill/kWh when the allowable design constraints are raised to 2 times those of ITER. At 4 times the ITER allowables, a minimum COE of about 60 mill/kWh is obtained. The corresponding tokamak has a major radius of approximately 4 m, a plasma current close to 10 MA, an aspect ratio of 4, a confinement H- factor ≤3, a beta limit of approximately 2 times the first stability regime, a divertor heat flux of about 20 MW/m 2 , a Β max ≤ 18 T, and a TF coil average current density about 3 times that of ITER. The design constraints that bound the minimum COE are the allowable stresses in the TF coil, the neutral beam energy, and the 99% bootstrap current (essentially free current drive). 14 refs., 4 figs., 2 tabs

  18. An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis.

    Science.gov (United States)

    Bofill, Josep Maria; Ribas-Ariño, Jordi; García, Sergio Pablo; Quapp, Wolfgang

    2017-10-21

    The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ-function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.

  19. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  20. Measurement of β-decay end point energy with planar HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, T., E-mail: btumpa@vecc.gov.in [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Pandit, Deepak [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Das, S.K. [RCD-BARC, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Chowdhury, A.; Das, P. [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Banerjee, D. [RCD-BARC, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Saha, A.; Mukhopadhyay, S.; Pal, S.; Banerjee, S.R. [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India)

    2014-12-11

    The β–γ coincidence measurement has been performed with a segmented planar Hyper-Pure Germanium (HPGe) detector and a single coaxial HPGe detector to determine the end point energies of nuclear β-decays. The experimental end point energies have been determined for some of the known β-decays in {sup 106}Rh→{sup 106}Pd. The end point energies corresponding to three weak branches in {sup 106}Rh→{sup 106}Pd decay have been measured for the first time. The γ ray and β particle responses for the planar HPGe detector were simulated using the Monte Carlo based code GEANT3. The experimentally obtained β spectra were successfully reproduced with the simulation.

  1. Zero-point motion in the bag description of the nucleon

    International Nuclear Information System (INIS)

    Brown, G.E.; Durso, J.W.; Johnson, M.B.

    1983-01-01

    In the bag model, confinement of quarks is accomplished by introduction of a boundary condition at some definite radius R, where the energy of the total system is a minimum. This minimum is, however, relatively shallow and energies for substantially different bag radii are not much larger than this minimum value. This indicates that the zero-point motion of the bag surface may be important. In this paper, quantization of the bag surface motion is carried out in a somewhat ad hoc fashion, modelled after the generator coordinate theory in nuclear physics. This procedure unifies a number of ideas previously in the literature; it stresses the anharmonicity of the collective motion. As in earlier treatments, the Roper resonance emerges as a breathing-mode type of excitation of the nucleon. The one- and two-pion decays of the Roper resonance are calculated and the widths are found to fall short of the empirical ones. It is pointed out, however, that decays involving intermediate states containing virtual rho-mesons will enhance the widths. Pion-nucleon scattering in the P 11 channel is constructed in our model and found to agree roughly with experiment. A crucial term in the driving force involves the pion coupling to the nucleon through a virtual rho-meson. With introduction of zero-point motion of the bag surface, the motion of 'bag radius' becomes dependent on precisely which moment of the radius is measured. Our development gives a model for cutting off smoothly the pion-exchange term in the nucleon-nucleon interaction. (orig.)

  2. Verification of the Taylor (minimum energy) state in the S-1 Spheromak

    International Nuclear Information System (INIS)

    Hart, G.W.; Janos, A.; Meyerhofer, D.D.; Yamada, M.

    1985-09-01

    Experimental measurements of the equilibrium in the S-1 Spheromak by use of magnetic probes inside the plasma show that the final magnetic equilibrium is one which has relaxed close to the Taylor (minimum-energy) state, even though the plasma is far from that state during formation. The comparison is made by calculating the two-dimensional μ profile of the plasma from the probe data, where μ is defined as μ 0 j/sub parallel//B. Measurements using a triple Langmuir probe provide evidence to support the conclusion that the pressure gradients in the relaxed state are confined to the edge region of the plasma

  3. Minimum bias and underlying event studies at CDF

    International Nuclear Information System (INIS)

    Moggi, Niccolo

    2010-01-01

    Soft, non-perturbative, interactions are poorly understood from the theoretical point of view even though they form a large part of the hadronic cross section at the energies now available. We review the CDF studies on minimum-bias ad underlying event in p(bar p) collisions at 2 TeV. After proposing an operative definition of 'underlying event', we present part of a systematic set of measurements carried out by the CDF Collaboration with the goal to provide data to test and improve the QCD models of hadron collisions. Different analysis strategies of the underlying event and possible event topologies are discussed. Part of the CDF minimum-bias results are also presented: in this sample, that represent the full inelastic cross-section, we can test simultaneously our knowledge of all the components that concur to form hadronic interactions. Comparisons with MonteCarlo simulations are always shown along with the data. These measurements will also contribute to more precise estimates of the soft QCD background of high-p T observables.

  4. Zero-point energy constraint in quasi-classical trajectory calculations.

    Science.gov (United States)

    Xie, Zhen; Bowman, Joel M

    2006-04-27

    A method to constrain the zero-point energy in quasi-classical trajectory calculations is proposed and applied to the Henon-Heiles system. The main idea of this method is to smoothly eliminate the coupling terms in the Hamiltonian as the energy of any mode falls below a specified value.

  5. Gaussian-3 theory using density functional geometries and zero-point energies

    International Nuclear Information System (INIS)

    Baboul, A.G.; Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.

    1999-01-01

    A variation of Gaussian-3 (G3) theory is presented in which the geometries and zero-point energies are obtained from B3LYP density functional theory [B3LYP/6-31G(d)] instead of geometries from second-order perturbation theory [MP2(FU)/6-31G(d)] and zero-point energies from Hartree - Fock theory [HF/6-31G(d)]. This variation, referred to as G3//B3LYP, is assessed on 299 energies (enthalpies of formation, ionization potentials, electron affinities, proton affinities) from the G2/97 test set [J. Chem. Phys. 109, 42 (1998)]. The G3//B3LYP average absolute deviation from experiment for the 299 energies is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. Generally, the results from the two methods are similar, with some exceptions. G3//B3LYP theory gives significantly improved results for several cases for which MP2 theory is deficient for optimized geometries, such as CN and O 2 + . However, G3//B3LYP does poorly for ionization potentials that involve a Jahn - Teller distortion in the cation (CH 4 + , BF 3 + , BCl 3 + ) because of the B3LYP/6-31G(d) geometries. The G3(MP2) method is also modified to use B3LYP/6-31G(d) geometries and zero-point energies. This variation, referred to as G3(MP2)//B3LYP, has an average absolute deviation of 1.25 kcal/mol compared to 1.30 kcal/mol for G3(MP2) theory. Thus, use of density functional geometries and zero-point energies in G3 and G3(MP2) theories is a useful alternative to MP2 geometries and HF zero-point energies. copyright 1999 American Institute of Physics

  6. Preference of small molecules for local minimum conformations when binding to proteins.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2007-09-01

    Full Text Available It is well known that small molecules (ligands do not necessarily adopt their lowest potential energy conformations when binding to proteins. Analyses of protein-bound ligand crystal structures have reportedly shown that many of them do not even adopt the conformations at local minima of their potential energy surfaces (local minimum conformations. The results of these analyses raise a concern regarding the validity of virtual screening methods that use ligands in local minimum conformations. Here we report a normal-mode-analysis (NMA study of 100 crystal structures of protein-bound ligands. Our data show that the energy minimization of a ligand alone does not automatically stop at a local minimum conformation if the minimum of the potential energy surface is shallow, thus leading to the folding of the ligand. Furthermore, our data show that all 100 ligand conformations in their protein-bound ligand crystal structures are nearly identical to their local minimum conformations obtained from NMA-monitored energy minimization, suggesting that ligands prefer to adopt local minimum conformations when binding to proteins. These results both support virtual screening methods that use ligands in local minimum conformations and caution about possible adverse effect of excessive energy minimization when generating a database of ligand conformations for virtual screening.

  7. Collective mass and zero-point energy in the generator-coordinate method

    International Nuclear Information System (INIS)

    Fiolhais, C.

    1982-01-01

    The aim of the present thesis if the study of the collective mass parameters and the zero-point energies in the GCM framework with special regards to the fission process. After the derivation of the collective Schroedinger equation in the framework of the Gaussian overlap approximation the inertia parameters are compared with those of the adiabatic time-dependent Hartree-Fock method. Then the kinetic and the potential zero-point energy occurring in this formulation are studied. Thereafter the practical application of the described formalism is discussed. Then a numerical calculation of the GCM mass parameter and the zero-point energy for the fission process on the base of a two-center shell model with a pairing force in the BCS approximation is presented. (HSI) [de

  8. Minimum Wages and Skill Acquisition: Another Look at Schooling Effects.

    Science.gov (United States)

    Neumark, David; Wascher, William

    2003-01-01

    Examines the effects of minimum wage on schooling, seeking to reconcile some of the contradictory results in recent research using Current Population Survey data from the late 1970s through the 1980s. Findings point to negative effects of minimum wages on school enrollment, bolstering the findings of negative effects of minimum wages on enrollment…

  9. In search of income reference points for SLCA using a country level sustainability benchmark (part 2): fair minimum wage. A contribution to the Oiconomy project

    NARCIS (Netherlands)

    Croes, Pim R.; Vermeulen, Walter J. V.

    2016-01-01

    Purpose: This paper is part 2 of our twin articles on income reference points for social life cycle assessment (SLCA). The purpose of this article is to provide a well-founded fair minimum wage standard, which enables the determination of the preventative costs for the impact category of unfair

  10. Energy poverty in rural Bangladesh

    International Nuclear Information System (INIS)

    Barnes, Douglas F.; Khandker, Shahidur R.; Samad, Hussain A.

    2011-01-01

    Energy poverty is a well-established concept among energy and development specialists. International development organizations frequently cite energy-poverty alleviation as a necessary condition to reduce income poverty. Several approaches used to measure energy poverty over the past 20 years have defined the energy poverty line as the minimum quantity of physical energy needed to perform such basic tasks as cooking and lighting. This paper uses a demand-based approach to define the energy poverty line as the threshold point at which energy consumption begins to rise with increases in household income. At or below this threshold point, households consume a bare minimum level of energy and should be considered energy poor. This approach was applied using cross-sectional data from a comprehensive 2004 household survey representative of rural Bangladesh. The findings suggest that some 58 percent of rural households in Bangladesh are energy poor, versus 45 percent that are income poor. The findings also suggest that policies to support rural electrification and greater use of improved biomass stoves might play a significant role in reducing energy poverty. - Research Highlights: →We estimate energy poverty for rural Bangladesh adopting a demand-based approach. →Findings suggest that energy poverty does not necessarily follow the same pattern as income poverty. →Access to modern energy and efficient use of traditional energy help alleviate energy poverty. →Energy poverty indicator can help track the effectiveness of a wide range of energy policies.

  11. Progress and results in Zero-Point Energy research

    International Nuclear Information System (INIS)

    King, M.B.

    1992-01-01

    This paper reports that the vacuum polarization of atomic nuclei may trigger a coherence in the zero-point energy (ZPE) whenever a large number of nuclei undergo abrupt, synchronous motion. Experimental evidence arises from the energy anomalies observed in heavy-ion collisions, ion-acoustic plasma oscillations, sonoluminescence, fractoemission, large charge density plasmoids, abrupt electric discharges, and light water cold fusion experiments. Further evidence arises from inventions that utilize coherent ion-acoustic activity to output anomalously excessive power

  12. 75 FR 68607 - CenterPoint Energy-Illinois Gas Transmission Company; Notice of Baseline Filing

    Science.gov (United States)

    2010-11-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-80-001] CenterPoint Energy--Illinois Gas Transmission Company; Notice of Baseline Filing November 1, 2010. Take notice that on October 28, 2010, CenterPoint Energy--Illinois Gas Transmission Company submitted a revised...

  13. Deformation behaviour induced by point defects near a Cu(0 0 1) surface

    International Nuclear Information System (INIS)

    Said-Ettaoussi, M.; Jimenez-Saez, J.C.; Perez-Martin, A.M.C.; Jimenez-Rodriguez, J.J.

    2004-01-01

    In order to attain a satisfactory understanding of many of the properties of metallic surfaces, it is necessary to take into account the distorting effect of self-interstitials and vacancies. The present work is focused on the study of the behaviour of neighbouring atoms around point defects. The conjugate gradient method with an empiric many-body potential has been used to study the point defect-surface interaction. Point defects have been generated at several depths under a Cu(0 0 1) surface and then the whole system driven to the minimum energy state. The displacement field has been obtained in the vicinity to the defect. An energetic analysis is also carried out calculating formation and migration energies

  14. Search for the QCD critical point at SPS energies

    CERN Document Server

    Anticic, T.; Barna, D.; Bartke, J.; Betev, L.; Bialkowska, H.; Blume, C.; Boimska, B.; Botje, M.; Bracinik, J.; Buncic, P.; Cerny, V.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J.G.; Csato, P.; Dinkelaker, P.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gal, J.; Gazdzicki, M.; Genchev, V.; Gladysz, E.; Grebieszkow, K.; Hegyi, S.; Hohne, C.; Kadija, K.; Karev, A.; Kikola, D.; Kolesnikov, V.I.; Kornas, E.; Korus, R.; Kowalski, M.; Kreps, M.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Levai, P.; Litov, L.; Lungwitz, B.; Makariev, M.; Malakhov, A.I.; Mateev, M.; Melkumov, G.L.; Mischke, A.; Mitrovski, M.; Mrowczynski, St.; Palla, G.; Panagiotou, A.D.; Petridis, A.; Peryt, W.; Pikna, M.; Pluta, J.; Prindle, D.; Puhlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczynski, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Sikler, F.; Sitar, B.; Skrzypczak, E.; Slodkowski, M.; Stefanek, G.; Stock, R.; Strabel, C.; Strobele, H.; Susa, T.; Szentpetery, I.; Sziklai, J.; Szuba, M.; Szymanski, P.; Trubnikov, V.; Utvic, M.; Varga, D.; Vassiliou, M.; Veres, G.I.; Vesztergombi, G.; Vranic, D.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Yoo, I.K.; Abgrall, N.; Aduszkiewicz, A.; Andrieu, B.; Anticic, T.; Antoniou, N.; Argyriades, J.; Asryan, A.G.; Blondel, A.; Blumer, J.; Boldizsar, L.; Bravar, A.; Brzychczyk, J.; Bubak, A.; Bunyatov, S.A.; Choi, K.-U.; Chung, P.; Cleymans, J.; Derkach, D.A.; Diakonos, F.; Dominik, W.; Dumarchez, J.; Engel, R.; Ereditato, A.; Feofilov, G.A.; Ferrero, A.; Gazdzicki, M.; Golubeva, M.; Grzeszczuk, A.; Guber, F.; Hasegawa, T.; Haungs, A.; Igolkin, S.; Ivanov, A.S.; Ivashkin, A.; Katrynska, N.; Kielczewska, D.; Kisiel, J.; Kobayashi, T.; Kolev, D.; Kolevatov, R.S.; Kondratiev, V.P.; Kowalski, S.; Kurepin, A.; Lacey, R.; Lyubushkin, V.V.; Majka, Z.; Marchionni, A.; Marcinek, A.; Maris, I.; Matveev, V.; Meregaglia, A.; Messina, M.; Mijakowski, P.; Montaruli, T.; Murphy, S.; Nakadaira, T.; Naumenko, P.A.; Nikolic, V.; Nishikawa, K.; Palczewski, T.; Planeta, R.; Popov, B.A.; Posiadala, M.; Przewlocki, P.; Rauch, W.; Ravonel, M.; Rohrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Sadovsky, A.; Sakashita, K.; Sekiguchi, T.; Seyboth, P.; Shibata, M.; Sissakian, A.N.; Sorin, A.S.; Staszel, P.; Stepaniak, J.; Strabel, C.; Stroebele, H.; Tada, M.; Taranenko, A.; Tsenov, R.; Ulrich, R.; Unger, M.; Vechernin, V.V.; Zipper, W.

    2009-01-01

    Lattice QCD calculations locate the QCD critical point at energies accessible at the CERN Super Proton Synchrotron (SPS). We present average transverse momentum and multiplicity fluctuations, as well as baryon and anti-baryon transverse mass spectra which are expected to be sensitive to effects of the critical point. The future CP search strategy of the NA61/SHINE experiment at the SPS is also discussed.

  15. A Minimum Path Algorithm Among 3D-Polyhedral Objects

    Science.gov (United States)

    Yeltekin, Aysin

    1989-03-01

    In this work we introduce a minimum path theorem for 3D case. We also develop an algorithm based on the theorem we prove. The algorithm will be implemented on the software package we develop using C language. The theorem we introduce states that; "Given the initial point I, final point F and S be the set of finite number of static obstacles then an optimal path P from I to F, such that PA S = 0 is composed of straight line segments which are perpendicular to the edge segments of the objects." We prove the theorem as well as we develop the following algorithm depending on the theorem to find the minimum path among 3D-polyhedral objects. The algorithm generates the point Qi on edge ei such that at Qi one can find the line which is perpendicular to the edge and the IF line. The algorithm iteratively provides a new set of initial points from Qi and exploits all possible paths. Then the algorithm chooses the minimum path among the possible ones. The flowchart of the program as well as the examination of its numerical properties are included.

  16. Waste-to-energy: Technical, economic and ecological point of views

    International Nuclear Information System (INIS)

    Cassitto, L.

    1997-01-01

    Overwhelming waste-recycling should be considered more as a psychological than as a technological method to deal with wastes. The best waste disposal systems should actually grant mass or energy recovery from technical, economic and ecological point-of-views. Highest results seem to be granted by waste-to-energy technologies since energy content is the best preserved property after using materials

  17. Zero-point energy in bag models

    International Nuclear Information System (INIS)

    Milton, K.A.

    1979-01-01

    The zero-point (Casimir) energy of free vector (gluon) fields confined to a spherical cavity (bag) is computed. With a suitable renormalization the result for eight gluons is E = + 0.51/a. This result is substantially larger than that for a spherical shell (where both interior and exterior modes are present), and so affects Johnson's model of the QCD vacuum. It is also smaller than, and of opposite sign to, the value used in bag model phenomenology, so it will have important implications there. 1 figure

  18. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  19. Assessment of Thailand indoor set-point impact on energy consumption and environment

    International Nuclear Information System (INIS)

    Yamtraipat, N.; Khedari, J.; Hirunlabh, J.; Kunchornrat, J.

    2006-01-01

    The paper presents an investigation of indoor set-point standard of air-conditioned spaces as a tool to control electrical energy consumption of air-conditioners in Thailand office buildings and to reduce air pollutants. One hundred and forty-seven air-conditioned rooms in 13 buildings nationwide were used as models to analyze the electricity consumption of air-conditioning systems according to their set indoor temperatures, which were below the standard set-point and were accounted into a large scale. Then, the electrical energy and environmental saving potentials in the country were assessed by the assumption that adaptation of indoor set-point temperature is increased up to the standard set-point of 26 o C. It was concluded that the impacts of indoor set-point of air-conditioned rooms, set at 26 o C, on energy saving and on environment are as follows: The overall electricity consumption saving would be 804.60 GWh/year, which would reduce the corresponding GHGs emissions (mainly CO 2 ) from power plant by 579.31x10 3 tons/year

  20. One-point fluctuation analysis of the high-energy neutrino sky

    DEFF Research Database (Denmark)

    Feyereisen, Michael R.; Tamborra, Irene; Ando, Shin'ichiro

    2017-01-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even...

  1. Vibrational zero point energy for H-doped silicon

    Science.gov (United States)

    Karazhanov, S. Zh.; Ganchenkova, M.; Marstein, E. S.

    2014-05-01

    Most of the studies addressed to computations of hydrogen parameters in semiconductor systems, such as silicon, are performed at zero temperature T = 0 K and do not account for contribution of vibrational zero point energy (ZPE). For light weight atoms such as hydrogen (H), however, magnitude of this parameter might be not negligible. This Letter is devoted to clarify the importance of accounting the zero-point vibrations when analyzing hydrogen behavior in silicon and its effect on silicon electronic properties. For this, we estimate the ZPE for different locations and charge states of H in Si. We show that the main contribution to the ZPE is coming from vibrations along the Si-H bonds whereas contributions from other Si atoms apart from the direct Si-H bonds play no role. It is demonstrated that accounting the ZPE reduces the hydrogen formation energy by ˜0.17 eV meaning that neglecting ZPE at low temperatures one can underestimate hydrogen solubility by few orders of magnitude. In contrast, the effect of the ZPE on the ionization energy of H in Si is negligible. The results can have important implications for characterization of vibrational properties of Si by inelastic neutron scattering, as well as for theoretical estimations of H concentration in Si.

  2. Global magnetic fluctuations in S-1 spheromak plasmas and relaxation toward a minimum-energy state

    International Nuclear Information System (INIS)

    Janos, A.; Hart, G.W.; Yamada, M.

    1986-01-01

    Globally coherent modes have been observed during formation in the S-1 Spheromak plasma. These modes play an important role in flux conversion and plasma relaxation toward a minimum-energy state. A significant finding is the temporal progression through the n = 5, 4, 3, 2; m = 1 mode sequence as q rises through rational fractions m/n. Peak amplitudes of the modes relative to the unperturbed field are typically less than 5%, while amplitudes as high as 20% have been observed

  3. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    A substantial growth of the installed photovoltaic systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking technique enables maximization of the energy production...... of photovoltaic sources during stochastically varying solar irradiation and ambient temperature conditions. Thus, the overall efficiency of the photovoltaic energy production system is increased. Numerous techniques have been presented during the last decade for implementing the maximum power point tracking...... process in a photovoltaic system. This article provides an overview of the operating principles of these techniques, which are suited for either uniform or non-uniform solar irradiation conditions. The operational characteristics and implementation requirements of these maximum power point tracking...

  4. Minimum bias measurement at 13 TeV

    CERN Document Server

    Orlando, Nicola; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes and to simulate the environment at the LHC with many concurrent pp interactions (pile-up). We summarise the ATLAS minimum bias measurements with proton-proton collision at 13 TeV center-of-mass-energy at the Large Hadron Collider.

  5. Minimum dimension of an ITER like Tokamak with a given Q

    Energy Technology Data Exchange (ETDEWEB)

    Johner, J

    2004-07-01

    The minimum dimension of an ITER like tokamak with a given amplification factor Q is calculated for two values of the maximum magnetic field in the superconducting toroidal field coils. For ITERH-98P(y,2) scaling of the energy confinement time, it is shown that for a sufficiently large tokamak, the maximum Q is obtained for the operating point situated both at the maximum density and at the minimum margin with respect to the H-L transition. We have shown that increasing the maximum magnetic field in the toroidal field coils from the present 11.8 T to 16 T would result in a strong reduction of the machine size but has practically no effect on the fusion power. Values obtained for {beta}{sub N} are found to be below 2. Peak fluxes on the divertor plates with an ITER like divertor and a multi-machine expression for the power radiated in the plasma mantle, are below 10 MW/m{sup 2}.

  6. Shot noise in systems with semi-Dirac points

    International Nuclear Information System (INIS)

    Zhai, Feng; Wang, Juan

    2014-01-01

    We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L 1∕2 . Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly with L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points

  7. 75 FR 14206 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment...

    Science.gov (United States)

    2010-03-24

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-266 And 50-301; NRC-2010-0123 FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an Exemption, pursuant to...

  8. Effect of Set-point Variation on Thermal Comfort and Energy Use in a Plus-energy Dwelling

    DEFF Research Database (Denmark)

    Toftum, Jørn; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2016-01-01

    When designing buildings and space conditioning systems, the occupant thermal comfort, health, and productivity are the main criteria to satisfy. However, this should be achieved with the most energy-efficient space conditioning systems (heating, cooling, and ventilation). Control strategy, set......-points, and control dead-bands have a direct effect on the thermal environment in and the energy use of a building. The thermal environment in and the energy use of a building are associated with the thermal mass of the building and the control strategy, including set-points and control dead-bands. With thermally...... active building systems (TABS), temperatures are allowed to drift within the comfort zone, while in spaces with air-conditioning, temperatures in a narrower interval typically are aimed at. This behavior of radiant systems provides certain advantages regarding energy use, since the temperatures...

  9. Modeling molecular boiling points using computed interaction energies.

    Science.gov (United States)

    Peterangelo, Stephen C; Seybold, Paul G

    2017-12-20

    The noncovalent van der Waals interactions between molecules in liquids are typically described in textbooks as occurring between the total molecular dipoles (permanent, induced, or transient) of the molecules. This notion was tested by examining the boiling points of 67 halogenated hydrocarbon liquids using quantum chemically calculated molecular dipole moments, ionization potentials, and polarizabilities obtained from semi-empirical (AM1 and PM3) and ab initio Hartree-Fock [HF 6-31G(d), HF 6-311G(d,p)], and density functional theory [B3LYP/6-311G(d,p)] methods. The calculated interaction energies and an empirical measure of hydrogen bonding were employed to model the boiling points of the halocarbons. It was found that only terms related to London dispersion energies and hydrogen bonding proved significant in the regression analyses, and the performances of the models generally improved at higher levels of quantum chemical computation. An empirical estimate for the molecular polarizabilities was also tested, and the best models for the boiling points were obtained using either this empirical polarizability itself or the polarizabilities calculated at the B3LYP/6-311G(d,p) level, along with the hydrogen-bonding parameter. The results suggest that the cohesive forces are more appropriately described as resulting from highly localized interactions rather than interactions between the global molecular dipoles.

  10. The Impact of Minimum Energy Performance Standards (MEPS) Regulation on Electricity Saving in Malaysia

    Science.gov (United States)

    Fatihah Salleh, Siti; Eqwan Roslan, Mohd; Isa, Aishah Mohd; Faizal Basri Nair, Mohd; Syafiqah Salleh, Siti

    2018-03-01

    One of Malaysia’s key strategies to promote efficient energy use in the country is to implement the minimum energy performance standards (MEPS) through the Electricity Regulations (Amendment) 2013. Five selected electrical appliances (refrigerator, air conditioner, television, domestic fans and lamp fittings) must comply with MEPS requirement in order to be sold in Malaysian market. Manufacturers, importers or distributors are issued Certificate of Approval (COA) if products are MEPS-compliant. In 2015, 1,215 COAs were issued but the number of MEPS products in the market is unknown. This work collects sales data from major manufacturers to estimate the annual sales of MEPS appliances and the cumulative electricity consumption and electricity saving. It was found that most products sold have 3-star rating and above. By year 2015, total cumulative electricity savings gained from MEPS implementation is 3,645 GWh, with air conditioner being the highest contributor (30%). In the future, it is recommended that more MEPS products and related incentives be introduced to further improve efficiency of energy use in Malaysia.

  11. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  12. Effects of diffuser airflow minima on occupant comfort, air mixing, and building energy use (RP-1515)

    DEFF Research Database (Denmark)

    Arens, Edward; Zhang, Hui; Hoyt, Tyler

    2015-01-01

    There is great energy-saving potential in reducing variable air volume box minimum airflow set-points to about 10% of maximum. Typical savings are on the order of 10%-30% of total HVAC energy, remarkable for an inexpensive controls set-point change that properly maintains outside air ventilation....

  13. Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2018-01-01

    Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.

  14. Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations

    Directory of Open Access Journals (Sweden)

    Federico Fogolari

    2018-02-01

    Full Text Available Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.

  15. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  16. A novel minimum cost maximum power algorithm for future smart home energy management.

    Science.gov (United States)

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  17. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: Application to SSSH

    Science.gov (United States)

    Kolmann, Stephen J.; Jordan, Meredith J. T.

    2010-02-01

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  18. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    Science.gov (United States)

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  19. Evaluation of correlative nuclear data at certain energy point

    International Nuclear Information System (INIS)

    Zhang Jianhua; Liu Tingjin.

    1993-01-01

    A method to process correlative nuclear data at certain energy point is presented. The corresponding processing code has also been developed. Using the code, the effects of the correlation have been discussed in detail for the cases of the two and three data. (3 figs.)

  20. X pinch a point x-ray source

    International Nuclear Information System (INIS)

    Garg, A.B.; Rout, R.K.; Shyam, A.; Srinivasan, M.

    1993-01-01

    X ray emission from an X pinch, a point x-ray source has been studied using a pin-hole camera by a 30 kV, 7.2 μ F capacitor bank. The wires of different material like W, Mo, Cu, S.S.(stainless steel) and Ti were used. Molybdenum pinch gives the most intense x-rays and stainless steel gives the minimum intensity x-rays for same bank energy (∼ 3.2 kJ). Point x-ray source of size (≤ 0.5 mm) was observed using pin hole camera. The size of the source is limited by the size of the pin hole camera. The peak current in the load is approximately 150 kA. The point x-ray source could be useful in many fields like micro lithography, medicine and to study the basic physics of high Z plasmas. (author). 4 refs., 3 figs

  1. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  2. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    Science.gov (United States)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  3. Energy scales and magnetoresistance at a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a Chernova street, Syktyvkar, 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole, 45-052 (Poland)

    2009-03-02

    The magnetoresistance (MR) of CeCoIn{sub 5} is notably different from that in many conventional metals. We show that a pronounced crossover from negative to positive MR at elevated temperatures and fixed magnetic fields is determined by the scaling behavior of quasiparticle effective mass. At a quantum critical point (QCP) this dependence generates kinks (crossover points from fast to slow growth) in thermodynamic characteristics (like specific heat, magnetization, etc.) at some temperatures when a strongly correlated electron system transits from the magnetic field induced Landau-Fermi liquid (LFL) regime to the non-Fermi liquid (NFL) one taking place at rising temperatures. We show that the above kink-like peculiarity separates two distinct energy scales in QCP vicinity - low temperature LFL scale and high temperature one related to NFL regime. Our comprehensive theoretical analysis of experimental data permits to reveal for the first time new MR and kinks scaling behavior as well as to identify the physical reasons for above energy scales.

  4. One-point fluctuation analysis of the high-energy neutrino sky

    Energy Technology Data Exchange (ETDEWEB)

    Feyereisen, Michael R.; Ando, Shin' ichiro [GRAPPA Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Tamborra, Irene, E-mail: m.r.feyereisen@uva.nl, E-mail: tamborra@nbi.ku.dk, E-mail: s.ando@uva.nl [Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2017-03-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even with low statistics and in the absence of point source detection. Besides the veto-passing atmospheric foregrounds, we adopt a simple model of the high-energy neutrino background by assuming two main extra-galactic components: star-forming galaxies and blazars. By leveraging multi-wavelength data from Herschel and Fermi , we predict the spectral and anisotropic probability distributions for their expected neutrino counts in IceCube. We find that star-forming galaxies are likely to remain a diffuse background due to the poor angular resolution of IceCube, and we determine an upper limit on the number of shower events that can reasonably be associated to blazars. We also find that upper limits on the contribution of blazars to the measured flux are unfavourably affected by the skewness of the blazar flux distribution. One-point event clustering and likelihood analyses of the IceCube HESE data suggest that this method has the potential to dramatically improve over more conventional model-based analyses, especially for the next generation of neutrino telescopes.

  5. Dissociation energies of six NO2 isotopologues by laser induced fluorescence spectroscopy and zero point energy of some triatomic molecules.

    Science.gov (United States)

    Michalski, G; Jost, R; Sugny, D; Joyeux, M; Thiemens, M

    2004-10-15

    We have measured the rotationless photodissociation threshold of six isotopologues of NO2 containing 14N, 15N, 16O, and 18O isotopes using laser induced fluorescence detection and jet cooled NO2 (to avoid rotational congestion). For each isotopologue, the spectrum is very dense below the dissociation energy while fluorescence disappears abruptly above it. The six dissociation energies ranged from 25 128.56 cm(-1) for 14N16O2 to 25 171.80 cm(-1) for 15N18O2. The zero point energy for the NO2 isotopologues was determined from experimental vibrational energies, application of the Dunham expansion, and from canonical perturbation theory using several potential energy surfaces. Using the experimentally determined dissociation energies and the calculated zero point energies of the parent NO2 isotopologue and of the NO product(s) we determined that there is a common De = 26 051.17+/-0.70 cm(-1) using the Born-Oppenheimer approximation. The canonical perturbation theory was then used to calculate the zero point energy of all stable isotopologues of SO2, CO2, and O3, which are compared with previous determinations.

  6. Zero point energy of polyhedral water clusters.

    Science.gov (United States)

    Anick, David J

    2005-06-30

    Polyhedral water clusters (PWCs) are cage-like (H2O)n clusters where every O participates in exactly three H bonds. For a database of 83 PWCs, 8 zero point energy (ZPE) was calculated at the B3LYP/6-311++G** level. ZPE correlates negatively with electronic energy (E0): each increase of 1 kcal/mol in E0 corresponds to a decrease of about 0.11 kcal/mol in ZPE. For each n, a set of four connectivity parameters accounts for 98% or more of the variance in ZPE. Linear regression of ZPE against n and this set gives an RMS error of 0.13 kcal/mol. The contributions to ZPE from stretch modes only (ZPE(S)) and from torsional modes only (ZPE(T)) also correlate strongly with E0 and with each other.

  7. Temporal change in the electromechanical properties of dielectric elastomer minimum energy structures

    International Nuclear Information System (INIS)

    Buchberger, G.; Hauser, B.; Jakoby, B.; Hilber, W.; Schoeftner, J.; Bauer, S.

