WorldWideScience

Sample records for minimum energy configurations

  1. Reversed-field pinch configuration with minimum energy and finite beta

    International Nuclear Information System (INIS)

    Zhang Peng

    1989-01-01

    The reversed-field pinch (RFP) configuration has been studied for the case of finite beta. Suydam's condition and the sufficient criterion have been used to examine this configuration. Results of numerical calculations show that the critical value of the pinch parameter Θ for the appearance of the reverse toroidal field increases as the β-value increases. The critical value of Θ for the helical state increases with β as well. Suydam's and Robinson's stability regions increase and shift towards higher values of Θ with increasing β. Theoretical results for finite β coincide with recent RFP experimental results

  2. Shungnak Energy Configuration Options.

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

  3. Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State

    OpenAIRE

    Regnier, S.; Priest, E. R.

    2008-01-01

    To understand the physics of solar flares, including the local reorganization of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We inves...

  4. Bistable minimum energy structures (BiMES) for binary robotics

    International Nuclear Information System (INIS)

    Follador, M; Conn, A T; Rossiter, J

    2015-01-01

    Bistable minimum energy structures (BiMES) are devices derived from the union of the concepts of dielectric elastomer minimum energy structures and bistable systems. This article presents this novel approach to active, elastic and bistable structures. BiMES are based on dielectric elastomer actuators (DEAs), which act as antagonists and provide the actuation for switching between the two equilibrium positions. A central elastic beam is the backbone of the structure and is buckled into the minimum energy configurations by the action of the two DEAs. The theory and the model of the device are presented, and also its fabrication process. BiMES are considered as fundamental units for more complex structures, which are presented and fabricated as proof of concept. Two different ways of combining the multiple units are proposed: a parallel configuration, to make a simple gripper, and a serial configuration, to generate a binary device. The possibility of using the bistable system as a continuous bender actuator, by modulating the actuation voltage of the two DEAs, was also investigated. (paper)

  5. Design for minimum energy in interstellar communication

    Science.gov (United States)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  6. Binary cluster collision dynamics and minimum energy conformations

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Rogan, José; Valdivia, J.A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Varas, A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Nano-Bio Spectroscopy Group, ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián (Spain); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile)

    2013-10-15

    The collision dynamics of one Ag or Cu atom impinging on a Au{sub 12} cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au{sub 12}→Au{sub 13} is mostly preserved by the resulting planar Au{sub 12}Ag and Au{sub 12}Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au{sub 12}Ag and 4483 Au{sub 12}Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously.

  7. The configurational energy gap between amorphous and crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kail, F. [GRMT, Department of Physics, University of Girona, Montilivi Campus, 17071 Girona, Catalonia (Spain); Univ. Barcelona, Dept. Fisica Aplicada and Optica, 08028 Barcelona (Spain); Farjas, J.; Roura, P. [GRMT, Department of Physics, University of Girona, Montilivi Campus, 17071 Girona, Catalonia (Spain); Secouard, C. [Univ. Barcelona, Dept. Fisica Aplicada and Optica, 08028 Barcelona (Spain); Nos, O.; Bertomeu, J. [CEA Grenoble, LTS, 17 rue des Martyrs, 38054 Grenoble cedex (France); Roca i Cabarrocas, P. [LPICM, Ecole Polytechnique, 91128 Palaiseau (France)

    2011-11-15

    The crystallization enthalpy of pure amorphous silicon (a-Si) and hydrogenated a-Si was measured by differential scanning calorimetry (DSC) for a large set of materials deposited from the vapour phase by different techniques. Although the values cover a wide range (200-480 J/g), the minimum value is common to all the deposition techniques used and close to the predicted minimum strain energy of relaxed a-Si (240 {+-} 25 J/g). This result gives a reliable value for the configurational energy gap between a-Si and crystalline silicon. An excess of enthalpy above this minimum value can be ascribed to coordination defects. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. New superconducting coil configuration for energy storage

    International Nuclear Information System (INIS)

    Tokorabet, M.; Mailfert, A.; Colteu, A.

    1998-01-01

    Energy storage using superconducting coils involves the problem of electromagnetic field pollution outside the considered system. Different configurations are widely studied: the torus, the alone solenoid and multiple parallel solenoids enclosed in one container. A new configuration which minimizes the external pollution is studied in this paper. The theoretical system is composed of two spherical distributions of the current which are concentric. The analytical study uses solution of Laplace equations. Parametric study covers energy, flux density and geometrical data. The second study concerns the numerical approach of this design using coaxial solenoids. A comparison between this new system and the known systems is presented as a conclusion. (orig.)

  9. Energy savings in distillation via identification of useful configurations

    Science.gov (United States)

    Shah, Vishesh Hemanshu

    with low heat duties. The heat duty requirements are estimated using the Underwood equations. Application of these frameworks has provided an array of distillation configurations that can potentially have up to 50% lower heat duty than the currently used distillation configuration for petroleum crude distillation. Since petroleum crude distillation is a highly energy-intensive process, these configurations have tremendous potential to improve the energy efficiency of a refinery. Furthermore, we provide evidence to disprove some conventional notions about thermally coupled configurations. We also describe some previously unknown distillation configurations that use less than (n-1) distillation columns for an n-component separation. We demonstrate that these novel distillation configurations have significantly lower heat duties than the currently known distillation configurations with less than (n-1) columns. Since these configurations have one or more distillation columns that produce sidestreams, a quick screening tool based on Underwood's equations cannot be used to estimate the heat duty requirements of these configurations. Therefore, we lay the foundation for equations analogous to Underwood's equations to estimate the minimum heat duty requirements of such distillation configurations.

  10. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2010-01-01

    The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.

  11. Research on configuration of railway self-equipped tanker based on minimum cost maximum flow model

    Science.gov (United States)

    Yang, Yuefang; Gan, Chunhui; Shen, Tingting

    2017-05-01

    In the study of the configuration of the tanker of chemical logistics park, the minimum cost maximum flow model is adopted. Firstly, the transport capacity of the park loading and unloading area and the transportation demand of the dangerous goods are taken as the constraint condition of the model; then the transport arc capacity, the transport arc flow and the transport arc edge weight are determined in the transportation network diagram; finally, the software calculations. The calculation results show that the configuration issue of the tankers can be effectively solved by the minimum cost maximum flow model, which has theoretical and practical application value for tanker management of railway transportation of dangerous goods in the chemical logistics park.

  12. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J.

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in

  13. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in the first

  14. Energy analysis of thermal energy storages with grid configurations

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.

    2014-01-01

    Highlights: • Grid configurations of TESs are developed and assessed. • Characteristics of various configurations of TESs are developed as functions of properties. • Functions for the discharge temperature and the discharge energy of the TES are developed. - Abstract: In some thermal networks like district energy systems, there can exist conditions, depending on space availability, economics, project requirements, insulation, storing media type and other issues, for which it may be advantageous to utilize several thermal energy storages (TESs) instead of one. Here, various configurations for multiple TESs are proposed and investigated. Significant parameters for a TES, or a set of TESs, include discharging temperature and recovered energy. First, one TES is modeled to determine the final temperature, energy recovery, and energy efficiency. Next, characteristics for various grid configurations of multiple TESs are developed as functions of TES characteristics (e.g., charging and discharging temperatures and energy quantities). Series, parallel and comprehensive grid TES configurations are considered. In the parallel configuration, the TESs behave independently. This suggests that the TES can consist of different storage media types and sizes, and that there is no restriction on initial temperature of the TES. In the series configuration, the situation is different because the TESs are connected directly or indirectly through a heat exchanger. If there is no heat exchanger between the TESs, the TES storage media should be the same, because the outlet of one TES in the series is the inlet to the next. The initial temperature of the second TES must be smaller than the discharge temperature of the first. There is no restriction on the TES size for series configurations. The general grid configuration is observed to exhibit characteristics of both series and parallel configurations

  15. Minimum energy consumption process synthesis for energy saving

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ping, Jia [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China); Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Fang, Wang; Shu-Guang, Xiang; Xin-Sun, Tan; Fang-Yu, Han [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China)

    2008-05-15

    The paper presents a synthesis strategy for the chemical processes with energy saving. The concept of minimum energy consumption process (MECP) is proposed. Three characteristics of MECP are introduced, including thermodynamic minimum energy demand, energy consumption efficiency and integration degree. These characteristics are evaluated according to quantitative thermodynamic analysis and qualitative knowledge rules. The procedure of synthesis strategy is proposed to support the generation of MECP alternatives, which combine flowsheet integration and heat integration. The cases studies will focus on how integration degrees of a process affect the energy-saving results. The separation sequences of the hydrodealkylation of toluene (HDA) process and ethanol distillation process as case studies are used to illustrate. (author)

  16. Electronic configurations and energies in some thermodynamically correlated laves compounds

    International Nuclear Information System (INIS)

    Campbell, G.M.

    1979-04-01

    The known electronic configurations of simple elements in Laves compounds are correlated with those of the more complex systems to determine their electronic configurations and gaseous state promotion energies

  17. Charmonium and other onia at minimum energy

    International Nuclear Information System (INIS)

    Dalpiaz, P.

    1979-01-01

    In recent years considerable interest has been focused at CERN on the experimental possibilities offered by the antiproton-proton collisions to answer some of the fundamental questions of the present-day physics. Various working groups, set up at CERN during the last two years, have examined the physics potentials and the technical feasibility of anti pp colliding devices at various energies. As a consequence of this work, two anti pp projects have already been approved: the ISR anti pp project, and the SPS collider, covering a centre-of-mass energy range from 20 to 540 GeV. The Low-Energy Antiproton Ring (LEAR) projectsup(2)), allowing the study of phenomena under the 2msub(p) threshold up to 2.3 GeV, is at present under study. Transforming LEAR into a anti pp minicollidersup(2)), it is possible to reach a centre of-mass energy of 3.7 GeV. -Considering, then, the anti pp physics facilities at CERN as a whole project, it is seen that the energy range between 3.7 GeV and 20 GeV remains uncovered. In this report the physics interest of experiments in a centre-of-mass energy range between 2 and 20 GeV will be outlined and the technical feasibility investigated. (orig./FKS)

  18. Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  19. Minimum wall pressure coefficient of orifice plate energy dissipater

    Directory of Open Access Journals (Sweden)

    Wan-zheng Ai

    2015-01-01

    Full Text Available Orifice plate energy dissipaters have been successfully used in large-scale hydropower projects due to their simple structure, convenient construction procedure, and high energy dissipation ratio. The minimum wall pressure coefficient of an orifice plate can indirectly reflect its cavitation characteristics: the lower the minimum wall pressure coefficient is, the better the ability of the orifice plate to resist cavitation damage is. Thus, it is important to study the minimum wall pressure coefficient of the orifice plate. In this study, this coefficient and related parameters, such as the contraction ratio, defined as the ratio of the orifice plate diameter to the flood-discharging tunnel diameter; the relative thickness, defined as the ratio of the orifice plate thickness to the tunnel diameter; and the Reynolds number of the flow through the orifice plate, were theoretically analyzed, and their relationships were obtained through physical model experiments. It can be concluded that the minimum wall pressure coefficient is mainly dominated by the contraction ratio and relative thickness. The lower the contraction ratio and relative thickness are, the larger the minimum wall pressure coefficient is. The effects of the Reynolds number on the minimum wall pressure coefficient can be neglected when it is larger than 105. An empirical expression was presented to calculate the minimum wall pressure coefficient in this study.

  20. Energy and environmental norms on Minimum Vital Flux

    International Nuclear Information System (INIS)

    Maran, S.

    2008-01-01

    By the end of the year will come into force the recommendations on Minimum Vital flow and operators of hydroelectric power plants will be required to make available part of water of their derivations in order to protect river ecosystems. In this article the major energy and environmental consequences of these rules, we report some quantitative evaluations and are discusses the proposals for overcoming the weaknesses of the approach in the estimation of Minimum Vital Flux [it

  1. Improved initial guess for minimum energy path calculations

    International Nuclear Information System (INIS)

    Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt; Jónsson, Hannes

    2014-01-01

    A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used

  2. Energy expenditure, economic growth, and the minimum EROI of society

    International Nuclear Information System (INIS)

    Fizaine, Florian; Court, Victor

    2016-01-01

    We estimate energy expenditure for the US and world economies from 1850 to 2012. Periods of high energy expenditure relative to GDP (from 1850 to 1945), or spikes (1973–74 and 1978–79) are associated with low economic growth rates, and periods of low or falling energy expenditure are associated with high and rising economic growth rates (e.g. 1945–1973). Over the period 1960–2010 for which we have continuous year-to-year data for control variables (capital formation, population, and unemployment rate) we estimate that, statistically, in order to enjoy positive growth, the US economy cannot afford to spend more than 11% of its GDP on energy. Given the current energy intensity of the US economy, this translates in a minimum societal EROI of approximately 11:1 (or a maximum tolerable average price of energy of twice the current level). Granger tests consistently reveal a one way causality running from the level of energy expenditure (as a fraction of GDP) to economic growth in the US between 1960 and 2010. A coherent economic policy should be founded on improving net energy efficiency. This would yield a “double dividend”: increased societal EROI (through decreased energy intensity of capital investment), and decreased sensitivity to energy price volatility. - Highlights: •We estimate energy expenditures as a fraction of GDP for the US, the world (1850–2012), and the UK (1300–2008). •Statistically speaking, the US economy cannot afford to allocate more than 11% of its GDP to energy expenditures in order to have a positive growth rate. •This corresponds to a maximum tolerable average price of energy of twice the current level. •In the same way, US growth is only possible if its primary energy system has at least a minimum EROI of approximately 11:1.

  3. Towards minimum energy houses with EPC {<=}0; Op weg naar minimum energie woningen met EPC {<=}0

    Energy Technology Data Exchange (ETDEWEB)

    Den Dulk, F.W. [Piode - ontwerp- en adviesbureau BNA, Amersfoort (Netherlands)

    2012-09-15

    The purpose of the publication is to inform stakeholders about the current state concerning energy efficient building of houses and residential buildings. Also guidance is provided with regard to steps to follow and some practical examples are given. The energy concepts shown are based on known and marketable techniques. An energy concept is a balanced and tailored set of design measures, building construction facilities, installation and (sustainable) energy supply. Optimization is based on energy savings and costs and benefits and it must also meet requirements for health, safety, comfort and ease of operation [Dutch] Het doel van de publicatie is om belanghebbenden te informeren over de huidige stand van zaken m.b.t. vergaand energiezuinig bouwen. Tevens wordt een handreiking geboden over de te volgen stappen en zijn een aantal voorbeelden opgenomen over de praktijk. De publicatie is beperkt tot seriematige woningbouw. De energieconcepten zijn op het niveau van de individuele woning of een woongebouw. De weergegeven energieconcepten zijn gebaseerd op bekende- en marktrijpe technieken. Een energieconcept is een afgewogen en op elkaar afgestemd samenstel van ontwerpmaatregelen, bouwkundige maatregelen en voorzieningen, de installatie en de (duurzame) energievoorziening . Optimalisatie vindt plaats op basis van energiebesparing en kosten/baten terwijl tevens moet worden voldaan aan eisen voor veiligheid, gezondheid, comfort en bedieningsgemak.

  4. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  5. Theory of the optimal design of straight-axis minimum-B mirror confinement configurations

    International Nuclear Information System (INIS)

    Hall, L.S.

    1982-01-01

    The design of modern straight-axis linked-mirror plasma-confinement configurations involves a balance between many competing requirements. The dipole and quadrupole components of magnetic induction required in one confinement region often do not match onto the fields of an adjacent region without complications that seriously affect particle drifts or confinement stability. Here, the relevant factors are set down together with the techniques for analytical optimization of the design of a general configuration. A general sufficient condition for the stability of an arbitrary guiding-center MHD equilibrium is derived. This condition makes explicit the stabilizing qualities of good normal curvature and diamagnetic axial current. The instability drive depends on two terms: one carries the sign of normal curvature and the other relates to the relative signs of geodeics curvature and geodesic torsion. The theory is applied to low-beta, large-aspect-ratio equilibria for which analytic expressions for the confining magnetic fields are known. Two optimizations are required to specify the arbitrary features of the quadrupole and dipole fields. One optimization is nonlinear and can be performed by the ordinary calculus of variations; the second optimization is linear and subject to the rules of game theory. Appropriate quality factors are obtained, thus giving the designer quantitative measures with which to balance design trade-offs

  6. Theory of minimum dissipation of energy for the steady state

    International Nuclear Information System (INIS)

    Chu, T.K.

    1992-02-01

    The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space

  7. Materializing a responsive interior: designing minimum energy structures

    DEFF Research Database (Denmark)

    Mossé, Aurélie; Kofod, Guggi; Ramsgaard Thomsen, Mette

    2011-01-01

    This paper discusses a series of design-led experiments investigating future possibilities for architectural materialization relying on minimum energy structures as an example of adaptive structure. The structures have been made as laminates of elastic membrane under high tension with flexible...... (Lendlein, Kelch 2002) or light (van Oosten, Bastiaansen et al. 2009). All in all, this approach could form a whole new design paradigm, in which efficient 2D-manufacturing can lead to highly flexible, low weight and adaptable 3D-structures. This is illustrated by the design and manufacture of electro...

  8. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    Directory of Open Access Journals (Sweden)

    Jaeyoung Park

    2015-06-01

    Full Text Available We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad’s work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β. This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  9. Model and design of dielectric elastomer minimum energy structures

    International Nuclear Information System (INIS)

    Rosset, Samuel; Araromi, Oluwaseun A; Shintake, Jun; Shea, Herbert R

    2014-01-01

    Fixing a prestretched dielectric elastomer actuator (DEA) on a flexible frame allows transformation of the intrinsic in-plane area expansion of DEAs into complex three-dimensional (3D) structures whose shape is determined by a configuration that minimizes the elastic energy of the actuator and the bending energy of the frame. These stuctures can then unfold upon the application of a voltage. This article presents an analytical modelling of the dielectric elastomer minimal energy structure in the case of a simple rectangular geometry and studies the influence of the main design parameters on the actuator's behaviour. The initial shape of DEMES, as well as the actuation range, depends on the elastic strain energy stored in the elastomeric membrane. This energy depends on two independent parameters: the volume of the membrane and its initial deformation. There exist therefore different combinations of membrane volume and prestretch, which lead to the same initial shape, such as a highly prestretched thin membrane, or a slightly prestretched thick membrane. Although they have the same initial shape, these different membrane states lead to different behaviour once the actuation voltage is applied. Our model allows one to predict which choice of parameters leads to the largest actuation range, while specifying the impact of the different membrane conditions on the spring constant of the device. We also explore the effects of non-ideal material behaviour, such as stress relaxation, on device performance. (paper)

  10. Optimal configuration assessment of renewable energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, Ahmed M.A.; John, Priscilla N.; Shawal, Mohd [Faculty of Electrical and Electronics Engineering, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia)

    2011-02-15

    This paper proposes the use of a PV-wind-diesel generator hybrid system in order to determine the optimal configuration of renewable energy in Malaysia and to compare the production cost of solar and wind power with its annual yield relevant to different regions in Malaysia namely, Johor, Sarawak, Penang and Selangor. The configuration of optimal hybrid system is selected based on the best components and sizing with appropriate operating strategy to provide a cheap, efficient, reliable and cost-effective system. The various renewable energy sources and their applicability in terms of cost and performance are analyzed. Moreover, the annual yield and cost of energy production of solar and wind energy are evaluated. The Simulations were carried out using the HOMER program based on data obtained from the Malaysian Meteorological Centre. Results show that, for Malaysia, a PV-diesel generator hybrid system is the most suitable solution in terms of economic performance and pollution. However, the cost of production of solar and wind energy proved to be cheaper and more environmentally friendly than the energy produced from diesel generators. (author)

  11. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  12. Ground Receiving Station Reference Pair Selection Technique for a Minimum Configuration 3D Emitter Position Estimation Multilateration System

    Directory of Open Access Journals (Sweden)

    Abdulmalik Shehu Yaro

    2017-01-01

    Full Text Available Multilateration estimates aircraft position using the Time Difference Of Arrival (TDOA with a lateration algorithm. The Position Estimation (PE accuracy of the lateration algorithm depends on several factors which are the TDOA estimation error, the lateration algorithm approach, the number of deployed GRSs and the selection of the GRS reference used for the PE process. Using the minimum number of GRSs for 3D emitter PE, a technique based on the condition number calculation is proposed to select the suitable GRS reference pair for improving the accuracy of the PE using the lateration algorithm. Validation of the proposed technique was performed with the GRSs in the square and triangular GRS configuration. For the selected emitter positions, the result shows that the proposed technique can be used to select the suitable GRS reference pair for the PE process. A unity condition number is achieved for GRS pair most suitable for the PE process. Monte Carlo simulation result, in comparison with the fixed GRS reference pair lateration algorithm, shows a reduction in PE error of at least 70% for both GRS in the square and triangular configuration.

  13. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  14. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  15. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Integrated electrification solution for autonomous electrical networks on the basis of RES and energy storage configurations

    International Nuclear Information System (INIS)

    Kaldellis, J.K.

    2008-01-01

    Most medium and small islands of the Aegean Archipelagos face serious infrastructure problems, strongly related with the limited electrical energy available at extremely high cost. On the other hand, the area is characterized by very high wind speeds and abundant solar energy, thus the exploitation of the available renewable energy sources (RES) may significantly contribute to the fulfillment of the local societies energy demand at minimum environmental and macroeconomic cost. However, the stochastic availability of wind energy and the variable availability of solar energy, the daily and seasonal electricity demand fluctuations, as well as the limited local electrical network capacity result in serious restrictions concerning the maximum renewable power penetration. In this context, the present paper investigates the possibility of creating a combined electricity generation facility based on the exploitation of wind or/and solar potential of an area as well as on the utilization of an appropriate energy storage configuration in order to replace the existing thermal power stations with rational investment requirements. For this purpose, the major parameters of the proposed integrated configuration are firstly calculated and its financial viability is accordingly analyzed. One of the main targets of the proposed solution is to maximize the RES exploitation of the area at a minimum electricity generation cost, while special emphasis is given in order to select the most cost-efficient energy storage device available. According to the results obtained the proposed solution is not only financially attractive but also improves the quality of the electricity offered to the local communities, substituting the expensive and heavily polluting existing thermal power stations

  17. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    International Nuclear Information System (INIS)

    Janos, A.

    1985-09-01

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated

  18. A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems

    International Nuclear Information System (INIS)

    Dittrich, R.; Schrefl, T.; Suess, D.; Scholz, W.; Forster, H.; Fidler, J.

    2002-01-01

    Minimum energy paths and energy barriers are calculated for complex micromagnetic systems. The method is based on the nudged elastic band method and uses finite-element techniques to represent granular structures. The method was found to be robust and fast for both simple test problems as well as for large systems such as patterned granular media. The method is used to estimate the energy barriers in CoCr-based perpendicular recording media

  19. The energy principle applied to diverted tokamak configurations

    International Nuclear Information System (INIS)

    Atanasiu, C. V.; Guenter, S.; Lackner, K.; Moraru, A.; Zakharov, L. E.; Subbotin, A. A.

    2008-01-01

    Writing the expression of the potential energy in terms of the perturbation of the flux function, and performing an Euler minimisation, one obtains a system of ordinary differential equations in that perturbation. For a diverted configuration, the usual vanishing boundary conditions for the perturbed flux function at the magnetic axis and at infinity can no longer be used. In place of the vanishing boundary conditions at infinity, an approach to fix 'natural' boundary conditions for the system of differential equations for the perturbed flux function, just at the plasma boundary has been developed. As an example of application of our approaches, a particular equilibrium configuration of the ASDEX Upgrade tokamak has been considered and a detailed investigation of the dependence of the tearing stability parameter Δ' on plasma shape is given for a realistic tokamak equilibrium. The results shown are at least in qualitative agreement with experimental observations on ASDEX Upgrade and JET of a stabilizing influence of triangularity. The knowledge of Δ' for realistic tokamak plasmas is especially important for understanding of the plasma stability against NTMs. (authors)

  20. Kinetic Energy Dissipation on Labyrinth Configuration Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Jaafar S. Maatooq

    2017-12-01

    Full Text Available In present work a labyrinth (zigzag, in shape has been used to configure the steps of stepped spillway by using the physical model. This configuration does not introduce previously by investigators or in construction techniques of dams or cascades. It would be expected to improve the flow over chute. A magnifying the width path of each step to become, LT, instead of, W, will induce the interlocking between the mainstream and that spread laterally due to labyrinth path. This phenomenon leads to reduce the jet velocities near the surfaces, thus minimizing the ability of cavitation and with increasing a circulation regions the ability of air entrainment be maximized. The results were encouraging, (e.g., the reverse performance has recorded for spillway slope. From the evaluation of outcome, the average recorded of percentage profits of kinetic energy dissipation with a labyrinth shape compared with the results of traditional shape were ranged between (13- 44%. Different predictive formulas have been proposed based on iteration analysis, can be recommended for evaluation and design.

  1. On balancing between minimum energy and minimum delay with radio diversity for wireless sensor networks

    DEFF Research Database (Denmark)

    Moad, Sofiane; Hansen, Morten Tranberg; Jurdak, RajA

    2012-01-01

    The expected number of transmissions (ETX) metric represents the link quality in wireless sensor networks, which is highly variable for a specific radio and it can influence dramatically both of the delay and the energy. To adapt to these fluctuations, radio diversity has been recently introduced...... to improve the delivery rate but at the cost of increases in energy for wireless sensor networks. In this paper, we propose a scheme for radio diversity that can balance, depending on the traffic nature in the network, between minimizing the energy consumption or minimizing the end-to-end delay. The proposed...... scheme combines the benefit of two metrics, which aim separately to minimize the energy consumption, and to minimize delay when delivering packets to the end-user. We show by both analysis and simulation that our proposed scheme can adapt to the type of traffic that can occur in a network so...

  2. Minimum Energy Dwelling (MED) workbook: an investigation of techniques and materials for energy conscious design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This workbook is based upon information gathered during the design phase of the Minimum Energy Dwelling. The objective of the project, sponsored by the Southern California Gas Co., Department of Energy, and Mission Viejo is to substantially reduce energy use by the incorporation of energy conservation and solar techniques in a single-family detached dwelling. The Project will demonstrate to builders, as well as to the general public, a number of technological innovations that can, at reasonable cost, be included in a dwelling design. The problem facing Southern California Gas Co., along with most other gas utilities, is ever-decreasing amounts of gas at increasing prices. The dwelling designed has approximately 1,150 ft/sup 2/, consistent with current home-building trends. Through the optimum use of energy-conserving appliances, insulation, window and wall shading, exterior coloring, and thermal mass, the yearly energy usage has been reduced by over 50%. Of the remaining 50% of the energy required for heating, cooling, and domestic hot water, the majority is supplied by the solar-energy system. Three hundred twenty square feet (270 effective) of evacuated tube collector are incorporated into the building structure. The hot water provided by the collectors is used to run an absorption chiller for cooling, the domestic hot water, and the heating system. The remaining energy requirements are met by an auxiliary natural gas energy system and a cool-air-economizer cycle.

  3. Minimum energy control and optimal-satisfactory control of Boolean control network

    International Nuclear Information System (INIS)

    Li, Fangfei; Lu, Xiwen

    2013-01-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  4. CONCEPT OF THE MINIMUM ENERGY PASSENGER CAR WITH USE OF UNCONVENTIONAL ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    V. A. Gabrinets

    2014-06-01

    Full Text Available Purpose. The paper is aimed to consider the concept of creation of the minimum energy passenger car with use of nonconventional energy sources and the walls that have enhanced thermal insulation properties. Мethodology. The types of heat losses, as well as their value were analyzed. The alternative sources of energy are considered for heating. Their potential contribution to the overall energy balance of the passenger car is analyzed. Impact on the car design of the enhanced wall thermal insulation, solar energy inflow through the transparent windows and energy release of passengers are quantitatively evaluated. Findings. With the maximum possible use of all unconventional energy sources and the rational scheme solutions of conditioning and heating systems energy the costs for these needs for a passenger car can be reduced by 40-50%. Originality. New types of energy to maintain the heat balance of the car in the winter period is proposed to use firstly. New schematics solutions for environmental control system of the car both in winter and in summer periods were offered. Practical value. Introduction of the proposed scheme solutions and approaches to ensure the comfortable conditions for passengers may be implemented on an existing park of passenger cars and do not require a major re-equipment of systems that have already been installed.

  5. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.

  6. Energy-minimum sub-threshold self-timed circuits using current-sensing completion detection

    DEFF Research Database (Denmark)

    Akgun, O. C.; Rodrigues, J. N.; Sparsø, Jens

    2011-01-01

    This study addresses the design of self-timed energy-minimum circuits, operating in the sub-VT domain and a generic implementation template using bundled-data circuitry and current sensing completion detection (CSCD). Furthermore, a fully decoupled latch controller was developed, which integrates......V. Spice simulations indicate a gain of 52.58% in throughput because of asynchronous operation. By trading the throughput improvement, energy dissipation is reduced by 16.8% at the energy-minimum supply voltage....

  7. Nonparametric regression using the concept of minimum energy

    International Nuclear Information System (INIS)

    Williams, Mike

    2011-01-01

    It has recently been shown that an unbinned distance-based statistic, the energy, can be used to construct an extremely powerful nonparametric multivariate two sample goodness-of-fit test. An extension to this method that makes it possible to perform nonparametric regression using multiple multivariate data sets is presented in this paper. The technique, which is based on the concept of minimizing the energy of the system, permits determination of parameters of interest without the need for parametric expressions of the parent distributions of the data sets. The application and performance of this new method is discussed in the context of some simple example analyses.

  8. Minimum Energy Dissipation under Cocurrent Flow in Packed Beds

    Czech Academy of Sciences Publication Activity Database

    Akramov, T.A.; Stavárek, Petr; Jiřičný, Vladimír; Staněk, Vladimír

    2011-01-01

    Roč. 50, č. 18 (2011), s. 10824-10832 ISSN 0888-5885 R&D Projects: GA ČR GA104/09/0880 Institutional research plan: CEZ:AV0Z40720504 Keywords : energy dissipation * current flow * packed bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.237, year: 2011

  9. Optical fiber configurations for transmission of laser energy over great distances

    Science.gov (United States)

    Rinzler, Charles C; Zediker, Mark S

    2013-10-29

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  10. Energy Efficiency: The Implementation of Minimum Energy Performance Standard (MEPS Application on Home Appliances for Residential

    Directory of Open Access Journals (Sweden)

    Rahman K.A

    2016-01-01

    Full Text Available Generally, Minimum Energy Performance Standard (MEPS has been widespread across the country especially developed country. However, most consumers do not even know about the MEPS. Without sufficient knowledge, much energy have been wasted before this. The aim of this study is to review the implementation of MEPS of Asia country and to compare electricity consumption of home appliances with star rating and without star rating. In order to fulfil the objectives of the study, the equipment must be chosen correctly and must be learned properly. The home appliances that will be used also need to be chosen so that the comparison between the appliances will be matched correctly. To understand the results, the analysis was done using graphs and table. The purpose of using graph and table is to understand the comparison between appliances more clearly. The results show that home appliances with MEPS is more efficient on energy saving rather than without MEPS. This is the evidence as a method to educate a consumer on energy saving.

  11. Superconducting coil configurations, with low flux leakage, for energy storage

    International Nuclear Information System (INIS)

    Vincent-Viry, O.; Mailfert, A.; Trassart, D.

    2001-01-01

    This paper presents two original types of SMES structures for energy storage. These two groups of SMES structures proceeded from an ideal structure: the full toroid, are modeled by the use of purely surface current densities. Their main advantage is to present no flux leakage, they give then satisfactory solution to the problem of energy storage. (orig.)

  12. Electrode contact configuration and energy consumption in spinal cord stimulation

    NARCIS (Netherlands)

    de Vos, Cecilia Cecilia Clementine; de Vos, Cecile C.; Hilgerink, Marjolein P.; Buschman, Hendrik P.J.; Buschman, H.P.J.; Holsheimer, J.

    2009-01-01

    Objective. To test the hypothesis that in spinal cord stimulation, in contrast to an increase of the number of anodes which reduces energy consumption per pulse, an increase of the number of cathodes raises the energy per pulse. Methods. Patients with an Itrel 3 pulse generator and a Pisces Quad

  13. Contact configuration and energy consumption in spinal cord stimulation

    NARCIS (Netherlands)

    de Vos, Cecilia Cecilia Clementine; Hilgerink, M.P.; Buschman, H.P.J.; Holsheimer, J.; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc; Haueisen, Jens

    2009-01-01

    Objective: To test the hypothesis that, in contrast to an increase of the number of anodes which reduces energy consumption per pulse, an increase of the number of cathodes raises the energy consumption. Materials and Methods: Patients with an Itrel 3 Pulse Generator and a Pisces Quad quadripolar

  14. Solution for Nonlinear Three-Dimensional Intercept Problem with Minimum Energy

    Directory of Open Access Journals (Sweden)

    Henzeh Leeghim

    2013-01-01

    a minimum-energy application, which then generates both the desired initial interceptor velocity and the TOF for the minimum-energy transfer. The optimization problem is formulated by using the classical Lagrangian f and g coefficients, which map initial position and velocity vectors to future times, and a universal time variable x. A Newton-Raphson iteration algorithm is introduced for iteratively solving the problem. A generalized problem formulation is introduced for minimizing the TOF as part of the optimization problem. Several examples are presented, and the results are compared with the Hohmann transfer solution approaches. The resulting minimum-energy intercept solution algorithm is expected to be broadly useful as a starting iterative for applications spanning: targeting, rendezvous, interplanetary trajectory design, and so on.

  15. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    International Nuclear Information System (INIS)

    Jhalani, V.; Kharkwal, H.; Singh, A.

    2016-01-01

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  16. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)

    2016-11-15

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  17. The Minimum Binding Energy and Size of Doubly Muonic D3 Molecule

    Science.gov (United States)

    Eskandari, M. R.; Faghihi, F.; Mahdavi, M.

    The minimum energy and size of doubly muonic D3 molecule, which two of the electrons are replaced by the much heavier muons, are calculated by the well-known variational method. The calculations show that the system possesses two minimum positions, one at typically muonic distance and the second at the atomic distance. It is shown that at the muonic distance, the effective charge, zeff is 2.9. We assumed a symmetric planar vibrational model between two minima and an oscillation potential energy is approximated in this region.

  18. Energy Optimized Configuration of Concrete Element with PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew

    fulfillment of the new requirements regarding the new energy frames. The concept presented and developed in the thesis focuses on the energy optimization and potential of the new product that could utilize the high thermal energy storage (TES) and thermally activated building system (TABS). The work...... investigates the potential of combining the microencapsulated phase change material (PCM) in the hollow core concrete deck element in order to increase the dynamic heat storage capacity of the internal envelope of the multi-storey buildings. Moreover, the study investigates the cooling capacity and performance...... of the concrete deck with PCM and integrated TABS and highlights limitations and challenges of the new technology. Results from the full-scale investigation of dynamic heat storage capacity of decks indicated that there is no substantial difference between decks with extended heat transfer surface and one...

  19. Energy Optimized Configuration of Concrete Element with PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew

    fulfillment of the new requirements regarding the new energy frames. The concept presented and developed in the thesis focuses on the energy optimization and potential of the new product that could utilize the high thermal energy storage (TES) and thermally activated building system (TABS). The work...... investigates the potential of combining the microencapsulated phase change material (PCM) in the hollow core concrete deck element in order to increase the dynamic heat storage capacity of the internal envelope of the multi-storey buildings. Moreover, the study investigates the cooling capacity and performance...... of the concrete deck with PCM and integrated TABS and highlights limitations and challenges of the new technology. The presented work utilizes numerical methods to study the dynamic performance of the new product developed. Consequently, the experimental set-ups and methodologies are developed firstly...

  20. Excitation-energy influence at the scission configuration

    Directory of Open Access Journals (Sweden)

    Ramos D.

    2017-01-01

    Full Text Available Transfer- and fusion-induced fission in inverse kinematics was proven to be a powerful tool to investigate nuclear fission, widening the information of the fission fragments and the access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign for fission investigation has being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through transfer and fusion reactions, with excitation energies that range from few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer permitted the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. The neutron excess, the total neutron multiplicity, and the even-odd staggering in the nuclear charge of fission fragments are presented as a function of the excitation energy of the fissioning system. Structure effects are observed at Z∼50 and Z∼55, where their impact evolves with the excitation energy.

  1. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Kaya, Cemal, E-mail: kaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Islam, Nazmul, E-mail: nazmul.islam786@gmail.com [Theoretical and Computational Chemistry Research Laboratory, Department of Basic Science and Humanities/Chemistry Techno Global-Balurghat, Balurghat, D. Dinajpur 733103 (India)

    2016-03-15

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  2. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    International Nuclear Information System (INIS)

    Kaya, Savaş; Kaya, Cemal; Islam, Nazmul

    2016-01-01

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  3. Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations

    International Nuclear Information System (INIS)

    Hartmann, Niklas; Vöhringer, O.; Kruck, C.; Eltrop, L.

    2012-01-01

    Highlights: ► We modeled several configurations of an adiabatic Compressed Air Energy Storage (CAES) plant. ► We analyzed changes in efficiency of these configurations under varying operating conditions. ► The efficiency of the adiabatic CAES plant can reach about 70% for the isentropic configuration. ► In the polytropic case, the efficiency is about 10% lower (at about 60%) than in the isentropic configuration. ► The efficiency is highest for a two-stage CAES configuration and highly dependent on the cooling and heating demand. - Abstract: In this paper, the efficiency of one full charging and discharging cycle of several adiabatic Compressed Air Energy Storage (CAES) configurations are analyzed with the help of an energy balance. In the second step main driving factors for the efficiency of the CAES configurations are examined with the help of sensitivity analysis. The results show that the efficiency of the polytropic configuration is about 60%, which is considerable lower than literature values of an adiabatic CAES of about 70%. The high value of 70% is only reached for the isentropic (ideal) configuration. Key element to improve the efficiency is to develop high temperature thermal storages (>600 °C) and temperature resistant materials for compressors. The highest efficiency is delivered by the two-stage adiabatic CAES configuration. In this case the efficiency varies between 52% and 62%, depending on the cooling and heating demand. If the cooling is achieved by natural sources (such as a river), a realistic estimation of the efficiency of adiabatic Compressed Air Energy Storages (without any greenhouse gas emissions due to fuel consumption) is about 60%.

  4. Deformed special relativity with an energy barrier of a minimum speed

    International Nuclear Information System (INIS)

    Nassif, Claudio

    2011-01-01

    Full text: This research aims to introduce a new principle of symmetry in the flat space-time by means of the elimination of the classical idea of rest, and by including a universal minimum limit of speed in the quantum world. Such a limit, unattainable by the particles, represents a preferred inertial reference frame associated with a universal background field that breaks Lorentz symmetry. So there emerges a new relativistic dynamics where a minimum speed forms an inferior energy barrier. One of the interesting implications of the existence of such a minimum speed is that it prevents the absolute zero temperature for an ultracold gas, according to the third law of thermodynamics. So we will be able to provide a fundamental dynamical explanation for the third law by means of a connection between such a phenomenological law and the new relativistic dynamics with a minimum speed. In other words we say that our relevant investigation is with respect to the problem of the absolute zero temperature in the thermodynamics of an ideal gas. We have made a connection between the 3 rd law of Thermodynamics and the new dynamics with a minimum speed by means of a relation between the absolute zero temperature (T = 0 deg K) and a minimum average speed (V) for a gas with N particles (molecules or atoms). Since T = 0 deg K is thermodynamically unattainable, we have shown this is due to the impossibility of reaching V from the new dynamics standpoint. (author)

  5. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    Science.gov (United States)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  6. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali; Lai, Zhiping

    2015-01-01

    : View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can

  7. Projected electricity savings from implementing minimum energy efficiency standard for household refrigerators in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Choudhury, I.A.; NoorLeha, A.R.

