WorldWideScience

Sample records for minimum energy configurations

  1. Bistable minimum energy structures (BiMES) for binary robotics

    International Nuclear Information System (INIS)

    Follador, M; Conn, A T; Rossiter, J

    2015-01-01

    Bistable minimum energy structures (BiMES) are devices derived from the union of the concepts of dielectric elastomer minimum energy structures and bistable systems. This article presents this novel approach to active, elastic and bistable structures. BiMES are based on dielectric elastomer actuators (DEAs), which act as antagonists and provide the actuation for switching between the two equilibrium positions. A central elastic beam is the backbone of the structure and is buckled into the minimum energy configurations by the action of the two DEAs. The theory and the model of the device are presented, and also its fabrication process. BiMES are considered as fundamental units for more complex structures, which are presented and fabricated as proof of concept. Two different ways of combining the multiple units are proposed: a parallel configuration, to make a simple gripper, and a serial configuration, to generate a binary device. The possibility of using the bistable system as a continuous bender actuator, by modulating the actuation voltage of the two DEAs, was also investigated. (paper)

  2. Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State

    OpenAIRE

    Regnier, S.; Priest, E. R.

    2008-01-01

    To understand the physics of solar flares, including the local reorganization of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We inves...

  3. Binary cluster collision dynamics and minimum energy conformations

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Rogan, José; Valdivia, J.A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Varas, A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Nano-Bio Spectroscopy Group, ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián (Spain); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile)

    2013-10-15

    The collision dynamics of one Ag or Cu atom impinging on a Au{sub 12} cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au{sub 12}→Au{sub 13} is mostly preserved by the resulting planar Au{sub 12}Ag and Au{sub 12}Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au{sub 12}Ag and 4483 Au{sub 12}Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously.

  4. The configurational energy gap between amorphous and crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kail, F. [GRMT, Department of Physics, University of Girona, Montilivi Campus, 17071 Girona, Catalonia (Spain); Univ. Barcelona, Dept. Fisica Aplicada and Optica, 08028 Barcelona (Spain); Farjas, J.; Roura, P. [GRMT, Department of Physics, University of Girona, Montilivi Campus, 17071 Girona, Catalonia (Spain); Secouard, C. [Univ. Barcelona, Dept. Fisica Aplicada and Optica, 08028 Barcelona (Spain); Nos, O.; Bertomeu, J. [CEA Grenoble, LTS, 17 rue des Martyrs, 38054 Grenoble cedex (France); Roca i Cabarrocas, P. [LPICM, Ecole Polytechnique, 91128 Palaiseau (France)

    2011-11-15

    The crystallization enthalpy of pure amorphous silicon (a-Si) and hydrogenated a-Si was measured by differential scanning calorimetry (DSC) for a large set of materials deposited from the vapour phase by different techniques. Although the values cover a wide range (200-480 J/g), the minimum value is common to all the deposition techniques used and close to the predicted minimum strain energy of relaxed a-Si (240 {+-} 25 J/g). This result gives a reliable value for the configurational energy gap between a-Si and crystalline silicon. An excess of enthalpy above this minimum value can be ascribed to coordination defects. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2010-01-01

    The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.

  6. Energy savings in distillation via identification of useful configurations

    Science.gov (United States)

    Shah, Vishesh Hemanshu

    with low heat duties. The heat duty requirements are estimated using the Underwood equations. Application of these frameworks has provided an array of distillation configurations that can potentially have up to 50% lower heat duty than the currently used distillation configuration for petroleum crude distillation. Since petroleum crude distillation is a highly energy-intensive process, these configurations have tremendous potential to improve the energy efficiency of a refinery. Furthermore, we provide evidence to disprove some conventional notions about thermally coupled configurations. We also describe some previously unknown distillation configurations that use less than (n-1) distillation columns for an n-component separation. We demonstrate that these novel distillation configurations have significantly lower heat duties than the currently known distillation configurations with less than (n-1) columns. Since these configurations have one or more distillation columns that produce sidestreams, a quick screening tool based on Underwood's equations cannot be used to estimate the heat duty requirements of these configurations. Therefore, we lay the foundation for equations analogous to Underwood's equations to estimate the minimum heat duty requirements of such distillation configurations.

  7. Reversed-field pinch configuration with minimum energy and finite beta

    International Nuclear Information System (INIS)

    Zhang Peng

    1989-01-01

    The reversed-field pinch (RFP) configuration has been studied for the case of finite beta. Suydam's condition and the sufficient criterion have been used to examine this configuration. Results of numerical calculations show that the critical value of the pinch parameter Θ for the appearance of the reverse toroidal field increases as the β-value increases. The critical value of Θ for the helical state increases with β as well. Suydam's and Robinson's stability regions increase and shift towards higher values of Θ with increasing β. Theoretical results for finite β coincide with recent RFP experimental results

  8. Energy analysis of thermal energy storages with grid configurations

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.

    2014-01-01

    Highlights: • Grid configurations of TESs are developed and assessed. • Characteristics of various configurations of TESs are developed as functions of properties. • Functions for the discharge temperature and the discharge energy of the TES are developed. - Abstract: In some thermal networks like district energy systems, there can exist conditions, depending on space availability, economics, project requirements, insulation, storing media type and other issues, for which it may be advantageous to utilize several thermal energy storages (TESs) instead of one. Here, various configurations for multiple TESs are proposed and investigated. Significant parameters for a TES, or a set of TESs, include discharging temperature and recovered energy. First, one TES is modeled to determine the final temperature, energy recovery, and energy efficiency. Next, characteristics for various grid configurations of multiple TESs are developed as functions of TES characteristics (e.g., charging and discharging temperatures and energy quantities). Series, parallel and comprehensive grid TES configurations are considered. In the parallel configuration, the TESs behave independently. This suggests that the TES can consist of different storage media types and sizes, and that there is no restriction on initial temperature of the TES. In the series configuration, the situation is different because the TESs are connected directly or indirectly through a heat exchanger. If there is no heat exchanger between the TESs, the TES storage media should be the same, because the outlet of one TES in the series is the inlet to the next. The initial temperature of the second TES must be smaller than the discharge temperature of the first. There is no restriction on the TES size for series configurations. The general grid configuration is observed to exhibit characteristics of both series and parallel configurations

  9. Research on configuration of railway self-equipped tanker based on minimum cost maximum flow model

    Science.gov (United States)

    Yang, Yuefang; Gan, Chunhui; Shen, Tingting

    2017-05-01

    In the study of the configuration of the tanker of chemical logistics park, the minimum cost maximum flow model is adopted. Firstly, the transport capacity of the park loading and unloading area and the transportation demand of the dangerous goods are taken as the constraint condition of the model; then the transport arc capacity, the transport arc flow and the transport arc edge weight are determined in the transportation network diagram; finally, the software calculations. The calculation results show that the configuration issue of the tankers can be effectively solved by the minimum cost maximum flow model, which has theoretical and practical application value for tanker management of railway transportation of dangerous goods in the chemical logistics park.

  10. Minimum energy consumption process synthesis for energy saving

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ping, Jia [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China); Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Fang, Wang; Shu-Guang, Xiang; Xin-Sun, Tan; Fang-Yu, Han [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China)

    2008-05-15

    The paper presents a synthesis strategy for the chemical processes with energy saving. The concept of minimum energy consumption process (MECP) is proposed. Three characteristics of MECP are introduced, including thermodynamic minimum energy demand, energy consumption efficiency and integration degree. These characteristics are evaluated according to quantitative thermodynamic analysis and qualitative knowledge rules. The procedure of synthesis strategy is proposed to support the generation of MECP alternatives, which combine flowsheet integration and heat integration. The cases studies will focus on how integration degrees of a process affect the energy-saving results. The separation sequences of the hydrodealkylation of toluene (HDA) process and ethanol distillation process as case studies are used to illustrate. (author)

  11. Integrated electrification solution for autonomous electrical networks on the basis of RES and energy storage configurations

    International Nuclear Information System (INIS)

    Kaldellis, J.K.

    2008-01-01

    Most medium and small islands of the Aegean Archipelagos face serious infrastructure problems, strongly related with the limited electrical energy available at extremely high cost. On the other hand, the area is characterized by very high wind speeds and abundant solar energy, thus the exploitation of the available renewable energy sources (RES) may significantly contribute to the fulfillment of the local societies energy demand at minimum environmental and macroeconomic cost. However, the stochastic availability of wind energy and the variable availability of solar energy, the daily and seasonal electricity demand fluctuations, as well as the limited local electrical network capacity result in serious restrictions concerning the maximum renewable power penetration. In this context, the present paper investigates the possibility of creating a combined electricity generation facility based on the exploitation of wind or/and solar potential of an area as well as on the utilization of an appropriate energy storage configuration in order to replace the existing thermal power stations with rational investment requirements. For this purpose, the major parameters of the proposed integrated configuration are firstly calculated and its financial viability is accordingly analyzed. One of the main targets of the proposed solution is to maximize the RES exploitation of the area at a minimum electricity generation cost, while special emphasis is given in order to select the most cost-efficient energy storage device available. According to the results obtained the proposed solution is not only financially attractive but also improves the quality of the electricity offered to the local communities, substituting the expensive and heavily polluting existing thermal power stations

  12. Finding the Atomic Configuration with a Required Physical Property in Multi-Atom Structures

    International Nuclear Information System (INIS)

    d'Avezac, M.; Zunger, A.

    2007-01-01

    In many problems in molecular and solid state structures one seeks to determine the energy-minimizing decoration of sites with different atom types. In other problems, one is interested in finding a decoration with a target physical property (e.g. alloy band gap) within a certain range. In both cases, the sheer size of the configurational space can be horrendous. We present two approaches which identify either the minimum-energy configuration or configurations with a target property for a fixed underlying Bravais lattice. We compare their efficiency at locating the deepest minimum energy configuration of face centered cubic Au-Pd alloy. We show that a global-search genetic-algorithm approach with diversity-enhancing constraints and reciprocal-space mating can efficiently find the global optimum, whereas the local-search virtual-atom approach presented here is more efficient at finding structures with a target property

  13. Design for minimum energy in interstellar communication

    Science.gov (United States)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  14. Minimum energy control and optimal-satisfactory control of Boolean control network

    International Nuclear Information System (INIS)

    Li, Fangfei; Lu, Xiwen

    2013-01-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  15. Optimizing droop coefficients for minimum cost operation of islanded micro-grids

    DEFF Research Database (Denmark)

    Sanseverino, E. Riva; Tran, Q. T.T.; Zizzo, G.

    2017-01-01

    This paper shows how minimum cost energy management can be carried out for islanded micro-grids considering an expanded state that also includes the system's frequency. Each of the configurations outputted by the energy management system at each hour are indeed technically sound and coherent from...

  16. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  17. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  18. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    Science.gov (United States)

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some

  19. Minimum wall pressure coefficient of orifice plate energy dissipater

    Directory of Open Access Journals (Sweden)

    Wan-zheng Ai

    2015-01-01

    Full Text Available Orifice plate energy dissipaters have been successfully used in large-scale hydropower projects due to their simple structure, convenient construction procedure, and high energy dissipation ratio. The minimum wall pressure coefficient of an orifice plate can indirectly reflect its cavitation characteristics: the lower the minimum wall pressure coefficient is, the better the ability of the orifice plate to resist cavitation damage is. Thus, it is important to study the minimum wall pressure coefficient of the orifice plate. In this study, this coefficient and related parameters, such as the contraction ratio, defined as the ratio of the orifice plate diameter to the flood-discharging tunnel diameter; the relative thickness, defined as the ratio of the orifice plate thickness to the tunnel diameter; and the Reynolds number of the flow through the orifice plate, were theoretically analyzed, and their relationships were obtained through physical model experiments. It can be concluded that the minimum wall pressure coefficient is mainly dominated by the contraction ratio and relative thickness. The lower the contraction ratio and relative thickness are, the larger the minimum wall pressure coefficient is. The effects of the Reynolds number on the minimum wall pressure coefficient can be neglected when it is larger than 105. An empirical expression was presented to calculate the minimum wall pressure coefficient in this study.

  20. Injection and temporary capture of a charged particle beam in an open magnetic configuration. Optimization of the configuration. Case of cylindrical symmetry: A mirror machine; Etude de l'injection et de la capture temporaire d'un faisceau de particules chargees dans une configuration magnetique ouverte. Optimisation de la configuration. Cas de la symetrie de revolution: Machine a miroirs

    Energy Technology Data Exchange (ETDEWEB)

    Capdequi-Peyranere, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-12-01

    A study has been made of a new method of transverse injection of charged particles into a magnetic mirror configuration. This injection scheme permits the penetration and temporary capture by non-adiabatic effect of a particle beam of approximately 1 cm{sup 2} cross-section. A theoretical study of the injection and capture is made in the approximation that space charge is negligible. The original programs for IBM 7094 computer calculations are described; these programs were used to obtain an optimization of the configuration. The results of a statistical numerical study of the optimum configuration are then given. This study indicates that, if the energy of the particles of the beam is about 1 per cent greater than a minimum penetration energy, the entire beam can be captured with an average capture length of 100 meters (50 reflections between the two mirrors). If the energy is about 4 per cent greater than the minimum penetration energy, the capture length is reduced to 40 meters. We have studied the distribution of energy transverse and longitudinal with the magnetic field for the population of captured particles. For the cases of injected molecular hydrogen ions or heavy CH{sub 4}{sup +} ions, a study is made of the capture time of protons resulting from the dissociation of the ions by collisions with the neutral gas. Finally, we describe a model experiment using electrons designed to provide an experimental verification of the capture of the primary beam. (author) [French] On etudie un nouveau schema d'injection transversale de particules chargees dans une configuration magnetique a miroirs. Ce mode d'injection permet la penetration et la capture temporaire par effet non adiabatique d'un faisceau de particules presentant une section de l'ordre de 1 cm{sup 2}. Une etude theorique du probleme de l'injection et de la capture est faite en supposant la charge d'espace negligeable. On decrit des programmes originaux de calcul sur ordinateur IBM 7094 permettant l

  1. New superconducting coil configuration for energy storage

    International Nuclear Information System (INIS)

    Tokorabet, M.; Mailfert, A.; Colteu, A.

    1998-01-01

    Energy storage using superconducting coils involves the problem of electromagnetic field pollution outside the considered system. Different configurations are widely studied: the torus, the alone solenoid and multiple parallel solenoids enclosed in one container. A new configuration which minimizes the external pollution is studied in this paper. The theoretical system is composed of two spherical distributions of the current which are concentric. The analytical study uses solution of Laplace equations. Parametric study covers energy, flux density and geometrical data. The second study concerns the numerical approach of this design using coaxial solenoids. A comparison between this new system and the known systems is presented as a conclusion. (orig.)

  2. Solution for Nonlinear Three-Dimensional Intercept Problem with Minimum Energy

    Directory of Open Access Journals (Sweden)

    Henzeh Leeghim

    2013-01-01

    a minimum-energy application, which then generates both the desired initial interceptor velocity and the TOF for the minimum-energy transfer. The optimization problem is formulated by using the classical Lagrangian f and g coefficients, which map initial position and velocity vectors to future times, and a universal time variable x. A Newton-Raphson iteration algorithm is introduced for iteratively solving the problem. A generalized problem formulation is introduced for minimizing the TOF as part of the optimization problem. Several examples are presented, and the results are compared with the Hohmann transfer solution approaches. The resulting minimum-energy intercept solution algorithm is expected to be broadly useful as a starting iterative for applications spanning: targeting, rendezvous, interplanetary trajectory design, and so on.

  3. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Improved initial guess for minimum energy path calculations

    International Nuclear Information System (INIS)

    Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt; Jónsson, Hannes

    2014-01-01

    A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used

  5. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen.

    Science.gov (United States)

    Andersen, J; Voute, A; Mihrin, D; Heimdal, J; Berg, R W; Torsson, M; Wugt Larsen, R

    2017-06-28

    The true global potential energy minimum configuration of the formaldehyde dimer (CH 2 O) 2 , including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of C s and C 2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar C s configuration of (CH 2 O) 2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol -1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol -1 for the dissociation energy D 0 of this global potential energy minimum.

  6. Energy and environmental norms on Minimum Vital Flux

    International Nuclear Information System (INIS)

    Maran, S.

    2008-01-01

    By the end of the year will come into force the recommendations on Minimum Vital flow and operators of hydroelectric power plants will be required to make available part of water of their derivations in order to protect river ecosystems. In this article the major energy and environmental consequences of these rules, we report some quantitative evaluations and are discusses the proposals for overcoming the weaknesses of the approach in the estimation of Minimum Vital Flux [it

  7. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    International Nuclear Information System (INIS)

    Janos, A.

    1985-09-01

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated

  8. Bounds on Minimum Energy per Bit for Optical Wireless Relay Channels

    Directory of Open Access Journals (Sweden)

    A. D. Raza

    2014-09-01

    Full Text Available An optical wireless relay channel (OWRC is the classical three node network consisting of source, re- lay and destination nodes with optical wireless connectivity. The channel law is assumed Gaussian. This paper studies the bounds on minimum energy per bit required for reliable communication over an OWRC. It is shown that capacity of an OWRC is concave and energy per bit is monotonically increasing in square of the peak optical signal power, and consequently the minimum energy per bit is inversely pro- portional to the square root of asymptotic capacity at low signal to noise ratio. This has been used to develop upper and lower bound on energy per bit as a function of peak signal power, mean to peak power ratio, and variance of channel noise. The upper and lower bounds on minimum energy per bit derived in this paper correspond respectively to the decode and forward lower bound and the min-max cut upper bound on OWRC capacity

  9. Configuration control for the confinement improvement in Heliotron J

    Energy Technology Data Exchange (ETDEWEB)

    Mizuuchi, T.; Sano, F.; Kondo, K.; Nagasaki, K.; Okada, H.; Kobayashi, S.; Torii, Y.; Yamamoto, S.; Hanatani, K.; Nakamura, Y.; Kaneko, M.; Arimoto, H.; Motojima, G.; Fujikawa, S.; Kitagawa, H.; Nakamura, H.; Tsuji, T.; Uno, M.; Yabutani, H.; Watanabe, S.; Matsuoka, S.; Nosaku, M.; Watanabe, N.; Ijiri, Y.; Senju, T.; Yaguchi, K.; Sakamoto, K.; Toshi, K.; Shibano, M.; Murakami, S.; Suzuki, Y.; Yokoyama, M.

    2005-07-01

    In the helical-axis heliotron configuration, bumpiness of the Fourier components in Boozer coordinates is introduced as a third knob to control the neo-classical transport. Effects of the bumpiness control on the plasma performance (non-inductive currents, fast ions behavior and global energy confinement) have been investigated in Heliotron J by selecting three configurations with different bumpiness (B04/B00 = 0.01, 0.06 and 0.15 at ? 2/3), almost the same edge rotational transform and plasma volume. The dependence of non-inductive toroidal currents is qualitatively consistent with the neoclassical prediction for the bootstrap current. The high bumpiness configuration seems to be preferable for the confinement of fast ions. However, the longer global energy confinement time is observed not in the highest bumpiness configuration (B04/B00 = 0.15) but in the configuration with the minimum effective ripple modulation amplitude, where B04/B00 is 0.06. (Author)

  10. Electronic configurations and energies in some thermodynamically correlated laves compounds

    International Nuclear Information System (INIS)

    Campbell, G.M.

    1979-04-01

    The known electronic configurations of simple elements in Laves compounds are correlated with those of the more complex systems to determine their electronic configurations and gaseous state promotion energies

  11. Optimal configuration assessment of renewable energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, Ahmed M.A.; John, Priscilla N.; Shawal, Mohd [Faculty of Electrical and Electronics Engineering, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia)

    2011-02-15

    This paper proposes the use of a PV-wind-diesel generator hybrid system in order to determine the optimal configuration of renewable energy in Malaysia and to compare the production cost of solar and wind power with its annual yield relevant to different regions in Malaysia namely, Johor, Sarawak, Penang and Selangor. The configuration of optimal hybrid system is selected based on the best components and sizing with appropriate operating strategy to provide a cheap, efficient, reliable and cost-effective system. The various renewable energy sources and their applicability in terms of cost and performance are analyzed. Moreover, the annual yield and cost of energy production of solar and wind energy are evaluated. The Simulations were carried out using the HOMER program based on data obtained from the Malaysian Meteorological Centre. Results show that, for Malaysia, a PV-diesel generator hybrid system is the most suitable solution in terms of economic performance and pollution. However, the cost of production of solar and wind energy proved to be cheaper and more environmentally friendly than the energy produced from diesel generators. (author)

  12. Optical fiber configurations for transmission of laser energy over great distances

    Science.gov (United States)

    Rinzler, Charles C; Zediker, Mark S

    2013-10-29

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  13. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali

    2015-08-12

    Process design and simulation of multi-stage membrane systems have been widely studied in many gas separation systems. However, general guidelines have not been developed yet for the attainability and the minimum energy consumption of a multi-stage membrane system. Such information is important for conceptual process design and thus it is the topic of this work. Using a well-mixed membrane model, it was determined that the attainability curve of multi-stage systems is defined by the pressure ratio and membrane selectivity. Using the constant recycle ratio scheme, the recycle ratio can shift the attainability behavior between single-stage and multi-stage membrane systems. When the recycle ratio is zero, all of the multi-stage membrane processes will decay to a single-stage membrane process. When the recycle ratio approaches infinity, the required selectivity and pressure ratio reach their absolute minimum values, which have a simple relationship with that of a single-stage membrane process, as follows: View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can significantly reduce the required membrane selectivity without substantial energy penalty. The energy envelope curve can provide a guideline from an energy perspective to determine the minimum required membrane selectivity in membrane process designs to compete with conventional separation processes, such as distillation.

  14. Injection and temporary capture of a charged particle beam in an open magnetic configuration. Optimization of the configuration. Case of cylindrical symmetry: A mirror machine

    International Nuclear Information System (INIS)

    Capdequi-Peyranere, P.

    1966-12-01

    A study has been made of a new method of transverse injection of charged particles into a magnetic mirror configuration. This injection scheme permits the penetration and temporary capture by non-adiabatic effect of a particle beam of approximately 1 cm 2 cross-section. A theoretical study of the injection and capture is made in the approximation that space charge is negligible. The original programs for IBM 7094 computer calculations are described; these programs were used to obtain an optimization of the configuration. The results of a statistical numerical study of the optimum configuration are then given. This study indicates that, if the energy of the particles of the beam is about 1 per cent greater than a minimum penetration energy, the entire beam can be captured with an average capture length of 100 meters (50 reflections between the two mirrors). If the energy is about 4 per cent greater than the minimum penetration energy, the capture length is reduced to 40 meters. We have studied the distribution of energy transverse and longitudinal with the magnetic field for the population of captured particles. For the cases of injected molecular hydrogen ions or heavy CH 4 + ions, a study is made of the capture time of protons resulting from the dissociation of the ions by collisions with the neutral gas. Finally, we describe a model experiment using electrons designed to provide an experimental verification of the capture of the primary beam. (author) [fr

  15. Energy-minimum sub-threshold self-timed circuits using current-sensing completion detection

    DEFF Research Database (Denmark)

    Akgun, O. C.; Rodrigues, J. N.; Sparsø, Jens

    2011-01-01

    This study addresses the design of self-timed energy-minimum circuits, operating in the sub-VT domain and a generic implementation template using bundled-data circuitry and current sensing completion detection (CSCD). Furthermore, a fully decoupled latch controller was developed, which integrates......V. Spice simulations indicate a gain of 52.58% in throughput because of asynchronous operation. By trading the throughput improvement, energy dissipation is reduced by 16.8% at the energy-minimum supply voltage....

  16. Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations

    International Nuclear Information System (INIS)

    Hartmann, Niklas; Vöhringer, O.; Kruck, C.; Eltrop, L.

    2012-01-01

    Highlights: ► We modeled several configurations of an adiabatic Compressed Air Energy Storage (CAES) plant. ► We analyzed changes in efficiency of these configurations under varying operating conditions. ► The efficiency of the adiabatic CAES plant can reach about 70% for the isentropic configuration. ► In the polytropic case, the efficiency is about 10% lower (at about 60%) than in the isentropic configuration. ► The efficiency is highest for a two-stage CAES configuration and highly dependent on the cooling and heating demand. - Abstract: In this paper, the efficiency of one full charging and discharging cycle of several adiabatic Compressed Air Energy Storage (CAES) configurations are analyzed with the help of an energy balance. In the second step main driving factors for the efficiency of the CAES configurations are examined with the help of sensitivity analysis. The results show that the efficiency of the polytropic configuration is about 60%, which is considerable lower than literature values of an adiabatic CAES of about 70%. The high value of 70% is only reached for the isentropic (ideal) configuration. Key element to improve the efficiency is to develop high temperature thermal storages (>600 °C) and temperature resistant materials for compressors. The highest efficiency is delivered by the two-stage adiabatic CAES configuration. In this case the efficiency varies between 52% and 62%, depending on the cooling and heating demand. If the cooling is achieved by natural sources (such as a river), a realistic estimation of the efficiency of adiabatic Compressed Air Energy Storages (without any greenhouse gas emissions due to fuel consumption) is about 60%.

  17. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.

  18. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    International Nuclear Information System (INIS)

    Jhalani, V.; Kharkwal, H.; Singh, A.

    2016-01-01

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  19. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)

    2016-11-15

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  20. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  1. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in the first

  2. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J.

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in

  3. Minimum beam-energy spread of a high-current rf linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Fraser, J.S.

    1987-01-01

    Energy spread is an important parameter of an electron linac and, usually, is determined by the time dependence of the external rf accelerating field. By using a combination of fundamental and higher harmonic frequencies, the accelerating field can be maintained approximately constant over a beam bunch with the resultant energy spread approximately zero. This technique is no longer adequate when the longitudinal wake field of the beam bunch is taken into account. The wake-field variation along the bunch length introduces an energy spread that cannot be exactly compensated for with the use of fundamental and higher harmonic frequencies. The achievable minimum energy spread including the wake-field effect is therefore limited. In this paper, we report the minimum energy spreads achievable using the fundamental and third-harmonic frequencies, calculated using a least-squares algorithm, for some typical structures in use at Los Alamos National Laboratory. The dependence of these results on bunch shape, bunch charge, and structure frequency is discussed. Also included are discussions of schemes for implementing the third-harmonic frequency and their effectiveness

  4. The evolution of configuration from q > 1 to q < 1

    International Nuclear Information System (INIS)

    Zhang Peng

    1993-06-01

    The evolution of configuration from an initial state of tokamak-like plasma to RFP (reversed field pinch) along the trajectory of minimum energy state is studied. the high plasma current allowed in a RFP is expected to be sufficient to heat the plasma to ignition without the need of auxiliary neutral-beam or radio-frequency heating

  5. Magnetic energy dissipation in force-free jets

    Science.gov (United States)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  6. The Minimum Binding Energy and Size of Doubly Muonic D3 Molecule

    Science.gov (United States)

    Eskandari, M. R.; Faghihi, F.; Mahdavi, M.

    The minimum energy and size of doubly muonic D3 molecule, which two of the electrons are replaced by the much heavier muons, are calculated by the well-known variational method. The calculations show that the system possesses two minimum positions, one at typically muonic distance and the second at the atomic distance. It is shown that at the muonic distance, the effective charge, zeff is 2.9. We assumed a symmetric planar vibrational model between two minima and an oscillation potential energy is approximated in this region.

  7. Experimental Analysis of a Coupled Energy Harvesting System with Monostable and Bistable Configuration

    International Nuclear Information System (INIS)

    Hoffmann, D; Folkmer, B; Manoli, Y

    2014-01-01

    In this paper we present experimental results from an energy harvesting system with two coupled energy harvesters. The energy conversion mechanism of the two coupled energy harvesters is based on the electromagnetic principle. The coupling is generated by two magnets in a repulsive arrangement. In this manner a bistable configuration can be obtained if the gap between the magnets is sufficiently small. We demonstrate that the total power output can be increased in comparison to a linear reference system, if specific conditions are fulfilled. In this respect, the highest power output occurs in the nonlinear region of a monostable system configuration, mostly near the transition to a bistable configuration. On the other hand, the results also indicate, that a bistable operating mode does not necessarily enhance the power output of the coupled system

  8. Minimum critical mass systems

    International Nuclear Information System (INIS)

    Dam, H. van; Leege, P.F.A. de

    1987-01-01

    An analysis is presented of thermal systems with minimum critical mass, based on the use of materials with optimum neutron moderating and reflecting properties. The optimum fissile material distributions in the systems are obtained by calculations with standard computer codes, extended with a routine for flat fuel importance search. It is shown that in the minimum critical mass configuration a considerable part of the fuel is positioned in the reflector region. For 239 Pu a minimum critical mass of 87 g is found, which is the lowest value reported hitherto. (author)

  9. Energy expenditure, economic growth, and the minimum EROI of society

    International Nuclear Information System (INIS)

    Fizaine, Florian; Court, Victor

    2016-01-01

    We estimate energy expenditure for the US and world economies from 1850 to 2012. Periods of high energy expenditure relative to GDP (from 1850 to 1945), or spikes (1973–74 and 1978–79) are associated with low economic growth rates, and periods of low or falling energy expenditure are associated with high and rising economic growth rates (e.g. 1945–1973). Over the period 1960–2010 for which we have continuous year-to-year data for control variables (capital formation, population, and unemployment rate) we estimate that, statistically, in order to enjoy positive growth, the US economy cannot afford to spend more than 11% of its GDP on energy. Given the current energy intensity of the US economy, this translates in a minimum societal EROI of approximately 11:1 (or a maximum tolerable average price of energy of twice the current level). Granger tests consistently reveal a one way causality running from the level of energy expenditure (as a fraction of GDP) to economic growth in the US between 1960 and 2010. A coherent economic policy should be founded on improving net energy efficiency. This would yield a “double dividend”: increased societal EROI (through decreased energy intensity of capital investment), and decreased sensitivity to energy price volatility. - Highlights: •We estimate energy expenditures as a fraction of GDP for the US, the world (1850–2012), and the UK (1300–2008). •Statistically speaking, the US economy cannot afford to allocate more than 11% of its GDP to energy expenditures in order to have a positive growth rate. •This corresponds to a maximum tolerable average price of energy of twice the current level. •In the same way, US growth is only possible if its primary energy system has at least a minimum EROI of approximately 11:1.

  10. A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems

    International Nuclear Information System (INIS)

    Dittrich, R.; Schrefl, T.; Suess, D.; Scholz, W.; Forster, H.; Fidler, J.

    2002-01-01

    Minimum energy paths and energy barriers are calculated for complex micromagnetic systems. The method is based on the nudged elastic band method and uses finite-element techniques to represent granular structures. The method was found to be robust and fast for both simple test problems as well as for large systems such as patterned granular media. The method is used to estimate the energy barriers in CoCr-based perpendicular recording media

  11. Improved vibration-based energy harvesting by annular mass configuration of piezoelectric circular diaphragms

    Science.gov (United States)

    Yang, Yangyiwei; Li, Yuanbo; Guo, Yaqian; Xu, Bai-Xiang; Yang, Tongqing

    2018-03-01

    Vibration-based energy harvesting using piezoelectric circular diaphragms (PCDs) with a structure featuring the central mass (C-mass) configuration has drawn much attention in recent decades. In this work, we propose a new configuration with the annular proof mass (A-mass) where an improved energy harvesting is promised. The numerical analysis was employed using the circuit-coupled piezoelectric simulation, and the experimental validation was implemented using PCDs with the even-width annular electrodes. Samples with the different mass configurations as well as structural parameters ϖ 1 and ϖ 2, which indicate the ratio between the inner boundary radius and piezoelectric ceramic radius as well as the ratio between outer boundary radius and the substrate radius, respectively, were prepared and tested. The impedance-matched output power of full-electrode PCDs was also collected, and some distinct improvement was measured on samples with the certain structural parameters. The power increases from 14.1 mW to 19.0 mW after changing the configuration from C-mass to A-mass with the same parameters (ϖ 1, ϖ 2) = (0.16, 0.9), showing the considerable improvement in energy harvesting by using A-mass configuration.

  12. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    Directory of Open Access Journals (Sweden)

    Jaeyoung Park

    2015-06-01

    Full Text Available We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad’s work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β. This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  13. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    International Nuclear Information System (INIS)

    Kaya, Savaş; Kaya, Cemal; Islam, Nazmul

    2016-01-01

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  14. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Kaya, Cemal, E-mail: kaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Islam, Nazmul, E-mail: nazmul.islam786@gmail.com [Theoretical and Computational Chemistry Research Laboratory, Department of Basic Science and Humanities/Chemistry Techno Global-Balurghat, Balurghat, D. Dinajpur 733103 (India)

    2016-03-15

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  15. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali; Lai, Zhiping

    2015-01-01

    : View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can

  16. Ground Receiving Station Reference Pair Selection Technique for a Minimum Configuration 3D Emitter Position Estimation Multilateration System

    Directory of Open Access Journals (Sweden)

    Abdulmalik Shehu Yaro

    2017-01-01

    Full Text Available Multilateration estimates aircraft position using the Time Difference Of Arrival (TDOA with a lateration algorithm. The Position Estimation (PE accuracy of the lateration algorithm depends on several factors which are the TDOA estimation error, the lateration algorithm approach, the number of deployed GRSs and the selection of the GRS reference used for the PE process. Using the minimum number of GRSs for 3D emitter PE, a technique based on the condition number calculation is proposed to select the suitable GRS reference pair for improving the accuracy of the PE using the lateration algorithm. Validation of the proposed technique was performed with the GRSs in the square and triangular GRS configuration. For the selected emitter positions, the result shows that the proposed technique can be used to select the suitable GRS reference pair for the PE process. A unity condition number is achieved for GRS pair most suitable for the PE process. Monte Carlo simulation result, in comparison with the fixed GRS reference pair lateration algorithm, shows a reduction in PE error of at least 70% for both GRS in the square and triangular configuration.

  17. The graph-theoretic minimum energy path problem for ionic conduction

    Directory of Open Access Journals (Sweden)

    Ippei Kishida

    2015-10-01

    Full Text Available A new computational method was developed to analyze the ionic conduction mechanism in crystals through graph theory. The graph was organized into nodes, which represent the crystal structures modeled by ionic site occupation, and edges, which represent structure transitions via ionic jumps. We proposed a minimum energy path problem, which is similar to the shortest path problem. An effective algorithm to solve the problem was established. Since our method does not use randomized algorithm and time parameters, the computational cost to analyze conduction paths and a migration energy is very low. The power of the method was verified by applying it to α-AgI and the ionic conduction mechanism in α-AgI was revealed. The analysis using single point calculations found the minimum energy path for long-distance ionic conduction, which consists of 12 steps of ionic jumps in a unit cell. From the results, the detailed theoretical migration energy was calculated as 0.11 eV by geometry optimization and nudged elastic band method. Our method can refine candidates for possible jumps in crystals and it can be adapted to other computational methods, such as the nudged elastic band method. We expect that our method will be a powerful tool for analyzing ionic conduction mechanisms, even for large complex crystals.

  18. Minimum free-energy paths for the self-organization of polymer brushes.

    Science.gov (United States)

    Gleria, Ignacio; Mocskos, Esteban; Tagliazucchi, Mario

    2017-03-22

    A methodology to calculate minimum free-energy paths based on the combination of a molecular theory and the improved string method is introduced and applied to study the self-organization of polymer brushes under poor solvent conditions. Polymer brushes in a poor solvent cannot undergo macroscopic phase separation due to the physical constraint imposed by the grafting points; therefore, they microphase separate forming aggregates. Under some conditions, the theory predicts that the homogeneous brush and the aggregates can exist as two different minima of the free energy. The theoretical methodology introduced in this work allows us to predict the minimum free-energy path connecting these two minima as well as the morphology of the system along the path. It is shown that the transition between the homogeneous brush and the aggregates may involve a free-energy barrier or be barrierless depending on the relative stability of the two morphologies and the chain length and grafting density of the polymer. In the case where a free-energy barrier exists, one of the morphologies is a metastable structure and, therefore, the properties of the brush as the quality of the solvent is cycled are expected to display hysteresis. The theory is also applied to study the adhesion/deadhesion transition between two opposing surfaces modified by identical polymer brushes and it is shown that this process may also require surpassing a free-energy barrier.