    2014-01-01

    Dielectric elastomer minimum energy structures (DEMES) are soft electronic transducers and energy harvesters with potential for consumer goods. The temporal change in their electromechanical properties is of major importance for engineering tasks. Therefore, we study acrylic DEMES by impedance spectroscopy and by optical methods for a total time period of approx. 4.5 months. We apply either compliant electrodes from carbon black particles only or fluid electrodes from a mixture of carbon black particles and silicone oil. From the measurement data, the equivalent series capacitances and resistances as well as the bending angles of the transducers are obtained. We find that the equivalent series capacitances change in average between −12 %/1000 h and −4.0 %/1000 h, while the bending angles decrease linearly with slopes ranging from −15 %/1000 h to −7 %/1000 h. Transducers with high initial bending angles and electrodes from carbon black particles show the smallest changes of the electromechanical characteristics. The capacitances decrease faster for DEMES with fluid electrodes. Some DEMES of this type reveal huge and unpredictable fluctuations of the resistances over time due to the ageing of the contacts. Design guidelines for DEMES follow directly from the observed transient changes of their electromechanical performance.

  8. Ba 5s photoionization in the region of the second Cooper minimum

    International Nuclear Information System (INIS)

    Whitfield, S B; Wehlitz, R; Dolmatov, V K

    2011-01-01

    We investigate the 5s angular distribution parameter and partial photoionization cross section of atomic Ba in the region of the second Cooper minimum covering a photon energy region from 120 to 260 eV. We observe a strong drop in the Ba 5s β value from 2.0, reaching a minimum of 1.57 ± 0.07 at a photon energy of 150 eV. The β value then slowly rises back towards its nominal value of 2.0 at photon energies beyond the minimum. Our measured 5s partial cross section also shows a pronounced dip around 170 eV due to interchannel coupling with the Ba 4d photoelectrons. After combining our measurements with previous experimental values at lower photon energies, we obtain a consistent data set spanning the photon energy range prior to the onset of the partial cross section maximum and through the cross section minimum. We also calculate the 5s partial cross section under several different levels of approximation. We find that the generalized random-phase approximation with exchange calculation models the shape and position of the combined experimental cross section data set rather well after incorporating experimental ionization energies and a shift in the photon energy scale.

  9. Four-point correlation function of stress-energy tensors in N=4 superconformal theories

    CERN Document Server

    Korchemsky, G P

    2015-01-01

    We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.

  10. Computing nonsimple polygons of minimum perimeter

    NARCIS (Netherlands)

    Fekete, S.P.; Haas, A.; Hemmer, M.; Hoffmann, M.; Kostitsyna, I.; Krupke, D.; Maurer, F.; Mitchell, J.S.B.; Schmidt, A.; Schmidt, C.; Troegel, J.

    2018-01-01

    We consider the Minimum Perimeter Polygon Problem (MP3): for a given set V of points in the plane, find a polygon P with holes that has vertex set V , such that the total boundary length is smallest possible. The MP3 can be considered a natural geometric generalization of the Traveling Salesman

  11. Optimized Latching Control of Floating Point Absorber Wave Energy Converter

    Science.gov (United States)

    Gadodia, Chaitanya; Shandilya, Shubham; Bansal, Hari Om

    2018-03-01

    There is an increasing demand for energy in today’s world. Currently main energy resources are fossil fuels, which will eventually drain out, also the emissions produced from them contribute to global warming. For a sustainable future, these fossil fuels should be replaced with renewable and green energy sources. Sea waves are a gigantic and undiscovered vitality asset. The potential for extricating energy from waves is extensive. To trap this energy, wave energy converters (WEC) are needed. There is a need for increasing the energy output and decreasing the cost requirement of these existing WECs. This paper presents a method which uses prediction as a part of the control scheme to increase the energy efficiency of the floating-point absorber WECs. Kalman Filter is used for estimation, coupled with latching control in regular as well as irregular sea waves. Modelling and Simulation results for the same are also included.

  12. Using the minimum principle for the Helmholtz free energy in the analysis of the equilibria of a van der Waals fluid

    International Nuclear Information System (INIS)

    Ascoli, Sergio; Malvestuto, Vincenzo

    2004-01-01

    For a fluid system, obeying a state equation of the van der Waals type, the gas and the liquid phases can coexist in equilibrium, at a given temperature, only if the volume of the system is kept fixed. Thus, in order to study the two-phase equilibria of a fluid system, it seemed quite natural to choose the molar volume as the independent variable, and, consequently, the Helmholtz free energy as the proper thermodynamic potential for the application of the minimum principle. Specific computations are here carried out for a single van der Waals fluid, namely, pure water at 300 0 C. As a result, the present treatment indicates a simple and effective way to identify the whole range of molar volumes where the equilibrium preferred by the system is a two-phase equilibrium. This range results to be wider than the interval of strict instability of the van der Waals isotherm. Finally, it is pointed out that all the results, obtained here for the van der Waals state equation, can be extended to all the state equations of the same type

  13. A point of view on the energy needs and supplies for 2050

    International Nuclear Information System (INIS)

    Bauquis, P.R.

    2002-01-01

    In the framework of the increase of the primary energy consumption in the future, the author discusses the hypothesis proposed by the economists. The following points are detailed: the economic growth, the demography, the reserves and resources in fossil coal, the renewable energies and nuclear future, the world energy accounting for 2050. (A.L.B.)

  14. Superconducting energy gap of YB6 studied by point-contact spectroscopy

    International Nuclear Information System (INIS)

    Szabo, Pavol; Kacmarcik, Jozef; Samuely, Peter; Girovsky, Jan; Gabani, Slavomir; Flachbart, Karol; Mori, Takao

    2007-01-01

    Yttrium hexaboride has the second highest critical temperature, T c ∼ 8 K, among all borides. The presented paper deals with the experimental study of its superconducting energy gap established by the method of the point-contact spectroscopy. The temperature dependence of the energy gap and the strength of the superconducting coupling is presented

  15. A point of view on the energy needs and supplies for 2050; Un point de vue sur les besoins et les approvisionnements en energie a l'horizon 2050

    Energy Technology Data Exchange (ETDEWEB)

    Bauquis, P.R. [Institut francais de l' energie, 75 - Paris (France)]|[TotalFinaElf La Defense 6, 92 - Courbevoie (France)

    2002-07-01

    In the framework of the increase of the primary energy consumption in the future, the author discusses the hypothesis proposed by the economists. The following points are detailed: the economic growth, the demography, the reserves and resources in fossil coal, the renewable energies and nuclear future, the world energy accounting for 2050. (A.L.B.)

  16. A novel minimum cost maximum power algorithm for future smart home energy management

    Directory of Open Access Journals (Sweden)

    A. Singaravelan

    2017-11-01

    Full Text Available With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  17. Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto; Ruiz, Ana Maria; Pavon, Mariana; Hall, Stephen

    2011-06-01

    Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrence Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The

  18. A simple model for correcting the zero point energy problem in classical trajectory simulations of polyatomic molecules

    International Nuclear Information System (INIS)

    Miller, W.H.; Hase, W.L.; Darling, C.L.

    1989-01-01

    A simple model is proposed for correcting problems with zero point energy in classical trajectory simulations of dynamical processes in polyatomic molecules. The ''problems'' referred to are that classical mechanics allows the vibrational energy in a mode to decrease below its quantum zero point value, and since the total energy is conserved classically this can allow too much energy to pool in other modes. The proposed model introduces hard sphere-like terms in action--angle variables that prevent the vibrational energy in any mode from falling below its zero point value. The algorithm which results is quite simple in terms of the cartesian normal modes of the system: if the energy in a mode k, say, decreases below its zero point value at time t, then at this time the momentum P k for that mode has its sign changed, and the trajectory continues. This is essentially a time reversal for mode k (only exclamation point), and it conserves the total energy of the system. One can think of the model as supplying impulsive ''quantum kicks'' to a mode whose energy attempts to fall below its zero point value, a kind of ''Planck demon'' analogous to a Brownian-like random force. The model is illustrated by application to a model of CH overtone relaxation

  19. Zero-point energies in the two-center shell model

    International Nuclear Information System (INIS)

    Reinhard, P.G.

    1975-01-01

    The zero-point energies (ZPE) contained in the potential-energy surfaces (PES) of a two-center shell model are evaluated. For the c.m. motion of the system as a whole the kinetic ZPE was found to be negligible, whereas it varies appreciably for the rotational and oscillation modes (about 5-9MeV). For the latter two modes the ZPE also depends sensitively on the changing pairing structure, which can induce strong local fluctuations, particularly in light nuclei. The potential ZPE is very small for heavy nuclei, but might just become important in light nuclei. (Auth.)

  20. Towards minimum energy houses with EPC {<=}0; Op weg naar minimum energie woningen met EPC {<=}0

    Energy Technology Data Exchange (ETDEWEB)

    Den Dulk, F.W. [Piode - ontwerp- en adviesbureau BNA, Amersfoort (Netherlands)

    2012-09-15

    The purpose of the publication is to inform stakeholders about the current state concerning energy efficient building of houses and residential buildings. Also guidance is provided with regard to steps to follow and some practical examples are given. The energy concepts shown are based on known and marketable techniques. An energy concept is a balanced and tailored set of design measures, building construction facilities, installation and (sustainable) energy supply. Optimization is based on energy savings and costs and benefits and it must also meet requirements for health, safety, comfort and ease of operation [Dutch] Het doel van de publicatie is om belanghebbenden te informeren over de huidige stand van zaken m.b.t. vergaand energiezuinig bouwen. Tevens wordt een handreiking geboden over de te volgen stappen en zijn een aantal voorbeelden opgenomen over de praktijk. De publicatie is beperkt tot seriematige woningbouw. De energieconcepten zijn op het niveau van de individuele woning of een woongebouw. De weergegeven energieconcepten zijn gebaseerd op bekende- en marktrijpe technieken. Een energieconcept is een afgewogen en op elkaar afgestemd samenstel van ontwerpmaatregelen, bouwkundige maatregelen en voorzieningen, de installatie en de (duurzame) energievoorziening . Optimalisatie vindt plaats op basis van energiebesparing en kosten/baten terwijl tevens moet worden voldaan aan eisen voor veiligheid, gezondheid, comfort en bedieningsgemak.

  1. Fermat and the Minimum Principle

    Indian Academy of Sciences (India)

    Arguably, least action and minimum principles were offered or applied much earlier. This (or these) principle(s) is/are among the fundamental, basic, unifying or organizing ones used to describe a variety of natural phenomena. It considers the amount of energy expended in performing a given action to be the least required ...

  2. In search of income reference points for SLCA using a country level sustainability benchmark (part 2): fair minimum wage. A contribution to the Oiconomy project

    OpenAIRE

    Croes, Pim R.; Vermeulen, Walter J. V.

    2016-01-01

    Purpose: This paper is part 2 of our twin articles on income reference points for social life cycle assessment (SLCA). The purpose of this article is to provide a well-founded fair minimum wage standard, which enables the determination of the preventative costs for the impact category of unfair prices for labour in preventative costs-based SLCA. Methods: A five-step procedure was followed, comprising of (1) definition of the impact category and characterization factor, (2) a literature survey...

  3. Elemental GCR Observations during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Israel, M. H.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; hide

    2013-01-01

    Using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer (ACE), we present new measurements of the galactic cosmic ray (GCR) elemental composition and energy spectra for the species B through Ni in the energy range approx. 50-550 MeV/nucleon during the record setting 2009-2010 solar minimum period. These data are compared with our observations from the 1997-1998 solar minimum period, when solar modulation in the heliosphere was somewhat higher. For these species, we find that the intensities during the 2009-2010 solar minimum were approx. 20% higher than those in the previous solar minimum, and in fact were the highest GCR intensities recorded during the space age. Relative abundances for these species during the two solar minimum periods differed by small but statistically significant amounts, which are attributed to the combination of spectral shape differences between primary and secondary GCRs in the interstellar medium and differences between the levels of solar modulation in the two solar minima. We also present the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe for both solar minimum periods, and demonstrate that these ratios are reasonably well fit by a simple "leaky-box" galactic transport model that is combined with a spherically symmetric solar modulation model.

  4. Accuracy assessment of minimum control points for UAV photography and georeferencing

    Science.gov (United States)

    Skarlatos, D.; Procopiou, E.; Stavrou, G.; Gregoriou, M.

    2013-08-01

    In recent years, Autonomous Unmanned Aerial Vehicles (AUAV) became popular among researchers across disciplines because they combine many advantages. One major application is monitoring and mapping. Their ability to fly beyond eye sight autonomously, collecting data over large areas whenever, wherever, makes them excellent platform for monitoring hazardous areas or disasters. In both cases rapid mapping is needed while human access isn't always a given. Indeed, current automatic processing of aerial photos using photogrammetry and computer vision algorithms allows for rapid orthophomap production and Digital Surface Model (DSM) generation, as tools for monitoring and damage assessment. In such cases, control point measurement using GPS is either impossible, or time consuming or costly. This work investigates accuracies that can be attained using few or none control points over areas of one square kilometer, in two test sites; a typical block and a corridor survey. On board GPS data logged during AUAV's flight are being used for direct georeferencing, while ground check points are being used for evaluation. In addition various control point layouts are being tested using bundle adjustment for accuracy evaluation. Results indicate that it is possible to use on board single frequency GPS for direct georeferencing in cases of disaster management or areas without easy access, or even over featureless areas. Due to large numbers of tie points in the bundle adjustment, horizontal accuracy can be fulfilled with a rather small number of control points, but vertical accuracy may not.

  5. Great expectations: Reservation wages and the minimum wage reform

    OpenAIRE

    Fedorets, Alexandra; Filatov, Alexey; Shupe, Cortnie

    2018-01-01

    We use the German Socio-Economic Panel to show that introducing a high-impact statutory minimum wage causes an increase in reservation wages of approximately 4 percent at the low end of the distribution. The shifts in reservation wages and observed wages due to the minimum wage reform are comparable in their magnitude. Additional results show that German citizens adjust their reservation wages more than immigrants. Moreover, suggestive evidence points to a compensation mechanism in which immi...

  6. Flow Convergence Caused by a Salinity Minimum in a Tidal Channel

    Directory of Open Access Journals (Sweden)

    John C. Warner

    2006-12-01

    transport through a constant direction density gradient. (4 A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.

  7. [Specific features in realization of the principle of minimum energy dissipation during individual development].

    Science.gov (United States)

    Zotin, A A

    2012-01-01

    Realization of the principle of minimum energy dissipation (Prigogine's theorem) during individual development has been analyzed. This analysis has suggested the following reformulation of this principle for living objects: when environmental conditions are constant, the living system evolves to a current steady state in such a way that the difference between entropy production and entropy flow (psi(u) function) is positive and constantly decreases near the steady state, approaching zero. In turn, the current steady state tends to a final steady state in such a way that the difference between the specific entropy productions in an organism and its environment tends to be minimal. In general, individual development completely agrees with the law of entropy increase (second law of thermodynamics).

  8. Zero-point Energy is Needed in Molecular Dynamics Calculations to Access the Saddle Point for H+HCN→H2CN* and cis/trans-HCNH* on a New Potential Energy Surface.

    Science.gov (United States)

    Wang, Xiaohong; Bowman, Joel M

    2013-02-12

    We calculate the probabilities for the association reactions H+HCN→H2CN* and cis/trans-HCNH*, using quasiclassical trajectory (QCT) and classical trajectory (CT) calculations, on a new global ab initio potential energy surface (PES) for H2CN including the reaction channels. The surface is a linear least-squares fit of roughly 60 000 CCSD(T)-F12b/aug-cc-pVDZ electronic energies, using a permutationally invariant basis with Morse-type variables. The reaction probabilities are obtained at a variety of collision energies and impact parameters. Large differences in the threshold energies in the two types of dynamics calculations are traced to the absence of zero-point energy in the CT calculations. We argue that the QCT threshold energy is the realistic one. In addition, trajectories find a direct pathway to trans-HCNH, even though there is no obvious transition state (TS) for this pathway. Instead the saddle point (SP) for the addition to cis-HCNH is evidently also the TS for direct formation of trans-HCNH.

  9. On the Level Set of a Function with Degenerate Minimum Point

    Directory of Open Access Journals (Sweden)

    Yasuhiko Kamiyama

    2015-01-01

    Full Text Available For n≥2, let M be an n-dimensional smooth closed manifold and f:M→R a smooth function. We set minf(M=m and assume that m is attained by unique point p∈M such that p is a nondegenerate critical point. Then the Morse lemma tells us that if a is slightly bigger than m, f-1(a is diffeomorphic to Sn-1. In this paper, we relax the condition on p from being nondegenerate to being an isolated critical point and obtain the same consequence. Some application to the topology of polygon spaces is also included.

  10. LOWERING ICECUBE'S ENERGY THRESHOLD FOR POINT SOURCE SEARCHES IN THE SOUTHERN SKY

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Abraham, K. [Physik-department, Technische Universität München, D-85748 Garching (Germany); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI, 53201 (United States); Anderson, T.; Arlen, T. C. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Archinger, M.; Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Arguelles, C. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bay, R., E-mail: jacob.feintzeig@gmail.com, E-mail: naoko@icecube.wisc.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); Collaboration: IceCube Collaboration; and others

    2016-06-20

    Observation of a point source of astrophysical neutrinos would be a “smoking gun” signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν{sub μ} interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (∼100 TeV) starting event in the sample found that this event alone represents a 2.8 σ deviation from the hypothesis that the data consists only of atmospheric background.

  11. Techno-economic analysis of the deacetylation and disk refining process: characterizing the effect of refining energy and enzyme usage on minimum sugar selling price and minimum ethanol selling price.

    Science.gov (United States)

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; Sabourin, Marc; Tucker, Melvin P; Tao, Ling

    2015-01-01

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibility of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128-468 kWh/ODMT), cellulase (Novozyme's CTec3) loading (11.6-28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme's HTec3) loading (0-5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL's 2011 design report. The DDR process is

  12. SS Cygni: The accretion disk in eruption and at minimum light

    International Nuclear Information System (INIS)

    Kiplinger, A.L.

    1979-01-01

    Absolute spectrophotometric observations of the dwarf nova SS Cygni have been obtained at maximum light, during the subsequent decline, and at minimum light. In order to provide a critical test of accretion disk theory, a model for a steady-state α-model accretion disk has been constructed which utilizes a grid of stellar energy distributions to synthesize the disk flux. Physical parameters for the accretion disk at maximum light are set by estimates of the intrinsic luminosity of the system that result from a desynthesis of a composite minimum light energy distribution. At maximum light, agreements between observational and theoretical continuum slopes and the Balmer jump are remarkably good. The model fails, however, during the eruption decline and at minimum light. It appears that the physical character of an accretion disk at minimum light must radiacally differ from the disk observed at maximum light

  13. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets

    Science.gov (United States)

    Ahdab, Yvana D.; Thiel, Gregory P.; Böhlke, John Karl; Stanton, Jennifer S.; Lienhard, John H.

    2018-01-01

    This paper uses chemical and physical data from a large 2017 U.S. Geological Surveygroundwater dataset with wells in the U.S. and three smaller international groundwater datasets with wells primarily in Australia and Spain to carry out a comprehensive investigation of brackish groundwater composition in relation to minimum desalinationenergy costs. First, we compute the site-specific least work required for groundwater desalination. Least work of separation represents a baseline for specific energy consumptionof desalination systems. We develop simplified equations based on the U.S. data for least work as a function of water recovery ratio and a proxy variable for composition, either total dissolved solids, specific conductance, molality or ionic strength. We show that the U.S. correlations for total dissolved solids and molality may be applied to the international datasets. We find that total molality can be used to calculate the least work of dilute solutions with very high accuracy. Then, we examine the effects of groundwater solute composition on minimum energy requirements, showing that separation requirements increase from calcium to sodium for cations and from sulfate to bicarbonate to chloride for anions, for any given TDS concentration. We study the geographic distribution of least work, total dissolved solids, and major ions concentration across the U.S. We determine areas with both low least work and high water stress in order to highlight regions holding potential for desalination to decrease the disparity between high water demand and low water supply. Finally, we discuss the implications of the USGS results on water resource planning, by comparing least work to the specific energy consumption of brackish water reverse osmosisplants and showing the scaling propensity of major electrolytes and silica in the U.S. groundwater samples.

  14. Minimum qualifications for nuclear criticality safety professionals

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1990-01-01

    A Nuclear Criticality Technology and Safety Training Committee has been established within the U.S. Department of Energy (DOE) Nuclear Criticality Safety and Technology Project to review and, if necessary, develop standards for the training of personnel involved in nuclear criticality safety (NCS). The committee is exploring the need for developing a standard or other mechanism for establishing minimum qualifications for NCS professionals. The development of standards and regulatory guides for nuclear power plant personnel may serve as a guide in developing the minimum qualifications for NCS professionals

  15. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  16. On zero-point energy, stability and Hagedorn behavior of Type IIB strings on pp-waves

    International Nuclear Information System (INIS)

    Bigazzi, F.; Cotrone, A.L.

    2003-06-01

    Type IIB strings on many pp-wave backgrounds, supported either by 5-form or 3-form fluxes, have negative light-cone zero-point energy. This raises the question of their stability and poses possible problems in the definition of their thermodynamic properties. After having pointed out the correct way of calculating the zero-point energy, an issue not fully discussed in literature, we show that these Type IIB strings are classically stable and have well defined thermal properties, exhibiting a Hagedorn behavior. (author)

  17. Implementation of the EU directive on the energy performance of buildings: Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers. Project document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    'Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers' includes major steps in implementing the EU EPB directive in Latvia. The EPB directive includes a number of efforts: 1. A methodology for calculation of the integrated energy performance of buildings 2. Application of minimum requirements on the energy performance for new buildings 3. Application of minimum requirements on the energy performance for larger existing buildings subject to major renovation 4. Energy performance certification (energy labelling) of buildings 5. Regular inspection of boilers and of air-conditioning systems in buildings, and assessment of heating installations in older systems. The present project includes activities connected to point 4 and point 5. The results will include 4 steps in implementing the EU EPB directive: 1) A Latvian training of certified independent energy auditors to be active conducting energy audits and issuing energy performance certificates. Including a handbook in energy auditing. 2) A Latvian training of certified independent experts for inspection of boilers, air-con systems and assessing older heating systems. Including a handbook in boiler inspection. 3) A proposal for the institutional set-up for a connected scheme for energy auditing and a scheme for boiler inspection 4) Initial information on the scheme of energy auditors and of the boiler inspection. (au)

  18. What is the Minimum EROI that a Sustainable Society Must Have?

    Directory of Open Access Journals (Sweden)

    David J.R. Murphy

    2009-01-01

    Full Text Available Economic production and, more generally, most global societies, are overwhelmingly dependant upon depleting supplies of fossil fuels. There is considerable concern amongst resource scientists, if not most economists, as to whether market signals or cost benefit analysis based on today’s prices are sufficient to guide our decisions about our energy future. These suspicions and concerns were escalated during the oil price increase from 2005 – 2008 and the subsequent but probably related market collapse of 2008. We believe that Energy Return On Investment (EROI analysis provides a useful approach for examining disadvantages and advantages of different fuels and also offers the possibility to look into the future in ways that markets seem unable to do. The goal of this paper is to review the application of EROI theory to both natural and economic realms, and to assess preliminarily the minimum EROI that a society must attain from its energy exploitation to support continued economic activity and social function. In doing so we calculate herein a basic first attempt at the minimum EROI for current society and some of the consequences when that minimum is approached. The theory of the minimum EROI discussed here, which describes the somewhat obvious but nonetheless important idea that for any being or system to survive or grow it must gain substantially more energy than it uses in obtaining that energy, may be especially important. Thus any particular being or system must abide by a “Law of Minimum EROI”, which we calculate for both oil and corn-based ethanol as about 3:1 at the mine-mouth/farm-gate. Since most biofuels have EROI’s of less than 3:1 they must be subsidized by fossil fuels to be useful.

  19. An automotive thermoelectric-photovoltaic hybrid energy system using maximum power point tracking

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Chau, K.T.

    2011-01-01

    In recent years, there has been active research on exhaust gas waste heat energy recovery for automobiles. Meanwhile, the use of solar energy is also proposed to promote on-board renewable energy and hence to improve their fuel economy. In this paper, a new thermoelectric-photovoltaic (TE-PV) hybrid energy system is proposed and implemented for automobiles. The key is to newly develop the power conditioning circuit using maximum power point tracking so that the output power of the proposed TE-PV hybrid energy system can be maximized. An experimental system is prototyped and tested to verify the validity of the proposed system.

  20. The Fermat point for a taxicab triangle

    Science.gov (United States)

    Hanson, J. R.

    2015-04-01

    The Fermat point P for a triangle ABC is the point P the sum of whose distances from the vertices A, B and C is a minimum. This note will show how to find the Fermat point for any triangle using the taxicab metric.

  1. Zero-point energy of N perfectly conducting concentric cylindrical shells

    International Nuclear Information System (INIS)

    Tatur, K.; Woods, L.M.

    2008-01-01

    The zero-point (Casimir) energy of N perfectly conducting, infinitely long, concentric cylindrical shells is calculated utilizing the mode summation technique. The obtained convergent expression is studied as a function of size, curvature and number of shells. Limiting cases, such as infinitely close shells or infinite radius shells are also investigated

  2. Phase holonomy, zero-point energy cancellation and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Iida, Shinji; Kuratsuji, Hiroshi

    1987-01-01

    We show that the zero-point energy of bosons is cancelled out by the phase holonomy which is induced by the adiabatic deformation of a boson system coupled with a fermion. This mechanism results in a supersymmetric quantum mechanics as a special case and presents a possible dynamical origin of supersymmetry. (orig.)

  3. Search for high energy cosmic neutrino point sources with ANTARES

    International Nuclear Information System (INIS)

    Halladjian, G.

    2010-01-01

    The aim of this thesis is the search for high energy cosmic neutrinos emitted by point sources with the ANTARES neutrino telescope. The detection of high energy cosmic neutrinos can bring answers to important questions such as the origin of cosmic rays and the γ-rays emission processes. In the first part of the thesis, the neutrino flux emitted by galactic and extragalactic sources and the number of events which can be detected by ANTARES are estimated. This study uses the measured γ-ray spectra of known sources taking into account the γ-ray absorption by the extragalactic background light. In the second part of the thesis, the absolute pointing of the ANTARES telescope is evaluated. Being located at a depth of 2475 m in sea water, the orientation of the detector is determined by an acoustic positioning system which relies on low and high frequency acoustic waves measurements between the sea surface and the bottom. The third part of the thesis is a search for neutrino point sources in the ANTARES data. The search algorithm is based on a likelihood ratio maximization method. It is used in two search strategies; 'the candidate sources list strategy' and 'the all sky search strategy'. Analysing 2007+2008 data, no discovery is made and the world's best upper limits on neutrino fluxes from various sources in the Southern sky are established. (author)

  4. Thermoelectric automotive waste heat energy recovery using maximum power point tracking

    International Nuclear Information System (INIS)

    Yu Chuang; Chau, K.T.

    2009-01-01

    This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC-DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Both analysis and experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.

  5. Point source search techniques in ultra high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    Alexandreas, D.E.; Biller, S.; Dion, G.M.; Lu, X.Q.; Yodh, G.B.; Berley, D.; Goodman, J.A.; Haines, T.J.; Hoffman, C.M.; Horch, E.; Sinnis, C.; Zhang, W.

    1993-01-01

    Searches for point astrophysical sources of ultra high energy (UHE) gamma rays are plagued by large numbers of background events from isotropic cosmic rays. Some of the methods that have been used to estimate the expected number of background events coming from the direction of a possible source are found to contain biases. Search techniques that avoid this problem are described. There is also a discussion of how to optimize the sensitivity of a search to emission from a point source. (orig.)

  6. Pairwise contact energy statistical potentials can help to find probability of point mutations.

    Science.gov (United States)

    Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S

    2017-01-01

    To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. 75 FR 51990 - CenterPoint Energy-Illinois Gas Transmission Company; Notice of Baseline Filing

    Science.gov (United States)

    2010-08-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-80-000] CenterPoint Energy--Illinois Gas Transmission Company; Notice of Baseline Filing August 17, 2010. Take notice that on August 12, 2010, the applicant listed above submitted their baseline filing of its Statement of Operating...

  8. Zero-point energies in the two-center shell model. II

    International Nuclear Information System (INIS)

    Reinhard, P.-G.

    1978-01-01

    The zero-point energy (ZPE) contained in the potential-energy surface of a two-center shell model (TCSM) is evaluated. In extension of previous work, the author uses here the full TCSM with l.s force, smoothing and asymmetry. The results show a critical dependence on the height of the potential barrier between the centers. The ZPE turns out to be non-negligible along the fission path for 236 U, and even more so for lighter systems. It is negligible for surface quadrupole motion and it is just on the fringe of being negligible for motion along the asymmetry coordinate. (Auth.)

  9. An Investigation into Power from Pitch-Surge Point-Absorber Wave Energy Converters.

    OpenAIRE

    Chaplin, R. V.; Aggidis, George A.

    2007-01-01

    There is a worldwide opportunity for clean renewable power. The results from the UK Government's "Marine Energy Challenge" showed that marine energy has the potential to become competitive with other forms of energy. The key to success in this lies in a low lifetime-cost of power as delivered to the user. Pitch-surge point-absorber WECs have the potential to do this with average annual powers of around 2 MW in North Atlantic conditions from relatively small devices that would be economically ...

  10. Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy.

    Science.gov (United States)

    Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2016-03-03

    We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.

  11. Effect of tube diameter on the specific energy consumption of the ice making process

    International Nuclear Information System (INIS)

    Tangthieng, C.

    2011-01-01

    One of the favorite forms of ice for consuming is tube ice, which is produced by a refrigeration unit referred to as an ice making tower. In order to redesign the tower for the energy-efficiency purpose, the aim of this paper is to numerically investigate the effect of tube diameter on the ice thickness, the cooling load, and the specific energy consumption. The mathematical model of the ice formation within the tube is developed by assuming unsteady and one-dimensional heat conduction. The governing equations are composed of the wall and the ice regions with the convective boundary condition and isothermal solidification at the interface. The governing system is transformed into a dimensionless form and numerically solved by the finite difference method. The numerical results are validated by comparing the ice thickness obtained from the numerical prediction and that obtained from the field measurement, resulting in qualitative agreement. The variations of ice thickness, cooling load, and specific energy consumption with time for four different tube diameters are presented. The result shows the location of the minimum specific energy consumption as a function of time. By comparing between different tube diameters, the value of the minimum specific energy consumption of a small diameter tube is lower than that of a large diameter one. On the other hand, the behavior of the specific energy consumption of a large diameter tube indicates the existence of a low specific energy consumption period of time beyond the minimum point. Therefore, by choosing a proper tube diameter, the minimum value of the average specific energy consumption over the entire production cycle is obtained, leading to higher energy efficiency. - Research Highlights: → The result indicates the minimum specific energy consumption as a function of time. → A smaller diameter tube has a lower value of the minimum specific energy consumption, but a large one has an extended range of low specific

  12. Adding Curvature to Minimum Description Length Shape Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Ólafsdóttir, Hildur

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling seeks a compact description of a set of shapes in terms of the coordinates of marks on the shapes. It has been shown that the mark positions resulting from this optimisation to a large extent solve the so-called point correspondence...

  13. Determining the global minimum of Higgs potentials via Groebner bases - applied to the NMSSM

    International Nuclear Information System (INIS)

    Maniatis, M.; Manteuffel, A. von; Nachtmann, O.

    2007-01-01

    Determining the global minimum of Higgs potentials with several Higgs fields like the next-to-minimal supersymmetric extension of the standard model (NMSSM) is a non-trivial task already at the tree level. The global minimum of a Higgs potential can be found from the set of all its stationary points defined by a multivariate polynomial system of equations. We introduce here the algebraic Groebner basis approach to solve this system of equations. We apply the method to the NMSSM with CP-conserving as well as CP-violating parameters. The results reveal an interesting stationary-point structure of the potential. Requiring the global minimum to give the electroweak symmetry breaking observed in Nature excludes large parts of the parameter space. (orig.)

  14. Determining the global minimum of Higgs potentials via Groebner bases - applied to the NMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Maniatis, M.; Manteuffel, A. von; Nachtmann, O. [Institut fuer Theoretische Physik, Heidelberg (Germany)

    2007-03-15

    Determining the global minimum of Higgs potentials with several Higgs fields like the next-to-minimal supersymmetric extension of the standard model (NMSSM) is a non-trivial task already at the tree level. The global minimum of a Higgs potential can be found from the set of all its stationary points defined by a multivariate polynomial system of equations. We introduce here the algebraic Groebner basis approach to solve this system of equations. We apply the method to the NMSSM with CP-conserving as well as CP-violating parameters. The results reveal an interesting stationary-point structure of the potential. Requiring the global minimum to give the electroweak symmetry breaking observed in Nature excludes large parts of the parameter space. (orig.)

  15. On the chromatic number of triangle-free graphs of large minimum degree

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2002-01-01

    We prove that, for each. fixed real number c > 1/3, the triangle-free graphs of minimum degree at least cn (where n is the number of vertices) have bounded chromatic number. This problem was raised by Erdos and Simonovits in 1973 who pointed out that there is no such result for c <1/3.......We prove that, for each. fixed real number c > 1/3, the triangle-free graphs of minimum degree at least cn (where n is the number of vertices) have bounded chromatic number. This problem was raised by Erdos and Simonovits in 1973 who pointed out that there is no such result for c

  16. Is the 10-point agenda of the Federal Government useful for a successful energy transition?

    International Nuclear Information System (INIS)

    Dinther, Clemens van; Renelt, Sven; Strueker, Jens; Terzidis, Orestis; Bretschneider, Peter

    2017-01-01

    With the energy transition, the Federal Government has begun the conversion of the energy supply. Because of the success of the energy transition is essential for the future and competitiveness of Germany as a business location The Federal Association of German Industry (BDI) has already published 2013 Stimulus for a smart energy market, in which are derived five principles which provide a framework for discourse on the measures to be taken. Renewable energies will be the dominant source of electricity in the coming years. This results in new challenges. The Federal Ministry of Economics and Technology (BMWi) has recently adopted a 10-point agenda to address these issues (ZPA) for the central energy projects. To be discussed is to what extent they are in harmony with the five principles of the BDI and at which points adjustments are necessary, so that the conversion of the energy system can succeed. [de

  17. Evaluating Small Sphere Limit of the Wang-Yau Quasi-Local Energy

    Science.gov (United States)

    Chen, Po-Ning; Wang, Mu-Tao; Yau, Shing-Tung

    2018-01-01

    In this article, we study the small sphere limit of the Wang-Yau quasi-local energy defined in Wang and Yau (Phys Rev Lett 102(2):021101, 2009, Commun Math Phys 288(3):919-942, 2009). Given a point p in a spacetime N, we consider a canonical family of surfaces approaching p along its future null cone and evaluate the limit of the Wang-Yau quasi-local energy. The evaluation relies on solving an "optimal embedding equation" whose solutions represent critical points of the quasi-local energy. For a spacetime with matter fields, the scenario is similar to that of the large sphere limit found in Chen et al. (Commun Math Phys 308(3):845-863, 2011). Namely, there is a natural solution which is a local minimum, and the limit of its quasi-local energy recovers the stress-energy tensor at p. For a vacuum spacetime, the quasi-local energy vanishes to higher order and the solution of the optimal embedding equation is more complicated. Nevertheless, we are able to show that there exists a solution that is a local minimum and that the limit of its quasi-local energy is related to the Bel-Robinson tensor. Together with earlier work (Chen et al. 2011), this completes the consistency verification of the Wang-Yau quasi-local energy with all classical limits.