    2003-01-01

    The Malaysian economy has grown rapidly in the last two decades. This growth has increased the ownership of household electrical appliances, especially refrigerator-freezers. Almost every house in Malaysia owns a refrigerator-freezer. The Malaysia Energy Center considered implementing a minimum energy efficiency standard for household refrigerator-freezers sometime in the coming year. This paper attempts to predict the amount of energy savings in the residential sector by implementing a minimum energy efficiency standard for household refrigerator-freezers. The calculations are based on the growth of refrigerator-freezer ownership data in Malaysian households. By implementing the programs in 2004, about 8722 GWh will be saved in the year 2013. Therefore, efficiency improvement of this appliance will provide a significant impact in future electricity consumption in Malaysia

  8. 3D edge energy transport in stellarator configurations

    International Nuclear Information System (INIS)

    McTaggart, N.; Zagorski, R.; Bonnin, X.; Runov, A.; Schneider, R.; Kaiser, T.; Rognlien, T.; Umansky, M.

    2005-01-01

    The finite difference discretization method is used to solve the electron energy transport equation in complex 3D edge geometries using an unstructured grid. This grid is generated by field-line tracing to separate the radial and parallel fluxes and minimize the numerical diffusion connected with the strong anisotropy of the system. The influence of ergodicity on the edge plasma transport in the W7-X stellarator is investigated in this paper. Results show that the combined effect of ergodicity and the radial plasma diffusion leads to the efficient smoothing of the temperature profiles in the finite-β case

  9. Determination of minimum impact parameter by modified touching spheres schemes for intermediate energy Coulomb excitation experiments

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh

    2016-01-01

    The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)

  10. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen.

    Science.gov (United States)

    Andersen, J; Voute, A; Mihrin, D; Heimdal, J; Berg, R W; Torsson, M; Wugt Larsen, R

    2017-06-28

    The true global potential energy minimum configuration of the formaldehyde dimer (CH 2 O) 2 , including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of C s and C 2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar C s configuration of (CH 2 O) 2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol -1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol -1 for the dissociation energy D 0 of this global potential energy minimum.

  11. Improvement in minimum detectable activity for low energy gamma by optimization in counting geometry

    Directory of Open Access Journals (Sweden)

    Anil Gupta

    2017-01-01

    Full Text Available Gamma spectrometry for environmental samples of low specific activities demands low minimum detection levels of measurement. An attempt has been made to lower the gamma detection level of measurement by optimizing the sample geometry, without compromising on the sample size. Gamma energy of 50–200 keV range was chosen for the study, since low energy gamma photons suffer the most self-attenuation within matrix. The simulation study was carried out using MCNP based software “EffCalcMC” for silica matrix and cylindrical geometries. A volume of 250 ml sample geometry of 9 cm diameter is optimized as the best suitable geometry for use, against the in-practice 7 cm diameter geometry of same volume. An increase in efficiency of 10%–23% was observed for the 50–200 keV gamma energy range and a corresponding lower minimum detectable activity of 9%–20% could be achieved for the same.

  12. Bounds on Minimum Energy per Bit for Optical Wireless Relay Channels

    Directory of Open Access Journals (Sweden)

    A. D. Raza

    2014-09-01

    Full Text Available An optical wireless relay channel (OWRC is the classical three node network consisting of source, re- lay and destination nodes with optical wireless connectivity. The channel law is assumed Gaussian. This paper studies the bounds on minimum energy per bit required for reliable communication over an OWRC. It is shown that capacity of an OWRC is concave and energy per bit is monotonically increasing in square of the peak optical signal power, and consequently the minimum energy per bit is inversely pro- portional to the square root of asymptotic capacity at low signal to noise ratio. This has been used to develop upper and lower bound on energy per bit as a function of peak signal power, mean to peak power ratio, and variance of channel noise. The upper and lower bounds on minimum energy per bit derived in this paper correspond respectively to the decode and forward lower bound and the min-max cut upper bound on OWRC capacity

  13. Based on the Hardware Resources Configurable Shanke PLC Building Energy Consumption Detection System

    Directory of Open Access Journals (Sweden)

    Cheng Guanghe

    2017-01-01

    Full Text Available According to the actual situation of the comprehensive office building and the functional requirements of the building energy consumption monitoring and management system, the office building energy consumption monitoring and management system is designed by using the hardware resource configurable Shanke PLC(SKPLC as the data collector. The system uses data bus technology and field data acquisition technology to achieve the building energy consumption data acquisition and management. Practice has proved that energy-saving effect is good.

  14. Experimental Analysis of a Coupled Energy Harvesting System with Monostable and Bistable Configuration

    International Nuclear Information System (INIS)

    Hoffmann, D; Folkmer, B; Manoli, Y

    2014-01-01

    In this paper we present experimental results from an energy harvesting system with two coupled energy harvesters. The energy conversion mechanism of the two coupled energy harvesters is based on the electromagnetic principle. The coupling is generated by two magnets in a repulsive arrangement. In this manner a bistable configuration can be obtained if the gap between the magnets is sufficiently small. We demonstrate that the total power output can be increased in comparison to a linear reference system, if specific conditions are fulfilled. In this respect, the highest power output occurs in the nonlinear region of a monostable system configuration, mostly near the transition to a bistable configuration. On the other hand, the results also indicate, that a bistable operating mode does not necessarily enhance the power output of the coupled system

  15. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali

    2015-08-12

    Process design and simulation of multi-stage membrane systems have been widely studied in many gas separation systems. However, general guidelines have not been developed yet for the attainability and the minimum energy consumption of a multi-stage membrane system. Such information is important for conceptual process design and thus it is the topic of this work. Using a well-mixed membrane model, it was determined that the attainability curve of multi-stage systems is defined by the pressure ratio and membrane selectivity. Using the constant recycle ratio scheme, the recycle ratio can shift the attainability behavior between single-stage and multi-stage membrane systems. When the recycle ratio is zero, all of the multi-stage membrane processes will decay to a single-stage membrane process. When the recycle ratio approaches infinity, the required selectivity and pressure ratio reach their absolute minimum values, which have a simple relationship with that of a single-stage membrane process, as follows: View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can significantly reduce the required membrane selectivity without substantial energy penalty. The energy envelope curve can provide a guideline from an energy perspective to determine the minimum required membrane selectivity in membrane process designs to compete with conventional separation processes, such as distillation.

  16. Reliability analysis of minimum energy on target for laser facilities with more beam lines

    International Nuclear Information System (INIS)

    Chen Guangyu

    2008-01-01

    Shot reliability performance measures of laser facilities with more beam lines pertain to three categories: minimum-energy-on-target, power balance, and shot diagnostics. Accounting for symmetry of NIF beam line design and similarity of subset reliability in a same partition, a fault tree of meeting minimum-energy-on-target for the large laser facility shot of type K and a simplified method are presented, which are used to analyze hypothetic reliability of partition subsets in order to get trends of influences increasing number of beam lines and diverse shot types of large laser facilities on their shot reliability. Finally, it finds that improving component reliability is more crucial for laser facilities with more beam lines in comparison with those with beam lines and functional diversity from design flexibility is greatly helpful for improving shot reliability. (authors)

  17. Global magnetic fluctuations in S-1 spheromak plasmas and relaxation toward a minimum-energy state

    International Nuclear Information System (INIS)

    Janos, A.; Hart, G.W.; Yamada, M.

    1986-01-01

    Globally coherent modes have been observed during formation in the S-1 Spheromak plasma. These modes play an important role in flux conversion and plasma relaxation toward a minimum-energy state. A significant finding is the temporal progression through the n = 5, 4, 3, 2; m = 1 mode sequence as q rises through rational fractions m/n. Peak amplitudes of the modes relative to the unperturbed field are typically less than 5%, while amplitudes as high as 20% have been observed

  18. Minimum free-energy paths for the self-organization of polymer brushes.

    Science.gov (United States)

    Gleria, Ignacio; Mocskos, Esteban; Tagliazucchi, Mario

    2017-03-22

    A methodology to calculate minimum free-energy paths based on the combination of a molecular theory and the improved string method is introduced and applied to study the self-organization of polymer brushes under poor solvent conditions. Polymer brushes in a poor solvent cannot undergo macroscopic phase separation due to the physical constraint imposed by the grafting points; therefore, they microphase separate forming aggregates. Under some conditions, the theory predicts that the homogeneous brush and the aggregates can exist as two different minima of the free energy. The theoretical methodology introduced in this work allows us to predict the minimum free-energy path connecting these two minima as well as the morphology of the system along the path. It is shown that the transition between the homogeneous brush and the aggregates may involve a free-energy barrier or be barrierless depending on the relative stability of the two morphologies and the chain length and grafting density of the polymer. In the case where a free-energy barrier exists, one of the morphologies is a metastable structure and, therefore, the properties of the brush as the quality of the solvent is cycled are expected to display hysteresis. The theory is also applied to study the adhesion/deadhesion transition between two opposing surfaces modified by identical polymer brushes and it is shown that this process may also require surpassing a free-energy barrier.

  19. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    Science.gov (United States)

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some

  20. Wavefunction and energy of the 1s22sns configuration in a beryllium atom

    International Nuclear Information System (INIS)

    Huang Shizhong; Ma Kun; Yu Jiaming; Liu Fen

    2008-01-01

    A new set of trial functions for 1s 2 2sns configurations in a beryllium atom is suggested. A Mathematica program based on the variational method is developed to calculate the wavefunctions and energies of 1s 2 2sns (n = 3–6) configurations in a beryllium atom. Non-relativistic energy, polarization correction and relativistic correction which include mass correction, one-and two-body Darwin corrections, spin-spin contact interaction and orbit-orbit interaction, are calculated respectively. The results are in good agreement with experimental data. (atomic and molecular physics)

  1. Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage

    International Nuclear Information System (INIS)

    Shaikh, Shadab; Lafdi, Khalid

    2006-01-01

    The present work involves the use of a two dimensional control volume based numerical method to conduct a study of a combined convection-diffusion phase change heat transfer process in varied configurations of composite PCM slabs. Simulations were conducted to investigate the impact of using different configurations of multiple PCM slabs arrangements with different melting temperatures, thermophysical properties and varied sets of boundary conditions on the total energy stored as compared to using a single PCM slab. The degree of enhancement of the energy storage has been shown in terms of the total energy stored rate. The numerical results from the parametric study indicated that the total energy charged rate can be significantly enhanced by using composite PCMs as compared to the single PCM. This enhancement in the energy storage can be of great importance to improve the thermal performance of latent thermal storage systems

  2. Improved vibration-based energy harvesting by annular mass configuration of piezoelectric circular diaphragms

    Science.gov (United States)

    Yang, Yangyiwei; Li, Yuanbo; Guo, Yaqian; Xu, Bai-Xiang; Yang, Tongqing

    2018-03-01

    Vibration-based energy harvesting using piezoelectric circular diaphragms (PCDs) with a structure featuring the central mass (C-mass) configuration has drawn much attention in recent decades. In this work, we propose a new configuration with the annular proof mass (A-mass) where an improved energy harvesting is promised. The numerical analysis was employed using the circuit-coupled piezoelectric simulation, and the experimental validation was implemented using PCDs with the even-width annular electrodes. Samples with the different mass configurations as well as structural parameters ϖ 1 and ϖ 2, which indicate the ratio between the inner boundary radius and piezoelectric ceramic radius as well as the ratio between outer boundary radius and the substrate radius, respectively, were prepared and tested. The impedance-matched output power of full-electrode PCDs was also collected, and some distinct improvement was measured on samples with the certain structural parameters. The power increases from 14.1 mW to 19.0 mW after changing the configuration from C-mass to A-mass with the same parameters (ϖ 1, ϖ 2) = (0.16, 0.9), showing the considerable improvement in energy harvesting by using A-mass configuration.

  3. Minimum beam-energy spread of a high-current rf linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Fraser, J.S.

    1987-01-01

    Energy spread is an important parameter of an electron linac and, usually, is determined by the time dependence of the external rf accelerating field. By using a combination of fundamental and higher harmonic frequencies, the accelerating field can be maintained approximately constant over a beam bunch with the resultant energy spread approximately zero. This technique is no longer adequate when the longitudinal wake field of the beam bunch is taken into account. The wake-field variation along the bunch length introduces an energy spread that cannot be exactly compensated for with the use of fundamental and higher harmonic frequencies. The achievable minimum energy spread including the wake-field effect is therefore limited. In this paper, we report the minimum energy spreads achievable using the fundamental and third-harmonic frequencies, calculated using a least-squares algorithm, for some typical structures in use at Los Alamos National Laboratory. The dependence of these results on bunch shape, bunch charge, and structure frequency is discussed. Also included are discussions of schemes for implementing the third-harmonic frequency and their effectiveness

  4. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  5. A fast tomographic method for searching the minimum free energy path

    International Nuclear Information System (INIS)

    Chen, Changjun; Huang, Yanzhao; Xiao, Yi; Jiang, Xuewei

    2014-01-01

    Minimum Free Energy Path (MFEP) provides a lot of important information about the chemical reactions, like the free energy barrier, the location of the transition state, and the relative stability between reactant and product. With MFEP, one can study the mechanisms of the reaction in an efficient way. Due to a large number of degrees of freedom, searching the MFEP is a very time-consuming process. Here, we present a fast tomographic method to perform the search. Our approach first calculates the free energy surfaces in a sequence of hyperplanes perpendicular to a transition path. Based on an objective function and the free energy gradient, the transition path is optimized in the collective variable space iteratively. Applications of the present method to model systems show that our method is practical. It can be an alternative approach for finding the state-to-state MFEP

  6. Isotope shifts and electronic configurations of some of the energy levels of the neutral gadolinium atom

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Venugopalan, A.; Saksena, G.D.

    1982-01-01

    Isotope shift ΔT (156-160) have been evaluated for 52 odd and 90 even energy levels of the neutral gadolinium atom from the measurements carried out on 166 lines of the first spectrum in the region 4535 to 4975 A on a photoelectric recording Fabry-Perot Spectrometer and enriched samples of 156 Gd and 160 Gd. Earlier studies provide data for just two lines in this region. Assignment of electronic configurations to some of the energy levels have been either confirmed or revised; some unassigned levels have been assigned probable configurations. The present study provides, for the first time, isotope shift of the two levels of 4f 7 6s 2 7s configuration of Gd I. (author)

  7. An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes

    Directory of Open Access Journals (Sweden)

    Israr Ullah

    2017-11-01

    Full Text Available In the smart home environment, efficient energy management is a challenging task. Solutions are needed to achieve a high occupant comfort level with minimum energy consumption. User comfort is measured in terms of three fundamental parameters: (a thermal comfort, (b visual comfort and (c air quality. Temperature, illumination and CO 2 sensors are used to collect indoor contextual information. In this paper, we have proposed an improved optimization function to achieve maximum user comfort in the building environment with minimum energy consumption. A comprehensive formulation is done for energy optimization with detailed analysis. The Kalman filter algorithm is used to remove noise in sensor readings by predicting actual parameter values. For optimization, we have used genetic algorithm (GA and particle swarm optimization (PSO algorithms and performed comparative analysis with a baseline scheme on real data collected for a one-month duration in our lab’s indoor environment. Experimental results show that the proposed optimization function has achieved a 27 . 32 % and a 31 . 42 % reduction in energy consumption with PSO and GA, respectively. The user comfort index was also improved by 10 % i.e., from 0 . 86 to 0 . 96 . GA-based optimization results were better than PSO, as it has achieved almost the same user comfort with 4 . 19 % reduced energy consumption. Results show that the proposed optimization function gives better results than the baseline scheme in terms of user comfort and the amount of consumed energy. The proposed system can help with collecting the data about user preferences and energy consumption for long-term analysis and better decision making in the future for efficient resource utilization and overall profit maximization.

  8. The graph-theoretic minimum energy path problem for ionic conduction

    Directory of Open Access Journals (Sweden)

    Ippei Kishida

    2015-10-01

    Full Text Available A new computational method was developed to analyze the ionic conduction mechanism in crystals through graph theory. The graph was organized into nodes, which represent the crystal structures modeled by ionic site occupation, and edges, which represent structure transitions via ionic jumps. We proposed a minimum energy path problem, which is similar to the shortest path problem. An effective algorithm to solve the problem was established. Since our method does not use randomized algorithm and time parameters, the computational cost to analyze conduction paths and a migration energy is very low. The power of the method was verified by applying it to α-AgI and the ionic conduction mechanism in α-AgI was revealed. The analysis using single point calculations found the minimum energy path for long-distance ionic conduction, which consists of 12 steps of ionic jumps in a unit cell. From the results, the detailed theoretical migration energy was calculated as 0.11 eV by geometry optimization and nudged elastic band method. Our method can refine candidates for possible jumps in crystals and it can be adapted to other computational methods, such as the nudged elastic band method. We expect that our method will be a powerful tool for analyzing ionic conduction mechanisms, even for large complex crystals.

  9. Relativistic configuration-interaction calculation of the correlation energies of heliumlike ions. Revision 1

    International Nuclear Information System (INIS)

    Cheng, K.T.; Chen, M.H.; Johnson, W.R.

    1994-04-01

    A new relativistic configuration-interaction (CI) method using B-spline basis functions has been developed to study the correlation energies of two-electron heliumlike ions. Based on the relativistic no-pair Hamiltonian, the CI equation leads to a symmetric eigenvalue problem involving large, dense matrices. Davidson's method is used to obtain the lowest few eigenenergies and eigenfunctions. Results on transition energies and finite structure splittings for heliumlike ions are in very good agreement with experiment throughout the periodic table

  10. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  11. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  12. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  13. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen

    DEFF Research Database (Denmark)

    Andersen, Jonas; Voute, A.; Mihrin, Dmytro

    2017-01-01

    )2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol−1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic......The true global potential energy minimum configuration of the formaldehyde dimer (CH2O)2, including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima...... conformations of Cs and C2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs...

  14. Verification of the Taylor (minimum energy) state in the S-1 Spheromak

    International Nuclear Information System (INIS)

    Hart, G.W.; Janos, A.; Meyerhofer, D.D.; Yamada, M.

    1985-09-01

    Experimental measurements of the equilibrium in the S-1 Spheromak by use of magnetic probes inside the plasma show that the final magnetic equilibrium is one which has relaxed close to the Taylor (minimum-energy) state, even though the plasma is far from that state during formation. The comparison is made by calculating the two-dimensional μ profile of the plasma from the probe data, where μ is defined as μ 0 j/sub parallel//B. Measurements using a triple Langmuir probe provide evidence to support the conclusion that the pressure gradients in the relaxed state are confined to the edge region of the plasma

  15. Minimum Energy Control of 2D Positive Continuous-Discrete Linear Systems

    Directory of Open Access Journals (Sweden)

    Kaczorek Tadeusz

    2014-09-01

    Full Text Available The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Necessary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero boundary conditions to given final state and minimizing the performance index for only one step (q = 1. A procedure for solving of the problem is proposed and illustrated by a numerical example.

  16. Minimum Energy of a Prismatic Joint with out: Actuator: Application on RRP Robot

    OpenAIRE

    Tawiwat V.; Tosapolporn P.; Kedit J.

    2009-01-01

    This research proposes the state of art on how to control or find the trajectory paths of the RRP robot when the prismatic joint is malfunction. According to this situation, the minimum energy of the dynamic optimization is applied. The RRP robot or similar systems have been used in many areas such as fire fighter truck, laboratory equipment and military truck for example a rocket launcher. In order to keep on task that assigned, the trajectory paths must be computed. Here, the open loop cont...

  17. Isoelectronic sequence fits to configuration-averaged photoionization cross sections and ionization energies

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Cowan, R.D.; Bobrowicz, F.W.

    1986-01-01

    Hartree--Fock wave functions have been used to calculate configuration -averaged photoionization cross sections and ionization energies for orbitals 1s< or =nl< or =5g in He-like through Al-like isoelectroni csequences. The photoionization cross sections have been fitted as a function of the nuclear charge, Z, and photon energy, X, in threshold units, with average error of less than 10%. The ionization energies have been fitted as a function of Z with errors of less than 0.5%

  18. Electricity savings from implementation of minimum energy efficiency standard for TVs in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M.; Masjuki, H.H.; Mahlia, T.M.I. [University of Malaya, Kuala Lumpur (Malaysia). Department of Mechanical Engineering

    2005-06-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD in Malaysia are poised to have a large impact on overall TV electricity consumption in the country. With the increasing of overall TV energy consumption, energy efficiency standards are one of highly effective policies for decreasing electricity consumption in the residential sector. Energy efficiency standards are also capable of reducing consumer's electricity bill and contribute towards positive environmental impacts. This paper attempts to predict the amount of energy that can be saved in the residential sector by implementing minimum energy efficiency standard for television sets in Malaysia. Over the past 30 years, television ownership in Malaysian residents has increased from 186,036 units in 1970 to 2,741,640 units in 1991. This figure is expected to reach 6,201,316 units in the year 2010. Hence, efficiency improvement for this appliance will have a significant impact on the future of electricity consumption in this country. (author)

  19. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  20. DINS measurements on VESUVIO in the Resonance Detector configuration: proton mean kinetic energy in water

    Science.gov (United States)

    Pietropaolo, Antonino; Andreani, Carla; Filabozzi, Alessandra; Senesi, Roberto; Gorini, Giuseppe; Perelli-Cippo, Enrico; Tardocchi, Marco; Rhodes, Nigel J.; Schooneveld, Erik M.

    2006-04-01

    Deep Inelastic Neutron Scattering (DINS) measurements have been performed on a liquid water sample at two different temperatures and pressures. The experiments were carried out using the VESUVIO spectrometer at the ISIS spallation neutron source. This experiment represents the first DINS measurement from water using the Resonance Detector configuration, employing yttrium-aluminum-perovskite scintillator and a 238U analyzer foil. The maximum energy of the scattered neutrons was about 70 eV, allowing to access an extended kinematic space with energy and wave vector transfers at the proton recoil peak in the range 1 eV <= hbarω <= 20 eV and 25 Å-1 <= q <= 90 Å-1, respectively. Comparison with DINS measurements on water performed in the standard Resonance Filter configuration indicates the potential advantages offered by the use of Resonance Detector approach for DINS measurements at forward scattering angles.

  1. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Todd [West Virginia Univ., Morgantown, WV (United States)

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

  2. Minimum emissions from biomass FBC. Improved energy generation based on biomass FBC with minimum emission. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hallgren, A. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-02-01

    primary measure. The market of biofuels and their exploitation for energy production has been surveyed in detail for the countries Germany, Sweden and the United Kingdom as well as the biofuel sources and combustion plants. Characteristic features and parameters could be identified for the logistic process chain as well as specification and requirements on specified feed stock and the removal of residues from the combustion process could be determined. Finally, a handbook has been developed which supports the planning of logistic systems for biogene fuels supply applicable for industrial utilization. It offers guidance for regional planners and operators of energy plants in the strategic planning of new or the optimization of existing logistic systems.

  3. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  4. [Specific features in realization of the principle of minimum energy dissipation during individual development].

    Science.gov (United States)

    Zotin, A A

    2012-01-01

    Realization of the principle of minimum energy dissipation (Prigogine's theorem) during individual development has been analyzed. This analysis has suggested the following reformulation of this principle for living objects: when environmental conditions are constant, the living system evolves to a current steady state in such a way that the difference between entropy production and entropy flow (psi(u) function) is positive and constantly decreases near the steady state, approaching zero. In turn, the current steady state tends to a final steady state in such a way that the difference between the specific entropy productions in an organism and its environment tends to be minimal. In general, individual development completely agrees with the law of entropy increase (second law of thermodynamics).

  5. Torsional shear flow of granular materials: shear localization and minimum energy principle

    Science.gov (United States)

    Artoni, Riccardo; Richard, Patrick

    2018-01-01

    The rheological properties of granular matter submitted to torsional shear are investigated numerically by means of discrete element method. The shear cell is made of a cylinder filled by grains which are sheared by a bumpy bottom and submitted to a vertical pressure which is applied at the top. Regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. The effects of the (i) the applied pressure, (ii) sidewall friction, and (iii) angular velocity are investigated. A model, based on the purely local μ (I)-rheology and a minimum energy principle is able to capture the effect of the two former quantities but unable to account the effect of the latter. Although, an ad hoc modification of the model allows to reproduce all the numerical results, our results point out the need for an alternative rheology.

  6. A chain-of-states acceleration method for the efficient location of minimum energy paths

    International Nuclear Information System (INIS)

    Hernández, E. R.; Herrero, C. P.; Soler, J. M.

    2015-01-01

    We describe a robust and efficient chain-of-states method for computing Minimum Energy Paths (MEPs) associated to barrier-crossing events in poly-atomic systems, which we call the acceleration method. The path is parametrized in terms of a continuous variable t ∈ [0, 1] that plays the role of time. In contrast to previous chain-of-states algorithms such as the nudged elastic band or string methods, where the positions of the states in the chain are taken as variational parameters in the search for the MEP, our strategy is to formulate the problem in terms of the second derivatives of the coordinates with respect to t, i.e., the state accelerations. We show this to result in a very simple and efficient method for determining the MEP. We describe the application of the method to a series of test cases, including two low-dimensional problems and the Stone-Wales transformation in C 60

  7. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    Science.gov (United States)

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  8. Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery

    International Nuclear Information System (INIS)

    Franco, Alessandro; Casarosa, Claudio

    2015-01-01

    In the present paper, after a brief review of the perspectives of the various schemes proposed for electricity generation from the regasification of Liquefied Natural Gas (LNG), a detailed analysis of two particular direct expansion solutions is proposed. The purpose is to identify the upper level of the energy that can be recovered with the aim of electricity production, using configurations with direct expansion. The analysis developed resorting to a simplified thermodynamic model, shows that using a direct expansion configurations with multistage turbine, values of power production typical of optimized ORC plant configurations (120 kJ for each kg of natural gas that flows through the plant) can be obtained. The development of a direct expansion plant with multistage turbine and internal heat recovery systems could permit to approach the production of more than 160 kJ for each kg of flowing liquefied natural gas. Considering values of the mass flow rate typical of LNG gas stations (e.g. 70 kg/s); this corresponds to an output power ranging between 8.3 MW and 11.4 MW. - Highlights: • Recovery of the cold energy contained in Liquefied Natural Gas. • Thermodynamic analysis of systems for electricity generation in regasification. • Direct expansion solutions with multistage expansion. • Comparison of direct expansion solutions with conventional ORC systems. • Power output in conditions typical of existing LNG regasification terminals

  9. The Impact of Minimum Energy Performance Standards (MEPS) Regulation on Electricity Saving in Malaysia

    Science.gov (United States)

    Fatihah Salleh, Siti; Eqwan Roslan, Mohd; Isa, Aishah Mohd; Faizal Basri Nair, Mohd; Syafiqah Salleh, Siti

    2018-03-01

    One of Malaysia’s key strategies to promote efficient energy use in the country is to implement the minimum energy performance standards (MEPS) through the Electricity Regulations (Amendment) 2013. Five selected electrical appliances (refrigerator, air conditioner, television, domestic fans and lamp fittings) must comply with MEPS requirement in order to be sold in Malaysian market. Manufacturers, importers or distributors are issued Certificate of Approval (COA) if products are MEPS-compliant. In 2015, 1,215 COAs were issued but the number of MEPS products in the market is unknown. This work collects sales data from major manufacturers to estimate the annual sales of MEPS appliances and the cumulative electricity consumption and electricity saving. It was found that most products sold have 3-star rating and above. By year 2015, total cumulative electricity savings gained from MEPS implementation is 3,645 GWh, with air conditioner being the highest contributor (30%). In the future, it is recommended that more MEPS products and related incentives be introduced to further improve efficiency of energy use in Malaysia.

  10. Using full configuration interaction quantum Monte Carlo in a seniority zero space to investigate the correlation energy equivalence of pair coupled cluster doubles and doubly occupied configuration interaction

    International Nuclear Information System (INIS)

    Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-01-01

    Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure.

  11. Configuration of supply chains in emerging industries: a multiple-case study in the wave-and-tidal energy industry

    OpenAIRE

    Bjørgum, Øyvind; Netland, Torbjørn H.

    2017-01-01

    Companies in emerging industries face particular challenges in configuring effective supply chains. In this paper, we build on transaction cost economics to explore how supply chains can be configured in emerging industries. We focus on two key aspects of supply chain configuration: the make-or-buy decision and the strength of the ties between a focal firm and its suppliers. We utilise a multiple-case study methodology, including seven start-up companies in the emerging wave-and-tidal energy ...

  12. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    International Nuclear Information System (INIS)

    Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao

    2009-01-01

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  13. A novel minimum cost maximum power algorithm for future smart home energy management

    Directory of Open Access Journals (Sweden)

    A. Singaravelan

    2017-11-01

    Full Text Available With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  14. A novel minimum cost maximum power algorithm for future smart home energy management.

    Science.gov (United States)

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  15. On the normalization of the minimum free energy of RNAs by sequence length.

    Directory of Open Access Journals (Sweden)

    Edoardo Trotta

    Full Text Available The minimum free energy (MFE of ribonucleic acids (RNAs increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  16. On the normalization of the minimum free energy of RNAs by sequence length.

    Science.gov (United States)

    Trotta, Edoardo

    2014-01-01

    The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  17. Temporal change in the electromechanical properties of dielectric elastomer minimum energy structures

    International Nuclear Information System (INIS)

    Buchberger, G.; Hauser, B.; Jakoby, B.; Hilber, W.; Schoeftner, J.; Bauer, S.

    2014-01-01

    Dielectric elastomer minimum energy structures (DEMES) are soft electronic transducers and energy harvesters with potential for consumer goods. The temporal change in their electromechanical properties is of major importance for engineering tasks. Therefore, we study acrylic DEMES by impedance spectroscopy and by optical methods for a total time period of approx. 4.5 months. We apply either compliant electrodes from carbon black particles only or fluid electrodes from a mixture of carbon black particles and silicone oil. From the measurement data, the equivalent series capacitances and resistances as well as the bending angles of the transducers are obtained. We find that the equivalent series capacitances change in average between −12 %/1000 h and −4.0 %/1000 h, while the bending angles decrease linearly with slopes ranging from −15 %/1000 h to −7 %/1000 h. Transducers with high initial bending angles and electrodes from carbon black particles show the smallest changes of the electromechanical characteristics. The capacitances decrease faster for DEMES with fluid electrodes. Some DEMES of this type reveal huge and unpredictable fluctuations of the resistances over time due to the ageing of the contacts. Design guidelines for DEMES follow directly from the observed transient changes of their electromechanical performance.

  18. Analysis of electric energy consumption of automatic milking systems in different configurations and operative conditions.

    Science.gov (United States)

    Calcante, Aldo; Tangorra, Francesco M; Oberti, Roberto

    2016-05-01

    Automatic milking systems (AMS) have been a revolutionary innovation in dairy cow farming. Currently, more than 10,000 dairy cow farms worldwide use AMS to milk their cows. Electric consumption is one of the most relevant and uncontrollable operational cost of AMS, ranging between 35 and 40% of their total annual operational costs. The aim of the present study was to measure and analyze the electric energy consumption of 4 AMS with different configurations: single box, central unit featuring a central vacuum system for 1 cow unit and for 2 cow units. The electrical consumption (daily consumption, daily consumption per cow milked, consumption per milking, and consumption per 100L of milk) of each AMS (milking unit + air compressor) was measured using 2 energy analyzers. The measurement period lasted 24h with a sampling frequency of 0.2Hz. The daily total energy consumption (milking unit + air compressor) ranged between 45.4 and 81.3 kWh; the consumption per cow milked ranged between 0.59 and 0.99 kWh; the consumption per milking ranged between 0.21 and 0.33 kWh; and the consumption per 100L of milk ranged between 1.80 to 2.44 kWh according to the different configurations and operational contexts considered. Results showed that AMS electric consumption was mainly conditioned by farm management rather than machine characteristics/architectures. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Energy efficient piston configuration for effective air motion – A CFD study

    International Nuclear Information System (INIS)

    Gnana Sagaya Raj, Antony Raj; Mallikarjuna, Jawali Maharudrappa; Ganesan, Venkitachalam

    2013-01-01

    Highlights: ► All piston crown show similar flow pattern for experimental and simulated studies. ► Piston position plays a predominant role in the air pattern inside the cylinder. ► The flat bowl piston shows higher TKE compared to all other piston crown shape. ► The turbulence intensity and length scale are higher for flat bowl piston. ► The quantitative error between the CFD and PIV analysis is about 5%. -- Abstract: Air motion inside the cylinder is very important from the point of view of energy efficiency. In this direction, piston configuration plays a very crucial role. This study is concerned with the CFD analysis of in-cylinder air motion coupled with the comparison of predicted results with the experimental results available in the literature. Four configurations viz., flat, inclined, centre bowl and inclined offset bowl pistons have been studied. For numerical analysis STAR-CD CFD software has been used. Experimental results available in the literature for comparison are obtained by PIV measurements. From this study, it is concluded that a centre bowl on flat piston is found to be the best from the point of view of tumble ratio, turbulent kinetic energy, turbulent intensity and turbulent length scale which play very important role in imparting proper air motion, there by increasing the energy efficiency of the engine.

  20. Analysis of Energy Demand for Low-Energy Multi-Dwelling Buildings of Different Configuration

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2014-10-01

    Full Text Available To meet the goals established by Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, the topics of energy efficiency in new and old buildings must be solved. Research and development of new energy solutions and technology are necessary for increasing energy performance of buildings. Three low-energy multi-dwelling buildings have been modelled and analyzed in the presented study. All multi-dwelling houses are made of similar single-family house cells. However, multi-dwelling buildings are of different geometry, flat number and height. DesignBuilder software was used for simulating and determining heating, cooling and electricity demand for buildings. Three different materials (silicate, ceramic and clay concrete blocks as bearing constructions of external walls have been analyzed. To decrease cooling demand for buildings, the possibility of mounting internal or external louvers has been considered. Primary energy savings for multi-dwelling buildings using passive solar measures have been determined.

  1. Cost-optimal levels of minimum energy performance requirements in the Danish Building Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Aggerholm, S.

    2013-09-15

    The purpose of the report is to analyse the cost optimality of the energy requirements in the Danish Building Regulations 2010, BR10 to new building and to existing buildings undergoing major renovation. The energy requirements in the Danish Building Regulations have by tradition always been based on the cost and benefits related to the private economical or financial perspective. Macro economical calculations have in the past only been made in addition. The cost optimum used in this report is thus based on the financial perspective. Due to the high energy taxes in Denmark there is a significant difference between the consumer price and the macro economical for energy. Energy taxes are also paid by commercial consumers when the energy is used for building operation e.g. heating, lighting, ventilation etc. In relation to the new housing examples the present minimum energy requirements in BR 10 all shows gaps that are negative with a deviation of up till 16 % from the point of cost optimality. With the planned tightening of the requirements to new houses in 2015 and in 2020, the energy requirements can be expected to be tighter than the cost optimal point, if the costs for the needed improvements don't decrease correspondingly. In relation to the new office building there is a gap of 31 % to the point of cost optimality in relation to the 2010 requirement. In relation to the 2015 and 2020 requirements there are negative gaps to the point of cost optimality based on today's prices. If the gaps for all the new buildings are weighted to an average based on mix of building types and heat supply for new buildings in Denmark there is a gap of 3 % in average for the new building. The excessive tightness with today's prices is 34 % in relation to the 2015 requirement and 49 % in relation to the 2020 requirement. The component requirement to elements in the building envelope and to installations in existing buildings adds up to significant energy efficiency

  2. Configurational energies and effective cluster interactions in substitutionally disordered binary alloys

    International Nuclear Information System (INIS)

    Gonis, A.; Zhang, X.h.; Freeman, A.J.; Turchi, P.; Stocks, G.M.; Nicholson, D.M.

    1987-01-01

    The determination of configurational energies in terms of effective cluster interactions in substitutionally disordered alloys from a knowledge of the alloy electronic structure is examined within the methods of concentration waves (CW) and the generalized perturbation method (GPM), and for the first time within the embedded-cluster method (ECM). It is shown that the ECM provides the exact summation to all orders of the effective cluster interaction expansions obtained in the partially renormalized GPM. The connection between the various methods (CW, GPM, and ECM) is discussed and illustrated by means of numerical calculations for model one-dimensional tight-binding (TB) systems and for TB Hamiltonians chosen to describe Pd-V alloys. These calculations, and the formal considerations presented in the body of the paper, show the complete equivalence of converged GPM summations within specific clusters and the ECM. In addition, it is shown that an exact expansion of the configurational energy can be obtained in terms of fully renormalized effective cluster interactions. In principle, these effective cluster interactions can be used in conjunction with statistical models to determine stable ordered structures at low temperatures and alloy phase diagrams

  3. Quadcopter Aggressive Maneuvers along Singular Configurations: An Energy-Quaternion Based Approach

    Directory of Open Access Journals (Sweden)

    Ayman A. El-Badawy

    2016-01-01

    Full Text Available Automatic aggressive maneuvers with quadcopters are regarded as a highly challenging control problem. The aim is to tackle the singularities that exist in a vertical looping maneuver. Modeling singularities are resolved by writing the equations-of-motion of the quadcopter in quaternion form. Physical singularities due to underactuation are resolved by using an energy-based control. Energy-based control is utilized to overcome the uncontrollability of the quadcopter at physical singular configurations, for instance, when commanding the quadcopter to gain altitude while pitched at 90∘. Three looping strategies (circular, clothoidal, and newly developed constant thrust are implemented on a nonlinear model of the quadcopter. The three looping strategies are discussed along with their advantages and limitations.

  4. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    The study in this article investigates 15 ventilated window typologies with different pane configurations and glazing types in climates of four European countries (United Kingdom, Denmark, France and Germany) in order to identify the optimum typology with regard to their energy balance and impact...... on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. U and g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...

  5. Formulation of thermodynamics for the glassy state : Configurational energy as a modest source of energy

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.

    2001-01-01

    Glass is an under-cooled liquid that very slowly relaxes towards the equilibrium crystalline state. Its energy balance is ill understood, since it is widely believed that the glassy state cannot be described thermodynamically. However, the classical paradoxes involving the Ehrenfest relations and

  6. A chain-of-states acceleration method for the efficient location of minimum energy paths

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, E. R., E-mail: Eduardo.Hernandez@csic.es; Herrero, C. P. [Instituto de Ciencia de Materiales de Madrid (ICMM–CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Soler, J. M. [Departamento de Física de la Materia Condensada and IFIMAC, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2015-11-14

    We describe a robust and efficient chain-of-states method for computing Minimum Energy Paths (MEPs) associated to barrier-crossing events in poly-atomic systems, which we call the acceleration method. The path is parametrized in terms of a continuous variable t ∈ [0, 1] that plays the role of time. In contrast to previous chain-of-states algorithms such as the nudged elastic band or string methods, where the positions of the states in the chain are taken as variational parameters in the search for the MEP, our strategy is to formulate the problem in terms of the second derivatives of the coordinates with respect to t, i.e., the state accelerations. We show this to result in a very simple and efficient method for determining the MEP. We describe the application of the method to a series of test cases, including two low-dimensional problems and the Stone-Wales transformation in C{sub 60}.

  7. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint

    Science.gov (United States)

    Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing

    2015-03-01

    The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.

  8. Improving the iterative Linear Interaction Energy approach using automated recognition of configurational transitions.

    Science.gov (United States)

    Vosmeer, C Ruben; Kooi, Derk P; Capoferri, Luigi; Terpstra, Margreet M; Vermeulen, Nico P E; Geerke, Daan P

    2016-01-01

    Recently an iterative method was proposed to enhance the accuracy and efficiency of ligand-protein binding affinity prediction through linear interaction energy (LIE) theory. For ligand binding to flexible Cytochrome P450s (CYPs), this method was shown to decrease the root-mean-square error and standard deviation of error prediction by combining interaction energies of simulations starting from different conformations. Thereby, different parts of protein-ligand conformational space are sampled in parallel simulations. The iterative LIE framework relies on the assumption that separate simulations explore different local parts of phase space, and do not show transitions to other parts of configurational space that are already covered in parallel simulations. In this work, a method is proposed to (automatically) detect such transitions during the simulations that are performed to construct LIE models and to predict binding affinities. Using noise-canceling techniques and splines to fit time series of the raw data for the interaction energies, transitions during simulation between different parts of phase space are identified. Boolean selection criteria are then applied to determine which parts of the interaction energy trajectories are to be used as input for the LIE calculations. Here we show that this filtering approach benefits the predictive quality of our previous CYP 2D6-aryloxypropanolamine LIE model. In addition, an analysis is performed of the gain in computational efficiency that can be obtained from monitoring simulations using the proposed filtering method and by prematurely terminating simulations accordingly.

  9. High-order moments of spin-orbit energy in a multielectron configuration

    Science.gov (United States)

    Na, Xieyu; Poirier, M.