  19. Projected electricity savings from implementing minimum energy efficiency standard for household refrigerators in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Choudhury, I.A.; NoorLeha, A.R.

    2003-01-01

    The Malaysian economy has grown rapidly in the last two decades. This growth has increased the ownership of household electrical appliances, especially refrigerator-freezers. Almost every house in Malaysia owns a refrigerator-freezer. The Malaysia Energy Center considered implementing a minimum energy efficiency standard for household refrigerator-freezers sometime in the coming year. This paper attempts to predict the amount of energy savings in the residential sector by implementing a minimum energy efficiency standard for household refrigerator-freezers. The calculations are based on the growth of refrigerator-freezer ownership data in Malaysian households. By implementing the programs in 2004, about 8722 GWh will be saved in the year 2013. Therefore, efficiency improvement of this appliance will provide a significant impact in future electricity consumption in Malaysia

  20. The Database Driven ATLAS Trigger Configuration System

    CERN Document Server

    Martyniuk, Alex; The ATLAS collaboration

    2015-01-01

    This contribution describes the trigger selection configuration system of the ATLAS low- and high-level trigger (HLT) and the upgrades it received in preparation for LHC Run 2. The ATLAS trigger configuration system is responsible for applying the physics selection parameters for the online data taking at both trigger levels and the proper connection of the trigger lines across those levels. Here the low-level trigger consists of the already existing central trigger (CT) and the new Level-1 Topological trigger (L1Topo), which has been added for Run 2. In detail the tasks of the configuration system during the online data taking are Application of the selection criteria, e.g. energy cuts, minimum multiplicities, trigger object correlation, at the three trigger components L1Topo, CT, and HLT On-the-fly, e.g. rate-dependent, generation and application of prescale factors to the CT and HLT to adjust the trigger rates to the data taking conditions, such as falling luminosity or rate spikes in the detector readout ...

  1. Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration

    International Nuclear Information System (INIS)

    Arbabzadeh, Maryam; Johnson, Jeremiah X.; De Kleine, Robert; Keoleian, Gregory A.

    2015-01-01

    Highlights: • We assess energy storage role in reaching emissions targets in an off-grid model. • The energy storage technology is vanadium redox flow battery (VRFB). • We evaluate life cycle GHG emissions and total cost of delivered electricity. • Generation mixes are optimized to meet emissions targets at the minimum cost. • For this model, integrating VRFB is economical to reach very low emissions targets. - Abstract: Energy storage may serve as a solution to the integration challenges of high penetrations of wind, helping to reduce curtailment, provide system balancing services, and reduce emissions. This study determines the minimum cost configuration of vanadium redox flow batteries (VRFB), wind turbines, and natural gas reciprocating engines in an off-grid model. A life cycle assessment (LCA) model is developed to determine the system configuration needed to achieve a variety of CO 2 -eq emissions targets. The relationship between total system costs and life cycle emissions are used to optimize the generation mixes to achieve emissions targets at the least cost and determine when VRFBs are preferable over wind curtailment. Different greenhouse gas (GHG) emissions targets are defined for the off-grid system and the minimum cost resource configuration is determined to meet those targets. This approach determines when the use of VRFBs is more cost effective than wind curtailment in reaching GHG emissions targets. The research demonstrates that while incorporating energy storage consistently reduces life cycle carbon emissions, it is not cost effective to reduce curtailment except under very low emission targets (190 g of CO2-eq/kW h and less for the examined system). This suggests that “overbuilding” wind is a more viable option to reduce life cycle emissions for all but the most ambitious carbon mitigation targets. The findings show that adding VRFB as energy storage could be economically preferable only when wind curtailment exceeds 66% for the

  2. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen

    DEFF Research Database (Denmark)

    Andersen, Jonas; Voute, A.; Mihrin, Dmytro

    2017-01-01

    )2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol−1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic......The true global potential energy minimum configuration of the formaldehyde dimer (CH2O)2, including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima...... conformations of Cs and C2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs...

  3. Materializing a responsive interior: designing minimum energy structures

    DEFF Research Database (Denmark)

    Mossé, Aurélie; Kofod, Guggi; Ramsgaard Thomsen, Mette

    2011-01-01

    This paper discusses a series of design-led experiments investigating future possibilities for architectural materialization relying on minimum energy structures as an example of adaptive structure. The structures have been made as laminates of elastic membrane under high tension with flexible...... (Lendlein, Kelch 2002) or light (van Oosten, Bastiaansen et al. 2009). All in all, this approach could form a whole new design paradigm, in which efficient 2D-manufacturing can lead to highly flexible, low weight and adaptable 3D-structures. This is illustrated by the design and manufacture of electro...

  4. Effect of cycle coupling-configuration on energy cascade utilization for a new power and cooling cogeneration cycle

    International Nuclear Information System (INIS)

    Jing, Xuye; Zheng, Danxing

    2014-01-01

    Highlights: • A new power and cooling cogeneration cycle was proposed. • The thermophysical properties and the performance of the new cycle were calculated. • Different cycle coupling-configurations were analyzed. • The energy efficiency boosting mechanism of the new cycle was elucidated. - Abstract: To recover mid-low grade heat, a new power/cooling cogeneration cycle was proposed by combining the Kalina cycle and the double-effect ammonia–water absorption refrigeration (DAAR) cycle together, and the equivalent heat-to-power and exergy efficiencies of the cogeneration cycle reached 41.18% and 58.00%, respectively. To determine the effect of cycle coupling-configuration on energy cascade utilization for the new cycle, the cycle coupling-configuration of the Kalina and DAAR cycles were first analyzed, after which the cycle coupling-configuration of the new cycle was analyzed. Analysis results showed that the cycle coupling-configuration of the new cycle enhanced the energy cascade utilization. Furthermore, the energy efficiency boosting mechanism of the new cycle was elucidated

  5. Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage

    International Nuclear Information System (INIS)

    Shaikh, Shadab; Lafdi, Khalid

    2006-01-01

    The present work involves the use of a two dimensional control volume based numerical method to conduct a study of a combined convection-diffusion phase change heat transfer process in varied configurations of composite PCM slabs. Simulations were conducted to investigate the impact of using different configurations of multiple PCM slabs arrangements with different melting temperatures, thermophysical properties and varied sets of boundary conditions on the total energy stored as compared to using a single PCM slab. The degree of enhancement of the energy storage has been shown in terms of the total energy stored rate. The numerical results from the parametric study indicated that the total energy charged rate can be significantly enhanced by using composite PCMs as compared to the single PCM. This enhancement in the energy storage can be of great importance to improve the thermal performance of latent thermal storage systems

  6. Deformed special relativity with an energy barrier of a minimum speed

    International Nuclear Information System (INIS)

    Nassif, Claudio

    2011-01-01

    Full text: This research aims to introduce a new principle of symmetry in the flat space-time by means of the elimination of the classical idea of rest, and by including a universal minimum limit of speed in the quantum world. Such a limit, unattainable by the particles, represents a preferred inertial reference frame associated with a universal background field that breaks Lorentz symmetry. So there emerges a new relativistic dynamics where a minimum speed forms an inferior energy barrier. One of the interesting implications of the existence of such a minimum speed is that it prevents the absolute zero temperature for an ultracold gas, according to the third law of thermodynamics. So we will be able to provide a fundamental dynamical explanation for the third law by means of a connection between such a phenomenological law and the new relativistic dynamics with a minimum speed. In other words we say that our relevant investigation is with respect to the problem of the absolute zero temperature in the thermodynamics of an ideal gas. We have made a connection between the 3 rd law of Thermodynamics and the new dynamics with a minimum speed by means of a relation between the absolute zero temperature (T = 0 deg K) and a minimum average speed (V) for a gas with N particles (molecules or atoms). Since T = 0 deg K is thermodynamically unattainable, we have shown this is due to the impossibility of reaching V from the new dynamics standpoint. (author)

  7. Theory of minimum dissipation of energy for the steady state

    International Nuclear Information System (INIS)

    Chu, T.K.

    1992-02-01

    The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space

  8. CONCEPT OF THE MINIMUM ENERGY PASSENGER CAR WITH USE OF UNCONVENTIONAL ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    V. A. Gabrinets

    2014-06-01

    Full Text Available Purpose. The paper is aimed to consider the concept of creation of the minimum energy passenger car with use of nonconventional energy sources and the walls that have enhanced thermal insulation properties. Мethodology. The types of heat losses, as well as their value were analyzed. The alternative sources of energy are considered for heating. Their potential contribution to the overall energy balance of the passenger car is analyzed. Impact on the car design of the enhanced wall thermal insulation, solar energy inflow through the transparent windows and energy release of passengers are quantitatively evaluated. Findings. With the maximum possible use of all unconventional energy sources and the rational scheme solutions of conditioning and heating systems energy the costs for these needs for a passenger car can be reduced by 40-50%. Originality. New types of energy to maintain the heat balance of the car in the winter period is proposed to use firstly. New schematics solutions for environmental control system of the car both in winter and in summer periods were offered. Practical value. Introduction of the proposed scheme solutions and approaches to ensure the comfortable conditions for passengers may be implemented on an existing park of passenger cars and do not require a major re-equipment of systems that have already been installed.

  9. Wavefunction and energy of the 1s22sns configuration in a beryllium atom

    International Nuclear Information System (INIS)

    Huang Shizhong; Ma Kun; Yu Jiaming; Liu Fen

    2008-01-01

    A new set of trial functions for 1s 2 2sns configurations in a beryllium atom is suggested. A Mathematica program based on the variational method is developed to calculate the wavefunctions and energies of 1s 2 2sns (n = 3–6) configurations in a beryllium atom. Non-relativistic energy, polarization correction and relativistic correction which include mass correction, one-and two-body Darwin corrections, spin-spin contact interaction and orbit-orbit interaction, are calculated respectively. The results are in good agreement with experimental data. (atomic and molecular physics)

  10. New Classes of Quasi-Axisymmetric Stellarator Configurations

    International Nuclear Information System (INIS)

    Ku LP

    2005-01-01

    We have identified and developed new classes of quasi-axially symmetric configurations which have attractive properties from the standpoint of both near-term physics experiments and long-term power producing reactors. These new configurations were developed as a result of surveying the aspect ratio-rotational transform space to identify regions endowed with particularly interesting features. These include configurations with very small aspect ratios (∼2.5) having superior quasi-symmetry and energetic particle confinement characteristics, and configurations with strongly negative global magnetic shear from externally supplied rotational transforms so that the overall rotational transform, when combined with the transform from bootstrap currents at finite plasma pressures, will yield a small but positive shear, making the avoidance of low order rational surfaces at a given operating beta possible. Additionally, we have found configurations with NCSX-like characteristics but with the biased components in the magnetic spectrum that allow us to improve the confinement of energetic particles. For each new class of configurations, we have designed coils as well to ensure that the new configurations are realizable and engineering-wise feasible. The coil designs typically have coil aspect ratios R/Δ min (C-P) (le) 6 and coil separation ratios R/Δ min (C-C) (le) 10, where R is the plasma major radius, Δ min (C-P) and Δ min (C-C) are the minimum coil to plasma and coil to coil separations, respectively. These coil properties allow power producing reactors be designed with major radii less than 9 meters for DT plasmas with a full breeding blanket. The good quasi-axisymmetry limits the energy loss of α particles to below 10%

  11. Metrics for measuring distances in configuration spaces

    International Nuclear Information System (INIS)

    Sadeghi, Ali; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-01-01

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices

  12. The energy principle applied to diverted tokamak configurations

    International Nuclear Information System (INIS)

    Atanasiu, C. V.; Guenter, S.; Lackner, K.; Moraru, A.; Zakharov, L. E.; Subbotin, A. A.

    2008-01-01

    Writing the expression of the potential energy in terms of the perturbation of the flux function, and performing an Euler minimisation, one obtains a system of ordinary differential equations in that perturbation. For a diverted configuration, the usual vanishing boundary conditions for the perturbed flux function at the magnetic axis and at infinity can no longer be used. In place of the vanishing boundary conditions at infinity, an approach to fix 'natural' boundary conditions for the system of differential equations for the perturbed flux function, just at the plasma boundary has been developed. As an example of application of our approaches, a particular equilibrium configuration of the ASDEX Upgrade tokamak has been considered and a detailed investigation of the dependence of the tearing stability parameter Δ' on plasma shape is given for a realistic tokamak equilibrium. The results shown are at least in qualitative agreement with experimental observations on ASDEX Upgrade and JET of a stabilizing influence of triangularity. The knowledge of Δ' for realistic tokamak plasmas is especially important for understanding of the plasma stability against NTMs. (authors)

  13. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Isoelectronic sequence fits to configuration-averaged photoionization cross sections and ionization energies

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Cowan, R.D.; Bobrowicz, F.W.

    1986-01-01

    Hartree--Fock wave functions have been used to calculate configuration -averaged photoionization cross sections and ionization energies for orbitals 1s< or =nl< or =5g in He-like through Al-like isoelectroni csequences. The photoionization cross sections have been fitted as a function of the nuclear charge, Z, and photon energy, X, in threshold units, with average error of less than 10%. The ionization energies have been fitted as a function of Z with errors of less than 0.5%

  15. A fast tomographic method for searching the minimum free energy path

    International Nuclear Information System (INIS)

    Chen, Changjun; Huang, Yanzhao; Xiao, Yi; Jiang, Xuewei

    2014-01-01

    Minimum Free Energy Path (MFEP) provides a lot of important information about the chemical reactions, like the free energy barrier, the location of the transition state, and the relative stability between reactant and product. With MFEP, one can study the mechanisms of the reaction in an efficient way. Due to a large number of degrees of freedom, searching the MFEP is a very time-consuming process. Here, we present a fast tomographic method to perform the search. Our approach first calculates the free energy surfaces in a sequence of hyperplanes perpendicular to a transition path. Based on an objective function and the free energy gradient, the transition path is optimized in the collective variable space iteratively. Applications of the present method to model systems show that our method is practical. It can be an alternative approach for finding the state-to-state MFEP

  16. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  17. Improvement in minimum detectable activity for low energy gamma by optimization in counting geometry

    Directory of Open Access Journals (Sweden)

    Anil Gupta

    2017-01-01

    Full Text Available Gamma spectrometry for environmental samples of low specific activities demands low minimum detection levels of measurement. An attempt has been made to lower the gamma detection level of measurement by optimizing the sample geometry, without compromising on the sample size. Gamma energy of 50–200 keV range was chosen for the study, since low energy gamma photons suffer the most self-attenuation within matrix. The simulation study was carried out using MCNP based software “EffCalcMC” for silica matrix and cylindrical geometries. A volume of 250 ml sample geometry of 9 cm diameter is optimized as the best suitable geometry for use, against the in-practice 7 cm diameter geometry of same volume. An increase in efficiency of 10%–23% was observed for the 50–200 keV gamma energy range and a corresponding lower minimum detectable activity of 9%–20% could be achieved for the same.

  18. Kinetic Energy Dissipation on Labyrinth Configuration Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Jaafar S. Maatooq

    2017-12-01

    Full Text Available In present work a labyrinth (zigzag, in shape has been used to configure the steps of stepped spillway by using the physical model. This configuration does not introduce previously by investigators or in construction techniques of dams or cascades. It would be expected to improve the flow over chute. A magnifying the width path of each step to become, LT, instead of, W, will induce the interlocking between the mainstream and that spread laterally due to labyrinth path. This phenomenon leads to reduce the jet velocities near the surfaces, thus minimizing the ability of cavitation and with increasing a circulation regions the ability of air entrainment be maximized. The results were encouraging, (e.g., the reverse performance has recorded for spillway slope. From the evaluation of outcome, the average recorded of percentage profits of kinetic energy dissipation with a labyrinth shape compared with the results of traditional shape were ranged between (13- 44%. Different predictive formulas have been proposed based on iteration analysis, can be recommended for evaluation and design.

  19. Based on the Hardware Resources Configurable Shanke PLC Building Energy Consumption Detection System

    Directory of Open Access Journals (Sweden)

    Cheng Guanghe

    2017-01-01

    Full Text Available According to the actual situation of the comprehensive office building and the functional requirements of the building energy consumption monitoring and management system, the office building energy consumption monitoring and management system is designed by using the hardware resource configurable Shanke PLC(SKPLC as the data collector. The system uses data bus technology and field data acquisition technology to achieve the building energy consumption data acquisition and management. Practice has proved that energy-saving effect is good.

  20. Cost-benefit analysis of implementing minimum energy efficiency standards for household refrigerator-freezers in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Amalina, M.A.

    2004-01-01

    The ownership of household electrical appliances especially refrigerator-freezer has increased rapidly in Malaysia. Almost every household in this country has a refrigerator-freezer. To reduce energy consumption in this sector the refrigerator is one of the top priorities of the energy efficiency program for household appliances. Malaysian authority is considering implementing minimum energy efficiency standards for refrigerator-freezer sometime in the coming year. This paper attempts to analyze cost-benefit of implementing minimum energy efficiency standards for household refrigerator-freezers in Malaysia. The calculations were made based on growth of ownership data for refrigerators in Malaysian households. The number of refrigerator-freezer has increased from 175,842 units in 1970 to 4,196,486 in 2000 and it will be about 11,293,043 in the year of 2020. Meanwhile it has accounted for about 26.3% of electricity consumption in a single household. Therefore, efficiency improvement of this appliance will give a significant impact in the future of electricity consumption in this country. Furthermore, it has been found that implementing an energy efficiency standard for household refrigerator-freezers is economically justified

  1. Potential minimum cost of electricity of superconducting coil tokamak power reactors

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y-K. M.

    1989-01-01

    The potential minimum cost of electricity (COE) for superconducting tokamak power reactors is estimated by increasing the physics (confinement, beta limit, bootstrap current fraction) and technology [neutral beam energy, toroidal field (TF) coil allowable stresses, divertor heat flux, superconducting coil critical field, critical temperature, and quench temperature rise] constraints far beyond those assumed for ITER until the point of diminishing returns is reached. A version of the TETRA systems code, calibrated with the ITER design and modified for power reactors, is used for this analysis, limiting this study to reactors with the same basic device configuration and costing algorithms as ITER. A minimum COE is reduced from >200 to about 80 mill/kWh when the allowable design constraints are raised to 2 times those of ITER. At 4 times the ITER allowables, a minimum COE of about 60 mill/kWh is obtained. The corresponding tokamak has a major radius of approximately 4 m, a plasma current close to 10 MA, an aspect ratio of 4, a confinement H- factor ≤3, a beta limit of approximately 2 times the first stability regime, a divertor heat flux of about 20 MW/m 2 , a Β max ≤ 18 T, and a TF coil average current density about 3 times that of ITER. The design constraints that bound the minimum COE are the allowable stresses in the TF coil, the neutral beam energy, and the 99% bootstrap current (essentially free current drive). 14 refs., 4 figs., 2 tabs

  2. Isotope shifts and electronic configurations of some of the energy levels of the neutral gadolinium atom

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Venugopalan, A.; Saksena, G.D.

    1982-01-01

    Isotope shift ΔT (156-160) have been evaluated for 52 odd and 90 even energy levels of the neutral gadolinium atom from the measurements carried out on 166 lines of the first spectrum in the region 4535 to 4975 A on a photoelectric recording Fabry-Perot Spectrometer and enriched samples of 156 Gd and 160 Gd. Earlier studies provide data for just two lines in this region. Assignment of electronic configurations to some of the energy levels have been either confirmed or revised; some unassigned levels have been assigned probable configurations. The present study provides, for the first time, isotope shift of the two levels of 4f 7 6s 2 7s configuration of Gd I. (author)

  3. Principle of Minimum Energy in Magnetic Reconnection in a Self-organized Critical Model for Solar Flares

    Science.gov (United States)

    Farhang, Nastaran; Safari, Hossein; Wheatland, Michael S.

    2018-05-01

    Solar flares are an abrupt release of magnetic energy in the Sun’s atmosphere due to reconnection of the coronal magnetic field. This occurs in response to turbulent flows at the photosphere that twist the coronal field. Similar to earthquakes, solar flares represent the behavior of a complex system, and expectedly their energy distribution follows a power law. We present a statistical model based on the principle of minimum energy in a coronal loop undergoing magnetic reconnection, which is described as an avalanche process. We show that the distribution of peaks for the flaring events in this self-organized critical system is scale-free. The obtained power-law index of 1.84 ± 0.02 for the peaks is in good agreement with satellite observations of soft X-ray flares. The principle of minimum energy can be applied for general avalanche models to describe many other phenomena.

  4. Reliability analysis of minimum energy on target for laser facilities with more beam lines

    International Nuclear Information System (INIS)

    Chen Guangyu

    2008-01-01

    Shot reliability performance measures of laser facilities with more beam lines pertain to three categories: minimum-energy-on-target, power balance, and shot diagnostics. Accounting for symmetry of NIF beam line design and similarity of subset reliability in a same partition, a fault tree of meeting minimum-energy-on-target for the large laser facility shot of type K and a simplified method are presented, which are used to analyze hypothetic reliability of partition subsets in order to get trends of influences increasing number of beam lines and diverse shot types of large laser facilities on their shot reliability. Finally, it finds that improving component reliability is more crucial for laser facilities with more beam lines in comparison with those with beam lines and functional diversity from design flexibility is greatly helpful for improving shot reliability. (authors)

  5. A screening method for the optimal selection of plate heat exchanger configurations

    Directory of Open Access Journals (Sweden)

    Pinto J.M.

    2002-01-01

    Full Text Available An optimization method for determining the best configuration(s of gasketed plate heat exchangers is presented. The objective is to select the configuration(s with the minimum heat transfer area that still satisfies constraints on the number of channels, the pressure drop of both fluids, the channel flow velocities and the exchanger thermal effectiveness. The configuration of the exchanger is defined by six parameters, which are as follows: the number of channels, the numbers of passes on each side, the fluid locations, the feed positions and the type of flow in the channels. The resulting configuration optimization problem is formulated as the minimization of the exchanger heat transfer area and a screening procedure is proposed for its solution. In this procedure, subsets of constraints are successively applied to eliminate infeasible and nonoptimal solutions. Examples show that the optimization method is able to successfully determine a set of optimal configurations with a minimum number of exchanger evaluations. Approximately 5 % of the pressure drop and channel velocity calculations and 1 % of the thermal simulations are required for the solution.

  6. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  7. Communicating knowledge: Making embedded configuration work

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars

    2007-01-01

    A lot of systems are assembled from near-independent mechatronic subsystems that have to be configured to match each other. An example of such systems are e.g. home entertainment systems, where TV, DVD and Receiver are matched to form an overall system, and compilation of pumps and controllers...... to form fresh water supply systems. Sometimes an external knowledge system keeps track of how each subsystem has to be configured, but the actual configuration is often done manually. Installing and maintaining those kinds of systems can be a tedious task and often requires repetitive labour. The idea...... is to “split-up” the product knowledge and encapsulate it into each subsystem. Then, when the subsystems are assembled, the configuration of each subsystem can either be done automatically or with minimum input. The concept could be called: embedded configuration. This article will try to connect three aspects...

  8. Configurational energies and effective cluster interactions in substitutionally disordered binary alloys

    International Nuclear Information System (INIS)

    Gonis, A.; Zhang, X.h.; Freeman, A.J.; Turchi, P.; Stocks, G.M.; Nicholson, D.M.

    1987-01-01

    The determination of configurational energies in terms of effective cluster interactions in substitutionally disordered alloys from a knowledge of the alloy electronic structure is examined within the methods of concentration waves (CW) and the generalized perturbation method (GPM), and for the first time within the embedded-cluster method (ECM). It is shown that the ECM provides the exact summation to all orders of the effective cluster interaction expansions obtained in the partially renormalized GPM. The connection between the various methods (CW, GPM, and ECM) is discussed and illustrated by means of numerical calculations for model one-dimensional tight-binding (TB) systems and for TB Hamiltonians chosen to describe Pd-V alloys. These calculations, and the formal considerations presented in the body of the paper, show the complete equivalence of converged GPM summations within specific clusters and the ECM. In addition, it is shown that an exact expansion of the configurational energy can be obtained in terms of fully renormalized effective cluster interactions. In principle, these effective cluster interactions can be used in conjunction with statistical models to determine stable ordered structures at low temperatures and alloy phase diagrams

  9. Minimum cost solution of wind–photovoltaic based stand-alone power systems for remote consumers

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Zafirakis, D.; Kavadias, K.

    2012-01-01

    Renewable energy sources (RES) based stand-alone systems employing either wind or solar power and energy storage comprise a reliable energy alternative, on top of conventional diesel-electric generator sets, commonly used by remote consumers. However, such systems usually imply the need for oversizing and considerable energy storage requirements leading to relatively high costs. On the other hand, hybrid configurations that may exploit both wind and solar potential of a given area may considerably reduce energy storage capacity and improve the economic performance of the system. In this context, an integrated techno-economic methodology for the evaluation of hybrid wind–photovoltaic stand-alone power systems is currently developed, aiming at the designation of optimum configurations for a typical remote consumer, using economic performance criteria. For the problem investigation, the developed evaluation model is applied to four representative areas of the Greek territory with different wind potential characteristics in order to obtain optimum configurations on the basis of minimum initial investment, 10-year and 20-year total cost. According to the results obtained, the proposed solution is favorably compared with all other stand-alone energy alternatives, reflecting the ability of hybrid systems to adjust even in areas where the local RES potential is not necessarily of high quality. - Highlights: ► Wind- and PV-stand alone systems often imply use of extreme battery capacity. ► Hybrid wind–PV systems may reduce energy storage requirements and associated costs. ► An optimization methodology is developed, based on economic performance criteria. ► Methodology is applied to four Greek regions of different wind potential. ► Results obtained reflect the hybrid solution's advantages over other alternatives.

  10. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  11. Energy and Exergy Analysis for Improving the Energy Performance of Air-Cooled Liquid Chillers by Different Condensing-Coil Configurations

    Directory of Open Access Journals (Sweden)

    Tzong-Shing Lee

    2012-03-01

    Full Text Available This study constructed a parameter analysis for improving the energy performance of air-cooled water chillers by altering the angle configuration of the condenser coils. The mathematical models for energy and exergy analyses of the individual components and overall system of air-cooled water chillers are presented. This study investigated the potential enhancement of performance efficiency in air-cooled chillers and the energy conversion efficiency of each component, in order to determine how the angle configuration of condenser coils influences chiller performance. This study found that the overall performance of an air-cooled chiller could be improved by approximately 3.4%, and the total irreversibility could be reduced by approximately 2.7%. With each 1% increase in average wind speed over the condenser coils, the overall performance of an air‑cooled chiller was found to be enhanced by approximately 0.43%, and its total irreversibility was reduced by approximately 0.35%. The results of this study can be effectively applied to air-cooled condenser units, and can provide an important basis of reference for developing and enhancing the energy efficiency of air-cooled chillers.

  12. Model and design of dielectric elastomer minimum energy structures

    International Nuclear Information System (INIS)

    Rosset, Samuel; Araromi, Oluwaseun A; Shintake, Jun; Shea, Herbert R

    2014-01-01

    Fixing a prestretched dielectric elastomer actuator (DEA) on a flexible frame allows transformation of the intrinsic in-plane area expansion of DEAs into complex three-dimensional (3D) structures whose shape is determined by a configuration that minimizes the elastic energy of the actuator and the bending energy of the frame. These stuctures can then unfold upon the application of a voltage. This article presents an analytical modelling of the dielectric elastomer minimal energy structure in the case of a simple rectangular geometry and studies the influence of the main design parameters on the actuator's behaviour. The initial shape of DEMES, as well as the actuation range, depends on the elastic strain energy stored in the elastomeric membrane. This energy depends on two independent parameters: the volume of the membrane and its initial deformation. There exist therefore different combinations of membrane volume and prestretch, which lead to the same initial shape, such as a highly prestretched thin membrane, or a slightly prestretched thick membrane. Although they have the same initial shape, these different membrane states lead to different behaviour once the actuation voltage is applied. Our model allows one to predict which choice of parameters leads to the largest actuation range, while specifying the impact of the different membrane conditions on the spring constant of the device. We also explore the effects of non-ideal material behaviour, such as stress relaxation, on device performance. (paper)

  13. Minimum Energy Dwelling (MED) workbook: an investigation of techniques and materials for energy conscious design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This workbook is based upon information gathered during the design phase of the Minimum Energy Dwelling. The objective of the project, sponsored by the Southern California Gas Co., Department of Energy, and Mission Viejo is to substantially reduce energy use by the incorporation of energy conservation and solar techniques in a single-family detached dwelling. The Project will demonstrate to builders, as well as to the general public, a number of technological innovations that can, at reasonable cost, be included in a dwelling design. The problem facing Southern California Gas Co., along with most other gas utilities, is ever-decreasing amounts of gas at increasing prices. The dwelling designed has approximately 1,150 ft/sup 2/, consistent with current home-building trends. Through the optimum use of energy-conserving appliances, insulation, window and wall shading, exterior coloring, and thermal mass, the yearly energy usage has been reduced by over 50%. Of the remaining 50% of the energy required for heating, cooling, and domestic hot water, the majority is supplied by the solar-energy system. Three hundred twenty square feet (270 effective) of evacuated tube collector are incorporated into the building structure. The hot water provided by the collectors is used to run an absorption chiller for cooling, the domestic hot water, and the heating system. The remaining energy requirements are met by an auxiliary natural gas energy system and a cool-air-economizer cycle.

  14. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  15. The potential energy landscape in the Lennard-Jones binary mixture model

    International Nuclear Information System (INIS)

    Sampoli, M; Benassi, P; Eramo, R; Angelani, L; Ruocco, G

    2003-01-01

    The potential energy landscape in the Kob-Andersen Lennard-Jones binary mixture model has been studied carefully from the liquid down to the supercooled regime, from T = 2 down to 0.46. One thousand independent configurations along the time evolution locus have been examined at each temperature investigated. From the starting configuration, we searched for the nearest saddle (or quasi-saddle) and minimum of the potential energy. The vibrational densities of states for the starting and the two derived configurations have been evaluated. Besides the number of negative eigenvalues of the saddles other quantities show some signature of the approach of the dynamical arrest temperature

  16. Relativistic configuration-interaction calculation of the correlation energies of heliumlike ions. Revision 1

    International Nuclear Information System (INIS)

    Cheng, K.T.; Chen, M.H.; Johnson, W.R.

    1994-04-01

    A new relativistic configuration-interaction (CI) method using B-spline basis functions has been developed to study the correlation energies of two-electron heliumlike ions. Based on the relativistic no-pair Hamiltonian, the CI equation leads to a symmetric eigenvalue problem involving large, dense matrices. Davidson's method is used to obtain the lowest few eigenenergies and eigenfunctions. Results on transition energies and finite structure splittings for heliumlike ions are in very good agreement with experiment throughout the periodic table

  17. Energy efficient piston configuration for effective air motion – A CFD study

    International Nuclear Information System (INIS)

    Gnana Sagaya Raj, Antony Raj; Mallikarjuna, Jawali Maharudrappa; Ganesan, Venkitachalam

    2013-01-01

    Highlights: ► All piston crown show similar flow pattern for experimental and simulated studies. ► Piston position plays a predominant role in the air pattern inside the cylinder. ► The flat bowl piston shows higher TKE compared to all other piston crown shape. ► The turbulence intensity and length scale are higher for flat bowl piston. ► The quantitative error between the CFD and PIV analysis is about 5%. -- Abstract: Air motion inside the cylinder is very important from the point of view of energy efficiency. In this direction, piston configuration plays a very crucial role. This study is concerned with the CFD analysis of in-cylinder air motion coupled with the comparison of predicted results with the experimental results available in the literature. Four configurations viz., flat, inclined, centre bowl and inclined offset bowl pistons have been studied. For numerical analysis STAR-CD CFD software has been used. Experimental results available in the literature for comparison are obtained by PIV measurements. From this study, it is concluded that a centre bowl on flat piston is found to be the best from the point of view of tumble ratio, turbulent kinetic energy, turbulent intensity and turbulent length scale which play very important role in imparting proper air motion, there by increasing the energy efficiency of the engine.

  18. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Todd [West Virginia Univ., Morgantown, WV (United States)

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

  19. Energy Efficiency: The Implementation of Minimum Energy Performance Standard (MEPS Application on Home Appliances for Residential

    Directory of Open Access Journals (Sweden)

    Rahman K.A

    2016-01-01

    Full Text Available Generally, Minimum Energy Performance Standard (MEPS has been widespread across the country especially developed country. However, most consumers do not even know about the MEPS. Without sufficient knowledge, much energy have been wasted before this. The aim of this study is to review the implementation of MEPS of Asia country and to compare electricity consumption of home appliances with star rating and without star rating. In order to fulfil the objectives of the study, the equipment must be chosen correctly and must be learned properly. The home appliances that will be used also need to be chosen so that the comparison between the appliances will be matched correctly. To understand the results, the analysis was done using graphs and table. The purpose of using graph and table is to understand the comparison between appliances more clearly. The results show that home appliances with MEPS is more efficient on energy saving rather than without MEPS. This is the evidence as a method to educate a consumer on energy saving.

  20. An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands

    CERN Document Server

    Takala, E; Bremer, J; Balle, C; Bottura, L; Rossi, L

    2012-01-01

    Magneto-thermal instability may affect high critical current density Nb$_{3}$Sn superconducting strands that can quench even though the transport current is low compared to the critical current with important implications in the design of next generation superconducting magnets. The instability is initiated by a small perturbation energy which is considerably lower than the Minimum Quench Energy (MQE). At CERN, a new experimental setup was developed to measure the smallest perturbation energy (Minimum Trigger Energy, MTE) which is able to trigger the magneto-thermal instability in superconducting Nb$_{3}$Sn-strands. The setup is based on Q-switched laser technology which is able to provide a localized perturbation in nano-second time scale. Using this technique the energy deposition into the strand is well defined and reliable. The laser is located outside the cryostat at room temperature. The beam is guided from room temperature on to the superconducting strand by using a UV-enhanced fused silica fibre. The ...

  1. Energy Landscapes for the Self-Assembly of Supramolecular Polyhedra

    Science.gov (United States)

    Russell, Emily R.; Menon, Govind

    2016-06-01

    We develop a mathematical model for the energy landscape of polyhedral supramolecular cages recently synthesized by self-assembly (Sun et al. in Science 328:1144-1147, 2010). Our model includes two essential features of the experiment: (1) geometry of the organic ligands and metallic ions; and (2) combinatorics. The molecular geometry is used to introduce an energy that favors square-planar vertices (modeling {Pd}^{2+} ions) and bent edges with one of two preferred opening angles (modeling boomerang-shaped ligands of two types). The combinatorics of the model involve two-colorings of edges of polyhedra with four-valent vertices. The set of such two-colorings, quotiented by the octahedral symmetry group, has a natural graph structure and is called the combinatorial configuration space. The energy landscape of our model is the energy of each state in the combinatorial configuration space. The challenge in the computation of the energy landscape is a combinatorial explosion in the number of two-colorings of edges. We describe sampling methods based on the symmetries of the configurations and connectivity of the configuration graph. When the two preferred opening angles encompass the geometrically ideal angle, the energy landscape exhibits a very low-energy minimum for the most symmetric configuration at equal mixing of the two angles, even when the average opening angle does not match the ideal angle.