  18. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    Science.gov (United States)

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  19. Understanding zero-point energy in the context of classical electromagnetism

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2016-01-01

    Today’s textbooks of electromagnetism give the particular solution to Maxwell’s equations involving the integral over the charge and current sources at retarded times. However, the texts fail to emphasise that the choice of the incoming-wave boundary conditions corresponding to solutions of the homogeneous Maxwell equations must be made based upon experiment. Here we discuss the role of these incoming-wave boundary conditions for an experimenter with a hypothetical charged harmonic oscillator as his equipment. We describe the observations of the experimenter when located near a radio station or immersed in thermal radiation at temperature T . The classical physicists at the end of the 19th century chose the incoming-wave boundary conditions for the homogeneous Maxwell equations based upon the experimental observations of Lummer and Pringsheim which measured only the thermal radiation which exceeded the random radiation surrounding their measuring equipment; the physicists concluded that they could take the homogeneous solutions to vanish at zero temperature. Today at the beginning of the 21st century, classical physicists must choose the incoming-wave boundary conditions for the homogeneous Maxell equations to correspond to the full radiation spectrum revealed by the recent Casimir force measurements which detect all the radiation surrounding conducting parallel plates, including the radiation absorbed and emitted by the plates themselves. The random classical radiation spectrum revealed by the Casimir force measurements includes electromagnetic zero-point radiation, which is missing from the spectrum measured by Lummer and Pringsheim, and which cannot be eliminated by going to zero temperature. This zero-point radiation will lead to zero-point energy for all systems which have electromagnetic interactions. Thus the choice of the incoming-wave boundary conditions on the homogeneous Maxwell equations is intimately related to the ideas of zero-point energy and

  20. USING GENETIC ALGORTIHM TO SOLVE STEINER MINIMUM SPANNING TREE PROBLEM

    Directory of Open Access Journals (Sweden)

    Öznur İŞÇİ

    2006-03-01

    Full Text Available Genetic algorithms (GA are a stochastic research methods, and they produce solutions that are close to optimum or near optimum. In addition to GA's successful application to traveling salesman problem, square designation, allocation, workshop table, preparation of lesson/examination schedules, planning of communication networks, assembling line balanced, minimum spanning tree type many combinatorial optimization problems it would be applicable to make the best comparison in optimization. In this study a Java program is developed to solve Steiner minimum spanning tree problem by genetic algorithm and its performance is examined. According to the tests carried out on the problems that were given before in the literature, results that are close to optimum are obtained in by GA approach that is recommended in this study. For the predetermined points in the study, length and gain are calculated for Steiner minimum spanning tree problem and minimum spanning tree problem.

  1. Uncertainty relations, zero point energy and the linear canonical group

    Science.gov (United States)

    Sudarshan, E. C. G.

    1993-01-01

    The close relationship between the zero point energy, the uncertainty relations, coherent states, squeezed states, and correlated states for one mode is investigated. This group-theoretic perspective enables the parametrization and identification of their multimode generalization. In particular the generalized Schroedinger-Robertson uncertainty relations are analyzed. An elementary method of determining the canonical structure of the generalized correlated states is presented.

  2. Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters

    Directory of Open Access Journals (Sweden)

    S. M. M. Shariatmadar

    2017-08-01

    Full Text Available In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.

  3. An Experimental study on a Method of Computing Minimum flow rate

    International Nuclear Information System (INIS)

    Cho, Yeon Sik; Kim, Tae Hyun; Kim, Chang Hyun

    2009-01-01

    Many pump reliability problems in the Nuclear Power Plants (NPPs) are being attributed to the operation of the pump at flow rates well below its best efficiency point(BEP). Generally, the manufacturer and the user try to avert such problems by specifying a minimum flow, below which the pump should not be operated. Pump minimum flow usually involves two considerations. The first consideration is normally termed the 'thermal minimum flow', which is that flow required to prevent the fluid inside the pump from reaching saturation conditions. The other consideration is often referred to as 'mechanical minimum flow', which is that flow required to prevent mechanical damage. However, the criteria for specifying such a minimum flow are not clearly understood by all parties concerned. Also various factor and information for computing minimum flow are not easily available as considering for the pump manufacturer' proprietary. The objective of this study is to obtain experimental data for computing minimum flow rate and to understand the pump performances due to low flow operation. A test loop consisted of the pump to be used in NPPs, water tank, flow rate measurements and piping system with flow control devices was established for this study

  4. A note on the energy of relative equilibria of point vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2007-01-01

    Analytical formulas are derived for the energy of simple relative equilibria of identical point vortices such as the regular polygons, both open and centered, and the various known configurations consisting of nested regular polygons with or without a vortex at the center. ©2007 American Institute...

  5. Minimum Wage Laws: Who Benefits, Who Loses? Series on Public Issues No. 2.

    Science.gov (United States)

    Hobson, Margaret Jane; Maurice, S. Charles

    It is the thesis of this booklet, one of a series intended to apply economic principles to major social and political issues of the day, that minimum wage laws actually hurt those whom such laws are designed to help. From this point of departure, separate subsections examine economic implications of minimum wage laws, including discussion of what…

  6. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    International Nuclear Information System (INIS)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.

    2012-01-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 10 47 cm –3 and 1.1 × 10 48 cm –3 . Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  7. SphinX Measurements of the 2009 Solar Minimum X-Ray Emission

    Science.gov (United States)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 1047 cm-3 and 1.1 × 1048 cm-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  8. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B. [Space Research Centre, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Kuzin, S. [P. N. Lebedev Physical Institute (FIAN), Russian Academy of Sciences, Leninsky Prospect 53, Moscow 119991 (Russian Federation); Farnik, F. [Astronomical Institute, Ondrejov Observatory (Czech Republic); Reale, F. [Dipartimento di Fisica, Universita di Palermo, Palermo, Italy, and INAF, Osservatorio Astronomico di Palermo, Palermo (Italy); Phillips, K. J. H., E-mail: js@cbk.pan.wroc.pl [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 Multiplication-Sign 10{sup 47} cm{sup -3} and 1.1 Multiplication-Sign 10{sup 48} cm{sup -3}. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  9. What measurable zero point fluctuations can(not) tell us about dark energy

    International Nuclear Information System (INIS)

    Doran, M.

    2006-05-01

    We show that laboratory experiments cannot measure the absolute value of dark energy. All known experiments rely on electromagnetic interactions. They are thus insensitive to particles and fields that interact only weakly with ordinary matter. In addition, Josephson junction experiments only measure differences in vacuum energy similar to Casimir force measurements. Gravity, however, couples to the absolute value. Finally we note that Casimir force measurements have tested zero point fluctuations up to energies of ∝ 10 eV, well above the dark energy scale of ∝ 0.01 eV. Hence, the proposed cut-off in the fluctuation spectrum is ruled out experimentally. (Orig.)

  10. Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace

    International Nuclear Information System (INIS)

    Jang, Jiin-Yuh; Huang, Jun-Bo

    2015-01-01

    A two-dimensional mathematical heat transfer model for the prediction of the temperature history of steel slabs was performed in order to obtain the optimal heating pattern of these slabs with minimum energy consumption in a walking-beam type reheating furnace. An algorithm developed with a simplified conjugated-gradient method combined with a shooting method, was used as an optimizer to design the furnace temperature distribution, including the preheating zone, heating zone and soaking zone temperatures. Comparison with the in-situ experimental data indicated that the present heat transfer model works well for the prediction of the thermal behavior of a slab in the reheating furnace. The effect of the furnace temperature distribution on the design requirements, such as energy required for heating a slab, slab temperature uniformity at the furnace exit and slab discharging temperature, were investigated. The parametric study results indicated that energy consumption significantly decreases with reductions in the preheating zone temperature. The optimal design also resulted in lower energy consumption for heating a slab as compared to the original operational conditions in the steel plant. - Highlights: • The heating process of steel slabs in a reheating furnace is numerically simulated. • An algorithm is developed to search for the optimal heating pattern of a slab. • Energy consumption decreases with reductions in the preheating zone temperature

  11. Energy policies avoiding a tipping point in the climate system

    International Nuclear Information System (INIS)

    Bahn, Olivier; Edwards, Neil R.; Knutti, Reto; Stocker, Thomas F.

    2011-01-01

    Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems. - Research Highlights: → Preserving the THC may require a fast and strong greenhouse gas emission reduction. → This could be achieved through strong changes in the energy mix. → Similar results would apply to any climate system tipping points.

  12. Charmonium and other onia at minimum energy

    International Nuclear Information System (INIS)

    Dalpiaz, P.

    1979-01-01

    In recent years considerable interest has been focused at CERN on the experimental possibilities offered by the antiproton-proton collisions to answer some of the fundamental questions of the present-day physics. Various working groups, set up at CERN during the last two years, have examined the physics potentials and the technical feasibility of anti pp colliding devices at various energies. As a consequence of this work, two anti pp projects have already been approved: the ISR anti pp project, and the SPS collider, covering a centre-of-mass energy range from 20 to 540 GeV. The Low-Energy Antiproton Ring (LEAR) projectsup(2)), allowing the study of phenomena under the 2msub(p) threshold up to 2.3 GeV, is at present under study. Transforming LEAR into a anti pp minicollidersup(2)), it is possible to reach a centre of-mass energy of 3.7 GeV. -Considering, then, the anti pp physics facilities at CERN as a whole project, it is seen that the energy range between 3.7 GeV and 20 GeV remains uncovered. In this report the physics interest of experiments in a centre-of-mass energy range between 2 and 20 GeV will be outlined and the technical feasibility investigated. (orig./FKS)

  13. On the normalization of the minimum free energy of RNAs by sequence length.

    Science.gov (United States)

    Trotta, Edoardo

    2014-01-01

    The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  14. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  15. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    Directory of Open Access Journals (Sweden)

    Michael Shepertycky

    Full Text Available Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator.We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH, which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0 is lower than that of conventional power generation methods.These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  16. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    Science.gov (United States)

    Shepertycky, Michael; Li, Qingguo

    2015-01-01

    Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  17. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  18. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  19. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    Science.gov (United States)

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  20. Small-Scale Renewable Energy Converters for Battery Charging

    Directory of Open Access Journals (Sweden)

    Mohd Nasir Ayob

    2018-03-01

    Full Text Available This paper presents two wave energy concepts for small-scale electricity generation. In the presented case, these concepts are installed on the buoy of a heaving, point-absorbing wave energy converter (WEC for large scale electricity production. In the studied WEC, developed by Uppsala University, small-scale electricity generation in the buoy is needed to power a tidal compensating system designed to increase the performance of the WEC in areas with high tides. The two considered and modeled concepts are an oscillating water column (OWC and a heaving point absorber. The results indicate that the OWC is too small for the task and does not produce enough energy. On the other hand, the results show that a hybrid system composed of a small heaving point absorber combined with a solar energy system would be able to provide a requested minimum power of around 37.7 W on average year around. The WEC and solar panel complement each other, as the WEC produces enough energy by itself during wintertime (but not in the summer, while the solar panel produces enough energy in the summer (but not in the winter.

  1. Energy efficient smartphone-based activity recognition using fixed-point arithmetic

    OpenAIRE

    Anguita, Davide; Ghio, Alessandro; Oneto, Luca; Llanas Parra, Francesc Xavier; Reyes Ortiz, Jorge Luis

    2013-01-01

    In this paper we propose a novel energy efficient approach for the recognition of human activities using smartphones as wearable sensing devices, targeting assisted living applications such as remote patient activity monitoring for the disabled and the elderly. The method exploits fixed-point arithmetic to propose a modified multiclass Support Vector Machine (SVM) learning algorithm, allowing to better pre- serve the smartphone battery lifetime with respect to the conventional flo...

  2. A chain-of-states acceleration method for the efficient location of minimum energy paths

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, E. R., E-mail: Eduardo.Hernandez@csic.es; Herrero, C. P. [Instituto de Ciencia de Materiales de Madrid (ICMM–CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Soler, J. M. [Departamento de Física de la Materia Condensada and IFIMAC, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2015-11-14

    We describe a robust and efficient chain-of-states method for computing Minimum Energy Paths (MEPs) associated to barrier-crossing events in poly-atomic systems, which we call the acceleration method. The path is parametrized in terms of a continuous variable t ∈ [0, 1] that plays the role of time. In contrast to previous chain-of-states algorithms such as the nudged elastic band or string methods, where the positions of the states in the chain are taken as variational parameters in the search for the MEP, our strategy is to formulate the problem in terms of the second derivatives of the coordinates with respect to t, i.e., the state accelerations. We show this to result in a very simple and efficient method for determining the MEP. We describe the application of the method to a series of test cases, including two low-dimensional problems and the Stone-Wales transformation in C{sub 60}.

  3. A chain-of-states acceleration method for the efficient location of minimum energy paths

    International Nuclear Information System (INIS)

    Hernández, E. R.; Herrero, C. P.; Soler, J. M.

    2015-01-01

    We describe a robust and efficient chain-of-states method for computing Minimum Energy Paths (MEPs) associated to barrier-crossing events in poly-atomic systems, which we call the acceleration method. The path is parametrized in terms of a continuous variable t ∈ [0, 1] that plays the role of time. In contrast to previous chain-of-states algorithms such as the nudged elastic band or string methods, where the positions of the states in the chain are taken as variational parameters in the search for the MEP, our strategy is to formulate the problem in terms of the second derivatives of the coordinates with respect to t, i.e., the state accelerations. We show this to result in a very simple and efficient method for determining the MEP. We describe the application of the method to a series of test cases, including two low-dimensional problems and the Stone-Wales transformation in C 60

  4. Evaluation of maximum power point tracking in hydrokinetic energy conversion systems

    Directory of Open Access Journals (Sweden)

    Jahangir Khan

    2015-11-01

    Full Text Available Maximum power point tracking is a mature control issue for wind, solar and other systems. On the other hand, being a relatively new technology, detailed discussion on power tracking of hydrokinetic energy conversion systems are generally not available. Prior to developing sophisticated control schemes for use in hydrokinetic systems, existing know-how in wind or solar technologies can be explored. In this study, a comparative evaluation of three generic classes of maximum power point scheme is carried out. These schemes are (a tip speed ratio control, (b power signal feedback control, and (c hill climbing search control. In addition, a novel concept for maximum power point tracking: namely, extremum seeking control is introduced. Detailed and validated system models are used in a simulation environment. Potential advantages and drawbacks of each of these schemes are summarised.

  5. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bojda, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programs while still saving consumers money?

  6. Are There Long-Run Effects of the Minimum Wage?

    Science.gov (United States)

    Sorkin, Isaac

    2015-04-01

    An empirical consensus suggests that there are small employment effects of minimum wage increases. This paper argues that these are short-run elasticities. Long-run elasticities, which may differ from short-run elasticities, are policy relevant. This paper develops a dynamic industry equilibrium model of labor demand. The model makes two points. First, long-run regressions have been misinterpreted because even if the short- and long-run employment elasticities differ, standard methods would not detect a difference using US variation. Second, the model offers a reconciliation of the small estimated short-run employment effects with the commonly found pass-through of minimum wage increases to product prices.

  7. Minimum load reduction for once-through boiler power plants

    International Nuclear Information System (INIS)

    Colombo, P.; Godina, G.; Manganelli, R.

    2001-01-01

    In Italy the liberalization process of energy market is giving particular importance to the optimization of power plants performances; especially for those that will be called to satisfy grid peak demands. On those plants some techniques have been experimented for the reduction of minimum load; these techniques, investigated and tested by an engineering dynamic simulator, have been sequentially tested on plant. The minimum load for up 320 MW of Tavazzano power plants has been diminished from 140 down to 80 MW without plant modification [it

  8. Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2013-04-01

    Full Text Available This paper compares two optimal energy management methods for parallel hybrid electric vehicles using an Automatic Manual Transmission (AMT. A control-oriented model of the powertrain and vehicle dynamics is built first. The energy management is formulated as a typical optimal control problem to trade off the fuel consumption and gear shifting frequency under admissible constraints. The Dynamic Programming (DP and Pontryagin’s Minimum Principle (PMP are applied to obtain the optimal solutions. Tuning with the appropriate co-states, the PMP solution is found to be very close to that from DP. The solution for the gear shifting in PMP has an algebraic expression associated with the vehicular velocity and can be implemented more efficiently in the control algorithm. The computation time of PMP is significantly less than DP.

  9. An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems

    International Nuclear Information System (INIS)

    Huang, Yanjun; Khajepour, Amir; Ding, Haitao; Bagheri, Farshid; Bahrami, Majid

    2017-01-01

    Highlights: • A novel two-layer energy-saving controller for automotive A/C-R system is developed. • A set-point optimizer at the outer loop is designed based on the steady state model. • A sliding mode controller in the inner loop is built. • Extensively experiments studies show that about 9% energy can be saving by this controller. - Abstract: This paper presents an energy-saving controller for automotive air-conditioning/refrigeration (A/C-R) systems. With their extensive application in homes, industry, and vehicles, A/C-R systems are consuming considerable amounts of energy. The proposed controller consists of two different time-scale layers. The outer or the slow time-scale layer called a set-point optimizer is used to find the set points related to energy efficiency by using the steady state model; whereas, the inner or the fast time-scale layer is used to track the obtained set points. In the inner loop, thanks to its robustness, a sliding mode controller (SMC) is utilized to track the set point of the cargo temperature. The currently used on/off controller is presented and employed as a basis for comparison to the proposed controller. More importantly, the real experimental results under several disturbed scenarios are analysed to demonstrate how the proposed controller can improve performance while reducing the energy consumption by 9% comparing with the on/off controller. The controller is suitable for any type of A/C-R system even though it is applied to an automotive A/C-R system in this paper.

  10. Subharmonic energy-gap structure and heating effects in superconducting niobium point contacts

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev

    1989-01-01

    We present experimental data of the temperature-dependent subharmonic energy-gap structure (SGS) in the current-voltage (I-V) curves of superconducting niobium point contacts. The observed SGS is modified by heating effects. We construct a model of the quasiparticle conductance of metallic...

  11. Torsional energy levels of CH3OH+/CH3OD+/CD3OD+ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations

    International Nuclear Information System (INIS)

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-01-01

    The torsional energy levels of CH 3 OH + , CH 3 OD + , and CD 3 OD + have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH 3 OH, CH 3 OD, and CD 3 OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm −1 , which is about half of that of the neutral (340 cm −1 ). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C–O stretch vibrational energy level for CD 3 OD + has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C–O stretch vibration indicate a strong torsion-vibration coupling

  12. Torsional energy levels of CH₃OH⁺/CH₃OD⁺/CD₃OD⁺ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations.

    Science.gov (United States)

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-10-14

    The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.

  13. Is there a minimum length in D=4 lattice quantum gravity?

    International Nuclear Information System (INIS)

    Greensite, J.

    1990-11-01

    It is argued that, as in string theory, a minimum length exists in D=4 quantum gravity. The argument is based on a (naive) lattice regularization of tetrad gravity, where it appears that any formal reduction of the lattice spacing ε=χ n+1 -x n is countered by an increase in metric fluctuations. In D=4 dimensions, these fluctuations prevent the average physical separation between neighboring lattice points from falling below a certain minimum, which is on the order of the Planck length. (orig.)

  14. Behaviour of the energy gap in a model of Josephson coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Tonel, A P; Links, J; Foerster, A

    2005-01-01

    In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunnelling. The energy gap is never zero when the tunnelling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalized phase from a self-trapping phase that occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points

  15. Point defect properties of ternary fcc Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wróbel, J.S., E-mail: jan.wrobel@inmat.pw.edu.pl [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Nguyen-Manh, D.; Dudarev, S.L. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2017-02-15

    Highlights: • Properties of point defects depend on the local atomic environment. • As the degree of chemical order increases, the formation energies increase, too. • Relaxation volumes are larger for the more ordered structures. - Abstract: The properties of point defects in Fe-Cr-Ni alloys are investigated, using density functional theory (DFT), for two alloy compositions, Fe{sub 50}Cr{sub 25}Ni{sub 25} and Fe{sub 55}Cr{sub 15}Ni{sub 30}, assuming various degrees of short-range order. DFT-based Monte Carlo simulations are applied to explore short-range order parameters and generate representative structures of alloys. Chemical potentials for the relevant structures are estimated from the minimum of the substitutional energy at representative atoms sites. Vacancies and 〈1 0 0〉 dumbbells are introduced in the Fe{sub 2}CrNi intermetallic phase as well as in two Fe{sub 55}Cr{sub 15}Ni{sub 30} alloy structures: the disordered and short range-ordered structures, generated using Monte Carlo simulations at 2000 K and 300 K, respectively. Formation energies and relaxation volumes of defects as well as changes of magnetic moments caused by the presence of defects are investigated as functions of the local environment of a defect.

  16. On the normalization of the minimum free energy of RNAs by sequence length.

    Directory of Open Access Journals (Sweden)

    Edoardo Trotta

    Full Text Available The minimum free energy (MFE of ribonucleic acids (RNAs increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  17. Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity

    Science.gov (United States)

    Zhang, Zhifeng; Drapaca, Corina; Chen, Xiaolin; Xu, Jie

    2017-07-01

    Models of a droplet passing through narrow constrictions have wide applications in science and engineering. In this paper, we report our findings on the minimum impulse (momentum change) of pushing a droplet through a narrow circular constriction. The existence of this minimum impulse is mathematically derived and numerically verified. The minimum impulse happens at a critical velocity when the time-averaged Young-Laplace pressure balances the total minor pressure loss in the constriction. Finally, numerical simulations are conducted to verify these concepts. These results could be relevant to problems of energy optimization and studies of chemical and biomedical systems.

  18. Minimum Bias Measurements at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00022031; The ATLAS collaboration

    2016-01-01

    Inclusive charged particle measurements at hadron colliders probe the low-energy nonperturbative region of QCD. Pseudorapidity distributions of charged-particles produced in pp collisions at 13 TeV have been measured by the CMS experiment. The ATLAS collaboration has measured the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam current, recorded at a center-of-mass energy of 13 TeV. The measurements present the first detailed studies in inclusive phase spaces with a minimum transverse momentum of 100 MeV and 500 MeV. The distribution of electromagnetic and hadronic energy in the very forward phase-space has been measured with the CASTOR calorimeters located at a pseudorapidity of -5.2 to -6.6 in the very forward region of CMS. The energy distributions are very powerful benchmarks to study the performance of MPI in hadronic interactions models at 13 TeV collision energy. All measurements are compared with predictions of ...

  19. Effect of tissue inhomogeneity on dose distribution of point sources of low-energy electrons

    International Nuclear Information System (INIS)

    Kwok, C.S.; Bialobzyski, P.J.; Yu, S.K.; Prestwich, W.V.

    1990-01-01

    Perturbation in dose distributions of point sources of low-energy electrons at planar interfaces of cortical bone (CB) and red marrow (RM) was investigated experimentally and by Monte Carlo codes EGS and the TIGER series. Ultrathin LiF thermoluminescent dosimeters were used to measure the dose distributions of point sources of 204 Tl and 147 Pm in RM. When the point sources were at 12 mg/cm 2 from a planar interface of CB and RM equivalent plastics, dose enhancement ratios in RM averaged over the region 0--12 mg/cm 2 from the interface were measured to be 1.08±0.03 (SE) and 1.03±0.03 (SE) for 204 Tl and 147 Pm, respectively. The Monte Carlo codes predicted 1.05±0.02 and 1.01±0.02 for the two nuclides, respectively. However, EGS gave consistently 3% higher dose in the dose scoring region than the TIGER series when point sources of monoenergetic electrons up to 0.75 MeV energy were considered in the homogeneous RM situation or in the CB and RM heterogeneous situation. By means of the TIGER series, it was demonstrated that aluminum, which is normally assumed to be equivalent to CB in radiation dosimetry, leads to an overestimation of backscattering of low-energy electrons in soft tissue at a CB--soft-tissue interface by as much as a factor of 2

  20. Optimizing droop coefficients for minimum cost operation of islanded micro-grids

    DEFF Research Database (Denmark)

    Sanseverino, E. Riva; Tran, Q. T.T.; Zizzo, G.

    2017-01-01

    This paper shows how minimum cost energy management can be carried out for islanded micro-grids considering an expanded state that also includes the system's frequency. Each of the configurations outputted by the energy management system at each hour are indeed technically sound and coherent from...

  1. Optimal power flow for technically feasible Energy Management systems in Islanded Microgrids

    DEFF Research Database (Denmark)

    Sanseverino, Eleonora Riva; T. T. Quynh, T.; Di Silvestre, Maria Luisa

    2016-01-01

    This paper presents a combined optimal energy and power flow management for islanded microgrids. The highest control level in this case will provide a feasible and optimized operating point around the economic optimum. In order to account for both unbalanced and balanced loads, the optimal power...... flow is carried out using a Glow-worm Swarm Optimizer. The control level is organized into two different sub-levels, the highest of which accounts for minimum cost operation and the lowest one solving the optimal power flow and devising the set points of inverter interfaced generation units...... and rotating machines with a minimum power loss. A test has been carried out for 6 bus islanded microgrids to show the efficiency and feasibility of the proposed technique....

  2. The energy sources and nuclear energy - The point of view of the Belgian Catholic Church

    International Nuclear Information System (INIS)

    Hoenraet, Christian

    2000-01-01

    The problems related to the environment are reported regularly to the public by means of the newspapers, on radio and television. The story is the product of a journalistic process and in general does not bear much resemblance to the original event. The rate and type of reportage depend not only on the body of data available to the journalist but on the information sources the journalist chosen to use. The same story is reported in a positive or negative way. Finally people are overwhelmed by contradictory information and became uncertain or frightened. In order to provide the general public with objective information about nuclear energy in particular and to made a statement about the position of the Belgian Catholic Church concerning this matter, the results of the study were published in Dutch under the form of a book with the title 'The Energy Sources and Nuclear Energy - Comparative analysis and ethical thoughts written the same author. Thia paper is a short survey of the results of the study and to present the point of view of the Belgian Catholic Church in the energy debate

  3. Vibrational motion in a symmetric, double minimum potential

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2015-01-01

    Molecular vibrational motion in a symmetric, double minimum potential is treated by means of a quartic model potential, by reference to the tables published by Jaan Laane and the results of harmonic analyses for the stationary points. The inversion vibration of ammonia is treated in detail. - Not...... on the harmonic approximation for polyatomic molecules are appended. - Presented at a NORFA Workshop in Hirtshals, Denmark, August 1997....

  4. Measurement of Minimum Bias Observables with ATLAS

    CERN Document Server

    Kvita, Jiri; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes. It has also a significant relevance for the simulation of the environment at the LHC with many concurrent pp interactions (“pileup”). The ATLAS collaboration has provided new measurements of the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center of mass energies of 8 TeV and 13 TeV. The measurements cover a wide spectrum using charged particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities.

  5. Stability analysis of the Gyroscopic Power Take-Off wave energy point absorber

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Zhang, Zili; Kramer, Morten Mejlhede

    2015-01-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber consists of a float rigidly connected to a lever. The operational principle is somewhat similar to that of the so-called gyroscopic hand wrist exercisers, where the rotation of the float is brought forward by the rotational particle...

  6. The registration of non-cooperative moving targets laser point cloud in different view point

    Science.gov (United States)

    Wang, Shuai; Sun, Huayan; Guo, Huichao

    2018-01-01

    Non-cooperative moving target multi-view cloud registration is the key technology of 3D reconstruction of laser threedimension imaging. The main problem is that the density changes greatly and noise exists under different acquisition conditions of point cloud. In this paper, firstly, the feature descriptor is used to find the most similar point cloud, and then based on the registration algorithm of region segmentation, the geometric structure of the point is extracted by the geometric similarity between point and point, The point cloud is divided into regions based on spectral clustering, feature descriptors are created for each region, searching to find the most similar regions in the most similar point of view cloud, and then aligning the pair of point clouds by aligning their minimum bounding boxes. Repeat the above steps again until registration of all point clouds is completed. Experiments show that this method is insensitive to the density of point clouds and performs well on the noise of laser three-dimension imaging.

  7. Interpreting Minimum Wage Effects on Wage Distributions: A Cautionary Tale

    NARCIS (Netherlands)

    C.J. Flinn

    2003-01-01

    textabstractWhile it is tempting to infer the welfare effects of minimum wage changes from empirical observations on pre- and post-change wage distributions, in this exercise we have attempted to point out the hazards of doing so. We have focused on wage distributions in this paper, but this

  8. Necessity of exploitation of nuclear energy in China from the environmental protection point of view

    Energy Technology Data Exchange (ETDEWEB)

    Ziqiang, Pan; Xiwen, Jiang; Shaoyi, Song; Shutian, Liu; Guang, Bai

    1984-09-01

    The article proves the necessity of development of nuclear energy in China from the enviromental protection point of view. The development of nuclear energy would decrease environmental contamination due to energy power production. The prediction of collective dose equivalent commitment from the nuclear power plant in year 2000 would only amount to 0.013% of annual collective dose equivalent from natural radiation sources.

  9. [Dancing with Pointe Shoes: Characteristics and Assessment Criteria for Pointe Readiness].

    Science.gov (United States)

    Wanke, Eileen M; Exner-Grave, Elisabeth

    2017-12-01

    Training with pointe shoes is an integral part of professional dance education and ambitious hobby dancing. Pointe shoes - developed more than hundred years ago and almost unaltered since then - are highly specific and strike a balance between aesthetics, function, protection, and health care. Therefore, pointe readiness should be tested prior to all dance training or career training. Medical specialists are often confronted with this issue. Specific anatomical dance technique-orientated general conditional and coordinative preconditions as well as dance-technical prerequisites must be met by pointe readiness tests in order to keep traumatic injuries or long-term damage at a minimum. In addition to a (training) history, medical counselling sessions have come to include various tests that enable a reliable decision for or against pointe work. This article suggests adequate testing procedures (STT TEST), taking account of professional dancing as well as hobby dancing. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Zero-point energy conservation in classical trajectory simulations: Application to H2CO

    Science.gov (United States)

    Lee, Kin Long Kelvin; Quinn, Mitchell S.; Kolmann, Stephen J.; Kable, Scott H.; Jordan, Meredith J. T.

    2018-05-01

    A new approach for preventing zero-point energy (ZPE) violation in quasi-classical trajectory (QCT) simulations is presented and applied to H2CO "roaming" reactions. Zero-point energy may be problematic in roaming reactions because they occur at or near bond dissociation thresholds and these channels may be incorrectly open or closed depending on if, or how, ZPE has been treated. Here we run QCT simulations on a "ZPE-corrected" potential energy surface defined as the sum of the molecular potential energy surface (PES) and the global harmonic ZPE surface. Five different harmonic ZPE estimates are examined with four, on average, giving values within 4 kJ/mol—chemical accuracy—for H2CO. The local harmonic ZPE, at arbitrary molecular configurations, is subsequently defined in terms of "projected" Cartesian coordinates and a global ZPE "surface" is constructed using Shepard interpolation. This, combined with a second-order modified Shepard interpolated PES, V, allows us to construct a proof-of-concept ZPE-corrected PES for H2CO, Veff, at no additional computational cost to the PES itself. Both V and Veff are used to model product state distributions from the H + HCO → H2 + CO abstraction reaction, which are shown to reproduce the literature roaming product state distributions. Our ZPE-corrected PES allows all trajectories to be analysed, whereas, in previous simulations, a significant proportion was discarded because of ZPE violation. We find ZPE has little effect on product rotational distributions, validating previous QCT simulations. Running trajectories on V, however, shifts the product kinetic energy release to higher energy than on Veff and classical simulations of kinetic energy release should therefore be viewed with caution.

  11. Searching for the QCD Critical Point with the Energy Dependence of pt Fluctuations

    Science.gov (United States)

    Novak, John; STAR Collaboration

    2013-10-01

    If systems produced in relativistic heavy-ion collisions pass near the QCD critical point while cooling, the correlation length of the system may diverge due to the phenomena of critical opalescence. The transverse momentum distribution, being related to the state variable temperature, might be sensitive to this change in correlation length. Non-monotonic behavior with changing incident energy or centrality of any transverse momentum observable that is sensitive to the correlation length could thus be indicative of the QCD critical point. Accordingly, we report measurements related to transverse momentum fluctuations such as as a function of event centrality and incident energy for Au+Au collisions at √{sNN} = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV using the STAR detector at RHIC. The results are compared to UrQMD model predictions and previous experimental measurements.

  12. ''Reduced'' magnetohydrodynamics and minimum dissipation rates

    International Nuclear Information System (INIS)

    Montgomery, D.