    2016-07-01

    In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.

  10. Principle of Minimum Energy in Magnetic Reconnection in a Self-organized Critical Model for Solar Flares

    Science.gov (United States)

    Farhang, Nastaran; Safari, Hossein; Wheatland, Michael S.

    2018-05-01

    Solar flares are an abrupt release of magnetic energy in the Sun’s atmosphere due to reconnection of the coronal magnetic field. This occurs in response to turbulent flows at the photosphere that twist the coronal field. Similar to earthquakes, solar flares represent the behavior of a complex system, and expectedly their energy distribution follows a power law. We present a statistical model based on the principle of minimum energy in a coronal loop undergoing magnetic reconnection, which is described as an avalanche process. We show that the distribution of peaks for the flaring events in this self-organized critical system is scale-free. The obtained power-law index of 1.84 ± 0.02 for the peaks is in good agreement with satellite observations of soft X-ray flares. The principle of minimum energy can be applied for general avalanche models to describe many other phenomena.

  11. Ab initio configuration interaction description of excitation energy transfer between closely packed molecules

    International Nuclear Information System (INIS)

    Fink, R.F.; Pfister, J.; Schneider, A.; Zhao, H.; Engels, B.

    2008-01-01

    We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method

  12. Photochemistry of ethylene: A multireference configuration interaction investigation of the excited-state energy surfaces

    International Nuclear Information System (INIS)

    Barbatti, M.; Paier, J.; Lischka, H.

    2004-01-01

    Multireference configuration interaction with singles and doubles (MR-CISD) calculations have been performed for the optimization of conical intersections and stationary points on the ethylene excited-state energy surfaces using recently developed methods for the computation of analytic gradients and nonadiabatic coupling terms. Basis set dependence and the effect of various choices of reference spaces for the MR-CISD calculations have been investigated. The crossing seam between the S 0 and S 1 states has been explored in detail. This seam connects all conical intersections presently known for ethylene. Major emphasis has been laid on the hydrogen-migration path. Starting in the V state of twisted-orthogonal ethylene, a barrierless path to ethylidene was found. The feasibility of ethylidene formation will be important for the explanation of the relative yield of cis and trans H 2 elimination

  13. Ab initio configuration interaction description of excitation energy transfer between closely packed molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fink, R.F. [University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Wuerzburg (Germany)], E-mail: reinhold.fink@rub.de; Pfister, J.; Schneider, A.; Zhao, H.; Engels, B. [University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Wuerzburg (Germany)

    2008-01-29

    We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method.

  14. Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers

    International Nuclear Information System (INIS)

    Walker, Paul D.; Roser, Holger M.

    2015-01-01

    Highlights: • We analyse several driving cycles to for the preliminary design of hybrid two wheelers. • Simulation of alternate configurations to compare achievable driving range and economy. • Demonstrate that pure electric vehicles provide cost benefits over the vehicle life. • Hybrid and plug-in hybrid two wheelers have comparable costs to conventional vehicles. - Abstract: The development of hybrid electric two wheelers in recent years has targeted the reduction of on road emissions produced by these vehicles. However, added cost and complexity have resulted in the failure of these systems to meet consumer expectations. This paper presents a comparative study of the energy economy and essential costs of alternative forms of small two wheelers such as scooters or low capacity motorcycles. This includes conventional, hybrid, plug-in hybrid and electric variants. Through simulations of vehicle driving range using two popular driving cycles it is demonstrated that there is considerable benefit in fuel economy realised by hybridising such vehicles. However, the added costs associated with electrification, i.e. motor/generator, power electronics, and energy storage provide a significant cost obstacle to the purchase of such vehicles. Only the pure electric configuration is demonstrated to be cost effective over its life in comparison to conventional two wheelers. Both the hybrid electric and plug-in equivalents must overcome significant upfront costs to be cost competitive with conventional vehicles. This is demonstrated to be achieved if the annual driving range of the vehicle is increased substantially from the assumed mean. Given the shorter distances travelled by most two wheeler drivers it can therefore be concluded that the development of similar hybrid electric vehicles are unlikely to achieve the desired acceptance that pure electric or conventional equivalents currently achieve

  15. Performance analysis of different ORC configurations for thermal energy and LNG cold energy hybrid power generation system

    Science.gov (United States)

    Sun, Zhixin; Wang, Feng; Wang, Shujia; Xu, Fuquan; Lin, Kui

    2017-01-01

    This paper presents a thermal energy and Liquefied natural gas (LNG) cold energy hybrid power generation system. Performances of four different Organic Rankine cycle (ORC) configurations (the basic, the regenerative, the reheat and the regenerative-reheat ORCs) are studied based on the first and the second law of thermodynamics. Dry organic fluid R245fa is selected as the typical working fluid. Parameter analysis is also conducted in this paper. The results show that regeneration could not increase the thermal efficiency of the thermal and cold energy hybrid power generation system. ORC with the reheat process could produce more specific net power output but it may also reduce the system thermal efficiency. The basic and the regenerative ORCs produce higher thermal efficiency while the regenerative-reheat ORC performs best in the exergy efficiency. A preheater is necessary for the thermal and cold energy hybrid power generation system. And due to the presence of the preheater, there will be a step change of the system performance as the turbine inlet pressure rises.

  16. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  17. Feasibility study of Thermal Electric Generator Configurations as Renewable Energy Sources

    Science.gov (United States)

    Akmal Johar, Muhammad; Yahaya, Zulkarnain; Faizan Marwah, Omar Mohd; Jamaludin, Wan Akashah Wan; Najib Ribuan, Mohamed

    2017-10-01

    Thermoelectric Generator is a solid state device that able to convert thermal energy into electrical energy via temperature differences. The technology is based on Seebeck effect that was discovered in year 1821, however till now there is no real application to exploit this capability in mass scale. This research will report the performance analysis of TEG module in controlled environment of lab scale model. National Instrument equipment and Labview software has been choosen and developed to measure the TEG module in various configurations. Based on the experiment result, an additional passive cooling effort has produced a better ΔT by 7°C. The optimal electrical loading of single TEG is recorded at 200Ω. As for circuit connections, series connection has shown superior power output when compared to parallel connection or single TEG. A series connection of two TEGs has produced power output of 416.82μW when compared to other type connections that only produced around 100μW.

  18. Effect of cycle coupling-configuration on energy cascade utilization for a new power and cooling cogeneration cycle

    International Nuclear Information System (INIS)

    Jing, Xuye; Zheng, Danxing

    2014-01-01

    Highlights: • A new power and cooling cogeneration cycle was proposed. • The thermophysical properties and the performance of the new cycle were calculated. • Different cycle coupling-configurations were analyzed. • The energy efficiency boosting mechanism of the new cycle was elucidated. - Abstract: To recover mid-low grade heat, a new power/cooling cogeneration cycle was proposed by combining the Kalina cycle and the double-effect ammonia–water absorption refrigeration (DAAR) cycle together, and the equivalent heat-to-power and exergy efficiencies of the cogeneration cycle reached 41.18% and 58.00%, respectively. To determine the effect of cycle coupling-configuration on energy cascade utilization for the new cycle, the cycle coupling-configuration of the Kalina and DAAR cycles were first analyzed, after which the cycle coupling-configuration of the new cycle was analyzed. Analysis results showed that the cycle coupling-configuration of the new cycle enhanced the energy cascade utilization. Furthermore, the energy efficiency boosting mechanism of the new cycle was elucidated

  19. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Study on the Performance of the “Pendulor” Wave Energy Converter in an Array Configuration

    Directory of Open Access Journals (Sweden)

    Sudath Prasanna Gunawardane

    2016-04-01

    Full Text Available For over three decades the “Pendulor” wave energy device has had a significant influence in this field, triggering several research endeavours. It includes a top-hinged flap propelled by the standing waves produced in a caisson with a back wall on the leeward side. However, one of the main disadvantages which impedes its progress is the enormous expense involved in the construction of the custom made typical caisson structure, about a little more than one-quarter of the wave length. In this study, the influence of such design parameters on the performance of the device is investigated, via numerical modelling for a device arranged in an array configuration, for irregular waves. The potential wave theory is applied to derive the frequency-dependent hydrodynamic parameters by making a distinction in the fluid domain into a separate sea side and lee side. The Cummins equation was utilised for the development of the time domain equation of motion while the transfer function estimation methods were used to solve the convolution integrals. Finally, the device was tested numerically for irregular wave conditions for a 50 kW class unit. It was observed that in irregular wave operating conditions, the caisson chamber length could be reduced by 40% of the value estimated for the regular waves. Besides, the device demonstrated around 80% capture efficiency for irregular waves thus allowing provision for avoiding the employment of any active control.

  1. Cost-benefit analysis of implementing minimum energy efficiency standards for household refrigerator-freezers in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Amalina, M.A.

    2004-01-01

    The ownership of household electrical appliances especially refrigerator-freezer has increased rapidly in Malaysia. Almost every household in this country has a refrigerator-freezer. To reduce energy consumption in this sector the refrigerator is one of the top priorities of the energy efficiency program for household appliances. Malaysian authority is considering implementing minimum energy efficiency standards for refrigerator-freezer sometime in the coming year. This paper attempts to analyze cost-benefit of implementing minimum energy efficiency standards for household refrigerator-freezers in Malaysia. The calculations were made based on growth of ownership data for refrigerators in Malaysian households. The number of refrigerator-freezer has increased from 175,842 units in 1970 to 4,196,486 in 2000 and it will be about 11,293,043 in the year of 2020. Meanwhile it has accounted for about 26.3% of electricity consumption in a single household. Therefore, efficiency improvement of this appliance will give a significant impact in the future of electricity consumption in this country. Furthermore, it has been found that implementing an energy efficiency standard for household refrigerator-freezers is economically justified

  2. An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands

    CERN Document Server

    Takala, E; Bremer, J; Balle, C; Bottura, L; Rossi, L

    2012-01-01

    Magneto-thermal instability may affect high critical current density Nb$_{3}$Sn superconducting strands that can quench even though the transport current is low compared to the critical current with important implications in the design of next generation superconducting magnets. The instability is initiated by a small perturbation energy which is considerably lower than the Minimum Quench Energy (MQE). At CERN, a new experimental setup was developed to measure the smallest perturbation energy (Minimum Trigger Energy, MTE) which is able to trigger the magneto-thermal instability in superconducting Nb$_{3}$Sn-strands. The setup is based on Q-switched laser technology which is able to provide a localized perturbation in nano-second time scale. Using this technique the energy deposition into the strand is well defined and reliable. The laser is located outside the cryostat at room temperature. The beam is guided from room temperature on to the superconducting strand by using a UV-enhanced fused silica fibre. The ...

  3. Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy

    International Nuclear Information System (INIS)

    Trushin, O; Maras, E; Jónsson, H; Ala-Nissila, T; Stukowski, A; Granato, E; Ying, S C

    2016-01-01

    A possible mechanism for the formation of a 90° misfit dislocation at the Ge/Si(0 0 1) interface through homogeneous nucleation is identified from atomic scale calculations where a minimum energy path connecting the coherent epitaxial state and a final state with a 90° misfit dislocation is found using the nudged elastic band method. The initial path is generated using a repulsive bias activation procedure in a model system including 75 000 atoms. The energy along the path exhibits two maxima in the energy. The first maximum occurs as a 60° dislocation nucleates. The intermediate minimum corresponds to an extended 60° dislocation. The subsequent energy maximum occurs as a second 60° dislocation nucleates in a complementary, mirror glide plane, simultaneously starting from the surface and from the first 60° dislocation. The activation energy of the nucleation of the second dislocation is 30% lower than that of the first one showing that the formation of the second 60° dislocation is aided by the presence of the first one. The simulations represent a step towards unraveling the formation mechanism of 90° dislocations, an important issue in the design of growth procedures for strain released Ge overlayers on Si(1 0 0) surfaces, and more generally illustrate an approach that can be used to gain insight into the mechanism of complex nucleation paths of extended defects in solids. (paper)

  4. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali; Lai, Zhiping

    2014-01-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions

  5. New Topological Configurations in the Continuous Heisenberg Spin Chain: Lower Bound for the Energy

    Directory of Open Access Journals (Sweden)

    Rossen Dandoloff

    2015-01-01

    Full Text Available In order to study the spin configurations of the classical one-dimensional Heisenberg model, we map the normalized unit vector, representing the spin, on a space curve. We show that the total chirality of the configuration is a conserved quantity. If, for example, one end of the space curve is rotated by an angle of 2π relative to the other, the Frenet frame traces out a noncontractible loop in SO(3 and this defines a new class of topological spin configurations for the Heisenberg model.

  6. Electron energy deposition in a multilayered carbon--uranium--carbon configuration and in semi-infinite uranium

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Miller, G.H.; Halbleib, J.A. Sr.

    1977-10-01

    Absolute measurements of electron energy deposition profiles are reported here for electrons incident on the multilayer configuration of carbon-uranium-carbon. These measurements were for normally incident source electrons at an energy of 1.0 MeV. To complement these measurements, electron energy deposition profiles were also obtained for electrons incident on semi-infinite uranium as a function of energy and angle of incidence. The results are compared with the predictions of a coupled electron/photon Monte Carlo transport model. In general, the agreement between theory and experiment is good. This work was in support of the Reactor Safety Research Equation-of-State Program

  7. Basic configuration of the mean energy line (LME) V2.0; Configuration de base de la ligne moyenne energie (LME) V2.0

    Energy Technology Data Exchange (ETDEWEB)

    Uriot, D. [CEA Saclay, 91 - Gif sur Yvette (France); Bertrand, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Biarrotte, J.L. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    2007-06-15

    The main purpose of the mean energy line (LME) is to receive the beam accelerated by the RFQ (deuterons, ions with q/A = 1/3, protons) and dispatch it to the linac in optimized conditions. LME is about 8 m long and the vacuum required is 10{sup -6} Pa and is composed of 10 identical quadrupoles. This document describes the state of the design of the LME for the injection system of the linac within the SPIRAL-2 project.

  8. An autonomic approach to configure HEP (High Energy Physics) experiments, applied to LHCb (Large Hadron Collider beauty)

    CERN Document Server

    Abadie, L; Charpentier, P

    2006-01-01

    Properly configuring an HEP (High Energy Phys ics) experiment becomes a more and more complex task as the number of electronics modules grows and technologies evolve quickly. Anticipating a fault in the software or in the hardware during the configuration or the data taking requires an adaptive and modular control system. The introduction of autonomic tools and data bases in the HEP world is quite recent and contributes to implement a more reliable system . The LHCb control system innovates as it has been built using autonomic tools. The main contribution of this PhD is the implementation of an autonomic 3-Tier architectur e to configure the LHCb experiment which is a huge network of devices of different types, and its integrat ion in the control system. This new type of autonomics architecture consists of: • A database layer. A relational Oracle databa se implemented using the Oracle technology contains the information...

  9. Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.

    Science.gov (United States)

    Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S

    2006-08-31

    The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.

  10. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.

    Science.gov (United States)

    Panepinto, Deborah; Genon, Giuseppe

    2014-07-01

    Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme. © The Author(s) 2014.

  11. Minimum Energy Decentralized Estimation in a Wireless Sensor Network with Correlated Sensor Noises

    Directory of Open Access Journals (Sweden)

    Krasnopeev Alexey

    2005-01-01

    Full Text Available Consider the problem of estimating an unknown parameter by a sensor network with a fusion center (FC. Sensor observations are corrupted by additive noises with an arbitrary spatial correlation. Due to bandwidth and energy limitation, each sensor is only able to transmit a finite number of bits to the FC, while the latter must combine the received bits to estimate the unknown parameter. We require the decentralized estimator to have a mean-squared error ( that is within a constant factor to that of the best linear unbiased estimator (BLUE. We minimize the total sensor transmitted energy by selecting sensor quantization levels using the knowledge of noise covariance matrix while meeting the target requirement. Computer simulations show that our designs can achieve energy savings up to when compared to the uniform quantization strategy whereby each sensor generates the same number of bits, irrespective of the quality of its observation and the condition of its channel to the FC.

  12. Sparse RNA folding revisited: space-efficient minimum free energy structure prediction.

    Science.gov (United States)

    Will, Sebastian; Jabbari, Hosna

    2016-01-01

    RNA secondary structure prediction by energy minimization is the central computational tool for the analysis of structural non-coding RNAs and their interactions. Sparsification has been successfully applied to improve the time efficiency of various structure prediction algorithms while guaranteeing the same result; however, for many such folding problems, space efficiency is of even greater concern, particularly for long RNA sequences. So far, space-efficient sparsified RNA folding with fold reconstruction was solved only for simple base-pair-based pseudo-energy models. Here, we revisit the problem of space-efficient free energy minimization. Whereas the space-efficient minimization of the free energy has been sketched before, the reconstruction of the optimum structure has not even been discussed. We show that this reconstruction is not possible in trivial extension of the method for simple energy models. Then, we present the time- and space-efficient sparsified free energy minimization algorithm SparseMFEFold that guarantees MFE structure prediction. In particular, this novel algorithm provides efficient fold reconstruction based on dynamically garbage-collected trace arrows. The complexity of our algorithm depends on two parameters, the number of candidates Z and the number of trace arrows T; both are bounded by [Formula: see text], but are typically much smaller. The time complexity of RNA folding is reduced from [Formula: see text] to [Formula: see text]; the space complexity, from [Formula: see text] to [Formula: see text]. Our empirical results show more than 80 % space savings over RNAfold [Vienna RNA package] on the long RNAs from the RNA STRAND database (≥2500 bases). The presented technique is intentionally generalizable to complex prediction algorithms; due to their high space demands, algorithms like pseudoknot prediction and RNA-RNA-interaction prediction are expected to profit even stronger than "standard" MFE folding. SparseMFEFold is free

  13. CONFIGURATION-INTERACTION IN NI METAL AND NI-ALLOYS AND HIGH-ENERGY SPECTROSCOPY

    NARCIS (Netherlands)

    TANAKA, A; JO, T; SAWATZKY, GA

    We discuss the electronic state of Ni atoms in Ni metal and of Ni impurity in Cu and Au metals from the viewpoint of 3d configuration interaction (CI) using the Anderson impurity model including atomic multiplets. On the basis of the discussion, we give an interpretation for the Ni 2p-core X-ray

  14. Ocean Thermal Energy Conversion (OTEC) platform configuration and integration. Volume II. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of this project is to evaluate six candidate hullforms as candidates for the OTEC commercial plant. This volume is a summary of the conceptual design including facility requirements, cost, schedule, and site sensitivity. Two OTEC commercial plant configurations are considered in this study: the ship and the semi-submersible. Engineering drawings are presented. (WHR)

  15. Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2013-04-01

    Full Text Available This paper compares two optimal energy management methods for parallel hybrid electric vehicles using an Automatic Manual Transmission (AMT. A control-oriented model of the powertrain and vehicle dynamics is built first. The energy management is formulated as a typical optimal control problem to trade off the fuel consumption and gear shifting frequency under admissible constraints. The Dynamic Programming (DP and Pontryagin’s Minimum Principle (PMP are applied to obtain the optimal solutions. Tuning with the appropriate co-states, the PMP solution is found to be very close to that from DP. The solution for the gear shifting in PMP has an algebraic expression associated with the vehicular velocity and can be implemented more efficiently in the control algorithm. The computation time of PMP is significantly less than DP.

  16. Minimum energy control for a two-compartment neuron to extracellular electric fields

    Science.gov (United States)

    Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin

    2016-11-01

    The energy optimization of extracellular electric field (EF) stimulus for a neuron is considered in this paper. We employ the optimal control theory to design a low energy EF input for a reduced two-compartment model. It works by driving the neuron to closely track a prescriptive spike train. A cost function is introduced to balance the contradictory objectives, i.e., tracking errors and EF stimulus energy. By using the calculus of variations, we transform the minimization of cost function to a six-dimensional two-point boundary value problem (BVP). Through solving the obtained BVP in the cases of three fundamental bifurcations, it is shown that the control method is able to provide an optimal EF stimulus of reduced energy for the neuron to effectively track a prescriptive spike train. Further, the feasibility of the adopted method is interpreted from the point of view of the biophysical basis of spike initiation. These investigations are conducive to designing stimulating dose for extracellular neural stimulation, which are also helpful to interpret the effects of extracellular field on neural activity.

  17. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  18. Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace

    International Nuclear Information System (INIS)

    Jang, Jiin-Yuh; Huang, Jun-Bo

    2015-01-01

    A two-dimensional mathematical heat transfer model for the prediction of the temperature history of steel slabs was performed in order to obtain the optimal heating pattern of these slabs with minimum energy consumption in a walking-beam type reheating furnace. An algorithm developed with a simplified conjugated-gradient method combined with a shooting method, was used as an optimizer to design the furnace temperature distribution, including the preheating zone, heating zone and soaking zone temperatures. Comparison with the in-situ experimental data indicated that the present heat transfer model works well for the prediction of the thermal behavior of a slab in the reheating furnace. The effect of the furnace temperature distribution on the design requirements, such as energy required for heating a slab, slab temperature uniformity at the furnace exit and slab discharging temperature, were investigated. The parametric study results indicated that energy consumption significantly decreases with reductions in the preheating zone temperature. The optimal design also resulted in lower energy consumption for heating a slab as compared to the original operational conditions in the steel plant. - Highlights: • The heating process of steel slabs in a reheating furnace is numerically simulated. • An algorithm is developed to search for the optimal heating pattern of a slab. • Energy consumption decreases with reductions in the preheating zone temperature

  19. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding

    Directory of Open Access Journals (Sweden)

    Zhang Dongkun

    2015-04-01

    Full Text Available Nanoparticles with the anti-wear and friction reducing features were applied as cooling lubricant in the grinding fluid. Dry grinding, flood grinding, minimal quantity of lubrication (MQL, and nanoparticle jet MQL were used in the grinding experiments. The specific grinding energy of dry grinding, flood grinding and MQL were 84, 29.8, 45.5 J/mm3, respectively. The specific grinding energy significantly decreased to 32.7 J/mm3 in nanoparticle MQL. Compared with dry grinding, the surface roughness values of flood grinding, MQL, and nanoparticle jet MQL were significantly reduced with the surface topography profile values reduced by 11%, 2.5%, and 10%, respectively, and the ten point height of microcosmic unflatness values reduced by 1.5%, 0.5%, and 1.3%, respectively. These results verified the satisfactory lubrication effects of nanoparticle MQL. MoS2, carbon nanotube (CNT, and ZrO2 nanoparticles were also added in the grinding fluid of nanoparticle jet MQL to analyze their grinding surface lubrication effects. The specific grinding energy of MoS2 nanoparticle was only 32.7 J/mm3, which was 8.22% and 10.39% lower than those of the other two nanoparticles. Moreover, the surface roughness of workpiece was also smaller with MoS2 nanoparticle, which indicated its remarkable lubrication effects. Furthermore, the role of MoS2 particles in the grinding surface lubrication at different nanoparticle volume concentrations was analyzed. MoS2 volume concentrations of 1%, 2%, and 3% were used. Experimental results revealed that the specific grinding energy and the workpiece surface roughness initially increased and then decreased as MoS2 nanoparticle volume concentration increased. Satisfactory grinding surface lubrication effects were obtained with 2% MoS2 nanoparticle volume concentration.

  20. Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.

  1. Finding the Energy Efficient Curve: Gate Sizing for Minimum Power under Delay Constraints

    Directory of Open Access Journals (Sweden)

    Yoni Aizik

    2011-01-01

    Full Text Available A design scenario examined in this paper assumes that a circuit has been designed initially for high speed, and it is redesigned for low power by downsizing of the gates. In recent years, as power consumption has become a dominant issue, new optimizations of circuits are required for saving energy. This is done by trading off some speed in exchange for reduced power. For each feasible speed, an optimization problem is solved in this paper, finding new sizes for the gates such that the circuit satisfies the speed goal while dissipating minimal power. Energy/delay gain (EDG is defined as a metric to quantify the most efficient tradeoff. The EDG of the circuit is evaluated for a range of reduced circuit speeds, and the power-optimal gate sizes are compared with the initial sizes. Most of the energy savings occur at the final stages of the circuits, while the largest relative downsizing occurs in middle stages. Typical tapering factors for power efficient circuits are larger than those for speed-optimal circuits. Signal activity and signal probability affect the optimal gate sizes in the combined optimization of speed and power.

  2. Minimum Energy Decentralized Estimation in a Wireless Sensor Network with Correlated Sensor Noises

    Directory of Open Access Journals (Sweden)

    Krasnopeev Alexey

    2005-01-01

    Full Text Available Consider the problem of estimating an unknown parameter by a sensor network with a fusion center (FC. Sensor observations are corrupted by additive noises with an arbitrary spatial correlation. Due to bandwidth and energy limitation, each sensor is only able to transmit a finite number of bits to the FC, while the latter must combine the received bits to estimate the unknown parameter. We require the decentralized estimator to have a mean-squared error (MSE that is within a constant factor to that of the best linear unbiased estimator (BLUE. We minimize the total sensor transmitted energy by selecting sensor quantization levels using the knowledge of noise covariance matrix while meeting the target MSE requirement. Computer simulations show that our designs can achieve energy savings up to 70 % when compared to the uniform quantization strategy whereby each sensor generates the same number of bits, irrespective of the quality of its observation and the condition of its channel to the FC.

  3. Simulation of the steady-state energy transfer in rigid bodies, with convective-radiative boundary conditions, employing a minimum principle

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-08-01

    The energy transfer phenomenon in a rigid and opaque body that exchanges energy, with the environment, by convection and by diffuse thermal radiation is studied. The considered phenomenon is described by a partial differential equation, subjected to (nonlinear) boundary conditions. A minimum principle, suitable for a large class of energy transfer problems is presented. Some particular cases are simulated. (author)

  4. Minimum critical mass systems

    International Nuclear Information System (INIS)

    Dam, H. van; Leege, P.F.A. de

    1987-01-01

    An analysis is presented of thermal systems with minimum critical mass, based on the use of materials with optimum neutron moderating and reflecting properties. The optimum fissile material distributions in the systems are obtained by calculations with standard computer codes, extended with a routine for flat fuel importance search. It is shown that in the minimum critical mass configuration a considerable part of the fuel is positioned in the reflector region. For 239 Pu a minimum critical mass of 87 g is found, which is the lowest value reported hitherto. (author)

  5. Recent developments in the theory of protein folding: searching for the global energy minimum.

    Science.gov (United States)

    Scheraga, H A

    1996-04-16

    Statistical mechanical theories and computer simulation are being used to gain an understanding of the fundamental features of protein folding. A major obstacle in the computation of protein structures is the multiple-minima problem arising from the existence of many local minima in the multidimensional energy landscape of the protein. This problem has been surmounted for small open-chain and cyclic peptides, and for regular-repeating sequences of models of fibrous proteins. Progress is being made in resolving this problem for globular proteins.

  6. Regimes of pulsed formation of a compact plasma configuration with a high energy input

    Energy Technology Data Exchange (ETDEWEB)

    Romadanov, I. V.; Ryzhkov, S. V., E-mail: svryzhkov@bmstu.ru [Bauman Moscow State Technical University (Russian Federation)

    2015-10-15

    Results of experiments on the formation of a compact toroidal magnetic configuration at the Compact Toroid Challenge setup are presented. The experiments were primarily aimed at studying particular formation stages. Two series of experiments, with and without an auxiliary capacitor bank, were conducted. The magnetic field was measured, its time evolution and spatial distribution over the chamber volume were determined, and its influence on the formation regimes was investigated.

  7. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets

    Science.gov (United States)

    Ahdab, Yvana D.; Thiel, Gregory P.; Böhlke, John Karl; Stanton, Jennifer S.; Lienhard, John H.

    2018-01-01

    This paper uses chemical and physical data from a large 2017 U.S. Geological Surveygroundwater dataset with wells in the U.S. and three smaller international groundwater datasets with wells primarily in Australia and Spain to carry out a comprehensive investigation of brackish groundwater composition in relation to minimum desalinationenergy costs. First, we compute the site-specific least work required for groundwater desalination. Least work of separation represents a baseline for specific energy consumptionof desalination systems. We develop simplified equations based on the U.S. data for least work as a function of water recovery ratio and a proxy variable for composition, either total dissolved solids, specific conductance, molality or ionic strength. We show that the U.S. correlations for total dissolved solids and molality may be applied to the international datasets. We find that total molality can be used to calculate the least work of dilute solutions with very high accuracy. Then, we examine the effects of groundwater solute composition on minimum energy requirements, showing that separation requirements increase from calcium to sodium for cations and from sulfate to bicarbonate to chloride for anions, for any given TDS concentration. We study the geographic distribution of least work, total dissolved solids, and major ions concentration across the U.S. We determine areas with both low least work and high water stress in order to highlight regions holding potential for desalination to decrease the disparity between high water demand and low water supply. Finally, we discuss the implications of the USGS results on water resource planning, by comparing least work to the specific energy consumption of brackish water reverse osmosisplants and showing the scaling propensity of major electrolytes and silica in the U.S. groundwater samples.

  8. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L. [Dept. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid (Spain); Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G. [Dept. de Física Aplicada III (Electricidad y Electrónica), Univ. Complutense de Madrid, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Olea, J. [CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Instituto de Energía Solar, E.T.S.I. de Telecomunicación, Univ. Politécnica de Madrid, 28040 Madrid (Spain)

    2015-12-28

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known

  9. A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration

    International Nuclear Information System (INIS)

    Wang, Y Y; Xu, D G; Jiang, H; Zhong, K; Yao, J Q

    2013-01-01

    A high-energy, low-threshold THz-wave output has been experimentally demonstrated with an intracavity terahertz-wave parametric oscillator based on a surface-emitted configuration, which was pumped by a diode-side-pumped Q-switched Nd:YAG laser. Different beam sizes and repetition rates of the pump light have been investigated for high-energy and high-efficiency THz-wave generation. The maximum THz-wave output energy of 283 nJ/pulse was obtained at 1.54 THz under an intracavity 1064 nm pump energy of 59 mJ. The conversion efficiency was 4.8 × 10 −6 , corresponding to a photon conversion efficiency of 0.088%. The pump threshold was 12.9 mJ/pulse. A continuously tunable range from 0.75 to 2.75 THz was realized. (paper)

  10. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory.

    Science.gov (United States)

    Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-10-07

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.

  11. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  12. Modeling and characterization of electret based vibration energy harvesters in slot-effect configuration

    International Nuclear Information System (INIS)

    Renaud, M; Altena, G; Elfrink, R; Goedbloed, M; De Nooijer, C; Van Schaijk, R

    2015-01-01

    The purpose of this article is to elaborate a model and the optimization guidelines for electret based harvesters with a specific electret/electrodes configuration, namely the slot-effect configuration. Slot-effect configured harvesters have been investigated experimentally by several research groups. A model describing their dynamic behavior has also been recently proposed in the literature. However, the simplifications used in the existing model can lead to inaccuracies and a refined analysis is elaborated in the present article. The model is compared with experimental measurements on MEMS fabricated devices with a corrugated electret. The electrodes dimensioning in the MEMS device are chosen so that the harvester behaves in a quasi-linear manner over its full range of displacement. This quasi-linearity simplifies greatly the device optimization. Indeed, the behavior of the developed electrostatic harvester is shown to be very comparable to that of piezoelectric harvesters, which are very well understood and documented. The influence of several design parameters on output power performance is investigated. As long as pull-in and breakdown voltage effects can be avoided, the electret surface potential should be maximized and the air gap minimized. We also investigate theoretically the influence of three types of electret on the generated power: planar, corrugated with partial charge coverage, and corrugated with full charge coverage. With the dimensions corresponding to our MEMS devices, the output power characteristics for the three types of electret are similar. However, it is shown that this is not always true. In some conditions, corrugated electrets with full charge coverage are detrimental for the generated power. (paper)

  13. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  14. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    Directory of Open Access Journals (Sweden)

    Michael Shepertycky

    Full Text Available Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator.We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH, which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0 is lower than that of conventional power generation methods.These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  15. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    Science.gov (United States)

    Shepertycky, Michael; Li, Qingguo

    2015-01-01

    Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  16. Sustainable application of renewable sources in water pumping systems: Optimized energy system configuration

    International Nuclear Information System (INIS)

    Ramos, J.S.; Ramos, H.M.

    2009-01-01

    Eighteen years ago, in Portugal, the expenses in a water supply system associated with energy consumption were quite low. However, with the successive crises of energy fuel and the increase of the energy tariff as well as the water demand, the energy consumption is becoming a larger and a more important part of the total budget of water supply pumping systems. Also, new governmental policies, essentially in developed countries, are trying to implement renewable energies. For these reasons, a case-study in Portugal of a water pumping system was analysed to operate connected to solar and wind energy sources. A stand-alone and a grid-connected systems were tested. The stand alone was compared with the cost of extending the national electric grid. In the grid-connected system two solutions were analysed, one with a water turbine and another without. To be able to implement a water turbine, a larger water pump was needed to pump the necessary water as for consumption as for energy production. For the case analysed the system without a water turbine proved to be more cost-effective because the energy tariff is not yet so competitive as well as the cost of water turbines

  17. Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration

    International Nuclear Information System (INIS)

    Blasques, L.C.M.; Pinho, J.T.

    2012-01-01

    This paper proposes a demand-side management model integrated to a metering system for hybrid renewable energy systems in micro-grid configuration. The proposal is based on the management problems verified in most of this kind of renewable hybrid systems installed in Brazil. The main idea is the implementation of a pre-paid metering system with some control functions that directly act on the consumer demand, restricting the consumption proportionally to the monthly availability of renewable energy. The result is a better distribution of the electricity consumption by month and by consumer, preventing that only one user, with larger purchasing power, consumes all the renewable energy available at some time period. The proportionality between the consumption and the renewable energy's availability has the objective to prevent a lack of energy stored and a high use of the diesel generator-set on months of low renewable potential. This paper also aims to contribute to the Brazilian regulation of renewable energy systems supplying micro-grids. - Highlights: ► Review of the Brazilian electricity regulation for small-scale isolated systems. ► Renewable systems are the most feasible option in several isolated communities. ► One proposal is to guarantee government subsidies for renewable energy systems. ► Smart electronic meters to create electricity restrictions for the consumers.

  18. The Energy-Water Nexus: An Analysis and Comparison of Various Configurations Integrating Desalination with Renewable Power

    Directory of Open Access Journals (Sweden)

    Gary M. Gold

    2015-04-01

    Full Text Available This investigation studies desalination powered by wind and solar energy, including a study of a configuration using PVT solar panels. First, a water treatment was developed to estimate the power requirement for brackish groundwater reverse-osmosis (BWRO desalination. Next, an energy model was designed to (1 size a wind farm based on this power requirement and (2 size a solar farm to preheat water before reverse osmosis treatment. Finally, an integrated model was developed that combines results from the water treatment and energy models. The integrated model optimizes performances of the proposed facility to maximize daily operational profits. Results indicate that integrated facility can reduce grid-purchased electricity costs by 88% during summer months and 89% during winter when compared to a stand-alone desalination plant. Additionally, the model suggests that the integrated configuration can generate $574 during summer and $252 during winter from sales of wind- and solar-generated electricity to supplement revenue from water production. These results indicate that an integrated facility combining desalination, wind power, and solar power can potentially reduce reliance on grid-purchased electricity and advance the use of renewable power.

  19. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration.

    Science.gov (United States)

    Panepinto, D; Zanetti, M C

    2018-03-01

    This study proposes a multi-step approach to evaluating the environmental and economic aspects of a thermal treatment plant with an energy-recovery configuration. In order to validate the proposed approach, the Turin incineration plant was analyzed, and the potential of the incinerator and several different possible connections to the district heating network were then considered. Both local and global environmental balances were defined. The global-scale results provided information on carbon dioxide emissions, while the local-scale results were used as reference values for the implementation of a Gaussian model that could evaluate the actual concentrations of pollutants released into the atmosphere. The economic aspects were then analyzed, and a correspondence between the environmental and economic advantages defined. The results showed a high energy efficiency for the combined production of heat and electricity, and the opportunity to minimize environmental impacts by including cogeneration in a district heating scheme. This scheme showed an environmental advantage, whereas the electricity-only configuration showed an economic advantage. A change in the thermal energy price (specifically, to 40 €/MWh), however, would make it possible to obtain both environmental and economic advantages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Level energies, lifetimes and radiative rates in the 4p44d configurations of bromine-like ions

    Science.gov (United States)

    Singh, A. K.; Aggarwal, Sunny; Mohan, Man

    2013-09-01

    Energy levels, lifetimes and wavefunction compositions have been computed for all levels of odd parity 4s24p5 ground configuration as well as 4s4p6 and 4s24p44d even parity excited configurations in Br-like Sr IV, Y V, Zr VI, Nb VII and Mo VIII. Transition probabilities, oscillator strengths and line strengths for the electric dipole (E1) transition from the 4s24p5 configuration have been obtained using the multiconfiguration Dirac-Fock approach. Correlations within the n = 4 complex, Breit and quantum electrodynamics effects have been included. We make a detailed comparison of our results with those of other numerical methods and experiments to assess the quality of our results. Good agreement is observed between our results and those obtained using different approaches confirm the quality of our results. Further, we have also predicted new atomic data that were not available so far and are yet to be observed.

  1. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  2. A Transmission Power Optimization with a Minimum Node Degree for Energy-Efficient Wireless Sensor Networks with Full-Reachability

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-01-01

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351

  3. Process configuration of Liquid-nitrogen Energy Storage System (LESS) for maximum turnaround efficiency

    Science.gov (United States)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2017-12-01

    Diverse power generation sector requires energy storage due to penetration of variable renewable energy sources and use of CO2 capture plants with fossil fuel based power plants. Cryogenic energy storage being large-scale, decoupled system with capability of producing large power in the range of MWs is one of the options. The drawback of these systems is low turnaround efficiencies due to liquefaction processes being highly energy intensive. In this paper, the scopes of improving the turnaround efficiency of such a plant based on liquid Nitrogen were identified and some of them were addressed. A method using multiple stages of reheat and expansion was proposed for improved turnaround efficiency from 22% to 47% using four such stages in the cycle. The novelty here is the application of reheating in a cryogenic system and utilization of waste heat for that purpose. Based on the study, process conditions for a laboratory-scale setup were determined and presented here.

  4. Direct acceleration of ions to low and medium energies by a crossed-laser-beam configuration

    Directory of Open Access Journals (Sweden)

    Yousef I. Salamin

    2011-07-01

    Full Text Available Calculations show that 10 keV helium and carbon ions, injected midway between two identical 1 TW-power crossed laser beams of radial polarization, can be accelerated in vacuum to energies of utility in ion lithography. As examples, identical laser beams, crossed at 10° and focused to waist radii of 7.42  μm, accelerate He^{2+} and C^{6+} ions to average kinetic energies near 75 and 165 keV over distances averaging less than 7 and 6 mm, respectively. The spread in kinetic energy in both cases is less than 1% and the particle average angular deflection is less than 7 mrad. More energy-demanding industrial applications require higher-power laser beams for their direct ion laser acceleration.

  5. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration

    International Nuclear Information System (INIS)

    Benedetti, P.A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In this paper, the effect of laser pulse energy on double-pulse laser induced breakdown spectroscopy signal is studied. In particular, the energy of the first pulse has been changed, while the second pulse energy is held fixed. A systematic study of the laser induced breakdown spectroscopy signal dependence on the interpulse delay is performed, and the results are compared with the ones obtained with a single laser pulse of energy corresponding to the sum of the two pulses. At the same time, the crater formed at the target surface is studied by video-confocal microscopy, and the variation in crater dimensions is correlated to the enhancement of the laser induced breakdown spectroscopy signal. The results obtained are consistent with the interpretation of the double-pulse laser induced breakdown spectroscopy signal enhancement in terms of the changes in ambient gas pressure produced by the shock wave induced by the first laser pulse

  6. Energy crops on landfills: functional, environmental, and costs analysis of different landfill configurations.

    Science.gov (United States)

    Pivato, Alberto; Garbo, Francesco; Moretto, Marco; Lavagnolo, Maria Cristina

    2018-02-09

    The cultivation of energy crops on landfills represents an important challenge for the near future, as the possibility to use devalued sites for energy production is very attractive. In this study, four scenarios have been assessed and compared with respect to a reference case defined for northern Italy. The scenarios were defined taking into consideration current energy crops issues. In particular, the first three scenarios were based on energy maximisation, phytotreatment ability, and environmental impact, respectively. The fourth scenario was a combination of these characteristics emphasised by the previous scenarios. A multi-criteria analysis, based on economic, energetic, and environmental aspects, was performed. From the analysis, the best scenario resulted to be the fourth, with its ability to pursue several objectives simultaneously and obtain the best score relatively to both environmental and energetic criteria. On the contrary, the economic criterion emerges as weak, as all the considered scenarios showed some limits from this point of view. Important indications for future designs can be derived. The decrease of leachate production due to the presence of energy crops on the top cover, which enhances evapotranspiration, represents a favourable but critical aspect in the definition of the results.