  2. Prediction technique for minimum-heat-flux (MHF)- point condition of saturated pool boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1987-01-01

    The temperature-controlled hypothesis for the minimum-heat-flux (MHF)-point condition, in which the MHF-point temperature is regarded as the controlling factor and is expected to be independent of surface configuration and dimensions, is inductively investigated for saturated pool-boiling. In this paper such features of the MHF-point condition are experimentally proved first. Secondly, a correlation of the MHF-point temperature is developed for the effect of system pressure. Finally, a simple technique based on this correlation is presented to estimate the effects of surface configuration, dimensions and system pressure on the minimum heat flux. (author)

  3. An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes

    Directory of Open Access Journals (Sweden)

    Israr Ullah

    2017-11-01

    Full Text Available In the smart home environment, efficient energy management is a challenging task. Solutions are needed to achieve a high occupant comfort level with minimum energy consumption. User comfort is measured in terms of three fundamental parameters: (a thermal comfort, (b visual comfort and (c air quality. Temperature, illumination and CO 2 sensors are used to collect indoor contextual information. In this paper, we have proposed an improved optimization function to achieve maximum user comfort in the building environment with minimum energy consumption. A comprehensive formulation is done for energy optimization with detailed analysis. The Kalman filter algorithm is used to remove noise in sensor readings by predicting actual parameter values. For optimization, we have used genetic algorithm (GA and particle swarm optimization (PSO algorithms and performed comparative analysis with a baseline scheme on real data collected for a one-month duration in our lab’s indoor environment. Experimental results show that the proposed optimization function has achieved a 27 . 32 % and a 31 . 42 % reduction in energy consumption with PSO and GA, respectively. The user comfort index was also improved by 10 % i.e., from 0 . 86 to 0 . 96 . GA-based optimization results were better than PSO, as it has achieved almost the same user comfort with 4 . 19 % reduced energy consumption. Results show that the proposed optimization function gives better results than the baseline scheme in terms of user comfort and the amount of consumed energy. The proposed system can help with collecting the data about user preferences and energy consumption for long-term analysis and better decision making in the future for efficient resource utilization and overall profit maximization.

  4. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  5. Thermal-hydraulic study of fixed bed nuclear reactor (FBNR), in FCC, BCC and pseudo-random configurations of the core through CFD method

    International Nuclear Information System (INIS)

    Luna, M.; Chavez, I.; Cajas, D.; Santos, R.

    2015-01-01

    The study of thermal-hydraulic performance of a fixed bed nuclear reactor (FBNR) core and the effect of the porosity was studied by the CFD method with 'SolidWorks' software. The representative sections of three different packed beds arrangements were analyzed: face-centered cubic (FCC), body-centered cubic (BCC), and a pseudo-random, with values of porosity of 0.28, 0.33 and 0.53 respectively. The minimum coolant flow required to avoid the phase change for each one of the configurations was determined. The results show that the heat transfer rate increases when the porosity value decreases, and consequently the minimum coolant flow in each configuration. The results of minimum coolant flow were: 728.51 kg/s for the FCC structure, 372.72 kg/s for the BCC, and 304.96 kg/s for the pseudo-random. Meanwhile, the heat transfer coefficients in each packed bed were 6480 W/m 2 *K, 3718 W/m 2 *K and 3042 W/m 2 *K respectively. Finally the pressure drop was calculated, and the results were 0.588 MPa for FCC configuration, 0.033 MPa for BCC and 0.017 MPa for the pseudo-random one. This means that with a higher porosity, the fluid can circulate easier because there are fewer obstacles to cross, so there are fewer energy losses. (authors)

  6. Electricity savings from implementation of minimum energy efficiency standard for TVs in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M.; Masjuki, H.H.; Mahlia, T.M.I. [University of Malaya, Kuala Lumpur (Malaysia). Department of Mechanical Engineering

    2005-06-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD in Malaysia are poised to have a large impact on overall TV electricity consumption in the country. With the increasing of overall TV energy consumption, energy efficiency standards are one of highly effective policies for decreasing electricity consumption in the residential sector. Energy efficiency standards are also capable of reducing consumer's electricity bill and contribute towards positive environmental impacts. This paper attempts to predict the amount of energy that can be saved in the residential sector by implementing minimum energy efficiency standard for television sets in Malaysia. Over the past 30 years, television ownership in Malaysian residents has increased from 186,036 units in 1970 to 2,741,640 units in 1991. This figure is expected to reach 6,201,316 units in the year 2010. Hence, efficiency improvement for this appliance will have a significant impact on the future of electricity consumption in this country. (author)

  7. Stable configurations in social networks

    Science.gov (United States)

    Bronski, Jared C.; DeVille, Lee; Ferguson, Timothy; Livesay, Michael

    2018-06-01

    We present and analyze a model of opinion formation on an arbitrary network whose dynamics comes from a global energy function. We study the global and local minimizers of this energy, which we call stable opinion configurations, and describe the global minimizers under certain assumptions on the friendship graph. We show a surprising result that the number of stable configurations is not necessarily monotone in the strength of connection in the social network, i.e. the model sometimes supports more stable configurations when the interpersonal connections are made stronger.

  8. Configuration of supply chains in emerging industries: a multiple-case study in the wave-and-tidal energy industry

    OpenAIRE

    Bjørgum, Øyvind; Netland, Torbjørn H.

    2017-01-01

    Companies in emerging industries face particular challenges in configuring effective supply chains. In this paper, we build on transaction cost economics to explore how supply chains can be configured in emerging industries. We focus on two key aspects of supply chain configuration: the make-or-buy decision and the strength of the ties between a focal firm and its suppliers. We utilise a multiple-case study methodology, including seven start-up companies in the emerging wave-and-tidal energy ...

  9. Quadcopter Aggressive Maneuvers along Singular Configurations: An Energy-Quaternion Based Approach

    Directory of Open Access Journals (Sweden)

    Ayman A. El-Badawy

    2016-01-01

    Full Text Available Automatic aggressive maneuvers with quadcopters are regarded as a highly challenging control problem. The aim is to tackle the singularities that exist in a vertical looping maneuver. Modeling singularities are resolved by writing the equations-of-motion of the quadcopter in quaternion form. Physical singularities due to underactuation are resolved by using an energy-based control. Energy-based control is utilized to overcome the uncontrollability of the quadcopter at physical singular configurations, for instance, when commanding the quadcopter to gain altitude while pitched at 90∘. Three looping strategies (circular, clothoidal, and newly developed constant thrust are implemented on a nonlinear model of the quadcopter. The three looping strategies are discussed along with their advantages and limitations.

  10. Minimum Energy Control of 2D Positive Continuous-Discrete Linear Systems

    Directory of Open Access Journals (Sweden)

    Kaczorek Tadeusz

    2014-09-01

    Full Text Available The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Necessary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero boundary conditions to given final state and minimizing the performance index for only one step (q = 1. A procedure for solving of the problem is proposed and illustrated by a numerical example.

  11. Determination of minimum impact parameter by modified touching spheres schemes for intermediate energy Coulomb excitation experiments

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh

    2016-01-01

    The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)

  12. The Broader Spectrum of Magnetic Configurations for Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prager, S C [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ryutov, D D [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-09-15

    Over the decades, a large array of magnetic configurations has been studied, producing a huge amount of fusion plasma science. As configurations are developed, information and techniques learned through one configuration influence the development of other configurations. In this way, configurations evolve unexpectedly in response to new information. Configurations that were at a pause can become unstuck by new discoveries, and configurations that appeared promising for fusion energy can become unattractive as new limits are uncovered. The plasma science of fusion energy is sufficiently complex that, as we approach ever closer to practical fusion power, the need for potential contributions of broad research of multiple magnetic configurations remains strong. (author)

  13. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    International Nuclear Information System (INIS)

    Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao

    2009-01-01

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  14. DINS measurements on VESUVIO in the Resonance Detector configuration: proton mean kinetic energy in water

    Science.gov (United States)

    Pietropaolo, Antonino; Andreani, Carla; Filabozzi, Alessandra; Senesi, Roberto; Gorini, Giuseppe; Perelli-Cippo, Enrico; Tardocchi, Marco; Rhodes, Nigel J.; Schooneveld, Erik M.

    2006-04-01

    Deep Inelastic Neutron Scattering (DINS) measurements have been performed on a liquid water sample at two different temperatures and pressures. The experiments were carried out using the VESUVIO spectrometer at the ISIS spallation neutron source. This experiment represents the first DINS measurement from water using the Resonance Detector configuration, employing yttrium-aluminum-perovskite scintillator and a 238U analyzer foil. The maximum energy of the scattered neutrons was about 70 eV, allowing to access an extended kinematic space with energy and wave vector transfers at the proton recoil peak in the range 1 eV <= hbarω <= 20 eV and 25 Å-1 <= q <= 90 Å-1, respectively. Comparison with DINS measurements on water performed in the standard Resonance Filter configuration indicates the potential advantages offered by the use of Resonance Detector approach for DINS measurements at forward scattering angles.

  15. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    Science.gov (United States)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  16. Design Of Cooling Configuration For Military Aeroengine V-Gutter

    Directory of Open Access Journals (Sweden)

    Batchu Suresh

    2017-07-01

    Full Text Available Military aircraft engines employ afterburner system for increasing the thrust required during combat and take-off flight conditions. V-gutter is employed for stabilisation of the flame during reheat. For fifth generation aero engine the gas temperature at the start of the afterburner is be-yond the allowable material limits of the V-gutter so it is required to cool the V-gutter to obtain acceptable creep life. The design of cooling configuration for the given source pressure is worked out for different rib configurations to obtain the allowable metal temperature with minimum coolant mass flow.1D network analysis is used to estimate the cooling mass flow and metal temperature for design flight condition. CFD analysis is carried out for four cooling configurations with different rib orientations. Out of four configurations one configuration is selected for the best cooling configuration.

  17. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    Science.gov (United States)

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  18. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory.

    Science.gov (United States)

    Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-10-07

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.

  19. Particle orbits in W VII-X configurations

    International Nuclear Information System (INIS)

    Wobig, H.

    1987-01-01

    It is shown that magnetic coordinates are very convenient for describing particle orbits and neoclassical losses in stellarator studies. In the configurations considered (WVII-A and AS, Helias, Heliac, and BSX) plateau losses can be reduced by a factor of 3-4 compared with an equivalent tokamak. It is possible to reduce plateau losses and bootstrap current simultaneously. The bootstrap current can be made negligibly small. The Heliac configuration shows larger plateau losses than the equivalent tokamak. It is possible to localize trapped particles in a region of minimum radial drift velocity. The Er fields strongly reduce localized particle losses

  20. Bending energy of buckled edge dislocations

    Science.gov (United States)

    Kupferman, Raz

    2017-12-01

    The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.

  1. Simulation study of self-sustainment mechanism in reversed-field pinch configuration

    International Nuclear Information System (INIS)

    Kusano, Kanya; Sato, Tetsuya.

    1989-09-01

    3D magnetohydrodynamic (MHD) simulations are carried out in order to reveal the fundamental mechanism of the self-sustainment process in the reversed-field pinch plasma. It is confirmed that the RFP configuration is sustained in a cyclic process, where the MHD relaxation phase and the resistive diffusion phase appear cyclically and alternatively. In the MHD relaxation process, the RFP plasma approaches a Taylor's minimum energy state, but it departs from there in the diffusion process. In other words, since MHD relaxation processes periodically release excess magnetic energy accumulated in the resistive diffusion phase, RFP plasma can stay in the neighborhood of the minimum energy state. The mechanism of this cyclic process is disclosed. Namely, when at least two ideal kink (m = 1) modes becomes unstable, MHD relaxation can take place. This is because the MHD relaxation progresses through nonlinear reconnection of the m = 0 mode, which is driven by nonlinear coupling between the unstable kink modes. Therefore, self-sustainment processes can be achieved by the nonlinear effects of essentially the m = 0 and 1 modes. The quantitative dependence of the relaxation-diffusion cycle on the aspect ratio of the device is considered along with its dependence on the magnetic Reynolds, number. These results are consistent with recent experiments and indicate that a coherent oscillation, which is often observed in experiments, is necessary for self-sustainment. The influence of self-sustainment processes on particle confinement is briefly discussed. (author)

  2. Relativistic configuration interaction treatment of generalized oscillator strength for krypton

    International Nuclear Information System (INIS)

    Wang Huangchun; Qu Yizhi; Liu Chunhua

    2007-01-01

    A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717 eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions (K 2 in a.u.) of the minimum and maximum GOSs in the 4s 2 4p 6 →4s 2 4p 5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97. (authors)

  3. Relativistic Configuration Interaction Treatment of Generalized Oscillator Strength for Krypton

    Institute of Scientific and Technical Information of China (English)

    WANG Huang-Chun; QU Yi-Zhi; LIU Chun-Hua

    2007-01-01

    A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions ( K2 in a.u.) of the minimum and maximum GOSs in the 4s24p6 → 4s24p5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97 [Phys. Rev. A 67 (2003) 062708].

  4. High-order moments of spin-orbit energy in a multielectron configuration

    Science.gov (United States)

    Na, Xieyu; Poirier, M.

    2016-07-01

    In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.

  5. Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery

    International Nuclear Information System (INIS)

    Franco, Alessandro; Casarosa, Claudio

    2015-01-01

    In the present paper, after a brief review of the perspectives of the various schemes proposed for electricity generation from the regasification of Liquefied Natural Gas (LNG), a detailed analysis of two particular direct expansion solutions is proposed. The purpose is to identify the upper level of the energy that can be recovered with the aim of electricity production, using configurations with direct expansion. The analysis developed resorting to a simplified thermodynamic model, shows that using a direct expansion configurations with multistage turbine, values of power production typical of optimized ORC plant configurations (120 kJ for each kg of natural gas that flows through the plant) can be obtained. The development of a direct expansion plant with multistage turbine and internal heat recovery systems could permit to approach the production of more than 160 kJ for each kg of flowing liquefied natural gas. Considering values of the mass flow rate typical of LNG gas stations (e.g. 70 kg/s); this corresponds to an output power ranging between 8.3 MW and 11.4 MW. - Highlights: • Recovery of the cold energy contained in Liquefied Natural Gas. • Thermodynamic analysis of systems for electricity generation in regasification. • Direct expansion solutions with multistage expansion. • Comparison of direct expansion solutions with conventional ORC systems. • Power output in conditions typical of existing LNG regasification terminals

  6. Electron energy deposition in a multilayered carbon--uranium--carbon configuration and in semi-infinite uranium

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Miller, G.H.; Halbleib, J.A. Sr.

    1977-10-01

    Absolute measurements of electron energy deposition profiles are reported here for electrons incident on the multilayer configuration of carbon-uranium-carbon. These measurements were for normally incident source electrons at an energy of 1.0 MeV. To complement these measurements, electron energy deposition profiles were also obtained for electrons incident on semi-infinite uranium as a function of energy and angle of incidence. The results are compared with the predictions of a coupled electron/photon Monte Carlo transport model. In general, the agreement between theory and experiment is good. This work was in support of the Reactor Safety Research Equation-of-State Program

  7. Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy

    International Nuclear Information System (INIS)

    Trushin, O; Maras, E; Jónsson, H; Ala-Nissila, T; Stukowski, A; Granato, E; Ying, S C

    2016-01-01

    A possible mechanism for the formation of a 90° misfit dislocation at the Ge/Si(0 0 1) interface through homogeneous nucleation is identified from atomic scale calculations where a minimum energy path connecting the coherent epitaxial state and a final state with a 90° misfit dislocation is found using the nudged elastic band method. The initial path is generated using a repulsive bias activation procedure in a model system including 75 000 atoms. The energy along the path exhibits two maxima in the energy. The first maximum occurs as a 60° dislocation nucleates. The intermediate minimum corresponds to an extended 60° dislocation. The subsequent energy maximum occurs as a second 60° dislocation nucleates in a complementary, mirror glide plane, simultaneously starting from the surface and from the first 60° dislocation. The activation energy of the nucleation of the second dislocation is 30% lower than that of the first one showing that the formation of the second 60° dislocation is aided by the presence of the first one. The simulations represent a step towards unraveling the formation mechanism of 90° dislocations, an important issue in the design of growth procedures for strain released Ge overlayers on Si(1 0 0) surfaces, and more generally illustrate an approach that can be used to gain insight into the mechanism of complex nucleation paths of extended defects in solids. (paper)

  8. Simulation of the steady-state energy transfer in rigid bodies, with convective-radiative boundary conditions, employing a minimum principle

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-08-01

    The energy transfer phenomenon in a rigid and opaque body that exchanges energy, with the environment, by convection and by diffuse thermal radiation is studied. The considered phenomenon is described by a partial differential equation, subjected to (nonlinear) boundary conditions. A minimum principle, suitable for a large class of energy transfer problems is presented. Some particular cases are simulated. (author)

  9. Minimum airflow reset of single-duct VAV terminal boxes

    Science.gov (United States)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  10. Calibration of a telescope for gamma spectroscopy using a new configuration of two Ge(Li) diodes

    International Nuclear Information System (INIS)

    Bui-Van, N.A.; Jardim, J.O.D.; Braga, J.; Jardim, M.V.A.; Martin, I.M.; Vedrenne, G.

    1983-01-01

    It was developed a telescope to measure gamma-rays in the energy interval 10-1500 KeV, using two Ge(Li) diodes of 40 cm 3 each, coaxially mounted in the same cryostat and an anticoincidence Nal(Tl) shielding system. This new configuration allows a much better signal to noise ratio due to the lower diode operating in anticoincidence with the upper one; besides that, one has a high energy resolution (ΔE 241 , Na 22 and Eu 152 are described. From the analysis of the data obtained in the sum coincidence mode, a minimum detectable flux at 511 KeV is estimated to be -3 fotons cm -2 s -1 , with a statistical significance of 3σ for 10 hours of observing time at 3 mb of residual atmosphere. This is about the minimum line flux emitted by the Galactic Center. The measurement of the flux at this line would confirm the time variability observed by Riegler and collaborators using data obtained through HEAO-3 satellite. (Author) [pt

  11. Minimum weight protection - Gradient method; Protection de poids minimum - Methode du gradient

    Energy Technology Data Exchange (ETDEWEB)

    Danon, R.

    1958-12-15

    After having recalled that, when considering a mobile installation, total weight has a crucial importance, and that, in the case of a nuclear reactor, a non neglectable part of weight is that of protection, this note presents an iterative method which results, for a given protection, to a configuration with a minimum weight. After a description of the problem, the author presents the theoretical formulation of the gradient method as it is applied to the concerned case. This application is then discussed, as well as its validity in terms of convergence and uniqueness. Its actual application is then reported, and possibilities of practical applications are evoked.

  12. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters.

    Science.gov (United States)

    Chaban, Vitaly V

    2016-06-01

    Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden-Fletcher-Goldfarb-Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  13. Performance analysis of different ORC configurations for thermal energy and LNG cold energy hybrid power generation system

    Science.gov (United States)

    Sun, Zhixin; Wang, Feng; Wang, Shujia; Xu, Fuquan; Lin, Kui

    2017-01-01

    This paper presents a thermal energy and Liquefied natural gas (LNG) cold energy hybrid power generation system. Performances of four different Organic Rankine cycle (ORC) configurations (the basic, the regenerative, the reheat and the regenerative-reheat ORCs) are studied based on the first and the second law of thermodynamics. Dry organic fluid R245fa is selected as the typical working fluid. Parameter analysis is also conducted in this paper. The results show that regeneration could not increase the thermal efficiency of the thermal and cold energy hybrid power generation system. ORC with the reheat process could produce more specific net power output but it may also reduce the system thermal efficiency. The basic and the regenerative ORCs produce higher thermal efficiency while the regenerative-reheat ORC performs best in the exergy efficiency. A preheater is necessary for the thermal and cold energy hybrid power generation system. And due to the presence of the preheater, there will be a step change of the system performance as the turbine inlet pressure rises.

  14. Minimum Energy of a Prismatic Joint with out: Actuator: Application on RRP Robot

    OpenAIRE

    Tawiwat V.; Tosapolporn P.; Kedit J.

    2009-01-01

    This research proposes the state of art on how to control or find the trajectory paths of the RRP robot when the prismatic joint is malfunction. According to this situation, the minimum energy of the dynamic optimization is applied. The RRP robot or similar systems have been used in many areas such as fire fighter truck, laboratory equipment and military truck for example a rocket launcher. In order to keep on task that assigned, the trajectory paths must be computed. Here, the open loop cont...

  15. Verification of the Taylor (minimum energy) state in the S-1 Spheromak

    International Nuclear Information System (INIS)

    Hart, G.W.; Janos, A.; Meyerhofer, D.D.; Yamada, M.

    1985-09-01

    Experimental measurements of the equilibrium in the S-1 Spheromak by use of magnetic probes inside the plasma show that the final magnetic equilibrium is one which has relaxed close to the Taylor (minimum-energy) state, even though the plasma is far from that state during formation. The comparison is made by calculating the two-dimensional μ profile of the plasma from the probe data, where μ is defined as μ 0 j/sub parallel//B. Measurements using a triple Langmuir probe provide evidence to support the conclusion that the pressure gradients in the relaxed state are confined to the edge region of the plasma

  16. Analysis of design parameters for crosstalk cancellation filters applied to different loudspeaker configurations

    DEFF Research Database (Denmark)

    Lacouture Parodi, Yesenia; Rubak, Per

    2011-01-01

    for crosstalk cancellation filters applied to different loudspeaker configurations has not yet been addressed systematically. A study of three different inversion techniques applied to several loudspeaker arrangements is documented. Least-squares approximations in the frequency and time domains are evaluated...... along with a crosstalk canceler based on minimum-phase approximation with a frequency-independent delay. The three methods were applied to loudspeaker configurations with two channels and the least-squares approaches to configurations with four channels. Several different span angles and elevations were...

  17. Feasibility study of Thermal Electric Generator Configurations as Renewable Energy Sources

    Science.gov (United States)

    Akmal Johar, Muhammad; Yahaya, Zulkarnain; Faizan Marwah, Omar Mohd; Jamaludin, Wan Akashah Wan; Najib Ribuan, Mohamed

    2017-10-01

    Thermoelectric Generator is a solid state device that able to convert thermal energy into electrical energy via temperature differences. The technology is based on Seebeck effect that was discovered in year 1821, however till now there is no real application to exploit this capability in mass scale. This research will report the performance analysis of TEG module in controlled environment of lab scale model. National Instrument equipment and Labview software has been choosen and developed to measure the TEG module in various configurations. Based on the experiment result, an additional passive cooling effort has produced a better ΔT by 7°C. The optimal electrical loading of single TEG is recorded at 200Ω. As for circuit connections, series connection has shown superior power output when compared to parallel connection or single TEG. A series connection of two TEGs has produced power output of 416.82μW when compared to other type connections that only produced around 100μW.

  18. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters

    Directory of Open Access Journals (Sweden)

    Vitaly V. Chaban

    2016-06-01

    Full Text Available Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden–Fletcher–Goldfarb–Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  19. Shungnak Energy Configuration Options.

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

  20. Preference of small molecules for local minimum conformations when binding to proteins.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2007-09-01

    Full Text Available It is well known that small molecules (ligands do not necessarily adopt their lowest potential energy conformations when binding to proteins. Analyses of protein-bound ligand crystal structures have reportedly shown that many of them do not even adopt the conformations at local minima of their potential energy surfaces (local minimum conformations. The results of these analyses raise a concern regarding the validity of virtual screening methods that use ligands in local minimum conformations. Here we report a normal-mode-analysis (NMA study of 100 crystal structures of protein-bound ligands. Our data show that the energy minimization of a ligand alone does not automatically stop at a local minimum conformation if the minimum of the potential energy surface is shallow, thus leading to the folding of the ligand. Furthermore, our data show that all 100 ligand conformations in their protein-bound ligand crystal structures are nearly identical to their local minimum conformations obtained from NMA-monitored energy minimization, suggesting that ligands prefer to adopt local minimum conformations when binding to proteins. These results both support virtual screening methods that use ligands in local minimum conformations and caution about possible adverse effect of excessive energy minimization when generating a database of ligand conformations for virtual screening.

  1. The Energy-Water Nexus: An Analysis and Comparison of Various Configurations Integrating Desalination with Renewable Power

    Directory of Open Access Journals (Sweden)

    Gary M. Gold

    2015-04-01

    Full Text Available This investigation studies desalination powered by wind and solar energy, including a study of a configuration using PVT solar panels. First, a water treatment was developed to estimate the power requirement for brackish groundwater reverse-osmosis (BWRO desalination. Next, an energy model was designed to (1 size a wind farm based on this power requirement and (2 size a solar farm to preheat water before reverse osmosis treatment. Finally, an integrated model was developed that combines results from the water treatment and energy models. The integrated model optimizes performances of the proposed facility to maximize daily operational profits. Results indicate that integrated facility can reduce grid-purchased electricity costs by 88% during summer months and 89% during winter when compared to a stand-alone desalination plant. Additionally, the model suggests that the integrated configuration can generate $574 during summer and $252 during winter from sales of wind- and solar-generated electricity to supplement revenue from water production. These results indicate that an integrated facility combining desalination, wind power, and solar power can potentially reduce reliance on grid-purchased electricity and advance the use of renewable power.

  2. On the configuration of supercapacitors for maximizing electrochemical performance.

    Science.gov (United States)

    Zhang, Jintao; Zhao, X S

    2012-05-01

    Supercapacitors, which are attracting rapidly growing interest from both academia and industry, are important energy-storage devices for acquiring sustainable energy. Recent years have seen a number of significant breakthroughs in the research and development of supercapacitors. The emergence of innovative electrode materials (e.g., graphene) has clearly provided great opportunities for advancing the science in the field of electrochemical energy storage. Conversely, smart configurations of electrode materials and new designs of supercapacitor devices have, in many cases, boosted the electrochemical performance of the materials. We attempt to summarize recent research progress towards the design and configuration of electrode materials to maximize supercapacitor performance in terms of energy density, power density, and cycle stability. With a brief description of the structure, energy-storage mechanism, and electrode configuration of supercapacitor devices, the design and configuration of symmetric supercapacitors are discussed, followed by that of asymmetric and hybrid supercapacitors. Emphasis is placed on the rational design and configuration of supercapacitor electrodes to maximize the electrochemical performance of the device. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Low Streamflow Forcasting using Minimum Relative Entropy

    Science.gov (United States)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  4. Aerodynamic Comparison of Hyper-Elliptic Cambered Span (HECS) Wings with Conventional Configurations

    Science.gov (United States)

    Lazos, Barry S.; Visser, Kenneth D.

    2006-01-01

    An experimental study was conducted to examine the aerodynamic and flow field characteristics of hyper-elliptic cambered span (HECS) wings and compare results with more conventional configurations used for induced drag reduction. Previous preliminary studies, indicating improved L/D characteristics when compared to an elliptical planform prompted this more detailed experimental investigation. Balance data were acquired on a series of swept and un-swept HECS wings, a baseline elliptic planform, two winglet designs and a raked tip configuration. Seven-hole probe wake surveys were also conducted downstream of a number of the configurations. Wind tunnel results indicated aerodynamic performance levels of all but one of the HECS wings exceeded that of the other configurations. The flow field data surveys indicate the HECS configurations displaced the tip vortex farther outboard of the wing than the Baseline configuration. Minimum drag was observed on the raked tip configuration and it was noted that the winglet wake lacked the cohesive vortex structure present in the wakes of the other configurations.

  5. Binary scission configurations in fission of light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, Tsutomu [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Nagame, Y.; Nishinaka, I.; Tsukada, K.; Ikezoe, H.; Tanikawa, M.; Zhao, Y.L.; Sueki, K.; Nakahara, H.

    1997-07-01

    Mass and kinetic energy distributions of fission fragments have been accurately measured by a double velocity time-of-flight technique in the 13 MeV proton-induced fissions of {sup 232}Th and {sup 238}U. A binary structure is observed in total kinetic energy distributions in the fragments with mass number around A=130 for both the fissions, indicating that there are at least two kinds of scission configurations. A correlation between the scission configurations and mass yield distributions reveals that elongated scission configurations are associated with the symmetric mass distribution and compact scission configurations with the asymmetric mass distribution. (author)

  6. New configuration factors for curved surfaces

    International Nuclear Information System (INIS)

    Cabeza-Lainez, Jose M.; Pulido-Arcas, Jesus A.

    2013-01-01

    Curved surfaces have not been thoroughly considered in radiative transfer analysis mainly due to the difficulties arisen in the integration process and perhaps because of the lack of spatial vision of the researchers. It is a fact, especially for architectural lighting, that when concave geometries appear inside a curved space, they are mostly avoided. In this way, a vast repertoire of significant forms is neglected and energy waste is evident. Starting from the properties of volumes enclosed by the minimum number of surfaces, the authors formulate, with little calculus, new simple laws, which enable them to discover a set of configuration factors for caps and various segments of the sphere. The procedure is subsequently extended to previously unimagined surfaces as the paraboloid, the ellipsoid or the cone. Appropriate combination of the said forms with right truncated cones produces several complex volumes, often used in architectural and engineering creations and whose radiative performance could not be accurately predicted for decades. To complete the research, a new method for determining interreflections in curved volumes is also presented. Radiative transfer simulation benefits from these findings, as the simplicity of the results has led the authors to create innovative software more efficient for design and evaluation and applicable to emerging fields like LED lighting. -- Highlights: ► Friendly revision of fundamentals of radiative transfer. ► New configuration factors for curved surfaces obtained without calculus. ► New method for interreflections in curved geometries. ► Enhanced simulation algorithms. ► Fast comparison of radiative performances of surfaces

  7. Near-Threshold Computing and Minimum Supply Voltage of Single-Rail MCML Circuits

    Directory of Open Access Journals (Sweden)

    Ruiping Cao

    2014-01-01

    Full Text Available In high-speed applications, MOS current mode logic (MCML is a good alternative. Scaling down supply voltage of the MCML circuits can achieve low power-delay product (PDP. However, the current almost all MCML circuits are realized with dual-rail scheme, where the NMOS configuration in series limits the minimum supply voltage. In this paper, single-rail MCML (SRMCML circuits are described, which can avoid the devices configuration in series, since their logic evaluation block can be realized by only using MOS devices in parallel. The relationship between the minimum supply voltage of the SRMCML circuits and the model parameters of MOS transistors is derived, so that the minimum supply voltage can be estimated before circuit designs. An MCML dynamic flop-flop based on SRMCML is also proposed. The optimization algorithm for near-threshold sequential circuits is presented. A near-threshold SRMCML mode-10 counter based on the optimization algorithm is verified. Scaling down the supply voltage of the SRMCML circuits is also investigated. The power dissipation, delay, and power-delay products of these circuits are carried out. The results show that the near-threshold SRMCML circuits can obtain low delay and small power-delay product.

  8. A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration

    International Nuclear Information System (INIS)

    Wang, Y Y; Xu, D G; Jiang, H; Zhong, K; Yao, J Q

    2013-01-01

    A high-energy, low-threshold THz-wave output has been experimentally demonstrated with an intracavity terahertz-wave parametric oscillator based on a surface-emitted configuration, which was pumped by a diode-side-pumped Q-switched Nd:YAG laser. Different beam sizes and repetition rates of the pump light have been investigated for high-energy and high-efficiency THz-wave generation. The maximum THz-wave output energy of 283 nJ/pulse was obtained at 1.54 THz under an intracavity 1064 nm pump energy of 59 mJ. The conversion efficiency was 4.8 × 10 −6 , corresponding to a photon conversion efficiency of 0.088%. The pump threshold was 12.9 mJ/pulse. A continuously tunable range from 0.75 to 2.75 THz was realized. (paper)

  9. Using full configuration interaction quantum Monte Carlo in a seniority zero space to investigate the correlation energy equivalence of pair coupled cluster doubles and doubly occupied configuration interaction

    International Nuclear Information System (INIS)

    Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-01-01

    Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure.

  10. Comparison of Configurations for High-Recovery Inland Desalination Systems

    Directory of Open Access Journals (Sweden)

    Philip A. Davies

    2012-09-01

    Full Text Available Desalination of brackish groundwater (BW is an effective approach to augment water supply, especially for inland regions that are far from seawater resources. Brackish water reverse osmosis (BWRO desalination is still subject to intensive energy consumption compared to the theoretical minimum energy demand. Here, we review some of the BWRO plants with various system arrangements. We look at how to minimize energy demands, as these contribute considerably to the cost of desalinated water. Different configurations of BWRO system have been compared from the view point of normalized specific energy consumption (SEC. Analysis is made at theoretical limits. The SEC reduction of BWRO can be achieved by (i increasing number of stages, (ii using an energy recovery device (ERD, or (iii operating the BWRO in batch mode or closed circuit mode. Application of more stages not only reduces SEC but also improves water recovery. However, this improvement is less pronounced when the number of stages exceeds four. Alternatively and more favourably, the BWRO system can be operated in Closed Circuit Desalination (CCD mode and gives a comparative SEC to that of the 3-stage system with a recovery ratio of 80%. A further reduction of about 30% in SEC can be achieved through batch-RO operation. Moreover, the costly ERDs and booster pumps are avoided with both CCD and batch-RO, thus furthering the effectiveness of lowering the costs of these innovative approaches.

  11. Theory of the optimal design of straight-axis minimum-B mirror confinement configurations

    International Nuclear Information System (INIS)

    Hall, L.S.

    1982-01-01

    The design of modern straight-axis linked-mirror plasma-confinement configurations involves a balance between many competing requirements. The dipole and quadrupole components of magnetic induction required in one confinement region often do not match onto the fields of an adjacent region without complications that seriously affect particle drifts or confinement stability. Here, the relevant factors are set down together with the techniques for analytical optimization of the design of a general configuration. A general sufficient condition for the stability of an arbitrary guiding-center MHD equilibrium is derived. This condition makes explicit the stabilizing qualities of good normal curvature and diamagnetic axial current. The instability drive depends on two terms: one carries the sign of normal curvature and the other relates to the relative signs of geodeics curvature and geodesic torsion. The theory is applied to low-beta, large-aspect-ratio equilibria for which analytic expressions for the confining magnetic fields are known. Two optimizations are required to specify the arbitrary features of the quadrupole and dipole fields. One optimization is nonlinear and can be performed by the ordinary calculus of variations; the second optimization is linear and subject to the rules of game theory. Appropriate quality factors are obtained, thus giving the designer quantitative measures with which to balance design trade-offs

  12. A preliminary study on the optimal configuration and operating range of a “microgrid scale” air liquefaction plant for Liquid Air Energy Storage

    International Nuclear Information System (INIS)

    Borri, E.; Tafone, A.; Romagnoli, A.; Comodi, G.

    2017-01-01

    Highlights: • A liquefaction cycle for a microgrid scale Liquid Air Energy Storage is proposed. • Different liquefaction cycles are compared by means of parametric analysis. • The optimal configuration proposed is a Kapitza cycle with two stage compression. • The specific consumption of the optimal configuration is around 700 kW h/t. • Specific consumption reduces to 532 kW h/t if a pressurized phase separator is used. - Abstract: Liquid Air Energy Storage systems represent a sustainable solution to store energy. Although a lot of interest is dedicated to large scale systems (up to 300 tons per day), a small-scale Liquid Air Energy Storage can be used as energy storage as part of a microgrid and/or an energy distribution network. However, when scaling down the size of the system, the round trip efficiency decreases due to the low performance of the liquefaction process. In this paper a preliminary study on the optimal configuration for a microgrid scale liquefaction cycle (10 tons per 12 h) for a Liquid Air Energy Storage application is proposed in order to minimize the specific consumption. The Linde, Claude and Kapitza cycles are modelled and compared by means of a parametric analysis carried out with the software Aspen HYSYS. The results show that the two stages compression Kapitza cycle operating at 40 bar represents an optimal solution in terms of performance and cycle configuration resulting in a specific consumption of about 700 kW h/t. The analysis also shows that the implementation of a pressurized phase separator leads to a reduction of the specific consumption as high as 21% (≈550 kW h/t).

  13. A strategy to find minimal energy nanocluster structures.

    Science.gov (United States)

    Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel

    2013-11-05

    An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.

  14. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  15. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration.