    1992-01-01

    It is demonstrated that all solutions of the equations of ''reduced'' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs

  13. Investigation on the Energy Saving Potential of Using a Novel Dew Point Cooling System in Data Centres

    Directory of Open Access Journals (Sweden)

    Yin Bi

    2017-10-01

    Full Text Available Abstract: Information technology (IT has brought significant changes in people’s lives. As an important part of the IT industry, data centres (DCs have been rapidly growing in both the number and size over the past 40 years. Around 30% to 40% of electricity consumption in DCs is used for space cooling, thus leading to very inefficient DC operation. To identify ways to reduce the energy consumption for space cooling and increase the energy efficiency of DCs’ operation, a dedicated investigation into the energy usage in DCs has been undertaken and a novel high performance dew point cooling system was introduced into a DC operational scheme. Based on the cooling load in DCs, a case study was carried out to evaluate the energy consumptions and energy usage effectiveness when using the novel dew point cooling system in different scales of DCs in various climates. It was found that by using the novel dew point cooling system, for 10 typical climates a DC can have a much lower power usage effectiveness (PUE of 1.10 to 1.22 compared to that of 1.7 to 3.7 by using existing traditional cooling systems, leading to significantly increased energy efficiency of the DC operation. In addition, the energy performance by managing the cooling air supply at the different levels in DCs, i.e., room, row and rack level, was simulated by using a dynamic computer model. It was found that cooling air supply at rack level can provide a higher energy efficiency in DCs. Based on the above work, the energy saving potential in DCs was conducted by comparing DCs using an the novel dew point cooling system and the optimum management scheme for the cooling air supply to that using traditional air cooling systems and the same supply air management. Annual electricity consumptions for the two cases were given. It was found that by using the novel dew point cooling system and optimum management system for the cooling air supply, an 87.7~91.6% electricity consumption saving for

  14. 76 FR 23208 - Alternative to Minimum Days Off Requirements

    Science.gov (United States)

    2011-04-26

    ... Language X. Voluntary Consensus Standards XI. Finding of No Significant Environmental Impact XII. Paperwork... the Current Fitness for Duty Requirements On September 3, 2010, the Nuclear Energy Institute (NEI... to the minimum days off requirements considered the collective advantages and disadvantages of having...

  15. The Steiner ratio for points on a triangular lattice

    African Journals Online (AJOL)

    design of integrated circuit boards, communication networks, power networks and pipelines of minimum cost. In such applications the Steiner ratio is an indication of how badly a minimum spanning tree performs compared to a Steiner minimal tree. In this paper a short proof is presented for the Steiner ratio for points on a ...

  16. Lower bounds for the minimum distance of algebraic geometry codes

    DEFF Research Database (Denmark)

    Beelen, Peter

    , such as the Goppa bound, the Feng-Rao bound and the Kirfel-Pellikaan bound. I will finish my talk by giving several examples. Especially for two-point codes, the generalized order bound is fairly easy to compute. As an illustration, I will indicate how a lower bound can be obtained for the minimum distance of some...... description of these codes in terms of order domains has been found. In my talk I will indicate how one can use the ideas behind the order bound to obtain a lower bound for the minimum distance of any AG-code. After this I will compare this generalized order bound with other known lower bounds...

  17. 10 CFR 1015.505 - Minimum amount of referrals to the Department of Justice.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Minimum amount of referrals to the Department of Justice... THE UNITED STATES Referrals to the Department of Justice § 1015.505 Minimum amount of referrals to the Department of Justice. (a) DOE shall not refer for litigation claims of less than $2,500, exclusive of...

  18. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  19. The association of minimum wage change on child nutritional status in LMICs: A quasi-experimental multi-country study.

    Science.gov (United States)

    Ponce, Ninez; Shimkhada, Riti; Raub, Amy; Daoud, Adel; Nandi, Arijit; Richter, Linda; Heymann, Jody

    2017-08-02

    There is recognition that social protection policies such as raising the minimum wage can favourably impact health, but little evidence links minimum wage increases to child health outcomes. We used multi-year data (2003-2012) on national minimum wages linked to individual-level data from the Demographic and Health Surveys (DHS) from 23 low- and middle-income countries (LMICs) that had least two DHS surveys to establish pre- and post-observation periods. Over a pre- and post-interval ranging from 4 to 8 years, we examined minimum wage growth and four nutritional status outcomes among children under 5 years: stunting, wasting, underweight, and anthropometric failure. Using a differences-in-differences framework with country and time-fixed effects, a 10% increase in minimum wage growth over time was associated with a 0.5 percentage point decline in stunting (-0.054, 95% CI (-0.084,-0.025)), and a 0.3 percentage point decline in failure (-0.031, 95% CI (-0.057,-0.005)). We did not observe statistically significant associations between minimum wage growth and underweight or wasting. We found similar results for the poorest households working in non-agricultural and non-professional jobs, where minimum wage growth may have the most leverage. Modest increases in minimum wage over a 4- to 8-year period might be effective in reducing child undernutrition in LMICs.

  20. A dissipated energy comparison to evaluate fatigue resistance using 2-point bending

    Directory of Open Access Journals (Sweden)

    Cinzia Maggiore

    2014-02-01

    Full Text Available Fatigue is the main failure mode in pavement engineering. Typically, micro-cracks originate at the bottom of asphalt concrete layer due to horizontal tensile strains. Micro-cracks start to propagate towards the upper layers under repeated loading which can lead to pavement failure. Different methods are usually used to describe fatigue behavior in asphalt materials such as: phenomenological approach, fracture mechanics approach and dissipated energy approach. This paper presents a comparison of fatigue resistances calculated for different dissipated energy models using 2-point bending (2PB at IFSTTAR in Nantes. 2PB tests have been undertaken under different loading and environmental conditions in order to evaluate the properties of the mixtures (stiffness, dissipated energy, fatigue life and healing effect.

  1. Design and control of a point absorber wave energy converter with an open loop hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    Highlights: • Point absorber wave energy converter is presented. • Piston pump module captures and converts wave energy. • Hydraulic accumulator stores/releases the surplus energy. • Fuzzy controller adjusts the displacement of hydraulic motor. • Generator outputs meet the electricity demand precisely. - Abstract: In this paper, a point absorber wave energy converter combined with offshore wind turbine is proposed. In the system, the wave energy is captured and converted into hydraulic energy by a piston pump module, which is combined with a wind turbine floating platform, and then the hydraulic energy is converted into electricity energy by a variable displacement hydraulic motor and induction generator. In order to smooth and stabilize the captured wave energy, a hydraulic accumulator is applied to store and release the excess energy. In order to meet the demand power a fuzzy controller is designed to adjust the displacement of hydraulic motor and controlled the output power. Simulation under irregular wave condition has been carried out to verify the validity of the mathematical model and the effectiveness of the controller strategy. The results show that the wave energy converter system could deliver the required electricity power precisely as the motor output torque is controlled. The accumulator could damp out all the fluctuations in output power, so the wave energy would become a dispatchable power source.

  2. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds

    Science.gov (United States)

    Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian

    2018-03-01

    Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)

  3. Low energy electron point source microscopy: beyond imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andre; Goelzhaeuser, Armin [Physics of Supramolecular Systems and Surfaces, University of Bielefeld, Postfach 100131, 33501 Bielefeld (Germany)

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes. (topical review)

  4. Point Climat no. 26 'Regional Climate - Air - Energy Plans at the heart of the debate on the energy transition'

    International Nuclear Information System (INIS)

    Bordier, Cecile; Leseur, Alexia

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: On the eve of the introduction of the environmental assessment procedure for planning documents, almost all Regional Climate - Air - Energy Plans have now been published. This Climate Brief assesses regional climate strategies, which rely on significant commitment from those involved, including citizens by changing their behaviour, companies by improving their energy efficiency and the banking sector through financial support. Identification of these challenges and areas for action will feed into the national debate on energy transition which began last autumn

  5. The minimum test battery to screen for binocular vision anomalies: report 3 of the BAND study.

    Science.gov (United States)

    Hussaindeen, Jameel Rizwana; Rakshit, Archayeeta; Singh, Neeraj Kumar; Swaminathan, Meenakshi; George, Ronnie; Kapur, Suman; Scheiman, Mitchell; Ramani, Krishna Kumar

    2018-03-01

    This study aims to report the minimum test battery needed to screen non-strabismic binocular vision anomalies (NSBVAs) in a community set-up. When large numbers are to be screened we aim to identify the most useful test battery when there is no opportunity for a more comprehensive and time-consuming clinical examination. The prevalence estimates and normative data for binocular vision parameters were estimated from the Binocular Vision Anomalies and Normative Data (BAND) study, following which cut-off estimates and receiver operating characteristic curves to identify the minimum test battery have been plotted. In the receiver operating characteristic phase of the study, children between nine and 17 years of age were screened in two schools in the rural arm using the minimum test battery, and the prevalence estimates with the minimum test battery were found. Receiver operating characteristic analyses revealed that near point of convergence with penlight and red filter (> 7.5 cm), monocular accommodative facility ( 1.25 prism dioptres) were significant factors with cut-off values for best sensitivity and specificity. This minimum test battery was applied to a cohort of 305 children. The mean (standard deviation) age of the subjects was 12.7 (two) years with 121 males and 184 females. Using the minimum battery of tests obtained through the receiver operating characteristic analyses, the prevalence of NSBVAs was found to be 26 per cent. Near point of convergence with penlight and red filter > 10 cm was found to have the highest sensitivity (80 per cent) and specificity (73 per cent) for the diagnosis of convergence insufficiency. For the diagnosis of accommodative infacility, monocular accommodative facility with a cut-off of less than seven cycles per minute was the best predictor for screening (92 per cent sensitivity and 90 per cent specificity). The minimum test battery of near point of convergence with penlight and red filter, difference between distance and near

  6. Disentangling interacting dark energy cosmologies with the three-point correlation function

    Science.gov (United States)

    Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea

    2014-10-01

    We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.

  7. A Pontryagin Minimum Principle-Based Adaptive Equivalent Consumption Minimum Strategy for a Plug-in Hybrid Electric Bus on a Fixed Route

    Directory of Open Access Journals (Sweden)

    Shaobo Xie

    2017-09-01

    Full Text Available When developing a real-time energy management strategy for a plug-in hybrid electric vehicle, it is still a challenge for the Equivalent Consumption Minimum Strategy to achieve near-optimal energy consumption, because the optimal equivalence factor is not readily available without the trip information. With the help of realistic speeding profiles sampled from a plug-in hybrid electric bus running on a fixed commuting line, this paper proposes a convenient and effective approach of determining the equivalence factor for an adaptive Equivalent Consumption Minimum Strategy. Firstly, with the adaptive law based on the feedback of battery SOC, the equivalence factor is described as a combination of the major component and tuning component. In particular, the major part defined as a constant is applied to the inherent consistency of regular speeding profiles, while the second part including a proportional and integral term can slightly tune the equivalence factor to satisfy the disparity of daily running cycles. Moreover, Pontryagin’s Minimum Principle is employed and solved by using the shooting method to capture the co-state dynamics, in which the Secant method is introduced to adjust the initial co-state value. And then the initial co-state value in last shooting is taken as the optimal stable constant of equivalence factor. Finally, altogether ten successive driving profiles are selected with different initial SOC levels to evaluate the proposed method, and the results demonstrate the excellent fuel economy compared with the dynamic programming and PMP method.

  8. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2017-01-01

    production of PV sources, despite the stochastically varying solar irradiation and ambient temperature conditions. Thereby, the overall efficiency of the PV energy production system is increased. Numerous techniques have been presented during the last decades for implementing the MPPT process in a PV system......A substantial growth of the installed photovoltaic (PV) systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking (MPPT) technique enables to maximize the energy....... This chapter provides an overview of the operating principles of these techniques, which are suited for either uniform or nonuniform solar irradiation conditions. The operational characteristics and implementation requirements of these MPPT methods are also analyzed in order to demonstrate their performance...

  9. Point Climat no. 29 'Managing France's energy transition while safeguarding economic competitiveness: be productive'

    International Nuclear Information System (INIS)

    Sartor, Oliver; Leguet, Benoit

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: - Is the French energy transition compatible with economic growth and a 'competitive' French economy? Our answer is 'yes, with some conditions'. - The French economy is better positioned today for a meaningful energy transition than it has been for over 40 years. At the level of the macro-economy, a steady shift to higher energy prices is now much easier without hurting economic growth than it once was. - A small percentage of energy-intensive sectors may need targeted and temporary assistance with this transition

  10. Trans-Z-source Neutral Point Clamped inverter

    DEFF Research Database (Denmark)

    Mo, W.; Loh, P. C.; Li, D.

    2012-01-01

    Transformer based Z-source (trans-Z-source) inverters are recently proposed by extending the traditional Z-source inverter with higher buck-boost capability as well as reducing the passive components at the same time. Multi-Level Z-source inverters are single-stage topological solutions used...... for buck-boost energy conversion with all the favourable advantages of multi-level switching retained. This paper presents three-level trans-Z-source Neutral Point Clamped (NPC) inverter topology, which achieves both the advantages of trans-Z-source and three-level NPC inverter configuration. With proper...... modulation scheme, the three-level trans-Z-source inverter can function with minimum of six device commutations per half carrier cycle (same as the traditional buck NPC inverter), while maintaining to produce the designed volt-sec average and inductive voltage boosting at ac output terminals. The designed...

  11. Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm

    Science.gov (United States)

    Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.

    2014-11-01

    minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several

  12. Binding Energy, Vapor Pressure and Melting Point of Semiconductor Nanoparticles

    International Nuclear Information System (INIS)

    H. H. Farrell; C. D. Van Siclen

    2007-01-01

    Current models for the cohesive energy of nanoparticles generally predict a linear dependence on the inverse particle diameter for spherical clusters, or, equivalently, on the inverse of the cube root of the number of atoms in the cluster. Although this is generally true for metals, we find that for the group IV semiconductors, C, Si and Ge, this linear dependence does not hold. Instead, using first principles, density functional theory calculations to calculate the binding energy of these materials, we find a quadratic dependence on the inverse of the particle size. Similar results have also been obtained for the metallic group IV elements Sn and Pb. This is in direct contradiction to current assumptions. Further, as a consequence of this quadratic behavior, the vapor pressure of semiconductor nanoparticles rises more slowly with decreasing size than would be expected. In addition, the melting point of these nanoparticles will experience less suppression than experienced by metal nanoparticles with comparable bulk binding energies. This non-linearity also affects sintering or Ostwald ripening behavior of these nanoparticles as well as other physical properties that depend on the nanoparticle binding energy. The reason for this variation in size dependence involves the covalent nature of the bonding in semiconductors, and even in the 'poor' metals. Therefore, it is expected that this result will hold for compound semiconductors as well as the elemental semiconductors

  13. Spherical shock due to point explosion with varying energy

    Science.gov (United States)

    Singh, J. B.; Srivastava, S. K.

    1983-05-01

    The motion of a perfect gas behind a weak or strong spherical point-explosion shock wave in a nonuniform rest atmosphere is investigated analytically for the case of variable flow energy. The self-similar solutions derived are also adaptable to a uniform expanding piston. The solution is applied to the isothermal case, and the results of numerical integration are presented in graphs showing the density, velocity, and pressure distributions for different values of delta. The findings are considered significant for investigations of sonic booms, laser production of plasmas, high-altitude nuclear detonations, supernova explosions, and the sudden expansion of the solar corona, and for the laboratory production of high temperatures using shock waves.

  14. Do Minimum Wages Fight Poverty?

    OpenAIRE

    David Neumark; William Wascher

    1997-01-01

    The primary goal of a national minimum wage floor is to raise the incomes of poor or near-poor families with members in the work force. However, estimates of employment effects of minimum wages tell us little about whether minimum wages are can achieve this goal; even if the disemployment effects of minimum wages are modest, minimum wage increases could result in net income losses for poor families. We present evidence on the effects of minimum wages on family incomes from matched March CPS s...

  15. Point Climat no. 27 'Unlocking private investments in energy efficiency through carbon finance'

    International Nuclear Information System (INIS)

    Shishlov, Igor; Bellassen, Valentin

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: According to the latest IEA World Energy Outlook, energy efficiency is a 'key option' in transition to a low-carbon economy. A decade of experience with the CDM and JI demonstrates that carbon finance can be used as an effective tool to unlock private investments in energy efficiency. Capital investments in offset projects may significantly exceed the expected carbon revenues resulting in an average weighted leverage ratio of 4:1 and 9:1 for the CDM and JI respectively, which is comparable to other international financial instruments. So far carbon finance has been used mostly for large-scale industrial energy efficiency projects in advanced developing countries and economies in transition, although it is increasingly suited to tap into scattered household energy efficiency projects

  16. Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)

    Science.gov (United States)

    2017-06-05

    1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and...GaSb systems and 2 designs of InAs-InAs 0.7 Sb 0.3 systems lattice matched to GaSb substrate. The calculated defect levels not only agree well with

  17. Accurate Anharmonic Zero-Point Energies for Some Combustion-Related Species from Diffusion Monte Carlo.

    Science.gov (United States)

    Harding, Lawrence B; Georgievskii, Yuri; Klippenstein, Stephen J

    2017-06-08

    Full-dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion-related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic zero-point energies. The resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower-level electronic structure methods (B3LYP and MP2).

  18. Minimum Wage and Overweight and Obesity in Adult Women: A Multilevel Analysis of Low and Middle Income Countries.

    Science.gov (United States)

    Conklin, Annalijn I; Ponce, Ninez A; Frank, John; Nandi, Arijit; Heymann, Jody

    2016-01-01

    To describe the relationship between minimum wage and overweight and obesity across countries at different levels of development. A cross-sectional analysis of 27 countries with data on the legislated minimum wage level linked to socio-demographic and anthropometry data of non-pregnant 190,892 adult women (24-49 y) from the Demographic and Health Survey. We used multilevel logistic regression models to condition on country- and individual-level potential confounders, and post-estimation of average marginal effects to calculate the adjusted prevalence difference. We found the association between minimum wage and overweight/obesity was independent of individual-level SES and confounders, and showed a reversed pattern by country development stage. The adjusted overweight/obesity prevalence difference in low-income countries was an average increase of about 0.1 percentage points (PD 0.075 [0.065, 0.084]), and an average decrease of 0.01 percentage points in middle-income countries (PD -0.014 [-0.019, -0.009]). The adjusted obesity prevalence difference in low-income countries was an average increase of 0.03 percentage points (PD 0.032 [0.021, 0.042]) and an average decrease of 0.03 percentage points in middle-income countries (PD -0.032 [-0.036, -0.027]). This is among the first studies to examine the potential impact of improved wages on an important precursor of non-communicable diseases globally. Among countries with a modest level of economic development, higher minimum wage was associated with lower levels of obesity.

  19. MIN-CUT BASED SEGMENTATION OF AIRBORNE LIDAR POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    S. Ural

    2012-07-01

    Full Text Available Introducing an organization to the unstructured point cloud before extracting information from airborne lidar data is common in many applications. Aggregating the points with similar features into segments in 3-D which comply with the nature of actual objects is affected by the neighborhood, scale, features and noise among other aspects. In this study, we present a min-cut based method for segmenting the point cloud. We first assess the neighborhood of each point in 3-D by investigating the local geometric and statistical properties of the candidates. Neighborhood selection is essential since point features are calculated within their local neighborhood. Following neighborhood determination, we calculate point features and determine the clusters in the feature space. We adapt a graph representation from image processing which is especially used in pixel labeling problems and establish it for the unstructured 3-D point clouds. The edges of the graph that are connecting the points with each other and nodes representing feature clusters hold the smoothness costs in the spatial domain and data costs in the feature domain. Smoothness costs ensure spatial coherence, while data costs control the consistency with the representative feature clusters. This graph representation formalizes the segmentation task as an energy minimization problem. It allows the implementation of an approximate solution by min-cuts for a global minimum of this NP hard minimization problem in low order polynomial time. We test our method with airborne lidar point cloud acquired with maximum planned post spacing of 1.4 m and a vertical accuracy 10.5 cm as RMSE. We present the effects of neighborhood and feature determination in the segmentation results and assess the accuracy and efficiency of the implemented min-cut algorithm as well as its sensitivity to the parameters of the smoothness and data cost functions. We find that smoothness cost that only considers simple distance

  20. The necessity of exploitation of nuclear energy in China from the environmental protection point of view

    International Nuclear Information System (INIS)

    Pan Ziqiang; Jiang Xiwen; Song Shaoyi; Liu Shutian; Bai Guang

    1984-01-01

    The article proves the necessity of development of nuclear energy in China from the enviromental protection point of view. The development of nuclear energy would be decrease environmental contamination due to energy power production. The prediction of collective dose equivalent commitment from the nuclear power plant in year 2000 would only amount to 0.013% of annual collective dose equivalent from natural radiation sources

  1. Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.

    Science.gov (United States)

    Varandas, A J C

    2011-05-28

    The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative

  2. On balancing between minimum energy and minimum delay with radio diversity for wireless sensor networks

    DEFF Research Database (Denmark)

    Moad, Sofiane; Hansen, Morten Tranberg; Jurdak, RajA

    2012-01-01

    The expected number of transmissions (ETX) metric represents the link quality in wireless sensor networks, which is highly variable for a specific radio and it can influence dramatically both of the delay and the energy. To adapt to these fluctuations, radio diversity has been recently introduced...... to improve the delivery rate but at the cost of increases in energy for wireless sensor networks. In this paper, we propose a scheme for radio diversity that can balance, depending on the traffic nature in the network, between minimizing the energy consumption or minimizing the end-to-end delay. The proposed...... scheme combines the benefit of two metrics, which aim separately to minimize the energy consumption, and to minimize delay when delivering packets to the end-user. We show by both analysis and simulation that our proposed scheme can adapt to the type of traffic that can occur in a network so...

  3. Point-by-point model description of average prompt neutron data as a function of total kinetic energy of fission fragments

    International Nuclear Information System (INIS)

    Tudora, A.

    2013-01-01

    The experimental data of average prompt neutron multiplicity as a function of total kinetic energy of fragments <ν>(TKE) exhibit, especially in the case of 252 Cf(SF), different slopes dTKE/dν and different behaviours at low TKE values. The Point-by-Point (PbP) model can describe these different behaviours. The higher slope dTKE/dν and the flattening of <ν> at low TKE exhibited by a part of experimental data sets is very well reproduced when the PbP multi-parametric matrix ν(A,TKE) is averaged over a double distribution Y(A,TKE). The lower slope and the almost linear behaviour over the entire TKE range exhibited by other data sets is well described when the same matrix ν(A,TKE) is averaged over a single distribution Y(A). In the case of average prompt neutron energy in SCM as a function of TKE, different dTKE/dε slopes are also obtained by averaging the same PbP matrix ε(A,TKE) over Y(A,TKE) and over Y(A). The results are exemplified for 3 fissioning systems benefiting of experimental data as a function of TKE: 252 Cf(SF), 235 U(n th ,f) and 239 Pu(n th ,f). In the case of 234 U(n,f) for the first time it was possible to calculate <ν>(TKE) and <ε>(TKE) at many incident energies by averaging the PbP multi-parametric matrices over the experimental Y(A,TKE) distributions recently measured at IRMM for 14 incident energies in the range 0.3- 5 MeV. The results revealed that the slope dTKE/dν does not vary with the incident energy and the flattening of <ν> at low TKE values is more pronounced at low incident energies. The average model parameters dependences on TKE resulted from the PbP treatment allow the use of the most probable fragmentation approach, having the great advantage to provide results at many TKE values in a very short computing time compared to PbP and Monte Carlo treatments. (author)

  4. Minimum spanning trees and random resistor networks in d dimensions.

    Science.gov (United States)

    Read, N

    2005-09-01

    We consider minimum-cost spanning trees, both in lattice and Euclidean models, in d dimensions. For the cost of the optimum tree in a box of size L , we show that there is a correction of order L(theta) , where theta or =1 . The arguments all rely on the close relation of Kruskal's greedy algorithm for the minimum spanning tree, percolation, and (for some arguments) random resistor networks. The scaling of the entropy and free energy at small nonzero T , and hence of the number of near-optimal solutions, is also discussed. We suggest that the Steiner tree problem is in the same universality class as the minimum spanning tree in all dimensions, as is the traveling salesman problem in two dimensions. Hence all will have the same value of theta=-3/4 in two dimensions.

  5. Designing a point-absorber wave energy converter for the Mediterranean Sea

    International Nuclear Information System (INIS)

    Archetti, Renata; Moreno Miquel, Adria; Antonini, Alessandro; Passoni, Giuseppe; Bozzi, Silvia; Gruosso, Giambattista; Scarpa, Francesca; Bizzozero, Federica; Giassi, Marianna

    2015-01-01

    This work aims to assess the potential for wave energy production in the Italian seas by the deployment of arrays of heaving point absorbers, specifically optimized for mild climates. We model a single-body WEC, consisting of a cylindrical heaving buoy, attached to a linear electric generator placed on the seabed. The model includes both hydrodynamic and electromechanical forces. The results show that the best buoy-generator configuration at the selected sites (Alghero and Mazara del Vallo) is given by a 6 to 10 kW device and with a buoy with diameter between 4 and 5 m. This device can be brought to resonance, increasing the performances, by adding a submerged sphere. These results are encouraging and enlarge the perspective on wave energy production in the Italian seas. [it

  6. 76 FR 12955 - CenterPoint Energy Gas Transmission Company, LLC; Notice of Intent To Prepare an Environmental...

    Science.gov (United States)

    2011-03-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-78-000] CenterPoint Energy Gas Transmission Company, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed Line AM- 46 Replacement Project, Request for Comments on Environmental Issues, and Notice of Onsite Environmental Review The staff of the...

  7. A Thermodynamic Point of View on Dark Energy Models

    Directory of Open Access Journals (Sweden)

    Vincenzo F. Cardone

    2017-07-01

    Full Text Available We present a conjugate analysis of two different dark energy models, namely the Barboza–Alcaniz parameterization and the phenomenologically-motivated Hobbit model, investigating both their agreement with observational data and their thermodynamical properties. We successfully fit a wide dataset including the Hubble diagram of Type Ia Supernovae, the Hubble rate expansion parameter as measured from cosmic chronometers, the baryon acoustic oscillations (BAO standard ruler data and the Planck distance priors. This analysis allows us to constrain the model parameters, thus pointing at the region of the wide parameters space, which is worth focusing on. As a novel step, we exploit the strong connection between gravity and thermodynamics to further check models’ viability by investigating their thermodynamical quantities. In particular, we study whether the cosmological scenario fulfills the generalized second law of thermodynamics, and moreover, we contrast the two models, asking whether the evolution of the total entropy is in agreement with the expectation for a closed system. As a general result, we discuss whether thermodynamic constraints can be a valid complementary way to both constrain dark energy models and differentiate among rival scenarios.

  8. UABUC - Single energy point model burnup computer code for water reactors

    International Nuclear Information System (INIS)

    El-Meshad, Y.; Morsy, S.; El-Osery, I.A.

    1981-01-01

    UABUC is a single energy point reactor burnup computer program in FORTRAN language. The program calculates the change in the isotopic composition of the uranium fuel as a function of irradiation time with all its associated quantities such as the average point flux, the conversion ratio, macroscopic fuel cross sections, and the point reactivity profile. A step-wise time analytical solution was developed for the nonlinear first order burnup differential equations. The ''Westcott'' convention of the effective cross sections was used except for plutonium-240 and uranium-238. For plutonium-240, an effective microscopic cross section was derived from the direct physical arguments taking into account the selfshielding effect of plutonium-240 as well as the 1 ev. resonance absorption. For uranium-238, an effective cross section, reflecting the effect of fast fission and resonance absorption was used. The fission products were treated in the three groups with 50, 300, and 800 barns. The yields in the groups were treated as functions of the type of fissionable nuclides, the effective neutron temperature, and the epithermal index. Xenon-135 and Samarium-149 were treated separately as functions of irradiation time. (author)

  9. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.

    Science.gov (United States)

    Cheung, W M; Chan, K S

    2017-06-01

    We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index  =  -1 and the valence band with Floquet index  =  +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.

  10. Variational energy principle for compressible, baroclinic flow. 2: Free-energy form of Hamilton's principle

    Science.gov (United States)

    Schmid, L. A.

    1977-01-01

    The first and second variations are calculated for the irreducible form of Hamilton's Principle that involves the minimum number of dependent variables necessary to describe the kinetmatics and thermodynamics of inviscid, compressible, baroclinic flow in a specified gravitational field. The form of the second variation shows that, in the neighborhood of a stationary point that corresponds to physically stable flow, the action integral is a complex saddle surface in parameter space. There exists a form of Hamilton's Principle for which a direct solution of a flow problem is possible. This second form is related to the first by a Friedrichs transformation of the thermodynamic variables. This introduces an extra dependent variable, but the first and second variations are shown to have direct physical significance, namely they are equal to the free energy of fluctuations about the equilibrium flow that satisfies the equations of motion. If this equilibrium flow is physically stable, and if a very weak second order integral constraint on the correlation between the fluctuations of otherwise independent variables is satisfied, then the second variation of the action integral for this free energy form of Hamilton's Principle is positive-definite, so the action integral is a minimum, and can serve as the basis for a direct trail and error solution. The second order integral constraint states that the unavailable energy must be maximum at equilibrium, i.e. the fluctuations must be so correlated as to produce a second order decrease in the total unavailable energy.

  11. Point Climat no. 18 'Energy efficiency, renewable energy and CO2 allowances in Europe: a need for coordination'

    International Nuclear Information System (INIS)

    Berghmans, Nicolas

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: Following the adoption in 2009 of the directives for modifying the European Union Emissions Trading Scheme (EU ETS) and for promoting renewable energies, the Energy Efficiency Directive has been endorsed by the European Parliament on 11 September 2012. It will be the third major European policy that encourages reductions in CO 2 emissions, either directly or indirectly. At a time when the European Commission is reflecting on long-term reforms to the EU ETS, the magnitude of emission reductions that will be generated by other policies calls for the systematisation of assessment of climate and energy policies in order to maintain an sufficient CO 2 price to incentive mitigation action

  12. An Improved Minimum Error Interpolator of CNC for General Curves Based on FPGA

    Directory of Open Access Journals (Sweden)

    Jiye HUANG

    2014-05-01

    Full Text Available This paper presents an improved minimum error interpolation algorithm for general curves generation in computer numerical control (CNC. Compared with the conventional interpolation algorithms such as the By-Point Comparison method, the Minimum- Error method and the Digital Differential Analyzer (DDA method, the proposed improved Minimum-Error interpolation algorithm can find a balance between accuracy and efficiency. The new algorithm is applicable for the curves of linear, circular, elliptical and parabolic. The proposed algorithm is realized on a field programmable gate array (FPGA with Verilog HDL language, and simulated by the ModelSim software, and finally verified on a two-axis CNC lathe. The algorithm has the following advantages: firstly, the maximum interpolation error is only half of the minimum step-size; and secondly the computing time is only two clock cycles of the FPGA. Simulations and actual tests have proved that the high accuracy and efficiency of the algorithm, which shows that it is highly suited for real-time applications.

  13. Changes in the zero-point energy of the protons as the source of the binding energy of water to A-phase DNA.

    Science.gov (United States)

    Reiter, G F; Senesi, R; Mayers, J

    2010-10-01

    The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6  water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Å.

  14. Changes in the Zero-Point Energy of the Protons as the Source of the Binding Energy of Water to A-Phase DNA

    International Nuclear Information System (INIS)

    Reiter, G. F.; Senesi, R.; Mayers, J.

    2010-01-01

    The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6 water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Angst .

  15. Point Climat no. 23 'The new European Energy Efficiency Directive: France is on track'

    International Nuclear Information System (INIS)

    Berghmans, Nicolas; Alberola, Emilie

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: On October 4 2012, the European Union adopted a new Directive in order to help reach the common target of a 20% improvement in energy efficiency in 2020. At a time when a major national debate on energy transition is set to take place in France, this new directive will need to be taken into account when defining future energy policy. The measures specified in the European Directive, which focus on buildings and energy suppliers, will enable part of France's goal to be met. The transposition of the Directive into French law will result in the setting of a national target for 2020, and will primarily reinforce an existing requirement that applies to energy suppliers, as well as adding measures aimed at informing energy consumers

  16. Detecting outliers and/or leverage points: a robust two-stage procedure with bootstrap cut-off points

    Directory of Open Access Journals (Sweden)

    Ettore Marubini

    2014-01-01

    Full Text Available This paper presents a robust two-stage procedure for identification of outlying observations in regression analysis. The exploratory stage identifies leverage points and vertical outliers through a robust distance estimator based on Minimum Covariance Determinant (MCD. After deletion of these points, the confirmatory stage carries out an Ordinary Least Squares (OLS analysis on the remaining subset of data and investigates the effect of adding back in the previously deleted observations. Cut-off points pertinent to different diagnostics are generated by bootstrapping and the cases are definitely labelled as good-leverage, bad-leverage, vertical outliers and typical cases. The procedure is applied to four examples.

  17. Minimum short-circuit ratios for grid interconnection of wind farms with induction generators

    Energy Technology Data Exchange (ETDEWEB)

    Reginatto, Romeu; Rocha, Carlos [Western Parana State University (UNIOESTE), Foz do Iguacu, PR (Brazil). Center for Engineering and Exact Sciences], Emails: romeu@unioeste.br, croberto@unioeste.br

    2009-07-01

    This paper concerns the problem of determining the minimum value for the short-circuit ratio which is adequate for the interconnection of a given wind farms to a given grid point. First, a set of 3 criteria is defined in order to characterize the quality/safety of the interconnection: acceptable terminal voltage variations, a minimum active power margin, and an acceptable range for the internal voltage angle. Then, the minimum short circuit ratio requirement is determined for 6 different induction generator based wind turbines, both fixed-speed (with and without reactive power compensation) and variable-speed (with the following control policies: reactive power, power factor, and terminal voltage regulation). The minimum short-circuit ratio is determined and shown in graphical results for the 6 wind turbines considered, for X/R in the range 0-15, also analyzing the effect of more/less stringent tolerances for the interconnection criteria. It is observed that the tighter the tolerances the larger the minimum short-circuit ratio required. For the same tolerances in the interconnection criteria, a comparison of the minimum short circuit ratio required for the interconnection of both squirrel-cage and doubly-fed induction generators is presented, showing that the last requires much smaller values for the short-circuit ratio. (author)

  18. Gyroscopic power take-off wave energy point absorber in irregular sea states

    DEFF Research Database (Denmark)

    Zhang, Zili; Chen, Bei; Nielsen, Søren R.K.