  7. Influence of Distributed Residential Energy Storage on Voltage in Rural Distribution Network and Capacity Configuration

    Science.gov (United States)

    Liu, Lu; Tong, Yibin; Zhao, Zhigang; Zhang, Xuefen

    2018-03-01

    Large-scale access of distributed residential photovoltaic (PV) in rural areas has solved the voltage problem to a certain extent. However, due to the intermittency of PV and the particularity of rural residents’ power load, the problem of low voltage in the evening peak remains to be resolved. This paper proposes to solve the problem by accessing residential energy storage. Firstly, the influence of access location and capacity of energy storage on voltage distribution in rural distribution network is analyzed. Secondly, the relation between the storage capacity and load capacity is deduced for four typical load and energy storage cases when the voltage deviation meets the demand. Finally, the optimal storage position and capacity are obtained by using PSO and power flow simulation.

  8. Measurements of gamma-ray energy deposition in a heterogeneous reactor experimental configuration and their analysis

    International Nuclear Information System (INIS)

    Calamand, D.; Wouters, R. de; Knipe, A.D.; Menil, R.

    1984-10-01

    An important contribution to the power output of a fast reactor is provided by the energy deposition from gamma-rays, and is particularly significant in the inner fertile zones of heterogeneous breeder reactor designs. To establish the validity of calculational methods and data for such systems an extensive series of measurements was performed in the zero power reactor Masurca, as part of the RACINE programme. The experimental study involved four European laboratories and the measurement techniques covered a range of thermoluminescent dosemeters and an ionization chamber. The present paper describes and compares the gamma-ray energy deposition measurements and analysis

  9. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    Directory of Open Access Journals (Sweden)

    Ruhe T.

    2016-01-01

    Full Text Available IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  10. Optimization of PV-based energy production by dynamic PV-panel/inverter configuration

    DEFF Research Database (Denmark)

    Paasch, Kasper; Nymand, Morten; Haase, Frerk

    This paper investigates the possible increase in annual energy production of a PV system with more than one MPPT (maximum power point tracker) input channels under Nordic illumination conditions, in case a concept of dynamic switching of the PV panels is used at the inputs of the inverters....

  11. Optimal Configurations of Wave Energy Converter Arrays with a Floating Body

    Directory of Open Access Journals (Sweden)

    Zhang Wanchao

    2016-10-01

    Full Text Available An array of floating point-absorbing wave energy converters (WECs is usually employed for extracting efficiently ocean wave energy. For deep water environment, it is more feasible and convenient to connect the absorbers array with a floating body, such as a semi-submersible bottom-moored disk, whose function is to act as the virtual seabed. In the present work, an array of identical floating symmetrically distributed cylinders in a coaxial moored disk as a wave energy device is proposed The power take-off (PTO system in the wave energy device is assumed to be composed of a linear/nonlinear damper activated by the buoys heaving motion. Hydrodynamic analysis of the examined floating system is implemented in frequency domain. Hydrodynamic interferences between the oscillating bodies are accounted for in the corresponding coupled equations. The array layouts under the constraint of the disk, incidence wave directions, separating distance between the absorbers and the PTO damping are considered to optimize this kind of WECs. Numerical results with regular waves are presented and discussed for the axisymmetric system utilizing heave mode with these interaction factors, in terms of a specific numbers of cylinders and expected power production.

  12. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.

    Science.gov (United States)

    Lombardi, Lidia; Carnevale, Ennio A

    2018-03-01

    Residual municipal solid waste (MSW) has an average lower heating value higher than 10GJ/Mg in the EU, and can be recovered in modern Waste-to-Energy (WtE) plants, producing combined heat and power (CHP) and reaching high levels of energy recovery. CHP is pinpointed as the best technique for energy recovery from waste. However, in some cases, heat recovery is not technically feasible - due to the absence of a thermal user (industrial plant or district heating) in the vicinity of the WtE plant - and power production remains the sole possibility. In these cases, there are some challenges involved in increasing the energy performance as much as possible. High energy recovery efficiency values are very important for the environmental sustainability of WtE plants. The more electricity and heat is produced, the better the saving of natural resources that can be achieved. Within this frame, the aim of this work is to carry out an environmental assessment, through Life Cycle Assessment, of an MSW WtE plant, considering different sizes and operated in different ways, from power production only to full cogeneration. The main assumption is that the electric conversion efficiency increases as the plant size increases, introducing technical improvements thanks to the economies of scale. Impact assessment results were calculated using ReCiPe 2008 methods. The climate change indicator is positive when the WtE plant is operated in power production only mode, with values decreasing for the increasing size. Values for the climate change are negative when cogeneration is applied, requiring increasing cogeneration ratios for decreasing size. Similarly, the fossil fuel depletion indicator benefits from increase of both the plant size and the cogeneration rate, but it is always negative, meaning that the residual MSW burning with energy recovery always provides a saving of fossil primary energy. Other indicator values are in general negative and are also beneficially affected by

  13. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. Uand g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations....

  14. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. U and g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations....

  15. On-line Configuration of Network Emulator for Intelligent Energy System Testbed Applications

    DEFF Research Database (Denmark)

    Kemal, Mohammed Seifu; Iov, Florin; Olsen, Rasmus Løvenstein

    2015-01-01

    Intelligent energy networks (or Smart Grids) provide efficient solutions for a grid integrated with near-real-time communication technologies between various grid assets in power generation, transmission and distribution systems. The design of a communication network associated with intelligent...... power system involves detailed analysis of its communication requirements, a proposal of the appropriate protocol architecture, the choice of appropriate communication technologies for each case study, and a means to support heterogeneous communication technology management system. This paper discuses...

  16. Energy and Exergy Analysis for Improving the Energy Performance of Air-Cooled Liquid Chillers by Different Condensing-Coil Configurations

    Directory of Open Access Journals (Sweden)

    Tzong-Shing Lee

    2012-03-01

    Full Text Available This study constructed a parameter analysis for improving the energy performance of air-cooled water chillers by altering the angle configuration of the condenser coils. The mathematical models for energy and exergy analyses of the individual components and overall system of air-cooled water chillers are presented. This study investigated the potential enhancement of performance efficiency in air-cooled chillers and the energy conversion efficiency of each component, in order to determine how the angle configuration of condenser coils influences chiller performance. This study found that the overall performance of an air-cooled chiller could be improved by approximately 3.4%, and the total irreversibility could be reduced by approximately 2.7%. With each 1% increase in average wind speed over the condenser coils, the overall performance of an air‑cooled chiller was found to be enhanced by approximately 0.43%, and its total irreversibility was reduced by approximately 0.35%. The results of this study can be effectively applied to air-cooled condenser units, and can provide an important basis of reference for developing and enhancing the energy efficiency of air-cooled chillers.

  17. The evolution of configuration from q > 1 to q < 1

    International Nuclear Information System (INIS)

    Zhang Peng

    1993-06-01

    The evolution of configuration from an initial state of tokamak-like plasma to RFP (reversed field pinch) along the trajectory of minimum energy state is studied. the high plasma current allowed in a RFP is expected to be sufficient to heat the plasma to ignition without the need of auxiliary neutral-beam or radio-frequency heating

  18. Exact solution of thermal energy storage system using PCM flat slabs configuration

    International Nuclear Information System (INIS)

    Bechiri, Mohammed; Mansouri, Kacem

    2013-01-01

    Highlights: • An exact solution of a latent heat storage unit (LHSU) consisting of several flat slabs was obtained. • The working fluid (HTF) circulating by forced convection between the slabs charges and discharges the storage unit. • The charging/discharging process is investigated for various HTF working conditions and different design parameters. - Abstract: An analytical investigation of thermal energy storage system (TESS) consisting of several flat slabs of phase change material (PCM) is presented. The working fluid (HTF) circulating on laminar forced convection between the slabs charges and discharges the storage unit. The melting and solidification of the PCM was treated as a radial one dimensional conduction problem. The forced convective heat transfer inside the channels is analyzed by solving the energy equation, which is coupled with the heat conduction equation in the PCM container. The comparison between the present exact solution with the numerical predictions and experimental data available in literature shows good agreement. The charging/discharging process is investigated in terms of liquid–solid interface position, liquid fraction, total heat transmitted to the PCM and thermal storage efficiency for various HTF working conditions and different design parameters such as PCM slab length, fluid passage gap and thickness of PCM duct container

  19. Amine Solvent Regeneration for CO2 Capture Using Geothermal Energy with Advanced Stripper Configurations

    International Nuclear Information System (INIS)

    Van Wagener, D.H.; Rochelle, G.T.; Gupta, A.; Bryant, S.L.

    2014-01-01

    Absorption/stripping using alkanol-amine solvents for removing CO 2 from the flue gas of coal-fired power plants requires a substantial amount of energy. Typical designs anticipate the use of steam extraction between the Intermediate Pressure (IP) and Low Pressure (LP) turbines to provide heat for the re-boiler. Geothermal energy in the form of hot brine offers an alternative to this large parasitic load on the power generation cycle. We investigate the requirements (number and spacing of extraction/injection well pairs) to provide heat at 150 deg. C for a pilot scale (60 MWe) and a full scale (900 MWe) capture process for thirty years. The calculations are based on properties of a geopressured/geothermal aquifer near the Texas Gulf Coast. In the vicinity of a large coal-fired power plant in South Texas, this aquifer lies between 3 050 and 3 350 m (10 000 and 11 000 ft) below the surface. We present a novel design of the stripper/regenerator process based on heat exchange with the brine, discharging the brine at 100 deg. C. The results indicate that the overall process is feasible and that costs are of similar magnitude to standard designs. (authors)

  20. Coronene molecules in helium clusters: Quantum and classical studies of energies and configurations

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Cantano, Rocío; Pérez de Tudela, Ricardo; Bartolomei, Massimiliano; Hernández, Marta I.; Campos-Martínez, José; González-Lezana, Tomás, E-mail: t.gonzalez.lezana@csic.es; Villarreal, Pablo [Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid (Spain); Hernández-Rojas, Javier; Bretón, José [Departamento de Física and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain)

    2015-12-14

    Coronene-doped helium clusters have been studied by means of classical and quantum mechanical (QM) methods using a recently developed He–C{sub 24}H{sub 12} global potential based on the use of optimized atom-bond improved Lennard-Jones functions. Equilibrium energies and geometries at global and local minima for systems with up to 69 He atoms were calculated by means of an evolutive algorithm and a basin-hopping approach and compared with results from path integral Monte Carlo (PIMC) calculations at 2 K. A detailed analysis performed for the smallest sizes shows that the precise localization of the He atoms forming the first solvation layer over the molecular substrate is affected by differences between relative potential minima. The comparison of the PIMC results with the predictions from the classical approaches and with diffusion Monte Carlo results allows to examine the importance of both the QM and thermal effects.

  1. Energy position of bistable defect (CiCs)0 in 'B' configuration in a forbidden zone of n-Si

    International Nuclear Information System (INIS)

    Dolgolenko, A.P.; Litovchenko, P.G.; Varentsov, M.D.

    2003-01-01

    Float-zone and phosphorus-doped n-Si samples after irradiation by fast-pile neutrons and subsequent annealing at room temperature were investigated. The calculation of effective concentration of carriers after irradiation was carried out in the framework of Gossick's model taking into account the recharges of defects both in conducting matrix of n-Si and in the space-charge region of defect clusters. The distribution function of electrons on the acceptor level of bistable defect (C i C s ) 0 when the concentration of this defect is the function of the Fermi level in conducting matrix of n-Si is determined. The concentration of bistable interstitial-carbon-substitutional-carbon pair and its energy level at (E c - 0,123 eV) in forbidden band of silicon were calculated. On the observable level of stable configuration C i C s (A - )-defects at (E c - 0,147 eV) the theoretical change of carriers concentration in the conduction band simulated by the recharges (C i C s ) 0 was imposed. The concentration of these (C i C s ) 0 -defects has been changed in the process of their recharges. It is shown that in n-Si with high carbon and oxygen concentration after affiliating of oxygen atoms to bistable defect (C i C s ) 0 in a forbidden band of n-Si the stable defects not only in 'A' but also in 'B' configurations are formed with energy levels at (E c - 0,13 eV) and (E c - 0,09 eV)

  2. A novel switched inductor configuration for modified SEPIC DC-to-DC converter for renewable energy application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Blaabjerg, Frede

    2017-01-01

    The proposed work is on the Modified SEPIC Converter (MSC) and its different configuration with switched inductor structure (SI). In this paper, five different configuration of modified SEPIC Converter namely-Modified SEPIC converter without switched inductor configuration (MSC-LLL), Modified SEP...

  3. Optimizing droop coefficients for minimum cost operation of islanded micro-grids

    DEFF Research Database (Denmark)

    Sanseverino, E. Riva; Tran, Q. T.T.; Zizzo, G.

    2017-01-01

    This paper shows how minimum cost energy management can be carried out for islanded micro-grids considering an expanded state that also includes the system's frequency. Each of the configurations outputted by the energy management system at each hour are indeed technically sound and coherent from...

  4. Loop-driven graphical unitary group approach to the electron correlation problem, including configuration interaction energy gradients

    International Nuclear Information System (INIS)

    Brooks, B.R.

    1979-09-01

    The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables

  5. Energy analysis of alternative CO2 refrigeration system configurations for retail food applications in moderate and warm climates

    International Nuclear Information System (INIS)

    Tsamos, K.M.; Ge, Y.T.; Santosa, IDewa; Tassou, S.A.; Bianchi, G.; Mylona, Z.

    2017-01-01

    Highlights: • Alternative CO 2 refrigeration technologies are compared for temperate and warm climates. • The CO 2 booster system with parallel compression was found to be the most energy efficient system. • Parallel compression can offer efficiency advantages of 3.6% in moderate and 5.0% in warm climates. • Parallel compression in booster CO 2 systems is economically attractive in warm climates. - Abstract: Refrigeration systems are crucial in retail food stores to ensure appropriate merchandising of food products. This paper compares four different CO 2 refrigeration system configurations in terms of cooling performance, environmental impact, power consumption and annual running costs. The systems studied were the conventional booster refrigeration system with gas bypass (reference system), the all CO 2 cascade system with gas bypass, a booster system with a gas bypass compressor, and integrated cascade all CO 2 system with gas bypass compressor. The weather conditions of London, UK, and Athens, Greece, were used for the modelling of energy consumption and environmental impacts to represent moderate and warm climatic conditions respectively. The control strategies for the refrigeration systems were derived from experimental tests in the laboratory on a conventional booster refrigeration system. The results from the analysis showed that the CO 2 booster system with gas bypass compressor can provide best performance with 5.0% energy savings for the warm climate and 3.65% for the moderate climate, followed by the integrated cascade all CO 2 system with gas bypass compressor, with 3.6% and 2.1% savings over the reference system for the warm and moderate climates respectively.

  6. Techno-economic analysis of the deacetylation and disk refining process: characterizing the effect of refining energy and enzyme usage on minimum sugar selling price and minimum ethanol selling price.

    Science.gov (United States)

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; Sabourin, Marc; Tucker, Melvin P; Tao, Ling

    2015-01-01

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibility of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128-468 kWh/ODMT), cellulase (Novozyme's CTec3) loading (11.6-28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme's HTec3) loading (0-5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL's 2011 design report. The DDR process is

  7. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bojda, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programs while still saving consumers money?

  8. Finding the Atomic Configuration with a Required Physical Property in Multi-Atom Structures

    International Nuclear Information System (INIS)

    d'Avezac, M.; Zunger, A.

    2007-01-01

    In many problems in molecular and solid state structures one seeks to determine the energy-minimizing decoration of sites with different atom types. In other problems, one is interested in finding a decoration with a target physical property (e.g. alloy band gap) within a certain range. In both cases, the sheer size of the configurational space can be horrendous. We present two approaches which identify either the minimum-energy configuration or configurations with a target property for a fixed underlying Bravais lattice. We compare their efficiency at locating the deepest minimum energy configuration of face centered cubic Au-Pd alloy. We show that a global-search genetic-algorithm approach with diversity-enhancing constraints and reciprocal-space mating can efficiently find the global optimum, whereas the local-search virtual-atom approach presented here is more efficient at finding structures with a target property

  9. Multireference configuration interaction treatment of potential energy surfaces: symmetric dissociation of H/sub 2/O in a double-zeta basis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F B; Shavitt, I; Shepard, R

    1984-03-23

    Multiconfiguration self-consistent fields (SCF) and multireference configurational interaction (CI) calculations have been performed for the H/sub 2/O molecule in a double-zeta basis for four symmetric geometries, for comparison with full CI results. Unlike single-reference results, the energy errors are almost independent of geometry, allowing unbiased treatments of potential energy surfaces. 35 references, 1 figure, 2 tables.

  10. Configuration Management

    International Nuclear Information System (INIS)

    Morcos, A.; Taylor, H. S.

    1989-01-01

    This paper will briefly discuss the reason for and content of configuration management both for new plants and, when adapted, for older plants. It will then address three types of activities a utility may undertake as part of a nuclear CAM program and with which Sargent and Leyden has been actively involved. The first activity is a methodology for preparing design-basis documentation. The second is the identification of essential data required to be kept by the utility in support of the operation of a nuclear plant. The third activity is a computerized classification system of plant components, allowing ready identification of plant functional and physical characteristics. Plant configuration documentation describes plant components, the ways they arranged to interact, and the ways they are enabled to interact. Configuration management, on the other hand, is more than the control of such documentation. It is a dynamic process for ensuring that a plant configuration meets all relevant requirements for safety and economy, even while the configuration changes and even while the requirements change. Configuration management for a nuclear plant is so complex that it must be implemented in phases and modules. It takes advantage of and integrates existing programs. Managing complexity and streamlining the change process become important additional objectives of configuration management. The example activities fulfill essential goals of an overall CAM program: definition of design baseline, definition of essential plant data, and classification of plant components

  11. Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid

    International Nuclear Information System (INIS)

    Perera, A.T.D.; Nik, Vahid M.; Mauree, Dasaraden; Scartezzini, Jean-Louis

    2017-01-01

    Highlights: • A novel method introduced to optimize Electrical Hubs. • Novel dispatch based on fuzzy control and finite state machines. • Evaluating sensitivity of three performance indices for system autonomy. • Multi objective optimization considering system autonomy-cost. • Electrical Hubs can cover above 60% of the demand using wind and Solar PV. - Abstract: A paradigm change in energy system design tools, energy market, and energy policy is required to attain the target levels in renewable energy integration and in minimizing pollutant emissions in power generation. Integrating non-dispatchable renewable energy sources such as solar and wind energy is vital in this context. Distributed generation has been identified as a promising method to integrate Solar PV (SPV) and wind energy into grid in recent literature. Distributed generation using grid-tied electrical hubs, which consist of Internal Combustion Generator (ICG), non-dispatchable energy sources (i.e., wind turbines and SPV panels) and energy storage for providing the electricity demand in Sri Lanka is considered in this study. A novel dispatch strategy is introduced to address the limitations in the existing methods in optimizing grid-integrated electrical hubs considering real time pricing of the electricity grid and curtailments in grid integration. Multi-objective optimization is conducted for the system design considering grid integration level and Levelized Energy Cost (LEC) as objective functions to evaluate the potential of electrical hubs to integrate SPV and wind energy. The sensitivity of grid curtailments, energy market, price of wind turbines and SPV panels on Pareto front is evaluated subsequently. Results from the Pareto analysis demonstrate the potential of electrical hubs to cover more than 60% of the annual electricity demand from SPV and wind energy considering stringent grid curtailments. Such a share from SPV and wind energy is quite significant when compared to direct grid

  12. A preliminary study on the optimal configuration and operating range of a “microgrid scale” air liquefaction plant for Liquid Air Energy Storage

    International Nuclear Information System (INIS)

    Borri, E.; Tafone, A.; Romagnoli, A.; Comodi, G.

    2017-01-01

    Highlights: • A liquefaction cycle for a microgrid scale Liquid Air Energy Storage is proposed. • Different liquefaction cycles are compared by means of parametric analysis. • The optimal configuration proposed is a Kapitza cycle with two stage compression. • The specific consumption of the optimal configuration is around 700 kW h/t. • Specific consumption reduces to 532 kW h/t if a pressurized phase separator is used. - Abstract: Liquid Air Energy Storage systems represent a sustainable solution to store energy. Although a lot of interest is dedicated to large scale systems (up to 300 tons per day), a small-scale Liquid Air Energy Storage can be used as energy storage as part of a microgrid and/or an energy distribution network. However, when scaling down the size of the system, the round trip efficiency decreases due to the low performance of the liquefaction process. In this paper a preliminary study on the optimal configuration for a microgrid scale liquefaction cycle (10 tons per 12 h) for a Liquid Air Energy Storage application is proposed in order to minimize the specific consumption. The Linde, Claude and Kapitza cycles are modelled and compared by means of a parametric analysis carried out with the software Aspen HYSYS. The results show that the two stages compression Kapitza cycle operating at 40 bar represents an optimal solution in terms of performance and cycle configuration resulting in a specific consumption of about 700 kW h/t. The analysis also shows that the implementation of a pressurized phase separator leads to a reduction of the specific consumption as high as 21% (≈550 kW h/t).

  13. Energy level properties of 4p64d3, 4p64d24f, and 4p54d4 configurations of the W35+ ion

    International Nuclear Information System (INIS)

    Bogdanovich, P.; Kisielius, R.

    2014-01-01

    The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectroscopic parameters of heavy atoms and highly charged ions was used to derive spectral data for the multicharged tungsten ion W 35+ . The configuration interaction method was applied to include the electron-correlation effects. The relativistic effects were taken into account in the Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals. The energy level spectra, radiative lifetimes τ, and Lande g-factors have been calculated for the 4p 6 4d 3 , 4p 6 4d 2 4f, and 4p 5 4d 4 configurations of the W 35+ ion

  14. Effects of 2p-2h configurations on low-energy dipole states in neutron-rich N=80, 82 and 84 isotones

    Directory of Open Access Journals (Sweden)

    Arsenyev N. N.

    2016-01-01

    Full Text Available Starting from the Skyrme interaction SLy4 we study the effects of phonon-phonon coupling on the low-energy electric dipole response in 130−134Sn, 132−136Te and 134−138Xe. Our calculations are performed within the finite-rank separable approximation, which enables one to perform quasiparticle random phase approximation calculations in very large two-quasiparticle configuration spaces. A dependence of the pygmy dipole resonance strengths on the neutron skin thickness is found. The inclusion of the two-phonon configurations gives a considerable contribution to the low-lying strength.

  15. Consistent force field modeling of matrix isolated molecules. V. Minimum energy path potential to the conformer conversion of 1,2-difluoroethane: Ar 364, ab initio calculation of electric multipole moments and electric polarization contribution to the conversion barrier

    Science.gov (United States)

    Gunde, R.; Ha, T.-K.; Günthard, H. H.

    1990-08-01

    In this paper results of consistent force field modeling (CFF) of the potential function to conversion of the gauche (g) to the trans (t) conformer of 1,2-difluoroethane (DFE) isolated in an argon matrix will be reported. Starting point are locally stable configurations gDFE:Ar 364 (defect GH1) and tDFE:Ar 364 (TH1) obtained in previous work from CFF modeling of a cube shaped Ar 364 fragment containing one DFE molecule in its center. Using the dihedral angle of DFE as an independent parameter the minimum energy path of the conversion process gDFE:Ar 364→tDFE:Ar 364 will be determined by CFF energy minimization. Determination of the minimum energy path is found to require large numbers of energy minimization steps and to lead to a rather complicated motion of the molecule with respect to the crystal fragment. Surprisingly the molecule-matrix interactions lead to a reduction of the g-t barrier by ≈500 cal/mol and to a stabilization of the trans species by ≈500 cal/mol. This finding is a consequence of a delicate interplay of matrix-molecule and matrix-matrix interactions. Calculation of the electric polarization energy (induced dipole-first-order polarization approximation) is based on extended ab initio calculations of dipole and quadrupole moments and a bond polarizability estimate of the first-order polarizability of DFE as a function of the internal rotation angle, on Fourier expansion of multipole components and use of symmetry for reduction of the order of the linear system defining the (self-consistent) induced dipole moments of all Ar atoms. Electric polarization is found to alter the potential function of the conversion process in a profound way: the g-t barrier and the t-g energy difference are increased to ≈3000 cal/mol and to ≈1500 cal/mol respectively (≈2500 and ≈530 cal/mol respectively for free DFE). Further applications of the technique developed in this work to related problems of matrix isolated molecules, e.g., vibrational matrix

  16. Spectroscopy of nitrophenolates in vacuo: effect of spacer, configuration, and microsolvation on the charge-transfer excitation energy.

    Science.gov (United States)

    Brøndsted Nielsen, Steen; Brøndsted Nielsen, Mogens; Rubio, Angel

    2014-04-15

    gas-phase ion spectroscopy in Aarhus is given, and we address issues of whether double bonds or triple bonds best convey electronic coupling between the phenolate oxygen and the nitro group, the significance of separating the donor and acceptor spatially, the influence of cross-conjugation versus linear conjugation, and along this line ortho versus meta versus para configuration, and not least the effect of a single solvent molecule (water, methanol, or acetonitrile). From systematic studies, a clear picture has emerged that has been supported by high-level calculations of electronically excited states. Our work shows that CC2 coupled-cluster calculations of vertical excitation energies are within 0.2 eV of experimental band maxima, and importantly, that the theoretical method is excellent in predicting the relative order of excitation energies of a series of nitrophenolates. Finally, we discuss future challenges such as following the change in absorption as a function of the number of solvent molecules and when gradually approaching the bulk limit.

  17. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  18. Theoretical energy level spectra and transition data for 4p64d, 4p64f and 4p54d2 configurations of W37+ ion

    International Nuclear Information System (INIS)

    Bogdanovich, P.; Kisielius, R.

    2012-01-01

    The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectral parameters of heavy atoms and highly charged ions was applied to determine atomic data for tungsten ions. The correlation effects were included by adopting the configuration interaction method. The Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals was employed to take into account relativistic effects. The energy level spectra, radiative lifetimes, Lande factors g were calculated for the 4p 6 4d, 4p 6 4f and 4p 5 4d 2 configurations of W 37+ ion. The atomic data, namely, the transition wavelengths, spontaneous emission rates and oscillator strengths for the electric dipole, electric quadrupole and magnetic dipole transitions among and within the levels of these configurations are tabulated.

  19. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Bahria, Sofiane; Kurucz, Ildikó; Aouli, M’heni; Sellami, Rabah

    2016-01-01

    Highlights: • The simulation results are in compliance with the experimental measurements indicated in the previous literature. • The accuracy of the numerical model is due to the presented energy analysis and also to the well-adopted correlations. • A comparative study between two solar photovoltaic/thermal air collectors was carried out. • The thermal efficiency of the analyzed hybrid collector increased by 30.85% compared to the basic configuration. • The air temperature supplied by a double-pass photovoltaic/thermal collector is very suitable for solar drying. - Abstract: In this paper, a configuration of photovoltaic-thermal hybrid solar collector embeddable in an indirect solar dryer system is studied. In the present structure of the solar photovoltaic/thermal air collector, the air goes through a double pass below and above the photovoltaic module. A system of electrical and thermal balance equations is developed and analyzed governing various electric and heat transfer parameters in the solar hybrid air collector. The numerical model planned for this study gives a good precision of results, which are close to the experimental ones (of previous literature), and makes it possible to have a good assessment of energy performance regarding the studied configuration (temperature, electric and thermal powers, electrical and thermal efficiencies, etc.). The numerical results show the energy effectiveness of this hybrid collector configuration and particularly its interesting use in an indirect solar dryer system that provides a more suitable air temperature for drying agricultural products. The values of the electrical, thermal and overall energy efficiencies reaches 10.5%, 70% and 90% respectively, with a mass flow rate of 0.0155 kg/s and weather data sample for the month of June in the Algiers site. The results presented in this study also reveal how important the effect of certain parameters and operating conditions on the performance of the hybrid

  20. Favorable performance of the DFT methods in predicting the minimum-energy structure of the lowest triplet state of WF4

    International Nuclear Information System (INIS)

    Gutowski, M.; Univ. of Utah, Salt Lake City, UT

    1999-01-01

    The tetrahedral structure of the lowest triplet state of the WF 4 complex was examined using different variants of the density functional theory (DFT) and conventional ab initio methods. The low-level, conventional, ab initio methods, such as SCF, MP2, MP3, and CISD, predict the tetrahedral structure to be a minimum, whereas the DFT schemes predict an imaginary frequency for the e vibrational mode. Only after recovering electron correlation effects at the MP4 and higher levels, the conventional electronic structure methods also predict the T d structure to be a second-order stationary point. This is not the correlation but the exchange part of the DFT functionals which is responsible for the discrepancy between the DFT and low-level, conventional, ab initio predictions. The lowering of symmetry to C 2v leads to a minimum on the lowest triplet potential energy surface and the electronic energy difference between the T d and C 2v stationary points amounts to 0.85 and 0.96 kcal/mol at the B3LYP and CCSD(T) levels, respectively

  1. Understanding Chemical Equilibrium: The Role of Gas Phases and Mixing Contributions in the Minimum of Free Energy Plots

    Science.gov (United States)

    Tomba, J. Pablo

    2017-01-01

    The use of free energy plots to understand the concept of thermodynamic equilibrium has been shown to be of great pedagogical value in materials science. Although chemical equilibrium is also amenable to this kind of analysis, it is not part of the agenda of materials science textbooks. Something similar is found in chemistry branches, where free…

  2. Empirical regularities in the excitation cross-section behavior of the lead atom (transitions from energy levels of 6pnd configurations)

    Science.gov (United States)

    Smirnov, Yu M.

    2018-03-01

    Electron-impact excitation of lead atom levels belonging to 6pnd configurations has been studied in experiment. One hundred two excitation cross-sections have been measured at an incident electron energy of 50 eV. Eleven optical excitation functions (OEFs) have been recorded in the exciting electron energy range of E = 0-200 eV. The resulting findings were used to study the excitation cross-sections dependence on the principal quantum number of upper levels for thirteen PbI spectral series.

  3. A measurement of the absolute energy spectra of galactic cosmic rays during the 1976-77 solar minimum

    Science.gov (United States)

    Derrickson, J. H.; Parnell, T. A.; Austin, R. W.; Selig, W. J.; Gregory, J. C.

    An instrument designed to measure elemental cosmic ray abundances from boron to nickel in the energy region 0.5-2.0 GeV/nucl was flown on a high altitude balloon from Sioux Falls, South Dakota, on 30 September through 1 October 1976 at an average atmospheric depth of about 5 g/sq cm. Differential energy spectra of B, C, N, O, Ne, Mg, Si and Fe, extrapolated to the top of the atmosphere, were measured. The float altitude exposure of 17 h ended near Alpena, Michigan. The flight trajectory maintained a north easterly heading out of Sioux Falls traversing the upper midwest region between 84 and 97 deg west longitude while remaining between 43.5 and 45 deg north latitude. The maximum vertical cut-off for this flight path was 1.77 GV or 0.35 GeV/nucl.

  4. A measurement of the absolute energy spectra of galactic cosmic rays during the 1976-77 solar minimum

    International Nuclear Information System (INIS)

    Derrickson, J.H.; Parnell, T.A.; Austin, R.W.; Selig, W.J.

    1992-01-01

    An instrument designed to measure elemental cosmic ray abundances from boron to nickel in the energy region 0.5-2.0 GeV nucl -1 was flown on a high altitude balloon from Sioux Falls, South Dakota, on 30 September through 1 October 1976 at an average atmospheric depth of ∼5 g cm -2 . Differential energy spectra of B, C, N, O, Ne, Mg, Si and Fe, extrapolated to the top of the atmosphere, were measured. The float altitude exposure of 17 h ended near Alpena, Michigan. The flight trajectory maintained a north easterly heading out of Sioux Falls traversing the upper mid-west region between 84 o and 97 o west longitude while remaining between 43.5 o and 45 o north latitude. The maximum vertical cut-off for this flight path was 1.77 GV or 0.35 GeV nucl -1 . (author)

  5. Configuration management

    International Nuclear Information System (INIS)

    Beavers, R.R.; Sumiec, K.F.

    1989-01-01

    Increasing regulatory and industry attention has been focused on properly controlling electrical design changes. These changes can be controlled by using configuration management techniques. Typically, there are ongoing modifications to various process systems or additions due to new requirements at every power plant. Proper control of these changes requires that an organized method be used to ensure that all important parameters of the electrical auxiliary systems are analyzed and that these parameters are evaluated accurately. This process, commonly referred to as configuration management, is becoming more important on both fossil and nuclear plants. Recent NRC- and utility-initiated inspections have identified problems due to incomplete analysis of changes to electrical auxiliary systems at nuclear stations

  6. Energy level schemes of f{sup N} electronic configurations for the di-, tri-, and tetravalent lanthanides and actinides in a free state

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.-G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Brik, M.G., E-mail: mikhail.brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Liu, D.-X.; Feng, B.; Tian, Ya [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Suchocki, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2016-02-15

    The energy level diagrams are theoretically constructed for the di-, tri-, tetravalent lanthanide and actinide ions, using the Hartree–Fock calculated parameters of the Coulomb and spin–orbit interactions within f{sup N} (N=1…13) electron configurations. These diagrams are analogous to Dieke's diagram, which was obtained experimentally. They can be used for an analysis of the optical spectra of all considered groups of ions in various environments. Systematic variation of some prominent energy levels (especially those ones with a potential for emission transitions) along the isoelectronic 4f/5f ions is considered. - Highlights: • Energy level schemes for di-, tri, tetravalent lanthanides/actinides are calculated. • Systematic variation of the characteristic energy levels across the series is considered. • Potentially interesting emission transitions are identified.

  7. A measurement of the absolute energy spectra of galactic cosmic rays during the 1976-77 solar minimum

    Energy Technology Data Exchange (ETDEWEB)

    Derrickson, J H; Parnell, T A; Austin, R W; Selig, W J [National Aeronautics and Space Administration, Huntsville, AL (United States). George C. Marshall Space Flight Center; Gregory, J C [Alabama Univ., Huntsville, AL (United States)

    1992-07-01

    An instrument designed to measure elemental cosmic ray abundances from boron to nickel in the energy region 0.5-2.0 GeV nucl[sup -1] was flown on a high altitude balloon from Sioux Falls, South Dakota, on 30 September through 1 October 1976 at an average atmospheric depth of [approx]5 g cm[sup -2]. Differential energy spectra of B, C, N, O, Ne, Mg, Si and Fe, extrapolated to the top of the atmosphere, were measured. The float altitude exposure of 17 h ended near Alpena, Michigan. The flight trajectory maintained a north easterly heading out of Sioux Falls traversing the upper mid-west region between 84[sup o] and 97[sup o] west longitude while remaining between 43.5[sup o] and 45[sup o] north latitude. The maximum vertical cut-off for this flight path was 1.77 GV or 0.35 GeV nucl[sup -1]. (author).

  8. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    Science.gov (United States)

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Controlled levitation of Y-Ba-Cu-O bulk superconductors and energy minimum analysis; Y-Ba-Cu-O baruku chodendotai no fujo to enerugi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Magashima, K. [Railway Technical Research Institute, Tokyo (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Canbridge (United States); Sawa, K. [keio University, Tokyo (Japan); Murakami, M. [Superconductivity research Laboratory, Tokyo (Japan)

    1999-11-25

    The levitation of bulk Y-Ba-Cu-O superconductors can be controlled using a Bi-Sr-Ca-Cu-O (Bi2223) superconducting electromagnet. It was found that stable levitation without tilting could be obtained only when the sample trapped a certain amount of fields, the minimum of which depended on the external field and sample dimensions. We employed a novel analysis method for levitation based on the total energy balance, which is much simpler than the force method and could be applied to understanding general levitation behavior. Numerical analyses thus developed showed that stable levitation of superconductors with large dimensions cen only be achieved when the induced currents can flow with three-dimensional freedom. (author)

  10. On the configuration of an active target for a fixed-target B experiment at SSC energies

    International Nuclear Information System (INIS)

    Dukes, E.C.

    1993-01-01

    The optimal configuration of target and silicon microvertex detector for fixed-target B experiments has yet to be determined. For fixed-target charm experiments the usual setup consists of a series of inert target foils - typically a few millimeters thick and separated by a few centimeters - immediately followed by a silicon microvertex detector. Because of the larger boost at the SSC, the efficacy of using active target foils - tightly packed silicon microstrip detectors - has been considered by at least one group: the SFT collaboration. It is hoped that with an active target the tracks of charged B's themselves can be measured, improving charged B reconstruction efficiencies. The author examines two issues concerning silicon active targets for fixed-target experiments at the SSC: (1) the effect on the acceptance of the requirement that the B decay vertices occur outside of the target foils, and (2) the ability of an active target to directly track charged B's

  11. Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using LCA for: a food service provider case study.

    Science.gov (United States)

    Franchetti, Matthew

    2013-07-15

    The US disposes of more than 34 million tons of food waste in landfills per year. As this food waste decomposes it generates methane gas and negatively contributes to global warming. Diverting theses organic food wastes from landfills and to emerging technologies will prevent these wastes and greenhouse gas emissions while at the same time generating a source renewable energy by collecting the emitted gases. From a waste prevention standpoint, instead of the food waste decomposing at local landfills, it is being converted into an energy source and the by-product may be used as a fertilizer (Fine and Hadas, 2012). The purpose of this study was to compare four different configurations of anaerobic digestion of organic waste to energy technologies from an economic, energy, and emissions standpoint using LCA via a case study at a large food services provider in Northwest Ohio, USA. The technologies studied included two-stage anaerobic digestion system using ultrasound pre-treating, two stage continuous combined thermophilic acidogenic hydrogenesis and mesophilic with recirculation of the digested sludge, long-term anaerobic digestion of food waste stabilized by trace elements, and single stage anaerobic digestion. Using LCA, these scenarios were compared to landfill disposal of the food waste. The findings from the case study indicated that implementing on-site waste to energy systems will result in lower operation costs and lower environmental impacts. In addition, a standardized environmental and economic comparison of competing food waste to energy technologies is provided. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Gaussian-2 theory: Use of higher level correlation methods, quadratic configuration interaction geometries, and second-order Moller--Plesset zero-point energies

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Raghavachari, K.; Pople, J.A.

    1995-01-01

    The performance of Gaussian-2 theory is investigated when higher level theoretical methods are included for correlation effects, geometries, and zero-point energies. A higher level of correlation treatment is examined using Brueckner doubles [BD(T)] and coupled cluster [CCSD(T)] methods rather than quadratic configuration interaction [QCISD(T)]. The use of geometries optimized at the QCISD level rather than the second-order Moller--Plesset level (MP2) and the use of scaled MP2 zero-point energies rather than scaled Hartree--Fock (HF) zero-point energies have also been examined. The set of 125 energies used for validation of G2 theory [J. Chem. Phys. 94, 7221 (1991)] is used to test out these variations of G2 theory. Inclusion of higher levels of correlation treatment has little effect except in the cases of multiply-bonded systems. In these cases better agreement is obtained in some cases and poorer agreement in others so that there is no improvement in overall performance. The use of QCISD geometries yields significantly better agreement with experiment for several cases including the ionization potentials of CS and O 2 , electron affinity of CN, and dissociation energies of N 2 , O 2 , CN, and SO 2 . This leads to a slightly better agreement with experiment overall. The MP2 zero-point energies gives no overall improvement. These methods may be useful for specific systems

  13. Global minimum-energy structure and spectroscopic properties of I2(*-) x n H2O clusters: a Monte Carlo simulated annealing study.