    Science.gov (United States)

    Panepinto, D; Zanetti, M C

    2018-03-01

    This study proposes a multi-step approach to evaluating the environmental and economic aspects of a thermal treatment plant with an energy-recovery configuration. In order to validate the proposed approach, the Turin incineration plant was analyzed, and the potential of the incinerator and several different possible connections to the district heating network were then considered. Both local and global environmental balances were defined. The global-scale results provided information on carbon dioxide emissions, while the local-scale results were used as reference values for the implementation of a Gaussian model that could evaluate the actual concentrations of pollutants released into the atmosphere. The economic aspects were then analyzed, and a correspondence between the environmental and economic advantages defined. The results showed a high energy efficiency for the combined production of heat and electricity, and the opportunity to minimize environmental impacts by including cogeneration in a district heating scheme. This scheme showed an environmental advantage, whereas the electricity-only configuration showed an economic advantage. A change in the thermal energy price (specifically, to 40 €/MWh), however, would make it possible to obtain both environmental and economic advantages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Configuration management: Phase II implementation guidance

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Configuration management (CM) is essential to maintaining an acceptable level of risk to the public, workers, environment, or mission success. It is a set of activities and techniques used to maintain consistency among physical and functional configuration, applicable requirements, and key documents. This document provides guidance for continuing the implementation of CM in a phased and graded manner. It describes a cost-effective approach to documented consistency with requirements, with early emphasis on items most important to safety and environmental protection. It is intended to help responsible line managers and configuration management staff personnel in meeting the Energy Systems configuration management policy standard.

  17. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Bahria, Sofiane; Kurucz, Ildikó; Aouli, M’heni; Sellami, Rabah

    2016-01-01

    Highlights: • The simulation results are in compliance with the experimental measurements indicated in the previous literature. • The accuracy of the numerical model is due to the presented energy analysis and also to the well-adopted correlations. • A comparative study between two solar photovoltaic/thermal air collectors was carried out. • The thermal efficiency of the analyzed hybrid collector increased by 30.85% compared to the basic configuration. • The air temperature supplied by a double-pass photovoltaic/thermal collector is very suitable for solar drying. - Abstract: In this paper, a configuration of photovoltaic-thermal hybrid solar collector embeddable in an indirect solar dryer system is studied. In the present structure of the solar photovoltaic/thermal air collector, the air goes through a double pass below and above the photovoltaic module. A system of electrical and thermal balance equations is developed and analyzed governing various electric and heat transfer parameters in the solar hybrid air collector. The numerical model planned for this study gives a good precision of results, which are close to the experimental ones (of previous literature), and makes it possible to have a good assessment of energy performance regarding the studied configuration (temperature, electric and thermal powers, electrical and thermal efficiencies, etc.). The numerical results show the energy effectiveness of this hybrid collector configuration and particularly its interesting use in an indirect solar dryer system that provides a more suitable air temperature for drying agricultural products. The values of the electrical, thermal and overall energy efficiencies reaches 10.5%, 70% and 90% respectively, with a mass flow rate of 0.0155 kg/s and weather data sample for the month of June in the Algiers site. The results presented in this study also reveal how important the effect of certain parameters and operating conditions on the performance of the hybrid

  18. Analysis of electric energy consumption of automatic milking systems in different configurations and operative conditions.

    Science.gov (United States)

    Calcante, Aldo; Tangorra, Francesco M; Oberti, Roberto

    2016-05-01

    Automatic milking systems (AMS) have been a revolutionary innovation in dairy cow farming. Currently, more than 10,000 dairy cow farms worldwide use AMS to milk their cows. Electric consumption is one of the most relevant and uncontrollable operational cost of AMS, ranging between 35 and 40% of their total annual operational costs. The aim of the present study was to measure and analyze the electric energy consumption of 4 AMS with different configurations: single box, central unit featuring a central vacuum system for 1 cow unit and for 2 cow units. The electrical consumption (daily consumption, daily consumption per cow milked, consumption per milking, and consumption per 100L of milk) of each AMS (milking unit + air compressor) was measured using 2 energy analyzers. The measurement period lasted 24h with a sampling frequency of 0.2Hz. The daily total energy consumption (milking unit + air compressor) ranged between 45.4 and 81.3 kWh; the consumption per cow milked ranged between 0.59 and 0.99 kWh; the consumption per milking ranged between 0.21 and 0.33 kWh; and the consumption per 100L of milk ranged between 1.80 to 2.44 kWh according to the different configurations and operational contexts considered. Results showed that AMS electric consumption was mainly conditioned by farm management rather than machine characteristics/architectures. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Global magnetic fluctuations in S-1 spheromak plasmas and relaxation toward a minimum-energy state

    International Nuclear Information System (INIS)

    Janos, A.; Hart, G.W.; Yamada, M.

    1986-01-01

    Globally coherent modes have been observed during formation in the S-1 Spheromak plasma. These modes play an important role in flux conversion and plasma relaxation toward a minimum-energy state. A significant finding is the temporal progression through the n = 5, 4, 3, 2; m = 1 mode sequence as q rises through rational fractions m/n. Peak amplitudes of the modes relative to the unperturbed field are typically less than 5%, while amplitudes as high as 20% have been observed

  20. Ab initio configuration interaction study on the energetics and electronic structure of the 1-52Σ+ and 1-32Π states of CS+

    International Nuclear Information System (INIS)

    Honjou, Nobumitsu

    2006-01-01

    The energetics and electronic structure of the 1-5 2 Σ + and 1-3 2 Π states of CS + at and around the equilibrium internuclear distance R e for the CS X 1 Σ + state are studied by carrying out ab initio configuration interaction (CI) calculations. The spectroscopic constants of T e , ω e , and R e for the 1-4 2 Σ + , 1 2 Π, and 3 2 Π states are evaluated from the CI potential energy curves (PECs). The avoided crossing between the 2-3 2 Σ + PECs causes the 3 2 Σ + minimum and explains the observed high intensities for the photoionization from the CS X 1 Σ + state to both the 2-3 2 Σ + states. The avoided crossing between the 3-4 2 Σ + PECs produces the 3 2 Σ + maximum and 4 2 Σ + well minimum. The avoided crossing between the 2-3 2 Π PECs results in the 3 2 Π minimum and a small minimum spacing (0.14 eV) between the PECs

  1. Minimum bias measurement at 13 TeV

    CERN Document Server

    Orlando, Nicola; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes and to simulate the environment at the LHC with many concurrent pp interactions (pile-up). We summarise the ATLAS minimum bias measurements with proton-proton collision at 13 TeV center-of-mass-energy at the Large Hadron Collider.

  2. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  3. The Impact of Minimum Energy Performance Standards (MEPS) Regulation on Electricity Saving in Malaysia

    Science.gov (United States)

    Fatihah Salleh, Siti; Eqwan Roslan, Mohd; Isa, Aishah Mohd; Faizal Basri Nair, Mohd; Syafiqah Salleh, Siti

    2018-03-01

    One of Malaysia’s key strategies to promote efficient energy use in the country is to implement the minimum energy performance standards (MEPS) through the Electricity Regulations (Amendment) 2013. Five selected electrical appliances (refrigerator, air conditioner, television, domestic fans and lamp fittings) must comply with MEPS requirement in order to be sold in Malaysian market. Manufacturers, importers or distributors are issued Certificate of Approval (COA) if products are MEPS-compliant. In 2015, 1,215 COAs were issued but the number of MEPS products in the market is unknown. This work collects sales data from major manufacturers to estimate the annual sales of MEPS appliances and the cumulative electricity consumption and electricity saving. It was found that most products sold have 3-star rating and above. By year 2015, total cumulative electricity savings gained from MEPS implementation is 3,645 GWh, with air conditioner being the highest contributor (30%). In the future, it is recommended that more MEPS products and related incentives be introduced to further improve efficiency of energy use in Malaysia.

  4. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  5. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L. [Dept. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid (Spain); Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G. [Dept. de Física Aplicada III (Electricidad y Electrónica), Univ. Complutense de Madrid, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Olea, J. [CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Instituto de Energía Solar, E.T.S.I. de Telecomunicación, Univ. Politécnica de Madrid, 28040 Madrid (Spain)

    2015-12-28

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known

  6. An autonomic approach to configure HEP (High Energy Physics) experiments, applied to LHCb (Large Hadron Collider beauty)

    CERN Document Server

    Abadie, L; Charpentier, P

    2006-01-01

    Properly configuring an HEP (High Energy Phys ics) experiment becomes a more and more complex task as the number of electronics modules grows and technologies evolve quickly. Anticipating a fault in the software or in the hardware during the configuration or the data taking requires an adaptive and modular control system. The introduction of autonomic tools and data bases in the HEP world is quite recent and contributes to implement a more reliable system . The LHCb control system innovates as it has been built using autonomic tools. The main contribution of this PhD is the implementation of an autonomic 3-Tier architectur e to configure the LHCb experiment which is a huge network of devices of different types, and its integrat ion in the control system. This new type of autonomics architecture consists of: • A database layer. A relational Oracle databa se implemented using the Oracle technology contains the information...

  7. Level energies, lifetimes and radiative rates in the 4p44d configurations of bromine-like ions

    Science.gov (United States)

    Singh, A. K.; Aggarwal, Sunny; Mohan, Man

    2013-09-01

    Energy levels, lifetimes and wavefunction compositions have been computed for all levels of odd parity 4s24p5 ground configuration as well as 4s4p6 and 4s24p44d even parity excited configurations in Br-like Sr IV, Y V, Zr VI, Nb VII and Mo VIII. Transition probabilities, oscillator strengths and line strengths for the electric dipole (E1) transition from the 4s24p5 configuration have been obtained using the multiconfiguration Dirac-Fock approach. Correlations within the n = 4 complex, Breit and quantum electrodynamics effects have been included. We make a detailed comparison of our results with those of other numerical methods and experiments to assess the quality of our results. Good agreement is observed between our results and those obtained using different approaches confirm the quality of our results. Further, we have also predicted new atomic data that were not available so far and are yet to be observed.

  8. Dynamic behavior of the intensified alternative configurations for quaternary distillation

    DEFF Research Database (Denmark)

    Ramirez-Marquez, Cesar; Cabrera-Ruiz, Julián; Juan Gabriel Segovia-Hernandez, Juan Gabriel

    2016-01-01

    Process intensification emerges as an important tool in the synthesis of multicomponent distillation configurations aimed at the reduction of the energy use and capital costs. Operational and fixed costs savings coupled with simplicity and controllability design configurations appear as an essent......Process intensification emerges as an important tool in the synthesis of multicomponent distillation configurations aimed at the reduction of the energy use and capital costs. Operational and fixed costs savings coupled with simplicity and controllability design configurations appear...... value decomposition technique in all frequency domain. In order to complete the control study, the distillation schemes were subjected to closed-loop dynamic simulations. The results show that there are cases in which the intensified sequences do not only provide energy savings, but also may offer...

  9. Performance comparison of wind park configurations

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Stefan

    2003-07-01

    In this report, layouts of various large-scale wind parks, both AC as well as DC, are investigated. Loss modelling of the wind park components as well as calculations of the energy capture of the turbines using various electrical systems are performed, and the energy production cost of the various park configurations is determined. It was found that from an energy capture point of view, the difference in energy production between various wind turbine systems is very small. In addition, a study of the suitability of various DC/DC-converters is made. Three DC/DC-converters, Boost, Full Bridge and Full Bridge Isolated Boost, are found to be interesting candidates as the 'transformer' component in potential DC-based wind parks. Of all the investigated wind park configurations, the wind park with the series connected DC wind turbines seems to have the best potential to give the lowest energy production cost, if the transmission distance is longer then 10-20 km.

  10. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  11. A novel minimum cost maximum power algorithm for future smart home energy management.

    Science.gov (United States)

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  12. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    Science.gov (United States)

    Quick, J.; Dykes, K.; Graf, P.; Zahle, F.

    2016-09-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  13. Minimum number of transfer units and reboiler duty for multicomponent distillation columns

    International Nuclear Information System (INIS)

    Pleşu, Valentin; Bonet Ruiz, Alexandra Elena; Bonet, Jordi; Llorens, Joan; Iancu, Petrica

    2013-01-01

    Some guidelines to evaluate distillation columns, considering only basic thermodynamic data and principles, are provided in this paper. The method allows a first insight to the problem by simple calculations, without requiring column variables to ensure rational use of energy and low environmental impact. The separation system is approached by two complementary ways: minimum and infinite reflux flow rate. The minimum reflux provides the minimum energy requirements, and the infinite reflux provides the feasibility conditions. The difficulty of separation can be expressed in terms of number of transfer units (NTU). The applicability of the method is not mathematically limited by the number of components in the mixture. It is also applicable to reactive distillation. Several mixtures, including reactive distillation, are rigorously simulated as illustrative examples, to verify the applicability of the approach. The separation of the mixtures, performed by distillation columns, is feasible if a minimum NTU can be calculated between the distillate and bottom products. Once verified the feasibility of the separation, the maximum thermal efficiency depends only on boiling point of bottom and distillate streams. The minimum energy requirements corresponding to the reboiler can be calculated from the maximum thermal efficiency, and the variation of entropy and enthalpy of mixing between distillate and bottom streams. -- Highlights: • Feasibility analysis complemented with difficulty of separation parameters • Minimum and infinite reflux simplified models for distillation columns • Minimum number of transfer units (NTU) for packed columns at early design stages • Calculation of minimum energy distillation requirements at early design stages • Thermodynamic cycle approach and efficiency for distillation columns

  14. Multireference configuration interaction treatment of potential energy surfaces: symmetric dissociation of H/sub 2/O in a double-zeta basis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F B; Shavitt, I; Shepard, R

    1984-03-23

    Multiconfiguration self-consistent fields (SCF) and multireference configurational interaction (CI) calculations have been performed for the H/sub 2/O molecule in a double-zeta basis for four symmetric geometries, for comparison with full CI results. Unlike single-reference results, the energy errors are almost independent of geometry, allowing unbiased treatments of potential energy surfaces. 35 references, 1 figure, 2 tables.

  15. Comparison between four dissimilar solar panel configurations

    Science.gov (United States)

    Suleiman, K.; Ali, U. A.; Yusuf, Ibrahim; Koko, A. D.; Bala, S. I.

    2017-12-01

    Several studies on photovoltaic systems focused on how it operates and energy required in operating it. Little attention is paid on its configurations, modeling of mean time to system failure, availability, cost benefit and comparisons of parallel and series-parallel designs. In this research work, four system configurations were studied. Configuration I consists of two sub-components arranged in parallel with 24 V each, configuration II consists of four sub-components arranged logically in parallel with 12 V each, configuration III consists of four sub-components arranged in series-parallel with 8 V each, and configuration IV has six sub-components with 6 V each arranged in series-parallel. Comparative analysis was made using Chapman Kolmogorov's method. The derivation for explicit expression of mean time to system failure, steady state availability and cost benefit analysis were performed, based on the comparison. Ranking method was used to determine the optimal configuration of the systems. The results of analytical and numerical solutions of system availability and mean time to system failure were determined and it was found that configuration I is the optimal configuration.

  16. Temporal change in the electromechanical properties of dielectric elastomer minimum energy structures

    International Nuclear Information System (INIS)

    Buchberger, G.; Hauser, B.; Jakoby, B.; Hilber, W.; Schoeftner, J.; Bauer, S.

    2014-01-01

    Dielectric elastomer minimum energy structures (DEMES) are soft electronic transducers and energy harvesters with potential for consumer goods. The temporal change in their electromechanical properties is of major importance for engineering tasks. Therefore, we study acrylic DEMES by impedance spectroscopy and by optical methods for a total time period of approx. 4.5 months. We apply either compliant electrodes from carbon black particles only or fluid electrodes from a mixture of carbon black particles and silicone oil. From the measurement data, the equivalent series capacitances and resistances as well as the bending angles of the transducers are obtained. We find that the equivalent series capacitances change in average between −12 %/1000 h and −4.0 %/1000 h, while the bending angles decrease linearly with slopes ranging from −15 %/1000 h to −7 %/1000 h. Transducers with high initial bending angles and electrodes from carbon black particles show the smallest changes of the electromechanical characteristics. The capacitances decrease faster for DEMES with fluid electrodes. Some DEMES of this type reveal huge and unpredictable fluctuations of the resistances over time due to the ageing of the contacts. Design guidelines for DEMES follow directly from the observed transient changes of their electromechanical performance.

  17. Ba 5s photoionization in the region of the second Cooper minimum

    International Nuclear Information System (INIS)

    Whitfield, S B; Wehlitz, R; Dolmatov, V K

    2011-01-01

    We investigate the 5s angular distribution parameter and partial photoionization cross section of atomic Ba in the region of the second Cooper minimum covering a photon energy region from 120 to 260 eV. We observe a strong drop in the Ba 5s β value from 2.0, reaching a minimum of 1.57 ± 0.07 at a photon energy of 150 eV. The β value then slowly rises back towards its nominal value of 2.0 at photon energies beyond the minimum. Our measured 5s partial cross section also shows a pronounced dip around 170 eV due to interchannel coupling with the Ba 4d photoelectrons. After combining our measurements with previous experimental values at lower photon energies, we obtain a consistent data set spanning the photon energy range prior to the onset of the partial cross section maximum and through the cross section minimum. We also calculate the 5s partial cross section under several different levels of approximation. We find that the generalized random-phase approximation with exchange calculation models the shape and position of the combined experimental cross section data set rather well after incorporating experimental ionization energies and a shift in the photon energy scale.

  18. Steady state magnetic field configurations for the earth's magnetotail

    International Nuclear Information System (INIS)

    Hau, L.N.; Wolf, R.A.; Voigt, G.H.; Wu, C.C.

    1989-01-01

    The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pVγ throughout an extended region of the nightside plasma sheet, between approximately 36 R E geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B ze , also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B ze minima. Observations do not indicate the existence of a B ze minimum, on the average. They suggest that the configurations with such deep minima in B ze may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet

  19. Elastic energy of liquid crystals in convex polyhedra

    International Nuclear Information System (INIS)

    Majumdar, A; Robbins, J M; Zyskin, M

    2004-01-01

    We consider nematic liquid crystals in a bounded, convex polyhedron described by a director field n(r) subject to tangent boundary conditions. We derive lower bounds for the one-constant elastic energy in terms of topological invariants. For a right rectangular prism and a large class of topologies, we derive upper bounds by introducing test configurations constructed from local conformal solutions of the Euler-Lagrange equation. The ratio of the upper and lower bounds depends only on the aspect ratios of the prism. As the aspect ratios are varied, the minimum-energy conformal state undergoes a sharp transition from being smooth to having singularities on the edges. (letter to the editor)

  20. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  1. Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers

    International Nuclear Information System (INIS)

    Walker, Paul D.; Roser, Holger M.

    2015-01-01

    Highlights: • We analyse several driving cycles to for the preliminary design of hybrid two wheelers. • Simulation of alternate configurations to compare achievable driving range and economy. • Demonstrate that pure electric vehicles provide cost benefits over the vehicle life. • Hybrid and plug-in hybrid two wheelers have comparable costs to conventional vehicles. - Abstract: The development of hybrid electric two wheelers in recent years has targeted the reduction of on road emissions produced by these vehicles. However, added cost and complexity have resulted in the failure of these systems to meet consumer expectations. This paper presents a comparative study of the energy economy and essential costs of alternative forms of small two wheelers such as scooters or low capacity motorcycles. This includes conventional, hybrid, plug-in hybrid and electric variants. Through simulations of vehicle driving range using two popular driving cycles it is demonstrated that there is considerable benefit in fuel economy realised by hybridising such vehicles. However, the added costs associated with electrification, i.e. motor/generator, power electronics, and energy storage provide a significant cost obstacle to the purchase of such vehicles. Only the pure electric configuration is demonstrated to be cost effective over its life in comparison to conventional two wheelers. Both the hybrid electric and plug-in equivalents must overcome significant upfront costs to be cost competitive with conventional vehicles. This is demonstrated to be achieved if the annual driving range of the vehicle is increased substantially from the assumed mean. Given the shorter distances travelled by most two wheeler drivers it can therefore be concluded that the development of similar hybrid electric vehicles are unlikely to achieve the desired acceptance that pure electric or conventional equivalents currently achieve

  2. Decision-making aids for the rational use of energy in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, K [HL-Technik G.m.b.H., Muenchen (Germany, F.R.)

    1979-11-01

    The rational use of energy in office buildings can be assured by intensifying cooperation between owner, architect, structural designer, and installer with a view to the employment of technical aids and the interdependence of design concept and structural configuration. As can be seen from a comparison of different types of buildings, there are considerable differences in the anticipated energy consumption and the potential use of energy. It is important to note that continued serviceability of an office building must be assured at times of crisis when only a minimum of energy is available and that modern office buildings are so supplied with utilities that energy is only used if this is required for comfort and office work.

  3. Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.

    Science.gov (United States)

    Varandas, A J C

    2011-05-28

    The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative

  4. Optimization of process parameter and reformer configuration for hydrogen production from steam reforming of heavy hydrocarbons. Paper no. IGEC-1-079

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.E.H.

    2005-01-01

    The present optimization investigation is classified into reforming configuration optimization in one hand and parameter optimization of each configuration on the other hand. Heptane is used as a model component for heavy hydrocarbons. The proposed novel reforming process is basically a Circulating Fluidized-Bed Membrane Reformer (CFBMR) with continuous catalyst regeneration and gas-solid separation. Composite hydrogen selective membranes are used for removing the product hydrogen from the reacting gas mixture and therefore driving the reversible reactions beyond their thermodynamic equilibriums. Dense perovskite oxygen selective membranes are also used to introduce oxygen for the exothermic oxidation of hydrocarbons and carbon. Four configurations are investigated, two of them are with the catalyst regeneration before the gas-solid separation and the other two are with the catalyst regeneration after the gas-solid separation. The optimization of the performance of each configuration is carried out for a number of design and operating parameters as optimization parameters and under both non-autothermal and autothermal reforming conditions. Results show that the autothermal operation with direct contact between cold feeds (water and heptane) and hot circulating catalyst can be the best configuration for efficient hydrogen production with minimum energy consumption. The maximum net hydrogen yield is 16.732 moles of hydrogen per mole of heptane fed, which is 76.05% of the maximum theoretical hydrogen yield of 22. (author)

  5. A novel minimum cost maximum power algorithm for future smart home energy management

    Directory of Open Access Journals (Sweden)

    A. Singaravelan

    2017-11-01

    Full Text Available With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  6. Symmetry-adapted configurational modelling of fractional site occupancy in solids

    Energy Technology Data Exchange (ETDEWEB)

    Grau-Crespo, R [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Hamad, S [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Catlow, C R A [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Leeuw, N H de [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2007-06-27

    A methodology is presented, which reduces the number of site-occupancy configurations to be calculated when modelling site disorder in solids, by taking advantage of the crystal symmetry of the lattice. Within this approach, two configurations are considered equivalent when they are related by an isometric operation; a trial list of possible isometric transformations is provided by the group of symmetry operators in the parent structure, which is used to generate all configurations via atomic substitutions. We have adapted the equations for configurational statistics to operate in the reduced configurational space of the independent configurations. Each configuration in this space is characterized by its reduced energy, which includes not only its energy but also a contribution from its degeneracy in the complete configurational space, via an entropic term. The new computer program SOD (site-occupancy disorder) is presented, which performs this analysis in systems with arbitrary symmetry and any size of supercell. As a case study we use the distribution of cations in iron antimony oxide FeSbO{sub 4}, where we also introduce some general considerations for the modelling of site-occupancy disorder in paramagnetic systems.

  7. Optimization under Uncertainty of Site-Specific Turbine Configurations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quick, Julian; Dykes, Katherine; Graf, Peter; Zahle, Frederik

    2016-11-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  8. Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages

    Science.gov (United States)

    Rezaie, Behnaz

    The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance

  9. Towards minimum energy houses with EPC {<=}0; Op weg naar minimum energie woningen met EPC {<=}0

    Energy Technology Data Exchange (ETDEWEB)

    Den Dulk, F.W. [Piode - ontwerp- en adviesbureau BNA, Amersfoort (Netherlands)

    2012-09-15

    The purpose of the publication is to inform stakeholders about the current state concerning energy efficient building of houses and residential buildings. Also guidance is provided with regard to steps to follow and some practical examples are given. The energy concepts shown are based on known and marketable techniques. An energy concept is a balanced and tailored set of design measures, building construction facilities, installation and (sustainable) energy supply. Optimization is based on energy savings and costs and benefits and it must also meet requirements for health, safety, comfort and ease of operation [Dutch] Het doel van de publicatie is om belanghebbenden te informeren over de huidige stand van zaken m.b.t. vergaand energiezuinig bouwen. Tevens wordt een handreiking geboden over de te volgen stappen en zijn een aantal voorbeelden opgenomen over de praktijk. De publicatie is beperkt tot seriematige woningbouw. De energieconcepten zijn op het niveau van de individuele woning of een woongebouw. De weergegeven energieconcepten zijn gebaseerd op bekende- en marktrijpe technieken. Een energieconcept is een afgewogen en op elkaar afgestemd samenstel van ontwerpmaatregelen, bouwkundige maatregelen en voorzieningen, de installatie en de (duurzame) energievoorziening . Optimalisatie vindt plaats op basis van energiebesparing en kosten/baten terwijl tevens moet worden voldaan aan eisen voor veiligheid, gezondheid, comfort en bedieningsgemak.

  10. Fermat and the Minimum Principle

    Indian Academy of Sciences (India)

    Arguably, least action and minimum principles were offered or applied much earlier. This (or these) principle(s) is/are among the fundamental, basic, unifying or organizing ones used to describe a variety of natural phenomena. It considers the amount of energy expended in performing a given action to be the least required ...

  11. Torsional shear flow of granular materials: shear localization and minimum energy principle

    Science.gov (United States)

    Artoni, Riccardo; Richard, Patrick

    2018-01-01

    The rheological properties of granular matter submitted to torsional shear are investigated numerically by means of discrete element method. The shear cell is made of a cylinder filled by grains which are sheared by a bumpy bottom and submitted to a vertical pressure which is applied at the top. Regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. The effects of the (i) the applied pressure, (ii) sidewall friction, and (iii) angular velocity are investigated. A model, based on the purely local μ (I)-rheology and a minimum energy principle is able to capture the effect of the two former quantities but unable to account the effect of the latter. Although, an ad hoc modification of the model allows to reproduce all the numerical results, our results point out the need for an alternative rheology.

  12. Experimental Comparison of Two Configurations of Hybrid Photovoltaic Thermal Collectors

    International Nuclear Information System (INIS)

    Khaled Toufeka; Mourad Haddadib; Ali Mkc

    2011-01-01

    The combination of a thermal collector and a photovoltaic module in a single system allows for increased efficiency of the total conversion of solar energy. A synergistic effect can be obtained in a structure combining these two devices in a judicious manner to those of thermal and photovoltaic system installed separately. Production of total energy from hybrid collector depends on the input (that is to say, the. energy of solar radiation, air temperature and wind speed) and output which is the electric production and the temperature of the system. Thin production also depends on the mode of heal extraction. In this paper, an experimental Study of two configurations of hybrid collectors is described. The configuration that the absorber is made by galvanized steel and in the second, the absorber is a copper serpentine. The advantages of the first configuration are mainly due to low cost and simplicity but the second configuration has the advantage of promoting the heat transfer between cells and fluid. (authors)

  13. Relaxational dissipation of magnetic field energy in a rarefied plasma

    International Nuclear Information System (INIS)

    Vekshtejn, G.E.

    1987-01-01

    A mechanism of solar corona plasma heating connected with relaxation of a magnetic configuration in the corona to the state of the magnetic energy minimum at restrictions imposed by high conductivity of a medium is considered. Photospheric plasma pulsations leading to generation of longitudinal currents in the corona are in this case energy sources. The excess magnetic energy of these currents is dissipated as a result of reclosing of force lines of the magnetic field in narrow current layers. Plasmaturbulence related to the process of magnetic reclosing is phenomenologically described in this case by introducing certain characteristic time of relaxation. Such an approach permits to relate the plasma heating energy with parameters of photospheric motions in the framework of a simple model of the magnetic field

  14. Elemental GCR Observations during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Israel, M. H.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; hide

    2013-01-01

    Using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer (ACE), we present new measurements of the galactic cosmic ray (GCR) elemental composition and energy spectra for the species B through Ni in the energy range approx. 50-550 MeV/nucleon during the record setting 2009-2010 solar minimum period. These data are compared with our observations from the 1997-1998 solar minimum period, when solar modulation in the heliosphere was somewhat higher. For these species, we find that the intensities during the 2009-2010 solar minimum were approx. 20% higher than those in the previous solar minimum, and in fact were the highest GCR intensities recorded during the space age. Relative abundances for these species during the two solar minimum periods differed by small but statistically significant amounts, which are attributed to the combination of spectral shape differences between primary and secondary GCRs in the interstellar medium and differences between the levels of solar modulation in the two solar minima. We also present the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe for both solar minimum periods, and demonstrate that these ratios are reasonably well fit by a simple "leaky-box" galactic transport model that is combined with a spherically symmetric solar modulation model.

  15. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.

    Science.gov (United States)

    Panepinto, Deborah; Genon, Giuseppe

    2014-07-01

    Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme. © The Author(s) 2014.

  16. Favorable performance of the DFT methods in predicting the minimum-energy structure of the lowest triplet state of WF4

    International Nuclear Information System (INIS)

    Gutowski, M.; Univ. of Utah, Salt Lake City, UT

    1999-01-01

    The tetrahedral structure of the lowest triplet state of the WF 4 complex was examined using different variants of the density functional theory (DFT) and conventional ab initio methods. The low-level, conventional, ab initio methods, such as SCF, MP2, MP3, and CISD, predict the tetrahedral structure to be a minimum, whereas the DFT schemes predict an imaginary frequency for the e vibrational mode. Only after recovering electron correlation effects at the MP4 and higher levels, the conventional electronic structure methods also predict the T d structure to be a second-order stationary point. This is not the correlation but the exchange part of the DFT functionals which is responsible for the discrepancy between the DFT and low-level, conventional, ab initio predictions. The lowering of symmetry to C 2v leads to a minimum on the lowest triplet potential energy surface and the electronic energy difference between the T d and C 2v stationary points amounts to 0.85 and 0.96 kcal/mol at the B3LYP and CCSD(T) levels, respectively

  17. Improving the iterative Linear Interaction Energy approach using automated recognition of configurational transitions.

    Science.gov (United States)

    Vosmeer, C Ruben; Kooi, Derk P; Capoferri, Luigi; Terpstra, Margreet M; Vermeulen, Nico P E; Geerke, Daan P

    2016-01-01

    Recently an iterative method was proposed to enhance the accuracy and efficiency of ligand-protein binding affinity prediction through linear interaction energy (LIE) theory. For ligand binding to flexible Cytochrome P450s (CYPs), this method was shown to decrease the root-mean-square error and standard deviation of error prediction by combining interaction energies of simulations starting from different conformations. Thereby, different parts of protein-ligand conformational space are sampled in parallel simulations. The iterative LIE framework relies on the assumption that separate simulations explore different local parts of phase space, and do not show transitions to other parts of configurational space that are already covered in parallel simulations. In this work, a method is proposed to (automatically) detect such transitions during the simulations that are performed to construct LIE models and to predict binding affinities. Using noise-canceling techniques and splines to fit time series of the raw data for the interaction energies, transitions during simulation between different parts of phase space are identified. Boolean selection criteria are then applied to determine which parts of the interaction energy trajectories are to be used as input for the LIE calculations. Here we show that this filtering approach benefits the predictive quality of our previous CYP 2D6-aryloxypropanolamine LIE model. In addition, an analysis is performed of the gain in computational efficiency that can be obtained from monitoring simulations using the proposed filtering method and by prematurely terminating simulations accordingly.

  18. [Specific features in realization of the principle of minimum energy dissipation during individual development].

    Science.gov (United States)

    Zotin, A A

    2012-01-01

    Realization of the principle of minimum energy dissipation (Prigogine's theorem) during individual development has been analyzed. This analysis has suggested the following reformulation of this principle for living objects: when environmental conditions are constant, the living system evolves to a current steady state in such a way that the difference between entropy production and entropy flow (psi(u) function) is positive and constantly decreases near the steady state, approaching zero. In turn, the current steady state tends to a final steady state in such a way that the difference between the specific entropy productions in an organism and its environment tends to be minimal. In general, individual development completely agrees with the law of entropy increase (second law of thermodynamics).

  19. The Amster concept: a configuration generating its own uranium with a mixed thorium and uranium support

    International Nuclear Information System (INIS)

    Vergnes, J.; Garzenne, C.; Lecarpentier, D.; Mouney, H.; Delpech, M.

    2001-01-01

    AMSTER is a continuously reloaded, graphite-moderated molten salt critical reactor, using a 238 U or 232 Th fuel support, slightly enriched with 235 U if necessary. Using this concept, one can define a large number of configurations according to the products loaded and recycled. The choice of thorium fuel support leads to two configurations requiring no additional 235 U as fissile material: a configuration with one moderating zone, incinerating Transuranium elements (TRU); a configuration with 2 moderating zones self-consuming TRU and regenerating the fissile uranium ( 233 U). In this configuration, it is even possible to burn 238 U (from depleted uranium) by adding it to the thorium support. These configurations use a minimum amount of fuel (100 kg of 232 Th or 100 kg of a 232 Th- 238 U mix per TWh) and produce very little TRU (a few tens of grams per TWh). (author)

  20. Bi-2223 HTS winding in toroidal configuration for SMES coil

    International Nuclear Information System (INIS)

    Kondratowicz-Kucewicz, B; Kozak, S; Kozak, J; Wojtasiewicz, G; Majka, M; Janowski, T

    2010-01-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  1. Techno-economic analysis of the deacetylation and disk refining process: characterizing the effect of refining energy and enzyme usage on minimum sugar selling price and minimum ethanol selling price.

    Science.gov (United States)

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; Sabourin, Marc; Tucker, Melvin P; Tao, Ling

    2015-01-01

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibility of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128-468 kWh/ODMT), cellulase (Novozyme's CTec3) loading (11.6-28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme's HTec3) loading (0-5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL's 2011 design report. The DDR process is

  2. Hydration of Atmospheric Molecular Clusters: Systematic Configurational Sampling.

    Science.gov (United States)

    Kildgaard, Jens; Mikkelsen, Kurt V; Bilde, Merete; Elm, Jonas

    2018-05-09

    We present a new systematic configurational sampling algorithm for investigating the potential energy surface of hydrated atmospheric molecular clusters. The algo- rithm is based on creating a Fibonacci sphere around each atom in the cluster and adding water molecules to each point in 9 different orientations. To allow the sam- pling of water molecules to existing hydrogen bonds, the cluster is displaced along the hydrogen bond and a water molecule is placed in between in three different ori- entations. Generated redundant structures are eliminated based on minimizing the root mean square distance (RMSD) of different conformers. Initially, the clusters are sampled using the semiempirical PM6 method and subsequently using density func- tional theory (M06-2X and ωB97X-D) with the 6-31++G(d,p) basis set. Applying the developed algorithm we study the hydration of sulfuric acid with up to 15 water molecules. We find that the additions of the first four water molecules "saturate" the sulfuric acid molecule and are more thermodynamically favourable than the addition of water molecule 5-15. Using the large generated set of conformers, we assess the performance of approximate methods (ωB97X-D, M06-2X, PW91 and PW6B95-D3) in calculating the binding energies and assigning the global minimum conformation compared to high level CCSD(T)-F12a/VDZ-F12 reference calculations. The tested DFT functionals systematically overestimates the binding energies compared to cou- pled cluster calculations, and we find that this deficiency can be corrected by a simple scaling factor.

  3. SS Cygni: The accretion disk in eruption and at minimum light

    International Nuclear Information System (INIS)

    Kiplinger, A.L.