    2017-01-01

    Highlights •A GyroPTO wave energy point absorber with magnetic coupling mechanism is proposed. •A 4DOF nonlinear model of the GyroPTO absorber has been derived. •Rational approximations are performed on the radiation damping moments. •Synchronization of the device is more easily maintained...... in narrow-banded sea waves. •The generator gain and the magnetic coupling constant influence the performance of the device....

  19. Inertially Stabilized Platforms for Precision Pointing Applications to Directed-Energy Weapons and Space-Based Lasers (Preprint)

    National Research Council Canada - National Science Library

    Negro, J; Griffin, S

    2006-01-01

    .... This article addresses directed-energy-weapon (DEW) precision pointing requirements and implementation alternatives in the context of strapdown and stable-platform inertial-reference technologies...

  20. Minimum Wage and Overweight and Obesity in Adult Women: A Multilevel Analysis of Low and Middle Income Countries.

    Directory of Open Access Journals (Sweden)

    Annalijn I Conklin

    Full Text Available To describe the relationship between minimum wage and overweight and obesity across countries at different levels of development.A cross-sectional analysis of 27 countries with data on the legislated minimum wage level linked to socio-demographic and anthropometry data of non-pregnant 190,892 adult women (24-49 y from the Demographic and Health Survey. We used multilevel logistic regression models to condition on country- and individual-level potential confounders, and post-estimation of average marginal effects to calculate the adjusted prevalence difference.We found the association between minimum wage and overweight/obesity was independent of individual-level SES and confounders, and showed a reversed pattern by country development stage. The adjusted overweight/obesity prevalence difference in low-income countries was an average increase of about 0.1 percentage points (PD 0.075 [0.065, 0.084], and an average decrease of 0.01 percentage points in middle-income countries (PD -0.014 [-0.019, -0.009]. The adjusted obesity prevalence difference in low-income countries was an average increase of 0.03 percentage points (PD 0.032 [0.021, 0.042] and an average decrease of 0.03 percentage points in middle-income countries (PD -0.032 [-0.036, -0.027].This is among the first studies to examine the potential impact of improved wages on an important precursor of non-communicable diseases globally. Among countries with a modest level of economic development, higher minimum wage was associated with lower levels of obesity.

  1. Rising above the Minimum Wage.

    Science.gov (United States)

    Even, William; Macpherson, David

    An in-depth analysis was made of how quickly most people move up the wage scale from minimum wage, what factors influence their progress, and how minimum wage increases affect wage growth above the minimum. Very few workers remain at the minimum wage over the long run, according to this study of data drawn from the 1977-78 May Current Population…

  2. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  3. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  4. The impact of minimum wages on population health: evidence from 24 OECD countries.

    Science.gov (United States)

    Lenhart, Otto

    2017-11-01

    This study examines the relationship between minimum wages and several measures of population health by analyzing data from 24 OECD countries for a time period of 31 years. Specifically, I test for health effects as a result of within-country variations in the generosity of minimum wages, which are measured by the Kaitz index. The paper finds that higher levels of minimum wages are associated with significant reductions of overall mortality rates as well as in the number of deaths due to outcomes that have been shown to be more prevalent among individuals with low socioeconomic status (e.g., diabetes, disease of the circulatory system, stroke). A 10% point increase of the Kaitz index is associated with significant declines in death rates and an increase in life expectancy of 0.44 years. Furthermore, I provide evidence for potential channels through which minimum wages impact population health by showing that more generous minimum wages impact outcomes such as poverty, the share of the population with unmet medical needs, the number of doctor consultations, tobacco consumption, calorie intake, and the likelihood of people being overweight.

  5. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  6. A Transmission Power Optimization with a Minimum Node Degree for Energy-Efficient Wireless Sensor Networks with Full-Reachability

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-01-01

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351

  7. The zero-point field. On the search for the cosmic basic energy

    International Nuclear Information System (INIS)

    McTaggart, L.

    2007-02-01

    Does an inexhaustable energy source exist from which all life is fed? A form of energy, which penetrates all dead and living expression forms of life? Does a logical, scientific explanation exist for parapsychological phenomena like clairvoyance, telepathy, ghost healing, synchronicity, and a model for the mode of action of homeopathy? Do serious researchers and scientific studies to be token in ernest exist, which not only deal with this questions but also have found answers? During eight years the British scientific journalist Lynne McTaggart has researched. ''Teh zero-point field'' is the result of numerous speeches with renowned physicists, biophysicists, neuroscientists, biologist, and consciousness researchers on the whole world, which have independently discovered phenomena, which are combined like puzzle pieces to a fascinating total picture.

  8. The Turning Point for the Recent Acceleration of the Universe with a Cosmological Constant

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2012-04-01

    Full Text Available The turning point and acceleration expansion of the universe are investigated according to the standard cosmological theory with a non-zero cosmological constant. Choosing the Hubble constant H 0 , the radius of the present universe R 0 , and the density parameter in matter Ω M , 0 as three independent parameters, we have analytically examined the other properties of the universe such as the density parameter in dark energy, the cosmologi- cal constant, the mass of the universe, the turning point redshift, the age of the present universe, and the time-dependent radius, expansion rate, velocity, and acceleration pa- rameter of the universe. It is shown that the turning point redshift is only dependent of the density parameter in matter, not explicitly on the Hubble constant and the radius of the present universe. The universe turned its expansion from past deceleration to recent acceleration at the moment when its size was about 3 / 5 of the present size if the density parameter in matter is about 0.3 (or the turning point redshift is 0.67. The expansion rate is very large in the early period and decreases with time to approach the Hubble constant at the present time. The expansion velocity exceeds the light speed in the early period. It decreases to the minimum at the turning point and then increases with time. The minimum and present expansion velocities are determined with the independent parameters. The solution of time-dependent radius shows the universe expands all the time. The universe with a larger present radius, smaller Hubble constant, and / or smaller density parameter in matter is elder. The universe with smaller density parameter in matter accelerates recently in a larger rate but less than unity.

  9. Nuclear energy at the turning point

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, A.M.

    1977-07-01

    In deciding the future course of nuclear energy, it is necessary to re-examine man's long-term energy options, in particular solar energy and the breeder reactor. Both systems pose difficultiies: energy from the sun is likely to be expensive as well as limited, whereas a massive world-wide deployment of nuclear breeders will create problems of safety and of proliferation. Nuclear energy's long-term success depends on resolving both of these problems. Collocation of nuclear facilities with a system of resident inspectors are measures that ought to help increase the proliferation-resistance as well as the safety of a large-scale, long-term nuclear system based on breeders. In such a long-term system a strengthened International Atomic Energy Agency (IAEA) is viewed as playing a central role.

  10. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chao, R.M.; Ko, S.H.; Lin, I.H. [Department of Systems and Naval Mechatronics Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Pai, F.S. [Department of Electronic Engineering, National University of Tainan (China); Chang, C.C. [Department of Environment and Energy, National University of Tainan (China)

    2009-12-15

    The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

  11. Neutron slowing down and transport in monoisotopic media with constant cross sections or with a square-well minimum

    International Nuclear Information System (INIS)

    Peng, W.H.

    1977-01-01

    A specialized moments-method computer code was constructed for the calculation of the even spatial moments of the scalar flux, phi/sub 2n/, through 2n = 80. Neutron slowing-down and transport in a medium with constant cross sections was examined and the effect of a superimposed square-well cross section minimum on the penetrating flux was studied. In the constant cross section case, for nuclei that are not too light, the scalar flux is essentially independent of the nuclide mass. The numerical results obtained were used to test the validity of existing analytic approximations to the flux at both small and large lethargies relative to the source energy. As a result it was possible to define the regions in the lethargy--distance plane where these analytic solutions apply with reasonable accuracy. A parametric study was made of the effect of a square-well cross section minimum on neutron fluxes at energies below the minimum. It was shown that the flux at energies well below the minimum is essentially independent of the position of the minimum in lethargy. The results can be described by a convolution-of-sources model involving only the lethargy separation between detector and source, the width and the relative depth of the minimum. On the basis of the computations and the corresponding model, it is possible to predict, e.g., the conditions under which transport in the region of minimum completely determines the penetrating flux. At the other extreme, the model describes when the transport in the minimum can be treated in the same manner as in any comparable lethargy interval. With the aid of these criteria it is possible to understand the apparent paradoxical effects of certain minima in neutron penetration through such media as iron and sodium

  12. Correlation between viscous-flow activation energy and phase diagram in four systems of Cu-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ning Shuang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian Xiufang, E-mail: xfbian@sdu.edu.c [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ren Zhenfeng [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2010-09-01

    Activation energy is obtained from temperature dependence of viscosities by means of a fitting to the Arrhenius equation for liquid alloys of Cu-Sb, Cu-Te, Cu-Sn and Cu-Ag systems. We found that the changing trend of activation energy curves with concentration is similar to that of liquidus in the phase diagrams. Moreover, a maximum value of activation energy is in the composition range of the intermetallic phases and a minimum value of activation energy is located at the eutectic point. The correlation between the activation energy and the phase diagrams has been further discussed.

  13. Measurement of Minimum Bias Observables with the ATLAS detector

    CERN Document Server

    Kvita, Jiri; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes. It has also a significant relevance for the simulation of the environment at the LHC with many concurrent pp interactions (“pileup”). The ATLAS collaboration has provided new measurements of the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center of mass energies of 8 TeV and 13 TeV. The measurements cover a wide spectrum using charged particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities.

  14. Exploring Reaction Mechanism on Generalized Force Modified Potential Energy Surfaces (G-FMPES) for Diels-Alder Reaction

    Science.gov (United States)

    Jha, Sanjiv; Brown, Katie; Subramanian, Gopinath

    We apply a recent formulation for searching minimum energy reaction path (MERP) and saddle point to atomic systems subjected to an external force. We demonstrate the effect of a loading modality resembling hydrostatic pressure on the trans to cis conformational change of 1,3-butadiene, and the simplest Diels-Alder reaction between ethylene and 1,3-butadiene. The calculated MERP and saddle points on the generalized force modified potential energy surface (G-FMPES) are compared with the corresponding quantities on an unmodified potential energy surface. Our study is performed using electronic structure calculations at the HF/6-31G** level as implemented in the AIMS-MOLPRO code. Our calculations suggest that the added compressive pressure lowers the energy of cis butadiene. The activation energy barrier for the concerted Diels-Alder reaction is found to decrease progressively with increasing compressive pressure.

  15. Ab initio calculation of the zero-point energy in dense hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Takezawa, Tomoki [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Nagara, Hitose [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Nagao, Kazutaka [Laboratory of Atomic and Solid State Physics, Cornel University, Ithaca, NY (United States)

    2002-11-11

    We have studied the vibrational modes and their frequencies in both atomic and molecular phases of dense hydrogen to find the stable structures and evaluated the zero-point energies (ZPEs) and the effect on molecular dissociation. The most probable structure in the atomic phase is Cs IV whose vibrational modes have real frequencies over the whole Brillouin zone. And the structure in the molecular phase is very close to Cmca, whose vibrational modes with imaginary frequencies work as guides to the stable structure. Our estimates of the ZPE are very close to those of Kagan et al (Kagan Yu, Pushkarev V V and Kholas A 1977 Sov. Phys.-JETP 46 511). Adding the ZPE to the static energy, we estimated its effect on the pressure of the molecular dissociation. The reduction of the dissociation pressure due to the inclusion of the ZPE becomes over 100 GPa.

  16. Ab initio calculation of the zero-point energy in dense hydrogen

    International Nuclear Information System (INIS)

    Takezawa, Tomoki; Nagara, Hitose; Nagao, Kazutaka

    2002-01-01

    We have studied the vibrational modes and their frequencies in both atomic and molecular phases of dense hydrogen to find the stable structures and evaluated the zero-point energies (ZPEs) and the effect on molecular dissociation. The most probable structure in the atomic phase is Cs IV whose vibrational modes have real frequencies over the whole Brillouin zone. And the structure in the molecular phase is very close to Cmca, whose vibrational modes with imaginary frequencies work as guides to the stable structure. Our estimates of the ZPE are very close to those of Kagan et al (Kagan Yu, Pushkarev V V and Kholas A 1977 Sov. Phys.-JETP 46 511). Adding the ZPE to the static energy, we estimated its effect on the pressure of the molecular dissociation. The reduction of the dissociation pressure due to the inclusion of the ZPE becomes over 100 GPa

  17. Minimum weight passive insulation requirements for hypersonic cruise vehicles.

    Science.gov (United States)

    Ardema, M. D.

    1972-01-01

    Analytical solutions are derived for two representative cases of the transient heat conduction equation to determine the minimum weight requirements for passive insulation systems of hypersonic cruise vehicles. The cases discussed are the wet wall case with the interior wall temperature held to that of the boiling point of the fuel throughout the flight, and the dry wall case where the heat transferred through the insulation is absorbed by the interior structure whose temperature is allowed to rise.

  18. The minimum mass of a charged spherically symmetric object in D dimensions, its implications for fundamental particles, and holography

    International Nuclear Information System (INIS)

    Burikham, Piyabut; Cheamsawat, Krai; Harko, Tiberiu; Lake, Matthew J.

    2016-01-01

    We obtain bounds for the minimum and maximum mass/radius ratio of a stable, charged, spherically symmetric compact object in a D-dimensional space-time in the framework of general relativity, and in the presence of dark energy. The total energy, including the gravitational component, and the stability of objects with minimum mass/radius ratio is also investigated. The minimum energy condition leads to a representation of the mass and radius of the charged objects with minimum mass/radius ratio in terms of the charge and vacuum energy only. As applied to the electron in the four-dimensional case, this procedure allows one to re-obtain the classical electron radius from purely general relativistic considerations. By combining the lower mass bound, in four space-time dimensions, with minimum length uncertainty relations (MLUR) motivated by quantum gravity, we obtain an alternative bound for the maximum charge/mass ratio of a stable, gravitating, charged quantum mechanical object, expressed in terms of fundamental constants. Evaluating this limit numerically, we obtain again the correct order of magnitude value for the charge/mass ratio of the electron, as required by the stability conditions. This suggests that, if the electron were either less massive (with the same charge) or if its charge were any higher (for fixed mass), a combination of electrostatic and dark energy repulsion would destabilize the Compton radius. In other words, the electron would blow itself apart. Our results suggest the existence of a deep connection between gravity, the presence of the cosmological constant, and the stability of fundamental particles. (orig.)

  19. Employment effects of minimum wages

    OpenAIRE

    Neumark, David

    2014-01-01

    The potential benefits of higher minimum wages come from the higher wages for affected workers, some of whom are in low-income families. The potential downside is that a higher minimum wage may discourage employers from using the low-wage, low-skill workers that minimum wages are intended to help. Research findings are not unanimous, but evidence from many countries suggests that minimum wages reduce the jobs available to low-skill workers.

  20. On a Minimum Problem in Smectic Elastomers

    International Nuclear Information System (INIS)

    Buonsanti, Michele; Giovine, Pasquale

    2008-01-01

    Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress

  1. Application of Neural Network Optimized by Mind Evolutionary Computation in Building Energy Prediction

    Science.gov (United States)

    Song, Chen; Zhong-Cheng, Wu; Hong, Lv

    2018-03-01

    Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.

  2. Stable long-time semiclassical description of zero-point energy in high-dimensional molecular systems.

    Science.gov (United States)

    Garashchuk, Sophya; Rassolov, Vitaly A

    2008-07-14

    Semiclassical implementation of the quantum trajectory formalism [J. Chem. Phys. 120, 1181 (2004)] is further developed to give a stable long-time description of zero-point energy in anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized quantum force approach; stabilizing terms compensating for the linearization errors are added into the time-evolution equations for the classical and nonclassical components of the momentum operator. The wave function normalization and energy are rigorously conserved. Numerical tests are performed for model systems of up to 40 degrees of freedom.

  3. Dispersion theory and sum rules for the non-minimum phase problem in optical spectroscopy

    International Nuclear Information System (INIS)

    Peiponen, Kai-Erik

    2009-01-01

    Dispersion relations and sum rules for integer powers of an optical response function are given in the case of the non-minimum phase problem. These relations were obtained using the concept of the Hilbert transform and Blaschke product. The theory presented in this paper is useful both in basic and applied studies of non-minimum phase functions in optics, and also other fields of physics such as high energy physics.

  4. California's minimum-nurse-staffing legislation and nurses' wages.

    Science.gov (United States)

    Mark, Barbara; Harless, David W; Spetz, Joanne

    2009-01-01

    In 2004, California became the first state to implement minimum-nurse-staffing ratios in acute care hospitals. We examined the wages of registered nurses (RNs) before and after the legislation was enacted. Using four data sets-the National Sample Survey of Registered Nurses, the Current Population Survey, the National Compensation Survey, and the Occupational Employment Statistics Survey-we found that from 2000 through 2006, RNs in California metropolitan areas experienced real wage growth as much as twelve percentage points higher than the growth in the wages of nurses employed in metropolitan areas outside of California.

  5. Physics at the CERN collider using a ''minimum bias'' trigger

    International Nuclear Information System (INIS)

    Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Nandi, A.K.; Roberts, C.; Scott, W.; Shah, T.P.; Bezaguet, A.; Boeck, R.; Calvetti, M.; Carroll, T.; Cennini, P.; Centro, S.; Ceradini, F.; Cittolin, S.; Demoulin, M.; DiBitinto, D.; Ellis, N.; Hoffmann, H.; Jank, W.; Jorat, G.; Kowalski, H.; Kryn, D.; Lacava, F.; Markiewicz, T.; Maurin, G.; Muirhead, H.; Muller, F.; Naumann, L.; Norton, A.; Petrucci, G.; Placci, A.; Revol, J.P.; Rijssenbeek, M.; Rohlf, J.; Rossi, P.; Rubbia, C.; Sadoulet, B.; Schinzel, D.; Tao, C.; Timmer, J.; Meer, S. van der; Vialle, J.P.; Vuillemin, V.; Xie, G.Y.; Zurfluh, E.; Cochet, C.; DeBeer, M.; Denegri, D.; Givernaud, A.; Laugier, J.P.; Leveque, A.; Locci, E.; Loret, M.; Malosse, J.J.; Rich, J.; Sass, R.; Saudraix, J.; Savoy-Navarro, A.; Spiro, M.; Dobrzynski, L.; Fontaine, G.; Geer, S.; Ghesquiere, C.; Giraud-Heraud, Y.; Mendiburu, J.P.; Orkin-Lecourtois, A.; Sajot, G.; Vrana, J.; Bacci, C.; Bowcock, T.J.V.; Corden, M.; Dallman, D.; Di Ciaccio, A.; Dowell, J.D.; Edwards, M.; Eggert, K.; Eisenhandler, E.; Erhard, P.; Faissner, H.; Frey, R.; Fruehwirth, R.; Garvey, J.; Giboni, K.L.; Gibson, W.R.; Gutierrez, P.; Hansl-Kozanecka, T.; Hodges, C.; Hoffmann, D.; Homer, R.J.; Honma, A.; Kalmus, P.I.P.; Karimaeki, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kinnunen, R.; Kozanecki, W.; Lehmann, H.; Leuchs, K.; McMahon, T.; Moricca, M.; Paoluzi, L.; Piano Mortari, G.; Pimiae, M.; Radermacher, E.; Ransdell, J.; Reithler, H.; Salvi, G.; Salvini, G.; Strauss, J.; Sumorok, K.; Szoncso, F.; Smith, D.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; Wahl, H.D.; Watkins, P.; Wilson, J.

    1983-01-01

    In this paper the physics of the events collected using this ''minimum bias trigger'' is described. After a brief description of the detector, I present results concerning particle production (pseudorapidity distributions, multiplicity and KNO scaling). Transverse energy distributions, long and short range correlations, and finally high psub(t) physics and jets. (orig./HSI)

  6. Taxation on energy products and fiscal harmonisation in the European Union

    International Nuclear Information System (INIS)

    Dorigoni, S.

    2000-01-01

    Taxation on energy products has represented one of the main issues in the Community Policy for many years. The object of the draft Directive 97/30, relative to the restructuring of the European set-up for taxation on energy, is the one of promoting a harmonisation process in the excise levels and of removing, in this way, one of the main obstacles towards the achievement of competition on energy markets and, more generally, the creation of the single European market. In this article the differences in energy taxation among member states are firstly analysed, considering the effects that would arise from the application of common minimum levels of taxation as foreseen by the above-mentioned Community law. The possibility of applying to the environmental taxation (based on the internalisation of external costs due to energy production and consumption) as a convergence criterion is then considered, pointing out the main obstacles to its adoption, but also the risks that seem to be concerned with a harmonisation process that were not coherent under an environmental point of view [it

  7. Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing

    Directory of Open Access Journals (Sweden)

    Antoniotto Guidobono Cavalchini

    2013-09-01

    Full Text Available Compared to traditional plowing and minimum tillage, the sod seeding technique has been tested in order to evaluate the differences in energy consumption, labor and machinery requirement and CO2 emission reduction. The experiments were conducted on winter cereal seeding in a Po valley farm in October 2011. The tests were carried out as follows: wheat variety seeding, over corn and alfalfa crops, in large plots with three repetitions for each thesis. They included: sod seeding anticipated by round up weeding in the case of the plots over alfalfa; traditional plowing at 35 cm followed by rotary tillage and combined seeding (seeder plus rotary tiller; minimum tillage based on ripping at the same depth (35 cm and combined seeder ( seeder plus rotary tiller. The following farm operations - fertilizer, and other agrochemical distributionshave been the same in all the considered theses. The results, statistically significant (P<0.001 in terms of yields, highlighted slight differences: the best data in the case of the traditional plowing both in the case of wheat crop over corn and alfalfa (84.43 and 6.75 t/ha; slightly lower yields for the sod seeding (6.23 and 79.9 t/ha for corn and alfalfa respectively; lower in the case of minimum tillage (5.87; 79.77 t/ha in the two situations. Huge differences in energy and oil consumption have been recorded: in the case of succession to corn 61.47; 35.31; 4.27 kg oil/ha respectively for, traditional plowing, minimum tillage and sod seeding; in the case of alfalfa 61.2; 50.96; 5.14 kg oil/ha respectively for traditional plowing, minimum tillage and sod seeding. The innovative technique, highlighted huge energy saving with an oil consumption equal to 92% and 89% (P<0.001 of what happens in traditional plowing and minimum tillage. Large differences concern labor and machine productivity. These parameters together with oil consumption and machine size [power (kW and weight (t] lead to even greater differences in

  8. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Science.gov (United States)

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  9. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Directory of Open Access Journals (Sweden)

    David Bednar

    2015-11-01

    Full Text Available There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  10. Consistent force field modeling of matrix isolated molecules. V. Minimum energy path potential to the conformer conversion of 1,2-difluoroethane: Ar 364, ab initio calculation of electric multipole moments and electric polarization contribution to the conversion barrier

    Science.gov (United States)

    Gunde, R.; Ha, T.-K.; Günthard, H. H.

    1990-08-01

    In this paper results of consistent force field modeling (CFF) of the potential function to conversion of the gauche (g) to the trans (t) conformer of 1,2-difluoroethane (DFE) isolated in an argon matrix will be reported. Starting point are locally stable configurations gDFE:Ar 364 (defect GH1) and tDFE:Ar 364 (TH1) obtained in previous work from CFF modeling of a cube shaped Ar 364 fragment containing one DFE molecule in its center. Using the dihedral angle of DFE as an independent parameter the minimum energy path of the conversion process gDFE:Ar 364→tDFE:Ar 364 will be determined by CFF energy minimization. Determination of the minimum energy path is found to require large numbers of energy minimization steps and to lead to a rather complicated motion of the molecule with respect to the crystal fragment. Surprisingly the molecule-matrix interactions lead to a reduction of the g-t barrier by ≈500 cal/mol and to a stabilization of the trans species by ≈500 cal/mol. This finding is a consequence of a delicate interplay of matrix-molecule and matrix-matrix interactions. Calculation of the electric polarization energy (induced dipole-first-order polarization approximation) is based on extended ab initio calculations of dipole and quadrupole moments and a bond polarizability estimate of the first-order polarizability of DFE as a function of the internal rotation angle, on Fourier expansion of multipole components and use of symmetry for reduction of the order of the linear system defining the (self-consistent) induced dipole moments of all Ar atoms. Electric polarization is found to alter the potential function of the conversion process in a profound way: the g-t barrier and the t-g energy difference are increased to ≈3000 cal/mol and to ≈1500 cal/mol respectively (≈2500 and ≈530 cal/mol respectively for free DFE). Further applications of the technique developed in this work to related problems of matrix isolated molecules, e.g., vibrational matrix

  11. Minimum Wages and Poverty

    OpenAIRE

    Fields, Gary S.; Kanbur, Ravi

    2005-01-01

    Textbook analysis tells us that in a competitive labor market, the introduction of a minimum wage above the competitive equilibrium wage will cause unemployment. This paper makes two contributions to the basic theory of the minimum wage. First, we analyze the effects of a higher minimum wage in terms of poverty rather than in terms of unemployment. Second, we extend the standard textbook model to allow for incomesharing between the employed and the unemployed. We find that there are situation...

  12. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint

    Science.gov (United States)

    Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing

    2015-03-01

    The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.

  13. Saving energy for the data collection point in WBAN network

    Science.gov (United States)

    Nguyen-Duc, Toan; Kamioka, Eiji

    2017-11-01

    Wireless sensor networking (WSN) has been rapidly developed and become essential in various domains including health care systems. Such systems use WSN to collect real-time medical sensed data, aiming at improving the patient safety. For instance, patients suffered from adverse events, i.e., cardiac or respiratory arrests, are monitored so as to prevent them from getting harm. Sensors are placed on, in or near the patients' body to continuously collect sensing data such as the electrocardiograms, blood oxygenation, breathing, and heart rate. In this case, the sensors form a subcategory of WSN called wireless body area network (WBAN). In WBAN, sensing data are sent to one or more data collection points called personal server (PS). The role of PS is important since it forwards sensed data, to a medical server via a Bluetooth/WLAN connection in real time to support storage of information and real-time diagnosis, the device can also issue a notification of an emergency status. Since PS is a battery-based device, when its battery is empty, it will disconnect the sensed medical data with the rest network. To best of our knowledge, very few studies that focus on saving energy for the PS. To this end, this work investigates the trade-off between energy consumption for wireless communication and the amount of sensing data. An energy consumption model for wireless communication has been proposed based on direct measurement using real testbed. According to our findings, it is possible to save energy for the PS by selecting suitable wireless technology to be used based on the amount of data to be transmitted.

  14. Epistemic uncertainty propagation in energy flows between structural vibrating systems

    Science.gov (United States)

    Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong

    2016-03-01

    A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.

  15. The cut-off point of dual energy X-ray and laser of calcaneus osteoporosis diagnosis in postmenopausal women

    International Nuclear Information System (INIS)

    Salimzadeh, A.; Forough, B.; Olia, B.; Alishiri, G. H.; Ghasemzadeh, A.

    2005-01-01

    Dual X-Ray Absorptiometry is a method which can extensively be used for bone mineral densitometry . Another more recent method is dual energy X-ray and laser, which associate with dual X ray absorptiometry, assisted by laser measure heel thickness. In this study the cut off points for dual energy X-ray and laser of calcaneus in the diagnosis of osteoporosis in different bone regions in postmenopausal women had been determined. Materials and Methods: In 268 postmenopausal women, BMD of the spinal and femoral regions was measured by DM, and the value for the calcaneous was measured by dual energy X-ray and laser. The agreement of the two methods in the diagnosis of osteoporosis and optimal cut-off point for dual energy X-ray and laser in defining osteoporosis was obtained. What obtained was the agreement of the two methods in the diagnosis of osteoporosis, as well as the optimal cut-off point for dual energy X-ray and laser in defining osteoporosis. Results: Dual X-Ray Absorptiometry showed osteoporosis in 40.7% of cases with 35.2% in L2-L4, 16.2% in the femoral neck, and 11.7% for the femoral total region. The dual energy X-ray and laser found osteoporosis, considering -2.5 SD as a threshold, in 26.1% of cases. Agreement of the two methods in the diagnosis of osteoporosis (Kappa score) was 0.443 for the lumbar region, 0.464 for the neck, and, 0.421 for total femur regions (all P values were significant). Using Receiver Operating Characteristic curves, it was found that a T-score of -2.1, -2.6 and -2.4 as the optimal cut-off point of dual energy X-ray and laser in the diagnosis of osteoporosis in the lumbar spine, the neck and total region of femur, respectively. Conclusion: The results of this study showed a moderate agreement between the two methods in the diagnosis of osteoporosis. It seems that the dual energy X-ray and laser cannot be used as a substitute for the DM method, but it can be used as a screening method to find (to diagnose) osteoporosis

  16. RR Tel: Determination of Dust Properties During Minimum Obscuration

    Directory of Open Access Journals (Sweden)

    Jurkić T.

    2012-06-01

    Full Text Available the ISO infrared spectra and the SAAO long-term JHKL photometry of RR Tel in the epochs during minimum obscuration are studied in order to construct a circumstellar dust model. the spectral energy distribution in the near- and the mid-IR spectral range (1–15 μm was obtained for an epoch without the pronounced dust obscuration. the DUSTY code was used to solve the radiative transfer through the dust and to determine the circumstellar dust properties of the inner dust regions around the Mira component. Dust temperature, maximum grain size, dust density distribution, mass-loss rate, terminal wind velocity and optical depth are determined. the spectral energy distribution and the long-term JHKL photometry during an epoch of minimum obscuration show almost unattenuated stellar source and strong dust emission which cannot be explained by a single dust shell model. We propose a two-component model consisting of an optically thin circmustellar dust shell and optically thick dust outside the line of sight in some kind of a flattened geometry, which is responsible for most of the observed dust thermal emission.

  17. Two-craft Coulomb formation study about circular orbits and libration points

    Science.gov (United States)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the

  18. Casimir Energy of the Nambu-Goto String with Gauss-Bonnet Term and Point-Like Masses at the Ends

    Science.gov (United States)

    Hadasz, Leszek

    1999-09-01

    We calculate the Casimir energy of the rotating Nambu-Goto string with the Gauss-Bonnet term in the action and point-like masses at the ends. This energy turns out to be negative for every values of the parameters of the model.

  19. Casimir Energy of the Nambu-Goto String with Gauss-Bonnet Term and Point-Like Masses at the Ends

    International Nuclear Information System (INIS)

    Hadasz, L.

    1999-01-01

    We calculate the Casimir energy of the rotating Nambu-Goto string with the Gauss-Bonnet term in the action and point-like masses at the ends. This energy turns out to be negative for every values of the parameters of the model. (author)

  20. 75 FR 6151 - Minimum Capital

    Science.gov (United States)

    2010-02-08

    ... capital and reserve requirements to be issued by order or regulation with respect to a product or activity... minimum capital requirements. Section 1362(a) establishes a minimum capital level for the Enterprises... entities required under this section.\\6\\ \\3\\ The Bank Act's current minimum capital requirements apply to...

  1. MEDOF - MINIMUM EUCLIDEAN DISTANCE OPTIMAL FILTER

    Science.gov (United States)

    Barton, R. S.

    1994-01-01

    The Minimum Euclidean Distance Optimal Filter program, MEDOF, generates filters for use in optical correlators. The algorithm implemented in MEDOF follows theory put forth by Richard D. Juday of NASA/JSC. This program analytically optimizes filters on arbitrary spatial light modulators such as coupled, binary, full complex, and fractional 2pi phase. MEDOF optimizes these modulators on a number of metrics including: correlation peak intensity at the origin for the centered appearance of the reference image in the input plane, signal to noise ratio including the correlation detector noise as well as the colored additive input noise, peak to correlation energy defined as the fraction of the signal energy passed by the filter that shows up in the correlation spot, and the peak to total energy which is a generalization of PCE that adds the passed colored input noise to the input image's passed energy. The user of MEDOF supplies the functions that describe the following quantities: 1) the reference signal, 2) the realizable complex encodings of both the input and filter SLM, 3) the noise model, possibly colored, as it adds at the reference image and at the correlation detection plane, and 4) the metric to analyze, here taken to be one of the analytical ones like SNR (signal to noise ratio) or PCE (peak to correlation energy) rather than peak to secondary ratio. MEDOF calculates filters for arbitrary modulators and a wide range of metrics as described above. MEDOF examines the statistics of the encoded input image's noise (if SNR or PCE is selected) and the filter SLM's (Spatial Light Modulator) available values. These statistics are used as the basis of a range for searching for the magnitude and phase of k, a pragmatically based complex constant for computing the filter transmittance from the electric field. The filter is produced for the mesh points in those ranges and the value of the metric that results from these points is computed. When the search is concluded, the

  2. A Pareto-Improving Minimum Wage

    OpenAIRE

    Eliav Danziger; Leif Danziger

    2014-01-01

    This paper shows that a graduated minimum wage, in contrast to a constant minimum wage, can provide a strict Pareto improvement over what can be achieved with an optimal income tax. The reason is that a graduated minimum wage requires high-productivity workers to work more to earn the same income as low-productivity workers, which makes it more difficult for the former to mimic the latter. In effect, a graduated minimum wage allows the low-productivity workers to benefit from second-degree pr...

  3. The minimum work required for air conditioning process

    International Nuclear Information System (INIS)

    Alhazmy, Majed M.