    Science.gov (United States)

    Pathak, Arup Kumar; Mukherjee, Tulsi; Maity, Dilip Kumar

    2010-01-18

    The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine-dimer radical-anion clusters, I(2)(*-) x n H(2)O (n=1-10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum-energy structure by applying a Monte Carlo simulated annealing procedure including spin-orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I-I stretching band but enhances the intensity of the O-H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O-H bonds in a cyclic water network are observed for I(2)(*-) x n H(2)O clusters with n > or = 3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite-size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I(2)(*-) in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl(2)(*-) and Br(2)(*-).

  14. Investigation of different configurations of a ventilated window to optimize both the energy balance and the thermal comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    The use of solar shading in future low energy office buildings is essential for minimizing energy consumption for building services, while maintaining thermal conditions. Implementing solar shading technologies in energy calculations and thermal building simulation programs is essential in order...... to demonstrate the effect of adaptive solar shading. Much literature covers the detailed description of solar shading in correlation with the glazing system. However in order to document the benefits of the shading technology, the description of the shading device in the thermal building simulation software must...... be described at a reasonably accurate level, related to the specific solar shading device. This research presents different approaches for modeling solar shading devices, demonstrating the level of accuracy in relation to full-scale measurements conducted at Aalborg University. Modeling of solar shading...

  15. Measurement of the energy spectrum of cosmic rays with the 26 station configuration of the IceTop detector

    International Nuclear Information System (INIS)

    Kislat, Fabian

    2011-01-01

    IceTop is an instrument at the geographic South Pole designed to detect cosmic ray air showers, particle cascades in the atmosphere initiated by high-energy cosmic rays. It is the surface component of the IceCube neutrino telescope. Since its completion in December 2010, IceTop consists of 81 detector stations covering an area of one square kilometer on the ice surface above IceCube. Each IceTop station consists of two ice-filled tanks in which the Cherenkov light emitted by charged air shower particles is measured. In this dissertation, an analysis of data taken in 2007 with 26 IceTop stations operational at that time is presented. First, properties of air showers like core position, direction and shower size were reconstructed from the measured signals. The core position can be determined to an accuracy of up to 6m and a direction resolution of up to 0.3 is achieved. The shower size is a measure of the energy of the primary particle and a resolution of up to 10% is achieved at high energies. In the next step the relation between primary energy and shower size, as well as resolution and efficiency are determined from Monte Carlo simulations of air showers and the IceTop detector. Here, an assumption was made about the chemical composition of cosmic rays. The informations obtained in these simulations are then used to unfold the spectrum of measured shower sizes in order to obtain the all-particle cosmic ray energy spectrum. This is done independently for particles from three different zenith angle intervals. The result of the unfolding depends on the assumed primary composition. Due to the isotropy of cosmic rays, results obtained in different zenith angle intervals must agree. While with the chosen analysis technique a simultaneous determination of primary particle mass and energy is limited due to systematic uncertainties, it has already been shown that the requirement of isotropy can be used to constrain the range of possible assumptions on the chemical

  16. Measurement of the energy spectrum of cosmic rays with the 26 station configuration of the IceTop detector

    Energy Technology Data Exchange (ETDEWEB)

    Kislat, Fabian

    2011-09-27

    IceTop is an instrument at the geographic South Pole designed to detect cosmic ray air showers, particle cascades in the atmosphere initiated by high-energy cosmic rays. It is the surface component of the IceCube neutrino telescope. Since its completion in December 2010, IceTop consists of 81 detector stations covering an area of one square kilometer on the ice surface above IceCube. Each IceTop station consists of two ice-filled tanks in which the Cherenkov light emitted by charged air shower particles is measured. In this dissertation, an analysis of data taken in 2007 with 26 IceTop stations operational at that time is presented. First, properties of air showers like core position, direction and shower size were reconstructed from the measured signals. The core position can be determined to an accuracy of up to 6m and a direction resolution of up to 0.3 is achieved. The shower size is a measure of the energy of the primary particle and a resolution of up to 10% is achieved at high energies. In the next step the relation between primary energy and shower size, as well as resolution and efficiency are determined from Monte Carlo simulations of air showers and the IceTop detector. Here, an assumption was made about the chemical composition of cosmic rays. The informations obtained in these simulations are then used to unfold the spectrum of measured shower sizes in order to obtain the all-particle cosmic ray energy spectrum. This is done independently for particles from three different zenith angle intervals. The result of the unfolding depends on the assumed primary composition. Due to the isotropy of cosmic rays, results obtained in different zenith angle intervals must agree. While with the chosen analysis technique a simultaneous determination of primary particle mass and energy is limited due to systematic uncertainties, it has already been shown that the requirement of isotropy can be used to constrain the range of possible assumptions on the chemical

  17. Energy transfer in LH2 of Rhodospirillum Molischianum, studied by subpicosecond spectroscopy and configuration interaction excition calculations.

    NARCIS (Netherlands)

    Ihalainen, J.A.; Linnanto, J.; Myllyperkiö, P.; van Stokkum, I.H.M.; Ücker, B.; Scheer, H.; Korppi-Tommola, J.E.I.

    2001-01-01

    Two color transient absorption measurements were performed on a LH2 complex from Rhodospirillum molischianum by using several excitation wavelengths (790, 800, 810, and 830 nm) and probing in the spectral region from 790 to 870 nm at room temperature. The observed energy transfer time of ∼1.0 ps

  18. Energy transfer in LH2 of Rhodospirillum Molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations.

    NARCIS (Netherlands)

    Ihalainen, J.A.; Linnanto, J.; Myllyperkio, P.; van Stokkum, I.H.M.; Ucker, B.; Scheer, H.; Korppi-Tommola, J.E.I.

    2001-01-01

    Two color transient absorption measurements were performed on a LH2 complex from Rhodospirillum molischianum by using several excitation wavelengths (790, 800, 810, and 830 nm) and probing in the spectral region from 790 to 870 nm at room temperature. The observed energy transfer time of ∼1.0 ps

  19. Core-Shell Al-Polytetrafluoroethylene (PTFE) Configurations to Enhance Reaction Kinetics and Energy Performance for Nanoenergetic Materials.

    Science.gov (United States)

    Wang, Jun; Qiao, Zhiqiang; Yang, Yuntao; Shen, Jinpeng; Long, Zhang; Li, Zhaoqian; Cui, Xudong; Yang, Guangcheng

    2016-01-04

    The energy performance of solid energetic materials (Al, Mg, etc.) is typically restricted by a natural passivation layer and the diffusion-limited kinetics between the oxidizer and the metal. In this work, we use polytetrafluoroethylene (PTFE) as the fluorine carrier and the shielding layer to construct a new type of nano-Al based fuels. The PTFE shell not only prevents nano-Al layers from oxidation, but also assists in enhancing the reaction kinetics, greatly improving the stability and reactivity of fuels. An in situ chemical vapor deposition combined with the electrical explosion of wires (EEW) method is used to fabricate core-shell nanostructures. Studies show that by controlling the stoichiometric ratio of the precursors, the morphology of the PTFE shell and the energy performance can be easily tuned. The resultant composites exhibit superior energy output characters than that of their physically mixed Al/PTFE counterparts. This synthetic strategy might provide a general approach to prepare other high-energy fuels (Mg, Si). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Database Driven ATLAS Trigger Configuration System

    CERN Document Server

    Martyniuk, Alex; The ATLAS collaboration

    2015-01-01

    This contribution describes the trigger selection configuration system of the ATLAS low- and high-level trigger (HLT) and the upgrades it received in preparation for LHC Run 2. The ATLAS trigger configuration system is responsible for applying the physics selection parameters for the online data taking at both trigger levels and the proper connection of the trigger lines across those levels. Here the low-level trigger consists of the already existing central trigger (CT) and the new Level-1 Topological trigger (L1Topo), which has been added for Run 2. In detail the tasks of the configuration system during the online data taking are Application of the selection criteria, e.g. energy cuts, minimum multiplicities, trigger object correlation, at the three trigger components L1Topo, CT, and HLT On-the-fly, e.g. rate-dependent, generation and application of prescale factors to the CT and HLT to adjust the trigger rates to the data taking conditions, such as falling luminosity or rate spikes in the detector readout ...

  1. A Novel Method for Fast Configuration of Energy Storage Capacity in Stand-Alone and Grid-Connected Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-12-01

    Full Text Available In this paper, a novel method is proposed and applied to quickly calculate the capacity of energy storage for stand-alone and grid-connected wind energy systems, according to the discrete Fourier transform theory. Based on practical wind resource data and power data, which are derived from the American Wind Energy Technology Center and HOMER software separately, the energy storage capacity of a stand-alone wind energy system is investigated and calculated. Moreover, by applying the practical wind power data from a wind farm in Fujian Province, the energy storage capacity for a grid-connected wind system is discussed in this paper. This method can also be applied to determine the storage capacity of a stand-alone solar energy system with practical photovoltaic power data.

  2. Free electrons and ionic liquids: study of excited states by means of electron-energy loss spectroscopy and the density functional theory multireference configuration interaction method.

    Science.gov (United States)

    Regeta, Khrystyna; Bannwarth, Christoph; Grimme, Stefan; Allan, Michael

    2015-06-28

    The technique of low energy (0-30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0-2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening (∼0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π-π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2-8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future.

  3. Configuration control for the confinement improvement in Heliotron J

    Energy Technology Data Exchange (ETDEWEB)

    Mizuuchi, T.; Sano, F.; Kondo, K.; Nagasaki, K.; Okada, H.; Kobayashi, S.; Torii, Y.; Yamamoto, S.; Hanatani, K.; Nakamura, Y.; Kaneko, M.; Arimoto, H.; Motojima, G.; Fujikawa, S.; Kitagawa, H.; Nakamura, H.; Tsuji, T.; Uno, M.; Yabutani, H.; Watanabe, S.; Matsuoka, S.; Nosaku, M.; Watanabe, N.; Ijiri, Y.; Senju, T.; Yaguchi, K.; Sakamoto, K.; Toshi, K.; Shibano, M.; Murakami, S.; Suzuki, Y.; Yokoyama, M.

    2005-07-01

    In the helical-axis heliotron configuration, bumpiness of the Fourier components in Boozer coordinates is introduced as a third knob to control the neo-classical transport. Effects of the bumpiness control on the plasma performance (non-inductive currents, fast ions behavior and global energy confinement) have been investigated in Heliotron J by selecting three configurations with different bumpiness (B04/B00 = 0.01, 0.06 and 0.15 at ? 2/3), almost the same edge rotational transform and plasma volume. The dependence of non-inductive toroidal currents is qualitatively consistent with the neoclassical prediction for the bootstrap current. The high bumpiness configuration seems to be preferable for the confinement of fast ions. However, the longer global energy confinement time is observed not in the highest bumpiness configuration (B04/B00 = 0.15) but in the configuration with the minimum effective ripple modulation amplitude, where B04/B00 is 0.06. (Author)

  4. Using the minimum principle for the Helmholtz free energy in the analysis of the equilibria of a van der Waals fluid

    International Nuclear Information System (INIS)

    Ascoli, Sergio; Malvestuto, Vincenzo

    2004-01-01

    For a fluid system, obeying a state equation of the van der Waals type, the gas and the liquid phases can coexist in equilibrium, at a given temperature, only if the volume of the system is kept fixed. Thus, in order to study the two-phase equilibria of a fluid system, it seemed quite natural to choose the molar volume as the independent variable, and, consequently, the Helmholtz free energy as the proper thermodynamic potential for the application of the minimum principle. Specific computations are here carried out for a single van der Waals fluid, namely, pure water at 300 0 C. As a result, the present treatment indicates a simple and effective way to identify the whole range of molar volumes where the equilibrium preferred by the system is a two-phase equilibrium. This range results to be wider than the interval of strict instability of the van der Waals isotherm. Finally, it is pointed out that all the results, obtained here for the van der Waals state equation, can be extended to all the state equations of the same type

  5. Application of best practice for setting minimum energy efficiency standards in technically disadvantaged countries: Case study of Air Conditioners in Brunei Darussalam

    International Nuclear Information System (INIS)

    Shi, Xunpeng

    2015-01-01

    Highlights: • Setting MEPS requires significant data, financial resources and technical capacity. • Application of best practice in technical disadvantaged countries (TDCs) was demonstrated. • Best practice was successfully applied to Brunei for its AC MEPS. • For Brunei, COP at 2.9 is recommended and 15% efficiency improvement is achievable. • The methodology is applicable to other appliances in any TDCs. - Abstract: Application of the best practice of setting minimum energy performance standards (MEPS) in technically disadvantaged countries (TDCs) faces many barriers. The best practice of determining MEPS has a comprehensive analytical framework including engineering-economic analysis, life-cycle cost-benefit analysis, as well stakeholders’ and market impact assessments. However, TDCs usually are lack of reference product classes, market data, and other necessary inputs data. This study demonstrated how to overcome those barriers to apply the best practice to TDCs using the actual experience in setting initial MEPS for Air Conditioners (ACs) in Brunei from scratch with limited secondary data as an example. The series of application works include definition of the product classes and the baseline group; collection of market data; formulation of cost-efficiency relationship from the market data; examination of the economic, environmental, and financial impacts of various MEPS options; revealing of the consumers’ willingness to pay; and analysis of the impacts and responses from the industry and consumers. The coordination with the compliance of the Montreal Protocol was also considered. The methodology should also be applicable to setting MEPF for other appliances in any TDCs.

  6. Analysis of ITER NbTi and Nb3Sn CICCs experimental minimum quench energy with JackPot, MCM and THEA models

    Science.gov (United States)

    Bagni, T.; Duchateau, J. L.; Breschi, M.; Devred, A.; Nijhuis, A.

    2017-09-01

    Cable-in-conduit conductors (CICCs) for ITER magnets are subjected to fast changing magnetic fields during the plasma-operating scenario. In order to anticipate the limitations of conductors under the foreseen operating conditions, it is essential to have a better understanding of the stability margin of magnets. In the last decade ITER has launched a campaign for characterization of several types of NbTi and Nb3Sn CICCs comprising quench tests with a singular sine wave fast magnetic field pulse and relatively small amplitude. The stability tests, performed in the SULTAN facility, were reproduced and analyzed using two codes: JackPot-AC/DC, an electromagnetic-thermal numerical model for CICCs, developed at the University of Twente (van Lanen and Nijhuis 2010 Cryogenics 50 139-148) and multi-constant-model (MCM) (Turck and Zani 2010 Cryogenics 50 443-9), an analytical model for CICCs coupling losses. The outputs of both codes were combined with thermal, hydraulic and electric analysis of superconducting cables to predict the minimum quench energy (MQE) (Bottura et al 2000 Cryogenics 40 617-26). The experimental AC loss results were used to calibrate the JackPot and MCM models and to reproduce the energy deposited in the cable during an MQE test. The agreement between experiments and models confirm a good comprehension of the various CICCs thermal and electromagnetic phenomena. The differences between the analytical MCM and numerical JackPot approaches are discussed. The results provide a good basis for further investigation of CICC stability under plasma scenario conditions using magnetic field pulses with lower ramp rate and higher amplitude.

  7. ORR core re-configuration measurements to increase the fast neutron flux in the Magnetic Fusion Energy (MFE) experiments

    International Nuclear Information System (INIS)

    Hobbs, R.W.; Stinnett, R.M.; Sims, T.M.

    1985-06-01

    A study has been made of the relative increases obtainable in the fast neutron flux in the Magnetic Fusion Energy (MFE) experiment positions by reconfiguring the current ORR core. The study was made at the request of the MFE program to examine the percentage increase possible in the current displacement per atom (dpa) rate (assumed proportional to the fast flux). The principle methods investigated to increase the fast flux consisted of reducing the current core size (number of fuel elements) to increase the core average power density and arrangement of the fuel elements in the reduced-size core to tilt the core power distribution towards the MFE positions. The study concluded that fast fluxes in the E-3 core position could be increased by approximately 15 to 20% over current values and in E-5 by approximately 45 to 55%

  8. Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Tichi, S.G.; Ardehali, M.M.; Nazari, M.E.

    2010-01-01

    The current subsidized energy prices in Iran are proposed to be gradually eliminated over the next few years. The objective of this study is to examine the effects of current and future energy price policies on optimal configuration of combined heat and power (CHP) and combined cooling, heating, and power (CCHP) systems in Iran, under the conditions of selling and not-selling electricity to utility. The particle swarm optimization algorithm is used for minimizing the cost function for owning and operating various CHP and CCHP systems in an industrial dairy unit. The results show that with the estimated future unsubsidized utility prices, CHP and CCHP systems operating with reciprocating engine prime mover have total costs of 5.6 and $2.9x10 6 over useful life of 20 years, respectively, while both systems have the same capital recovery periods of 1.3 years. However, for the same prime mover and with current subsidized prices, CHP and CCHP systems require 4.9 and 5.2 years for capital recovery, respectively. It is concluded that the current energy price policies hinder the promotion of installing CHP and CCHP systems and, the policy of selling electricity to utility as well as eliminating subsidies are prerequisites to successful widespread utilization of such systems.

  9. Stable configurations in social networks

    Science.gov (United States)

    Bronski, Jared C.; DeVille, Lee; Ferguson, Timothy; Livesay, Michael

    2018-06-01

    We present and analyze a model of opinion formation on an arbitrary network whose dynamics comes from a global energy function. We study the global and local minimizers of this energy, which we call stable opinion configurations, and describe the global minimizers under certain assumptions on the friendship graph. We show a surprising result that the number of stable configurations is not necessarily monotone in the strength of connection in the social network, i.e. the model sometimes supports more stable configurations when the interpersonal connections are made stronger.

  10. Fermat and the Minimum Principle

    Indian Academy of Sciences (India)

    Arguably, least action and minimum principles were offered or applied much earlier. This (or these) principle(s) is/are among the fundamental, basic, unifying or organizing ones used to describe a variety of natural phenomena. It considers the amount of energy expended in performing a given action to be the least required ...

  11. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  12. Injection and temporary capture of a charged particle beam in an open magnetic configuration. Optimization of the configuration. Case of cylindrical symmetry: A mirror machine

    International Nuclear Information System (INIS)

    Capdequi-Peyranere, P.

    1966-12-01

    A study has been made of a new method of transverse injection of charged particles into a magnetic mirror configuration. This injection scheme permits the penetration and temporary capture by non-adiabatic effect of a particle beam of approximately 1 cm 2 cross-section. A theoretical study of the injection and capture is made in the approximation that space charge is negligible. The original programs for IBM 7094 computer calculations are described; these programs were used to obtain an optimization of the configuration. The results of a statistical numerical study of the optimum configuration are then given. This study indicates that, if the energy of the particles of the beam is about 1 per cent greater than a minimum penetration energy, the entire beam can be captured with an average capture length of 100 meters (50 reflections between the two mirrors). If the energy is about 4 per cent greater than the minimum penetration energy, the capture length is reduced to 40 meters. We have studied the distribution of energy transverse and longitudinal with the magnetic field for the population of captured particles. For the cases of injected molecular hydrogen ions or heavy CH 4 + ions, a study is made of the capture time of protons resulting from the dissociation of the ions by collisions with the neutral gas. Finally, we describe a model experiment using electrons designed to provide an experimental verification of the capture of the primary beam. (author) [fr

  13. Theoretical level energies and transition data for 4p64d4, 4p64d34f and 4p54d5 configurations of W34+ ion

    Science.gov (United States)

    Karpuškienė, R.; Bogdanovich, P.; Kisielius, R.

    2017-05-01

    The ab initio quasirelativistic approach developed specifically for the calculation of spectral parameters of highly charged ions was used to derive transition data for the tungsten ion W34+. The configuration interaction method was applied to include electron correlation effects. The relativistic effects were taken into account in the Breit-Pauli approximation. The level energies, radiative lifetimes τ, Landé g-factors are determined for the ground configuration 4p64d4 and two excited configurations 4p64d34f and 4p54d5. The radiative transition wavelengths λ and emission transition probabilities A for the electric dipole, electric quadrupole, electric octupole, magnetic dipole, and magnetic quadrupole transitions among the levels of these configurations are produced.

  14. Metrics for measuring distances in configuration spaces

    International Nuclear Information System (INIS)

    Sadeghi, Ali; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-01-01

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices

  15. New Classes of Quasi-Axisymmetric Stellarator Configurations

    International Nuclear Information System (INIS)

    Ku LP

    2005-01-01

    We have identified and developed new classes of quasi-axially symmetric configurations which have attractive properties from the standpoint of both near-term physics experiments and long-term power producing reactors. These new configurations were developed as a result of surveying the aspect ratio-rotational transform space to identify regions endowed with particularly interesting features. These include configurations with very small aspect ratios (∼2.5) having superior quasi-symmetry and energetic particle confinement characteristics, and configurations with strongly negative global magnetic shear from externally supplied rotational transforms so that the overall rotational transform, when combined with the transform from bootstrap currents at finite plasma pressures, will yield a small but positive shear, making the avoidance of low order rational surfaces at a given operating beta possible. Additionally, we have found configurations with NCSX-like characteristics but with the biased components in the magnetic spectrum that allow us to improve the confinement of energetic particles. For each new class of configurations, we have designed coils as well to ensure that the new configurations are realizable and engineering-wise feasible. The coil designs typically have coil aspect ratios R/Δ min (C-P) (le) 6 and coil separation ratios R/Δ min (C-C) (le) 10, where R is the plasma major radius, Δ min (C-P) and Δ min (C-C) are the minimum coil to plasma and coil to coil separations, respectively. These coil properties allow power producing reactors be designed with major radii less than 9 meters for DT plasmas with a full breeding blanket. The good quasi-axisymmetry limits the energy loss of α particles to below 10%

  16. Accuracy-Energy Configurable Sensor Processor and IoT Device for Long-Term Activity Monitoring in Rare-Event Sensing Applications

    Directory of Open Access Journals (Sweden)

    Daejin Park

    2014-01-01

    Full Text Available A specially designed sensor processor used as a main processor in IoT (internet-of-thing device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG. Using an event signal processing unit (EPU as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio- based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error.

  17. Minimum Wages and Poverty

    OpenAIRE

    Fields, Gary S.; Kanbur, Ravi

    2005-01-01

    Textbook analysis tells us that in a competitive labor market, the introduction of a minimum wage above the competitive equilibrium wage will cause unemployment. This paper makes two contributions to the basic theory of the minimum wage. First, we analyze the effects of a higher minimum wage in terms of poverty rather than in terms of unemployment. Second, we extend the standard textbook model to allow for incomesharing between the employed and the unemployed. We find that there are situation...

  18. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X=empty, H2O, NH3, H3O+: The importance of O-topology

    Science.gov (United States)

    Anick, David J.

    2010-04-01

    For (H2O)20X water clusters consisting of X enclosed by the 512 dodecahedral cage, X=empty, H2O, NH3, and H3O+, databases are made consisting of 55-82 isomers optimized via B3LYP/6-311++G∗∗. Correlations are explored between ground state electronic energy (Ee) or electronic energy plus zero point energy (Ee+ZPE) and the clusters' topology, defined as the set of directed H-bonds. Linear regression is done to identify topological features that correlate with cluster energy. For each X, variables are found that account for 99% of the variance in Ee and predict it with a rms error under 0.2 kcal/mol. The method of analysis emphasizes the importance of an intermediate level of structure, the "O-topology," consisting of O-types and a list of O pairs that are bonded but omitting H-bond directions, as a device to organize the databases and reduce the number of structures one needs to consider. Relevant variables include three parameters, which count the number of H-bonds having particular donor and acceptor types; |M|2, where M is the cluster's vector dipole moment; and the projection of M onto the symmetry axis of X. Scatter diagrams for Ee or Ee+ZPE versus |M| show that clusters fall naturally into "families" defined by the values of certain discrete parameters, the "major parameters," for each X. Combining "family" analysis and O-topologies, a small group of clusters is identified for each X that are candidates to be the global minimum, and the minimum is determined. For X=H3O+, one cluster with central hydronium lies just 2.08 kcal/mol above the lowest isomer with surface hydronium. Implications of the methodology for dodecahedral (H2O)20(NH4+) and (H2O)20(NH4+)(OH-) are discussed, and new lower energy isomers are found. For MP2/TZVP, the lowest-energy (H2O)20(NH4+) isomer features a trifurcated H-bond. The results suggest a much more efficient and comprehensive way of seeking low-energy water cluster geometries that may have wide applicability.

  19. Ames Optimized TCA Configuration

    Science.gov (United States)

    Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.

    1999-01-01

    Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the

  20. Software configuration management

    International Nuclear Information System (INIS)

    Arribas Peces, E.; Martin Faraldo, P.

    1993-01-01

    Software Configuration Management is directed towards identifying system configuration at specific points of its life cycle, so as to control changes to the configuration and to maintain the integrity and traceability of the configuration throughout its life. SCM functions and tasks are presented in the paper

  1. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole

    2006-01-01

    and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...

  2. The Broader Spectrum of Magnetic Configurations for Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prager, S C [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ryutov, D D [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-09-15

    Over the decades, a large array of magnetic configurations has been studied, producing a huge amount of fusion plasma science. As configurations are developed, information and techniques learned through one configuration influence the development of other configurations. In this way, configurations evolve unexpectedly in response to new information. Configurations that were at a pause can become unstuck by new discoveries, and configurations that appeared promising for fusion energy can become unattractive as new limits are uncovered. The plasma science of fusion energy is sufficiently complex that, as we approach ever closer to practical fusion power, the need for potential contributions of broad research of multiple magnetic configurations remains strong. (author)

  3. Communicating knowledge: Making embedded configuration work

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars

    2007-01-01

    A lot of systems are assembled from near-independent mechatronic subsystems that have to be configured to match each other. An example of such systems are e.g. home entertainment systems, where TV, DVD and Receiver are matched to form an overall system, and compilation of pumps and controllers...... to form fresh water supply systems. Sometimes an external knowledge system keeps track of how each subsystem has to be configured, but the actual configuration is often done manually. Installing and maintaining those kinds of systems can be a tedious task and often requires repetitive labour. The idea...... is to “split-up” the product knowledge and encapsulate it into each subsystem. Then, when the subsystems are assembled, the configuration of each subsystem can either be done automatically or with minimum input. The concept could be called: embedded configuration. This article will try to connect three aspects...

  4. Magnetic energy dissipation in force-free jets

    Science.gov (United States)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  5. Minimum entropy production principle

    Czech Academy of Sciences Publication Activity Database

    Maes, C.; Netočný, Karel

    2013-01-01

    Roč. 8, č. 7 (2013), s. 9664-9677 ISSN 1941-6016 Institutional support: RVO:68378271 Keywords : MINEP Subject RIV: BE - Theoretical Physics http://www.scholarpedia.org/article/Minimum_entropy_production_principle

  6. A unix configuration engine

    International Nuclear Information System (INIS)

    Burgess, M.

    1994-06-01

    A high level description language is presented for the purpose of automatically configuring large heterogeneous networked unix environments, based on class-oriented abstractions. The configuration engine is portable and easily extensible

  7. MICROCONTROLLER PIN CONFIGURATION TOOL

    OpenAIRE

    Bhaskar Joshi; F. Mohammed Rizwan; Dr. Rajashree Shettar

    2012-01-01

    Configuring the micro controller with large number of pins is tedious. Latest Infine on microcontroller contains more than 200 pins and each pin has classes of signals. Therefore the complexity of the microcontroller is growing. It evolves looking into thousands of pages of user manual. For a user it will take days to configure the microcontroller with the peripherals. We need an automated tool to configure the microcontroller so that the user can configure the microcontroller without having ...

  8. Operational Dynamic Configuration Analysis

    Science.gov (United States)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  9. A new method for finding the minimum free energy pathway of ions and small molecule transportation through protein based on 3D-RISM theory and the string method

    Science.gov (United States)

    Yoshida, Norio

    2018-05-01

    A new method for finding the minimum free energy pathway (MFEP) of ions and small molecule transportation through a protein based on the three-dimensional reference interaction site model (3D-RISM) theory combined with the string method has been proposed. The 3D-RISM theory produces the distribution function, or the potential of mean force (PMF), for transporting substances around the given protein structures. By applying the string method to the PMF surface, one can readily determine the MFEP on the PMF surface. The method has been applied to consider the Na+ conduction pathway of channelrhodopsin as an example.

  10. HLT configuration management system

    CERN Document Server

    Daponte, Vincenzo

    2015-01-01

    The CMS High Level Trigger (HLT) is implemented running a streamlined version of the CMS offline reconstruction software running on thousands of CPUs. The CMS software is written mostly in C++, using Python as its configuration language through an embedded CPython interpreter. The configuration of each process is made up of hundreds of modules, organized in sequences and paths. As an example, the HLT configurations used for 2011 data taking comprised over 2200 different modules, organized in more than 400 independent trigger paths. The complexity of the HLT configurations and the large number of configuration produced require the design of a suitable data management system. The present work describes the designed solution to manage the considerable number of configurations developed and to assist the editing of new configurations. The system is required to be remotely accessible and OS-independent as well as easly maintainable easy to use. To meet these requirements a three-layers architecture has been choose...

  11. New configuration factors for curved surfaces

    International Nuclear Information System (INIS)

    Cabeza-Lainez, Jose M.; Pulido-Arcas, Jesus A.

    2013-01-01

    Curved surfaces have not been thoroughly considered in radiative transfer analysis mainly due to the difficulties arisen in the integration process and perhaps because of the lack of spatial vision of the researchers. It is a fact, especially for architectural lighting, that when concave geometries appear inside a curved space, they are mostly avoided. In this way, a vast repertoire of significant forms is neglected and energy waste is evident. Starting from the properties of volumes enclosed by the minimum number of surfaces, the authors formulate, with little calculus, new simple laws, which enable them to discover a set of configuration factors for caps and various segments of the sphere. The procedure is subsequently extended to previously unimagined surfaces as the paraboloid, the ellipsoid or the cone. Appropriate combination of the said forms with right truncated cones produces several complex volumes, often used in architectural and engineering creations and whose radiative performance could not be accurately predicted for decades. To complete the research, a new method for determining interreflections in curved volumes is also presented. Radiative transfer simulation benefits from these findings, as the simplicity of the results has led the authors to create innovative software more efficient for design and evaluation and applicable to emerging fields like LED lighting. -- Highlights: ► Friendly revision of fundamentals of radiative transfer. ► New configuration factors for curved surfaces obtained without calculus. ► New method for interreflections in curved geometries. ► Enhanced simulation algorithms. ► Fast comparison of radiative performances of surfaces

  12. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen

    DEFF Research Database (Denmark)

    Andersen, Jonas; Voute, A.; Mihrin, Dmytro

    2017-01-01

    conformations of Cs and C2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs....... The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar Cs configuration of (CH2O...

  13. Software configuration management

    CERN Document Server

    Keyes, Jessica

    2004-01-01

    Software Configuration Management discusses the framework from a standards viewpoint, using the original DoD MIL-STD-973 and EIA-649 standards to describe the elements of configuration management within a software engineering perspective. Divided into two parts, the first section is composed of 14 chapters that explain every facet of configuration management related to software engineering. The second section consists of 25 appendices that contain many valuable real world CM templates.

  14. CONFIGURATION GENERATOR MODEL

    International Nuclear Information System (INIS)

    Alsaed, A.

    2004-01-01

    ''The Disposal Criticality Analysis Methodology Topical Report'' prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the ''Configuration Generator Model for In-Package Criticality'' that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state. The configuration generator model is a risk-informed, performance-based process for evaluating the criticality potential of degraded configurations in the monitored geologic repository. The method uses event tree methods to define configuration classes derived from criticality scenarios and to identify configuration class characteristics (parameters, ranges, etc.). The probabilities of achieving the various configuration classes are derived in part from probability density functions for degradation parameters. The NRC has issued ''Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0''. That report contained 28 open items that required resolution through additional documentation. Of the 28 open items, numbers 5, 6, 9, 10, 18, and 19 were concerned with a previously proposed software approach to the configuration generator methodology and, in particular, the k eff regression analysis associated with the methodology. However, the use of a k eff regression analysis is not part of the current configuration generator methodology and, thus, the referenced open items are no longer considered applicable and will not be further addressed

  15. Ansible configuration management

    CERN Document Server

    Hall, Daniel

    2013-01-01

    Ansible Configuration Management"" is a step-by-step tutorial that teaches the use of Ansible for configuring Linux machines.This book is intended for anyone looking to understand the basics of Ansible. It is expected that you will have some experience of how to set up and configure Linux machines. In parts of the book we cover configuration files of BIND, MySQL, and other Linux daemons, therefore a working knowledge of these would be helpful but are certainly not required.

  16. Configuration management at NEK

    International Nuclear Information System (INIS)

    Podhraski, M.

    1999-01-01

    Configuration Management (CM) objectives at NEK are to ensure consistency between Design Requirements, Physical Plant Configuration and Configuration Information. Software applications, supporting Design Change, Work Control and Document Control Processes, are integrated in one module-oriented Management Information System (MIS). Master Equipment Component List (MECL) database is central MIS module. Through a combination of centralized database and process migrated activities it is ensured that the CM principles and requirements (accurate, current design data matching plant's physical configuration while complying to applicable requirements), are followed and fulfilled.(author)

  17. Configuration management: Phase II implementation guidance

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Configuration management (CM) is essential to maintaining an acceptable level of risk to the public, workers, environment, or mission success. It is a set of activities and techniques used to maintain consistency among physical and functional configuration, applicable requirements, and key documents. This document provides guidance for continuing the implementation of CM in a phased and graded manner. It describes a cost-effective approach to documented consistency with requirements, with early emphasis on items most important to safety and environmental protection. It is intended to help responsible line managers and configuration management staff personnel in meeting the Energy Systems configuration management policy standard.

  18. Potential minimum cost of electricity of superconducting coil tokamak power reactors

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y-K. M.

    1989-01-01

    The potential minimum cost of electricity (COE) for superconducting tokamak power reactors is estimated by increasing the physics (confinement, beta limit, bootstrap current fraction) and technology [neutral beam energy, toroidal field (TF) coil allowable stresses, divertor heat flux, superconducting coil critical field, critical temperature, and quench temperature rise] constraints far beyond those assumed for ITER until the point of diminishing returns is reached. A version of the TETRA systems code, calibrated with the ITER design and modified for power reactors, is used for this analysis, limiting this study to reactors with the same basic device configuration and costing algorithms as ITER. A minimum COE is reduced from >200 to about 80 mill/kWh when the allowable design constraints are raised to 2 times those of ITER. At 4 times the ITER allowables, a minimum COE of about 60 mill/kWh is obtained. The corresponding tokamak has a major radius of approximately 4 m, a plasma current close to 10 MA, an aspect ratio of 4, a confinement H- factor ≤3, a beta limit of approximately 2 times the first stability regime, a divertor heat flux of about 20 MW/m 2 , a Β max ≤ 18 T, and a TF coil average current density about 3 times that of ITER. The design constraints that bound the minimum COE are the allowable stresses in the TF coil, the neutral beam energy, and the 99% bootstrap current (essentially free current drive). 14 refs., 4 figs., 2 tabs

  19. Configurational isomerism in polyoxovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Mahnke, Lisa K.; Naether, Christian; Bensch, Wolfgang [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet, Kiel (Germany); Kondinski, Aleksandar; Van Leusen, Jan; Monakhov, Kirill Yu.; Koegerler, Paul [Institut fuer Anorganische Chemie, RWTH Aachen University (Germany); Warzok, Ulrike; Schalley, Christoph A. [Institut fuer Chemie und Biochemie, Freie Universitaet Berlin (Germany)

    2018-03-05

    A water-soluble derivative of the polyoxovanadate {V_1_5E_6O_4_2} (E=semimetal) archetype enables the study of cluster shell rearrangements driven by supramolecular interactions. A reaction unique to E=Sb, induced exclusively by ligand metathesis in peripheral [Ni(ethylenediamine){sub 3}]{sup 2+} counterions, results in the formation of the metastable α{sub 1}* configurational isomer of the {V_1_4Sb_8O_4_2} cluster type. Contrary to all other polyoxovanadate shell architectures, this isomer comprises an inward-oriented vanadyl group and is ca. 50 and 12 kJ mol{sup -1} higher in energy than the previously isolated α and β isomers, respectively. We discuss this unexpected reaction in light of supramolecular Sb-O..V and Sb-O..Sb contacts manifested in {V_1_4Sb_8O_4_2}{sub 2} dimers detected in the solid state. ESI MS experiments confirm the stability of these dimers also in solution and in the gas phase. DFT calculations indicate that other, as of yet elusive isomers of {V_1_4Sb_8}, might be accessible as well. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Rising above the Minimum Wage.

    Science.gov (United States)

    Even, William; Macpherson, David

    An in-depth analysis was made of how quickly most people move up the wage scale from minimum wage, what factors influence their progress, and how minimum wage increases affect wage growth above the minimum. Very few workers remain at the minimum wage over the long run, according to this study of data drawn from the 1977-78 May Current Population…

  1. Climate in unheated bedrooms of the minimum energy houses in Schiedam, Netherlands. Klimaat in onverwarmde slaapkamers van de minimumenergiewoningen te Schiedam

    Energy Technology Data Exchange (ETDEWEB)

    Dubbeld, M.; Molenaar, J.; Van Schijndel, L.L.; Ham, P.J.

    1987-03-01

    The temperature and humidity of the bedrooms in four energy saving dwellings equipped with multi-burners for space heating are measured. The bedrooms have no separate heating. It is determinded if and how the acquired bedroom temperature is reached. The inhabitants reach the acquired bedroom temperature by closing the shutters at night and internal circulation of hot air between living room and bedroom. It is indicated how one heater can heat the bedrooms even without air transport from living room to the bedrooms. It is also indicated how the transport of cooking smells can be improved. 11 figs., 5 refs., 1 tab., 3 apps.

  2. Simulator configuration maintenance

    International Nuclear Information System (INIS)

    2006-01-01

    Requirements and recommendations of this section defines NPP personnel activity aimed to the provision of the simulator configuration compliance with the current configuration of the power-generating unit-prototype, standard and technical requirements and describe a monitoring procedure for a set of simulator software and hardware, training, organizational and technical documents

  3. PIV Logon Configuration Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Glen Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).

  4. Business Model Process Configurations

    DEFF Research Database (Denmark)

    Taran, Yariv; Nielsen, Christian; Thomsen, Peter

    2015-01-01

    , by developing (inductively) an ontological classification framework, in view of the BM process configurations typology developed. Design/methodology/approach – Given the inconsistencies found in the business model studies (e.g. definitions, configurations, classifications) we adopted the analytical induction...

  5. Risk-based configuration control

    International Nuclear Information System (INIS)

    Szikszai, T.

    1997-01-01

    The presentation discusses the following issues: The Configuration Control; The Risk-based Configuration Control (during power operation mode, and during shutdown mode). PSA requirements. Use of Risk-based Configuration Control System. Configuration Management (basic elements, benefits, information requirements)

  6. Environmental restoration project configuration control

    International Nuclear Information System (INIS)

    Hutterman, L.L.