    1979-01-01

    Absolute spectrophotometric observations of the dwarf nova SS Cygni have been obtained at maximum light, during the subsequent decline, and at minimum light. In order to provide a critical test of accretion disk theory, a model for a steady-state α-model accretion disk has been constructed which utilizes a grid of stellar energy distributions to synthesize the disk flux. Physical parameters for the accretion disk at maximum light are set by estimates of the intrinsic luminosity of the system that result from a desynthesis of a composite minimum light energy distribution. At maximum light, agreements between observational and theoretical continuum slopes and the Balmer jump are remarkably good. The model fails, however, during the eruption decline and at minimum light. It appears that the physical character of an accretion disk at minimum light must radiacally differ from the disk observed at maximum light

  4. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets

    Science.gov (United States)

    Ahdab, Yvana D.; Thiel, Gregory P.; Böhlke, John Karl; Stanton, Jennifer S.; Lienhard, John H.

    2018-01-01

    This paper uses chemical and physical data from a large 2017 U.S. Geological Surveygroundwater dataset with wells in the U.S. and three smaller international groundwater datasets with wells primarily in Australia and Spain to carry out a comprehensive investigation of brackish groundwater composition in relation to minimum desalinationenergy costs. First, we compute the site-specific least work required for groundwater desalination. Least work of separation represents a baseline for specific energy consumptionof desalination systems. We develop simplified equations based on the U.S. data for least work as a function of water recovery ratio and a proxy variable for composition, either total dissolved solids, specific conductance, molality or ionic strength. We show that the U.S. correlations for total dissolved solids and molality may be applied to the international datasets. We find that total molality can be used to calculate the least work of dilute solutions with very high accuracy. Then, we examine the effects of groundwater solute composition on minimum energy requirements, showing that separation requirements increase from calcium to sodium for cations and from sulfate to bicarbonate to chloride for anions, for any given TDS concentration. We study the geographic distribution of least work, total dissolved solids, and major ions concentration across the U.S. We determine areas with both low least work and high water stress in order to highlight regions holding potential for desalination to decrease the disparity between high water demand and low water supply. Finally, we discuss the implications of the USGS results on water resource planning, by comparing least work to the specific energy consumption of brackish water reverse osmosisplants and showing the scaling propensity of major electrolytes and silica in the U.S. groundwater samples.

  5. Minimum qualifications for nuclear criticality safety professionals

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1990-01-01

    A Nuclear Criticality Technology and Safety Training Committee has been established within the U.S. Department of Energy (DOE) Nuclear Criticality Safety and Technology Project to review and, if necessary, develop standards for the training of personnel involved in nuclear criticality safety (NCS). The committee is exploring the need for developing a standard or other mechanism for establishing minimum qualifications for NCS professionals. The development of standards and regulatory guides for nuclear power plant personnel may serve as a guide in developing the minimum qualifications for NCS professionals

  6. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  7. Selecting Actuator Configuration for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator configuration has been limited to the fuel system which in the considered plant consists of three different...

  8. What is the Minimum EROI that a Sustainable Society Must Have?

    Directory of Open Access Journals (Sweden)

    David J.R. Murphy

    2009-01-01

    Full Text Available Economic production and, more generally, most global societies, are overwhelmingly dependant upon depleting supplies of fossil fuels. There is considerable concern amongst resource scientists, if not most economists, as to whether market signals or cost benefit analysis based on today’s prices are sufficient to guide our decisions about our energy future. These suspicions and concerns were escalated during the oil price increase from 2005 – 2008 and the subsequent but probably related market collapse of 2008. We believe that Energy Return On Investment (EROI analysis provides a useful approach for examining disadvantages and advantages of different fuels and also offers the possibility to look into the future in ways that markets seem unable to do. The goal of this paper is to review the application of EROI theory to both natural and economic realms, and to assess preliminarily the minimum EROI that a society must attain from its energy exploitation to support continued economic activity and social function. In doing so we calculate herein a basic first attempt at the minimum EROI for current society and some of the consequences when that minimum is approached. The theory of the minimum EROI discussed here, which describes the somewhat obvious but nonetheless important idea that for any being or system to survive or grow it must gain substantially more energy than it uses in obtaining that energy, may be especially important. Thus any particular being or system must abide by a “Law of Minimum EROI”, which we calculate for both oil and corn-based ethanol as about 3:1 at the mine-mouth/farm-gate. Since most biofuels have EROI’s of less than 3:1 they must be subsidized by fossil fuels to be useful.

  9. Empirical regularities in the excitation cross-section behavior of the lead atom (transitions from energy levels of 6pnd configurations)

    Science.gov (United States)

    Smirnov, Yu M.

    2018-03-01

    Electron-impact excitation of lead atom levels belonging to 6pnd configurations has been studied in experiment. One hundred two excitation cross-sections have been measured at an incident electron energy of 50 eV. Eleven optical excitation functions (OEFs) have been recorded in the exciting electron energy range of E = 0-200 eV. The resulting findings were used to study the excitation cross-sections dependence on the principal quantum number of upper levels for thirteen PbI spectral series.

  10. Effects of 2p-2h configurations on low-energy dipole states in neutron-rich N=80, 82 and 84 isotones

    Directory of Open Access Journals (Sweden)

    Arsenyev N. N.

    2016-01-01

    Full Text Available Starting from the Skyrme interaction SLy4 we study the effects of phonon-phonon coupling on the low-energy electric dipole response in 130−134Sn, 132−136Te and 134−138Xe. Our calculations are performed within the finite-rank separable approximation, which enables one to perform quasiparticle random phase approximation calculations in very large two-quasiparticle configuration spaces. A dependence of the pygmy dipole resonance strengths on the neutron skin thickness is found. The inclusion of the two-phonon configurations gives a considerable contribution to the low-lying strength.

  11. Total energy calculations for structural phase transformations

    International Nuclear Information System (INIS)

    Ye, Y.Y.; Chan, C.T.; Ho, K.M.; Harmon, B.N.

    1990-01-01

    The structural integrity and physical properties of crystalline solids are frequently limited or enhanced by the occurrence of phase transformations. Martensitic transformations involve the collective displacement of atoms from one ordered state to another. Modern methods to determine the microscopic electronic changes as the atoms move are now accurate enough to evaluate the very small energy differences involved. Extensive first principles calculations for the prototypical martensitic transformation from body-centered cubic (bcc) to closepacked 9R structure in sodium metal are described. The minimum energy coordinate or configuration path between the bcc and 9R structures is determined as well as paths to other competing close-packed structures. The energy barriers and important anharmonic interactions are identified and general conclusions drawn. The calculational methods used to solve the Schrodinger equation include pseudopotentials, fast Fourier transforms, efficient matrix diagnonalization, and supercells with many atoms

  12. Shape coexistence in the neutron-deficient Pt isotopes in the configuration-mixed IBM

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Campuzano, Cuauhtemoc; Morales, Irving O.; Frank, Alejandro; Van Isacker, Piet

    2008-01-01

    The matrix-coherent state approach in the IBM with configuration mixing is used to describe the geometry of neutron-deficient Pt isotopes. Employing a parameter set for all isotopes determined previously, it is found that the lowest minimum goes from spherical to oblate and finally acquires a prolate shape when approaching the mid-shell Pt isotopes

  13. Configuration study of large wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Stefan

    2003-07-01

    In this thesis, layouts of various large-scale wind parks, using both AC as well as DC, are investigated. Loss modelling of the wind park components as well as calculations of the energy capture of the turbines using various electrical systems are performed, and the energy production cost of the various park configurations is determined. The most interesting candidate for a DC transmission based wind park was investigated more in detail, the series DC wind park. Finally, the power quality impact in the PCC (point of common coupling) was studied. It was found that from an energy capture point of view, the difference in energy production between various wind turbine systems is very small. Of all the investigated wind park configurations, the wind park with the series connected DC wind turbines seems to have the best potential to give the lowest energy production cost, if the transmission distance is longer then 10-20 km. Regarding the series DC wind park it was found that it is the most difficult one to control. However, a control algorithm for the series park and its turbines was derived and successfully tested. Still, several more details regarding the control of the series wind park has to be dealt with.

  14. A new approach for ATLAS Athena job configuration

    CERN Document Server

    Lampl, Walter; The ATLAS collaboration

    2018-01-01

    The offline software framework of the ATLAS experiment (Athena) consists of many small components of various types like Algorithm, Tool or Service. To assemble these components into an executable application for event processing, a dedicated configuration step is necessary. The configuration of a particular job depends on the workflow (simulation, reconstruction, high-level trigger, overlay, calibration, analysis ...) and the input data (real or simulated data, beam-energy, ...) leading to a large number of possible configurations. The configuration step is done by executing python code. The resulting configuration depends on optionally pre-set flags as well as meta-data about the data to be processed that is found by peeking into the input file and even into databases. For the python configuration code, there is almost no structure enforced, leaving the full power of python to the user. While this approach did work, it also proved to be error prone and complicated to use. It also leads to jobs containing mor...

  15. Configuration Studies and Recommendations for the ILC Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-01-01

    We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration

  16. Evolution of the Fusion Power Demonstration tandem mirror reactor configuration

    International Nuclear Information System (INIS)

    O'Toole, J.A.; Lousteau, D.C.

    1985-01-01

    This paper gives a presentation of the evolution of configurations proposed for tandem mirror Fusion Power Demonstration (FPD) machines. The FPD study was undertaken to scope the mission as well as the technical and design requirements of the next tandem mirror device. Three configurations, entitled FPD I, II, and III were studied. During this process new systems were conceived and integrated into the design, resulting in a significantly changed overall machine configuration. The machine can be divided into two areas. A new center cell configuration, minimizing magnetic field ripple and thus maximizing center cell fusion power, features a semicontinuous solenoid. A new end cell has evolved which maintains the required thermal barrier in a significantly reduced axial length. The reduced end cell effective length leads to a shorter central cell length being required to obtain minimum ignition conditions. Introduced is the concept of an electron mantle stabilized octopole arrangement. The engineering features of the new end cell and maintenance concepts developed are influenced to a great extent by the octopole-based design. The new ideas introduced during the FPD study have brought forth a new perspective of the size, design, and maintenance of tandem mirror reactors, making them more attractive as commercial power sources

  17. Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration

    International Nuclear Information System (INIS)

    Blasques, L.C.M.; Pinho, J.T.

    2012-01-01

    This paper proposes a demand-side management model integrated to a metering system for hybrid renewable energy systems in micro-grid configuration. The proposal is based on the management problems verified in most of this kind of renewable hybrid systems installed in Brazil. The main idea is the implementation of a pre-paid metering system with some control functions that directly act on the consumer demand, restricting the consumption proportionally to the monthly availability of renewable energy. The result is a better distribution of the electricity consumption by month and by consumer, preventing that only one user, with larger purchasing power, consumes all the renewable energy available at some time period. The proportionality between the consumption and the renewable energy's availability has the objective to prevent a lack of energy stored and a high use of the diesel generator-set on months of low renewable potential. This paper also aims to contribute to the Brazilian regulation of renewable energy systems supplying micro-grids. - Highlights: ► Review of the Brazilian electricity regulation for small-scale isolated systems. ► Renewable systems are the most feasible option in several isolated communities. ► One proposal is to guarantee government subsidies for renewable energy systems. ► Smart electronic meters to create electricity restrictions for the consumers.

  18. MAP, MAC, and vortex-rings configurations in the Weinberg-Salam model

    Science.gov (United States)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming

    2015-11-01

    We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)×U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the ϕ-winding number n = 1, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the z-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number n = 3. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of 4 πn / e. In the MAP configurations, the monopole-antimonopole pair is bounded by the Z0 field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges ± 4πn/e sin2θW respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges ± 4 πn/e respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant 0 ≤ λ ≤ 40 at Weinberg angle θW = π/4.

  19. Configurational entropy in brane-world models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R.A.C. [CCNH, Universidade Federal do ABC, Santo Andre, SP (Brazil); Rocha, Roldao da [CMCC, Universidade Federal do ABC, Santo Andre, SP (Brazil); International School for Advanced Studies (SISSA), Trieste (Italy)

    2015-11-15

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy. (orig.)

  20. Configurational entropy in brane-world models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R. A. C., E-mail: fis04132@gmail.com [CCNH, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste (Italy)

    2015-11-02

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy.

  1. Configurational entropy in brane-world models

    International Nuclear Information System (INIS)

    Correa, R. A. C.; Rocha, Roldão da

    2015-01-01

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy

  2. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    The study in this article investigates 15 ventilated window typologies with different pane configurations and glazing types in climates of four European countries (United Kingdom, Denmark, France and Germany) in order to identify the optimum typology with regard to their energy balance and impact...... on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. U and g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...

  3. Stationary configurations of the Standard Model Higgs potential

    DEFF Research Database (Denmark)

    Iacobellis, Giuseppe; Masina, Isabella

    2016-01-01

    the stability of the SM electroweak minimum and ii) the value of the Higgs potential at a rising inflection point. We examine in detail and reappraise the experimental and theoretical uncertainties which plague their determination, finding that i) the stability of the SM is compatible with the present data...... at the 1.5σ level and ii) despite the large theoretical error plaguing the value of the Higgs potential at a rising inflection point, the application of such a configuration to models of primordial inflation displays a 3σ tension with the recent bounds on the tensor-to-scalar ratio of cosmological...

  4. Configuration interaction wave functions: A seniority number approach

    International Nuclear Information System (INIS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.

    2014-01-01

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure

  5. Configuration interaction wave functions: A seniority number approach

    Energy Technology Data Exchange (ETDEWEB)

    Alcoba, Diego R. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao (Spain); Massaccesi, Gustavo E. [Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina)

    2014-06-21

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.

  6. Sensitivity analysis of nacelle lidar free stream wind speed measurements to wind-induction reconstruction model and lidar range configuration

    DEFF Research Database (Denmark)

    Svensson, Elin; Borraccino, Antoine; Meyer Forsting, Alexander Raul

    The sensitivity of nacelle lidar wind speed measurements to wind-induction models and lidar range configurations is studied using experimental data from the Nørrekær Enge (NKE) measurement campaign and simulated lidar data from Reynold-Averaged Navier Stokes (RANS) aerodynamic computational fluid...... the ZDM was configured to measure at five distances. From the configured distances, a large number of range configurations were created and systematically tested to determine the sensitivity of the reconstructed wind speeds to the number of ranges, minimum range and maximum range in the range......) of the fitting residuals. The results demonstrate that it is not possible to use RANS CFD simulated lidar data to determine optimal range configurations for real-time nacelle lidars due to their perfect (unrealistic) representation of the simulated flow field. The recommended range configurations are therefore...

  7. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  8. Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Zafirakis, D.; Kondili, E.

    2009-01-01

    Stand-alone photovoltaic (PV) systems comprise one of the most promising electrification solutions for covering the demand of remote consumers. However, such systems are strongly questioned due to extreme life-cycle (LC) energy requirements. For similar installations to be considered as environmentally sustainable, their LC energy content must be compensated by the respective useful energy production, i.e. their energy pay-back period (EPBP) should be found less than their service period. In this context, an optimum sizing methodology is currently developed, based on the criterion of minimum embodied energy. Various energy autonomous stand-alone PV-lead-acid battery systems are examined and two different cases are investigated; a high solar potential area and a medium solar potential area. By considering that the PV-battery (PV-Bat) system's useful energy production is equal to the remote consumer's electricity consumption, optimum cadmium telluride (CdTe) based systems yield the minimum EPBP (15 years). If achieving to exploit the net PV energy production however, the EPBP is found less than 20 years for all PV types. Finally, the most interesting finding concerns the fact that in all cases examined the contribution of the battery component exceeds 27% of the system LC energy requirements, reflecting the difference between grid-connected and stand-alone configurations.

  9. Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters

    Directory of Open Access Journals (Sweden)

    S. M. M. Shariatmadar

    2017-08-01

    Full Text Available In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.

  10. Does the principle of minimum work apply at the carotid bifurcation: a retrospective cohort study

    International Nuclear Information System (INIS)

    Beare, Richard J; Das, Gita; Ren, Mandy; Chong, Winston; Sinnott, Matthew D; Hilton, James E; Srikanth, Velandai; Phan, Thanh G

    2011-01-01

    There is recent interest in the role of carotid bifurcation anatomy, geometry and hemodynamic factors in the pathogenesis of carotid artery atherosclerosis. Certain anatomical and geometric configurations at the carotid bifurcation have been linked to disturbed flow. It has been proposed that vascular dimensions are selected to minimize energy required to maintain blood flow, and that this occurs when an exponent of 3 relates the radii of parent and daughter arteries. We evaluate whether the dimensions of bifurcation of the extracranial carotid artery follow this principle of minimum work. This study involved subjects who had computed tomographic angiography (CTA) at our institution between 2006 and 2007. Radii of the common, internal and external carotid arteries were determined. The exponent was determined for individual bifurcations using numerical methods and for the sample using nonlinear regression. Mean age for 45 participants was 56.9 ± 16.5 years with 26 males. Prevalence of vascular risk factors was: hypertension-48%, smoking-23%, diabetes-16.7%, hyperlipidemia-51%, ischemic heart disease-18.7%. The value of the exponent ranged from 1.3 to 1.6, depending on estimation methodology. The principle of minimum work (defined by an exponent of 3) may not apply at the carotid bifurcation. Additional factors may play a role in the relationship between the radii of the parent and daughter vessels

  11. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    International Nuclear Information System (INIS)

    Zhang, Xing; Herbert, John M.

    2014-01-01

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H 3 near its D 3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state

  12. Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace

    International Nuclear Information System (INIS)

    Jang, Jiin-Yuh; Huang, Jun-Bo

    2015-01-01

    A two-dimensional mathematical heat transfer model for the prediction of the temperature history of steel slabs was performed in order to obtain the optimal heating pattern of these slabs with minimum energy consumption in a walking-beam type reheating furnace. An algorithm developed with a simplified conjugated-gradient method combined with a shooting method, was used as an optimizer to design the furnace temperature distribution, including the preheating zone, heating zone and soaking zone temperatures. Comparison with the in-situ experimental data indicated that the present heat transfer model works well for the prediction of the thermal behavior of a slab in the reheating furnace. The effect of the furnace temperature distribution on the design requirements, such as energy required for heating a slab, slab temperature uniformity at the furnace exit and slab discharging temperature, were investigated. The parametric study results indicated that energy consumption significantly decreases with reductions in the preheating zone temperature. The optimal design also resulted in lower energy consumption for heating a slab as compared to the original operational conditions in the steel plant. - Highlights: • The heating process of steel slabs in a reheating furnace is numerically simulated. • An algorithm is developed to search for the optimal heating pattern of a slab. • Energy consumption decreases with reductions in the preheating zone temperature

  13. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    International Nuclear Information System (INIS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Oak Ridge National Laboratory; Zhang, Y.; Oak Ridge National Laboratory

    2017-01-01

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, E_d, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for E_d are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  14. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  15. Heuristic Approach for Configuration of a Grid-Tied Microgrid in Puerto Rico

    Science.gov (United States)

    Rodriguez, Miguel A.

    The high rates of cost of electricity that consumers are being charged by the utility grid in Puerto Rico have created an energy crisis around the island. This situation is due to the island's dependence on imported fossil fuels. In order to aid in the transition from fossil-fuel based electricity into electricity from renewable and alternative sources, this research work focuses on reducing the cost of electricity for Puerto Rico through means of finding the optimal microgrid configuration for a set number of consumers from the residential sector. The Hybrid Optimization Modeling for Energy Renewables (HOMER) software, developed by NREL, is utilized as an aid in determining the optimal microgrid setting. The problem is also approached via convex optimization; specifically, an objective function C(t) is formulated in order to be minimized. The cost function depends on the energy supplied by the grid, the energy supplied by renewable sources, the energy not supplied due to outages, as well as any excess energy sold to the utility in a yearly manner. A term for considering the social cost of carbon is also considered in the cost function. Once the microgrid settings from HOMER are obtained, those are evaluated via the optimized function C( t), which will in turn assess the true optimality of the microgrid configuration. A microgrid to supply 10 consumers is considered; each consumer can possess a different microgrid configuration. The cost function C( t) is minimized, and the Net Present Value and Cost of Electricity are computed for each configuration, in order to assess the true feasibility. Results show that the greater the penetration of components into the microgrid, the greater the energy produced by the renewable sources in the microgrid, the greater the energy not supplied due to outages. The proposed method demonstrates that adding large amounts of renewable components in a microgrid does not necessarily translates into economic benefits for the consumer; in

  16. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  17. Charmonium and other onia at minimum energy

    International Nuclear Information System (INIS)

    Dalpiaz, P.

    1979-01-01

    In recent years considerable interest has been focused at CERN on the experimental possibilities offered by the antiproton-proton collisions to answer some of the fundamental questions of the present-day physics. Various working groups, set up at CERN during the last two years, have examined the physics potentials and the technical feasibility of anti pp colliding devices at various energies. As a consequence of this work, two anti pp projects have already been approved: the ISR anti pp project, and the SPS collider, covering a centre-of-mass energy range from 20 to 540 GeV. The Low-Energy Antiproton Ring (LEAR) projectsup(2)), allowing the study of phenomena under the 2msub(p) threshold up to 2.3 GeV, is at present under study. Transforming LEAR into a anti pp minicollidersup(2)), it is possible to reach a centre of-mass energy of 3.7 GeV. -Considering, then, the anti pp physics facilities at CERN as a whole project, it is seen that the energy range between 3.7 GeV and 20 GeV remains uncovered. In this report the physics interest of experiments in a centre-of-mass energy range between 2 and 20 GeV will be outlined and the technical feasibility investigated. (orig./FKS)

  18. Generic Degraded Configuration Probability Analysis for the Codisposal Waste Package

    International Nuclear Information System (INIS)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-01-01

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M and O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k eff in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package

  19. On the normalization of the minimum free energy of RNAs by sequence length.

    Science.gov (United States)

    Trotta, Edoardo

    2014-01-01

    The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  20. Optimisation of Offshore Wind Farm Cable Connection Layout Considering Levelised Production Cost Using Dynamic Minimum Spanning Tree Algorithm

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Cong

    2016-01-01

    The approach in this paper hads been developed to optimize the cable connection layout of large scale offshore wind farms. The objective is to minimize the Levelised Production Cost (LPC) og an offshore wind farm by optimizing the cable connection configuration. Based on the minimum spanning tree...... (MST) algorithm, an improved algorithm, the Dynamic Minimum Spanning Tree (DMST) algorithm is proposed. The current carrying capacity of the cable is considered to be the main constraint and the cable sectional area is changed dynamically. An irregular shaped wind farm is chosen as the studie case...

  1. Calculations of configurations of doubly ionized copper (Cu III)

    International Nuclear Information System (INIS)

    Sugar, J.; Martin, W.C.

    1976-01-01

    The energy levels belonging to the configurations 3d 7 4s 2 and 3d 8 nl (nl = 4s, 5s, 4p, 5p, 4d, 5d, 4f, and 5g) have been calculated. The radial energy integrals were treated as parameters and adjusted to give a least-squares fit to the observed levels. Two- and three-body effective electrostatic interactions for equivalent electrons were included, as well as two-body effective interactions for inequivalent electrons. Strong configuration interaction between 3d 7 4s 2 and 3d 8 4d was taken into account. Values of the parameters are given for all the above configurations, and the calculated levels are given for all except 3d 8 4s and 3d 8 4p (for which essentially equivalent results have been published). Leading eigenvector percentages are given in appropriate coupling schemes

  2. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  3. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    Directory of Open Access Journals (Sweden)

    Michael Shepertycky

    Full Text Available Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator.We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH, which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0 is lower than that of conventional power generation methods.These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  4. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    Science.gov (United States)

    Shepertycky, Michael; Li, Qingguo

    2015-01-01

    Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  5. A variational treatment of material configurations with application to interface motion and microstructural evolution

    Science.gov (United States)

    Teichert, Gregory H.; Rudraraju, Shiva; Garikipati, Krishna

    2017-02-01

    We present a unified variational treatment of evolving configurations in crystalline solids with microstructure. The crux of our treatment lies in the introduction of a vector configurational field. This field lies in the material, or configurational, manifold, in contrast with the traditional displacement field, which we regard as lying in the spatial manifold. We identify two distinct cases which describe (a) problems in which the configurational field's evolution is localized to a mathematically sharp interface, and (b) those in which the configurational field's evolution can extend throughout the volume. The first case is suitable for describing incoherent phase interfaces in polycrystalline solids, and the latter is useful for describing smooth changes in crystal structure and naturally incorporates coherent (diffuse) phase interfaces. These descriptions also lead to parameterizations of the free energies for the two cases, from which variational treatments can be developed and equilibrium conditions obtained. For sharp interfaces that are out-of-equilibrium, the second law of thermodynamics furnishes restrictions on the kinetic law for the interface velocity. The class of problems in which the material undergoes configurational changes between distinct, stable crystal structures are characterized by free energy density functions that are non-convex with respect to configurational strain. For physically meaningful solutions and mathematical well-posedness, it becomes necessary to incorporate interfacial energy. This we have done by introducing a configurational strain gradient dependence in the free energy density function following ideas laid out by Toupin (1962, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal., 11, 385-414). The variational treatment leads to a system of partial differential equations governing the configuration that is coupled with the traditional equations of nonlinear elasticity. The coupled system of equations governs

  6. Consistent force field modeling of matrix isolated molecules. V. Minimum energy path potential to the conformer conversion of 1,2-difluoroethane: Ar 364, ab initio calculation of electric multipole moments and electric polarization contribution to the conversion barrier

    Science.gov (United States)

    Gunde, R.; Ha, T.-K.; Günthard, H. H.

    1990-08-01

    In this paper results of consistent force field modeling (CFF) of the potential function to conversion of the gauche (g) to the trans (t) conformer of 1,2-difluoroethane (DFE) isolated in an argon matrix will be reported. Starting point are locally stable configurations gDFE:Ar 364 (defect GH1) and tDFE:Ar 364 (TH1) obtained in previous work from CFF modeling of a cube shaped Ar 364 fragment containing one DFE molecule in its center. Using the dihedral angle of DFE as an independent parameter the minimum energy path of the conversion process gDFE:Ar 364→tDFE:Ar 364 will be determined by CFF energy minimization. Determination of the minimum energy path is found to require large numbers of energy minimization steps and to lead to a rather complicated motion of the molecule with respect to the crystal fragment. Surprisingly the molecule-matrix interactions lead to a reduction of the g-t barrier by ≈500 cal/mol and to a stabilization of the trans species by ≈500 cal/mol. This finding is a consequence of a delicate interplay of matrix-molecule and matrix-matrix interactions. Calculation of the electric polarization energy (induced dipole-first-order polarization approximation) is based on extended ab initio calculations of dipole and quadrupole moments and a bond polarizability estimate of the first-order polarizability of DFE as a function of the internal rotation angle, on Fourier expansion of multipole components and use of symmetry for reduction of the order of the linear system defining the (self-consistent) induced dipole moments of all Ar atoms. Electric polarization is found to alter the potential function of the conversion process in a profound way: the g-t barrier and the t-g energy difference are increased to ≈3000 cal/mol and to ≈1500 cal/mol respectively (≈2500 and ≈530 cal/mol respectively for free DFE). Further applications of the technique developed in this work to related problems of matrix isolated molecules, e.g., vibrational matrix

  7. Spectral distributions of mixed configurations of identical nucleons in the seniority scheme II. Configuration-seniority scheme

    International Nuclear Information System (INIS)

    Quesne, C.; Spitz, S.

    1978-01-01

    Configuration-seniority spectral distributions as well as fixed seniority and fixed total seniority and parity distributions are studied in detail for mixed configurations of identitical nucleons. The decomposition of any (1+2) -body Hamiltonian into irreducible tensors with respect to the unitary and symplectic groups in each subshell is obtained. Group theoretical methods based on the Wigner-Eckart theorem for the higher unitary groups are used to get analytical expressions for the partial widths of configuration-seniority distributions. During this derivation, various isoscalar factors for the chain SU (2Ω) is contained inSp (2Ω) are determined. Numerical calculations of centroid energies, partial widths, and mixing parameters are performed in the Sn and Pb nuclei with a surface delta and a gaussian interactions. Average ordinary and total seniority breaking is studied. Total seniority space truncations in the ground state region are discussed in the Pb nuclei in connections with various approximation schemes

  8. Operational forecasting of daily temperatures in the Valencia Region. Part II: minimum temperatures in winter.

    Science.gov (United States)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia

  9. A chain-of-states acceleration method for the efficient location of minimum energy paths

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, E. R., E-mail: Eduardo.Hernandez@csic.es; Herrero, C. P. [Instituto de Ciencia de Materiales de Madrid (ICMM–CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Soler, J. M. [Departamento de Física de la Materia Condensada and IFIMAC, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2015-11-14

    We describe a robust and efficient chain-of-states method for computing Minimum Energy Paths (MEPs) associated to barrier-crossing events in poly-atomic systems, which we call the acceleration method. The path is parametrized in terms of a continuous variable t ∈ [0, 1] that plays the role of time. In contrast to previous chain-of-states algorithms such as the nudged elastic band or string methods, where the positions of the states in the chain are taken as variational parameters in the search for the MEP, our strategy is to formulate the problem in terms of the second derivatives of the coordinates with respect to t, i.e., the state accelerations. We show this to result in a very simple and efficient method for determining the MEP. We describe the application of the method to a series of test cases, including two low-dimensional problems and the Stone-Wales transformation in C{sub 60}.

  10. A chain-of-states acceleration method for the efficient location of minimum energy paths

    International Nuclear Information System (INIS)

    Hernández, E. R.; Herrero, C. P.; Soler, J. M.

    2015-01-01

    We describe a robust and efficient chain-of-states method for computing Minimum Energy Paths (MEPs) associated to barrier-crossing events in poly-atomic systems, which we call the acceleration method. The path is parametrized in terms of a continuous variable t ∈ [0, 1] that plays the role of time. In contrast to previous chain-of-states algorithms such as the nudged elastic band or string methods, where the positions of the states in the chain are taken as variational parameters in the search for the MEP, our strategy is to formulate the problem in terms of the second derivatives of the coordinates with respect to t, i.e., the state accelerations. We show this to result in a very simple and efficient method for determining the MEP. We describe the application of the method to a series of test cases, including two low-dimensional problems and the Stone-Wales transformation in C 60

  11. Numerical Investigations on the Aerodynamic Performance of Wind Turbine:Downwind Versus Upwind Configuration

    Institute of Scientific and Technical Information of China (English)

    Hu Zhou; Decheng Wan

    2015-01-01

    Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.

  12. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bojda, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programs while still saving consumers money?

  13. Ab initio configuration interaction description of excitation energy transfer between closely packed molecules

    International Nuclear Information System (INIS)

    Fink, R.F.; Pfister, J.; Schneider, A.; Zhao, H.; Engels, B.

    2008-01-01

    We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method

  14. Ab initio configuration interaction description of excitation energy transfer between closely packed molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fink, R.F. [University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Wuerzburg (Germany)], E-mail: reinhold.fink@rub.de; Pfister, J.; Schneider, A.; Zhao, H.; Engels, B. [University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Wuerzburg (Germany)

    2008-01-29

    We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method.

  15. A fuel cell city bus with three drivetrain configurations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junping [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Yong [School of Automobile and Transporting Engineering, Liaoning Institute of Technology, Jinzhou, Liaoning 121001 (China); Chen, Quanshi [State Key Laboratory of Automobile Safety and Energy Conservation, Tsinghua University, Beijing 100084 (China)

    2006-09-22

    Three fuel cell city buses of the energy hybrid- and power hybrid-type were re-engineered with three types of drivetrain configuration to optimize the structure and improve the performance. The energy distribution, hydrogen consumption, state of charge (SOC) and the power variation rate were analyzed when different drivetrain configurations and parameters were used. When powered only by a fuel cell, the bus cannot recover the energy through regenerative braking. The variation of the fuel cell power is large and frequent, which is not good for the fuel cell. When the fuel cell is linked to a battery pack in parallel, the bus can recover the energy through regenerative braking. The energy distribution is determined by the parameters of the fuel cell and the battery pack in the design stage to reduce the power variation rate of the fuel cell. When the fuel cell and DC/DC converter connected in series links the battery pack in parallel, energy can be recovered and the energy distribution can be adjusted online. The power variation rate of both the fuel cell and the battery pack are reduced. (author)

  16. Dark Energy and Structure Formation

    International Nuclear Information System (INIS)

    Singh, Anupam

    2010-01-01

    We study the gravitational dynamics of dark energy configurations. We report on the time evolution of the dark energy field configurations as well as the time evolution of the energy density to demonstrate the gravitational collapse of dark energy field configurations. We live in a Universe which is dominated by Dark Energy. According to current estimates about 75% of the Energy Density is in the form of Dark Energy. Thus when we consider gravitational dynamics and Structure Formation we expect Dark Energy to play an important role. The most promising candidate for dark energy is the energy density of fields in curved space-time. It therefore become a pressing need to understand the gravitational dynamics of dark energy field configurations. We develop and describe the formalism to study the gravitational collapse of fields given any general potential for the fields. We apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting evolution equations which determine the time evolution of field configurations as well as the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our universe.

  17. Minimum load reduction for once-through boiler power plants

    International Nuclear Information System (INIS)

    Colombo, P.; Godina, G.; Manganelli, R.

    2001-01-01

    In Italy the liberalization process of energy market is giving particular importance to the optimization of power plants performances; especially for those that will be called to satisfy grid peak demands. On those plants some techniques have been experimented for the reduction of minimum load; these techniques, investigated and tested by an engineering dynamic simulator, have been sequentially tested on plant. The minimum load for up 320 MW of Tavazzano power plants has been diminished from 140 down to 80 MW without plant modification [it

  18. Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2013-04-01

    Full Text Available This paper compares two optimal energy management methods for parallel hybrid electric vehicles using an Automatic Manual Transmission (AMT. A control-oriented model of the powertrain and vehicle dynamics is built first. The energy management is formulated as a typical optimal control problem to trade off the fuel consumption and gear shifting frequency under admissible constraints. The Dynamic Programming (DP and Pontryagin’s Minimum Principle (PMP are applied to obtain the optimal solutions. Tuning with the appropriate co-states, the PMP solution is found to be very close to that from DP. The solution for the gear shifting in PMP has an algebraic expression associated with the vehicular velocity and can be implemented more efficiently in the control algorithm. The computation time of PMP is significantly less than DP.

  19. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    International Nuclear Information System (INIS)

    Mullett, J D; Dodd, R; Williams, C J; Triantos, G; Dearden, G; Shenton, A T; Watkins, K G; Carroll, S D; Scarisbrick, A D; Keen, S

    2007-01-01

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV IMEP ) and the variance in the peak cylinder pressure position (Var PPP ). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air

  20. Photochemistry of ethylene: A multireference configuration interaction investigation of the excited-state energy surfaces

    International Nuclear Information System (INIS)

    Barbatti, M.; Paier, J.; Lischka, H.