    2006-01-01

    This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 o C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods

  4. A comparison of minimum dietary diversity in Bangladesh in 2011 and 2014.

    Science.gov (United States)

    Blackstone, Sarah; Sanghvi, Tina

    2018-04-16

    Improving infant and young child feeding practices is critical for improving growth and reducing child mortality and morbidity. This paper aims to compare predictors of minimum dietary diversity, an important indicator of adequate complementary feeding practices, in Bangladesh in 2011 and 2014. The 2011 and 2014 Bangladesh Demographic and Health Survey were used to examine predictors of minimum dietary diversity among 6-23 months. An additional analysis was conducted for the 18-23-month group, because a significant increase in meeting minimum dietary diversity recommendations was seen in this age group only. Factors found to be associated with practices were compared across time points. In 2011, minimum dietary diversity was 23.8% and increased to 28.8% in 2014. Among children 18-23 months, in 2011, minimum dietary diversity was 32.5% and increased to 42.8% in 2014. Among all children, wealth, education, exposure to media, and antenatal care were significant predictors of dietary diversity. In the 18-23-month age group, significant predictors in 2011 were wealth and decision making. In 2014, significant predictors were education and exposure to media. Demographic trends indicated a significant increase in education and exposure to media between 2011 and 2014. As these were significant for minimum dietary diversity in 2014 overall and for 18-23 months, they might be important targets of future interventions, specifically utilizing media channels and tailoring special strategies for women with low education and limited exposure to media. © 2018 John Wiley & Sons Ltd.

  5. Gaussian-2 theory: Use of higher level correlation methods, quadratic configuration interaction geometries, and second-order Moller--Plesset zero-point energies

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Raghavachari, K.; Pople, J.A.

    1995-01-01

    The performance of Gaussian-2 theory is investigated when higher level theoretical methods are included for correlation effects, geometries, and zero-point energies. A higher level of correlation treatment is examined using Brueckner doubles [BD(T)] and coupled cluster [CCSD(T)] methods rather than quadratic configuration interaction [QCISD(T)]. The use of geometries optimized at the QCISD level rather than the second-order Moller--Plesset level (MP2) and the use of scaled MP2 zero-point energies rather than scaled Hartree--Fock (HF) zero-point energies have also been examined. The set of 125 energies used for validation of G2 theory [J. Chem. Phys. 94, 7221 (1991)] is used to test out these variations of G2 theory. Inclusion of higher levels of correlation treatment has little effect except in the cases of multiply-bonded systems. In these cases better agreement is obtained in some cases and poorer agreement in others so that there is no improvement in overall performance. The use of QCISD geometries yields significantly better agreement with experiment for several cases including the ionization potentials of CS and O 2 , electron affinity of CN, and dissociation energies of N 2 , O 2 , CN, and SO 2 . This leads to a slightly better agreement with experiment overall. The MP2 zero-point energies gives no overall improvement. These methods may be useful for specific systems

  6. Inflection points of microcanonical entropy: Monte Carlo simulation of q state Potts model on a finite square lattice

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, E., E-mail: svmstaya@gmail.com; Satyanarayana, S. V. M., E-mail: svmstaya@gmail.com [Department of Physics, Pondicherry University, Puducherry-605014 (India)

    2014-04-24

    Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) Δ ln g(E) = ln g(E+ ΔE) −ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition.

  7. Inflection points of microcanonical entropy: Monte Carlo simulation of q state Potts model on a finite square lattice

    International Nuclear Information System (INIS)

    Praveen, E.; Satyanarayana, S. V. M.

    2014-01-01

    Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) Δ ln g(E) = ln g(E+ ΔE) −ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition

  8. Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations.

    Science.gov (United States)

    Brieuc, Fabien; Bronstein, Yael; Dammak, Hichem; Depondt, Philippe; Finocchi, Fabio; Hayoun, Marc

    2016-12-13

    The quantum thermal bath (QTB) has been presented as an alternative to path-integral-based methods to introduce nuclear quantum effects in molecular dynamics simulations. The method has proved to be efficient, yielding accurate results for various systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in highly anharmonic systems. This is a well-known problem in methods based on classical trajectories where part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. In some cases, the ZPEL can have dramatic consequences on the properties of the system. Thus, we investigate the ZPEL by testing the QTB method on selected systems with increasing complexity in order to study the conditions and the parameters that influence the leakage. We also analyze the consequences of the ZPEL on the structural and vibrational properties of the system. We find that the leakage is particularly dependent on the damping coefficient and that increasing its value can reduce and, in some cases, completely remove the ZPEL. When using sufficiently high values for the damping coefficient, the expected energy distribution among the vibrational modes is ensured. In this case, the QTB method gives very encouraging results. In particular, the structural properties are well-reproduced. The dynamical properties should be regarded with caution although valuable information can still be extracted from the vibrational spectrum, even for large values of the damping term.

  9. Minimum critical mass systems

    International Nuclear Information System (INIS)

    Dam, H. van; Leege, P.F.A. de

    1987-01-01

    An analysis is presented of thermal systems with minimum critical mass, based on the use of materials with optimum neutron moderating and reflecting properties. The optimum fissile material distributions in the systems are obtained by calculations with standard computer codes, extended with a routine for flat fuel importance search. It is shown that in the minimum critical mass configuration a considerable part of the fuel is positioned in the reflector region. For 239 Pu a minimum critical mass of 87 g is found, which is the lowest value reported hitherto. (author)

  10. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy

    International Nuclear Information System (INIS)

    Monroe, C.; Meekhof, D.M.; King, B.E.; Jefferts, S.R.; Itano, W.M.; Wineland, D.J.; Gould, P.

    1995-01-01

    We report laser cooling of a single 9 Be + ion held in a rf (Paul) ion trap to where it occupies the quantum-mechanical ground state of motion. With the use of resolved-sideband stimulated Raman cooling, the zero point of motion is achieved 98% of the time in 1D and 92% of the time in 3D. Cooling to the zero-point energy appears to be a crucial prerequisite for future experiments such as the realization of simple quantum logic gates applicable to quantum computation. copyright 1995 The American Physical Society

  11. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  12. Nonparametric regression using the concept of minimum energy

    International Nuclear Information System (INIS)

    Williams, Mike

    2011-01-01

    It has recently been shown that an unbinned distance-based statistic, the energy, can be used to construct an extremely powerful nonparametric multivariate two sample goodness-of-fit test. An extension to this method that makes it possible to perform nonparametric regression using multiple multivariate data sets is presented in this paper. The technique, which is based on the concept of minimizing the energy of the system, permits determination of parameters of interest without the need for parametric expressions of the parent distributions of the data sets. The application and performance of this new method is discussed in the context of some simple example analyses.

  13. Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations

    International Nuclear Information System (INIS)

    Khalili, Farit Ya

    2003-01-01

    Several physical effects and methodological issues relating to the ground state of an oscillator are considered. Even in the simplest case of an ideal lossless harmonic oscillator, its ground state exhibits properties that are unusual from the classical point of view. In particular, the mean value of the product of two non-negative observables, kinetic and potential energies, is negative in the ground state. It is shown that semiclassical and rigorous quantum approaches yield substantially different results for the ground state energy fluctuations of an oscillator with finite losses. The dependence of zero-point fluctuations on the boundary conditions is considered. Using this dependence, it is possible to transmit information without emitting electromagnetic quanta. Fluctuations of electromagnetic pressure of zero-point oscillations are analyzed, and the corresponding mechanical friction is considered. This friction can be viewed as the most fundamental mechanism limiting the quality factor of mechanical oscillators. Observation of these effects exceeds the possibilities of contemporary experimental physics but almost undoubtedly will be possible in the near future. (methodological notes)

  14. 5 CFR 551.301 - Minimum wage.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Minimum wage. 551.301 Section 551.301... FAIR LABOR STANDARDS ACT Minimum Wage Provisions Basic Provision § 551.301 Minimum wage. (a)(1) Except... employees wages at rates not less than the minimum wage specified in section 6(a)(1) of the Act for all...

  15. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding

    Directory of Open Access Journals (Sweden)

    Zhang Dongkun

    2015-04-01

    Full Text Available Nanoparticles with the anti-wear and friction reducing features were applied as cooling lubricant in the grinding fluid. Dry grinding, flood grinding, minimal quantity of lubrication (MQL, and nanoparticle jet MQL were used in the grinding experiments. The specific grinding energy of dry grinding, flood grinding and MQL were 84, 29.8, 45.5 J/mm3, respectively. The specific grinding energy significantly decreased to 32.7 J/mm3 in nanoparticle MQL. Compared with dry grinding, the surface roughness values of flood grinding, MQL, and nanoparticle jet MQL were significantly reduced with the surface topography profile values reduced by 11%, 2.5%, and 10%, respectively, and the ten point height of microcosmic unflatness values reduced by 1.5%, 0.5%, and 1.3%, respectively. These results verified the satisfactory lubrication effects of nanoparticle MQL. MoS2, carbon nanotube (CNT, and ZrO2 nanoparticles were also added in the grinding fluid of nanoparticle jet MQL to analyze their grinding surface lubrication effects. The specific grinding energy of MoS2 nanoparticle was only 32.7 J/mm3, which was 8.22% and 10.39% lower than those of the other two nanoparticles. Moreover, the surface roughness of workpiece was also smaller with MoS2 nanoparticle, which indicated its remarkable lubrication effects. Furthermore, the role of MoS2 particles in the grinding surface lubrication at different nanoparticle volume concentrations was analyzed. MoS2 volume concentrations of 1%, 2%, and 3% were used. Experimental results revealed that the specific grinding energy and the workpiece surface roughness initially increased and then decreased as MoS2 nanoparticle volume concentration increased. Satisfactory grinding surface lubrication effects were obtained with 2% MoS2 nanoparticle volume concentration.

  16. Economic policy and the double burden of malnutrition: cross-national longitudinal analysis of minimum wage and women's underweight and obesity.

    Science.gov (United States)

    Conklin, Annalijn I; Ponce, Ninez A; Crespi, Catherine M; Frank, John; Nandi, Arijit; Heymann, Jody

    2018-04-01

    To examine changes in minimum wage associated with changes in women's weight status. Longitudinal study of legislated minimum wage levels (per month, purchasing power parity-adjusted, 2011 constant US dollar values) linked to anthropometric and sociodemographic data from multiple Demographic and Health Surveys (2000-2014). Separate multilevel models estimated associations of a $10 increase in monthly minimum wage with the rate of change in underweight and obesity, conditioning on individual and country confounders. Post-estimation analysis computed predicted mean probabilities of being underweight or obese associated with higher levels of minimum wage at study start and end. Twenty-four low-income countries. Adult non-pregnant women (n 150 796). Higher minimum wages were associated (OR; 95 % CI) with reduced underweight in women (0·986; 0·977, 0·995); a decrease that accelerated over time (P-interaction=0·025). Increasing minimum wage was associated with higher obesity (1·019; 1·008, 1·030), but did not alter the rate of increase in obesity prevalence (P-interaction=0·8). A $10 rise in monthly minimum wage was associated (prevalence difference; 95 % CI) with an average decrease of about 0·14 percentage points (-0·14; -0·23, -0·05) for underweight and an increase of about 0·1 percentage points (0·12; 0·04, 0·20) for obesity. The present longitudinal multi-country study showed that a $10 rise in monthly minimum wage significantly accelerated the decline in women's underweight prevalence, but had no association with the pace of growth in obesity prevalence. Thus, modest rises in minimum wage may be beneficial for addressing the protracted underweight problem in poor countries, especially South Asia and parts of Africa.

  17. Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Xu, Guanglin; Zhang, Zijun

    2014-01-01

    Highlights: • We study the energy saving of HVAC systems with a data-driven approach. • We conduct an in-depth analysis of the topology of developed Neural Network based HVAC model. • We apply interior-point method to solving a Neural Network based HVAC optimization model. • The uncertain building occupancy is incorporated in the minimization of HVAC energy consumption. • A significant potential of saving HVAC energy is discovered. - Abstract: In this paper, a data-driven approach is applied to minimize energy consumption of a heating, ventilating, and air conditioning (HVAC) system while maintaining the thermal comfort of a building with uncertain occupancy level. The uncertainty of arrival and departure rate of occupants is modeled by the Poisson and uniform distributions, respectively. The internal heating gain is calculated from the stochastic process of the building occupancy. Based on the observed and simulated data, a multilayer perceptron algorithm is employed to model and simulate the HVAC system. The data-driven models accurately predict future performance of the HVAC system based on the control settings and the observed historical information. An optimization model is formulated and solved with the interior-point method. The optimization results are compared with the results produced by the simulation models

  18. Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects.

    Science.gov (United States)

    Hernández, Marta I; Bartolomei, Massimiliano; Campos-Martínez, José

    2015-10-29

    Recent progress in the production of new two-dimensional (2D) nanoporous materials is attracting considerable interest for applications to isotope separation in gases. In this paper we report a computational study of the transmission of (4)He and (3)He through the (subnanometer) pores of graphdiyne, a recently synthesized 2D carbon material. The He-graphdiyne interaction is represented by a force field parametrized upon ab initio calculations, and the (4)He/(3)He selectivity is analyzed by tunneling-corrected transition state theory. We have found that both zero point energy (of the in-pore degrees of freedom) and tunneling effects play an extraordinary role at low temperatures (≈20-30 K). However, both quantum features work in opposite directions in such a way that the selectivity ratio does not reach an acceptable value. Nevertheless, the efficiency of zero point energy is in general larger, so that (4)He tends to diffuse faster than (3)He through the graphdiyne membrane, with a maximum performance at 23 K. Moreover, it is found that the transmission rates are too small in the studied temperature range, precluding practical applications. It is concluded that the role of the in-pore degrees of freedom should be included in computations of the transmission probabilities of molecules through nanoporous materials.

  19. Energy Efficiency of Technological Equipment at the Economic Agent by Identifying the Points with Recoverable Heat Potential

    Directory of Open Access Journals (Sweden)

    Arina Negoiţescu

    2017-11-01

    Full Text Available For an energy-efficient future, the EU needs to step up its efforts to maximize energy savings. In this context, the paper addresses the steps needed to establish energy efficiency measures and proposes effective measures to reduce consumption by recovering large amounts of energy lost to industrial consumers. The points with the highest recoverable energy potential have been identified and it is proposed to install the heat recovery systems on the flue gas exhaust circuits and polluted air from Industrial Technological Equipment (ITE such as dyeing/drying cabins (DDC. Therefore, whenever possible and as small as energy saving, energy recovery solutions at any level, but especially at local level, need to be applied. In conclusion, by concentrating all the energy-saving efforts that are still being wasted, Europe can contribute, by saving energy, to ensuring a sustainable energy future

  20. Energy Optimization Assessment at U.S. Army Installations: West Point Military Academy, NY

    Science.gov (United States)

    2008-09-01

    chillers to work unnecessarily more than needed. Other buildings had setpoints at different areas above 55 °F. Many buildings are air-conditioned and... optimal . The cost of 12.5 cents/KWh makes it unlikely, especially where steam adsorption chillers exist. 11.8.2 Solution Use the existing steam...ER D C/ CE R L TR -0 8 -1 4 Energy Optimization Assessment at U.S. Army Installations West Point Military Academy, NY David M

  1. [Storage of plant protection products in farms: minimum safety requirements].

    Science.gov (United States)

    Dutto, Moreno; Alfonzo, Santo; Rubbiani, Maristella

    2012-01-01

    Failure to comply with requirements for proper storage and use of pesticides in farms can be extremely hazardous and the risk of accidents involving farm workers, other persons and even animals is high. There are still wide differences in the interpretation of the concept of "securing or making safe", by workers in this sector. One of the critical points detected, particularly in the fruit sector, is the establishment of an adequate storage site for plant protection products. The definition of "safe storage of pesticides" is still unclear despite the recent enactment of Legislative Decree 81/2008 regulating health and work safety in Italy. In addition, there are no national guidelines setting clear minimum criteria for storage of plant protection products in farms. The authors, on the basis of their professional experience and through analysis of recent legislation, establish certain minimum safety standards for storage of pesticides in farms.

  2. Energy-saving control strategy for lighting system based on multivariate extremum seeking with Newton algorithm

    International Nuclear Information System (INIS)

    Yin, Chun; Dadras, Sara; Huang, Xuegang; Mei, Jun; Malek, Hadi; Cheng, Yuhua

    2017-01-01

    Highlights: • An energy-saving control strategy is proposed for multi-group lighting sources. • The proposed controller is designed to minimize the light-energy consumption. • It is designed to speed up the convergence rate without increasing the oscillation. • The minimal energy usage is guaranteed, while keeping the desired lighting level. • Experimental results shows the superiorities of the energy-saving control strategy. - Abstract: In recent years, the energy problem has been a universal concern. In order to improve the lighting energy efficiency and reduce the electric energy consumption, this paper develops an energy-saving control strategy for the lighting system with multiple lighting sources. The control strategy presented in this paper includes two parts: a new multivariate extremum seeking control method with Newton algorithm is developed to minimize the light-energy consumption by separately manipulating the brightness of multiple lighting sources, and a proportion-integration-differentiation control approach is adopted to realize the desired lighting level. The proposed scheme can increase the convergence speed of the closed loop system toward the minimum light-energy consumption, meanwhile, the accuracy of the control strategy will be improved. Experimental results illustrate that the light-energy consumption via the proposed method can reach more rapidly to a smaller vicinity of the minimum energy point, so, the lighting energy efficiency is greatly increased accordingly.

  3. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    International Nuclear Information System (INIS)

    Janos, A.

    1985-09-01

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated

  4. Model and design of dielectric elastomer minimum energy structures

    International Nuclear Information System (INIS)

    Rosset, Samuel; Araromi, Oluwaseun A; Shintake, Jun; Shea, Herbert R

    2014-01-01

    Fixing a prestretched dielectric elastomer actuator (DEA) on a flexible frame allows transformation of the intrinsic in-plane area expansion of DEAs into complex three-dimensional (3D) structures whose shape is determined by a configuration that minimizes the elastic energy of the actuator and the bending energy of the frame. These stuctures can then unfold upon the application of a voltage. This article presents an analytical modelling of the dielectric elastomer minimal energy structure in the case of a simple rectangular geometry and studies the influence of the main design parameters on the actuator's behaviour. The initial shape of DEMES, as well as the actuation range, depends on the elastic strain energy stored in the elastomeric membrane. This energy depends on two independent parameters: the volume of the membrane and its initial deformation. There exist therefore different combinations of membrane volume and prestretch, which lead to the same initial shape, such as a highly prestretched thin membrane, or a slightly prestretched thick membrane. Although they have the same initial shape, these different membrane states lead to different behaviour once the actuation voltage is applied. Our model allows one to predict which choice of parameters leads to the largest actuation range, while specifying the impact of the different membrane conditions on the spring constant of the device. We also explore the effects of non-ideal material behaviour, such as stress relaxation, on device performance. (paper)

  5. Optimization of finances into regional energy

    Directory of Open Access Journals (Sweden)

    Alexey Yuryevich Domnikov

    2014-06-01

    Full Text Available The development of modern Russian energy collides with the need for major investments in the modernization and renewal of generation and transmission capacity. In terms of attracting sufficient financial resources and find ways to increase, energy sector profitability and investment attractiveness of particular importance is the problem of investment financing optimizing aimed at minimizing the cost of financing while maintaining financial stability of the power companies and the goals and objectives of Russian energy system long-term development. The article discusses the problem of investment projects financing in power generation from the point of view of the need to achieve optimal investment budget. Presents the author’s approach to the investment financing optimization of power generation company that will achieve the minimum cost of resources involved, taking into account the impact of the funding structure for the power generating company financial sustainability. The developed model is applied to the problem of investment budget optimizing, for example, regional power generating company. The results can improve the efficiency of investment in energy, sustainable and competitive development of regional energy systems.

  6. Higher moments of net kaon multiplicity distributions at RHIC energies for the search of QCD Critical Point at STAR

    Directory of Open Access Journals (Sweden)

    Sarkar Amal

    2013-11-01

    Full Text Available In this paper we report the measurements of the various moments mean (M, standard deviation (σ skewness (S and kurtosis (κ of the net-Kaon multiplicity distribution at midrapidity from Au+Au collisions at √sNN = 7.7 to 200 GeV in the STAR experiment at RHIC in an effort to locate the critical point in the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as also to the correlation length of the system. A non-monotonic behavior of these variable indicate the presence of the critical point. In this work we also present the moments products Sσ, κσ2 of net-Kaon multiplicity distribution as a function of collision centrality and energies. The energy and the centrality dependence of higher moments of net-Kaons and their products have been compared with it0s Poisson expectation and with simulations from AMPT which does not include the critical point. From the measurement at all seven available beam energies, we find no evidence for a critical point in the QCD phase diagram for √sNN below 200 GeV.

  7. POLIDENT: A Module for Generating Continuous-Energy Cross Sections from ENDF Resonance Data

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, M.E.; Greene, N.M.

    2000-12-01

    POLIDENT (Point Libraries of Data from ENDF/B Tapes) is an AMPX module that accesses the resonance parameters from File 2 of an ENDF/B library and constructs the continuous-energy cross sections in the resonance energy region. The cross sections in the resonance range are subsequently combined with the File 3 background data to construct the cross-section representation over the complete energy range. POLIDENT has the capability to process all resonance reactions that are identified in File 2 of the ENDF/B library. In addition, the code has the capability to process the single- and multi-level Breit-Wigner, Reich-Moore and Adler-Adler resonance formalisms that are identified in File 2. POLIDENT uses a robust energy-mesh-generation scheme that determines the minimum, maximum and points of inflection in the cross-section function in the resolved-resonance region. Furthermore, POLIDENT processes all continuous-energy cross-section reactions that are identified in File 3 of the ENDF/B library and outputs all reactions in an ENDF/B TAB1 format that can be accessed by other AMPX modules.

  8. On the average luminosity of electron positron collider and positron-producing energy

    International Nuclear Information System (INIS)

    Xie Jialin

    1985-01-01

    In this paper, the average luminosity of linac injected electron positron collider is investigated from the positron-producing energy point of view. When the energy of the linac injector is fixed to be less than the operating energy of the storage ring, it has been found that there exists a positron-producing energy to give optimum average luminosity. Two cases have been studied, one for an ideal storage ring with no single-beam instability and the other for practical storage ring with fast head-tail instability. The result indicates that there is a positron-producing energy corresponding to the minimum injection time, but this does not correspond to the optimum average luminosity for the practical storage rings. For Beijing Electron Positron Collider (BEPC), the positron-producing energy corresponding to the optimum average luminosity is about one tenth of the total injector energy

  9. Josephson effect in point contacts between 'f-wave' superconductors

    International Nuclear Information System (INIS)

    Mahmoodi, R.; Shevchenko, S.N.; Kolesnichenko, Yu.A

    2002-01-01

    A stationary Josephson effect in point contacts between triplet superconductors is analyzed theoretically for most probable models of the order parameter in UPt 3 and Sr 2 RuO 4 . The consequence of misorientation of crystals in the superconducting banks on this effect is considered. We show that different models for the order parameter lead to quit different current-phase relations. For certain angles of misorientation a boundary between superconductors can generate a spontaneous current parallel to the surface. In a number of cases the state with a zero Josephson current and minimum of the free energy corresponds to a spontaneous phase difference. This phase difference depends on the misorientation angle and may possess any value. We conclude that experimental investigations of the current-phase relations of small junctions can be used for determination of the order parameter symmetry in the superconductors mentioned above

  10. Control of minimum member size in parameter-free structural shape optimization by a medial axis approximation

    Science.gov (United States)

    Schmitt, Oliver; Steinmann, Paul

    2017-09-01

    We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.

  11. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  12. Detailed spectroscopy in the superdeformed second minimum of 240Pu

    International Nuclear Information System (INIS)

    Thirolf, P.G.; Gassmann, D.; Habs, D.; Chromik, M.J.; Eisermann, Y.; Graw, G.; Hertenberger, R.; Maier, H.J.; Metz, A.; Reiter, P.

    2000-01-01

    Complete text of publication follows. Superdeformed prolate nuclei, having an axis ratio of about 2:1, have first been discovered in fission isomers in the actinide region almost 40 years ago by Polikanov et al.. Their interpretation of being the result of microscopic shell corrections on top of the macroscopic liquid drop potential leading to a second minimum in the nuclear potential energy surface is well established. 240 Pu with its 3.7 ns fission isomer may be regarded as the prototype nucleus for spectroscopic studies of superdeformed actinide nuclei since the identification of the ground state rotational band in conversion electron measurements [1]. Though from the knowledge on excited states in the first minimum and previous measurements in the second minimum low-lying collective excitations in the second minimum low-lying collective excitations in the second well of 240 Pu can be expected, none of them has been experimentally identified so far. Quite surprisingly, no low-lying collective quadrupole excitations could be observed in a recent detailed high-resolution and high-efficiency γ-spectroscopy experiment [2]. Complementary information could be obtained in conversion electron measurements in coincidence with isomeric fission performed at the Garching Accelerator Laboratory, resulting in the first identification of the lowest β-vibrational band [3]. In a combined analysis of the γ-spectroscopic and conversion electron data conversion coefficients α K or limits on α K could be deduced, thus allowing to determine the multipolarities of the transitions. A predominant population of negative parity states in the second well could be observed that can be explained by the filtering function of the inner and outer fission barrier. Complementary transmission resonance measurements have been performed, yielding new information on the fine structure of (β-)vibrational multi-phonon states. A new method could be established to determine the excitation energy of

  13. Summary of discussion points and further deliberations in the special committee on the ITER project in the Atomic Energy Commission

    International Nuclear Information System (INIS)

    Nakamura, H.

    1998-01-01

    Discussion points and further deliberations in the Special Committee, which was established in December 1996 on the ITER Project were: 'Global environment problem and energy problem', 'Promotion of the fusion energy development' and 'ITER Project'

  14. Minimum income protection in the Netherlands

    NARCIS (Netherlands)

    van Peijpe, T.

    2009-01-01

    This article offers an overview of the Dutch legal system of minimum income protection through collective bargaining, social security, and statutory minimum wages. In addition to collective agreements, the Dutch statutory minimum wage offers income protection to a small number of workers. Its

  15. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    International Nuclear Information System (INIS)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-01-01

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S 0 ) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm −1 . The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm −1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction

  16. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    Science.gov (United States)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-01

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S0) electronic state has been constructed by fitting ˜37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm-1. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm-1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  17. L1 Adaptive Speed Control of a Small Wind Energy Conversion System for Maximum Power Point Tracking

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard

    2014-01-01

    This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wi......) is used to carry out case studies using Matlab/Simulink. The case study results show that the designed L1 adaptive controller has good tracking performance even with unmodeled dynamics and in the presence of parameter uncertainties and unknown disturbances.......This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wind...

  18. 'Saddle-point' ionization

    International Nuclear Information System (INIS)

    Gay, T.J.; Hale, E.B.; Irby, V.D.; Olson, R.E.; Missouri Univ., Rolla; Berry, H.G.

    1988-01-01

    We have studied the ionization of rare gases by protons at intermediate energies, i.e., energies at which the velocities of the proton and the target-gas valence electrons are comparable. A significant channel for electron production in the forward direction is shown to be 'saddle-point' ionization, in which electrons are stranded on or near the saddle-point of electric potential between the receding projectile and the ionized target. Such electrons yield characteristic energy spectra, and contribute significantly to forward-electron-production cross sections. Classical trajectory Monte Carlo calculations are found to provide qualitative agreement with our measurements and the earlier measurements of Rudd and coworkers, and reproduce, in detail, the features of the general ionization spectra. (orig.)

  19. On the contribution of intramolecular zero point energy to the equation of state of solid H2

    Science.gov (United States)

    Chandrasekharan, V.; Etters, R. D.

    1978-01-01

    Experimental evidence shows that the internal zero-point energy of the H2 molecule exhibits a relatively strong pressure dependence in the solid as well as changing considerably upon condensation. It is shown that these effects contribute about 6% to the total sublimation energy and to the pressure in the solid state. Methods to modify the ab initio isolated pair potential to account for these environmental effects are discussed.

  20. Determination of shell correction energies at saddle point using pre-scission neutron multiplicities

    International Nuclear Information System (INIS)

    Golda, K.S.; Saxena, A.; Mittal, V.K.; Mahata, K.; Sugathan, P.; Jhingan, A.; Singh, V.; Sandal, R.; Goyal, S.; Gehlot, J.; Dhal, A.; Behera, B.R.; Bhowmik, R.K.; Kailas, S.

    2013-01-01

    Pre-scission neutron multiplicities have been measured for 12 C + 194, 198 Pt systems at matching excitation energies at near Coulomb barrier region. Statistical model analysis with a modified fission barrier and level density prescription have been carried out to fit the measured pre-scission neutron multiplicities and the available evaporation residue and fission cross sections simultaneously to constrain statistical model parameters. Simultaneous fitting of the pre-scission neutron multiplicities and cross section data requires shell correction at the saddle point

  1. Photon energy tunability of advanced photon source undulators

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices

  2. Study on the fixed point in crustal deformation before strong earthquake

    Science.gov (United States)

    Niu, A.; Li, Y.; Yan, W. Mr

    2017-12-01

    Usually, scholars believe that the fault pre-sliding or expansion phenomenon will be observed near epicenter area before strong earthquake, but more and more observations show that the crust deformation nearby epicenter area is smallest(Zhou, 1997; Niu,2009,2012;Bilham, 2005; Amoruso et al., 2010). The theory of Fixed point t is a branch of mathematics that arises from the theory of topological transformation and has important applications in obvious model analysis. An important precursory was observed by two tilt-meter sets, installed at Wenchuan Observatory in the epicenter area, that the tilt changes were the smallest compared with the other 8 stations around them in one year before the Wenchuan earthquake. To subscribe the phenomenon, we proposed the minimum annual variation range that used as a topological transformation. The window length is 1 year, and the sliding length is 1 day. The convergence of points with minimum annual change in the 3 years before the Wenchuan earthquake is studied. And the results show that the points with minimum deformation amplitude basically converge to the epicenter region before the earthquake. The possible mechanism of fixed point of crustal deformation was explored. Concerning the fixed point of crust deformation, the liquidity of lithospheric medium and the isostasy theory are accepted by many scholars (Bott &Dean, 1973; Merer et al.1988; Molnar et al., 1975,1978; Tapponnier et al., 1976; Wang et al., 2001). To explain the fixed point of crust deformation before earthquakes, we study the plate bending model (Bai, et al., 2003). According to plate bending model and real deformation data, we have found that the earthquake rupture occurred around the extreme point of plate bending, where the velocities of displacement, tilt, strain, gravity and so on are close to zero, and the fixed points are located around the epicenter.The phenomenon of fixed point of crust deformation is different from former understandings about the

  3. Source of vacuum electromagnetic zero-point energy and Dirac's large numbers hypothesis

    International Nuclear Information System (INIS)

    Simaciu, I.; Dumitrescu, G.

    1993-01-01

    The stochastic electrodynamics states that zero-point fluctuation of the vacuum (ZPF) is an electromagnetic zero-point radiation with spectral density ρ(ω)=ℎω 3 / 2π 2 C 3 . Protons, free electrons and atoms are sources for this radiation. Each of them absorbs and emits energy by interacting with ZPF. At equilibrium ZPF radiation is scattered by dipoles.Scattered radiation spectral density is ρ(ω,r) ρ(ω).c.σ(ω) / 4πr 2 . Radiation of dipole spectral density of Universe is ρ ∫ 0 R nρ(ω,r)4πr 2 dr. But if σ atom P e σ=σ T then ρ ρ(ω)σ T R.n. Moreover if ρ=ρ(ω) then σ T Rn = 1. With R = G M/c 2 and σ T ≅(e 2 /m e c 2 ) 2 ∝ r e 2 then σ T .Rn 1 is equivalent to R/r e = e 2 /Gm p m e i.e. the cosmological coincidence discussed in the context of Dirac's large-numbers hypothesis. (Author)

  4. Break-Even Points of Battery Energy Storage Systems for Peak Shaving Applications

    Directory of Open Access Journals (Sweden)

    Claudia Rahmann

    2017-06-01

    Full Text Available In the last few years, several investigations have been carried out in the field of optimal sizing of energy storage systems (ESSs at both the transmission and distribution levels. Nevertheless, most of these works make important assumptions about key factors affecting ESS profitability such as efficiency and life cycles and especially about the specific costs of the ESS, without considering the uncertainty involved. In this context, this work aims to answer the question: what should be the costs of different ESS technologies in order to make a profit when considering peak shaving applications? The paper presents a comprehensive sensitivity analysis of the interaction between the profitability of an ESS project and some key parameters influencing the project performance. The proposed approach determines the break-even points for different ESSs considering a wide range of life cycles, efficiencies, energy prices, and power prices. To do this, an optimization algorithm for the sizing of ESSs is proposed from a distribution company perspective. From the results, it is possible to conclude that, depending on the values of round trip efficiency, life cycles, and power price, there are four battery energy storage systems (BESS technologies that are already profitable when only peak shaving applications are considered: lead acid, NaS, ZnBr, and vanadium redox.

  5. On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System

    KAUST Repository

    Makki, Behrooz; Svensson, Tommy; Eriksson, Thomas; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.

  6. On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System

    KAUST Repository

    Makki, Behrooz

    2015-11-12

    In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.

  7. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    International Nuclear Information System (INIS)

    Mullett, J D; Dodd, R; Williams, C J; Triantos, G; Dearden, G; Shenton, A T; Watkins, K G; Carroll, S D; Scarisbrick, A D; Keen, S

    2007-01-01

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV IMEP ) and the variance in the peak cylinder pressure position (Var PPP ). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air

  8. Understanding the Minimum Wage: Issues and Answers.

    Science.gov (United States)

    Employment Policies Inst. Foundation, Washington, DC.

    This booklet, which is designed to clarify facts regarding the minimum wage's impact on marketplace economics, contains a total of 31 questions and answers pertaining to the following topics: relationship between minimum wages and poverty; impacts of changes in the minimum wage on welfare reform; and possible effects of changes in the minimum wage…

  9. Youth minimum wages and youth employment

    NARCIS (Netherlands)

    Marimpi, Maria; Koning, Pierre

    2018-01-01

    This paper performs a cross-country level analysis on the impact of the level of specific youth minimum wages on the labor market performance of young individuals. We use information on the use and level of youth minimum wages, as compared to the level of adult minimum wages as well as to the median

  10. Discretization of space and time: determining the values of minimum length and minimum time

    OpenAIRE

    Roatta , Luca

    2017-01-01

    Assuming that space and time can only have discrete values, we obtain the expression of the minimum length and the minimum time interval. These values are found to be exactly coincident with the Planck's length and the Planck's time but for the presence of h instead of ħ .