    1991-01-01

    This paper provides an overview of the approach that Westinghouse Idaho Nuclear Company, Inc. (WINCO) is using for the implementation of the configuration control requirements for a major system acquisition under the guidance of US Department of Energy (DOE) Order 4700.1, open-quotes Project Management System,close quotes for environmental restoration. The two major features of the WINCO environmental restoration approach relate to (1) the product and (2) the maintenance of the baseline for many sites in different phases at the same time. Historically, a project has typically produced a product. Environmental restoration in some ways produces no typical project product. Essentially, what is produced and what configuration control management is exercised on is one of the following: (1) the development of clean dirt, (2) the documentation to support clean dirt, or (3) the track record of each of the sites. It is the latter approach that this paper deals with. This approach is unique in that there are four baselines [cost, schedule, scope, and technical (the track record product)] rather than the typical three. This is essential in configuration management due to the lack of a uniquely identifiable product for each site. Essentially, the philosophy behind the four-part configuration controls allows the technical baseline to fulfill the function typically met by the identifiable product

  7. Injection and temporary capture of a charged particle beam in an open magnetic configuration. Optimization of the configuration. Case of cylindrical symmetry: A mirror machine; Etude de l'injection et de la capture temporaire d'un faisceau de particules chargees dans une configuration magnetique ouverte. Optimisation de la configuration. Cas de la symetrie de revolution: Machine a miroirs

    Energy Technology Data Exchange (ETDEWEB)

    Capdequi-Peyranere, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-12-01

    A study has been made of a new method of transverse injection of charged particles into a magnetic mirror configuration. This injection scheme permits the penetration and temporary capture by non-adiabatic effect of a particle beam of approximately 1 cm{sup 2} cross-section. A theoretical study of the injection and capture is made in the approximation that space charge is negligible. The original programs for IBM 7094 computer calculations are described; these programs were used to obtain an optimization of the configuration. The results of a statistical numerical study of the optimum configuration are then given. This study indicates that, if the energy of the particles of the beam is about 1 per cent greater than a minimum penetration energy, the entire beam can be captured with an average capture length of 100 meters (50 reflections between the two mirrors). If the energy is about 4 per cent greater than the minimum penetration energy, the capture length is reduced to 40 meters. We have studied the distribution of energy transverse and longitudinal with the magnetic field for the population of captured particles. For the cases of injected molecular hydrogen ions or heavy CH{sub 4}{sup +} ions, a study is made of the capture time of protons resulting from the dissociation of the ions by collisions with the neutral gas. Finally, we describe a model experiment using electrons designed to provide an experimental verification of the capture of the primary beam. (author) [French] On etudie un nouveau schema d'injection transversale de particules chargees dans une configuration magnetique a miroirs. Ce mode d'injection permet la penetration et la capture temporaire par effet non adiabatique d'un faisceau de particules presentant une section de l'ordre de 1 cm{sup 2}. Une etude theorique du probleme de l'injection et de la capture est faite en supposant la charge d'espace negligeable. On decrit des programmes originaux de calcul sur ordinateur IBM 7094 permettant l

  8. Minimum Error Entropy Classification

    CERN Document Server

    Marques de Sá, Joaquim P; Santos, Jorge M F; Alexandre, Luís A

    2013-01-01

    This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.

  9. Comparison of Configurations for High-Recovery Inland Desalination Systems

    Directory of Open Access Journals (Sweden)

    Philip A. Davies

    2012-09-01

    Full Text Available Desalination of brackish groundwater (BW is an effective approach to augment water supply, especially for inland regions that are far from seawater resources. Brackish water reverse osmosis (BWRO desalination is still subject to intensive energy consumption compared to the theoretical minimum energy demand. Here, we review some of the BWRO plants with various system arrangements. We look at how to minimize energy demands, as these contribute considerably to the cost of desalinated water. Different configurations of BWRO system have been compared from the view point of normalized specific energy consumption (SEC. Analysis is made at theoretical limits. The SEC reduction of BWRO can be achieved by (i increasing number of stages, (ii using an energy recovery device (ERD, or (iii operating the BWRO in batch mode or closed circuit mode. Application of more stages not only reduces SEC but also improves water recovery. However, this improvement is less pronounced when the number of stages exceeds four. Alternatively and more favourably, the BWRO system can be operated in Closed Circuit Desalination (CCD mode and gives a comparative SEC to that of the 3-stage system with a recovery ratio of 80%. A further reduction of about 30% in SEC can be achieved through batch-RO operation. Moreover, the costly ERDs and booster pumps are avoided with both CCD and batch-RO, thus furthering the effectiveness of lowering the costs of these innovative approaches.

  10. Low Streamflow Forcasting using Minimum Relative Entropy

    Science.gov (United States)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  11. Do Minimum Wages Fight Poverty?

    OpenAIRE

    David Neumark; William Wascher

    1997-01-01

    The primary goal of a national minimum wage floor is to raise the incomes of poor or near-poor families with members in the work force. However, estimates of employment effects of minimum wages tell us little about whether minimum wages are can achieve this goal; even if the disemployment effects of minimum wages are modest, minimum wage increases could result in net income losses for poor families. We present evidence on the effects of minimum wages on family incomes from matched March CPS s...

  12. Comparison between four dissimilar solar panel configurations

    Science.gov (United States)

    Suleiman, K.; Ali, U. A.; Yusuf, Ibrahim; Koko, A. D.; Bala, S. I.

    2017-12-01

    Several studies on photovoltaic systems focused on how it operates and energy required in operating it. Little attention is paid on its configurations, modeling of mean time to system failure, availability, cost benefit and comparisons of parallel and series-parallel designs. In this research work, four system configurations were studied. Configuration I consists of two sub-components arranged in parallel with 24 V each, configuration II consists of four sub-components arranged logically in parallel with 12 V each, configuration III consists of four sub-components arranged in series-parallel with 8 V each, and configuration IV has six sub-components with 6 V each arranged in series-parallel. Comparative analysis was made using Chapman Kolmogorov's method. The derivation for explicit expression of mean time to system failure, steady state availability and cost benefit analysis were performed, based on the comparison. Ranking method was used to determine the optimal configuration of the systems. The results of analytical and numerical solutions of system availability and mean time to system failure were determined and it was found that configuration I is the optimal configuration.

  13. The LHCb configuration database

    CERN Document Server

    Abadie, Lana; Gaspar, Clara; Jacobsson, Richard; Jost, Beat; Neufeld, Niko

    2005-01-01

    The Experiment Control System (ECS) will handle the monitoring, configuration and operation of all the LHCb experimental equipment. All parameters required to configure electronics equipment under the control of the ECS will reside in a configuration database. The database will contain two kinds of information: 1.\tConfiguration properties about devices such as hardware addresses, geographical location, and operational parameters associated with particular running modes (dynamic properties). 2.\tConnectivity between devices : this consists of describing the output and input connections of a device (static properties). The representation of these data using tables must be complete so that it can provide all the required information to the ECS and must cater for all the subsystems. The design should also guarantee a fast response time, even if a query results in a large volume of data being loaded from the database into the ECS. To fulfil these constraints, we apply the following methodology: Determine from the d...

  14. Drupal 8 configuration management

    CERN Document Server

    Borchert, Stefan

    2015-01-01

    Drupal 8 Configuration Management is intended for people who use Drupal 8 to build websites, whether you are a hobbyist using Drupal for the first time, a long-time Drupal site builder, or a professional web developer.

  15. Configuration by Modularisation

    DEFF Research Database (Denmark)

    Riitahuhta, Asko; Andreasen, Mogens Myrup

    1998-01-01

    Globally operating companies have realized that locally customized products and services are today the prerequisite for the success. The capability or the paradigm to act locally in global markets is called Mass Customization [Victor 1997]. The prerequisite for Mass Customization is Configuration...... Management and i Configuration Management the most important means is Modularisation.The goal of this paper is to show Configuration Management as a contribution to the Mass Customisation and Modularisation as a contribution to the industrialisation of the design area [Andreasen 1997]. A basic model...... for the creation of a structured product family is presented and examples are given. The concepts of a novel Dynamic Modularisation method, Metrics for Modularisation and Design for Configurability are presented....

  16. Configuration Management Automation (CMA) -

    Data.gov (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  17. Charmed muons in ice. Measurement of the high-energetic atmospheric energy spectrum with IceCube in the detector configuration IC86-1

    International Nuclear Information System (INIS)

    Fuchs, Tomasz

    2016-01-01

    In this thesis the flux of high-energy muons in the energy regime from 10 TeV to 1 PeV is reconstructed and analyzed using data collected with the IceCube detector in the time span 13.05.2011 to 15.05.2012. From a data set containing muon bundles only those events are selected which contain a muon that is energetically dominating the others in the bundle. For the separation a Random Forest model is applied, resulting in a data set of high-energy muons with an efficiency of (40.8±0.6) % and a purity of (93.1±0.4) %. Attributes considered in the separation are selected by the mRMR algorithm. The energy spectrum of muons is reconstructed with a regularized unfolding using the software TRUEE. The hypothesis of a prompt and a conventional component of atmospheric muons results in flux normalizations of N conv. =1.03±0.06 and N prompt =1.59±1.57. Due to the large uncertainty of the prompt component, the hypothesis of a pure conventional flux cannot be excluded. Using these normalizations, it is possible to determine if the measured high-energy neutrino flux above 60 TeV is of atmospheric origin. The p-value for this hypothesis is found to be 0.045, which indicates the need of an astrophysical component to explain the excess at high energies.

  18. Computer software configuration management

    International Nuclear Information System (INIS)

    Pelletier, G.

    1987-08-01

    This report reviews the basic elements of software configuration management (SCM) as defined by military and industry standards. Several software configuration management standards are evaluated given the requirements of the nuclear industry. A survey is included of available automated tools for supporting SCM activities. Some information is given on the experience of establishing and using SCM plans of other organizations that manage critical software. The report concludes with recommendations of practices that would be most appropriate for the nuclear power industry in Canada

  19. Employment effects of minimum wages

    OpenAIRE

    Neumark, David

    2014-01-01

    The potential benefits of higher minimum wages come from the higher wages for affected workers, some of whom are in low-income families. The potential downside is that a higher minimum wage may discourage employers from using the low-wage, low-skill workers that minimum wages are intended to help. Research findings are not unanimous, but evidence from many countries suggests that minimum wages reduce the jobs available to low-skill workers.

  20. 75 FR 6151 - Minimum Capital

    Science.gov (United States)

    2010-02-08

    ... capital and reserve requirements to be issued by order or regulation with respect to a product or activity... minimum capital requirements. Section 1362(a) establishes a minimum capital level for the Enterprises... entities required under this section.\\6\\ \\3\\ The Bank Act's current minimum capital requirements apply to...

  1. Reference frame for Product Configuration

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Oddsson, Gudmundur Valur

    2011-01-01

    a reference frame for configuration that permits 1) a more precise understanding of a configuration system, 2) a understanding of how the configuration system relate to other systems, and 3) a definition of the basic concepts in configuration. The total configuration system, together with the definition...

  2. Distributed generation of sustainable energy as a common pool resource: social acceptance in rural setting of smart (micro-)grid configurations

    NARCIS (Netherlands)

    Wolsink, M.; Frantál, B.; Martinát, S.

    2014-01-01

    According to the major trend in the literature on distributed generation adoption of composite multi-generation systems may yield significant benefits in terms of energy efficiency and reduced carbon emissions. The microgrid is a cluster of loads of electricity users and micro-sources that operate

  3. Remembering facial configurations.

    Science.gov (United States)

    Bruce, V; Doyle, T; Dench, N; Burton, M

    1991-02-01

    Eight experiments are reported showing that subjects can remember rather subtle aspects of the configuration of facial features to which they have earlier been exposed. Subjects saw several slightly different configurations (formed by altering the relative placement of internal features of the face) of each of ten different faces, and they were asked to rate the apparent age and masculinity-femininity of each. Afterwards, subjects were asked to select from pairs of faces the configuration which was identical to one previously rated. Subjects responded strongly to the central or "prototypical" configuration of each studied face where this was included as one member of each test pair, whether or not it had been studied (Experiments 1, 2 and 4). Subjects were also quite accurate at recognizing one of the previously encountered extremes of the series of configurations that had been rated (Experiment 3), but when unseen prototypes were paired with seen exemplars subjects' performance was at chance (Experiment 5). Prototype learning of face patterns was shown to be stronger than that for house patterns, though both classes of patterns were affected equally by inversion (Experiment 6). The final two experiments demonstrated that preferences for the prototype could be affected by instructions at study and by whether different exemplars of the same face were shown consecutively or distributed through the study series. The discussion examines the implications of these results for theories of the representation of faces and for instance-based models of memory.

  4. Minimum cost solution of wind–photovoltaic based stand-alone power systems for remote consumers

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Zafirakis, D.; Kavadias, K.

    2012-01-01

    Renewable energy sources (RES) based stand-alone systems employing either wind or solar power and energy storage comprise a reliable energy alternative, on top of conventional diesel-electric generator sets, commonly used by remote consumers. However, such systems usually imply the need for oversizing and considerable energy storage requirements leading to relatively high costs. On the other hand, hybrid configurations that may exploit both wind and solar potential of a given area may considerably reduce energy storage capacity and improve the economic performance of the system. In this context, an integrated techno-economic methodology for the evaluation of hybrid wind–photovoltaic stand-alone power systems is currently developed, aiming at the designation of optimum configurations for a typical remote consumer, using economic performance criteria. For the problem investigation, the developed evaluation model is applied to four representative areas of the Greek territory with different wind potential characteristics in order to obtain optimum configurations on the basis of minimum initial investment, 10-year and 20-year total cost. According to the results obtained, the proposed solution is favorably compared with all other stand-alone energy alternatives, reflecting the ability of hybrid systems to adjust even in areas where the local RES potential is not necessarily of high quality. - Highlights: ► Wind- and PV-stand alone systems often imply use of extreme battery capacity. ► Hybrid wind–PV systems may reduce energy storage requirements and associated costs. ► An optimization methodology is developed, based on economic performance criteria. ► Methodology is applied to four Greek regions of different wind potential. ► Results obtained reflect the hybrid solution's advantages over other alternatives.

  5. Selecting Actuator Configuration for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator configuration has been limited to the fuel system which in the considered plant consists of three different...

  6. Minimum qualifications for nuclear criticality safety professionals

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1990-01-01

    A Nuclear Criticality Technology and Safety Training Committee has been established within the U.S. Department of Energy (DOE) Nuclear Criticality Safety and Technology Project to review and, if necessary, develop standards for the training of personnel involved in nuclear criticality safety (NCS). The committee is exploring the need for developing a standard or other mechanism for establishing minimum qualifications for NCS professionals. The development of standards and regulatory guides for nuclear power plant personnel may serve as a guide in developing the minimum qualifications for NCS professionals

  7. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  8. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  9. Configuration Control Office

    CERN Multimedia

    Beltramello, O

    In order to enable Technical Coordination to manage the detector configuration and to be aware of all changes in this configuration, a baseline of the envelopes has been created in April 2001. Fifteen system and multi-system envelope drawings have been approved and baselined. An EDMS file is associated with each approved envelope, which provides a list of the current known unsolved conflicts related to the envelope and a list of remaining drawing inconsistencies to be corrected. The envelope status with the associated drawings and EDMS file can be found on the web at this adress: http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/Installation/Configuration/ Any modification in the baseline has to be requested via the Engineering Change Requests. The procedure can be found under: http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/TcOffice/Quality/ECR/ TC will review all the systems envelopes in the near future and manage conflict resolution with the collaboration of the systems.

  10. The LHCb configuration database

    CERN Document Server

    Abadie, L; Van Herwijnen, Eric; Jacobsson, R; Jost, B; Neufeld, N

    2005-01-01

    The aim of the LHCb configuration database is to store information about all the controllable devices of the detector. The experiment's control system (that uses PVSS ) will configure, start up and monitor the detector from the information in the configuration database. The database will contain devices with their properties, connectivity and hierarchy. The ability to store and rapidly retrieve huge amounts of data, and the navigability between devices are important requirements. We have collected use cases to ensure the completeness of the design. Using the entity relationship modelling technique we describe the use cases as classes with attributes and links. We designed the schema for the tables using relational diagrams. This methodology has been applied to the TFC (switches) and DAQ system. Other parts of the detector will follow later. The database has been implemented using Oracle to benefit from central CERN database support. The project also foresees the creation of tools to populate, maintain, and co...

  11. Design Of Cooling Configuration For Military Aeroengine V-Gutter

    Directory of Open Access Journals (Sweden)

    Batchu Suresh

    2017-07-01

    Full Text Available Military aircraft engines employ afterburner system for increasing the thrust required during combat and take-off flight conditions. V-gutter is employed for stabilisation of the flame during reheat. For fifth generation aero engine the gas temperature at the start of the afterburner is be-yond the allowable material limits of the V-gutter so it is required to cool the V-gutter to obtain acceptable creep life. The design of cooling configuration for the given source pressure is worked out for different rib configurations to obtain the allowable metal temperature with minimum coolant mass flow.1D network analysis is used to estimate the cooling mass flow and metal temperature for design flight condition. CFD analysis is carried out for four cooling configurations with different rib orientations. Out of four configurations one configuration is selected for the best cooling configuration.

  12. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  13. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  14. 太阳能与地源热泵复合系统的优化配置与运行方式%Optimizing configuring and running-mode of solar energy and ground-source heat pump hybrid systems

    Institute of Scientific and Technical Information of China (English)

    冯晓梅; 张昕宇; 邹瑜; 郑瑞澄

    2011-01-01

    以某实际工程为例,对太阳能系统与地源热泵系统联合运行时的优化配置与运行方式进行了模拟分析.得到结论:要优先利用太阳能系统;对太阳能资源要梯级利用;尽可能增大太阳能集热器面积,提高太阳能直接利用的可能性;单位面积太阳能集热器成本为250元/m2左右比较合适.%With a project, simulates and analyses optimizing configuring and running-mode of the hybrid system. Concludes that the solar energy system should be prior to the ground-source heat pump system in operation, the utilization of solar energy resource should be the way according to the energy grade, a possibly larger solar collector area is good for direct utilization of solar energy, and the solar collector cost of 250 RMB per square meter is appropriate.

  15. Rovibrational spectroscopy using a kinetic energy operator in Eckart frame and the multi-configuration time-dependent Hartree (MCTDH) approach

    International Nuclear Information System (INIS)

    Sadri, Keyvan; Meyer, Hans-Dieter; Lauvergnat, David; Gatti, Fabien

    2014-01-01

    For computational rovibrational spectroscopy the choice of the frame is critical for an approximate separation of overall rotation from internal motions. To minimize the coupling between internal coordinates and rotation, Eckart proposed a condition [“Some studies concerning rotating axes and polyatomic molecules,” Phys. Rev. 47, 552–558 (1935)] and a frame that fulfills this condition is hence called an Eckart frame. A method is developed to introduce in a systematic way the Eckart frame for the expression of the kinetic energy operator (KEO) in the polyspherical approach. The computed energy levels of a water molecule are compared with those obtained using a KEO in the standard definition of the Body-fixed frame of the polyspherical approach. The KEO in the Eckart frame leads to a faster convergence especially for large J states and vibrationally excited states. To provide an example with more degrees of freedom, rotational states of the vibrational ground state of the trans nitrous acid (HONO) are also investigated

  16. Stirling Engine Configuration Selection

    Directory of Open Access Journals (Sweden)

    Jose Egas

    2018-03-01

    Full Text Available Unlike internal combustion engines, Stirling engines can be designed to work with many drive mechanisms based on the three primary configurations, alpha, beta and gamma. Hundreds of different combinations of configuration and mechanical drives have been proposed. Few succeed beyond prototypes. A reason for poor success is the use of inappropriate configuration and drive mechanisms, which leads to low power to weight ratio and reduced economic viability. The large number of options, the lack of an objective comparison method, and the absence of a selection criteria force designers to make random choices. In this article, the pressure—volume diagrams and compression ratios of machines of equal dimensions, using the main (alpha, beta and gamma crank based configurations as well as rhombic drive and Ross yoke mechanisms, are obtained. The existence of a direct relation between the optimum compression ratio and the temperature ratio is derived from the ideal Stirling cycle, and the usability of an empirical low temperature difference compression ratio equation for high temperature difference applications is tested using experimental data. It is shown that each machine has a different compression ratio, making it more or less suitable for a specific application, depending on the temperature difference reachable.

  17. Global Value Chain Configuration

    DEFF Research Database (Denmark)

    Hernandez, Virginia; Pedersen, Torben

    2017-01-01

    modes chosen and the different ways of coordinating them. We also examine the outcomes of a global value chain configuration in terms of performance and upgrading. Our aim is to review the state of the art of these issues, identify research gaps and suggest new lines for future research that would...

  18. Inclusive Services Innovation Configuration

    Science.gov (United States)

    Holdheide, Lynn R.; Reschly, Daniel J.

    2011-01-01

    Teacher preparation to deliver inclusive services to students with disabilities is increasingly important because of changes in law and policy emphasizing student access to, and achievement in, the general education curriculum. This innovation configuration identifies the components of inclusive services that should be incorporated in teacher…

  19. Ansible configuration management

    CERN Document Server

    Hall, Daniel

    2015-01-01

    This book is intended for anyone who wants to learn Ansible starting from the basics. Some experience of how to set up and configure Linux machines and a working knowledge of BIND, MySQL, and other Linux daemons is expected.

  20. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  1. CdSe/beta-Pb0.33V2O5 heterostructures: Nanoscale semiconductor interfaces with tunable energetic configurations for solar energy conversion and storage

    Science.gov (United States)

    Milleville, Christopher C.

    This dissertation focuses on the formation and characterization of semiconductor heterostructures, consisting of light-harvesting cadmium selenide quantum dots (CdSe QDs) and single crystalline lead vanadium oxide nanowires (β-Pb0.33V2O5 NWs), for the purpose of excited-state charge transfer and photocatalytic production of solar fuels. We reported two distinct routes for assembling CdSe/β-Pb0.33V2O5 heterostructures: linker-assisted assembly (LAA) mediated by a bifunctional ligand and successive ionic layer adsorption and reaction (SILAR). In the former case, the thiol end of a molecular linker, cysteine (Cys) is found to bind to the QD surface, whereas a protonated amine moiety interacts electrostatically with the negatively charged NW surface. In the alternative SILAR route, the surface coverage of CdSe on the β-Pb0.33V2O5 NWs is tuned by varying the number of successive precipitation cycles. Hard X-ray photoelectron spectroscopy (HAXPES) measurements revealed that the mid-gap states of β-Pb0.33V2O5 NWs are closely overlapped in energy with the valence band edges of CdSe QDs, suggesting that hole transfer from the valence band of CdSe into the mid-gap states is possible. Preliminary evidence of hole transfer was obtained through photoluminescence quenching experiments. Steady-state and time-resolved photoluminescence measurements on Cys-CdSe dispersions, mixed dispersions of Cys-CdSe QDs and β-Pb0.33V¬2O5 NWs, and mixed dispersions of Cys-CdS QDs and V2O5 revealed a greater extent of quenching of the emission of Cys-CdSe QDs by β Pb0.33V¬2O5 relative to V2O5. V2O5, devoid of mid-gap states, is unable to accept holes from CdSe and therefore should not quench emission to the same extent as β-Pb0.33V¬2O5. The additional quenching was dynamic, consistent with a mechanism involving the transfer of photogenerated holes from CdSe QDs to the mid-gap states of β Pb0.33V2O5. Transient absorption spectroscopy (TA) was used to probe the dynamics of interfacial

  2. Minimum bias measurement at 13 TeV

    CERN Document Server

    Orlando, Nicola; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes and to simulate the environment at the LHC with many concurrent pp interactions (pile-up). We summarise the ATLAS minimum bias measurements with proton-proton collision at 13 TeV center-of-mass-energy at the Large Hadron Collider.

  3. Symmetries of cluster configurations

    International Nuclear Information System (INIS)

    Kramer, P.

    1975-01-01

    A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed

  4. Minimum weight protection - Gradient method; Protection de poids minimum - Methode du gradient

    Energy Technology Data Exchange (ETDEWEB)

    Danon, R.

    1958-12-15

    After having recalled that, when considering a mobile installation, total weight has a crucial importance, and that, in the case of a nuclear reactor, a non neglectable part of weight is that of protection, this note presents an iterative method which results, for a given protection, to a configuration with a minimum weight. After a description of the problem, the author presents the theoretical formulation of the gradient method as it is applied to the concerned case. This application is then discussed, as well as its validity in terms of convergence and uniqueness. Its actual application is then reported, and possibilities of practical applications are evoked.

  5. Analyzing Visibility Configurations.

    Science.gov (United States)

    Dachsbacher, C

    2011-04-01

    Many algorithms, such as level of detail rendering and occlusion culling methods, make decisions based on the degree of visibility of an object, but do not analyze the distribution, or structure, of the visible and occluded regions across surfaces. We present an efficient method to classify different visibility configurations and show how this can be used on top of existing methods based on visibility determination. We adapt co-occurrence matrices for visibility analysis and generalize them to operate on clusters of triangular surfaces instead of pixels. We employ machine learning techniques to reliably classify the thus extracted feature vectors. Our method allows perceptually motivated level of detail methods for real-time rendering applications by detecting configurations with expected visual masking. We exemplify the versatility of our method with an analysis of area light visibility configurations in ray tracing and an area-to-area visibility analysis suitable for hierarchical radiosity refinement. Initial results demonstrate the robustness, simplicity, and performance of our method in synthetic scenes, as well as real applications.

  6. Mechanical configuration and maintenance

    International Nuclear Information System (INIS)

    Brown, T.G.; Casini, G.; Churakov, G.F.

    1982-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations. The most apparent configuration design feature is the access provided for torus maintenance. Particular attention was given to the size and location of superconducting magnets and the location of vacuum boundaries. All of the poloidal field (PF) coils are placed outside of the bore of the toroidal field (TF) coils and located above and below an access opening between adjacent TF coils through which torus sectors are removed. A magnet structural configuration consisting of mechanically attached reinforcing members has been designed which facilitates the open access space for torus sector removal. For impurity control, a single null poloidal divertor was selected over a double null design in order to maintain sufficient access for pumping and maintenance of the collector. A double null divertor was found to severely limit access to the torus with the addition of divertor collectors and pumping at the top. For this reason, a single null concept was selected in spite of the more difficult design problems associated with the required asymmetric PF system and higher particle loadings

  7. The potential energy landscape in the Lennard-Jones binary mixture model

    International Nuclear Information System (INIS)

    Sampoli, M; Benassi, P; Eramo, R; Angelani, L; Ruocco, G

    2003-01-01

    The potential energy landscape in the Kob-Andersen Lennard-Jones binary mixture model has been studied carefully from the liquid down to the supercooled regime, from T = 2 down to 0.46. One thousand independent configurations along the time evolution locus have been examined at each temperature investigated. From the starting configuration, we searched for the nearest saddle (or quasi-saddle) and minimum of the potential energy. The vibrational densities of states for the starting and the two derived configurations have been evaluated. Besides the number of negative eigenvalues of the saddles other quantities show some signature of the approach of the dynamical arrest temperature

  8. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  9. ''Reduced'' magnetohydrodynamics and minimum dissipation rates

    International Nuclear Information System (INIS)

    Montgomery, D.

    1992-01-01

    It is demonstrated that all solutions of the equations of ''reduced'' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs

  10. Valence configurations in 214Rn

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Bark, R.A.; Poletti, A.R.

    1987-01-01

    Excited states of 214 Rn, up to spins of ≅ 24 ℎ have been studied using γ-ray and electron spectroscopy following the 208 Pb( 9 Be,3n) 214 Rn reaction. The level scheme (which differs substantially from earlier work) is compared with the results of a semi-empirical shell model calculation. The availability of high-spin orbitals for the four valence protons and two valence neutrons, and the effect of the attractive proton-neutron interaction, leads to the prediction of high-spin states at an unusually low excitation energy. Experimentally, the high level density leads to difficulties in the level scheme assignments at high spin. Nevertheless, configuration assignments, supported by transition strengths deduced from the measured lifetimes (in the nanosecond region) are suggested for the main yrast states. The decay properties also suggest that configuration mixing is important. The possibility of a gradual transition to octupole deformation, implied by the decay properties of the 11 - and 10 + yrast states is also discussed. (orig.)

  11. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  12. Configuration Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    Westinghouse Savannah River Company (WSRC) has established a configuration management (CM) plan to execute the SRS CM Policy and the requirements of the DOE Order 4700.1. The Reactor Restart Division (RRD) has developed its CM Plan under the SRS CM Program and is implementing it via the RRD CM Program Plan and the Integrated Action Plan. The purpose of the RRD CM program is to improve those processes which are essential to the safe and efficient operation of SRS production reactors. This document provides details of this plan

  13. Relativistic configuration interaction treatment of generalized oscillator strength for krypton

    International Nuclear Information System (INIS)

    Wang Huangchun; Qu Yizhi; Liu Chunhua

    2007-01-01

    A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717 eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions (K 2 in a.u.) of the minimum and maximum GOSs in the 4s 2 4p 6 →4s 2 4p 5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97. (authors)

  14. Relativistic Configuration Interaction Treatment of Generalized Oscillator Strength for Krypton

    Institute of Scientific and Technical Information of China (English)

    WANG Huang-Chun; QU Yi-Zhi; LIU Chun-Hua

    2007-01-01

    A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions ( K2 in a.u.) of the minimum and maximum GOSs in the 4s24p6 → 4s24p5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97 [Phys. Rev. A 67 (2003) 062708].

  15. Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration

    International Nuclear Information System (INIS)

    Arbabzadeh, Maryam; Johnson, Jeremiah X.; De Kleine, Robert; Keoleian, Gregory A.

    2015-01-01

    Highlights: • We assess energy storage role in reaching emissions targets in an off-grid model. • The energy storage technology is vanadium redox flow battery (VRFB). • We evaluate life cycle GHG emissions and total cost of delivered electricity. • Generation mixes are optimized to meet emissions targets at the minimum cost. • For this model, integrating VRFB is economical to reach very low emissions targets. - Abstract: Energy storage may serve as a solution to the integration challenges of high penetrations of wind, helping to reduce curtailment, provide system balancing services, and reduce emissions. This study determines the minimum cost configuration of vanadium redox flow batteries (VRFB), wind turbines, and natural gas reciprocating engines in an off-grid model. A life cycle assessment (LCA) model is developed to determine the system configuration needed to achieve a variety of CO 2 -eq emissions targets. The relationship between total system costs and life cycle emissions are used to optimize the generation mixes to achieve emissions targets at the least cost and determine when VRFBs are preferable over wind curtailment. Different greenhouse gas (GHG) emissions targets are defined for the off-grid system and the minimum cost resource configuration is determined to meet those targets. This approach determines when the use of VRFBs is more cost effective than wind curtailment in reaching GHG emissions targets. The research demonstrates that while incorporating energy storage consistently reduces life cycle carbon emissions, it is not cost effective to reduce curtailment except under very low emission targets (190 g of CO2-eq/kW h and less for the examined system). This suggests that “overbuilding” wind is a more viable option to reduce life cycle emissions for all but the most ambitious carbon mitigation targets. The findings show that adding VRFB as energy storage could be economically preferable only when wind curtailment exceeds 66% for the

  16. Study of High Lift Configurations

    Science.gov (United States)

    Edward, Jack R.; Hassan, Hassan A.

    2000-01-01

    This project focus on the implementation of the Warren-Hassan transition / turbulence model (Journal of Aircraft, Vol. 35, No. 5) into the NASA code CFL3D and its testing for multi-element airfoils in landing configuration at different angles of attack. The Warren-Hassan transition model solves an evolution equation for a kinetic energy characteristic of non-turbulent fluctuations. This is combined with an empirical estimate of the frequency of the most amplified first-mode disturbance to yield an expression for an eddy viscosity characteristic of non-turbulent fluctuations. This is combined with the k - zeta model for fully turbulent flow to yield a unified approach capable of predicting both transition onset and extent. Blending of the non-turbulent and turbulent components of the model is accomplished by an intermittency function based on the work of Dhawan and Narasimha (Journal of Fluid Mechanics, Vol. 3, No. 4).

  17. Static Equilibrium Configurations of Charged Metallic Bodies ...

    African Journals Online (AJOL)

    In this paper we developed a simple numerical scheme to determine the static equilibrium configuration of charged metallic bodies by minimizing the potential energy function. The method developed has some advantages; it combines the general theory and the physical meanings nested in the mathematical model and this ...

  18. Binary scission configurations in fission of light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, Tsutomu [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Nagame, Y.; Nishinaka, I.; Tsukada, K.; Ikezoe, H.; Tanikawa, M.; Zhao, Y.L.; Sueki, K.; Nakahara, H.

    1997-07-01

    Mass and kinetic energy distributions of fission fragments have been accurately measured by a double velocity time-of-flight technique in the 13 MeV proton-induced fissions of {sup 232}Th and {sup 238}U. A binary structure is observed in total kinetic energy distributions in the fragments with mass number around A=130 for both the fissions, indicating that there are at least two kinds of scission configurations. A correlation between the scission configurations and mass yield distributions reveals that elongated scission configurations are associated with the symmetric mass distribution and compact scission configurations with the asymmetric mass distribution. (author)

  19. Minimum airflow reset of single-duct VAV terminal boxes

    Science.gov (United States)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  20. Gas/liquid flow configurations

    International Nuclear Information System (INIS)

    Bonin, Jacques; Fitremann, J.-M.

    1978-01-01

    Prediction of flow configurations (morphology) for gas/liquid or liquid/vapour mixtures is an important industrial problem which is not yet fully understood. The ''Flow Configurations'' Seminar of Societe Hydrotechnique de France has framed recommendations for investigation of potential industrial applications for flow configurations [fr

  1. Software Configurable Multichannel Transceiver

    Science.gov (United States)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  2. Configuring the autism epidemic

    DEFF Research Database (Denmark)

    Seeberg, Jens; Christensen, Fie Lund Lindegaard

    2017-01-01

    Autism has been described as an epidemic, but this claim is contested and may point to an awareness epidemic, i.e. changes in the definition of what autism is and more attention being invested in diagnosis leading to a rise in registered cases. The sex ratio of children diagnosed with autism...... is skewed in favour of boys, and girls with autism tend to be diagnosed much later than boys. Building and further developing the notion of ‘configuration’ of epidemics, this article explores the configuration of autism in Denmark, with a particular focus on the health system and social support to families...... with children diagnosed with autism, seen from a parental perspective. The article points to diagnostic dynamics that contribute to explaining why girls with autism are not diagnosed as easily as boys. We unfold these dynamics through the analysis of a case of a Danish family with autism....

  3. Deployable reflector configurations

    Science.gov (United States)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  4. Measurement of Minimum Bias Observables with ATLAS

    CERN Document Server

    Kvita, Jiri; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes. It has also a significant relevance for the simulation of the environment at the LHC with many concurrent pp interactions (“pileup”). The ATLAS collaboration has provided new measurements of the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center of mass energies of 8 TeV and 13 TeV. The measurements cover a wide spectrum using charged particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities.

  5. Runtime accelerator configuration tools at Jefferson Laboratory

    International Nuclear Information System (INIS)

    Tiefenback, M.G.; Doolittle, L.; Benesch, J.F.

    1997-01-01

    RF and magnet system configuration and monitoring tools are being implemented at Jefferson Lab to improve system reliability and reduce operating costs. They are prototype components of the Momentum Management System being developed. The RF is of special interest because it affects the momentum and momentum spread of the beam, and because of the immediate financial benefit of managing the klystron DC supply power. The authors describe present and planned monitoring of accelerating system parameters, use of these data, RF system performance calculations, and procedures for magnet configuration for handling beam of any of five beam energies to any of three targets

  6. Configuration Studies and Recommendations for the ILC Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-01-01

    We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration

  7. The dominance of the ν(0d5/22 configuration in the N=8 shell in 12Be from the breakup reaction on a proton target at intermediate energy

    Directory of Open Access Journals (Sweden)

    Le Xuan Chung

    2017-11-01

    Full Text Available The momentum distribution of 11Be fragments produced by the breakup of 12Be interacting with a proton target at 700.5 MeV/u energy has been measured at GSI Darmstadt. To obtain the structure information on the anomaly of the N=8 neutron shell, the momentum distribution of 11Be fragments from the one-neutron knockout Be12(p,pn reaction, measured in inverse kinematics, has been analysed in the distorted wave impulse approximation (DWIA based on a quasi-free scattering scenario. The DWIA analysis shows a surprisingly strong contribution of the neutron 0d5/2 orbital in 12Be to the transverse momentum distribution of the 11Be fragments. The single-neutron 0d5/2 spectroscopic factor deduced from the present knock-out data is 1.39(10, which is significantly larger than that deduced recently from data of 12Be breakup on a carbon target. This result provides a strong experimental evidence for the dominance of the neutron ν(0d5/22 configuration in the ground state of 12Be.

  8. Application of Configurators in Networks

    DEFF Research Database (Denmark)

    Malis, Martin; Hvam, Lars

    2003-01-01

    Shorter lead-time, improved quality of product specifications and better communication with customers and suppliers are benefits derived from the application of configurators. Configurators are knowledge-based IT-systems that can be applied to deal with product knowledge and to support different...... processes in a company. Traditionally, configurators have been used as an internal tool. In this paper focus will be on the application of configurators in a network of companies, and a procedure for developing product configurators in a network of companies will be presented. The aim is to present...... a structured guideline, tools and methods on how to successfully develop configurators in a network perspective. Findings presented in this paper are supported by research in a case company. The results from the empirical work show a huge potential for the application of configurators in networks of companies....

  9. Configurational entropy in brane-world models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R.A.C. [CCNH, Universidade Federal do ABC, Santo Andre, SP (Brazil); Rocha, Roldao da [CMCC, Universidade Federal do ABC, Santo Andre, SP (Brazil); International School for Advanced Studies (SISSA), Trieste (Italy)

    2015-11-15

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy. (orig.)

  10. Configurational entropy in brane-world models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R. A. C., E-mail: fis04132@gmail.com [CCNH, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste (Italy)

    2015-11-02

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy.

  11. Configurational entropy in brane-world models

    International Nuclear Information System (INIS)

    Correa, R. A. C.; Rocha, Roldão da

    2015-01-01

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy

  12. Operational forecasting of daily temperatures in the Valencia Region. Part II: minimum temperatures in winter.

    Science.gov (United States)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia

  13. Simulation study of self-sustainment mechanism in reversed-field pinch configuration

    International Nuclear Information System (INIS)

    Kusano, Kanya; Sato, Tetsuya.

    1989-09-01

    3D magnetohydrodynamic (MHD) simulations are carried out in order to reveal the fundamental mechanism of the self-sustainment process in the reversed-field pinch plasma. It is confirmed that the RFP configuration is sustained in a cyclic process, where the MHD relaxation phase and the resistive diffusion phase appear cyclically and alternatively. In the MHD relaxation process, the RFP plasma approaches a Taylor's minimum energy state, but it departs from there in the diffusion process. In other words, since MHD relaxation processes periodically release excess magnetic energy accumulated in the resistive diffusion phase, RFP plasma can stay in the neighborhood of the minimum energy state. The mechanism of this cyclic process is disclosed. Namely, when at least two ideal kink (m = 1) modes becomes unstable, MHD relaxation can take place. This is because the MHD relaxation progresses through nonlinear reconnection of the m = 0 mode, which is driven by nonlinear coupling between the unstable kink modes. Therefore, self-sustainment processes can be achieved by the nonlinear effects of essentially the m = 0 and 1 modes. The quantitative dependence of the relaxation-diffusion cycle on the aspect ratio of the device is considered along with its dependence on the magnetic Reynolds, number. These results are consistent with recent experiments and indicate that a coherent oscillation, which is often observed in experiments, is necessary for self-sustainment. The influence of self-sustainment processes on particle confinement is briefly discussed. (author)

  14. Thermal-hydraulic study of fixed bed nuclear reactor (FBNR), in FCC, BCC and pseudo-random configurations of the core through CFD method

    International Nuclear Information System (INIS)

    Luna, M.; Chavez, I.; Cajas, D.; Santos, R.

    2015-01-01

    The study of thermal-hydraulic performance of a fixed bed nuclear reactor (FBNR) core and the effect of the porosity was studied by the CFD method with 'SolidWorks' software. The representative sections of three different packed beds arrangements were analyzed: face-centered cubic (FCC), body-centered cubic (BCC), and a pseudo-random, with values of porosity of 0.28, 0.33 and 0.53 respectively. The minimum coolant flow required to avoid the phase change for each one of the configurations was determined. The results show that the heat transfer rate increases when the porosity value decreases, and consequently the minimum coolant flow in each configuration. The results of minimum coolant flow were: 728.51 kg/s for the FCC structure, 372.72 kg/s for the BCC, and 304.96 kg/s for the pseudo-random. Meanwhile, the heat transfer coefficients in each packed bed were 6480 W/m 2 *K, 3718 W/m 2 *K and 3042 W/m 2 *K respectively. Finally the pressure drop was calculated, and the results were 0.588 MPa for FCC configuration, 0.033 MPa for BCC and 0.017 MPa for the pseudo-random one. This means that with a higher porosity, the fluid can circulate easier because there are fewer obstacles to cross, so there are fewer energy losses. (authors)

  15. Configuration space Faddeev calculations

    International Nuclear Information System (INIS)

    Payne, G.L.; Klink, W.H.; Ployzou, W.N.

    1991-01-01

    The detailed study of few-body systems provides one of the most precise tools for studying the dynamics of nuclei. Our research program consists of a careful theoretical study of the nuclear few-body systems. During the past year we have completed several aspects of this program. We have continued our program of using the trinucleon system to investigate the validity of various realistic nucleon-nucleon potentials. Also, the effects of meson-exchange currents in nuclear systems have been studied. Initial calculations using the configuration-space Faddeev equations for nucleon-deuteron scattering have been completed. With modifications to treat relativistic systems, few-body methods can be applied to phenomena that are sensitive to the structure of the individual hadrons. We have completed a review of Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics for Advances in Nuclear Physics. Although it is called a review, it is a large document that contains a significant amount of new research

  16. Simulator configuration management system

    International Nuclear Information System (INIS)

    Faulent, J.; Brooks, J.G.