    2004-01-01

    Multireference configuration interaction with singles and doubles (MR-CISD) calculations have been performed for the optimization of conical intersections and stationary points on the ethylene excited-state energy surfaces using recently developed methods for the computation of analytic gradients and nonadiabatic coupling terms. Basis set dependence and the effect of various choices of reference spaces for the MR-CISD calculations have been investigated. The crossing seam between the S 0 and S 1 states has been explored in detail. This seam connects all conical intersections presently known for ethylene. Major emphasis has been laid on the hydrogen-migration path. Starting in the V state of twisted-orthogonal ethylene, a barrierless path to ethylidene was found. The feasibility of ethylidene formation will be important for the explanation of the relative yield of cis and trans H 2 elimination

  1. Ternary-fragmentation-driving potential energies of 252Cf

    Science.gov (United States)

    Karthikraj, C.; Ren, Zhongzhou

    2017-12-01

    Within the framework of a simple macroscopic model, the ternary-fragmentation-driving potential energies of 252Cf are studied. In this work, all possible ternary-fragment combinations of 252Cf are generated by the use of atomic mass evaluation-2016 (AME2016) data and these combinations are minimized by using a two-dimensional minimization approach. This minimization process can be done in two ways: (i) with respect to proton numbers (Z1, Z2, Z3) and (ii) with respect to neutron numbers (N1, N2, N3) of the ternary fragments. In this paper, the driving potential energies for the ternary breakup of 252Cf are presented for both the spherical and deformed as well as the proton-minimized and neutron-minimized ternary fragments. From the proton-minimized spherical ternary fragments, we have obtained different possible ternary configurations with a minimum driving potential, in particular, the experimental expectation of Sn + Ni + Ca ternary fragmentation. However, the neutron-minimized ternary fragments exhibit a driving potential minimum in the true-ternary-fission (TTF) region as well. Further, the Q -value energy systematics of the neutron-minimized ternary fragments show larger values for the TTF fragments. From this, we have concluded that the TTF region fragments with the least driving potential and high Q values have a strong possibility in the ternary fragmentation of 252Cf. Further, the role of ground-state deformations (β2, β3, β4, and β6) in the ternary breakup of 252Cf is also studied. The deformed ternary fragmentation, which involves Z3=12 -19 fragments, possesses the driving potential minimum due to the larger oblate deformations. We also found that the ground-state deformations, particularly β2, strongly influence the driving potential energies and play a major role in determining the most probable fragment combinations in the ternary breakup of 252Cf.

  2. Environmental restoration project configuration control

    International Nuclear Information System (INIS)

    Hutterman, L.L.

    1991-01-01

    This paper provides an overview of the approach that Westinghouse Idaho Nuclear Company, Inc. (WINCO) is using for the implementation of the configuration control requirements for a major system acquisition under the guidance of US Department of Energy (DOE) Order 4700.1, open-quotes Project Management System,close quotes for environmental restoration. The two major features of the WINCO environmental restoration approach relate to (1) the product and (2) the maintenance of the baseline for many sites in different phases at the same time. Historically, a project has typically produced a product. Environmental restoration in some ways produces no typical project product. Essentially, what is produced and what configuration control management is exercised on is one of the following: (1) the development of clean dirt, (2) the documentation to support clean dirt, or (3) the track record of each of the sites. It is the latter approach that this paper deals with. This approach is unique in that there are four baselines [cost, schedule, scope, and technical (the track record product)] rather than the typical three. This is essential in configuration management due to the lack of a uniquely identifiable product for each site. Essentially, the philosophy behind the four-part configuration controls allows the technical baseline to fulfill the function typically met by the identifiable product

  3. New Topological Configurations in the Continuous Heisenberg Spin Chain: Lower Bound for the Energy

    Directory of Open Access Journals (Sweden)

    Rossen Dandoloff

    2015-01-01

    Full Text Available In order to study the spin configurations of the classical one-dimensional Heisenberg model, we map the normalized unit vector, representing the spin, on a space curve. We show that the total chirality of the configuration is a conserved quantity. If, for example, one end of the space curve is rotated by an angle of 2π relative to the other, the Frenet frame traces out a noncontractible loop in SO(3 and this defines a new class of topological spin configurations for the Heisenberg model.

  4. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    Directory of Open Access Journals (Sweden)

    Ruhe T.

    2016-01-01

    Full Text Available IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  5. On the normalization of the minimum free energy of RNAs by sequence length.

    Directory of Open Access Journals (Sweden)

    Edoardo Trotta

    Full Text Available The minimum free energy (MFE of ribonucleic acids (RNAs increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  6. A miniaturised, nested-cylindrical electrostatic analyser geometry for dual electron and ion, multi-energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bedington, Robert, E-mail: r.bedington@nus.edu.sg; Kataria, Dhiren; Smith, Alan

    2015-09-01

    The CATS (Cylindrical And Tiny Spectrometer) electrostatic optics geometry features multiple nested cylindrical analysers to simultaneously measure multiple energies of electron and multiple energies of ion in a configuration that is targeted at miniaturisation and MEMS fabrication. In the prototyped model, two configurations of cylindrical analyser were used, featuring terminating side-plates that caused particle trajectories to either converge (C type) or diverge (D type) in the axial direction. Simulations show how these different electrode configurations affect the particle focussing and instrument parameters; C-type providing greater throughputs but D-type providing higher resolving powers. The simulations were additionally used to investigate unexpected plate spacing variations in the as-built model, revealing that the k-factors are most sensitive to the width of the inter-electrode spacing at its narrowest point. - Highlights: • A new nested cylindrical miniaturised electrostatic analyser geometry is described. • “Converging” (C) and “diverging” (D) type channel properties are investigated. • C channels are shown to have greater throughputs and D greater resolving powers. • Plate factors are shown to be sensitive to the minimum in inter-electrode spacing.

  7. Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity

    Science.gov (United States)

    Zhang, Zhifeng; Drapaca, Corina; Chen, Xiaolin; Xu, Jie

    2017-07-01

    Models of a droplet passing through narrow constrictions have wide applications in science and engineering. In this paper, we report our findings on the minimum impulse (momentum change) of pushing a droplet through a narrow circular constriction. The existence of this minimum impulse is mathematically derived and numerically verified. The minimum impulse happens at a critical velocity when the time-averaged Young-Laplace pressure balances the total minor pressure loss in the constriction. Finally, numerical simulations are conducted to verify these concepts. These results could be relevant to problems of energy optimization and studies of chemical and biomedical systems.

  8. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole

    2006-01-01

    and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...

  9. Minimum Bias Measurements at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00022031; The ATLAS collaboration

    2016-01-01

    Inclusive charged particle measurements at hadron colliders probe the low-energy nonperturbative region of QCD. Pseudorapidity distributions of charged-particles produced in pp collisions at 13 TeV have been measured by the CMS experiment. The ATLAS collaboration has measured the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam current, recorded at a center-of-mass energy of 13 TeV. The measurements present the first detailed studies in inclusive phase spaces with a minimum transverse momentum of 100 MeV and 500 MeV. The distribution of electromagnetic and hadronic energy in the very forward phase-space has been measured with the CASTOR calorimeters located at a pseudorapidity of -5.2 to -6.6 in the very forward region of CMS. The energy distributions are very powerful benchmarks to study the performance of MPI in hadronic interactions models at 13 TeV collision energy. All measurements are compared with predictions of ...

  10. Runtime accelerator configuration tools at Jefferson Laboratory

    International Nuclear Information System (INIS)

    Tiefenback, M.G.; Doolittle, L.; Benesch, J.F.

    1997-01-01

    RF and magnet system configuration and monitoring tools are being implemented at Jefferson Lab to improve system reliability and reduce operating costs. They are prototype components of the Momentum Management System being developed. The RF is of special interest because it affects the momentum and momentum spread of the beam, and because of the immediate financial benefit of managing the klystron DC supply power. The authors describe present and planned monitoring of accelerating system parameters, use of these data, RF system performance calculations, and procedures for magnet configuration for handling beam of any of five beam energies to any of three targets

  11. Cost-optimal levels of minimum energy performance requirements in the Danish Building Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Aggerholm, S.

    2013-09-15

    The purpose of the report is to analyse the cost optimality of the energy requirements in the Danish Building Regulations 2010, BR10 to new building and to existing buildings undergoing major renovation. The energy requirements in the Danish Building Regulations have by tradition always been based on the cost and benefits related to the private economical or financial perspective. Macro economical calculations have in the past only been made in addition. The cost optimum used in this report is thus based on the financial perspective. Due to the high energy taxes in Denmark there is a significant difference between the consumer price and the macro economical for energy. Energy taxes are also paid by commercial consumers when the energy is used for building operation e.g. heating, lighting, ventilation etc. In relation to the new housing examples the present minimum energy requirements in BR 10 all shows gaps that are negative with a deviation of up till 16 % from the point of cost optimality. With the planned tightening of the requirements to new houses in 2015 and in 2020, the energy requirements can be expected to be tighter than the cost optimal point, if the costs for the needed improvements don't decrease correspondingly. In relation to the new office building there is a gap of 31 % to the point of cost optimality in relation to the 2010 requirement. In relation to the 2015 and 2020 requirements there are negative gaps to the point of cost optimality based on today's prices. If the gaps for all the new buildings are weighted to an average based on mix of building types and heat supply for new buildings in Denmark there is a gap of 3 % in average for the new building. The excessive tightness with today's prices is 34 % in relation to the 2015 requirement and 49 % in relation to the 2020 requirement. The component requirement to elements in the building envelope and to installations in existing buildings adds up to significant energy efficiency

  12. Instanton Field Configurations and Black Holes

    CERN Document Server

    Konopleva, N P

    2005-01-01

    The role of vacuum relativization in QCD and nucleus theory is discussed. It is shown that relativistic vacuum must be described by vacuum Einstein equations. Black Holes have to make their appearance in QCD because of Schwarzschildean solution of these equations. Instanton configurations of any fields do not change vacuum Einstein equations and their solutions, because their energy-momentum tensors are zero. But they make it possible to determine a space-time topology, which cannot be defined by differential Einstein equations. Therefore, Black Holes number in space-time is possibly connected with instanton configurations of fields and other matter. Instantons do not fall into Black Holes and are the very matter which surrounds them.

  13. A novel switched inductor configuration for modified SEPIC DC-to-DC converter for renewable energy application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Blaabjerg, Frede

    2017-01-01

    The proposed work is on the Modified SEPIC Converter (MSC) and its different configuration with switched inductor structure (SI). In this paper, five different configuration of modified SEPIC Converter namely-Modified SEPIC converter without switched inductor configuration (MSC-LLL), Modified SEP...

  14. Scission configurations and their implication in fission-fragment angular momenta

    International Nuclear Information System (INIS)

    Bonneau, L.; Quentin, P.; Mikhailov, I. N.

    2007-01-01

    The generation of sizable angular momenta in fragments formed in low-energy nuclear fission is described microscopically within the general quantum-mechanical framework of orientation pumping due to the Heisenberg uncertainty principle. Within this framework, we make use of the results of Skyrme-Hartree-Fock plus BCS-pairing calculations of fragment deformabilities to deduce a distribution of fission-fragment spins as a function of the fragment total excitation energy. We consider a fragmentation corresponding to a pair of deformed fragments and for which fission data are available. The properties of the scission configurations determine to a large extent the fission-fragment spins. This is why we pay particular attention to quantitatively defining the scission configurations and to studying the various implications of such a specific choice. A fair qualitative agreement with data is demonstrated and discussed within the limits of the simple scission-configuration model used here

  15. An Innovative Configuration for CO2 Capture by High Temperature Fuel Cells

    Directory of Open Access Journals (Sweden)

    Federico Rossi

    2014-09-01

    Full Text Available Many technological solutions have been proposed for CO2 capture in the last few years. Most of them are characterized by high costs in terms of energy consumption and, consequently, higher fossil fuel use and higher economic costs. High temperature fuel cells are technological solutions currently developed for energy production with low environmental impact. In CIRIAF—University of Perugia labs, cylindrical geometry, small-sized molten carbonate fuel cell (MCFC prototypes were built and tested with good energy production and lifetime performances. In the present work, an innovative application for MCFCs is proposed, and an innovative configuration for CO2 capture/separation is investigated. The plant scheme is based on a reformer and a cylindrical MCFC. MCFCs are the most suitable solutions, because CO2 is used in their operating cycle. An analysis in terms of energy consumption/kgCO2 captured is made by coupling the proposed configuration with a gas turbine plant. The proposed configuration is characterized by a theoretical energy consumption of about 500 kJ/kgCO2, which is quite lower than actual sequestration technologies. An experimental campaign will be scheduled to verify the theoretical findings.

  16. Measurement of Minimum Bias Observables with ATLAS

    CERN Document Server

    Kvita, Jiri; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes. It has also a significant relevance for the simulation of the environment at the LHC with many concurrent pp interactions (“pileup”). The ATLAS collaboration has provided new measurements of the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center of mass energies of 8 TeV and 13 TeV. The measurements cover a wide spectrum using charged particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities.

  17. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  18. Dynamic airspace configuration method based on a weighted graph model

    Directory of Open Access Journals (Sweden)

    Chen Yangzhou

    2014-08-01

    Full Text Available This paper proposes a new method for dynamic airspace configuration based on a weighted graph model. The method begins with the construction of an undirected graph for the given airspace, where the vertices represent those key points such as airports, waypoints, and the edges represent those air routes. Those vertices are used as the sites of Voronoi diagram, which divides the airspace into units called as cells. Then, aircraft counts of both each cell and of each air-route are computed. Thus, by assigning both the vertices and the edges with those aircraft counts, a weighted graph model comes into being. Accordingly the airspace configuration problem is described as a weighted graph partitioning problem. Then, the problem is solved by a graph partitioning algorithm, which is a mixture of general weighted graph cuts algorithm, an optimal dynamic load balancing algorithm and a heuristic algorithm. After the cuts algorithm partitions the model into sub-graphs, the load balancing algorithm together with the heuristic algorithm transfers aircraft counts to balance workload among sub-graphs. Lastly, airspace configuration is completed by determining the sector boundaries. The simulation result shows that the designed sectors satisfy not only workload balancing condition, but also the constraints such as convexity, connectivity, as well as minimum distance constraint.

  19. Electrode configuration effects on the electrification and voltage variation in an electrostatic inkjet printing head

    International Nuclear Information System (INIS)

    Choi, Kyung Hyun; Ali, Adnan; Rahman, Ahsan; Malik Mohammad, Nauman; Rahman, Khalid; Khan, Arshad; Khan, Saleem; Kim, D S

    2010-01-01

    The electrode configuration of an electrostatic inkjet printing head is under study. This paper introduces the development of a new electrostatic inkjet head with an improved electrode configuration as compared to the conventional configuration. Two tungsten electrodes, connected in parallel, are inserted into the electrostatic print head at a certain angle from opposite sides. The aim of this double-side inserted angular electrodes (DSIAEs) head is to intensify the electrification of the fluid inside the head at minimum suitable exposure of the electrode, which results in maximizing surface charge density. The main advantage of the DSIAEs head is to get a very stable meniscus at low applied voltage for printing. This stable meniscus is transformed to a very stable jet by increasing the applied voltage. Therefore, printed patterns obtained with this DSIAEs head are more uniform because of a more stable meniscus and jet as compared to a conventional electrostatic vertically inserted single electrode head. Also, with this DSIAEs configuration, the life of the electrostatic inkjet printing head is increased.

  20. ''Reduced'' magnetohydrodynamics and minimum dissipation rates

    International Nuclear Information System (INIS)

    Montgomery, D.

    1992-01-01

    It is demonstrated that all solutions of the equations of ''reduced'' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs

  1. Dissecting Protein Configurational Entropy into Conformational and Vibrational Contributions.

    Science.gov (United States)

    Chong, Song-Ho; Ham, Sihyun

    2015-10-01

    Quantifying how the rugged nature of the underlying free-energy landscape determines the entropic cost a protein must incur upon folding and ligand binding is a challenging problem. Here, we present a novel computational approach that dissects the protein configurational entropy on the basis of the classification of protein dynamics on the landscape into two separate components: short-term vibrational dynamics related to individual free-energy wells and long-term conformational dynamics associated with transitions between wells. We apply this method to separate the configurational entropy of the protein villin headpiece subdomain into its conformational and vibrational components. We find that the change in configurational entropy upon folding is dominated by the conformational entropy despite the fact that the magnitude of the vibrational entropy is the significantly larger component in each of the folded and unfolded states, which is in accord with the previous empirical estimations. The straightforward applicability of our method to unfolded proteins promises a wide range of applications, including those related to intrinsically disordered proteins.

  2. From least action in electrodynamics to magnetomechanical energy-a review

    International Nuclear Information System (INIS)

    Essen, Hanno

    2009-01-01

    The equations of motion for electromechanical systems are traced back to the fundamental Lagrangian of particles and electromagnetic fields, via the Darwin Lagrangian. When dissipative forces can be neglected the systems are conservative and one can study them in a Hamiltonian formalism. The central concepts of generalized capacitance and inductance coefficients are introduced and explained. The problem of gauge independence of self-inductance is considered. Our main interest is in magnetomechanics, i.e. the study of systems where there is exchange between mechanical and magnetic energy. This throws light on the concept of magnetic energy, which according to the literature has confusing and peculiar properties. We apply the theory to a few simple examples: the extension of a circular current loop, the force between parallel wires, interacting circular current loops and the rail gun. These show that the Hamiltonian, phase space, form of magnetic energy has the usual property that an equilibrium configuration corresponds to an energy minimum

  3. Local random configuration-tree theory for string repetition and facilitated dynamics of glass

    Science.gov (United States)

    Lam, Chi-Hang

    2018-02-01

    We derive a microscopic theory of glassy dynamics based on the transport of voids by micro-string motions, each of which involves particles arranged in a line hopping simultaneously displacing one another. Disorder is modeled by a random energy landscape quenched in the configuration space of distinguishable particles, but transient in the physical space as expected for glassy fluids. We study the evolution of local regions with m coupled voids. At a low temperature, energetically accessible local particle configurations can be organized into a random tree with nodes and edges denoting configurations and micro-string propagations respectively. Such trees defined in the configuration space naturally describe systems defined in two- or three-dimensional physical space. A micro-string propagation initiated by a void can facilitate similar motions by other voids via perturbing the random energy landscape, realizing path interactions between voids or equivalently string interactions. We obtain explicit expressions of the particle diffusion coefficient and a particle return probability. Under our approximation, as temperature decreases, random trees of energetically accessible configurations exhibit a sequence of percolation transitions in the configuration space, with local regions containing fewer coupled voids entering the non-percolating immobile phase first. Dynamics is dominated by coupled voids of an optimal group size, which increases as temperature decreases. Comparison with a distinguishable-particle lattice model (DPLM) of glass shows very good quantitative agreements using only two adjustable parameters related to typical energy fluctuations and the interaction range of the micro-strings.

  4. 76 FR 23208 - Alternative to Minimum Days Off Requirements

    Science.gov (United States)

    2011-04-26

    ... Language X. Voluntary Consensus Standards XI. Finding of No Significant Environmental Impact XII. Paperwork... the Current Fitness for Duty Requirements On September 3, 2010, the Nuclear Energy Institute (NEI... to the minimum days off requirements considered the collective advantages and disadvantages of having...

  5. 10 CFR 1015.505 - Minimum amount of referrals to the Department of Justice.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Minimum amount of referrals to the Department of Justice... THE UNITED STATES Referrals to the Department of Justice § 1015.505 Minimum amount of referrals to the Department of Justice. (a) DOE shall not refer for litigation claims of less than $2,500, exclusive of...

  6. Energy position of bistable defect (CiCs)0 in 'B' configuration in a forbidden zone of n-Si

    International Nuclear Information System (INIS)

    Dolgolenko, A.P.; Litovchenko, P.G.; Varentsov, M.D.

    2003-01-01

    Float-zone and phosphorus-doped n-Si samples after irradiation by fast-pile neutrons and subsequent annealing at room temperature were investigated. The calculation of effective concentration of carriers after irradiation was carried out in the framework of Gossick's model taking into account the recharges of defects both in conducting matrix of n-Si and in the space-charge region of defect clusters. The distribution function of electrons on the acceptor level of bistable defect (C i C s ) 0 when the concentration of this defect is the function of the Fermi level in conducting matrix of n-Si is determined. The concentration of bistable interstitial-carbon-substitutional-carbon pair and its energy level at (E c - 0,123 eV) in forbidden band of silicon were calculated. On the observable level of stable configuration C i C s (A - )-defects at (E c - 0,147 eV) the theoretical change of carriers concentration in the conduction band simulated by the recharges (C i C s ) 0 was imposed. The concentration of these (C i C s ) 0 -defects has been changed in the process of their recharges. It is shown that in n-Si with high carbon and oxygen concentration after affiliating of oxygen atoms to bistable defect (C i C s ) 0 in a forbidden band of n-Si the stable defects not only in 'A' but also in 'B' configurations are formed with energy levels at (E c - 0,13 eV) and (E c - 0,09 eV)

  7. Energy level schemes of f{sup N} electronic configurations for the di-, tri-, and tetravalent lanthanides and actinides in a free state

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.-G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Brik, M.G., E-mail: mikhail.brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Liu, D.-X.; Feng, B.; Tian, Ya [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Suchocki, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2016-02-15

    The energy level diagrams are theoretically constructed for the di-, tri-, tetravalent lanthanide and actinide ions, using the Hartree–Fock calculated parameters of the Coulomb and spin–orbit interactions within f{sup N} (N=1…13) electron configurations. These diagrams are analogous to Dieke's diagram, which was obtained experimentally. They can be used for an analysis of the optical spectra of all considered groups of ions in various environments. Systematic variation of some prominent energy levels (especially those ones with a potential for emission transitions) along the isoelectronic 4f/5f ions is considered. - Highlights: • Energy level schemes for di-, tri, tetravalent lanthanides/actinides are calculated. • Systematic variation of the characteristic energy levels across the series is considered. • Potentially interesting emission transitions are identified.

  8. Static Equilibrium Configurations of Charged Metallic Bodies ...

    African Journals Online (AJOL)

    In this paper we developed a simple numerical scheme to determine the static equilibrium configuration of charged metallic bodies by minimizing the potential energy function. The method developed has some advantages; it combines the general theory and the physical meanings nested in the mathematical model and this ...

  9. Superposition of configurations in semiempirical calculation of iron group ion spectra

    International Nuclear Information System (INIS)

    Kantseryavichyus, A.Yu.; Ramonas, A.A.

    1976-01-01

    The energy spectra of ions from the iron group in the dsup(N), dsup(N)s, dsup(N)p configurations are studied. A semiempirical method is used in which the effective hamiltonian contains configuration superposition. The sdsup(N+1), psup(4)dsup(N+2) quasidegenerated configurations, as well as configurations which differ by one electron are taken as correction configurations. It follows from the calculations that the most important role among the quasidegenerate configurations is played by the sdsup(N+1) correctional configuration. When it is taken into account, the introduction of the psup(4)dsup(N+2) correctional configuration practically does not affect the results. Account of the dsup(N-1)s configuration in the second order of the perturbation theory is equivalent to that of sdsup(N+1) in the sense that it results in the identical mean square deviation. As follows from the comparison of the results of the approximate and complete account of the configuration superposition, in many cases one can be satisfied with its approximate and complete account of the configuration superposition, in many cases one can be satisfied with its approximate version. The results are presented in the form of tables including the values of empirical parameters, radial integrals, mean square errors, etc

  10. Software configuration management

    International Nuclear Information System (INIS)

    Arribas Peces, E.; Martin Faraldo, P.

    1993-01-01

    Software Configuration Management is directed towards identifying system configuration at specific points of its life cycle, so as to control changes to the configuration and to maintain the integrity and traceability of the configuration throughout its life. SCM functions and tasks are presented in the paper

  11. A computational study on the adsorption configurations and reactions of SiHx(x = 1-4) on clean and H-covered Si(100) surfaces

    Science.gov (United States)

    Le, Thong N.-M.; Raghunath, P.; Huynh, Lam K.; Lin, M. C.

    2016-11-01

    Possible adsorption configurations of H and SiHx (x = 1 - 4) on clean and H-covered Si(100) surfaces are determined by using spin-polarized DFT calculations. The results show that, on the clean surface, the gas-phase hydrogen atom and SiH3 radicals effectively adsorb on the top sites, while SiH and SiH2 prefer the bridge sites of the first layer. Another possibility for SiH is to reside on the hollow sites with a triple-bond configuration. For a partially H-coverd Si(100) surface, the mechanism is similar but with higher adsorption energies in most cases. This suggests that the surface species become more stable in the presence of surface hydrogens. The minimum energy paths for the adsorption/migration and reactions of H/SiHx species on the surfaces are explored using the climbing image-nudged elastic band method. The competitive surface processes for Si thin-film formation from SiHx precursors are also predicted. The study reveals that the migration of hydrogen adatom is unimportant with respect to leaving open surface sites because of its high barriers (>29.0 kcal/mol). Alternatively, the abstraction of hydrogen adatoms by H/SiHx radicals is more favorable. Moreover, the removal of hydrogen atoms from adsorbed SiHx, an essential step for forming Si layers, is dominated by abstraction rather than the decomposition processes.

  12. Theoretical level energies and transition data for 4p64d4, 4p64d34f and 4p54d5 configurations of W34+ ion

    Science.gov (United States)

    Karpuškienė, R.; Bogdanovich, P.; Kisielius, R.

    2017-05-01

    The ab initio quasirelativistic approach developed specifically for the calculation of spectral parameters of highly charged ions was used to derive transition data for the tungsten ion W34+. The configuration interaction method was applied to include electron correlation effects. The relativistic effects were taken into account in the Breit-Pauli approximation. The level energies, radiative lifetimes τ, Landé g-factors are determined for the ground configuration 4p64d4 and two excited configurations 4p64d34f and 4p54d5. The radiative transition wavelengths λ and emission transition probabilities A for the electric dipole, electric quadrupole, electric octupole, magnetic dipole, and magnetic quadrupole transitions among the levels of these configurations are produced.

  13. Zero Energy Ready Home Multifamily Case Study Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States); Alaigh, Kunal [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States)

    2016-02-05

    Two multifamily buildings planned in Climate Zone 4 were analyzed to determine the cost, energy and performance implications of redesigning them to comply with Zero Energy Ready Home, a recognition program of the U.S. Department of Energy. Energy modeling was conducted on one representative apartment in each building using BEopt. Construction costs were obtained from the developer and subcontractors to determine savings and cost increases over ENERGY STAR. It was found that seven items would be necessary to change to comply with ZERH criteria when starting from the original design which was compliant with ENERGY STAR version 3.0. Design changes were made to the exterior walls, domestic water heating system, duct protection, duct design, garage ventilation, and pest control to comply with ZERH requirements. Energy impacts of upgrading from the original design to ZERH resulted in 2 to 8% reduction in modeled source energy consumption, or 1.7 to 10.4 MMBtu per year, although the original design was already about 8% better than a design configured to minimum ENERGY STAR criteria. According to the BEopt analysis, annualized energy related costs of the ZERH design were slightly higher for the apartment and slightly lower for the townhome when compared to the original design.

  14. Site specific optimization of wind turbines energy cost: Iterative approach

    International Nuclear Information System (INIS)

    Rezaei Mirghaed, Mohammad; Roshandel, Ramin

    2013-01-01

    Highlights: • Optimization model of wind turbine parameters plus rectangular farm layout is developed. • Results show that levelized cost for single turbine fluctuates between 46.6 and 54.5 $/MW h. • Modeling results for two specific farms reported optimal sizing and farm layout. • Results show that levelized cost of the wind farms fluctuates between 45.8 and 67.2 $/MW h. - Abstract: The present study was aimed at developing a model to optimize the sizing parameters and farm layout of wind turbines according to the wind resource and economic aspects. The proposed model, including aerodynamic, economic and optimization sub-models, is used to achieve minimum levelized cost of electricity. The blade element momentum theory is utilized for aerodynamic modeling of pitch-regulated horizontal axis wind turbines. Also, a comprehensive cost model including capital costs of all turbine components is considered. An iterative approach is used to develop the optimization model. The modeling results are presented for three potential regions in Iran: Khaf, Ahar and Manjil. The optimum configurations and sizing for a single turbine with minimum levelized cost of electricity are presented. The optimal cost of energy for one turbine is calculated about 46.7, 54.5 and 46.6 dollars per MW h in the studied sites, respectively. In addition, optimal size of turbines, annual electricity production, capital cost, and wind farm layout for two different rectangular and square shaped farms in the proposed areas have been recognized. According to the results, optimal system configuration corresponds to minimum levelized cost of electricity about 45.8 to 67.2 dollars per MW h in the studied wind farms

  15. Comparison of DOE and NIRMA approaches to configuration management programs

    International Nuclear Information System (INIS)

    Yang, E.Y.; Kulzick, K.C.

    1995-01-01

    One of the major management programs used for commercial, laboratory, and defense nuclear facilities is configuration management. The safe and efficient operation of a nuclear facility requires constant vigilance in maintaining the facility's design basis with its as-built condition. Numerous events have occurred that can be attributed to (either directly or indirectly) the extent to which configuration management principles have been applied. The nuclear industry, as a whole, has been addressing this management philosophy with efforts taken on by its constituent professional organizations. The purpose of this paper is to compare and contrast the implementation plans for enhancing a configuration management program as outlined in the U.S. Department of Energy's (DOE's) DOE-STD-1073-93, open-quotes Guide for Operational Configuration Management Program,close quotes with the following guidelines developed by the Nuclear Information and Records Management Association (NIRMA): 1. PP02-1994, open-quotes Position Paper on Configuration Managementclose quotes 2. PP03-1992, open-quotes Position Paper for Implementing a Configuration Management Enhancement Program for a Nuclear Facilityclose quotes 3. PP04-1994 open-quotes Position Paper for Configuration Management Information Systems.close quotes

  16. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mullett, J D [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dodd, R [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Williams, C J [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Triantos, G [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dearden, G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Shenton, A T [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Watkins, K G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Carroll, S D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Scarisbrick, A D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Keen, S [GSI Group, Cosford Lane, Swift Valley, Rugby, Warwickshire, CV21 1QN (United Kingdom)

    2007-08-07

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV{sub IMEP}) and the variance in the peak cylinder pressure position (Var{sub PPP}). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air.

  17. Configuration Management

    International Nuclear Information System (INIS)

    Morcos, A.; Taylor, H. S.

    1989-01-01

    This paper will briefly discuss the reason for and content of configuration management both for new plants and, when adapted, for older plants. It will then address three types of activities a utility may undertake as part of a nuclear CAM program and with which Sargent and Leyden has been actively involved. The first activity is a methodology for preparing design-basis documentation. The second is the identification of essential data required to be kept by the utility in support of the operation of a nuclear plant. The third activity is a computerized classification system of plant components, allowing ready identification of plant functional and physical characteristics. Plant configuration documentation describes plant components, the ways they arranged to interact, and the ways they are enabled to interact. Configuration management, on the other hand, is more than the control of such documentation. It is a dynamic process for ensuring that a plant configuration meets all relevant requirements for safety and economy, even while the configuration changes and even while the requirements change. Configuration management for a nuclear plant is so complex that it must be implemented in phases and modules. It takes advantage of and integrates existing programs. Managing complexity and streamlining the change process become important additional objectives of configuration management. The example activities fulfill essential goals of an overall CAM program: definition of design baseline, definition of essential plant data, and classification of plant components

  18. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  19. Lower Bounds on the Maximum Energy Benefit of Network Coding for Wireless Multiple Unicast

    Directory of Open Access Journals (Sweden)

    Matsumoto Ryutaroh

    2010-01-01

    Full Text Available We consider the energy savings that can be obtained by employing network coding instead of plain routing in wireless multiple unicast problems. We establish lower bounds on the benefit of network coding, defined as the maximum of the ratio of the minimum energy required by routing and network coding solutions, where the maximum is over all configurations. It is shown that if coding and routing solutions are using the same transmission range, the benefit in d-dimensional networks is at least . Moreover, it is shown that if the transmission range can be optimized for routing and coding individually, the benefit in 2-dimensional networks is at least 3. Our results imply that codes following a decode-and-recombine strategy are not always optimal regarding energy efficiency.

  20. A Pontryagin Minimum Principle-Based Adaptive Equivalent Consumption Minimum Strategy for a Plug-in Hybrid Electric Bus on a Fixed Route

    Directory of Open Access Journals (Sweden)

    Shaobo Xie

    2017-09-01

    Full Text Available When developing a real-time energy management strategy for a plug-in hybrid electric vehicle, it is still a challenge for the Equivalent Consumption Minimum Strategy to achieve near-optimal energy consumption, because the optimal equivalence factor is not readily available without the trip information. With the help of realistic speeding profiles sampled from a plug-in hybrid electric bus running on a fixed commuting line, this paper proposes a convenient and effective approach of determining the equivalence factor for an adaptive Equivalent Consumption Minimum Strategy. Firstly, with the adaptive law based on the feedback of battery SOC, the equivalence factor is described as a combination of the major component and tuning component. In particular, the major part defined as a constant is applied to the inherent consistency of regular speeding profiles, while the second part including a proportional and integral term can slightly tune the equivalence factor to satisfy the disparity of daily running cycles. Moreover, Pontryagin’s Minimum Principle is employed and solved by using the shooting method to capture the co-state dynamics, in which the Secant method is introduced to adjust the initial co-state value. And then the initial co-state value in last shooting is taken as the optimal stable constant of equivalence factor. Finally, altogether ten successive driving profiles are selected with different initial SOC levels to evaluate the proposed method, and the results demonstrate the excellent fuel economy compared with the dynamic programming and PMP method.

  1. A Flexible Stretchable Hydrogel Electrolyte for Healable All-in-One Configured Supercapacitors.

    Science.gov (United States)

    Guo, Ying; Zheng, Kaiqiang; Wan, Pengbo

    2018-04-01

    The development of integrated high-performance supercapacitors with all-in-one configuration, excellent flexibility and autonomously intrinsic self-healability, and without the extra healable film layers, is still tremendously challenging. Compared to the sandwich-like laminated structures of supercapacitors with augmented interfacial contact resistance, the flexible healable integrated supercapacitor with all-in-one structure could theoretically improve their interfacial contact resistance and energy densities, simplify the tedious device assembly process, prolong the lifetime, and avoid the displacement and delamination of multilayered configurations under deformations. Herein, a flexible healable all-in-one configured supercapacitor with excellent flexibility and reliable self-healing ability by avoiding the extra healable film substrates and the postassembled sandwich-like laminated structures is developed. The healable all-in-one configured supercapacitor is prepared from in situ polymerization and deposition of nanocomposites electrode materials onto the two-sided faces of the self-healing hydrogel electrolyte separator. The self-healing hydrogel film is obtained from the physically crosslinked hydrogel with enormous hydrogen bonds, which can endow the healable capability through dynamic hydrogen bonding. The assembled all-in-one configured supercapacitor exhibits enhanced capacitive performance, good cycling stability, reliable self-healing capability, and excellent flexibility. It holds broad prospects for obtaining various flexible healable all-in-one configured supercapacitors for working as portable energy storage devices in wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Economic evaluation of flying-qualities design criteria for a transport configured with relaxed static stability

    Science.gov (United States)

    Sliwa, S. M.

    1980-01-01

    Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed to take maximum advantage of relaxed static stability augmentation systems. Additionally, a number of handling qualities related design constants were studied with respect to their impact on the design.

  3. First-principles investigation of indium diffusion in a silicon substrate

    International Nuclear Information System (INIS)

    Yoon, Kwan-Sun; Hwang, Chi-Ok; Yoo, Jae-Hyun; Won, Tae-Young

    2006-01-01

    In this paper, we report the total energy, the minimum energy path, and the migration energy of indium in a silicon substrate by using ab-initio calculations. Stable configurations during indium diffusion were obtained from the calculation of the total energy, and we estimated the minimum energy path (MEP) with the nudged elastic band (NEB) method. After finding the MEP, we found the energy barrier for the diffusion of indium to be 0.8 eV from an exact calculation of the total energies at the minimum and the transition state.

  4. High pressure studies of configuration interaction and crystal field effects in Sm2+

    International Nuclear Information System (INIS)

    Shen, Y.; Bray, K.L.