  11. Minimum wage development in the Russian Federation

    OpenAIRE

    Bolsheva, Anna

    2012-01-01

    The aim of this paper is to analyze the effectiveness of the minimum wage policy at the national level in Russia and its impact on living standards in the country. The analysis showed that the national minimum wage in Russia does not serve its original purpose of protecting the lowest wage earners and has no substantial effect on poverty reduction. The national subsistence minimum is too low and cannot be considered an adequate criterion for the setting of the minimum wage. The minimum wage d...

  12. Different types of maximum power point tracking techniques for renewable energy systems: A survey

    Science.gov (United States)

    Khan, Mohammad Junaid; Shukla, Praveen; Mustafa, Rashid; Chatterji, S.; Mathew, Lini

    2016-03-01

    Global demand for electricity is increasing while production of energy from fossil fuels is declining and therefore the obvious choice of the clean energy source that is abundant and could provide security for development future is energy from the sun. In this paper, the characteristic of the supply voltage of the photovoltaic generator is nonlinear and exhibits multiple peaks, including many local peaks and a global peak in non-uniform irradiance. To keep global peak, MPPT is the important component of photovoltaic systems. Although many review articles discussed conventional techniques such as P & O, incremental conductance, the correlation ripple control and very few attempts have been made with intelligent MPPT techniques. This document also discusses different algorithms based on fuzzy logic, Ant Colony Optimization, Genetic Algorithm, artificial neural networks, Particle Swarm Optimization Algorithm Firefly, Extremum seeking control method and hybrid methods applied to the monitoring of maximum value of power at point in systems of photovoltaic under changing conditions of irradiance.

  13. A Uniform Energy Consumption Algorithm for Wireless Sensor and Actuator Networks Based on Dynamic Polling Point Selection

    Science.gov (United States)

    Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi

    2014-01-01

    Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation. PMID:24451455

  14. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L., E-mail: aburin@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2016-07-21

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  15. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    Science.gov (United States)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L.

    2016-07-01

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  16. Minimum emittance of three-bend achromats

    International Nuclear Information System (INIS)

    Li Xiaoyu; Xu Gang

    2012-01-01

    The calculation of the minimum emittance of three-bend achromats (TBAs) made by Mathematical software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space. The minimum scaling factors of two kinds of widely used TBA lattices are obtained. Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor, when the TBA lattice achieves its minimum emittance. The procedure of analysis and the results can be widely used in achromats lattices, because the calculation is not restricted by the actual lattice. (authors)

  17. Evaluation of energy and particle impact on the plasma facing components in DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yuri, E-mail: juri.gitkhanov@ihm.fzk.de [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Bazylev, Boris [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer We analyze the first wall blanket W/EUROFER configuration for DEMO under steady-state normal operation and off-normal conditions, such as vertical displacements events (VDE) and runaway electrons (RE). The main issue is to find the optimal thickness of the W armor which will prevent tungsten surface from evaporation and melting and, on the other hand, will keep EUROFER below the critical thermal stresses. Black-Right-Pointing-Pointer The minimum thickness of the tungsten amour about 3 mm for W/EUROFER sandwich structure will keep the maximum EUROFER temperature below the critical limit for EUROFER steel under steady-state operation and ITER like cooling conditions. Black-Right-Pointing-Pointer The W surface temperature and the max. EUROFER temperature are increasing with incoming heat flux. For reference conditions (Dw {approx}3 mm, DEUROFER {approx}4 mm) the maximum tolerable heat flux which does not causes in thermal stresses in structural material is about {approx}13.5 MW/m{sup 2}. Black-Right-Pointing-Pointer The RE deposit their energy deeper into W armour and for energies {>=}50 MJ/m{sup 2} and deposition times {<=}0.1 s, the minimum armor thickness required to prevent EUROFER from thermal distraction is {>=}1.4 cm. Black-Right-Pointing-Pointer However, at this thickness the W surface melts. For higher RE energy deposition rates ({>=}100 MJ/m{sup 2} in 0.1 s), the required armor thickness to prevent thermal destruction is even larger so that the bulk of the armor layer will melt and evaporate. - Abstract: We analyze the first wall blanket W/EUROFER configuration for DEMO under steady-state normal operation and off-normal conditions, such as vertical displacement events (VDE) and runaway electrons (RE). The main issue is to find the optimal thickness of the W armor which will prevent tungsten surface from evaporation and melting and, on the other hand, will keep EUROFER below the critical thermal stresses. Under steady

  18. 75 FR 4488 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Science.gov (United States)

    2010-01-28

    ... (GPS) RWY 30L, Amdt 2 Wolf Point, MT, L.M.Clayton, Takeoff Minimums and Obstacle DP, Orig [[Page 4490..., Stockton Metropolitan, ILS OR LOC RWY 29R, Amdt 19 Avon Park, FL, Avon Park Executive, GPS RWY 4, Orig-A, CANCELLED Avon Park, FL, Avon Park Executive, GPS RWY 9, Orig-A, CANCELLED Avon Park, FL, Avon Park...

  19. The free energy principle, negative energy modes, and stability

    International Nuclear Information System (INIS)

    Morrison, P.J.; Kotschenreuther, M.

    1990-01-01

    This paper is concerned with instability of equilibria of Hamiltonian, fluid and plasma dynamical systems. Usually the dynamical equilibrium of interest is not the state of thermodynamic equilibrium, and does not correspond to a free energy minimum. The relaxation of this type of equilibrium is conventionally considered to be initiated by linear instability. However, there are many cases where linear instability is not present, but the equilibrium is nonlinearly unstable to arbitrarily small perturbations. This paper is about general free energy expressions for determining the presence of linear or nonlinear instabilities. These expressions are simple and practical, and can be obtained for all equilibria of all ideal fluid and plasma models. By free energy, we mean the energy change upon perturbations of the equilibrium that respect dynamical phase space constraints. This quantity is measured by a self-adjoint quadratic form, called δ 2 F. The free energy can result in instability when δ 2 F is indefinite; i.e. there exist accessible perturbations that lower the free energy of the system. A primary purpose of this paper is to tie together three manifestations of what we will refer to as negative energy modes. The first is the conventional plasma physics notion of negative energy mode that is based on the definition of the energy in a homogeneous dielectric medium. A negative energy mode is a normal mode of the medium (plasma) that possesses negative dielectric energy. The second manifestation occurs in finite degree-of-freedom Hamiltonian normal form theory. The quadratic part of a Hamiltonian in the vicinity of an equilibrium point, which possesses only distinct oscillatory eigenvalues, has an invariant signature. Thus in cases where the quadratic form is indefinite, it is natural to refer to the modes corresponding to the negative signature as negative energy modes

  20. Intelligent Photovoltaic Maximum Power Point Tracking Controller for Energy Enhancement in Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Subiyanto

    2013-01-01

    Full Text Available Photovoltaic (PV system is one of the promising renewable energy technologies. Although the energy conversion efficiency of the system is still low, but it has the advantage that the operating cost is free, very low maintenance and pollution-free. Maximum power point tracking (MPPT is a significant part of PV systems. This paper presents a novel intelligent MPPT controller for PV systems. For the MPPT algorithm, an optimized fuzzy logic controller (FLC using the Hopfield neural network is proposed. It utilizes an automatically tuned FLC membership function instead of the trial-and-error approach. The MPPT algorithm is implemented in a new variant of coupled inductor soft switching boost converter with high voltage gain to increase the converter output from the PV panel. The applied switching technique, which includes passive and active regenerative snubber circuits, reduces the insulated gate bipolar transistor switching losses. The proposed MPPT algorithm is implemented using the dSPACE DS1104 platform software on a DS1104 board controller. The prototype MPPT controller is tested using an agilent solar array simulator together with a 3 kW real PV panel. Experimental test results show that the proposed boost converter produces higher output voltages and gives better efficiency (90% than the conventional boost converter with an RCD snubber, which gives 81% efficiency. The prototype MPPT controller is also found to be capable of tracking power from the 3 kW PV array about 2.4 times more than that without using the MPPT controller.

  1. Breakeven point for energetic viability for the culture of Jatropha; Produtividade minima para a viabilidade energetica da cultura do pinhao-manso

    Energy Technology Data Exchange (ETDEWEB)

    Diotto, Adriano V.; Paulino, Janaina; Romanelli, Thiago L.; Flumgnan, Danilton L.; Folegatti, Marcos V. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil)], E-mail: avdiotto@usp.br

    2012-11-01

    Due to diversity of plants that can be used to produce biofuel, Jatropha is being increasingly studied and some answers have yet to be given by the research to ensure its use as a plant producing energy. The energy balance is a methodology that takes into account all the energy input in the production system, either through direct consumption of fuel for tractors, for example, or indirectly as the added energy to fabricate the tractor Itself. Therefore, we tried to use the energy balance methodology to evaluate the minimum yield necessary to crop the Jatropha to have energetic viability in production, in other words, to have output energy greater than input energy. We evaluated four years of cultivation in a property located in Charqueada-SP. The feasibility breakeven point was 2.36 mg ha{sup -1}. The factors that most influenced the energy input to the system were the crop inputs (64.3%), followed by fuel consumption (39.7%), depreciation of machinery (3.1%) and labor which accounted for only 1.9%. (author)

  2. Two-Point Codes for the Generalised GK curve

    DEFF Research Database (Denmark)

    Barelli, Élise; Beelen, Peter; Datta, Mrinmoy

    2017-01-01

    completely cover and in many cases improve on their results, using different techniques, while also supporting any GGK curve. Our method builds on the order bound for AG codes: to enable this, we study certain Weierstrass semigroups. This allows an efficient algorithm for computing our improved bounds. We......We improve previously known lower bounds for the minimum distance of certain two-point AG codes constructed using a Generalized Giulietti–Korchmaros curve (GGK). Castellanos and Tizziotti recently described such bounds for two-point codes coming from the Giulietti–Korchmaros curve (GK). Our results...

  3. Making Sense of Boiling Points and Melting Points

    Indian Academy of Sciences (India)

    GENERAL | ARTICLE. The boiling and melting points of a pure substance are char- ... bonds, which involves high energy and hence high temperatures. Among the .... with zero intermolecular force at all temperatures and pressures, which ...

  4. Method of statistical estimation of temperature minimums in binary systems

    International Nuclear Information System (INIS)

    Mireev, V.A.; Safonov, V.V.

    1985-01-01

    On the basis of statistical processing of literature data the technique for evaluation of temperature minima on liquidus curves in binary systems with common ion chloride systems being taken as an example, is developed. The systems are formed by 48 chlorides of 45 chemical elements including alkali, alkaline earth, rare earth and transition metals as well as Cd, In, Th. It is shown that calculation error in determining minimum melting points depends on topology of the phase diagram. The comparison of calculated and experimental data for several previously nonstudied systems is given

  5. Stabilizing unstable fixed points of chaotic maps via minimum entropy control

    Energy Technology Data Exchange (ETDEWEB)

    Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)

    2008-08-15

    In this paper the problem of chaos control in nonlinear maps using minimization of entropy function is investigated. Invariant probability measure of a chaotic dynamics can be used to produce an entropy function in the sense of Shannon. In this paper it is shown that how the entropy control technique is utilized for chaos elimination. Using only the measured states of a chaotic map the probability measure of the system is numerically estimated and this estimated measure is used to obtain an estimation for the entropy of the chaotic map. The control variable of the chaotic system is determined in such a way that the entropy function descends until the chaotic trajectory of the map is replaced with a regular one. The proposed idea is applied for stabilizing the fixed points of the logistic and the Henon maps as some cases of study. Simulation results show the effectiveness of the method in chaos rejection when only the statistical information is available from the under-study systems.

  6. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    Science.gov (United States)

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  7. Singularity-free electrodynamics for point charges and dipoles: a classical model for electron self-energy and spin

    International Nuclear Information System (INIS)

    Blinder, S M

    2003-01-01

    It is shown how point charges and point dipoles with finite self-energies can be accommodated in classical electrodynamics. The key idea is the introduction of constitutive relations for the electromagnetic vacuum, which actually mirrors the physical reality of vacuum polarization. Our results reduce to conventional electrodynamics for scales large compared to the classical electron radius r 0 ∼ 2.8 x 10 -15 m. A classical simulation for a structureless electron is proposed, with the appropriate values of mass, spin and magnetic moment

  8. 30 CFR 57.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail...

  9. 30 CFR 56.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0-0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...

  10. Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method

    International Nuclear Information System (INIS)

    Alavi, Seyed Arash; Ahmadian, Ali; Aliakbar-Golkar, Masoud

    2015-01-01

    Highlights: • Energy management is necessary in the active distribution network to reduce operation costs. • Uncertainty modeling is essential in energy management studies in active distribution networks. • Point estimate method is a suitable method for uncertainty modeling due to its lower computation time and acceptable accuracy. • In the absence of Probability Distribution Function (PDF) robust optimization has a good ability for uncertainty modeling. - Abstract: Uncertainty can be defined as the probability of difference between the forecasted value and the real value. As this probability is small, the operation cost of the power system will be less. This purpose necessitates modeling of system random variables (such as the output power of renewable resources and the load demand) with appropriate and practicable methods. In this paper, an adequate procedure is proposed in order to do an optimal energy management on a typical micro-grid with regard to the relevant uncertainties. The point estimate method is applied for modeling the wind power and solar power uncertainties, and robust optimization technique is utilized to model load demand uncertainty. Finally, a comparison is done between deterministic and probabilistic management in different scenarios and their results are analyzed and evaluated

  11. On the necessary conditions of the regular minimum of the scale factor of the co-moving space

    International Nuclear Information System (INIS)

    Agakov, V.G.

    1980-01-01

    In the framework of homogeneous cosmologic model studied is the behaviour of the comoving space element volume filled with barotropous medium, deprived of energy fluxes. Presented are the necessary conditions at which a regular final minimum of the scale factor of the co-mowing space may take place. It is found that to carry out the above minimum at values of cosmological constant Λ <= 0 the presence of two from three anisotropy factors is necessary. Anisotropy of space deformation should be one of these factors. In case of Λ <= 0 the regular minimum is also possible if all three factors of anisotropy are equal to zero. However if none of the factors of Fsub(i), Asub(ik) anisotropy is equal to zero, the presence of deformation space anisotropy is necessary for final regular minimum appearance

  12. Biological reference points for fish stocks in a multispecies context

    DEFF Research Database (Denmark)

    Collie, J.S.; Gislason, Henrik

    2001-01-01

    Biological reference points (BRPs) are widely used to define safe levels of harvesting for marine fish populations. Most BRPs are either minimum acceptable biomass levels or maximum fishing mortality rates. The values of BRPs are determined from historical abundance data and the life...

  13. A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Matheswaran Saravanan

    2014-01-01

    Full Text Available Wireless sensor network (WSN consists of sensor nodes that need energy efficient routing techniques as they have limited battery power, computing, and storage resources. WSN routing protocols should enable reliable multihop communication with energy constraints. Clustering is an effective way to reduce overheads and when this is aided by effective resource allocation, it results in reduced energy consumption. In this work, a novel hybrid evolutionary algorithm called Bee Algorithm-Simulated Annealing Weighted Minimal Spanning Tree (BASA-WMST routing is proposed in which randomly deployed sensor nodes are split into the best possible number of independent clusters with cluster head and optimal route. The former gathers data from sensors belonging to the cluster, forwarding them to the sink. The shortest intrapath selection for the cluster is selected using Weighted Minimum Spanning Tree (WMST. The proposed algorithm computes the distance-based Minimum Spanning Tree (MST of the weighted graph for the multihop network. The weights are dynamically changed based on the energy level of each sensor during route selection and optimized using the proposed bee algorithm simulated annealing algorithm.

  14. Two-point vs multipoint sample collection for the analysis of energy expenditure by use of the doubly labeled water method

    International Nuclear Information System (INIS)

    Welle, S.

    1990-01-01

    Energy expenditure over a 2-wk period was determined by the doubly labeled water (2H2(18)O) method in nine adults. When daily samples were analyzed, energy expenditure was 2859 +/- 453 kcal/d (means +/- SD); when only the first and last time points were considered, the mean calculated energy expenditure was not significantly different (2947 +/- 430 kcal/d). An analysis of theoretical cases in which isotope flux is not constant indicates that the multipoint method can cause errors in the calculation of average isotope fluxes, but these are generally small. Simulations of the effect of analytical error indicate that increasing the number of replicates on two points reduces the impact of technical errors more effectively than does performing single analyses on multiple samples. It appears that generally there is no advantage to collecting frequent samples when the 2H2(18)O method is used to estimate energy expenditure in adult humans

  15. Energy neutral window for retrofitting residential building; Energineutralt vindue for opgradering af bolig

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Per

    2010-05-15

    The purpose of this project has been to develop and demonstrate a window solution with a ventilation system with energy efficient heat recovery to satisfy the inhabitants' wish for optimal indoor climate at a minimum energy usage. The focus in the different developing phases has been the following products and technologies: 1) Fans - focus on sound level, vibration level, duty point and energy efficiency; 2) Heat recovery - focus on low pressure loss and high heat recovery; 3) System build-up - focus on low pressure loss, physical exploitation and condense water handling; 4) Condense water - focus on handling the condensed water so that it leaves the system by gravity; 5) Materials - focus on water resistance and production costs; 6) Filters - focus on pressure loss, filtration and possibility to change it from the inside; 7) Inlet air profile - focus on minimum short circuit between inlet and exhaust; 8) Internal leakage - focus on assembling and the production phase. During the project the the geometry had to be changed from an inside unit to and outside unit due to problems with the sound levels from the unit. The final result is a ventilation unit fitted to a window solution which provides optimal indoor comfort at a very low energy usage. (author)

  16. 30 CFR 77.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...

  17. Wind energy in the next millennium and the next year

    International Nuclear Information System (INIS)

    Chabot, B.

    1999-01-01

    The rapid development of wind energy was once again confirmed in 1998 and everything points to the fact that this road will in the next century rapidly become the third channel of primary electricity production in the world, both in terms of annual sales and contribution of energy. In particular, a scenario for the development, of wind energy in the coming century is proposed, taking as model and minimum objective the historical development of success of wind energy should prove perfectly feasible, it is difficult to foresee in the short term the actual impact of the liberalization of electricity markets on existing inducements in favour of wind energy and even more difficult to estimate the effectiveness of new inducements more in line with this liberalization process. These difficulties may be overcome by selecting - for the long term scenario - a starting point within the next decade which is in line with the best market studies currently available and by constructing the model for variations in operational stock world-wide on the basis of a Rayleigh distribution, adjusted for the market conditions defined in the short term, in order that the future contributions defined in the short term, in order that the future contribution of wind energy might come to equal that of hydro-electricity before the end of the next century. (author)

  18. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis

    International Nuclear Information System (INIS)

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-01-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved. - Highlights: • Minimum detection limit and spatial resolution determined for FE-EPMA. • Detection sensitivity of FE-EPMA greatly superior to that of STEM-EDX. • Minimum detection limit and spatial resolution controllable by probe current

  19. Semiclassical wave packet treatment of scattering resonances: application to the delta zero-point energy effect in recombination reactions.

    Science.gov (United States)

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-09-28

    For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.

  20. A Phosphate Minimum in the Oxygen Minimum Zone (OMZ) off Peru

    Science.gov (United States)

    Paulmier, A.; Giraud, M.; Sudre, J.; Jonca, J.; Leon, V.; Moron, O.; Dewitte, B.; Lavik, G.; Grasse, P.; Frank, M.; Stramma, L.; Garcon, V.

    2016-02-01

    The Oxygen Minimum Zone (OMZ) off Peru is known to be associated with the advection of Equatorial SubSurface Waters (ESSW), rich in nutrients and poor in oxygen, through the Peru-Chile UnderCurrent (PCUC), but this circulation remains to be refined within the OMZ. During the Pelágico cruise in November-December 2010, measurements of phosphate revealed the presence of a phosphate minimum (Pmin) in various hydrographic stations, which could not be explained so far and could be associated with a specific water mass. This Pmin, localized at a relatively constant layer ( 20minimum with a mean vertical phosphate decrease of 0.6 µM but highly variable between 0.1 and 2.2 µM. In average, these Pmin are associated with a predominant mixing of SubTropical Under- and Surface Waters (STUW and STSW: 20 and 40%, respectively) within ESSW ( 25%), complemented evenly by overlying (ESW, TSW: 8%) and underlying waters (AAIW, SPDW: 7%). The hypotheses and mechanisms leading to the Pmin formation in the OMZ are further explored and discussed, considering the physical regional contribution associated with various circulation pathways ventilating the OMZ and the local biogeochemical contribution including the potential diazotrophic activity.

  1. Impact of specific fracture energy investigated in front of the crack tip of three-point bending specimen

    Czech Academy of Sciences Publication Activity Database

    Klon, J.; Sobek, J.; Malíková, L.; Seitl, Stanislav

    2017-01-01

    Roč. 11, č. 41 (2017), s. 183-190 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Finite element method * Loading curve * Specific fracture energy * Three-point bending test * Work of fracture Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  2. Energy policies avoiding a tipping point in the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Olivier [GERAD and Department of Management Sciences, HEC Montreal, Montreal (Qc) (Canada); Edwards, Neil R. [Earth and Environmental Sciences, CEPSAR, Open University, Milton Keynes MK7 6AA (United Kingdom); Knutti, Reto [Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich (Switzerland); Stocker, Thomas F. [Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern (Switzerland)

    2011-01-15

    Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems. (author)

  3. Microwatt power consumption maximum power point tracking circuit using an analogue differentiator for piezoelectric energy harvesting

    Science.gov (United States)

    Chew, Z. J.; Zhu, M.

    2015-12-01

    A maximum power point tracking (MPPT) scheme by tracking the open-circuit voltage from a piezoelectric energy harvester using a differentiator is presented in this paper. The MPPT controller is implemented by using a low-power analogue differentiator and comparators without the need of a sensing circuitry and a power hungry controller. This proposed MPPT circuit is used to control a buck converter which serves as a power management module in conjunction with a full-wave bridge diode rectifier. Performance of this MPPT control scheme is verified by using the prototyped circuit to track the maximum power point of a macro-fiber composite (MFC) as the piezoelectric energy harvester. The MFC was bonded on a composite material and the whole specimen was subjected to various strain levels at frequency from 10 to 100 Hz. Experimental results showed that the implemented full analogue MPPT controller has a tracking efficiency between 81% and 98.66% independent of the load, and consumes an average power of 3.187 μW at 3 V during operation.

  4. Pengaturan Keseimbangan Pengisian dan Pengosongan Baterai Asam Timbal

    Directory of Open Access Journals (Sweden)

    Mochammad Rismansyah

    2016-07-01

    Full Text Available In this paper proposed a system of balance settings for charging and discharging the lead-acid battery using a microcontroller arduino uno 16U2. The calculation of battery capacity using the method of As (Ampere-second. Before this is done, the value of the energy stored in the battery is calculated using the relationship between the battery capacity (SOC and the open-circuit voltage of the battery. The microcontroller will do the calculations for the system running using any current relationships in the system. Settings are separated between setting the maximum point and minimum point battery battery. Setting the maximum point guard of excess charging batteries. When the battery is full, the current discharge / disposal will flow which prevents the battery charging when it reaches the maximum point. 0153 constant exhaust flow set point A. Setting minimum keep the battery from the void (lack of energy. Load will not get a good supply of energy or battery charger when the battery below the minimum point because the charger is only charging the battery to pass the minimum point. This system uses the point of 11.67% with a minimum capacity of 50 Ah battery. System settings are made has managed to keep the battery from overload conditions and under loading.

  5. Measurement of home-made LaCl3 : Ce scintillation detector sensitivity with different energy points in range of fission energy

    International Nuclear Information System (INIS)

    Hu Mengchun; Li Rurong; Si Fenni

    2010-01-01

    Gamma rays of different energy were obtained in the range of fission energy by Compton scattering in intense 60 Co gamma source and the standard isotopic gamma sources which are 0.67 MeV 137 Cs and l.25 MeV 60 Co sources of point form. Sensitivity of LaCl 3 : Ce scintillator was measured in these gamma ray energy by a fast response scintillation detector with the home-made LaCl 3 : Ce scintillator. Results were normalized by the sensitivity to 0.67 MeV gamma ray. Sensitivity of LaCl 3 : Ce to 1.25 MeV gamma ray is about l.28. For ø40 mm × 2 mm LaCl 3 : Ce scintillator, the biggest sensitivity is l.18 and the smallest is 0.96 with gamma ray from 0.39 to 0.78 MeV. And for ø40 mm × 10 mm LaCl 3 : Ce scintillator, the biggest sensitivity is l.06 and the smallest is 0.98. The experimental results can provide references for theoretical study of the LaCl 3 : Ce scintillator and data to obtain the compounded sensitivity of LaCl 3 : Ce scintillator in the range of fission energy. (authors)

  6. The Effects of Set-Points and Dead-Bands of the HVAC System on the Energy Consumption and Occupant Thermal Comfort

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2013-01-01

    A building is a complex system where many components interact with each other therefore the control system plays a key role regarding the energy consumption and the occupant thermal comfort. This study is concerned with a detached, one-storey, single family, energy-plus house. It is equipped...... on the effects of the set-points and dead-bands of different components on the energy consumption together with the occupant thermal comfort. Evaluations are carried out with TRNSYS for Copenhagen and Madrid in order to compare climatic effects....... with a ground heat exchanger, a ground coupled heat pump, embedded pipes in the floor and in the ceiling, a ventilation system (mechanical and natural), a domestic hot water tank and photovoltaic/thermal panels on the roof. Preliminary evaluations showed that for Madrid, change of indoor set-point in cooling...

  7. Energy sustainability of Microbial Fuel Cell (MFC): A case study

    Science.gov (United States)

    Tommasi, Tonia; Lombardelli, Giorgia

    2017-07-01

    Energy sustainability analysis and durability of Microbial Fuel Cells (MFCs) as energy source are necessary in order to move from the laboratory scale to full-scale application. This paper focus on these two aspects by considering the energy performances of an original experimental test with MFC conducted for six months under an external load of 1000 Ω. Energy sustainability is quantified using Energy Payback Time, the time necessary to produce the energy already spent to construct the MFC device. The results of experiment reveal that the energy sustainability of this specific MFC is never reached due to energy expenditure (i.e. for pumping) and to the low amount of energy produced. Hence, different MFC materials and architectures were analysed to find guidelines for future MFC development. Among these, only sedimentary fuel cells (Benthic MFCs) seem sustainable from an energetic point of view, with a minimum duration of 2.7 years. An energy balance approach highlights the importance of energy calculation. However, this is very often not taken into account in literature. This study outlines promising methodology for the design of an alternative layout of energy sustainable MFC and wastewater management systems.

  8. Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave

    International Nuclear Information System (INIS)

    Shooshtari, S.H. Rajaee; Shahsavand, A.

    2017-01-01

    Natural gases provide around a quarter of energy consumptions around the globe. Supersonic separators (3S) play multifaceted role in natural gas industry processing, especially for water and hydrocarbon dew point corrections. These states of the art devices have minimum energy requirement and favorable process economy compared to conventional facilities. Their relatively large pressure drops may limit their application in some situations. To maximize the energy recovery of the dew point correction facility, the pressure loss across the 3S unit should be minimized. The optimal structure of 3s unit (including shock wave location and diffuser angle) is selected using simultaneous combination of normal shock occurrence and condensation in the presence of nucleation and growth processes. The condense-free gas enters the non-isentropic normal shock wave. The simulation results indicate that the normal shock location, pressure recovery coefficient and onset position strongly vary up to a certain diffuser angle (β = 8°) with the maximum pressure recovery of 0.88 which leads to minimum potential energy loss. Computational fluid dynamic simulations show that separation of boundary layer does not happen for the computed optimal value of β and it is essentially constant when the inlet gas temperatures and pressures vary over a relatively broad range. - Highlights: • Supersonic separators have found numerous applications in oil and gas industries. • Maximum pressure recovery is crucial for such units to maximize energy efficiency. • Simultaneous condensation and shock wave occurrence are studied for the first time. • Diverging nozzle angle of 8° can provide maximum pressure recovery of 0.88. • The optimal diffuser angle remains constant over a broad range of inlet conditions.

  9. Valence coordinate contributions to zero-point energy shifts due to hydrogen isotope substitutions

    International Nuclear Information System (INIS)

    Oi, Takao; Ishida, Takanobu

    1986-01-01

    The orthogonal approximation method for the zero-point energy (ZPE) developed previously has been applied to analyze the shifts in the ZPE, δ(ZPE), due to monodeuterium substitutions in methane, ethylene, ethane and benzene in terms of elements of F and G matrices. The δ(ZPE) can be expressed with a reasonable precision as a sum of contributions of individual valence coordinates and correction terms consisting of the first-order interactions between the coordinates. A further refinement in the precision is achieved by a set of small number of second-order terms, which can be estimated by a simple procedure. (author)

  10. Nuclear Power, Energy Economics and Energy Security

    International Nuclear Information System (INIS)

    2013-01-01

    Economic development requires reliable, affordable electricity that is provided in sufficient quantities to satisfy the minimum energy requirements at a local, regional or national level. As simple as this recipe for economic development appears, technological, infrastructural, financial and developmental considerations must be analysed and balanced to produce a national energy strategy. Complicating that task is the historic fact that energy at the desired price and in the desired quantities can be neither taken for granted nor guaranteed. Energy economics and energy security determine the options available to nations working to establish a sustainable energy strategy for the future.

  11. Critical points for finite Fibonacci chains of point delta-interactions and orthogonal polynomials

    International Nuclear Information System (INIS)

    De Prunele, E

    2011-01-01

    For a one-dimensional Schroedinger operator with a finite number n of point delta-interactions with a common intensity, the parameters are the intensity, the n - 1 intercenter distances and the mass. Critical points are points in the parameters space of the Hamiltonian where one bound state appears or disappears. The study of critical points for Hamiltonians with point delta-interactions arranged along a Fibonacci chain is shown to be closely related to the study of the so-called Fibonacci operator, a discrete one-dimensional Schroedinger-type operator, which occurs in the context of tight binding Hamiltonians. These critical points are the zeros of orthogonal polynomials previously studied in the context of special diatomic linear chains with elastic nearest-neighbor interaction. Properties of the zeros (location, asymptotic behavior, gaps, ...) are investigated. The perturbation series from the solvable periodic case is determined. The measure which yields orthogonality is investigated numerically from the zeros. It is shown that the transmission coefficient at zero energy can be expressed in terms of the orthogonal polynomials and their associated polynomials. In particular, it is shown that when the number of point delta-interactions is equal to a Fibonacci number minus 1, i.e. when the intervals between point delta-interactions form a palindrome, all the Fibonacci chains at critical points are completely transparent at zero energy. (paper)

  12. Zero-point field in curved spaces

    International Nuclear Information System (INIS)

    Hacyan, S.; Sarmiento, A.; Cocho, G.; Soto, F.

    1985-01-01

    Boyer's conjecture that the thermal effects of acceleration are manifestations of the zero-point field is further investigated within the context of quantum field theory in curved spaces. The energy-momentum current for a spinless field is defined rigorously and used as the basis for investigating the energy density observed in a noninertial frame. The following examples are considered: (i) uniformly accelerated observers, (ii) two-dimensional Schwarzschild black holes, (iii) the Einstein universe. The energy spectra which have been previously calculated appear in the present formalism as an additional contribution to the energy of the zero-point field, but particle creation does not occur. It is suggested that the radiation produced by gravitational fields or by acceleration is a manifestation of the zero-point field and of the same nature (whether real or virtual)

  13. 12 CFR 564.4 - Minimum appraisal standards.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Minimum appraisal standards. 564.4 Section 564.4 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPRAISALS § 564.4 Minimum appraisal standards. For federally related transactions, all appraisals shall, at a minimum: (a...

  14. The minimum wage in the Czech enterprises

    OpenAIRE

    Eva Lajtkepová

    2010-01-01

    Although the statutory minimum wage is not a new category, in the Czech Republic we encounter the definition and regulation of a minimum wage for the first time in the 1990 amendment to Act No. 65/1965 Coll., the Labour Code. The specific amount of the minimum wage and the conditions of its operation were then subsequently determined by government regulation in February 1991. Since that time, the value of minimum wage has been adjusted fifteenth times (the last increase was in January 2007). ...

  15. Iterative Minimum Variance Beamformer with Low Complexity for Medical Ultrasound Imaging.

    Science.gov (United States)

    Deylami, Ali Mohades; Asl, Babak Mohammadzadeh

    2018-06-04

    Minimum variance beamformer (MVB) improves the resolution and contrast of medical ultrasound images compared with delay and sum (DAS) beamformer. The weight vector of this beamformer should be calculated for each imaging point independently, with a cost of increasing computational complexity. The large number of necessary calculations limits this beamformer to application in real-time systems. A beamformer is proposed based on the MVB with lower computational complexity while preserving its advantages. This beamformer avoids matrix inversion, which is the most complex part of the MVB, by solving the optimization problem iteratively. The received signals from two imaging points close together do not vary much in medical ultrasound imaging. Therefore, using the previously optimized weight vector for one point as initial weight vector for the new neighboring point can improve the convergence speed and decrease the computational complexity. The proposed method was applied on several data sets, and it has been shown that the method can regenerate the results obtained by the MVB while the order of complexity is decreased from O(L 3 ) to O(L 2 ). Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  16. Minimum Wages and Regional Disparity: An analysis on the evolution of price-adjusted minimum wages and their effects on firm profitability (Japanese)

    OpenAIRE

    MORIKAWA Masayuki

    2013-01-01

    This paper, using prefecture level panel data, empirically analyzes 1) the recent evolution of price-adjusted regional minimum wages and 2) the effects of minimum wages on firm profitability. As a result of rapid increases in minimum wages in the metropolitan areas since 2007, the regional disparity of nominal minimum wages has been widening. However, the disparity of price-adjusted minimum wages has been shrinking. According to the analysis of the effects of minimum wages on profitability us...