    1990-01-01

    The proposed revisions to ANS 3.5-1985 (Section 5) require Utilities to establish a simulator Configuration Management System (CMS). The proposed CMS must be capable of: Establishing and maintaining a simulator design database. Identifying and documenting differences between the simulator and its reference plant. Tracking the resolution of identified differences. Recording data to support simulator certification, testing and maintenance. This paper discusses a CMS capable of meeting the proposed requirements contained in ANS 3.5. The system will utilize a personal computer and a relational database management software to construct a simulator design database. The database will contain records to all reference nuclear plant data used in designing the simulator, as well as records identifying all the software, hardware and documentation making up the simulator. Using the relational powers of the database management software, reports will be generated identifying the impact of reference plant changes on the operation of the simulator. These reports can then be evaluated in terms of training needs to determine if changes are required for the simulator. If a change is authorized, the CMS will track the change through to its resolution and then incorporate the change into the simulator design database

  17. Hydration of Atmospheric Molecular Clusters: Systematic Configurational Sampling.

    Science.gov (United States)

    Kildgaard, Jens; Mikkelsen, Kurt V; Bilde, Merete; Elm, Jonas

    2018-05-09

    We present a new systematic configurational sampling algorithm for investigating the potential energy surface of hydrated atmospheric molecular clusters. The algo- rithm is based on creating a Fibonacci sphere around each atom in the cluster and adding water molecules to each point in 9 different orientations. To allow the sam- pling of water molecules to existing hydrogen bonds, the cluster is displaced along the hydrogen bond and a water molecule is placed in between in three different ori- entations. Generated redundant structures are eliminated based on minimizing the root mean square distance (RMSD) of different conformers. Initially, the clusters are sampled using the semiempirical PM6 method and subsequently using density func- tional theory (M06-2X and ωB97X-D) with the 6-31++G(d,p) basis set. Applying the developed algorithm we study the hydration of sulfuric acid with up to 15 water molecules. We find that the additions of the first four water molecules "saturate" the sulfuric acid molecule and are more thermodynamically favourable than the addition of water molecule 5-15. Using the large generated set of conformers, we assess the performance of approximate methods (ωB97X-D, M06-2X, PW91 and PW6B95-D3) in calculating the binding energies and assigning the global minimum conformation compared to high level CCSD(T)-F12a/VDZ-F12 reference calculations. The tested DFT functionals systematically overestimates the binding energies compared to cou- pled cluster calculations, and we find that this deficiency can be corrected by a simple scaling factor.

  18. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  19. Configuration studies of LHD plasmas

    International Nuclear Information System (INIS)

    Okamoto, M.

    1997-01-01

    Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration

  20. Configuration studies of LHD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masao

    1997-03-01

    Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration. (author)

  1. Particle orbits in W VII-X configurations

    International Nuclear Information System (INIS)

    Wobig, H.

    1987-01-01

    It is shown that magnetic coordinates are very convenient for describing particle orbits and neoclassical losses in stellarator studies. In the configurations considered (WVII-A and AS, Helias, Heliac, and BSX) plateau losses can be reduced by a factor of 3-4 compared with an equivalent tokamak. It is possible to reduce plateau losses and bootstrap current simultaneously. The bootstrap current can be made negligibly small. The Heliac configuration shows larger plateau losses than the equivalent tokamak. It is possible to localize trapped particles in a region of minimum radial drift velocity. The Er fields strongly reduce localized particle losses

  2. Configuration dependent deformation in 183Au

    International Nuclear Information System (INIS)

    Joshi, P.; Kumar, A.; Govil, I.M.; Mukherjee, G.; Singh, R.P.; Muralithar, S.; Bhowmik, R.K.

    1998-01-01

    The lifetime measurements in 183 Au nucleus were carried in order to probe the deformation properties of the band built on the i 3/2 and h 9/2 configurations. The nucleus of 183 Au was populated using a reaction 28 Si( 159 Tb,4n) 183 Au at a beam energy of 140 MeV. Lifetime measurements were carried out using Recoil Distance Measurements (RDM) method

  3. Energy Landscapes for the Self-Assembly of Supramolecular Polyhedra

    Science.gov (United States)

    Russell, Emily R.; Menon, Govind

    2016-06-01

    We develop a mathematical model for the energy landscape of polyhedral supramolecular cages recently synthesized by self-assembly (Sun et al. in Science 328:1144-1147, 2010). Our model includes two essential features of the experiment: (1) geometry of the organic ligands and metallic ions; and (2) combinatorics. The molecular geometry is used to introduce an energy that favors square-planar vertices (modeling {Pd}^{2+} ions) and bent edges with one of two preferred opening angles (modeling boomerang-shaped ligands of two types). The combinatorics of the model involve two-colorings of edges of polyhedra with four-valent vertices. The set of such two-colorings, quotiented by the octahedral symmetry group, has a natural graph structure and is called the combinatorial configuration space. The energy landscape of our model is the energy of each state in the combinatorial configuration space. The challenge in the computation of the energy landscape is a combinatorial explosion in the number of two-colorings of edges. We describe sampling methods based on the symmetries of the configurations and connectivity of the configuration graph. When the two preferred opening angles encompass the geometrically ideal angle, the energy landscape exhibits a very low-energy minimum for the most symmetric configuration at equal mixing of the two angles, even when the average opening angle does not match the ideal angle.

  4. Configurational entropy of glueball states

    Energy Technology Data Exchange (ETDEWEB)

    Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)

    2017-02-10

    The configurational entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton–dilaton action of a dynamical holographic AdS/QCD model. The configurational entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.

  5. On a Minimum Problem in Smectic Elastomers

    International Nuclear Information System (INIS)

    Buonsanti, Michele; Giovine, Pasquale

    2008-01-01

    Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress

  6. Quantum mechanics the theoretical minimum

    CERN Document Server

    Susskind, Leonard

    2014-01-01

    From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

  7. Minimum resolvable power contrast model

    Science.gov (United States)

    Qian, Shuai; Wang, Xia; Zhou, Jingjing

    2018-01-01

    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  8. Understanding the Minimum Wage: Issues and Answers.

    Science.gov (United States)

    Employment Policies Inst. Foundation, Washington, DC.

    This booklet, which is designed to clarify facts regarding the minimum wage's impact on marketplace economics, contains a total of 31 questions and answers pertaining to the following topics: relationship between minimum wages and poverty; impacts of changes in the minimum wage on welfare reform; and possible effects of changes in the minimum wage…

  9. 5 CFR 551.301 - Minimum wage.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Minimum wage. 551.301 Section 551.301... FAIR LABOR STANDARDS ACT Minimum Wage Provisions Basic Provision § 551.301 Minimum wage. (a)(1) Except... employees wages at rates not less than the minimum wage specified in section 6(a)(1) of the Act for all...

  10. Optimization under Uncertainty of Site-Specific Turbine Configurations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quick, Julian; Dykes, Katherine; Graf, Peter; Zahle, Frederik

    2016-11-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  11. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    Science.gov (United States)

    Quick, J.; Dykes, K.; Graf, P.; Zahle, F.

    2016-09-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  12. Does the principle of minimum work apply at the carotid bifurcation: a retrospective cohort study

    International Nuclear Information System (INIS)

    Beare, Richard J; Das, Gita; Ren, Mandy; Chong, Winston; Sinnott, Matthew D; Hilton, James E; Srikanth, Velandai; Phan, Thanh G

    2011-01-01

    There is recent interest in the role of carotid bifurcation anatomy, geometry and hemodynamic factors in the pathogenesis of carotid artery atherosclerosis. Certain anatomical and geometric configurations at the carotid bifurcation have been linked to disturbed flow. It has been proposed that vascular dimensions are selected to minimize energy required to maintain blood flow, and that this occurs when an exponent of 3 relates the radii of parent and daughter arteries. We evaluate whether the dimensions of bifurcation of the extracranial carotid artery follow this principle of minimum work. This study involved subjects who had computed tomographic angiography (CTA) at our institution between 2006 and 2007. Radii of the common, internal and external carotid arteries were determined. The exponent was determined for individual bifurcations using numerical methods and for the sample using nonlinear regression. Mean age for 45 participants was 56.9 ± 16.5 years with 26 males. Prevalence of vascular risk factors was: hypertension-48%, smoking-23%, diabetes-16.7%, hyperlipidemia-51%, ischemic heart disease-18.7%. The value of the exponent ranged from 1.3 to 1.6, depending on estimation methodology. The principle of minimum work (defined by an exponent of 3) may not apply at the carotid bifurcation. Additional factors may play a role in the relationship between the radii of the parent and daughter vessels

  13. Minimum Bias Measurements at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00022031; The ATLAS collaboration

    2016-01-01

    Inclusive charged particle measurements at hadron colliders probe the low-energy nonperturbative region of QCD. Pseudorapidity distributions of charged-particles produced in pp collisions at 13 TeV have been measured by the CMS experiment. The ATLAS collaboration has measured the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam current, recorded at a center-of-mass energy of 13 TeV. The measurements present the first detailed studies in inclusive phase spaces with a minimum transverse momentum of 100 MeV and 500 MeV. The distribution of electromagnetic and hadronic energy in the very forward phase-space has been measured with the CASTOR calorimeters located at a pseudorapidity of -5.2 to -6.6 in the very forward region of CMS. The energy distributions are very powerful benchmarks to study the performance of MPI in hadronic interactions models at 13 TeV collision energy. All measurements are compared with predictions of ...

  14. Offshore Wind Farm Cable Connection Configuration Optimization using Dynamic Minimum Spanning Tree Algorithm

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Zhe

    2015-01-01

    Anew approach, Dynamic Minimal Spanning Tree (DMST) algorithm, whichisbased on the MST algorithm isproposed in this paper to optimizethe cable connectionlayout for large scale offshore wind farm collection system. The current carrying capacity of the cable is considered as the main constraint....... It is amore economicalway for cable connection configurationdesignof offshore wind farm collection system....

  15. Designing from minimum to optimum functionality

    Science.gov (United States)

    Bannova, Olga; Bell, Larry

    2011-04-01

    This paper discusses a multifaceted strategy to link NASA Minimal Functionality Habitable Element (MFHE) requirements to a compatible growth plan; leading forward to evolutionary, deployable habitats including outpost development stages. The discussion begins by reviewing fundamental geometric features inherent in small scale, vertical and horizontal, pressurized module configuration options to characterize applicability to meet stringent MFHE constraints. A proposed scenario to incorporate a vertical core MFHE concept into an expanded architecture to provide continuity of structural form and a logical path from "minimum" to "optimum" design of a habitable module. The paper describes how habitation and logistics accommodations could be pre-integrated into a common Hab/Log Module that serves both habitation and logistics functions. This is offered as a means to reduce unnecessary redundant development costs and to avoid EVA-intensive on-site adaptation and retrofitting requirements for augmented crew capacity. An evolutionary version of the hard shell Hab/Log design would have an expandable middle section to afford larger living and working accommodations. In conclusion, the paper illustrates that a number of cargo missions referenced for NASA's 4.0.0 Lunar Campaign Scenario could be eliminated altogether to expedite progress and reduce budgets. The plan concludes with a vertical growth geometry that provides versatile and efficient site development opportunities using a combination of hard Hab/Log modules and a hybrid expandable "CLAM" (Crew Lunar Accommodations Module) element.

  16. Configuration study of large wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Stefan

    2003-07-01

    In this thesis, layouts of various large-scale wind parks, using both AC as well as DC, are investigated. Loss modelling of the wind park components as well as calculations of the energy capture of the turbines using various electrical systems are performed, and the energy production cost of the various park configurations is determined. The most interesting candidate for a DC transmission based wind park was investigated more in detail, the series DC wind park. Finally, the power quality impact in the PCC (point of common coupling) was studied. It was found that from an energy capture point of view, the difference in energy production between various wind turbine systems is very small. Of all the investigated wind park configurations, the wind park with the series connected DC wind turbines seems to have the best potential to give the lowest energy production cost, if the transmission distance is longer then 10-20 km. Regarding the series DC wind park it was found that it is the most difficult one to control. However, a control algorithm for the series park and its turbines was derived and successfully tested. Still, several more details regarding the control of the series wind park has to be dealt with.

  17. Performance comparison of wind park configurations

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Stefan

    2003-07-01

    In this report, layouts of various large-scale wind parks, both AC as well as DC, are investigated. Loss modelling of the wind park components as well as calculations of the energy capture of the turbines using various electrical systems are performed, and the energy production cost of the various park configurations is determined. It was found that from an energy capture point of view, the difference in energy production between various wind turbine systems is very small. In addition, a study of the suitability of various DC/DC-converters is made. Three DC/DC-converters, Boost, Full Bridge and Full Bridge Isolated Boost, are found to be interesting candidates as the 'transformer' component in potential DC-based wind parks. Of all the investigated wind park configurations, the wind park with the series connected DC wind turbines seems to have the best potential to give the lowest energy production cost, if the transmission distance is longer then 10-20 km.

  18. Viscous Design of TCA Configuration

    Science.gov (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  19. Prediction technique for minimum-heat-flux (MHF)- point condition of saturated pool boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1987-01-01

    The temperature-controlled hypothesis for the minimum-heat-flux (MHF)-point condition, in which the MHF-point temperature is regarded as the controlling factor and is expected to be independent of surface configuration and dimensions, is inductively investigated for saturated pool-boiling. In this paper such features of the MHF-point condition are experimentally proved first. Secondly, a correlation of the MHF-point temperature is developed for the effect of system pressure. Finally, a simple technique based on this correlation is presented to estimate the effects of surface configuration, dimensions and system pressure on the minimum heat flux. (author)

  20. A Software Configuration Management Course

    DEFF Research Database (Denmark)

    Asklund, U.; Bendix, Lars Gotfred

    2003-01-01

    Software Configuration Management has been a big success in research and creation of tools. There are also many vendors in the market of selling courses to companies. However, in the education sector Software Configuration Management has still not quite made it - at least not into the university...... curriculum. It is either not taught at all or is just a minor part of a general course in software engineering. In this paper, we report on our experience with giving a full course entirely dedicated to Software Configuration Management topics and start a discussion of what ideally should be the goal...

  1. Device configuration-management system

    International Nuclear Information System (INIS)

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  2. Dynamic behavior of the intensified alternative configurations for quaternary distillation

    DEFF Research Database (Denmark)

    Ramirez-Marquez, Cesar; Cabrera-Ruiz, Julián; Juan Gabriel Segovia-Hernandez, Juan Gabriel

    2016-01-01

    Process intensification emerges as an important tool in the synthesis of multicomponent distillation configurations aimed at the reduction of the energy use and capital costs. Operational and fixed costs savings coupled with simplicity and controllability design configurations appear as an essent......Process intensification emerges as an important tool in the synthesis of multicomponent distillation configurations aimed at the reduction of the energy use and capital costs. Operational and fixed costs savings coupled with simplicity and controllability design configurations appear...... value decomposition technique in all frequency domain. In order to complete the control study, the distillation schemes were subjected to closed-loop dynamic simulations. The results show that there are cases in which the intensified sequences do not only provide energy savings, but also may offer...

  3. Airport Configuration Prediction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is presently poor knowledge throughout the National Airspace System (NAS) of the airport configurations currently in use at each airport. There is even less...

  4. Belene NPP project configuration management

    International Nuclear Information System (INIS)

    Matveev, A.

    2009-01-01

    The configuration management includes: change identification; change assessment; change coordination; change approval or rejection; Change introduction. One of the main tasks while implementing the above processes is the analysis of the effect of one change upon all the related elements

  5. Instanton Field Configurations and Black Holes

    CERN Document Server

    Konopleva, N P

    2005-01-01

    The role of vacuum relativization in QCD and nucleus theory is discussed. It is shown that relativistic vacuum must be described by vacuum Einstein equations. Black Holes have to make their appearance in QCD because of Schwarzschildean solution of these equations. Instanton configurations of any fields do not change vacuum Einstein equations and their solutions, because their energy-momentum tensors are zero. But they make it possible to determine a space-time topology, which cannot be defined by differential Einstein equations. Therefore, Black Holes number in space-time is possibly connected with instanton configurations of fields and other matter. Instantons do not fall into Black Holes and are the very matter which surrounds them.

  6. The International Thermonuclear Experimental Reactor configuration evolution

    International Nuclear Information System (INIS)

    Lousteau, D.C.; Nelson, B.E.; Lee, V.D.; Thomson, S.L.; Miller, J.M.; Lindquist, W.B.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) conceptual design activities consist of two phases: a definition phase, completed in September 1988, and a design phase, now in progress. The definition phase was successful in identifying a consistent set of technical characteristics and the broad definition of the required reactor configuration and hardware. Scheduled for completion in November 1990, the design phase is producing a more detailed definition of the required components, a first cost estimate, and a description of site requirements. A major activity in the ITER design phase is the period of joint work conducted at the Max Planck Institute for Plasma Physics, Garching, Federal Republic of Germany, from June through October 1989. An official report of the findings and conclusions of this activity will be submitted to and published by the International Atomic Energy Agency (IAEA). This paper highlights the evolution of the reactor mechanical configuration since the conclusion of the definition phase. 8 figs., 2 tabs

  7. Bending energy of buckled edge dislocations

    Science.gov (United States)

    Kupferman, Raz

    2017-12-01

    The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.

  8. Bayesian image restoration, using configurations

    OpenAIRE

    Thorarinsdottir, Thordis

    2006-01-01

    In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the re...

  9. Optimization of process parameter and reformer configuration for hydrogen production from steam reforming of heavy hydrocarbons. Paper no. IGEC-1-079

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.E.H.

    2005-01-01

    The present optimization investigation is classified into reforming configuration optimization in one hand and parameter optimization of each configuration on the other hand. Heptane is used as a model component for heavy hydrocarbons. The proposed novel reforming process is basically a Circulating Fluidized-Bed Membrane Reformer (CFBMR) with continuous catalyst regeneration and gas-solid separation. Composite hydrogen selective membranes are used for removing the product hydrogen from the reacting gas mixture and therefore driving the reversible reactions beyond their thermodynamic equilibriums. Dense perovskite oxygen selective membranes are also used to introduce oxygen for the exothermic oxidation of hydrocarbons and carbon. Four configurations are investigated, two of them are with the catalyst regeneration before the gas-solid separation and the other two are with the catalyst regeneration after the gas-solid separation. The optimization of the performance of each configuration is carried out for a number of design and operating parameters as optimization parameters and under both non-autothermal and autothermal reforming conditions. Results show that the autothermal operation with direct contact between cold feeds (water and heptane) and hot circulating catalyst can be the best configuration for efficient hydrogen production with minimum energy consumption. The maximum net hydrogen yield is 16.732 moles of hydrogen per mole of heptane fed, which is 76.05% of the maximum theoretical hydrogen yield of 22. (author)

  10. The minimum yield in channeling

    International Nuclear Information System (INIS)

    Uguzzoni, A.; Gaertner, K.; Lulli, G.; Andersen, J.U.

    2000-01-01

    A first estimate of the minimum yield was obtained from Lindhard's theory, with the assumption of a statistical equilibrium in the transverse phase-space of channeled particles guided by a continuum axial potential. However, computer simulations have shown that this estimate should be corrected by a fairly large factor, C (approximately equal to 2.5), called the Barrett factor. We have shown earlier that the concept of a statistical equilibrium can be applied to understand this result, with the introduction of a constraint in phase-space due to planar channeling of axially channeled particles. Here we present an extended test of these ideas on the basis of computer simulation of the trajectories of 2 MeV α particles in Si. In particular, the gradual trend towards a full statistical equilibrium is studied. We also discuss the introduction of this modification of standard channeling theory into descriptions of the multiple scattering of channeled particles (dechanneling) by a master equation and show that the calculated minimum yields are in very good agreement with the results of a full computer simulation

  11. Minimum Bias Trigger in ATLAS

    International Nuclear Information System (INIS)

    Kwee, Regina

    2010-01-01

    Since the restart of the LHC in November 2009, ATLAS has collected inelastic pp collisions to perform first measurements on charged particle densities. These measurements will help to constrain various models describing phenomenologically soft parton interactions. Understanding the trigger efficiencies for different event types are therefore crucial to minimize any possible bias in the event selection. ATLAS uses two main minimum bias triggers, featuring complementary detector components and trigger levels. While a hardware based first trigger level situated in the forward regions with 2.2 < |η| < 3.8 has been proven to select pp-collisions very efficiently, the Inner Detector based minimum bias trigger uses a random seed on filled bunches and central tracking detectors for the event selection. Both triggers were essential for the analysis of kinematic spectra of charged particles. Their performance and trigger efficiency measurements as well as studies on possible bias sources will be presented. We also highlight the advantage of these triggers for particle correlation analyses. (author)

  12. Knowledge Based Product Configuration - a documentatio tool for configuration projects

    DEFF Research Database (Denmark)

    Hvam, Lars; Malis, Martin

    2003-01-01

    . A lot of knowledge isput into these systems and many domain experts are involved. This calls for an effective documentation system in order to structure this knowledge in a way that fits to the systems. Standard configuration systems do not support this kind of documentation. The chapter deals...... with the development of a Lotus Notes application that serves as a knowledge based documentation tool for configuration projects. A prototype has been developed and tested empirically in an industrial case-company. It has proved to be a succes....

  13. Physics at the CERN collider using a ''minimum bias'' trigger

    International Nuclear Information System (INIS)

    Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Nandi, A.K.; Roberts, C.; Scott, W.; Shah, T.P.; Bezaguet, A.; Boeck, R.; Calvetti, M.; Carroll, T.; Cennini, P.; Centro, S.; Ceradini, F.; Cittolin, S.; Demoulin, M.; DiBitinto, D.; Ellis, N.; Hoffmann, H.; Jank, W.; Jorat, G.; Kowalski, H.; Kryn, D.; Lacava, F.; Markiewicz, T.; Maurin, G.; Muirhead, H.; Muller, F.; Naumann, L.; Norton, A.; Petrucci, G.; Placci, A.; Revol, J.P.; Rijssenbeek, M.; Rohlf, J.; Rossi, P.; Rubbia, C.; Sadoulet, B.; Schinzel, D.; Tao, C.; Timmer, J.; Meer, S. van der; Vialle, J.P.; Vuillemin, V.; Xie, G.Y.; Zurfluh, E.; Cochet, C.; DeBeer, M.; Denegri, D.; Givernaud, A.; Laugier, J.P.; Leveque, A.; Locci, E.; Loret, M.; Malosse, J.J.; Rich, J.; Sass, R.; Saudraix, J.; Savoy-Navarro, A.; Spiro, M.; Dobrzynski, L.; Fontaine, G.; Geer, S.; Ghesquiere, C.; Giraud-Heraud, Y.; Mendiburu, J.P.; Orkin-Lecourtois, A.; Sajot, G.; Vrana, J.; Bacci, C.; Bowcock, T.J.V.; Corden, M.; Dallman, D.; Di Ciaccio, A.; Dowell, J.D.; Edwards, M.; Eggert, K.; Eisenhandler, E.; Erhard, P.; Faissner, H.; Frey, R.; Fruehwirth, R.; Garvey, J.; Giboni, K.L.; Gibson, W.R.; Gutierrez, P.; Hansl-Kozanecka, T.; Hodges, C.; Hoffmann, D.; Homer, R.J.; Honma, A.; Kalmus, P.I.P.; Karimaeki, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kinnunen, R.; Kozanecki, W.; Lehmann, H.; Leuchs, K.; McMahon, T.; Moricca, M.; Paoluzi, L.; Piano Mortari, G.; Pimiae, M.; Radermacher, E.; Ransdell, J.; Reithler, H.; Salvi, G.; Salvini, G.; Strauss, J.; Sumorok, K.; Szoncso, F.; Smith, D.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; Wahl, H.D.; Watkins, P.; Wilson, J.

    1983-01-01

    In this paper the physics of the events collected using this ''minimum bias trigger'' is described. After a brief description of the detector, I present results concerning particle production (pseudorapidity distributions, multiplicity and KNO scaling). Transverse energy distributions, long and short range correlations, and finally high psub(t) physics and jets. (orig./HSI)

  14. 76 FR 23208 - Alternative to Minimum Days Off Requirements

    Science.gov (United States)

    2011-04-26

    ... Language X. Voluntary Consensus Standards XI. Finding of No Significant Environmental Impact XII. Paperwork... the Current Fitness for Duty Requirements On September 3, 2010, the Nuclear Energy Institute (NEI... to the minimum days off requirements considered the collective advantages and disadvantages of having...

  15. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-11-09

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  16. Approximating the minimum cycle mean

    Directory of Open Access Journals (Sweden)

    Krishnendu Chatterjee

    2013-07-01

    Full Text Available We consider directed graphs where each edge is labeled with an integer weight and study the fundamental algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions are twofold: (1 First we show that the algorithmic question is reducible in O(n^2 time to the problem of a logarithmic number of min-plus matrix multiplications of n-by-n matrices, where n is the number of vertices of the graph. (2 Second, when the weights are nonnegative, we present the first (1 + ε-approximation algorithm for the problem and the running time of our algorithm is ilde(O(n^ω log^3(nW/ε / ε, where O(n^ω is the time required for the classic n-by-n matrix multiplication and W is the maximum value of the weights.

  17. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-01-08

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  18. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong; Sundaramoorthi, Ganesh

    2017-01-01

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  19. Youth minimum wages and youth employment

    NARCIS (Netherlands)

    Marimpi, Maria; Koning, Pierre

    2018-01-01

    This paper performs a cross-country level analysis on the impact of the level of specific youth minimum wages on the labor market performance of young individuals. We use information on the use and level of youth minimum wages, as compared to the level of adult minimum wages as well as to the median

  20. Do Some Workers Have Minimum Wage Careers?

    Science.gov (United States)

    Carrington, William J.; Fallick, Bruce C.

    2001-01-01

    Most workers who begin their careers in minimum-wage jobs eventually gain more experience and move on to higher paying jobs. However, more than 8% of workers spend at least half of their first 10 working years in minimum wage jobs. Those more likely to have minimum wage careers are less educated, minorities, women with young children, and those…

  1. Does the Minimum Wage Affect Welfare Caseloads?

    Science.gov (United States)

    Page, Marianne E.; Spetz, Joanne; Millar, Jane

    2005-01-01

    Although minimum wages are advocated as a policy that will help the poor, few studies have examined their effect on poor families. This paper uses variation in minimum wages across states and over time to estimate the impact of minimum wage legislation on welfare caseloads. We find that the elasticity of the welfare caseload with respect to the…

  2. Minimum income protection in the Netherlands

    NARCIS (Netherlands)

    van Peijpe, T.

    2009-01-01

    This article offers an overview of the Dutch legal system of minimum income protection through collective bargaining, social security, and statutory minimum wages. In addition to collective agreements, the Dutch statutory minimum wage offers income protection to a small number of workers. Its

  3. Generic Degraded Configuration Probability Analysis for the Codisposal Waste Package

    International Nuclear Information System (INIS)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-01-01

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M and O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k eff in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package

  4. Lidar configurations for wind turbine control

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Mann, Jakob

    2016-01-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...... by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points....

  5. Photoabsorption in sodium clusters: first principles configuration interaction calculations

    Science.gov (United States)

    Priya, Pradip Kumar; Rai, Deepak Kumar; Shukla, Alok

    2017-05-01

    We present systematic and comprehensive correlated-electron calculations of the linear photoabsorption spectra of small neutral closed- and open-shell sodium clusters (Nan, n = 2 - 6), as well as closed-shell cation clusters (Nan+, n = 3, 5). We have employed the configuration interaction (CI) methodology at the full CI (FCI) and quadruple CI (QCI) levels to compute the ground, and the low-lying excited states of the clusters. For most clusters, besides the minimum energy structures, we also consider their energetically close isomers. The photoabsorption spectra were computed under the electric-dipole approximation, employing the dipole-matrix elements connecting the ground state with the excited states of each isomer. Our calculations were tested rigorously for convergence with respect to the basis set, as well as with respect to the size of the active orbital space employed in the CI calculations. These calculations reveal that as far as electron-correlation effects are concerned, core excitations play an important role in determining the optimized ground state geometries of various clusters, thereby requiring all-electron correlated calculations. But, when it comes to low-lying optical excitations, only valence electron correlation effects play an important role, and excellent agreement with the experimental results is obtained within the frozen-core approximation. For the case of Na6, the largest cluster studied in this work, we also discuss the possibility of occurrence of plasmonic resonance in the optical absorption spectrum. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70728-3

  6. Configuration of the Beam Loss Monitors for the LHC arcs

    CERN Document Server

    Arauzo-Garcia, A

    2000-01-01

    A revised configuration for a beam loss detection system is given for the arcs of the LHC. The last modifications of the LHC arc layout have been taken into account, LHC optics version 6.2. A set of 6 Loss Detectors will be placed outside the cryostat around each short straight section. Quench alarm thresholds are estimated for each detector in all possible LHC arc layout configurations. Threshold values are proposed for top and injection energy beam loss.

  7. Moderator Configuration Options for ESS

    DEFF Research Database (Denmark)

    Zanini, L.; Batkov, K.; Klinkby, Esben Bryndt

    2016-01-01

    The current, still evolving status of the design and the optimization work for the moderator configuration for the European Spallation Source is described. The moderator design has been strongly driven by the low-dimensional moderator concept recently proposed for use in spallation neutron sources...... or reactors. Quasi-two dimensional, disc- or tube-shaped moderators,can provide strong brightness increase (factor of 3 or more) with respect to volume para-H2moderators, which constitute the reference, state-of-the-art technology for high-intensity coupled moderators. In the design process other, more...... conventional, principles were also considered,such as the importance of moderator positioning, of the premoderator, and beam extraction considerations. Different design and configuration options are evaluated and compared with the reference volume moderator configuration described in the ESS Technical Design...

  8. Development of Simulator Configuration Tool

    International Nuclear Information System (INIS)

    Nedrelid, Olav; Pettersen, Geir

    1996-01-01

    The main objective of the development of a Simulator Configuration Tool (SCT) is to achieve faster and more efficient production of dynamic simulators. Through application of versatile graphical interfaces, the simulator builder should be able to configure different types of simulators including full-scope process simulators. The SCT should be able to serve different simulator environments. The configuration tool communicates with simulator execution environments through a TCP/IP-based interface, Communication with a Model Server System developed at Institutt for energiteknikk has been established and used as test case. The system consists of OSF/Motif dialogues for operations requiring textual input, list selections etc., and uses the Picasso-3 User Interface Management System to handle presentation of static and dynamic graphical information. (author)

  9. BAYESIAN IMAGE RESTORATION, USING CONFIGURATIONS

    Directory of Open Access Journals (Sweden)

    Thordis Linda Thorarinsdottir

    2011-05-01

    Full Text Available In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for salt and pepper noise. The inference in the model is discussed in detail for 3 X 3 and 5 X 5 configurations and examples of the performance of the procedure are given.

  10. The Amster concept: a configuration generating its own uranium with a mixed thorium and uranium support

    International Nuclear Information System (INIS)

    Vergnes, J.; Garzenne, C.; Lecarpentier, D.; Mouney, H.; Delpech, M.

    2001-01-01

    AMSTER is a continuously reloaded, graphite-moderated molten salt critical reactor, using a 238 U or 232 Th fuel support, slightly enriched with 235 U if necessary. Using this concept, one can define a large number of configurations according to the products loaded and recycled. The choice of thorium fuel support leads to two configurations requiring no additional 235 U as fissile material: a configuration with one moderating zone, incinerating Transuranium elements (TRU); a configuration with 2 moderating zones self-consuming TRU and regenerating the fissile uranium ( 233 U). In this configuration, it is even possible to burn 238 U (from depleted uranium) by adding it to the thorium support. These configurations use a minimum amount of fuel (100 kg of 232 Th or 100 kg of a 232 Th- 238 U mix per TWh) and produce very little TRU (a few tens of grams per TWh). (author)

  11. Projective configurations in projectivegeometrical drawings

    Directory of Open Access Journals (Sweden)

    Ivashchenko Andrey Viktorovich

    2015-05-01

    Full Text Available The article focuses on the optimization of the earlier discussed computer method of obtaining new forms of polyhedra based on projective geometry drawings (trace Diagrams.While working on getting new multifaceted forms by projective geometry methods based on the well-known models of polyhedra on the first stage of the work it is required to calculate the parameters of projective geometry drawings, and then to build them. This is an often used apparatus of analytical geometry. According to it, at first the parameters of the polyhedron (core system of planes are calculated, then we obtain the equation of the plane of the face of the polyhedron, and finally we obtain the equations of lines the next plane faces on the selected curve plane. At each stage of application such a method requires the use of the algorithms of floating point arithmetic, on the one hand, leads to some loss of accuracy of the results and, on the other hand, the large amount of computer time to perform these operations in comparison with integer arithmetic operations.The proposed method is based on the laws existing between the lines that make up the drawing - the known configurations of projective geometry (complete quadrilaterals, configuration of Desargues, Pappus et al..The authors discussed in detail the analysis procedure of projective geometry drawing and the presence of full quadrilaterals, Desargues and Pappus configurations in it.Since the composition of these configurations is invariant with respect to projective change of the original nucleus, knowing them, you can avoid the calculations when solving the equations for finding direct projective geometry drawing analytically, getting them on the basis of belonging to a particular configuration. So you can get a definite advantage in accuracy of the results, and in the cost of computer time. Finding these basic configurations significantly enriches the set of methods and the use of projective geometry drawings.

  12. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  13. On the configuration of supercapacitors for maximizing electrochemical performance.

    Science.gov (United States)

    Zhang, Jintao; Zhao, X S

    2012-05-01

    Supercapacitors, which are attracting rapidly growing interest from both academia and industry, are important energy-storage devices for acquiring sustainable energy. Recent years have seen a number of significant breakthroughs in the research and development of supercapacitors. The emergence of innovative electrode materials (e.g., graphene) has clearly provided great opportunities for advancing the science in the field of electrochemical energy storage. Conversely, smart configurations of electrode materials and new designs of supercapacitor devices have, in many cases, boosted the electrochemical performance of the materials. We attempt to summarize recent research progress towards the design and configuration of electrode materials to maximize supercapacitor performance in terms of energy density, power density, and cycle stability. With a brief description of the structure, energy-storage mechanism, and electrode configuration of supercapacitor devices, the design and configuration of symmetric supercapacitors are discussed, followed by that of asymmetric and hybrid supercapacitors. Emphasis is placed on the rational design and configuration of supercapacitor electrodes to maximize the electrochemical performance of the device. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Instance-specific algorithm configuration

    CERN Document Server

    Malitsky, Yuri

    2014-01-01

    This book presents a modular and expandable technique in the rapidly emerging research area of automatic configuration and selection of the best algorithm for the instance at hand. The author presents the basic model behind ISAC and then details a number of modifications and practical applications. In particular, he addresses automated feature generation, offline algorithm configuration for portfolio generation, algorithm selection, adaptive solvers, online tuning, and parallelization.    The author's related thesis was honorably mentioned (runner-up) for the ACP Dissertation Award in 2014,

  15. Minimum wage development in the Russian Federation

    OpenAIRE

    Bolsheva, Anna

    2012-01-01

    The aim of this paper is to analyze the effectiveness of the minimum wage policy at the national level in Russia and its impact on living standards in the country. The analysis showed that the national minimum wage in Russia does not serve its original purpose of protecting the lowest wage earners and has no substantial effect on poverty reduction. The national subsistence minimum is too low and cannot be considered an adequate criterion for the setting of the minimum wage. The minimum wage d...

  16. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  17. Minimum load reduction for once-through boiler power plants

    International Nuclear Information System (INIS)

    Colombo, P.; Godina, G.; Manganelli, R.

    2001-01-01

    In Italy the liberalization process of energy market is giving particular importance to the optimization of power plants performances; especially for those that will be called to satisfy grid peak demands. On those plants some techniques have been experimented for the reduction of minimum load; these techniques, investigated and tested by an engineering dynamic simulator, have been sequentially tested on plant. The minimum load for up 320 MW of Tavazzano power plants has been diminished from 140 down to 80 MW without plant modification [it

  18. NCCDS configuration management process improvement

    Science.gov (United States)

    Shay, Kathy

    1993-01-01

    By concentrating on defining and improving specific Configuration Management (CM) functions, processes, procedures, personnel selection/development, and tools, internal and external customers received improved CM services. Job performance within the section increased in both satisfaction and output. Participation in achieving major improvements has led to the delivery of consistent quality CM products as well as significant decreases in every measured CM metrics category.

  19. Kramers Pairs in configuration interaction

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2003-01-01

    The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total ...

  20. Bayesian image restoration, using configurations

    DEFF Research Database (Denmark)

    Thorarinsdottir, Thordis

    configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for salt and pepper noise. The inference in the model is discussed...

  1. Bayesian image restoration, using configurations

    DEFF Research Database (Denmark)

    Thorarinsdottir, Thordis Linda

    2006-01-01

    configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for the salt and pepper noise. The inference in the model is discussed...

  2. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  3. Product Configuration Systems and Productivity

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Lindgaard; Edwards, Kasper

    2004-01-01

    Twelve companies have been interviewed with the purpose to get information about technical, economic and organisational matters in respect of Product Configuration Systems (PCS).Combinations of qualitative interviews and quantitative scoring have been used in ranking expected and realized results...

  4. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-05-14

    This thesis presents a general framework and method for detection of an object in a video based on apparent motion. The object moves, at some unknown time, differently than the “background” motion, which can be induced from camera motion. The goal of proposed method is to detect and segment the object as soon it moves in an online manner. Since motion estimation can be unreliable between frames, more than two frames are needed to reliably detect the object. Observing more frames before declaring a detection may lead to a more accurate detection and segmentation, since more motion may be observed leading to a stronger motion cue. However, this leads to greater delay. The proposed method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms, defined as declarations of detection before the object moves or incorrect or inaccurate segmentation at the detection time. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  5. Bi-2223 HTS winding in toroidal configuration for SMES coil

    International Nuclear Information System (INIS)

    Kondratowicz-Kucewicz, B; Kozak, S; Kozak, J; Wojtasiewicz, G; Majka, M; Janowski, T

    2010-01-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  6. Minimum spanning trees and random resistor networks in d dimensions.

    Science.gov (United States)

    Read, N

    2005-09-01

    We consider minimum-cost spanning trees, both in lattice and Euclidean models, in d dimensions. For the cost of the optimum tree in a box of size L , we show that there is a correction of order L(theta) , where theta or =1 . The arguments all rely on the close relation of Kruskal's greedy algorithm for the minimum spanning tree, percolation, and (for some arguments) random resistor networks. The scaling of the entropy and free energy at small nonzero T , and hence of the number of near-optimal solutions, is also discussed. We suggest that the Steiner tree problem is in the same universality class as the minimum spanning tree in all dimensions, as is the traveling salesman problem in two dimensions. Hence all will have the same value of theta=-3/4 in two dimensions.