    1998-01-01

    Full text: Divalent rare earth ions are interesting luminescence centres because of the low energy of the excited 4f n-1 5d 1 configuration relative to the 4f n ground configuration. The low energy difference between these two configurations leads to two principle effects which distinguish the luminescence properties of divalent rare earth ions from those of trivalent rare earth ions. First, a significant amount of 5d state mixing into the electronic states of the 4f n configuration occurs and second, the thermal activation barrier to 4f n → 4f n-1 5d 1 crossing is greatly reduced. The first effect introduces opposite parity character into the emitting levels of divalent rare earth ions and acts to shorten lifetimes and increase f-f luminescence intensity, while the second effect acts to enhance thermal quenching of 4f n excited electronic states closest in energy to the 4f n-1 5d 1 configuration. The interaction between the 4f n and 4f n-1 5d 1 configurations and crystal field properties are typically studied by considering the luminescence properties of divalent rare earth ions in a series of host crystals. We are currently developing a new approach, based on high pressure luminescence spectroscopy, for understanding con-figuration interaction and crystal field properties of divalent rare earth ions. The strategy of our approach is to use high pressure as a tool of structural perturbation. By applying hydrostatic pressure to solids, we have an opportunity to continuously vary the nearest neighbour coordination environment of divalent rare earth dopants. Our general goal is to correlate pressure-induced changes in local structure with pressure-induced changes in luminescence properties in an attempt to better understand structure-property-composition relations in solid state luminescent materials. In this paper we present recent results on Sm 2+ in a series of MFCl (M = Sr, Ba, Ca) host lattices. Luminescence spectra and decay properties as a function of

  5. CONFIGURATION GENERATOR MODEL

    International Nuclear Information System (INIS)

    Alsaed, A.

    2004-01-01

    ''The Disposal Criticality Analysis Methodology Topical Report'' prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the ''Configuration Generator Model for In-Package Criticality'' that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state. The configuration generator model is a risk-informed, performance-based process for evaluating the criticality potential of degraded configurations in the monitored geologic repository. The method uses event tree methods to define configuration classes derived from criticality scenarios and to identify configuration class characteristics (parameters, ranges, etc.). The probabilities of achieving the various configuration classes are derived in part from probability density functions for degradation parameters. The NRC has issued ''Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0''. That report contained 28 open items that required resolution through additional documentation. Of the 28 open items, numbers 5, 6, 9, 10, 18, and 19 were concerned with a previously proposed software approach to the configuration generator methodology and, in particular, the k eff regression analysis associated with the methodology. However, the use of a k eff regression analysis is not part of the current configuration generator methodology and, thus, the referenced open items are no longer considered applicable and will not be further addressed

  6. Configuration dependent deformation in 183Au

    International Nuclear Information System (INIS)

    Joshi, P.; Kumar, A.; Govil, I.M.; Mukherjee, G.; Singh, R.P.; Muralithar, S.; Bhowmik, R.K.

    1998-01-01

    The lifetime measurements in 183 Au nucleus were carried in order to probe the deformation properties of the band built on the i 3/2 and h 9/2 configurations. The nucleus of 183 Au was populated using a reaction 28 Si( 159 Tb,4n) 183 Au at a beam energy of 140 MeV. Lifetime measurements were carried out using Recoil Distance Measurements (RDM) method

  7. Do Minimum Wages Fight Poverty?

    OpenAIRE

    David Neumark; William Wascher

    1997-01-01

    The primary goal of a national minimum wage floor is to raise the incomes of poor or near-poor families with members in the work force. However, estimates of employment effects of minimum wages tell us little about whether minimum wages are can achieve this goal; even if the disemployment effects of minimum wages are modest, minimum wage increases could result in net income losses for poor families. We present evidence on the effects of minimum wages on family incomes from matched March CPS s...

  8. Excitation-energy influence at the scission configuration

    Directory of Open Access Journals (Sweden)

    Ramos D.

    2017-01-01

    Full Text Available Transfer- and fusion-induced fission in inverse kinematics was proven to be a powerful tool to investigate nuclear fission, widening the information of the fission fragments and the access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign for fission investigation has being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through transfer and fusion reactions, with excitation energies that range from few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer permitted the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. The neutron excess, the total neutron multiplicity, and the even-odd staggering in the nuclear charge of fission fragments are presented as a function of the excitation energy of the fissioning system. Structure effects are observed at Z∼50 and Z∼55, where their impact evolves with the excitation energy.

  9. A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units

    Energy Technology Data Exchange (ETDEWEB)

    Cagatay Bayindir, Kamil; Goezuekuecuek, Mehmet Ali; Teke, Ahmet [Cukurova University, Department of Electrical and Electronics Engineering, Balcali, Saricam, Adana (Turkey)

    2011-02-15

    The studies for hybrid electrical vehicle (HEV) have attracted considerable attention because of the necessity of developing alternative methods to generate energy for vehicles due to limited fuel based energy, global warming and exhaust emission limits in the last century. HEV incorporates internal composition engine, electric machines and power electronic equipments. In this study, overview of HEVs with a focus on hybrid configurations, energy management strategies and electronic control units are presented. Advantages and disadvantages of each configuration are clearly emphasized. The existing powertrain control techniques for HEVs are classified and comprehensively described. Electronic control units used in HEV configuration are also elaborated. The latest trends and technological challenges in the near future for HEVs are discussed. (author)

  10. Numerical simulation on multi-peak magnetic field configuration for negative hydrogen ion source

    International Nuclear Information System (INIS)

    Wang Xiaomin; Yang Chao; Liu Dagang; Wang Xueqiong

    2011-01-01

    Based on the magnetic charge model, the numerical algorithm of three-dimensional permanent magnets was derived by the finite difference method. Then combining the full three-dimensional particle-in-cell/Monte Carlo algorithm (PIC/MCC), two multi-peak magnetic field configurations, external magnetic filter and tent-shaped filter, were analyzed respectively, and their influences on electron energy distribution were compared. The simulation results show that both configurations can confine the diffusion of particles and can extract negative hydrogen ions; their electron energy distributions are basically similar, presenting double energy state, which are consistent with the basic mechanism of plasma discharge. The former configuration is stronger in confining and can produce more particles, whose total number is approximately four times that of the latter. The tent-shaped magnetic filter can efficiently prevent electron drift caused by inhomogeneous longitudinal magnetic field, leading to more uniform spatial distribution of negative hydrogen ions. The results of simulation are consistent with those from the foreign experiment. (authors)

  11. eDT and Model-based Configuration of 12GeV CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Dennison L. [Jefferson Lab, Newport News, VA (United States)

    2015-09-01

    This poster will discuss model-driven setup of CEBAF for the 12GeV era, focusing on the elegant Download Tool (eDT). eDT is a new operator tool that generates magnet design setpoints for various machine energies and pass configurations. eDT was developed in the effort towards a process for reducing machine configuration time and reproducibility by way of an accurate accelerator model.

  12. Magnetic configuration and transport interplay in TJ-II flexible heliac

    International Nuclear Information System (INIS)

    Alejaldre, C.; Alonso, J.; Almoguera, L.

    2003-01-01

    This paper presents an overview of experimental results and progress in the investigation of the role of the magnetic configuration on stability and transport in the TJ-II stellarator. Significant improvement in the characterization of confinement and stability properties of TJ-II stellarator plasmas has been recently achieved. Global confinement studies have shown a positive dependence of energy confinement on rotational transform, reinforcing the dependence found with the ISS95 database. Spontaneous transitions in particle and energy confinement have been observed which resemble some characteristics of previously reported H-mode regimes in other stellarator devices. Magnetic configuration scan experiments have shown the interplay between magnetic topology (e.g. rationals), transport and electric fields. Cold pulse as well as the transport events provoked by decreasing magnetic well generates non-diffusive propagation. First measurements of radial electric fields and plasma potential show values that are comparable with those expected from neoclassical calculations. Active biasing experiments have shown an impact both in edge and global plasma parameters. In low magnetic well configurations sheared edge poloidal and parallel flows are linked near marginal stability. (author)

  13. Valence configurations in 214Rn

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Bark, R.A.; Poletti, A.R.

    1987-01-01

    Excited states of 214 Rn, up to spins of ≅ 24 ℎ have been studied using γ-ray and electron spectroscopy following the 208 Pb( 9 Be,3n) 214 Rn reaction. The level scheme (which differs substantially from earlier work) is compared with the results of a semi-empirical shell model calculation. The availability of high-spin orbitals for the four valence protons and two valence neutrons, and the effect of the attractive proton-neutron interaction, leads to the prediction of high-spin states at an unusually low excitation energy. Experimentally, the high level density leads to difficulties in the level scheme assignments at high spin. Nevertheless, configuration assignments, supported by transition strengths deduced from the measured lifetimes (in the nanosecond region) are suggested for the main yrast states. The decay properties also suggest that configuration mixing is important. The possibility of a gradual transition to octupole deformation, implied by the decay properties of the 11 - and 10 + yrast states is also discussed. (orig.)

  14. Damage detection with concentrated configurations of piezoelectric transducers

    International Nuclear Information System (INIS)

    Wandowski, T; Malinowski, P; Ostachowicz, W M

    2011-01-01

    In this paper results of investigation on concentrated piezoelectric networks with different configurations are presented. They were used for elastic wave generation and acquisition. The elastic wave propagation phenomenon was used for damage localization in thin aluminium panels. This approach utilized the fact that any discontinuities existing in structural elements cause local changes of physical material properties which affect elastic wave propagation. Elastic waves were excited and received using piezoelectric transducer networks with different element arrangements. The method of transducer placement and the number of piezoelectric elements used had an influence on the accuracy of the damage localization algorithm. Obviously, the more elements there were, the more data had to be processed. After the acquisition process signal processing was conducted in order to create damage influence maps. These maps presents elastic wave energy connected with reflection from discontinuities. In order to create such a map a computer program was developed that assigns a mesh of points to the panel surface. At each point the energy of elastic wave reflection was calculated. This energy was extracted from the acquired signals. This paper summarizes an extensive experimental investigation that included three damage scenarios and twelve transducer configurations

  15. Configurational entropy of hydrogen-disordered ice polymorphs

    International Nuclear Information System (INIS)

    Herrero, Carlos P.; Ramírez, Rafael

    2014-01-01

    The configurational entropy of several H-disordered ice polymorphs is calculated by means of a thermodynamic integration along a path between a totally H-disordered state and one fulfilling the Bernal-Fowler ice rules. A Monte Carlo procedure based on a simple energy model is used, so that the employed thermodynamic path drives the system from high temperatures to the low-temperature limit. This method turns out to be precise enough to give reliable values for the configurational entropy s th of different ice phases in the thermodynamic limit (number of molecules N → ∞). The precision of the method is checked for the ice model on a two-dimensional square lattice. Results for the configurational entropy are given for H-disordered arrangements on several polymorphs, including ices Ih, Ic, II, III, IV, V, VI, and XII. The highest and lowest entropy values correspond to ices VI and XII, respectively, with a difference of 3.3% between them. The dependence of the entropy on the ice structures has been rationalized by comparing it with structural parameters of the various polymorphs, such as the mean ring size. A particularly good correlation has been found between the configurational entropy and the connective constant derived from self-avoiding walks on the ice networks

  16. Configuration of the Beam Loss Monitors for the LHC arcs

    CERN Document Server

    Arauzo-Garcia, A

    2000-01-01

    A revised configuration for a beam loss detection system is given for the arcs of the LHC. The last modifications of the LHC arc layout have been taken into account, LHC optics version 6.2. A set of 6 Loss Detectors will be placed outside the cryostat around each short straight section. Quench alarm thresholds are estimated for each detector in all possible LHC arc layout configurations. Threshold values are proposed for top and injection energy beam loss.

  17. A study of the Pythia 8 description of ATLAS minimum bias measurements with the Donnachie-Landshoff diffractive model

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    We present a new tune of the Pythia8 event generator, titled ``A3'' and suitable for inclusive QCD modelling, including minimum bias physics and pile-up overlay. The tuning uses the early Run~2 charged particle distribution and inelastic cross section results from ATLAS in addition to the Run~1 data used to construct previous minimum-bias tunes. For the first time, the tuning included a consideration of diffraction modelling parameters and a diffractive model other than the Pythia8 default is used in the final configuration. That resulted in a better descriptions of the measured inelastic cross-sections, and similar or better level of agreement compared to the currently used A2 tune for other distributions considered.

  18. On balancing between minimum energy and minimum delay with radio diversity for wireless sensor networks

    DEFF Research Database (Denmark)

    Moad, Sofiane; Hansen, Morten Tranberg; Jurdak, RajA

    2012-01-01

    The expected number of transmissions (ETX) metric represents the link quality in wireless sensor networks, which is highly variable for a specific radio and it can influence dramatically both of the delay and the energy. To adapt to these fluctuations, radio diversity has been recently introduced...... to improve the delivery rate but at the cost of increases in energy for wireless sensor networks. In this paper, we propose a scheme for radio diversity that can balance, depending on the traffic nature in the network, between minimizing the energy consumption or minimizing the end-to-end delay. The proposed...... scheme combines the benefit of two metrics, which aim separately to minimize the energy consumption, and to minimize delay when delivering packets to the end-user. We show by both analysis and simulation that our proposed scheme can adapt to the type of traffic that can occur in a network so...

  19. Minimum spanning trees and random resistor networks in d dimensions.

    Science.gov (United States)

    Read, N

    2005-09-01

    We consider minimum-cost spanning trees, both in lattice and Euclidean models, in d dimensions. For the cost of the optimum tree in a box of size L , we show that there is a correction of order L(theta) , where theta or =1 . The arguments all rely on the close relation of Kruskal's greedy algorithm for the minimum spanning tree, percolation, and (for some arguments) random resistor networks. The scaling of the entropy and free energy at small nonzero T , and hence of the number of near-optimal solutions, is also discussed. We suggest that the Steiner tree problem is in the same universality class as the minimum spanning tree in all dimensions, as is the traveling salesman problem in two dimensions. Hence all will have the same value of theta=-3/4 in two dimensions.

  20. Measured neutron beam line shielding effectiveness of several iron/polyethylene configurations

    International Nuclear Information System (INIS)

    Legate, G.L.; Howe, M.L.; Mundis, R.L.

    1988-01-01

    Neutron and gamma-ray leakage measurements were taken at various stages of shield construction of neutron flight path 5 (the Lash-up flight path) at LANSCE, to compare the relative effectiveness of several configurations. Dose equivalent rates were determined for three categories: ''low-energy neutrons'', below 20 MeV; ''high- energy neutrons'', above 20 MeV; and gamma rays, as measured by hand-held survey instruments. The low energy neutrons were measured by activation of an indium foil in a paraffin-filled cadmium canister, sized to be generally insensitive above 20 MeV. High-energy neutrons were measured by (n,2n) production of Carbon 11 in a plastic scintillator with a 20-MeV threshold. Thermal neutrons were not measured at the shield-leakage test points. Room-scattered neutrons were observed by Albatross IV detector readings, which were taken beside the shield as a measure of variation of room background as the shield configuration changed. 1 fig., 1 tab

  1. Onset of pseudo-thermal equilibrium within configurations and super-configurations

    International Nuclear Information System (INIS)

    Busquet, Michel

    2006-01-01

    Level populations within a configuration and configuration populations within super-configuration or within one ion are shown to follow a Boltzmann law at some effective temperature different from the actual electron temperature (as it would be when Griem criterion is valid). Origin of this pseudo-thermal equilibrium is discussed and basis of a model are presented

  2. Onset of pseudo-thermal equilibrium within configurations and super-configurations

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, Michel [ARTEP Inc., 2922 Excelsior Springs Court, Elicott City, MD 21042 (United States)]. E-mail: busquet@this.nrl.navy.mil

    2006-05-15

    Level populations within a configuration and configuration populations within super-configuration or within one ion are shown to follow a Boltzmann law at some effective temperature different from the actual electron temperature (as it would be when Griem criterion is valid). Origin of this pseudo-thermal equilibrium is discussed and basis of a model are presented.

  3. Energy loss optimization of run-off-road wheels applying imperialist competitive algorithm

    Directory of Open Access Journals (Sweden)

    Hamid Taghavifar

    2014-08-01

    Full Text Available The novel imperialist competitive algorithm (ICA has presented outstanding fitness on various optimization problems. Application of meta-heuristics has been a dynamic studying interest of the reliability optimization to determine idleness and reliability constituents. The application of a meta-heuristic evolutionary optimization method, imperialist competitive algorithm (ICA, for minimization of energy loss due to wheel rolling resistance in a soil bin facility equipped with single-wheel tester is discussed. The required data were collected thorough various designed experiments in the controlled soil bin environment. Local and global searching of the search space proposed that the energy loss could be reduced to the minimum amount of 15.46 J at the optimized input variable configuration of wheel load at 1.2 kN, tire inflation pressure of 296 kPa and velocity of 2 m/s. Meanwhile, genetic algorithm (GA, particle swarm optimization (PSO and hybridized GA–PSO approaches were benchmarked among the broad spectrum of meta-heuristics to find the outperforming approach. It was deduced that, on account of the obtained results, ICA can achieve optimum configuration with superior accuracy in less required computational time.

  4. Development of Compact Quasi-Axisymmetric Stellarator Reactor Configurations

    International Nuclear Information System (INIS)

    Ku, L.P.; Zarnstorff, M.; White, R.B.; Cooper, W.A.; Sanchez, R.; Neilson, H.; Schmidt, J.A.

    2003-01-01

    We have started to examine the reactor potential of quasi-axisymmetric (QA) stellarators with an integrated approach that includes systems evaluation, engineering considerations, and plasma and coil optimizations. In this paper, we summarize the progress made so far in developing QA configurations with reduced alpha losses while retaining good MHD stability properties. The minimization of alpha losses is achieved by directly targeting the collisionless orbits to prolong the average resident times. Configurations with an overall energy loss rate of ∼10% or less, including collisional contributions, have been found. To allow remotely maintaining coils and machine components in a reactor environment, there is a desire to simplify to the extent possible the coil design. To this end, finding a configuration that is optimized not only for the alpha confinement and MHD stability but also for the good coil and reactor performance, remains to be a challenging task

  5. Theoretical energy level spectra and transition data for 4p64d, 4p64f and 4p54d2 configurations of W37+ ion

    International Nuclear Information System (INIS)

    Bogdanovich, P.; Kisielius, R.

    2012-01-01

    The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectral parameters of heavy atoms and highly charged ions was applied to determine atomic data for tungsten ions. The correlation effects were included by adopting the configuration interaction method. The Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals was employed to take into account relativistic effects. The energy level spectra, radiative lifetimes, Lande factors g were calculated for the 4p 6 4d, 4p 6 4f and 4p 5 4d 2 configurations of W 37+ ion. The atomic data, namely, the transition wavelengths, spontaneous emission rates and oscillator strengths for the electric dipole, electric quadrupole and magnetic dipole transitions among and within the levels of these configurations are tabulated.

  6. Effects of Burner Configurations on the Natural Oscillation Characteristics of Laminar Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    K. R. V. Manikantachari

    2015-09-01

    Full Text Available In this work, effects of burner configurations on the natural oscillations of methane laminar diffusion flames under atmospheric pressure and normal gravity conditions have been studied experimentally. Three regimes of laminar diffusion flames, namely, steady, intermittent flickering and continuous flickering have been investigated. Burner configurations such as straight pipe, contoured nozzle and that having an orifice plate at the exit have been considered. All burners have the same area of cross section at the exit and same burner lip thickness. Flame height data has been extracted from direct flame video using MATLAB. Shadowgraph videos have been captured to analyze the plume width characteristics. Results show that, the oscillation characteristics of the orifice burner is significantly different from the other two burners; orifice burner produces a shorter flame and wider thermal plume width in the steady flame regime and the onset of the oscillation/flickering regimes for the orifice burner occurs at a higher fuel flow rate. In the natural flickering regime, the dominating frequency of flame flickering remains within a small range, 12.5 Hz to 15 Hz, for all the burners and for all fuel flow rates. The time-averaged flame length-scale parameters, such as the maximum and the minimum flame heights, increase with respect to the fuel flow rate, however, the difference in the maximum and the minimum flame heights remains almost constant.

  7. Operational Dynamic Configuration Analysis

    Science.gov (United States)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  8. Ansible configuration management

    CERN Document Server

    Hall, Daniel

    2013-01-01

    Ansible Configuration Management"" is a step-by-step tutorial that teaches the use of Ansible for configuring Linux machines.This book is intended for anyone looking to understand the basics of Ansible. It is expected that you will have some experience of how to set up and configure Linux machines. In parts of the book we cover configuration files of BIND, MySQL, and other Linux daemons, therefore a working knowledge of these would be helpful but are certainly not required.

  9. Configuration interaction in LTE spectra of heavy elements

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.

    1992-11-01

    We present a method for including the effects of configuration interaction (CI) between relativistic subconfigurations of an electron configuration in the calculation of emission and absorption spectra of plasmas in local thermodynamic equilibrium (LTE). Analytical expressions for the correction to the intensities, owing to Cl, of an unresolved transition array (UTA) and of a supertransition array (STA) are obtained when the correction is small compared to the spin-orbit splitting, bypassing the need to diagonalize energy matrices. These expressions serve as working formulas in the STA model and, in addition, reveal a priori the conditions under which CI effects are significant. Examples of the effect are presented

  10. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X=empty, H2O, NH3, H3O+: The importance of O-topology

    Science.gov (United States)

    Anick, David J.

    2010-04-01

    For (H2O)20X water clusters consisting of X enclosed by the 512 dodecahedral cage, X=empty, H2O, NH3, and H3O+, databases are made consisting of 55-82 isomers optimized via B3LYP/6-311++G∗∗. Correlations are explored between ground state electronic energy (Ee) or electronic energy plus zero point energy (Ee+ZPE) and the clusters' topology, defined as the set of directed H-bonds. Linear regression is done to identify topological features that correlate with cluster energy. For each X, variables are found that account for 99% of the variance in Ee and predict it with a rms error under 0.2 kcal/mol. The method of analysis emphasizes the importance of an intermediate level of structure, the "O-topology," consisting of O-types and a list of O pairs that are bonded but omitting H-bond directions, as a device to organize the databases and reduce the number of structures one needs to consider. Relevant variables include three parameters, which count the number of H-bonds having particular donor and acceptor types; |M|2, where M is the cluster's vector dipole moment; and the projection of M onto the symmetry axis of X. Scatter diagrams for Ee or Ee+ZPE versus |M| show that clusters fall naturally into "families" defined by the values of certain discrete parameters, the "major parameters," for each X. Combining "family" analysis and O-topologies, a small group of clusters is identified for each X that are candidates to be the global minimum, and the minimum is determined. For X=H3O+, one cluster with central hydronium lies just 2.08 kcal/mol above the lowest isomer with surface hydronium. Implications of the methodology for dodecahedral (H2O)20(NH4+) and (H2O)20(NH4+)(OH-) are discussed, and new lower energy isomers are found. For MP2/TZVP, the lowest-energy (H2O)20(NH4+) isomer features a trifurcated H-bond. The results suggest a much more efficient and comprehensive way of seeking low-energy water cluster geometries that may have wide applicability.

  11. Risk-based configuration control

    International Nuclear Information System (INIS)

    Szikszai, T.

    1997-01-01

    The presentation discusses the following issues: The Configuration Control; The Risk-based Configuration Control (during power operation mode, and during shutdown mode). PSA requirements. Use of Risk-based Configuration Control System. Configuration Management (basic elements, benefits, information requirements)

  12. A viable on-chip FPGA configuration memory scrubbing approach for CBM-ToF

    Energy Technology Data Exchange (ETDEWEB)

    Oancea, Andrei-Dumitru; Stuellein, Christian; Manz, Sebastian; Gebelein, Jano; Kebschull, Udo [Infrastruktur und Rechnersysteme in der Informationsverarbeitung (IRI), Goethe-Universitaet, Senckenberganlage 31, 60325 Frankfurt am Main (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The ToF Detector of the CBM Experiment will be equipped with FPGA-based read-out boards (ROBs). These ROBs will be operated in a radiation environment, and therefore need a mitigation mechanism against soft errors in the SRAM-based configuration memories of the FPGAs. The proposed approach combines intrinsic on-chip single upset correction with extrinsic selective frame scrubbing for multiple-bit upsets. The slow control is realized using the GBT-SCA, which is capable of handling interrupts. This enables the new approach of event-driven configuration frame correction. While conventional blind scrubbing leads to a continuous load on the control path, the selective frame scrubbing reduces this load to a minimum. For verification purposes, radiation tests with a proton beam were performed at COSY, Juelich. The occurred soft errors were classified into single and multiple- bit upsets, enabling an estimation of the rate at which extrinsic intervention is necessary.

  13. Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  14. Particle transport and fluctuation characteristics around neoclassically optimized configurations in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Vyacheslavov, L.N.

    2008-01-01

    Density profiles in LHD were measured and particle transport coefficients were estimated from density modulation experiments in LHD. The data set contains the wide region of discharge condition. The dataset of different magnetic axis, toroidal magnetic field and heating power provided data set of widely scanned neoclassical transport. At minimized neoclassical transport configuration in the dataset (Rax=3.5m, Bt=2.8T) showed peaked density profile. Its peaking factor increased gradually with decrease of collisional frequency. This is a similar result observed in tokamak data base. At other configuration, peaking factor reduced with decrease of collisional frequency. Data set showed that larger contribution of neoclassical transport produced hollowed density profile. Comparison between neoclassical and experimental estimated particle diffusivity showed different minimum condition. This suggests neoclassical optimization is not same as anomalous optimization. Clear difference of spatial profile of turbulence was observed between hollowed and peaked density profiles. Major part of fluctuation existed in the unstable region of linear growth rate of ion temperature gradient mode. (author)

  15. Rising above the Minimum Wage.

    Science.gov (United States)

    Even, William; Macpherson, David

    An in-depth analysis was made of how quickly most people move up the wage scale from minimum wage, what factors influence their progress, and how minimum wage increases affect wage growth above the minimum. Very few workers remain at the minimum wage over the long run, according to this study of data drawn from the 1977-78 May Current Population…

  16. Configuration of the nationwide-grid expansion in Cuba for the period 2000-2015

    International Nuclear Information System (INIS)

    Garcia Rodirguez, B

    1999-01-01

    Using the prediction of the growth in electric energy consumption, a study is made of the configuration of the Nationwide-Grid (NWG) for that period. The study makes due consideration of the principle of diversity of the Energy Sources, assessing among the candidates; biomass, fossil fuels and nuclear energy

  17. Loop-driven graphical unitary group approach to the electron correlation problem, including configuration interaction energy gradients

    International Nuclear Information System (INIS)

    Brooks, B.R.

    1979-09-01

    The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables

  18. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  19. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  20. A Transmission Power Optimization with a Minimum Node Degree for Energy-Efficient Wireless Sensor Networks with Full-Reachability

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-01-01

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351

  1. Ames Optimized TCA Configuration

    Science.gov (United States)

    Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.

    1999-01-01

    Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the

  2. Available exhaust gas power in different configurations in a pellet stove plant

    Energy Technology Data Exchange (ETDEWEB)

    Granada, E.; Patino, D.; Collazo, J.; Moran, J.C.; Porteiro, J. [Vigo University, E.T.S. Ingenieros Industriales, Lagoas-Marcosende, s/n, 36200 Vigo (Spain)

    2009-12-15

    With a view to finding the best configuration for a small cogeneration system based on the pellet combustion process, exergetic analysis was applied to a small pellet stove. The evaluation focuses on fume exergetic content for power generation purposes. Preheated air, secondary air, fume recirculation and basis configurations were studied. Global exergetic calculation was developed at these configurations based on experimental correlations of energy and emissions. The influences of the pellet feeding rate, excess air, secondary air and fume recirculation were studied. The results for multiple configurations are discussed and the best one is presented. Results show that CO emissions have a major influence on fume exergetic content, although if emissions diminish only a slight thermomechanical exergetic efficiency increase is expected. (author)

  3. On various validity criteria for the configuration average in collisional-radiative codes

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M [Commissariat a l' Energie Atomique, Service ' Photons, Atomes et Molecules' , Centre d' Etudes de Saclay, F91191 Gif-sur-Yvette Cedex (France)

    2008-01-28

    The characterization of out-of-local-thermal-equilibrium plasmas requires the use of collisional-radiative kinetic equations. This leads to the solution of large linear systems, for which statistical treatments such as configuration average may bring considerable simplification. In order to check the validity of this procedure, a criterion based on the comparison between a partial-rate systems and the Saha-Boltzmann solution is discussed in detail here. Several forms of this criterion are discussed. The interest of these variants is that they involve each type of relevant transition (collisional or radiative), which allows one to check separately the influence of each of these processes on the configuration-average validity. The method is illustrated by a charge-distribution analysis in carbon and neon plasmas. Finally, it is demonstrated that when the energy dispersion of every populated configuration is smaller than the electron thermal energy, the proposed criterion is fulfilled in each of its forms.

  4. Method and apparatus for generating and utilizing a compound plasma configuration

    International Nuclear Information System (INIS)

    Koloc, P.M.

    1977-01-01

    A method and apparatus for generating and utilizing a compound plasma configuration is disclosed. The plasma configuration includes a central toroidal plasma with electrical currents surrounded by a generally ellipsoidal mantle of ionized particles or electrically conducting matter. The preferred methods of forming this compound plasma configuration include the steps of forming a helical ionized path in a gaseous medium and simultaneously discharging a high potential through the ionized path to produce a helical or heliform current which collapses on itself to produce a toroidal current, or generating a toroidal plasmoid, supplying magnetic energy to the plasmoid, and applying fluid pressure external to the plasmoid. The apparatus of the present invention includes a pressure chamber wherein the compound plasma configuration can be isolated or compressed by fluid or other forms of mechanical or magnetic pressure. 47 claims, 10 figures

  5. Exergy based methods for economic and risk design optimization of energy systems: Application to a gas turbine

    International Nuclear Information System (INIS)

    Cassetti, G.; Rocco, M.V.; Colombo, E.

    2014-01-01

    Exergy based analyses are considered by the scientific community appropriate tools for the design and the performance evaluation and improvements of energy systems. Moreover, they are today recognized as proper instruments to assess economic, environmental and social externalities of energy systems. This paper presents the results of a study in which different exergy analysis methods are adopted to determine the optimal design configuration of a gas turbine operating in simple Joule Brayton cycle. Standard exergy and Thermoeconomic analyses are performed to identify the highest thermodynamic efficiency and minimum economic cost configurations of the system, while for the environmental analysis Authors propose an innovative method in which the exergy analysis is combined with a Risk Analysis. With this method the total risk associated to the system is used as objective function in the same way as monetary cost is for standard Thermoeconomic analysis. These three methods aims therefore to determine the optimal design configurations of the system with respect to their specific objective functions, respectively: exergy cost (J/J), monetary (exergoeconomic) cost (€/J) and risk (injured/J) of the product. Results lead to three different optimal design parameters for the system, according to the objective of each analysis procedure. - Highlights: • An original implementation of Thermoeconomic framework is proposed. • Standard Exergy and Thermoeconomic analysis are performed on a case study. • A new model using exergy as allocation criteria for Risk Analysis is performed. • Different optimal configurations are obtained and compared

  6. Neutron slowing down and transport in monoisotopic media with constant cross sections or with a square-well minimum

    International Nuclear Information System (INIS)

    Peng, W.H.

    1977-01-01

    A specialized moments-method computer code was constructed for the calculation of the even spatial moments of the scalar flux, phi/sub 2n/, through 2n = 80. Neutron slowing-down and transport in a medium with constant cross sections was examined and the effect of a superimposed square-well cross section minimum on the penetrating flux was studied. In the constant cross section case, for nuclei that are not too light, the scalar flux is essentially independent of the nuclide mass. The numerical results obtained were used to test the validity of existing analytic approximations to the flux at both small and large lethargies relative to the source energy. As a result it was possible to define the regions in the lethargy--distance plane where these analytic solutions apply with reasonable accuracy. A parametric study was made of the effect of a square-well cross section minimum on neutron fluxes at energies below the minimum. It was shown that the flux at energies well below the minimum is essentially independent of the position of the minimum in lethargy. The results can be described by a convolution-of-sources model involving only the lethargy separation between detector and source, the width and the relative depth of the minimum. On the basis of the computations and the corresponding model, it is possible to predict, e.g., the conditions under which transport in the region of minimum completely determines the penetrating flux. At the other extreme, the model describes when the transport in the minimum can be treated in the same manner as in any comparable lethargy interval. With the aid of these criteria it is possible to understand the apparent paradoxical effects of certain minima in neutron penetration through such media as iron and sodium

  7. Measurement of Minimum Bias Observables with the ATLAS detector

    CERN Document Server

    Kvita, Jiri; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes. It has also a significant relevance for the simulation of the environment at the LHC with many concurrent pp interactions (“pileup”). The ATLAS collaboration has provided new measurements of the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center of mass energies of 8 TeV and 13 TeV. The measurements cover a wide spectrum using charged particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities.

  8. Charm decays and high energy photoproduction

    International Nuclear Information System (INIS)

    1995-01-01

    The activities during the first nine months of the three-year grant period have concentrated on the development of computer resources both hardware and software as well as the design of a muon detector for Fermilab Experiment E831. An important related activity has been a successful search of funds to complement the resources provided by this grant and permit the involvement of additional personnel as well as a much-better leveraged impact of the funds provided. Grant funds were the main providers of a new computer system which is dedicated to the High Energy Physics group at Mayaguez. This system can be considered a minimum configuration to carry out the simulation and analysis loads of E831. The bulk of the software development has been directed at developing a Monte Carlo simulation for E831 in particular the E831 muon detector

  9. Spin--orbit configuration-interaction study of valence and Rydberg states of LiBe

    International Nuclear Information System (INIS)

    Marino, M.M.; Ermler, W.C.; Kern, C.W.; Bondybey, V.E.

    1992-01-01

    Ab initio spin--orbit full configuration-interaction calculations in the context of relativistic effective core potentials are reported for the weakly bound metal dimer LiBe, a three-valence-electron system. The effects of basis set on the energies of valence and Rydberg states of the cluster are discussed, as are the effects of configuration space selection on the energy of the latter states. Results at the dissociative limit are compared to the experimental atomic spectra. Potential-energy curves and spectroscopic constants are presented for the ground state and fourteen excited states, which includes the Li and Be 2p valence states, the Li 3s, 3p, 3d, and 4s Rydberg states, as well as three low-lying states of the molecular cation

  10. Economical and ecological benchmarking of biogas plant configurations for flexible power generation in future power supply systems

    International Nuclear Information System (INIS)

    Hahn, Henning

    2016-01-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. This study comparatively assesses the environmental and economic performance of biogas plant configurations, supplying biogas on demand for flexible power generation. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8 hours per day range between 2 Euro to 11 Euro MWh -1 and for a 72 hour period without biogas demand from 9 Euro to 19 Euro MWh -1 . While biogas storage concepts were identified as favorable short-term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for longer periods without biogas demand [1, 2]. Flexible biogas plant configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54 to 65 g CO 2-eq MJ -1 and primary energy by about 1.17 MJ MJ -1 . In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production [1, 3].

  11. Particle-two particle interaction in configuration space

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-07-01

    The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)

  12. The minimum mass of a charged spherically symmetric object in D dimensions, its implications for fundamental particles, and holography

    International Nuclear Information System (INIS)

    Burikham, Piyabut; Cheamsawat, Krai; Harko, Tiberiu; Lake, Matthew J.

    2016-01-01

    We obtain bounds for the minimum and maximum mass/radius ratio of a stable, charged, spherically symmetric compact object in a D-dimensional space-time in the framework of general relativity, and in the presence of dark energy. The total energy, including the gravitational component, and the stability of objects with minimum mass/radius ratio is also investigated. The minimum energy condition leads to a representation of the mass and radius of the charged objects with minimum mass/radius ratio in terms of the charge and vacuum energy only. As applied to the electron in the four-dimensional case, this procedure allows one to re-obtain the classical electron radius from purely general relativistic considerations. By combining the lower mass bound, in four space-time dimensions, with minimum length uncertainty relations (MLUR) motivated by quantum gravity, we obtain an alternative bound for the maximum charge/mass ratio of a stable, gravitating, charged quantum mechanical object, expressed in terms of fundamental constants. Evaluating this limit numerically, we obtain again the correct order of magnitude value for the charge/mass ratio of the electron, as required by the stability conditions. This suggests that, if the electron were either less massive (with the same charge) or if its charge were any higher (for fixed mass), a combination of electrostatic and dark energy repulsion would destabilize the Compton radius. In other words, the electron would blow itself apart. Our results suggest the existence of a deep connection between gravity, the presence of the cosmological constant, and the stability of fundamental particles. (orig.)