  17. Roton Minimum as a Fingerprint of Magnon-Higgs Scattering in Ordered Quantum Antiferromagnets.

    Science.gov (United States)

    Powalski, M; Uhrig, G S; Schmidt, K P

    2015-11-13

    A quantitative description of magnons in long-range ordered quantum antiferromagnets is presented which is consistent from low to high energies. It is illustrated for the generic S=1/2 Heisenberg model on the square lattice. The approach is based on a continuous similarity transformation in momentum space using the scaling dimension as the truncation criterion. Evidence is found for significant magnon-magnon attraction inducing a Higgs resonance. The high-energy roton minimum in the magnon dispersion appears to be induced by strong magnon-Higgs scattering.

  18. Detection of minimum-ionizing particles in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Kaplan, S.N.; Fujieda, I.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.

    1987-09-01

    Based on previously-reported results of the successful detection of alpha particles and 1- and 2-MeV protons with hydrogenated amorphous silicon (a-Si : H) diodes, detection of a single minimum-ionizing particle will require a total sensitive thickness of approximately 100 to 150 μm, either in the form of a single thick diode, or as a stack of several thinner diodes. Signal saturation at high dE/dx makes it necessary to simulate minimum ionization in order to evaluate present detectors. Two techniques, using pulsed infrared light, and pulsed x-rays, give single-pulse signals large enough for direct measurements. A third, using beta rays, requires multiple-transit signal averaging to produce signals measurable above noise. Signal amplitudes from the a-Si : H limit at 60% of the signal size from Si crystals extrapolated to the same thickness. This is consistent with an a-Si : H radiation ionization energy, W = 6 eV/electron-hole pair. Beta-ray signals are observed at the expected amplitude

  19. Behavioral and physiological significance of minimum resting metabolic rate in king penguins.

    Science.gov (United States)

    Halsey, L G; Butler, P J; Fahlman, A; Woakes, A J; Handrich, Y

    2008-01-01

    Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.

  20. High energy behavior of a six-point R-current correlator in N=4 supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Bartels, Jochen; Hentschinski, Martin; Mischler, Anna-Maria

    2009-12-01

    We study the high energy limit of a six-point R-current correlator in N=4 supersymmetric Yang-Mills theory for finite N c . We make use of the framework of perturbative resummation of large logarithms of the energy. More specifically, we apply the (extended) generalized leading logarithmic approximation. We find that the same conformally invariant two-to-four gluon vertex occurs as in non-supersymmetric Yang-Mills theory. As a new feature we find a direct coupling of the four-gluon t-channel state to the R-current impact factor. (orig.)

  1. The structure of water around the compressibility minimum

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, L. B. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Mineral Physics Institute, Stony Brook University, Stony Brook, New York, New York 11794-2100 (United States); Benmore, C. J., E-mail: benmore@aps.anl.gov [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Neuefeind, J. C. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37922 (United States); Parise, J. B. [Mineral Physics Institute, Stony Brook University, Stony Brook, New York, New York 11794-2100 (United States); Department of Geosciences, Stony Brook University, Stony Brook, New York, New York 11794-2100 (United States); Photon Sciences Division, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-12-07

    Here we present diffraction data that yield the oxygen-oxygen pair distribution function, g{sub OO}(r) over the range 254.2–365.9 K. The running O-O coordination number, which represents the integral of the pair distribution function as a function of radial distance, is found to exhibit an isosbestic point at 3.30(5) Å. The probability of finding an oxygen atom surrounding another oxygen at this distance is therefore shown to be independent of temperature and corresponds to an O-O coordination number of 4.3(2). Moreover, the experimental data also show a continuous transition associated with the second peak position in g{sub OO}(r) concomitant with the compressibility minimum at 319 K.

  2. 41 CFR 50-201.1101 - Minimum wages.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Minimum wages. 50-201... Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 201-GENERAL REGULATIONS § 50-201.1101 Minimum wages. Determinations of prevailing minimum wages or changes therein will be published in the Federal Register by the...

  3. Simple Levelized Cost of Energy (LCOE) Calculator Documentation | Energy

    Science.gov (United States)

    ;M, performance and fuel costs. Note that this doesn't include financing issues, discount issues ). This means that the LCOE is the minimum price at which energy must be sold for an energy project to the balance between debt-financing and equity-financing, and an assessment of the financial risk

  4. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mullett, J D [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dodd, R [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Williams, C J [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Triantos, G [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dearden, G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Shenton, A T [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Watkins, K G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Carroll, S D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Scarisbrick, A D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Keen, S [GSI Group, Cosford Lane, Swift Valley, Rugby, Warwickshire, CV21 1QN (United Kingdom)

    2007-08-07

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV{sub IMEP}) and the variance in the peak cylinder pressure position (Var{sub PPP}). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air.

  5. Minimum Wage Laws and the Distribution of Employment.

    Science.gov (United States)

    Lang, Kevin

    The desirability of raising the minimum wage long revolved around just one question: the effect of higher minimum wages on the overall level of employment. An even more critical effect of the minimum wage rests on the composition of employment--who gets the minimum wage job. An examination of employment in eating and drinking establishments…

  6. 29 CFR 505.3 - Prevailing minimum compensation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Prevailing minimum compensation. 505.3 Section 505.3 Labor... HUMANITIES § 505.3 Prevailing minimum compensation. (a)(1) In the absence of an alternative determination...)(2) of this section, the prevailing minimum compensation required to be paid under the Act to the...

  7. Nuclear energy, a point for discussion

    International Nuclear Information System (INIS)

    Seibel, W.

    1977-01-01

    In a world no longer believing in a life after death, life on this world becomes an absolute value and death an absolute threat. The irrational parts of the resistence against nuclear energy, this worry for the saving of this value and the fear of this threat are seen. Such fears cannot be met with tables about accident frequency and risk factors. Therefore in the author's opinion, also the churches are requested to give a concerning answer to the question of the meaning of life, for these fears not to arise repeatedly, namely today in protests against technical development and nuclear energy, and tomorrow somewhere else. (GL) [de

  8. The rise in the positron fraction. Distance limits on positron point sources from cosmic ray arrival directions and diffuse gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Gebauer, Iris; Bentele, Rosemarie [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    The rise in the positron fraction as observed by AMS and previously by PAMELA, cannot be explained by the standard paradigm of cosmic ray transport in which positrons are produced by cosmic-ray-gas interactions in the interstellar medium. Possible explanations are pulsars, which produce energetic electron-positron pairs in their rotating magnetic fields, or the annihilation of dark matter. Here we assume that these positrons originate from a single close-by point source, producing equal amounts of electrons and positrons. The propagation and energy losses of these electrons and positrons are calculated numerically using the DRAGON code, the source properties are optimized to best describe the AMS data. Using the FERMI-LAT limits on a possible dipole anisotropy in electron and positron arrival directions, we put a limit on the minimum distance of such a point source. The energy losses that these energetic electrons and positrons suffer on their way through the galaxy create gamma ray photons through bremsstrahlung and Inverse Compton scattering. Using the measurement of diffuse gamma rays from Fermi-LAT we put a limit on the maximum distance of such a point source. We find that a single electron positron point source powerful enough to explain the locally observed positron fraction must reside between 225 pc and 3.7 kpc distance from the sun and compare to known pulsars.

  9. Minimum bar size for flexure testing of irradiated SiC/SiC composite

    International Nuclear Information System (INIS)

    Youngblood, G.E.; Jones, R.H.

    1998-01-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23-24, 1997. The minimum bar size for 4-point flexure testing of SiC/SiC composite recommended by PNNL for irradiation effects studies is 30 x 6 x 2 mm 3 with a span-to-depth ratio of 10/1

  10. Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24

    Science.gov (United States)

    Martucci, M.; Munini, R.; Boezio, M.; Di Felice, V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Marcelli, N.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.; Raath, J. L.

    2018-02-01

    Precise measurements of the time-dependent intensity of the low-energy (solar activity periods, i.e., from minimum to maximum, are needed to achieve comprehensive understanding of such physical phenomena. The minimum phase between solar cycles 23 and 24 was peculiarly long, extending up to the beginning of 2010 and followed by the maximum phase, reached during early 2014. In this Letter, we present proton differential spectra measured from 2010 January to 2014 February by the PAMELA experiment. For the first time the GCR proton intensity was studied over a wide energy range (0.08–50 GeV) by a single apparatus from a minimum to a maximum period of solar activity. The large statistics allowed the time variation to be investigated on a nearly monthly basis. Data were compared and interpreted in the context of a state-of-the-art three-dimensional model describing the GCRs propagation through the heliosphere.

  11. Is zero-point energy physical? A toy model for Casimir-like effect

    International Nuclear Information System (INIS)

    Nikolić, Hrvoje

    2017-01-01

    Zero-point energy is generally known to be unphysical. Casimir effect, however, is often presented as a counterexample, giving rise to a conceptual confusion. To resolve the confusion we study foundational aspects of Casimir effect at a qualitative level, but also at a quantitative level within a simple toy model with only 3 degrees of freedom. In particular, we point out that Casimir vacuum is not a state without photons, and not a ground state for a Hamiltonian that can describe Casimir force. Instead, Casimir vacuum can be related to the photon vacuum by a non-trivial Bogoliubov transformation, and it is a ground state only for an effective Hamiltonian describing Casimir plates at a fixed distance. At the fundamental microscopic level, Casimir force is best viewed as a manifestation of van der Waals forces. - Highlights: • A toy model for Casimir-like effect with only 3 degrees of freedom is constructed. • Casimir vacuum can be related to the photon vacuum by a non-trivial Bogoliubov transformation. • Casimir vacuum is a ground state only for an effective Hamiltonian describing Casimir plates at a fixed distance. • At the fundamental microscopic level, Casimir force is best viewed as a manifestation of van der Waals forces.

  12. Do Some Workers Have Minimum Wage Careers?

    Science.gov (United States)

    Carrington, William J.; Fallick, Bruce C.

    2001-01-01

    Most workers who begin their careers in minimum-wage jobs eventually gain more experience and move on to higher paying jobs. However, more than 8% of workers spend at least half of their first 10 working years in minimum wage jobs. Those more likely to have minimum wage careers are less educated, minorities, women with young children, and those…

  13. Does the Minimum Wage Affect Welfare Caseloads?

    Science.gov (United States)

    Page, Marianne E.; Spetz, Joanne; Millar, Jane

    2005-01-01

    Although minimum wages are advocated as a policy that will help the poor, few studies have examined their effect on poor families. This paper uses variation in minimum wages across states and over time to estimate the impact of minimum wage legislation on welfare caseloads. We find that the elasticity of the welfare caseload with respect to the…

  14. 29 CFR 4.159 - General minimum wage.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true General minimum wage. 4.159 Section 4.159 Labor Office of... General minimum wage. The Act, in section 2(b)(1), provides generally that no contractor or subcontractor... a contract less than the minimum wage specified under section 6(a)(1) of the Fair Labor Standards...

  15. Energy network dispatch optimization under emergency of local energy shortage

    International Nuclear Information System (INIS)

    Cai, Tianxing; Zhao, Chuanyu; Xu, Qiang

    2012-01-01

    The consequence of short-time energy shortage under extreme conditions, such as earthquake, tsunami, and hurricane, may cause local areas to suffer from delayed rescues, widespread power outages, tremendous economic losses, and even public safety threats. In such urgent events of local energy shortage, agile energy dispatching through an effective energy transportation network, targeting the minimum energy recovery time, should be a top priority. In this paper, a novel methodology is developed for energy network dispatch optimization under emergency of local energy shortage, which includes four stages of work. First, emergency-area-centered energy network needs to be characterized, where the capacity, quantity, and availability of various energy sources are determined. Second, the energy initial situation under emergency conditions needs to be identified. Then, the energy dispatch optimization is conducted based on a developed MILP (mixed-integer linear programming) model in the third stage. Finally, the sensitivity of the minimum dispatch time with respect to uncertainty parameters is characterized by partitioning the entire space of uncertainty parameters into multiple subspaces. The efficacy of the developed methodology is demonstrated via a case study with in-depth discussions. -- Highlights: ► Address the energy network dispatch problem under emergency of local energy shortage. ► Minimize the energy restoration time for the entire energy network under emergency events. ► Develop a new MILP model and a sensitivity analysis method with respect to uncertainties.

  16. Controlled levitation of Y-Ba-Cu-O bulk superconductors and energy minimum analysis; Y-Ba-Cu-O baruku chodendotai no fujo to enerugi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Magashima, K. [Railway Technical Research Institute, Tokyo (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Canbridge (United States); Sawa, K. [keio University, Tokyo (Japan); Murakami, M. [Superconductivity research Laboratory, Tokyo (Japan)

    1999-11-25

    The levitation of bulk Y-Ba-Cu-O superconductors can be controlled using a Bi-Sr-Ca-Cu-O (Bi2223) superconducting electromagnet. It was found that stable levitation without tilting could be obtained only when the sample trapped a certain amount of fields, the minimum of which depended on the external field and sample dimensions. We employed a novel analysis method for levitation based on the total energy balance, which is much simpler than the force method and could be applied to understanding general levitation behavior. Numerical analyses thus developed showed that stable levitation of superconductors with large dimensions cen only be achieved when the induced currents can flow with three-dimensional freedom. (author)

  17. Minimum and Full Fluidization Velocity for Alumina Used in the Aluminum Smelter

    Directory of Open Access Journals (Sweden)

    Paulo Douglas S. de Vasconcelos

    2011-11-01

    Full Text Available Fluidization is an engineering unit operation that occurs when a fluid (liquid or gas ascends through a bed of particles, and these particles get a velocity of minimum fluidization enough to stay in suspension, but without carrying them in the ascending flow. As from this moment the powder behaves as liquid at boiling point, hence the term “fluidization”. This operation is widely used in the aluminum smelter processes, for gas dry scrubbing (mass transfer and in a modern plant for continuous alumina pot feeding (particles’ momentum transfer. The understanding of the alumina fluoride rheology is of vital importance in the design of fluidized beds for gas treatment and fluidized pipelines for pot feeding. This paper shows the results of the experimental and theoretical values of the minimum and full fluidization velocities for the alumina fluoride used to project the state of the art round non‐metallic air‐fluidized conveyor of multiples outlets.

  18. Minimum Thrust Load Control for Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2012-01-01

    — Offshore wind energy capitalizes on the higher and less turbulent wind at sea. Shallow water sites are profitable for deployment of monopile wind turbines at water depths of up to 30 meters. Beyond 30 meters, the wind is even stronger and less turbulent. At these depths, floating wind turbines be...... and power stability when using the new control strategy.......— Offshore wind energy capitalizes on the higher and less turbulent wind at sea. Shallow water sites are profitable for deployment of monopile wind turbines at water depths of up to 30 meters. Beyond 30 meters, the wind is even stronger and less turbulent. At these depths, floating wind turbines...... presents a new minimum thrust control strategy capable of stabilizing a floating wind turbine. The new control strategy explores the freedom of variable generator speed above rated wind speed. A comparison to the traditional constant speed strategy, shows improvements in structural fore-aft oscillations...

  19. Four points function fitted and first derivative procedure for determining the end points in potentiometric titration curves: statistical analysis and method comparison.

    Science.gov (United States)

    Kholeif, S A

    2001-06-01

    A new method that belongs to the differential category for determining the end points from potentiometric titration curves is presented. It uses a preprocess to find first derivative values by fitting four data points in and around the region of inflection to a non-linear function, and then locate the end point, usually as a maximum or minimum, using an inverse parabolic interpolation procedure that has an analytical solution. The behavior and accuracy of the sigmoid and cumulative non-linear functions used are investigated against three factors. A statistical evaluation of the new method using linear least-squares method validation and multifactor data analysis are covered. The new method is generally applied to symmetrical and unsymmetrical potentiometric titration curves, and the end point is calculated using numerical procedures only. It outperforms the "parent" regular differential method in almost all factors levels and gives accurate results comparable to the true or estimated true end points. Calculated end points from selected experimental titration curves compatible with the equivalence point category of methods, such as Gran or Fortuin, are also compared with the new method.

  20. Minimum ventilation rates as a function of the use and the frequency of use of rooms. Final report. Mindestluftwechsel in Abhaengigkeit von der Nutzungsart und -intensitaet. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, J; Schlueter, G; Angerer, C; Meyer, H D

    1986-12-01

    From a hygienic view-point optimum indoor air quality can be characterized as the complete absence of pollutants. The most important sources of such pollutants are reviewed, amongst them those entering a room from outside, those generated by man and his activities and those emanating from different materials such as building materials, furnishing, cleansing and polishing agents. In view of achieving acceptable indoor conditions all emissions have to be kept as low as possible. Carbon dioxide and body odors as well as pollutants, the concentrations of which cannot be reduced to non-relevant levels by product control, should be eliminated by ventilation measures. However, such measures should not exceed a given limit, since in order to minimize energy consumption, air exchange rates have to be kept at a minimum. As a result of the investigations, it is concluded that the minimum ventilation rate should be derived from the acceptable CO/sub 2/ concentration. The concentrations of all other pollutants (e.g., formaldehyde) should be limited by product control or source removal. With 75 refs., 10 tabs., 19 figs.

  1. Illusions, weak points and realism in global energy policy

    International Nuclear Information System (INIS)

    Kleinpeter, M.; Heierle, M.

    2005-01-01

    This article asks the question if renewable forms of energy are a viable option for future energy supplies. The energy-supply situation is discussed on the basis of the results of a comprehensive study made by the World Energy Council and the IAASA in Vienna in 1998. This study produced six scenarios for energy supply with reference to the years 2050 and 2100. The situation concerning various energy carriers such as oil, gas, coal and hydropower is reviewed. Questions concerning atomic energy are looked at. The chances for renewable forms of energy such as solar and wind energy, biomass, geothermal energy and hydropower are also reviewed

  2. Mid-point review of the German energy transition

    International Nuclear Information System (INIS)

    Lauer, H.; Safa, H.; Guidez, J.

    2017-01-01

    The result of the 2015 review of the German energy transition is lukewarm. First: generating 20 % of the electricity production through wind power and solar energy appears to be very costly in Germany. Secondly there is practically no effect on the reduction of CO_2 releases as coal has been re-introduced to play the role of nuclear energy which was carbon-free to counter-balance the intermittency of renewable energies. Thirdly a necessity to keep all thermal plants ready to operate in order to cope with the intermittency of renewable energies as no adequate means of energy storage is available, appears to be a luxury that only Germany can afford. And fourthly, the cost of electric power for households and small enterprises is all the higher as the government economic policy is to spare German electro-intensive industry. One of the side effects of the German energy transition policy is to disturb the European market of electricity when favourable climate conditions make green electricity very abundant. In this situation electricity prices drop sharply and can even become negative while green electricity is always paid to the producer at a steady price guaranteed by the state. (A.C.)

  3. Low-energy electron point projection microscopy of suspended graphene, the ultimate 'microscope slide'

    International Nuclear Information System (INIS)

    Mutus, J Y; Livadaru, L; Urban, R; Salomons, M H; Cloutier, M; Wolkow, R A; Robinson, J T

    2011-01-01

    Point projection microscopy (PPM) is used to image suspended graphene by using low-energy electrons (100-205 eV). Because of the low energies used, the graphene is neither damaged nor contaminated by the electron beam for doses of the order of 10 7 electrons per nm 2 . The transparency of graphene is measured to be 74%, equivalent to electron transmission through a sheet twice as thick as the covalent radius of sp 2 -bonded carbon. Also observed is rippling in the structure of the suspended graphene, with a wavelength of approximately 26 nm. The interference of the electron beam due to diffraction off the edge of a graphene knife edge is observed and is used to calculate a virtual source size of 4.7±0.6 A for the electron emitter. It is demonstrated that graphene can serve as both the anode and the substrate in PPM, thereby avoiding distortions due to strong field gradients around nanoscale objects. Graphene can be used to image objects suspended on the sheet using PPM and, in the future, electron holography.

  4. New Minimum Wage Research: A Symposium.

    Science.gov (United States)

    Ehrenberg, Ronald G.; And Others

    1992-01-01

    Includes "Introduction" (Ehrenberg); "Effect of the Minimum Wage [MW] on the Fast-Food Industry" (Katz, Krueger); "Using Regional Variation in Wages to Measure Effects of the Federal MW" (Card); "Do MWs Reduce Employment?" (Card); "Employment Effects of Minimum and Subminimum Wages" (Neumark,…

  5. Generalized zero point anomaly

    International Nuclear Information System (INIS)

    Nogueira, Jose Alexandre; Maia Junior, Adolfo

    1994-01-01

    It is defined Zero point Anomaly (ZPA) as the difference between the Effective Potential (EP) and the Zero point Energy (ZPE). It is shown, for a massive and interacting scalar field that, in very general conditions, the renormalized ZPA vanishes and then the renormalized EP and ZPE coincide. (author). 3 refs

  6. Teaching the Minimum Wage in Econ 101 in Light of the New Economics of the Minimum Wage.

    Science.gov (United States)

    Krueger, Alan B.

    2001-01-01

    Argues that the recent controversy over the effect of the minimum wage on employment offers an opportunity for teaching introductory economics. Examines eight textbooks to determine topic coverage but finds little consensus. Describes how minimum wage effects should be taught. (RLH)

  7. The Gaussian cell two-point 'energy-like' equation : application to large-scale galaxy redshift and peculiar motion surveys

    NARCIS (Netherlands)

    Zaroubi, S; Branchini, E

    2005-01-01

    We introduce a simple linear equation relating the line-of-sight peculiar-velocity and density contrast correlation functions. The relation, which we call the Gaussian cell two-point 'energy-like' equation, is valid at the distant-observer limit and requires Gaussian smoothed fields. In the variance

  8. Casimir energy of the Nambu-Goto string with Gauss-Bonnet term and point-like masses at the ends

    OpenAIRE

    Hadasz, Leszek

    1999-01-01

    We calculate (using zeta function regularization) the Casimir energy of the rotating Nambu-Goto string with the Gauss-Bonnet term in the action and point-like masses at the ends. The resulting value turns out to be negative for all values of the parameters of the model.

  9. Prediction of point-defect migration energy barriers in alloys using artificial intelligence for atomistic kinetic Monte Carlo applications

    Energy Technology Data Exchange (ETDEWEB)

    Castin, N. [Structural Materials Group, Nuclear Materials Science Institute, Studiecentrum voor Kerneenergie Centre d' etude de l' energie nucleaire (SCK CEN), Boeretang 200, B-2400 Mol (Belgium); Universite Libre de Bruxelles (ULB), Physique des Solides Irradies et Nanostructures (PSIN), CP234 Boulevard du triomphe, Brussels (Belgium); Malerba, L. [Structural Materials Group, Nuclear Materials Science Institute, Studiecentrum voor Kerneenergie Centre d' etude de l' energie nucleaire (SCK CEN), Boeretang 200, B-2400 Mol (Belgium)], E-mail: lmalerba@sckcen.be

    2009-09-15

    We significantly improved a previously proposed method to take into account chemical and also relaxation effects on point-defect migration energy barriers, as predicted by an interatomic potential, in a rigid lattice atomistic kinetic Monte Carlo simulation. Examples of energy barriers are rigorously calculated, including chemical and relaxation effects, as functions of the local atomic configuration, using a nudged elastic bands technique. These examples are then used to train an artificial neural network that provides the barriers on-demand during the simulation for each configuration encountered by the migrating defect. Thanks to a newly developed training method, the configuration can include a large number of neighbour shells, thereby properly including also strain effects. Satisfactory results have been obtained when the configuration includes different chemical species only. The problems encountered in the extension of the method to configurations including any number of point-defects are stated and solutions to tackle them are sketched.

  10. 30 CFR 75.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ..., including rotation resistant). For rope lengths less than 3,000 feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet...

  11. Performance of a Tethered Point Wave-Energy Absorber in Regular and Irregular Waves

    KAUST Repository

    Bachynski, Erin E.; Young, Yin Lu; Yeung, Ronald W.

    2010-01-01

    The importance of the mooring system on the dynamic response of a point-absorber type ocean-wave energy converter (WEC) is investigated using a frequency-domain approach. In order to ensure the safety of WECs, careful consideration of the response and resonance frequencies in all motions must be evaluated, including the effects of the mooring system. In this study, a WEC floater with a closed, flat bottom is modeled as a rigid vertical cylinder tethered by elastic mooring lines. The WEC hydrodynamic added mass and damping are obtained using established potential-flow methods, with additional damping provided by the energy-extraction system. The results show that the response of the WEC, and the corresponding power takeoff, varies with the diameter-to-draft (D=T) ratio, mooring system stiffness, and mass distribution. For a given wave climate in Northern California, near San Francisco, the heave energy extraction is found to be best for a shallow WEC with a soft mooring system, compared to other systems that were examined. This result assumes a physical limit (cap) on the motion which is related to the significant wave height to draft ratio. Shallow draft designs, however, may experience excessive pitch motions and relatively larger viscous damping. In order to mitigate the pitch response, the pitch radius of gyration should be small and the center of mass should be low. Copyright © 2010 by ASME.

  12. Regeneration of KS0 mesons at UNK energies

    International Nuclear Information System (INIS)

    Struminskii, B.V.; Shelkovenko, A.N.

    1991-01-01

    It is well known that in the energy of the Serpukhov, FNAL and ISR accelerators the total cross sections σ tot (s) grow universally with energy. From the point of view of QCD this effect confirms the concept of gluon dominance, while viewed from the j plane it indicates preponderance of the Pomeron in the elastic scattering amplitude. Recently, however, a number of experiments gave indications of a more complicated structure of the elastic amplitude at high energies. For example, the UA4 collaboration obtained a rather large value for the ratio of the real and imaginary parts of the elastic bar pp forward scattering amplitude at √s = 546 GeV: ρ = 0.24. This is nearly twice as large as the predictions of most models. At the ISR energies √s = 53 GeV a difference was discovered between the pp and bar pp differential cross sections in the region of the diffraction minimum: in the pp case there is a minimum, and in the bar pp case there is not. An analysis of these phenomena indicates the presence, in the elastic scattering amplitude of nucleons, of a new C-odd asymptotic component - the odderon. In QCD the bare odderon and Pomeron are represented as Reggeized white gluon exchange. The odderon exchange leads, in particular, to the violation of the Pomeranchuk theorem. Starting from the representation of the bare odderon as the Reggeized 3-gluon exchange, the authors estimate its contribution to the amplitude f 21 for regeneration of the K 0 s meson on hydrogen. They show that at UNK energies the effect is concentrated mainly in the phase var-phi 21 and amounts to about 20 degree

  13. Low energy class 1 typehouses according to the Danish building regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Kragh, Jesper; Svendsen, Svend

    2008-01-01

    In 2005 the Danish Building regulations introduced two low energy classes for buildings in addition to tightened minimum requirements. The low energy class 1 and low energy class 2 correspond to total energy use, i.e. energy use for heating, ventilation, cooling and domestic hot water, as 50......% and 75% of the minimum requirement respectively. The main purpose of introducing the low energy classes were to further support and encourage the development of low energy buildings in Denmark. In 2010 it is expected that demands in the Building Regulations are tightened by 25-30% and in 2015...... it is expected that the minimum demand will correspond to the low energy class 1 demands of today. In order to secure this development in the building regulations, it is essential to support the development of low energy solutions and demonstrate that the goal is well within reach of the Danish building industry...

  14. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  15. Minimum Energy Dissipation under Cocurrent Flow in Packed Beds

    Czech Academy of Sciences Publication Activity Database

    Akramov, T.A.; Stavárek, Petr; Jiřičný, Vladimír; Staněk, Vladimír

    2011-01-01

    Roč. 50, č. 18 (2011), s. 10824-10832 ISSN 0888-5885 R&D Projects: GA ČR GA104/09/0880 Institutional research plan: CEZ:AV0Z40720504 Keywords : energy dissipation * current flow * packed bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.237, year: 2011

  16. radiation safety culture for developing country: Basis for s minimum operational radiation protection programme

    International Nuclear Information System (INIS)

    Rozental, J. J.

    1997-01-01

    The purpose of this document is to present a methodology for an integrated strategy aiming at establishing an adequate radiation Safety infrastructure for developing countries, non major power reactor programme. Its implementation will allow these countries, about 50% of the IAEA's Member States, to improve marginal radiation safety, specially to those recipients of technical assistance and do not meet the Minimum radiation Safety Requirements of the IAEA's Basic Safety Standards for radiation protection Progress in the implementation of safety regulations depends on the priority of the government and its understanding and conviction about the basic requirements for protection against the risks associated with exposure to ionizing radiation. There is no doubt to conclude that the reasons for the deficiency of sources control and dose limitation are related to the lack of an appropriate legal and regulatory framework, specially considering the establishment of an adequate legislation; A minimum legal infrastructure; A minimum operational radiation safety programme; Alternatives for a Point of Optimum Contact, to avoid overlap and conflict, that is: A 'Memorandum of Understanding' among Regulatory Authorities in the Country, dealing with similar type of licensing and inspection

  17. Determination of minimum flood flow for regeneration of floodplain forest from inundated forest width-stage curve

    Directory of Open Access Journals (Sweden)

    Song-hao Shang

    2010-09-01

    Full Text Available Floods are essential for the regeneration and growth of floodplain forests in arid and semiarid regions. However, river flows, and especially flood flows, have decreased greatly with the increase of water diversion from rivers and/or reservoir regulation, resulting in severe deterioration of floodplain ecosystems. Estimation of the flood stage that will inundate the floodplain forest is necessary for the forest's restoration or protection. To balance water use for economic purposes and floodplain forest protection, the inundated forest width method is proposed for estimating the minimum flood stage for floodplain forests from the inundated forest width-stage curve. The minimum flood stage is defined as the breakpoint of the inundated forest width-stage curve, and is determined directly or analytically from the curve. For the analytical approach, the problem under consideration is described by a multi-objective optimization model, which can be solved by the ideal point method. Then, the flood flow at the minimum flood stage (minimum flood flow, which is useful for flow regulation, can be calculated from the stage-discharge curve. In order to protect the forest in a river floodplain in a semiarid area in Xinjiang subject to reservoir regulation upstream, the proposed method was used to determine the minimum flood stage and flow for the forest. Field survey of hydrology, topography, and forest distribution was carried out at typical cross sections in the floodplain. Based on the survey results, minimum flood flows for six typical cross sections were estimated to be between 306 m3/s and 393 m3/s. Their maximum, 393 m3/s, was considered the minimum flood flow for the study river reach. This provides an appropriate flood flow for the protection of floodplain forest and can be used in the regulation of the upstream reservoir.

  18. Feasibility Study for Using a Linear Transverse Flux Machine as part of the Structure of Point Absorber Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Ilana Pereira da Costa Cunha

    2017-10-01

    Full Text Available This is a feasibility study for the generation of wave energy by means of a transverse flux machine connected to a device for converting wave energy known as Point Absorber. The article contains literature review on the topic and analysis of data obtained by means of a prototype built in the laboratory. Based on the results, the study concludes that this use is feasible.

  19. Predicting Biological Information Flow in a Model Oxygen Minimum Zone

    Science.gov (United States)

    Louca, S.; Hawley, A. K.; Katsev, S.; Beltran, M. T.; Bhatia, M. P.; Michiels, C.; Capelle, D.; Lavik, G.; Doebeli, M.; Crowe, S.; Hallam, S. J.

    2016-02-01

    Microbial activity drives marine biochemical fluxes and nutrient cycling at global scales. Geochemical measurements as well as molecular techniques such as metagenomics, metatranscriptomics and metaproteomics provide great insight into microbial activity. However, an integration of molecular and geochemical data into mechanistic biogeochemical models is still lacking. Recent work suggests that microbial metabolic pathways are, at the ecosystem level, strongly shaped by stoichiometric and energetic constraints. Hence, models rooted in fluxes of matter and energy may yield a holistic understanding of biogeochemistry. Furthermore, such pathway-centric models would allow a direct consolidation with meta'omic data. Here we present a pathway-centric biogeochemical model for the seasonal oxygen minimum zone in Saanich Inlet, a fjord off the coast of Vancouver Island. The model considers key dissimilatory nitrogen and sulfur fluxes, as well as the population dynamics of the genes that mediate them. By assuming a direct translation of biocatalyzed energy fluxes to biosynthesis rates, we make predictions about the distribution and activity of the corresponding genes. A comparison of the model to molecular measurements indicates that the model explains observed DNA, RNA, protein and cell depth profiles. This suggests that microbial activity in marine ecosystems such as oxygen minimum zones is well described by DNA abundance, which, in conjunction with geochemical constraints, determines pathway expression and process rates. Our work further demonstrates how meta'omic data can be mechanistically linked to environmental redox conditions and biogeochemical processes.

  20. Scattering and absorption of particles emitted by a point source in a cluster of point scatterers

    International Nuclear Information System (INIS)

    Liljequist, D.

    2012-01-01

    A theory for the scattering and absorption of particles isotropically emitted by a point source in a cluster of point scatterers is described and related to the theory for the scattering of an incident particle beam. The quantum mechanical probability of escape from the cluster in different directions is calculated, as well as the spatial distribution of absorption events within the cluster. A source strength renormalization procedure is required. The average quantum scattering in clusters with randomly shifting scatterer positions is compared to trajectory simulation with the aim of studying the validity of the trajectory method. Differences between the results of the quantum and trajectory methods are found primarily for wavelengths larger than the average distance between nearest neighbour scatterers. The average quantum results include, for example, a local minimum in the number of absorption events at the location of the point source and interference patterns in the angle-dependent escape probability as well as in the distribution of absorption events. The relative error of the trajectory method is in general, though not generally, of similar magnitude as that obtained for beam scattering.