  7. Minimum Detectable Activity for Tomographic Gamma Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, Ram [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Smith, Susan [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Kirkpatrick, J. M. [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographic Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose activities

  8. Minimum Additive Waste Stabilization (MAWS)

    International Nuclear Information System (INIS)

    1994-02-01

    In the Minimum Additive Waste Stabilization(MAWS) concept, actual waste streams are utilized as additive resources for vitrification, which may contain the basic components (glass formers and fluxes) for making a suitable glass or glassy slag. If too much glass former is present, then the melt viscosity or temperature will be too high for processing; while if there is too much flux, then the durability may suffer. Therefore, there are optimum combinations of these two important classes of constituents depending on the criteria required. The challenge is to combine these resources in such a way that minimizes the use of non-waste additives yet yields a processable and durable final waste form for disposal. The benefit to this approach is that the volume of the final waste form is minimized (waste loading maximized) since little or no additives are used and vitrification itself results in volume reduction through evaporation of water, combustion of organics, and compaction of the solids into a non-porous glass. This implies a significant reduction in disposal costs due to volume reduction alone, and minimizes future risks/costs due to the long term durability and leach resistance of glass. This is accomplished by using integrated systems that are both cost-effective and produce an environmentally sound waste form for disposal. individual component technologies may include: vitrification; thermal destruction; soil washing; gas scrubbing/filtration; and, ion-exchange wastewater treatment. The particular combination of technologies will depend on the waste streams to be treated. At the heart of MAWS is vitrification technology, which incorporates all primary and secondary waste streams into a final, long-term, stabilized glass wasteform. The integrated technology approach, and view of waste streams as resources, is innovative yet practical to cost effectively treat a broad range of DOE mixed and low-level wastes

  9. Ab initio configuration interaction study on the energetics and electronic structure of the 1-52Σ+ and 1-32Π states of CS+

    International Nuclear Information System (INIS)

    Honjou, Nobumitsu

    2006-01-01

    The energetics and electronic structure of the 1-5 2 Σ + and 1-3 2 Π states of CS + at and around the equilibrium internuclear distance R e for the CS X 1 Σ + state are studied by carrying out ab initio configuration interaction (CI) calculations. The spectroscopic constants of T e , ω e , and R e for the 1-4 2 Σ + , 1 2 Π, and 3 2 Π states are evaluated from the CI potential energy curves (PECs). The avoided crossing between the 2-3 2 Σ + PECs causes the 3 2 Σ + minimum and explains the observed high intensities for the photoionization from the CS X 1 Σ + state to both the 2-3 2 Σ + states. The avoided crossing between the 3-4 2 Σ + PECs produces the 3 2 Σ + maximum and 4 2 Σ + well minimum. The avoided crossing between the 2-3 2 Π PECs results in the 3 2 Π minimum and a small minimum spacing (0.14 eV) between the PECs

  10. Comparison of DOE and NIRMA approaches to configuration management programs

    International Nuclear Information System (INIS)

    Yang, E.Y.; Kulzick, K.C.

    1995-01-01

    One of the major management programs used for commercial, laboratory, and defense nuclear facilities is configuration management. The safe and efficient operation of a nuclear facility requires constant vigilance in maintaining the facility's design basis with its as-built condition. Numerous events have occurred that can be attributed to (either directly or indirectly) the extent to which configuration management principles have been applied. The nuclear industry, as a whole, has been addressing this management philosophy with efforts taken on by its constituent professional organizations. The purpose of this paper is to compare and contrast the implementation plans for enhancing a configuration management program as outlined in the U.S. Department of Energy's (DOE's) DOE-STD-1073-93, open-quotes Guide for Operational Configuration Management Program,close quotes with the following guidelines developed by the Nuclear Information and Records Management Association (NIRMA): 1. PP02-1994, open-quotes Position Paper on Configuration Managementclose quotes 2. PP03-1992, open-quotes Position Paper for Implementing a Configuration Management Enhancement Program for a Nuclear Facilityclose quotes 3. PP04-1994 open-quotes Position Paper for Configuration Management Information Systems.close quotes

  11. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  12. Configuring Symantec AntiVirus

    CERN Document Server

    Shimonski, Robert

    2003-01-01

    This is the only book that will teach system administrators how to configure, deploy, and troubleshoot Symantec Enterprise Edition in an enterprise network. The book will reflect Symantec''s philosophy of "Centralized Antivirus Management." For the same reasons that Symantec bundled together these previously separate products, the book will provide system administrators with a holistic approach to defending their networks from malicious viruses. This book will also serve as a Study Guide for those pursuing Symantec Product Specialist Certifications.Configuring Symantec AntiVirus Enterprise Edition contains step-by-step instructions on how to Design, implement and leverage the Symantec Suite of products in the enterprise.ØFirst book published on market leading product and fast-growing certification. Despite the popularity of Symantec''s products and Symantec Product Specialist certifications, there are no other books published or announced.ØLess expensive substitute for costly on-sight training. Symantec off...

  13. Snowflake Divertor Configuration in NSTX

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.; Ahn, Joonwook; Bell, R.E.; Gates, D.A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H.W.; LeBlanc, B.; Maingi, Rajesh; Maqueda, R.J.; McLean, Adam G.; Menard, J.E.; Mueller, D.; Paul, S.F.; Raman, R.; Roquemore, L.; Ryutov, D.D.; Scott, H.A.

    2011-01-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel 'snowflake' divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  14. 'Snowflake' divertor configuration in NSTX

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.; Ahn, J.-W.; Bell, R.E.; Gates, D.A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.; McLean, A.; Menard, J.E.; Mueller, D.M.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Ryutov, D.D.; Scott, H.A.

    2011-01-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel 'snowflake' divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  15. "Snowflake" divertor configuration in NSTX

    Science.gov (United States)

    Soukhanovskii, V. A.; Ahn, J.-W.; Bell, R. E.; Gates, D. A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H. W.; Leblanc, B. P.; Maingi, R.; Maqueda, R.; McLean, A.; Menard, J. E.; Mueller, D. M.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Ryutov, D. D.; Scott, H. A.

    2011-08-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel "snowflake" divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  16. Automatic creation of simulation configuration

    International Nuclear Information System (INIS)

    Oudot, G.; Poizat, F.

    1993-01-01

    SIPA, which stands for 'Simulator for Post Accident', includes: 1) a sophisticated software oriented workshop SWORD (which stands for 'Software Workshop Oriented towards Research and Development') designed in the ADA language including integrated CAD system and software tools for automatic generation of simulation software and man-machine interface in order to operate run-time simulation; 2) a 'simulator structure' based on hardware equipment and software for supervision and communications; 3) simulation configuration generated by SWORD, operated under the control of the 'simulator structure' and run on a target computer. SWORD has already been used to generate two simulation configurations (French 900 MW and 1300 MW nuclear power plants), which are now fully operational on the SIPA training simulator. (Z.S.) 1 ref

  17. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  18. Microsoft System Center Configuration Manager

    CERN Document Server

    Sandbu, Marius

    2013-01-01

    This book is a step-by-step tutorial that guides you through the key steps in implementing best solutions for high availability and performance tuning. It is split into two distinct approaches: client and site side HA and optimization.Microsoft SCCM High Availability and Performance Tuning is for IT professionals and consultants working with Configuration Manager who wish to learn the skills to deploy a redundant and scalable solution.

  19. Safe Configuration of TLS Connections

    Science.gov (United States)

    2013-10-16

    comparison with observed flows to flag inconsistencies. Keywords: Transport Layer Security ( TLS ), Secure Socket Layer ( SSL ), configuration, secure...servers. SSL / TLS has evolved over 18 years from SSL 1.0 to TLS 1.2 and has been widely deployed and accepted across Internet servers. This has made...and provides a large-scale view of TLS properties across Internet web sites. The guidance provided in [10] describes best practices for SSL / TLS

  20. Theory of field reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1990-01-01

    This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs

  1. Drupal 7 Multi Sites Configuration

    CERN Document Server

    Butcher, Matt

    2012-01-01

    Follow the creation of a multi-site instance with Drupal. The practical examples and accompanying screenshots will help you to get multiple Drupal sites set up in no time. This book is for Drupal site builders. It is assumed that readers are familiar with Drupal already, with a basic grasp of its concepts and components. System administration concepts, such as configuring Apache, MySQL, and Vagrant are covered but no previous knowledge of these tools is required.

  2. Analysis of design parameters for crosstalk cancellation filters applied to different loudspeaker configurations

    DEFF Research Database (Denmark)

    Lacouture Parodi, Yesenia; Rubak, Per

    2011-01-01

    for crosstalk cancellation filters applied to different loudspeaker configurations has not yet been addressed systematically. A study of three different inversion techniques applied to several loudspeaker arrangements is documented. Least-squares approximations in the frequency and time domains are evaluated...... along with a crosstalk canceler based on minimum-phase approximation with a frequency-independent delay. The three methods were applied to loudspeaker configurations with two channels and the least-squares approaches to configurations with four channels. Several different span angles and elevations were...

  3. Minimum scaling laws in tokamaks

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1986-10-01

    Scaling laws governing anomalous electron transport in tokamaks with ohmic and/or auxiliary heating are derived using renormalized Vlasov-Ampere equations for low frequency electromagnetic microturbulence. It is also shown that for pure auxiliary heating (or when auxiliary heating power far exceeds the ohmic power), the energy confinement time scales as tau/sub E/ ∼ P/sub inj//sup -1/3/, where P/sub inj/ is the injected power

  4. Low emittance configuration for spear

    International Nuclear Information System (INIS)

    Blumberg, L.N.; Harris, J.; Stege, R.; Cerino, J.; Hettel, R.; Hofmann, A.; Liu, R.Z.; Wiedemann, H.; Winick, H.

    1985-01-01

    The quality of synchrotron radiation beams from SPEAR, in particular the brilliance of undulator radiation, can be improved significantly by reducing the emittance of the stored electron beam. A reduction of the horizontal emittance by a factor of 3.5 to a value of 130 nanometer-radians (nm-r) at 3 GeV has been achieved by using stronger focussing, mainly in the horizontal plane. The low emittance configuration also reduces the dispersion and vertical beta functions in the straight sections, making them more suitable for wigglers. The higher betatron tunes lead to a larger phase advance between the two kickers, which has to be corrected during injection by shunting current from some quadrupoles. The configuration was optimized within SPEAR hardware limitations and tested for dynamic aperture with the tracking program PATRICIA. After implementation of this scheme, beam was successfully injected and accumulated. The measured emittance of the stored beam was in agreement with calculations. Presently the configuration is being made operational

  5. Configuration Management Process Assessment Strategy

    Science.gov (United States)

    Henry, Thad

    2014-01-01

    Purpose: To propose a strategy for assessing the development and effectiveness of configuration management systems within Programs, Projects, and Design Activities performed by technical organizations and their supporting development contractors. Scope: Various entities CM Systems will be assessed dependent on Project Scope (DDT&E), Support Services and Acquisition Agreements. Approach: Model based structured against assessing organizations CM requirements including best practices maturity criteria. The model is tailored to the entity being assessed dependent on their CM system. The assessment approach provides objective feedback to Engineering and Project Management of the observed CM system maturity state versus the ideal state of the configuration management processes and outcomes(system). center dot Identifies strengths and risks versus audit gotcha's (findings/observations). center dot Used "recursively and iteratively" throughout program lifecycle at select points of need. (Typical assessments timing is Post PDR/Post CDR) center dot Ideal state criteria and maturity targets are reviewed with the assessed entity prior to an assessment (Tailoring) and is dependent on the assessed phase of the CM system. center dot Supports exit success criteria for Preliminary and Critical Design Reviews. center dot Gives a comprehensive CM system assessment which ultimately supports configuration verification activities.*

  6. Stationary configurations of the Standard Model Higgs potential

    DEFF Research Database (Denmark)

    Iacobellis, Giuseppe; Masina, Isabella

    2016-01-01

    the stability of the SM electroweak minimum and ii) the value of the Higgs potential at a rising inflection point. We examine in detail and reappraise the experimental and theoretical uncertainties which plague their determination, finding that i) the stability of the SM is compatible with the present data...... at the 1.5σ level and ii) despite the large theoretical error plaguing the value of the Higgs potential at a rising inflection point, the application of such a configuration to models of primordial inflation displays a 3σ tension with the recent bounds on the tensor-to-scalar ratio of cosmological...

  7. Minimum emittance of three-bend achromats

    International Nuclear Information System (INIS)

    Li Xiaoyu; Xu Gang

    2012-01-01

    The calculation of the minimum emittance of three-bend achromats (TBAs) made by Mathematical software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space. The minimum scaling factors of two kinds of widely used TBA lattices are obtained. Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor, when the TBA lattice achieves its minimum emittance. The procedure of analysis and the results can be widely used in achromats lattices, because the calculation is not restricted by the actual lattice. (authors)

  8. A Pareto-Improving Minimum Wage

    OpenAIRE

    Eliav Danziger; Leif Danziger

    2014-01-01

    This paper shows that a graduated minimum wage, in contrast to a constant minimum wage, can provide a strict Pareto improvement over what can be achieved with an optimal income tax. The reason is that a graduated minimum wage requires high-productivity workers to work more to earn the same income as low-productivity workers, which makes it more difficult for the former to mimic the latter. In effect, a graduated minimum wage allows the low-productivity workers to benefit from second-degree pr...

  9. The minimum wage in the Czech enterprises

    OpenAIRE

    Eva Lajtkepová

    2010-01-01

    Although the statutory minimum wage is not a new category, in the Czech Republic we encounter the definition and regulation of a minimum wage for the first time in the 1990 amendment to Act No. 65/1965 Coll., the Labour Code. The specific amount of the minimum wage and the conditions of its operation were then subsequently determined by government regulation in February 1991. Since that time, the value of minimum wage has been adjusted fifteenth times (the last increase was in January 2007). ...

  10. Evolution of the Fusion Power Demonstration tandem mirror reactor configuration

    International Nuclear Information System (INIS)

    O'Toole, J.A.; Lousteau, D.C.

    1985-01-01

    This paper gives a presentation of the evolution of configurations proposed for tandem mirror Fusion Power Demonstration (FPD) machines. The FPD study was undertaken to scope the mission as well as the technical and design requirements of the next tandem mirror device. Three configurations, entitled FPD I, II, and III were studied. During this process new systems were conceived and integrated into the design, resulting in a significantly changed overall machine configuration. The machine can be divided into two areas. A new center cell configuration, minimizing magnetic field ripple and thus maximizing center cell fusion power, features a semicontinuous solenoid. A new end cell has evolved which maintains the required thermal barrier in a significantly reduced axial length. The reduced end cell effective length leads to a shorter central cell length being required to obtain minimum ignition conditions. Introduced is the concept of an electron mantle stabilized octopole arrangement. The engineering features of the new end cell and maintenance concepts developed are influenced to a great extent by the octopole-based design. The new ideas introduced during the FPD study have brought forth a new perspective of the size, design, and maintenance of tandem mirror reactors, making them more attractive as commercial power sources

  11. Preference of small molecules for local minimum conformations when binding to proteins.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2007-09-01

    Full Text Available It is well known that small molecules (ligands do not necessarily adopt their lowest potential energy conformations when binding to proteins. Analyses of protein-bound ligand crystal structures have reportedly shown that many of them do not even adopt the conformations at local minima of their potential energy surfaces (local minimum conformations. The results of these analyses raise a concern regarding the validity of virtual screening methods that use ligands in local minimum conformations. Here we report a normal-mode-analysis (NMA study of 100 crystal structures of protein-bound ligands. Our data show that the energy minimization of a ligand alone does not automatically stop at a local minimum conformation if the minimum of the potential energy surface is shallow, thus leading to the folding of the ligand. Furthermore, our data show that all 100 ligand conformations in their protein-bound ligand crystal structures are nearly identical to their local minimum conformations obtained from NMA-monitored energy minimization, suggesting that ligands prefer to adopt local minimum conformations when binding to proteins. These results both support virtual screening methods that use ligands in local minimum conformations and caution about possible adverse effect of excessive energy minimization when generating a database of ligand conformations for virtual screening.

  12. Calibration of a telescope for gamma spectroscopy using a new configuration of two Ge(Li) diodes

    International Nuclear Information System (INIS)

    Bui-Van, N.A.; Jardim, J.O.D.; Braga, J.; Jardim, M.V.A.; Martin, I.M.; Vedrenne, G.

    1983-01-01

    It was developed a telescope to measure gamma-rays in the energy interval 10-1500 KeV, using two Ge(Li) diodes of 40 cm 3 each, coaxially mounted in the same cryostat and an anticoincidence Nal(Tl) shielding system. This new configuration allows a much better signal to noise ratio due to the lower diode operating in anticoincidence with the upper one; besides that, one has a high energy resolution (ΔE 241 , Na 22 and Eu 152 are described. From the analysis of the data obtained in the sum coincidence mode, a minimum detectable flux at 511 KeV is estimated to be -3 fotons cm -2 s -1 , with a statistical significance of 3σ for 10 hours of observing time at 3 mb of residual atmosphere. This is about the minimum line flux emitted by the Galactic Center. The measurement of the flux at this line would confirm the time variability observed by Riegler and collaborators using data obtained through HEAO-3 satellite. (Author) [pt

  13. 10 CFR 1015.505 - Minimum amount of referrals to the Department of Justice.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Minimum amount of referrals to the Department of Justice... THE UNITED STATES Referrals to the Department of Justice § 1015.505 Minimum amount of referrals to the Department of Justice. (a) DOE shall not refer for litigation claims of less than $2,500, exclusive of...

  14. A screening method for the optimal selection of plate heat exchanger configurations

    Directory of Open Access Journals (Sweden)

    Pinto J.M.

    2002-01-01

    Full Text Available An optimization method for determining the best configuration(s of gasketed plate heat exchangers is presented. The objective is to select the configuration(s with the minimum heat transfer area that still satisfies constraints on the number of channels, the pressure drop of both fluids, the channel flow velocities and the exchanger thermal effectiveness. The configuration of the exchanger is defined by six parameters, which are as follows: the number of channels, the numbers of passes on each side, the fluid locations, the feed positions and the type of flow in the channels. The resulting configuration optimization problem is formulated as the minimization of the exchanger heat transfer area and a screening procedure is proposed for its solution. In this procedure, subsets of constraints are successively applied to eliminate infeasible and nonoptimal solutions. Examples show that the optimization method is able to successfully determine a set of optimal configurations with a minimum number of exchanger evaluations. Approximately 5 % of the pressure drop and channel velocity calculations and 1 % of the thermal simulations are required for the solution.

  15. Records of Migration in the Exoplanet Configurations

    Science.gov (United States)

    Michtchenko, Tatiana A.; Rodriguez Colucci, A.; Tadeu Dos Santos, M.

    2013-05-01

    Abstract (2,250 Maximum Characters): When compared to our Solar System, many exoplanet systems exhibit quite unusual planet configurations; some of these are hot Jupiters, which orbit their central stars with periods of a few days, others are resonant systems composed of two or more planets with commensurable orbital periods. It has been suggested that these configurations can be the result of a migration processes originated by tidal interactions of the planets with disks and central stars. The process known as planet migration occurs due to dissipative forces which affect the planetary semi-major axes and cause the planets to move towards to, or away from, the central star. In this talk, we present possible signatures of planet migration in the distribution of the hot Jupiters and resonant exoplanet pairs. For this task, we develop a semi-analytical model to describe the evolution of the migrating planetary pair, based on the fundamental concepts of conservative and dissipative dynamics of the three-body problem. Our approach is based on an analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces needs to be invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the stationary solutions of the conservative problem (Birkhoff, Dynamical systems, 1966). The ultimate convergence and the evolution of the system along one of these modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the roper frequencies of the system. We show that it is possible to reassemble the starting configurations and migration history of the systems on the basis of their final states, and consequently to constrain the parameters of the physical processes involved.

  16. Power production at minimum risk

    International Nuclear Information System (INIS)

    Fremlin, J.H.

    1983-01-01

    A summary, including extensive quotations, is given of the main themes of a lecture by Prof. Fremlin in which he assessed the risks inherent in the use of various power systems. Considering only hazards which affect members of the public, the methods used to quantify such risks are examined. Both so-called inconspicuous hazards from radiation effects and conspicuous risks from accidents which could arise from nuclear power stations are compared to those from other types of power generation. The small risk arising from nuclear wastes is stressed. The lecturer concluded that he would not let 'tiny differences of risk' affect his decisions on energy planning. (U.K.)

  17. Shape coexistence in the neutron-deficient Pt isotopes in the configuration-mixed IBM

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Campuzano, Cuauhtemoc; Morales, Irving O.; Frank, Alejandro; Van Isacker, Piet

    2008-01-01

    The matrix-coherent state approach in the IBM with configuration mixing is used to describe the geometry of neutron-deficient Pt isotopes. Employing a parameter set for all isotopes determined previously, it is found that the lowest minimum goes from spherical to oblate and finally acquires a prolate shape when approaching the mid-shell Pt isotopes

  18. Configuration interaction wave functions: A seniority number approach

    International Nuclear Information System (INIS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.

    2014-01-01

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure

  19. Calculations of configurations of doubly ionized copper (Cu III)

    International Nuclear Information System (INIS)

    Sugar, J.; Martin, W.C.

    1976-01-01

    The energy levels belonging to the configurations 3d 7 4s 2 and 3d 8 nl (nl = 4s, 5s, 4p, 5p, 4d, 5d, 4f, and 5g) have been calculated. The radial energy integrals were treated as parameters and adjusted to give a least-squares fit to the observed levels. Two- and three-body effective electrostatic interactions for equivalent electrons were included, as well as two-body effective interactions for inequivalent electrons. Strong configuration interaction between 3d 7 4s 2 and 3d 8 4d was taken into account. Values of the parameters are given for all the above configurations, and the calculated levels are given for all except 3d 8 4s and 3d 8 4p (for which essentially equivalent results have been published). Leading eigenvector percentages are given in appropriate coupling schemes

  20. Configuration interaction wave functions: A seniority number approach

    Energy Technology Data Exchange (ETDEWEB)

    Alcoba, Diego R. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao (Spain); Massaccesi, Gustavo E. [Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina)

    2014-06-21

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.

  1. Initial DEMO tokamak design configuration studies

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Christian, E-mail: christian.bachmann@efda.org [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Aiello, G. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Albanese, R.; Ambrosino, R. [ENEA/CREATE, Universita di Napoli Federico II, Naples (Italy); Arbeiter, F. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Boccaccini, L.; Carloni, D. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Federici, G. [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Kovari, M. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Li Puma, A. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Loving, A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maione, I. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Mattei, M. [ENEA/CREATE, Universita di Napoli Federico II, Naples (Italy); Mazzone, G. [ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Meszaros, B. [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Riccardo, V. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2015-10-15

    Highlights: • A definition of main DEMO requirements. • A description of the DEMO tokamak design configuration. • A description of issues yet to be solved. - Abstract: To prepare the DEMO conceptual design phase a number of physics and engineering assessments were carried out in recent years in the frame of EFDA concluding in an initial design configuration of a DEMO tokamak. This paper gives an insight into the identified engineering requirements and constraints and describes their impact on the selection of the technologies and design principles of the main tokamak components. The EU DEMO program aims at making best use of the technologies developed for ITER (e.g., magnets, vessel, cryostat, and to some degree also the divertor). However, other systems in particular the breeding blanket require design solutions and advanced technologies that will only partially be tested in ITER. The main differences from ITER include the requirement to breed, to extract, to process and to recycle the tritium needed for plasma operation, the two orders of magnitude larger lifetime neutron fluence, the consequent radiation dose levels, which limit remote maintenance options, and the requirement to use low-activation steel for in-vessel components that also must operate at high temperature for efficient energy conversion.

  2. Stochastic variational approach to minimum uncertainty states

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, F.; Viola, L. [Dipartimento di Fisica, Padova Univ. (Italy)

    1995-05-21

    We introduce a new variational characterization of Gaussian diffusion processes as minimum uncertainty states. We then define a variational method constrained by kinematics of diffusions and Schroedinger dynamics to seek states of local minimum uncertainty for general non-harmonic potentials. (author)

  3. Zero forcing parameters and minimum rank problems

    NARCIS (Netherlands)

    Barioli, F.; Barrett, W.; Fallat, S.M.; Hall, H.T.; Hogben, L.; Shader, B.L.; Driessche, van den P.; Holst, van der H.

    2010-01-01

    The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero

  4. 30 CFR 281.30 - Minimum royalty.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Minimum royalty. 281.30 Section 281.30 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.30 Minimum royalty...

  5. New Minimum Wage Research: A Symposium.

    Science.gov (United States)

    Ehrenberg, Ronald G.; And Others

    1992-01-01

    Includes "Introduction" (Ehrenberg); "Effect of the Minimum Wage [MW] on the Fast-Food Industry" (Katz, Krueger); "Using Regional Variation in Wages to Measure Effects of the Federal MW" (Card); "Do MWs Reduce Employment?" (Card); "Employment Effects of Minimum and Subminimum Wages" (Neumark,…

  6. Minimum Wage Effects in the Longer Run

    Science.gov (United States)

    Neumark, David; Nizalova, Olena

    2007-01-01

    Exposure to minimum wages at young ages could lead to adverse longer-run effects via decreased labor market experience and tenure, and diminished education and training, while beneficial longer-run effects could arise if minimum wages increase skill acquisition. Evidence suggests that as individuals reach their late 20s, they earn less the longer…

  7. Transport modelling for ergodic configurations

    International Nuclear Information System (INIS)

    Runov, A.; Kasilov, S.V.; McTaggart, N.; Schneider, R.; Bonnin, X.; Zagorski, R.; Reiter, D.

    2004-01-01

    The effect of ergodization, either by additional coils like in TEXTOR-dynamic ergodic divertor (DED) or by intrinsic plasma effects like in W7-X, defines the need for transport models that are able to describe the ergodic configuration properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the appropriate full metric tensor has to be known. To study the transport in complex edge geometries (in particular for W7-X) two possible methods are used. First, a finite-difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates is used. This grid is generated by field-line tracing to guarantee an exact discretization of the dominant parallel transport (thus also minimizing the numerical diffusion problem). The perpendicular fluxes are then interpolated in a plane (a toroidal cut), where the interpolation problem for a quasi-isotropic system has to be solved by a constrained Delaunay triangulation (keeping the structural information for magnetic surfaces if they exist) and discretization. All toroidal terms are discretized by finite differences. Second, a Monte Carlo transport model originally developed for the modelling of the DED configuration of TEXTOR is used. A generalization and extension of this model was necessary to be able to handle W7-X. The model solves the transport equations with Monte Carlo techniques making use of mappings of local magnetic coordinates. The application of this technique to W7-X in a limiter-like configuration is presented. The decreasing dominance of parallel transport with respect to radial transport for electron heat, ion heat and particle transport results in increasingly steep profiles for the respective quantities within the islands. (author)

  8. Variable configuration plasmas in TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Hofmann, F.; Anton, M.

    1994-01-01

    During its first year of operation, TCV has achieved a wide variety of plasma shapes, limited and diverted, attaining 810 kA plasma current and elongation over 2.0. Ohmic H-Modes have been regularly produced, with a maximum confinement time of 80 msec and maximum normalised β N of 1.9. The conditions for the H-Mode transition differ from other experiments. The transitions from ELM-free to ELMy H-Modes and back have been selectively triggered for configurations close to a Double-Null. (author) 3 figs., 5 refs

  9. Variable configuration plasmas in TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Hofmann, F.; Anton, M.

    1995-01-01

    During its first year of operation, TCV has achieved a wide variety of plasma shapes, limited and diverted, attaining 810 kA plasma current and elongation over 2.0. Ohmic H modes have been regularly produced, with a maximum confinement time of 80 ms and a maximum normalized β N of 1.9. The conditions for the H mode transition differ from other experiments. The transitions from ELM free to ELMy H modes and back have been selectively triggered for configurations close to a double-null. (author). 5 refs, 3 figs

  10. FED pumped limiter configuration issues

    International Nuclear Information System (INIS)

    Haines, J.R.; Fuller, G.M.

    1983-01-01

    Impurity control in the Fusion Engineering Device (FED) is provided by a toroidal belt pumped limiter. Limiter design issues addressed in this paper are (1) poloidal location of the limiter belt, (2) shape of the limiter surface facing the plasma, and (3) whether the belt is pumped from one or both sides. The criteria used for evaluation of limiter configuration features were sensitivity to plasma-edge conditions and ease of maintenance and fabrication. The evaluation resulted in the selection of a baseline FED limiter that is located at the bottom of the device and has a flat surface with a single leading edge

  11. FED pumped limiter configuration issues

    International Nuclear Information System (INIS)

    Haines, J.R.; Fuller, G.M.

    1983-01-01

    Impurity control in the Fusion Engineering Device (FED) is provided by a toroidal belt pumped limiter. Limiter design issues addressed in this paper are (1) poloidal location of the limiter belt, (2) shape of the limiter surface facing the plasma, and (3) whether the belt is pumped from one or both sides. The criteria used for evaluation of limiter configuration features were sensitivity to plasma edge conditions and ease of maintenance and fabrication. The evaluation resulted in the selection of a baseline FED limiter that is located at the bottom of the device and has a flat surface with a single leading edge

  12. Dimensional regularization in configuration space

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1995-09-01

    Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs

  13. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  14. Example of software configuration management model

    International Nuclear Information System (INIS)

    Roth, P.

    2006-01-01

    Software configuration management is the mechanism used to track and control software changes and may include the following actions: A tracking system should be established for any changes made to the existing software configuration. Requirement of the configuration management system are the following: - Backup the different software configuration; - Record the details (the date, the subject, the filenames, the supporting documents, the tests, ...) of the changes introduced in the new configuration; - Document all the differences between the different versions. Configuration management allows simultaneous exploitation of one specific version and development of the next version. Minor correction can be perform in the current exploitation version

  15. Diffusion of a protein in configuration space

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Blumenfeld, R.; Hummer, G.; Sobehart, J.

    1995-09-01

    Simulations of biomolecular dynamics are commonly interpreted in terms of harmonic or quasi-harmonic models for the dynamics of the system. These models assume that biomolecules exhibit oscillations around a single energy minimum. However, spectroscopic data on myoglobin suggest that proteins sample multiple minima. Transitions between minima reveal a broad distribution of energy barriers. This behavior has been observed in other biomolecular systems. To elucidate the nature of protein dynamics the authors have studied a 1.2ns molecular dynamics trajectory of crambin in aqueous solution. This trajectory samples multiple local energy minima. Transitions between minima involve collective motions of amino acids over long distances. The authors show that nonlinear motions are responsible for most of the atomic fluctuations of the protein. These atomic fluctuations are not well described by large motions of individual atoms or a small group of atoms, but rather by concerted motions of many atoms. These nonlinear motions describe transitions between different basins of attraction. The signature of these motions manifests in local and global structural variables. A method for extracting Molecule Optimal Dynamic Coordinates (MODC) is presented.

  16. Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters

    Directory of Open Access Journals (Sweden)

    S. M. M. Shariatmadar

    2017-08-01

    Full Text Available In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.

  17. LOOP- SIMULATION OF THE AUTOMATIC FREQUENCY CONTROL SUBSYSTEM OF A DIFFERENTIAL MINIMUM SHIFT KEYING RECEIVER

    Science.gov (United States)

    Davarian, F.

    1994-01-01

    The LOOP computer program was written to simulate the Automatic Frequency Control (AFC) subsystem of a Differential Minimum Shift Keying (DMSK) receiver with a bit rate of 2400 baud. The AFC simulated by LOOP is a first order loop configuration with a first order R-C filter. NASA has been investigating the concept of mobile communications based on low-cost, low-power terminals linked via geostationary satellites. Studies have indicated that low bit rate transmission is suitable for this application, particularly from the frequency and power conservation point of view. A bit rate of 2400 BPS is attractive due to its applicability to the linear predictive coding of speech. Input to LOOP includes the following: 1) the initial frequency error; 2) the double-sided loop noise bandwidth; 3) the filter time constants; 4) the amount of intersymbol interference; and 5) the bit energy to noise spectral density. LOOP output includes: 1) the bit number and the frequency error of that bit; 2) the computed mean of the frequency error; and 3) the standard deviation of the frequency error. LOOP is written in MS SuperSoft FORTRAN 77 for interactive execution and has been implemented on an IBM PC operating under PC DOS with a memory requirement of approximately 40K of 8 bit bytes. This program was developed in 1986.

  18. A new approach for ATLAS Athena job configuration

    CERN Document Server

    Lampl, Walter; The ATLAS collaboration

    2018-01-01

    The offline software framework of the ATLAS experiment (Athena) consists of many small components of various types like Algorithm, Tool or Service. To assemble these components into an executable application for event processing, a dedicated configuration step is necessary. The configuration of a particular job depends on the workflow (simulation, reconstruction, high-level trigger, overlay, calibration, analysis ...) and the input data (real or simulated data, beam-energy, ...) leading to a large number of possible configurations. The configuration step is done by executing python code. The resulting configuration depends on optionally pre-set flags as well as meta-data about the data to be processed that is found by peeking into the input file and even into databases. For the python configuration code, there is almost no structure enforced, leaving the full power of python to the user. While this approach did work, it also proved to be error prone and complicated to use. It also leads to jobs containing mor...

  19. Vertical and horizontal access configurations

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1987-01-01

    A number of configuration features and maintenance operations are influenced by the choice of whether a design is based on vertical or horizontal access for replacing reactor components. The features which are impacted most include the first wall/blanket segmentation, the poloidal field coil locations, the toroidal field coil number and size, access port size for in-vessel components, and facilities. Since either configuration can be made to work, the choice between the two is not clear cut because both have certain advantages. It is apparent that there are large cost benefits in the poloidal field coil system for ideal coil locations for high elongation plasmas and marginal savings for the INTOR case. If we assume that a new tokamak design will require a higher plasma elongation, the recommendation is to arrange the poloidal field coils in a cost-effective manner while providing reasonable midplane access for heating interfaces and test modules. If a new design study is not based on a high elongation plasma, it still appears prudent to consider this approach so that in-vessel maintenance can be accomplished without moving very massive structures such as the bulk shield. 10 refs., 29 figs., 3 tabs

  20. Computational methods for stellerator configurations

    International Nuclear Information System (INIS)

    Betancourt, O.

    1992-01-01

    This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings

  1. Equilibrium: two-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7

  2. Tank waste remediation system configuration management plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  3. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters

    Directory of Open Access Journals (Sweden)

    Vitaly V. Chaban

    2016-06-01

    Full Text Available Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden–Fletcher–Goldfarb–Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  4. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters.

    Science.gov (United States)

    Chaban, Vitaly V

    2016-06-01

    Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden-Fletcher-Goldfarb-Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  5. Steady state magnetic field configurations for the earth's magnetotail

    International Nuclear Information System (INIS)

    Hau, L.N.; Wolf, R.A.; Voigt, G.H.; Wu, C.C.

    1989-01-01

    The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pVγ throughout an extended region of the nightside plasma sheet, between approximately 36 R E geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B ze , also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B ze minima. Observations do not indicate the existence of a B ze minimum, on the average. They suggest that the configurations with such deep minima in B ze may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet

  6. A multi-reference singles and doubles configuration interaction determination in the dissociation energy and vibrational levels of the BeF molecules in the X2Σ + state

    International Nuclear Information System (INIS)

    Machado, F.B.C.; Ornellas, F.R.

    1988-10-01

    An accurate potential energy curve for the BeF molecule in the X 2 Σ + state is calculated within the MRSDCI approach. Vibrational level spacings and the dissociation energy are reported. Agreement with the available experimental spacings is 15 cm -1 on the average. The theoretically computed D o , 5.92 eV, favors the experimental value of 5.85 eV over the higher value of 6.26 eV. Arguments are also presented that show why the value obtained by the Birge-Sponer linear extrapolation is accidentally a good one. (author) [pt

  7. Energy

    International Nuclear Information System (INIS)

    1975-10-01

    On the occasion of the World Environment Day the Norwegian Ministry for the Environment held a conference on growth problems in energy consumption. The themes which were treated were energy conservation, hydroelectric power, the role of nuclear power, radioactive waste disposal, fossil fuel resources, ecological limits, pollution and international aspects. Nuclear energy forms the main theme of one lecture and an aspect of several others. (JIW)

  8. Energy

    OpenAIRE

    Torriti, Jacopo

    2016-01-01

    The impact of energy policy measures has been assessed with various appraisal and evaluation tools since the 1960s. Decision analysis, environmental impact assessment and strategic environmental assessment are all notable examples of progenitors of Regulatory Impact Assessment (RIA) in the assessment of energy policies, programmes and projects. This chapter provides overview of policy tools which have been historically applied to assess the impacts of energy policies, programmes and projects....

  9. Energies

    International Nuclear Information System (INIS)

    2003-01-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  10. Hanford Environmental Information System Configuration Management Plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Hanford Environmental Information System (HEIS) Configuration Management Plan establishes the software and data configuration control requirements for the HEIS and project-related databases maintained within the Environmental Restoration Contractor's data management department

  11. Configurations and level structure of 219Rn

    International Nuclear Information System (INIS)

    Sheline, R.K.; Liang, C.F.; Paris, P.

    1998-01-01

    The level structure of 219 Rn has been studied using the alpha decay of 223 Ra and coincident gamma rays. While only modest changes are required in the level structure, and only above 342.8 keV, severe changes are required throughout the level scheme in the spin assigments. These changes allow the assignment of two sets of anomalous bands with K=5/2 ± and K=3/2 ± . The K=5/2 ± bands have configurations intermediate between the reflection asymmetric configuration and the g 9/2 shell model configuration, while the K=3/2 ± bands have configurations intermediate between the mixed reflection asymmetric configuration and the i 11/2 shell model configuration. Comparison of the systematics of 219 Rn with neighboring isotones, isobars, and isotopes shows clearly the collapse of the quadrupole-octupole-type configurations into the less degenerate shell model configurations. copyright 1998 The American Physical Society

  12. Configuration management theory, practice, and application

    CERN Document Server

    Quigley, Jon M

    2015-01-01

    Configuration Management: Theory, Practice, and Application details a comprehensive approach to configuration management from a variety of product development perspectives, including embedded and IT. It provides authoritative advice on how to extend products for a variety of markets due to configuration options. The book also describes the importance of configuration management to other parts of the organization. It supplies an overview of configuration management and its process elements to provide readers with a contextual understanding of the theory, practice, and application of CM. Explaining what a configuration item is and what it implies, the book illustrates the interplay of configuration and data management with all enterprise resources during each phase of a product lifecycle. It also demonstrates the interrelationship of CM to functional resources. Shedding light on current practice, the book describes CM baselines, configuration identification, management baseline changes, and acceptance criteria ...

  13. Industrial requirements for interactive product configurators

    DEFF Research Database (Denmark)

    Queva, Matthieu Stéphane Benoit; Probst, Christian W.; Vikkelsøe, Per

    2009-01-01

    The demand for highly customized products at low cost is driving the industry towards Mass Customization. Interactive product configurators play an essential role in this new trend, and must be able to support more and more complex features. The purpose of this paper is, firstly, to identify...... requirements for modern interactive configurators. Existing modeling and solving technologies for configuration are then reviewed and their limitations discussed. Finally, a proposition for a future product configuration system is described....

  14. Minimum emittance in TBA and MBA lattices

    Science.gov (United States)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  15. Minimum emittance in TBA and MBA lattices

    International Nuclear Information System (INIS)

    Xu Gang; Peng Yuemei

    2015-01-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 3 1/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design. (authors)

  16. Who Benefits from a Minimum Wage Increase?

    OpenAIRE

    John W. Lopresti; Kevin J. Mumford

    2015-01-01

    This paper addresses the question of how a minimum wage increase affects the wages of low-wage workers. Most studies assume that there is a simple mechanical increase in the wage for workers earning a wage between the old and the new minimum wage, with some studies allowing for spillovers to workers with wages just above this range. Rather than assume that the wages of these workers would have remained constant, this paper estimates how a minimum wage increase impacts a low-wage worker's wage...

  17. Wage inequality, minimum wage effects and spillovers

    OpenAIRE

    Stewart, Mark B.

    2011-01-01

    This paper investigates possible spillover effects of the UK minimum wage. The halt in the growth in inequality in the lower half of the wage distribution (as measured by the 50:10 percentile ratio) since the mid-1990s, in contrast to the continued inequality growth in the upper half of the distribution, suggests the possibility of a minimum wage effect and spillover effects on wages above the minimum. This paper analyses individual wage changes, using both a difference-in-differences estimat...

  18. Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.

    Science.gov (United States)

    Varandas, A J C

    2011-05-28

    The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative

  19. Offshore Vendors’ Software Development Team Configurations

    DEFF Research Database (Denmark)

    Chakraborty, Suranjan; Sarker, Saonee; Rai, Sudhanshu

    2012-01-01

    This research uses configuration theory and data collected from a major IT vendor organization to examine primary configurations of distributed teams in a global off-shoring context. The study indicates that off-shoring vendor organizations typically deploy three different types of configurations...

  20. Multi level configuration of ETO products

    DEFF Research Database (Denmark)

    Petersen, Thomas Ditlev; Jørgensen, Kaj Asbjørn; Hvolby, Hans-Henrik

    2007-01-01

    The paper introduces and defines central concepts related to multi level configuration and analyzes which challenges an engineer to order company must deal with to be able to realize a multi level configuration system. It is argued that high flexibility can be achieved and focus can be directed...... in certain business processes if a multi level configuration system is realized....