  13. Employment effects of minimum wages

    OpenAIRE

    Neumark, David

    2014-01-01

    The potential benefits of higher minimum wages come from the higher wages for affected workers, some of whom are in low-income families. The potential downside is that a higher minimum wage may discourage employers from using the low-wage, low-skill workers that minimum wages are intended to help. Research findings are not unanimous, but evidence from many countries suggests that minimum wages reduce the jobs available to low-skill workers.

  14. Optimization of a scintillation detector with hemispherical configuration

    International Nuclear Information System (INIS)

    Saules Mendonca, A.C. de.

    1980-08-01

    A hemispherical configuration for scintillation detectors, is introduced so as to minimize the dispersion in light collection by reducing the number of reflexions. Better results in the process of light collection appear explicitly in the gain in the amplitude of the pulse and a better resolution in time and energy when a comparative analysis is made between the cylindrical and hemispherical geometries. The measurements were made using NE102, a plastic scintillator with cylindrical and hemispherical forms, comparing the results of pulse amplitude and energy resolution. The results were quite significant showing a 13% improvement in pulse amplitude and more than 10% in energy resolution for some values of energies from 511 KeV to 1275 KeV. (Author) [pt

  15. Efficient configurations for block ciphers with unified ENC/DEC paths

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco

    2017-01-01

    by analyzing 12 circuit configurations for the Advanced Encryption Standard (AES-128) cipher and establish some design rules for energy efficiency. We then extend our analysis to several lightweight block ciphers. In the second part of the paper we also investigate area optimized circuits for combined......Block Ciphers providing the combined functionalities of encryption and decryption are required to operate in modes of operation like CBC and ELmD. Hence such architectures form critical building blocks for secure cryptographic implementations. Depending on the algebraic structure of a given cipher......, there may be multiple ways of constructing the combined encryption/decryption circuit, each targeted at optimizing lightweight design metrics like area or power etc. In this paper we look at how the choice of circuit configuration affects the energy required to perform one encryption/decryption. We begin...

  16. On a Minimum Problem in Smectic Elastomers

    International Nuclear Information System (INIS)

    Buonsanti, Michele; Giovine, Pasquale

    2008-01-01

    Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress

  17. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation.

    Science.gov (United States)

    Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael

    2015-03-01

    The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Dispersion theory and sum rules for the non-minimum phase problem in optical spectroscopy

    International Nuclear Information System (INIS)

    Peiponen, Kai-Erik

    2009-01-01

    Dispersion relations and sum rules for integer powers of an optical response function are given in the case of the non-minimum phase problem. These relations were obtained using the concept of the Hilbert transform and Blaschke product. The theory presented in this paper is useful both in basic and applied studies of non-minimum phase functions in optics, and also other fields of physics such as high energy physics.

  19. HLT configuration management system

    CERN Document Server

    Daponte, Vincenzo

    2015-01-01

    The CMS High Level Trigger (HLT) is implemented running a streamlined version of the CMS offline reconstruction software running on thousands of CPUs. The CMS software is written mostly in C++, using Python as its configuration language through an embedded CPython interpreter. The configuration of each process is made up of hundreds of modules, organized in sequences and paths. As an example, the HLT configurations used for 2011 data taking comprised over 2200 different modules, organized in more than 400 independent trigger paths. The complexity of the HLT configurations and the large number of configuration produced require the design of a suitable data management system. The present work describes the designed solution to manage the considerable number of configurations developed and to assist the editing of new configurations. The system is required to be remotely accessible and OS-independent as well as easly maintainable easy to use. To meet these requirements a three-layers architecture has been choose...

  20. Tilting mode in rigidly rotating field-reversed configurations

    International Nuclear Information System (INIS)

    Clemente, R.A.; Milovich, J.L.

    1983-01-01

    The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant

  1. Edge plasma control using an LID configuration on CHS

    Energy Technology Data Exchange (ETDEWEB)

    Masuzaki, S.; Komori, A.; Morisaki, T. [National Inst. for Fusion Science, Oroshi, Toki (Japan)] [and others

    1997-07-01

    A Local Island Divertor (LID) has been proposed to enhance energy confinement through neutral particle control. For the case of the Large Helical Device (LHD), the separatrix of an m/n = 1/1 magnetic island, formed at the edge region, will be utilized as a divertor configuration. The divertor head is inserted in the island, and the island separatrix provides connection between the edge plasma region surrounding the core plasma and the back plate of the divertor head through the field lines. The particle flux and associated heat flux from the core plasma strike the back plate of the divertor head, and thus particle recycling is localized in this region. A pumping duct covers the divertor head to form a closed divertor system for efficient particle exhaust. The advantages of the LID are ease of hydrogen pumping because of the localized particle recycling and avoidance of the high heat load that would be localized on the leading edge of the divertor head. With efficient pumping, the neutral pressure in the edge plasma region will be reduced, and hence the edge plasma temperature will be higher, hopefully leading to a better core confinement region. A LID configuration experiment was done on the Compact Helical System (CHS) to confirm the effect of the LID. The typical effects of the LID configuration on the core plasma are reduction of the line averaged density to a half, and small or no reduction of the stored energy. In this contribution, the experimental results which were obtained in edge plasma control experiments with the LID configuration in the CHS are presented.

  2. Brayton Isotope Power System. Phase I. (Ground demonstration system) Configuration Control Document (CCD)

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration control document (CCD) defines the BIPS-GDS configuration. The GDS configuration is similar to a conceptual flight system design, referred to as the BIPS-FS, which is discussed in App. I. The BIPS is being developed by ERDA as a 500 to 2000 W(e), 7-y life, space power system utilizing a closed Brayton cycle gas turbine engine to convert thermal energy (from an isotope heat source) to electrical energy at a net efficiency exceeding 25 percent. The CCD relates to Phase I of an ERDA Program to qualify a dynamic system for launch in the early 1980's. Phase I is a 35-month effort to provide an FS conceptual design and GDS design, fabrication, and test. The baseline is a 7-year life, 450-pound, 4800 W(t), 1300 W(e) system which will use two multihundred watt (MHW) isotope heat sources being developed

  3. Physics at the CERN collider using a ''minimum bias'' trigger

    International Nuclear Information System (INIS)

    Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Nandi, A.K.; Roberts, C.; Scott, W.; Shah, T.P.; Bezaguet, A.; Boeck, R.; Calvetti, M.; Carroll, T.; Cennini, P.; Centro, S.; Ceradini, F.; Cittolin, S.; Demoulin, M.; DiBitinto, D.; Ellis, N.; Hoffmann, H.; Jank, W.; Jorat, G.; Kowalski, H.; Kryn, D.; Lacava, F.; Markiewicz, T.; Maurin, G.; Muirhead, H.; Muller, F.; Naumann, L.; Norton, A.; Petrucci, G.; Placci, A.; Revol, J.P.; Rijssenbeek, M.; Rohlf, J.; Rossi, P.; Rubbia, C.; Sadoulet, B.; Schinzel, D.; Tao, C.; Timmer, J.; Meer, S. van der; Vialle, J.P.; Vuillemin, V.; Xie, G.Y.; Zurfluh, E.; Cochet, C.; DeBeer, M.; Denegri, D.; Givernaud, A.; Laugier, J.P.; Leveque, A.; Locci, E.; Loret, M.; Malosse, J.J.; Rich, J.; Sass, R.; Saudraix, J.; Savoy-Navarro, A.; Spiro, M.; Dobrzynski, L.; Fontaine, G.; Geer, S.; Ghesquiere, C.; Giraud-Heraud, Y.; Mendiburu, J.P.; Orkin-Lecourtois, A.; Sajot, G.; Vrana, J.; Bacci, C.; Bowcock, T.J.V.; Corden, M.; Dallman, D.; Di Ciaccio, A.; Dowell, J.D.; Edwards, M.; Eggert, K.; Eisenhandler, E.; Erhard, P.; Faissner, H.; Frey, R.; Fruehwirth, R.; Garvey, J.; Giboni, K.L.; Gibson, W.R.; Gutierrez, P.; Hansl-Kozanecka, T.; Hodges, C.; Hoffmann, D.; Homer, R.J.; Honma, A.; Kalmus, P.I.P.; Karimaeki, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kinnunen, R.; Kozanecki, W.; Lehmann, H.; Leuchs, K.; McMahon, T.; Moricca, M.; Paoluzi, L.; Piano Mortari, G.; Pimiae, M.; Radermacher, E.; Ransdell, J.; Reithler, H.; Salvi, G.; Salvini, G.; Strauss, J.; Sumorok, K.; Szoncso, F.; Smith, D.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; Wahl, H.D.; Watkins, P.; Wilson, J.

    1983-01-01

    In this paper the physics of the events collected using this ''minimum bias trigger'' is described. After a brief description of the detector, I present results concerning particle production (pseudorapidity distributions, multiplicity and KNO scaling). Transverse energy distributions, long and short range correlations, and finally high psub(t) physics and jets. (orig./HSI)

  4. Configuration by Modularisation

    DEFF Research Database (Denmark)

    Riitahuhta, Asko; Andreasen, Mogens Myrup

    1998-01-01

    Globally operating companies have realized that locally customized products and services are today the prerequisite for the success. The capability or the paradigm to act locally in global markets is called Mass Customization [Victor 1997]. The prerequisite for Mass Customization is Configuration...... Management and i Configuration Management the most important means is Modularisation.The goal of this paper is to show Configuration Management as a contribution to the Mass Customisation and Modularisation as a contribution to the industrialisation of the design area [Andreasen 1997]. A basic model...... for the creation of a structured product family is presented and examples are given. The concepts of a novel Dynamic Modularisation method, Metrics for Modularisation and Design for Configurability are presented....

  5. Energy level properties of 4p64d3, 4p64d24f, and 4p54d4 configurations of the W35+ ion

    International Nuclear Information System (INIS)

    Bogdanovich, P.; Kisielius, R.

    2014-01-01

    The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectroscopic parameters of heavy atoms and highly charged ions was used to derive spectral data for the multicharged tungsten ion W 35+ . The configuration interaction method was applied to include the electron-correlation effects. The relativistic effects were taken into account in the Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals. The energy level spectra, radiative lifetimes τ, and Lande g-factors have been calculated for the 4p 6 4d 3 , 4p 6 4d 2 4f, and 4p 5 4d 4 configurations of the W 35+ ion

  6. Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing

    Directory of Open Access Journals (Sweden)

    Antoniotto Guidobono Cavalchini

    2013-09-01

    Full Text Available Compared to traditional plowing and minimum tillage, the sod seeding technique has been tested in order to evaluate the differences in energy consumption, labor and machinery requirement and CO2 emission reduction. The experiments were conducted on winter cereal seeding in a Po valley farm in October 2011. The tests were carried out as follows: wheat variety seeding, over corn and alfalfa crops, in large plots with three repetitions for each thesis. They included: sod seeding anticipated by round up weeding in the case of the plots over alfalfa; traditional plowing at 35 cm followed by rotary tillage and combined seeding (seeder plus rotary tiller; minimum tillage based on ripping at the same depth (35 cm and combined seeder ( seeder plus rotary tiller. The following farm operations - fertilizer, and other agrochemical distributionshave been the same in all the considered theses. The results, statistically significant (P<0.001 in terms of yields, highlighted slight differences: the best data in the case of the traditional plowing both in the case of wheat crop over corn and alfalfa (84.43 and 6.75 t/ha; slightly lower yields for the sod seeding (6.23 and 79.9 t/ha for corn and alfalfa respectively; lower in the case of minimum tillage (5.87; 79.77 t/ha in the two situations. Huge differences in energy and oil consumption have been recorded: in the case of succession to corn 61.47; 35.31; 4.27 kg oil/ha respectively for, traditional plowing, minimum tillage and sod seeding; in the case of alfalfa 61.2; 50.96; 5.14 kg oil/ha respectively for traditional plowing, minimum tillage and sod seeding. The innovative technique, highlighted huge energy saving with an oil consumption equal to 92% and 89% (P<0.001 of what happens in traditional plowing and minimum tillage. Large differences concern labor and machine productivity. These parameters together with oil consumption and machine size [power (kW and weight (t] lead to even greater differences in

  7. Minimum Wages and Poverty

    OpenAIRE

    Fields, Gary S.; Kanbur, Ravi

    2005-01-01

    Textbook analysis tells us that in a competitive labor market, the introduction of a minimum wage above the competitive equilibrium wage will cause unemployment. This paper makes two contributions to the basic theory of the minimum wage. First, we analyze the effects of a higher minimum wage in terms of poverty rather than in terms of unemployment. Second, we extend the standard textbook model to allow for incomesharing between the employed and the unemployed. We find that there are situation...

  8. Reference frame for Product Configuration

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Oddsson, Gudmundur Valur

    2011-01-01

    a reference frame for configuration that permits 1) a more precise understanding of a configuration system, 2) a understanding of how the configuration system relate to other systems, and 3) a definition of the basic concepts in configuration. The total configuration system, together with the definition...

  9. A computational study on the adsorption configurations and reactions of SiH{sub x}(x = 1-4) on clean and H-covered Si(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le, Thong N-M [Molecular Science and Nano-Materials Laboratory, Institute for Computational Science and Technology, Quang Trung Software Park, Dist. 12, Ho Chi Minh City (Viet Nam); Raghunath, P. [Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan (China); Huynh, Lam K., E-mail: lamhuynh.us@gmail.com [Department of Applied Chemistry, School of Biotechnology,International University, VNU-HCMC, Quarter 6, Linh Trung, Thu Duc District, Ho Chi Minh City (Viet Nam); Lin, M.C., E-mail: chemmcl@emory.edu [Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2016-11-30

    Highlights: • Possible adsorption configurations of all adsorbates on Si(100) surface are systematically explored. • The mechanisms leading to the formation of silicon adatoms on the surface are proposed. • The barriers for hydrogen abstractions from the surface are negligible comparing to the barriers for the hydrogen migrations. • The barriers for hydrogen abstractions from the adsorbed speices are negligible comparing to the barriers for the decompositions. - Abstract: Possible adsorption configurations of H and SiH{sub x} (x = 1 − 4) on clean and H-covered Si(100) surfaces are determined by using spin-polarized DFT calculations. The results show that, on the clean surface, the gas-phase hydrogen atom and SiH{sub 3} radicals effectively adsorb on the top sites, while SiH and SiH{sub 2} prefer the bridge sites of the first layer. Another possibility for SiH is to reside on the hollow sites with a triple-bond configuration. For a partially H-coverd Si(100) surface, the mechanism is similar but with higher adsorption energies in most cases. This suggests that the surface species become more stable in the presence of surface hydrogens. The minimum energy paths for the adsorption/migration and reactions of H/SiH{sub x} species on the surfaces are explored using the climbing image-nudged elastic band method. The competitive surface processes for Si thin-film formation from SiH{sub x} precursors are also predicted. The study reveals that the migration of hydrogen adatom is unimportant with respect to leaving open surface sites because of its high barriers (>29.0 kcal/mol). Alternatively, the abstraction of hydrogen adatoms by H/SiH{sub x} radicals is more favorable. Moreover, the removal of hydrogen atoms from adsorbed SiH{sub x}, an essential step for forming Si layers, is dominated by abstraction rather than the decomposition processes.

  10. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint

    Science.gov (United States)

    Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing

    2015-03-01

    The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.

  11. Software configuration management

    CERN Document Server

    Keyes, Jessica

    2004-01-01

    Software Configuration Management discusses the framework from a standards viewpoint, using the original DoD MIL-STD-973 and EIA-649 standards to describe the elements of configuration management within a software engineering perspective. Divided into two parts, the first section is composed of 14 chapters that explain every facet of configuration management related to software engineering. The second section consists of 25 appendices that contain many valuable real world CM templates.

  12. Optimal energy management of HEVs with hybrid storage system

    International Nuclear Information System (INIS)

    Vinot, E.; Trigui, R.

    2013-01-01

    Highlights: • A battery and ultra-capacitor system for parallel hybrid vehicle is considered. • Optimal management using Pontryagin’s minimum principle is developed. • Battery stress limitation is taken into account by means of RMS current. • Rule based management approaching the optimal control is proposed. • Comparison between rule based and optimal management are proposed using Pareto front. - Abstract: Energy storage systems are a key point in the design and development of electric and hybrid vehicles. In order to reduce the battery size and its current stress, a hybrid storage system, where a battery is coupled with an electrical double-layer capacitor (EDLC) is considered in this paper. The energy management of such a configuration is not obvious and the optimal operation concerning the energy consumption and battery RMS current has to be identified. Most of the past work on the optimal energy management of HEVs only considered one additional power source. In this paper, the control of a hybrid vehicle with a hybrid storage system (HSS), where two additional power sources are used, is presented. Applying the Pontryagin’s minimum principle, an optimal energy management strategy is found and compared to a rule-based parameterized control strategy. Simulation results are shown and discussed. Applied on a small compact car, optimal and ruled-based methods show that gains of fuel consumption and/or a battery RMS current higher than 15% may be obtained. The paper also proves that a well tuned rule-based algorithm presents rather good performances when compared to the optimal strategy and remains relevant for different driving cycles. This rule-based algorithm may easily be implemented in a vehicle prototype or in an HIL test bench

  13. Preliminary analysis of advanced equilibrium configuration for the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Chu Delin; Wu Bin; Wu Yican

    2003-01-01

    The Fusion-Driven Subcritical System (FDS) is a subcritical nuclear energy system driven by fusion neutron source. In this paper, an advanced plasma configuration for FDS system has been proposed, which aims at high beta, high bootstrap current and good confinement. A fixed-boundary equilibrium code has been used to obtain ideal equilibrium configuration. In order to determine the feasibility of FDS operation, a two-dimensional time-dependent free boundary simulation code has been adopted to simulate time-scale evolution of plasma current profile and boundary position. By analyses, the Reversed Shear mode as the most attractive one has been recommended for the FDS equilibrium configuration design

  14. RR Tel: Determination of Dust Properties During Minimum Obscuration

    Directory of Open Access Journals (Sweden)

    Jurkić T.

    2012-06-01

    Full Text Available the ISO infrared spectra and the SAAO long-term JHKL photometry of RR Tel in the epochs during minimum obscuration are studied in order to construct a circumstellar dust model. the spectral energy distribution in the near- and the mid-IR spectral range (1–15 μm was obtained for an epoch without the pronounced dust obscuration. the DUSTY code was used to solve the radiative transfer through the dust and to determine the circumstellar dust properties of the inner dust regions around the Mira component. Dust temperature, maximum grain size, dust density distribution, mass-loss rate, terminal wind velocity and optical depth are determined. the spectral energy distribution and the long-term JHKL photometry during an epoch of minimum obscuration show almost unattenuated stellar source and strong dust emission which cannot be explained by a single dust shell model. We propose a two-component model consisting of an optically thin circmustellar dust shell and optically thick dust outside the line of sight in some kind of a flattened geometry, which is responsible for most of the observed dust thermal emission.

  15. 75 FR 6151 - Minimum Capital

    Science.gov (United States)

    2010-02-08

    ... capital and reserve requirements to be issued by order or regulation with respect to a product or activity... minimum capital requirements. Section 1362(a) establishes a minimum capital level for the Enterprises... entities required under this section.\\6\\ \\3\\ The Bank Act's current minimum capital requirements apply to...

  16. A Pareto-Improving Minimum Wage

    OpenAIRE

    Eliav Danziger; Leif Danziger

    2014-01-01

    This paper shows that a graduated minimum wage, in contrast to a constant minimum wage, can provide a strict Pareto improvement over what can be achieved with an optimal income tax. The reason is that a graduated minimum wage requires high-productivity workers to work more to earn the same income as low-productivity workers, which makes it more difficult for the former to mimic the latter. In effect, a graduated minimum wage allows the low-productivity workers to benefit from second-degree pr...

  17. Analysis of Energy Demand for Low-Energy Multi-Dwelling Buildings of Different Configuration

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2014-10-01

    Full Text Available To meet the goals established by Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, the topics of energy efficiency in new and old buildings must be solved. Research and development of new energy solutions and technology are necessary for increasing energy performance of buildings. Three low-energy multi-dwelling buildings have been modelled and analyzed in the presented study. All multi-dwelling houses are made of similar single-family house cells. However, multi-dwelling buildings are of different geometry, flat number and height. DesignBuilder software was used for simulating and determining heating, cooling and electricity demand for buildings. Three different materials (silicate, ceramic and clay concrete blocks as bearing constructions of external walls have been analyzed. To decrease cooling demand for buildings, the possibility of mounting internal or external louvers has been considered. Primary energy savings for multi-dwelling buildings using passive solar measures have been determined.

  18. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  19. The minimum work required for air conditioning process

    International Nuclear Information System (INIS)

    Alhazmy, Majed M.

    2006-01-01

    This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 o C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods

  20. Gaussian-2 theory: Use of higher level correlation methods, quadratic configuration interaction geometries, and second-order Moller--Plesset zero-point energies

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Raghavachari, K.; Pople, J.A.

    1995-01-01

    The performance of Gaussian-2 theory is investigated when higher level theoretical methods are included for correlation effects, geometries, and zero-point energies. A higher level of correlation treatment is examined using Brueckner doubles [BD(T)] and coupled cluster [CCSD(T)] methods rather than quadratic configuration interaction [QCISD(T)]. The use of geometries optimized at the QCISD level rather than the second-order Moller--Plesset level (MP2) and the use of scaled MP2 zero-point energies rather than scaled Hartree--Fock (HF) zero-point energies have also been examined. The set of 125 energies used for validation of G2 theory [J. Chem. Phys. 94, 7221 (1991)] is used to test out these variations of G2 theory. Inclusion of higher levels of correlation treatment has little effect except in the cases of multiply-bonded systems. In these cases better agreement is obtained in some cases and poorer agreement in others so that there is no improvement in overall performance. The use of QCISD geometries yields significantly better agreement with experiment for several cases including the ionization potentials of CS and O 2 , electron affinity of CN, and dissociation energies of N 2 , O 2 , CN, and SO 2 . This leads to a slightly better agreement with experiment overall. The MP2 zero-point energies gives no overall improvement. These methods may be useful for specific systems

  1. CONFIGURATION-INTERACTION IN NI METAL AND NI-ALLOYS AND HIGH-ENERGY SPECTROSCOPY

    NARCIS (Netherlands)

    TANAKA, A; JO, T; SAWATZKY, GA

    We discuss the electronic state of Ni atoms in Ni metal and of Ni impurity in Cu and Au metals from the viewpoint of 3d configuration interaction (CI) using the Anderson impurity model including atomic multiplets. On the basis of the discussion, we give an interpretation for the Ni 2p-core X-ray

  2. MICROCONTROLLER PIN CONFIGURATION TOOL

    OpenAIRE

    Bhaskar Joshi; F. Mohammed Rizwan; Dr. Rajashree Shettar

    2012-01-01

    Configuring the micro controller with large number of pins is tedious. Latest Infine on microcontroller contains more than 200 pins and each pin has classes of signals. Therefore the complexity of the microcontroller is growing. It evolves looking into thousands of pages of user manual. For a user it will take days to configure the microcontroller with the peripherals. We need an automated tool to configure the microcontroller so that the user can configure the microcontroller without having ...

  3. Photoabsorption in sodium clusters: first principles configuration interaction calculations

    Science.gov (United States)

    Priya, Pradip Kumar; Rai, Deepak Kumar; Shukla, Alok

    2017-05-01

    We present systematic and comprehensive correlated-electron calculations of the linear photoabsorption spectra of small neutral closed- and open-shell sodium clusters (Nan, n = 2 - 6), as well as closed-shell cation clusters (Nan+, n = 3, 5). We have employed the configuration interaction (CI) methodology at the full CI (FCI) and quadruple CI (QCI) levels to compute the ground, and the low-lying excited states of the clusters. For most clusters, besides the minimum energy structures, we also consider their energetically close isomers. The photoabsorption spectra were computed under the electric-dipole approximation, employing the dipole-matrix elements connecting the ground state with the excited states of each isomer. Our calculations were tested rigorously for convergence with respect to the basis set, as well as with respect to the size of the active orbital space employed in the CI calculations. These calculations reveal that as far as electron-correlation effects are concerned, core excitations play an important role in determining the optimized ground state geometries of various clusters, thereby requiring all-electron correlated calculations. But, when it comes to low-lying optical excitations, only valence electron correlation effects play an important role, and excellent agreement with the experimental results is obtained within the frozen-core approximation. For the case of Na6, the largest cluster studied in this work, we also discuss the possibility of occurrence of plasmonic resonance in the optical absorption spectrum. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70728-3

  4. Energy Optimized Configuration of Concrete Element with PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew

    fulfillment of the new requirements regarding the new energy frames. The concept presented and developed in the thesis focuses on the energy optimization and potential of the new product that could utilize the high thermal energy storage (TES) and thermally activated building system (TABS). The work...... investigates the potential of combining the microencapsulated phase change material (PCM) in the hollow core concrete deck element in order to increase the dynamic heat storage capacity of the internal envelope of the multi-storey buildings. Moreover, the study investigates the cooling capacity and performance...... of the concrete deck with PCM and integrated TABS and highlights limitations and challenges of the new technology. The presented work utilizes numerical methods to study the dynamic performance of the new product developed. Consequently, the experimental set-ups and methodologies are developed firstly...

  5. Gas/liquid flow configurations

    International Nuclear Information System (INIS)

    Bonin, Jacques; Fitremann, J.-M.

    1978-01-01

    Prediction of flow configurations (morphology) for gas/liquid or liquid/vapour mixtures is an important industrial problem which is not yet fully understood. The ''Flow Configurations'' Seminar of Societe Hydrotechnique de France has framed recommendations for investigation of potential industrial applications for flow configurations [fr

  6. Nonparametric regression using the concept of minimum energy

    International Nuclear Information System (INIS)

    Williams, Mike

    2011-01-01

    It has recently been shown that an unbinned distance-based statistic, the energy, can be used to construct an extremely powerful nonparametric multivariate two sample goodness-of-fit test. An extension to this method that makes it possible to perform nonparametric regression using multiple multivariate data sets is presented in this paper. The technique, which is based on the concept of minimizing the energy of the system, permits determination of parameters of interest without the need for parametric expressions of the parent distributions of the data sets. The application and performance of this new method is discussed in the context of some simple example analyses.

  7. Lidar configurations for wind turbine control

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Mann, Jakob

    2016-01-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...... by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points....

  8. A configural dominant account of contextual cueing: Configural cues are stronger than colour cues.

    Science.gov (United States)

    Kunar, Melina A; John, Rebecca; Sweetman, Hollie

    2014-01-01

    Previous work has shown that reaction times to find a target in displays that have been repeated are faster than those for displays that have never been seen before. This learning effect, termed "contextual cueing" (CC), has been shown using contexts such as the configuration of the distractors in the display and the background colour. However, it is not clear how these two contexts interact to facilitate search. We investigated this here by comparing the strengths of these two cues when they appeared together. In Experiment 1, participants searched for a target that was cued by both colour and distractor configural cues, compared with when the target was only predicted by configural information. The results showed that the addition of a colour cue did not increase contextual cueing. In Experiment 2, participants searched for a target that was cued by both colour and distractor configuration compared with when the target was only cued by colour. The results showed that adding a predictive configural cue led to a stronger CC benefit. Experiments 3 and 4 tested the disruptive effects of removing either a learned colour cue or a learned configural cue and whether there was cue competition when colour and configural cues were presented together. Removing the configural cue was more disruptive to CC than removing colour, and configural learning was shown to overshadow the learning of colour cues. The data support a configural dominant account of CC, where configural cues act as the stronger cue in comparison to colour when they are presented together.

  9. A new configuration of the Moxon-Rae detector based on Si detector

    International Nuclear Information System (INIS)

    Niu, H.; Hsu, J.Y.; Liang, J.H.; Yuan, L.G.

    2002-01-01

    A new Moxon-Rae detector configuration based on Si semiconductor detector was proposed in this paper. Three γ-ray sources, 137 Cs, 60 Co, and 24 Na, were employed to make actual measurements using the new Moxon-Rae detector. The measured pulse height spectra and detection efficiencies were compared with the EGS4 simulated values. The results revealed that the proposed new configuration is indeed a successful method and specially a useful technique for higher energy γ-ray measurement

  10. Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.

    1995-01-01

    We present the extension of the supertransition-array (STA) theory to include configuration widths in the spectra of local thermodynamic equilibrium (LTE) plasmas. Exact analytic expressions for the moments of a STA are given, accounting for the detailed contributions of individual levels within the configurations that belong to a STA. The STA average energy is shifted and an additional term appears in its variance. Various cases are presented, demonstrating the effect of these corrections on the LTE spectrum

  11. Driving spin transition at interface: Role of adsorption configurations

    Science.gov (United States)

    Zhang, Yachao

    2018-01-01

    A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.

  12. 5 CFR 551.301 - Minimum wage.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Minimum wage. 551.301 Section 551.301... FAIR LABOR STANDARDS ACT Minimum Wage Provisions Basic Provision § 551.301 Minimum wage. (a)(1) Except... employees wages at rates not less than the minimum wage specified in section 6(a)(1) of the Act for all...

  13. Energy Optimized Configuration of Concrete Element with PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew

    fulfillment of the new requirements regarding the new energy frames. The concept presented and developed in the thesis focuses on the energy optimization and potential of the new product that could utilize the high thermal energy storage (TES) and thermally activated building system (TABS). The work...... investigates the potential of combining the microencapsulated phase change material (PCM) in the hollow core concrete deck element in order to increase the dynamic heat storage capacity of the internal envelope of the multi-storey buildings. Moreover, the study investigates the cooling capacity and performance...... of the concrete deck with PCM and integrated TABS and highlights limitations and challenges of the new technology. Results from the full-scale investigation of dynamic heat storage capacity of decks indicated that there is no substantial difference between decks with extended heat transfer surface and one...

  14. Configuration management at NEK

    International Nuclear Information System (INIS)

    Podhraski, M.

    1999-01-01

    Configuration Management (CM) objectives at NEK are to ensure consistency between Design Requirements, Physical Plant Configuration and Configuration Information. Software applications, supporting Design Change, Work Control and Document Control Processes, are integrated in one module-oriented Management Information System (MIS). Master Equipment Component List (MECL) database is central MIS module. Through a combination of centralized database and process migrated activities it is ensured that the CM principles and requirements (accurate, current design data matching plant's physical configuration while complying to applicable requirements), are followed and fulfilled.(author)

  15. SU-F-T-78: Minimum Data Set of Measurements for TG 71 Based Electron Monitor-Unit Calculations

    International Nuclear Information System (INIS)

    Xu, H; Guerrero, M; Prado, K; Yi, B

    2016-01-01

    Purpose: Building up a TG-71 based electron monitor-unit (MU) calculation protocol usually involves massive measurements. This work investigates a minimum data set of measurements and its calculation accuracy and measurement time. Methods: For 6, 9, 12, 16, and 20 MeV of our Varian Clinac-Series linear accelerators, the complete measurements were performed at different depth using 5 square applicators (6, 10, 15, 20 and 25 cm) with different cutouts (2, 3, 4, 6, 10, 15 and 20 cm up to applicator size) for 5 different SSD’s. For each energy, there were 8 PDD scans and 150 point measurements for applicator factors, cutout factors and effective SSDs that were then converted to air-gap factors for SSD 99–110cm. The dependence of each dosimetric quantity on field size and SSD was examined to determine the minimum data set of measurements as a subset of the complete measurements. The “missing” data excluded in the minimum data set were approximated by linear or polynomial fitting functions based on the included data. The total measurement time and the calculated electron MU using the minimum and the complete data sets were compared. Results: The minimum data set includes 4 or 5 PDD’s and 51 to 66 point measurements for each electron energy, and more PDD’s and fewer point measurements are generally needed as energy increases. Using only <50% of complete measurement time, the minimum data set generates acceptable MU calculation results compared to those with the complete data set. The PDD difference is within 1 mm and the calculated MU difference is less than 1.5%. Conclusion: Data set measurement for TG-71 electron MU calculations can be minimized based on the knowledge of how each dosimetric quantity depends on various setup parameters. The suggested minimum data set allows acceptable MU calculation accuracy and shortens measurement time by a few hours.

  16. SU-F-T-78: Minimum Data Set of Measurements for TG 71 Based Electron Monitor-Unit Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H; Guerrero, M; Prado, K; Yi, B [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: Building up a TG-71 based electron monitor-unit (MU) calculation protocol usually involves massive measurements. This work investigates a minimum data set of measurements and its calculation accuracy and measurement time. Methods: For 6, 9, 12, 16, and 20 MeV of our Varian Clinac-Series linear accelerators, the complete measurements were performed at different depth using 5 square applicators (6, 10, 15, 20 and 25 cm) with different cutouts (2, 3, 4, 6, 10, 15 and 20 cm up to applicator size) for 5 different SSD’s. For each energy, there were 8 PDD scans and 150 point measurements for applicator factors, cutout factors and effective SSDs that were then converted to air-gap factors for SSD 99–110cm. The dependence of each dosimetric quantity on field size and SSD was examined to determine the minimum data set of measurements as a subset of the complete measurements. The “missing” data excluded in the minimum data set were approximated by linear or polynomial fitting functions based on the included data. The total measurement time and the calculated electron MU using the minimum and the complete data sets were compared. Results: The minimum data set includes 4 or 5 PDD’s and 51 to 66 point measurements for each electron energy, and more PDD’s and fewer point measurements are generally needed as energy increases. Using only <50% of complete measurement time, the minimum data set generates acceptable MU calculation results compared to those with the complete data set. The PDD difference is within 1 mm and the calculated MU difference is less than 1.5%. Conclusion: Data set measurement for TG-71 electron MU calculations can be minimized based on the knowledge of how each dosimetric quantity depends on various setup parameters. The suggested minimum data set allows acceptable MU calculation accuracy and shortens measurement time by a few hours.

  17. A sampling strategy to establish existing plant configuration baselines

    International Nuclear Information System (INIS)

    Buchanan, L.P.

    1995-01-01

    The Department of Energy's Gaseous Diffusion Plants (DOEGDP) are undergoing a Safety Analysis Update Program. As part of this program, critical existing structures are being reevaluated for Natural Phenomena Hazards (NPH) based on the recommendations of UCRL-15910. The Department of Energy has specified that current plant configurations be used in the performance of these reevaluations. This paper presents the process and results of a walkdown program implemented at DOEGDP to establish the current configuration baseline for these existing critical structures for use in subsequent NPH evaluations. These structures are classified as moderate hazard facilities and were constructed in the early 1950's. The process involved a statistical sampling strategy to determine the validity of critical design information as represented on the original design drawings such as member sizes, orientation, connection details and anchorage. A floor load inventory of the dead load of the equipment, both permanently attached and spare, was also performed as well as a walkthrough inspection of the overall structure to identify any other significant anomalies

  18. Modeling and characterization of electret based vibration energy harvesters in slot-effect configuration

    International Nuclear Information System (INIS)

    Renaud, M; Altena, G; Elfrink, R; Goedbloed, M; De Nooijer, C; Van Schaijk, R

    2015-01-01

    The purpose of this article is to elaborate a model and the optimization guidelines for electret based harvesters with a specific electret/electrodes configuration, namely the slot-effect configuration. Slot-effect configured harvesters have been investigated experimentally by several research groups. A model describing their dynamic behavior has also been recently proposed in the literature. However, the simplifications used in the existing model can lead to inaccuracies and a refined analysis is elaborated in the present article. The model is compared with experimental measurements on MEMS fabricated devices with a corrugated electret. The electrodes dimensioning in the MEMS device are chosen so that the harvester behaves in a quasi-linear manner over its full range of displacement. This quasi-linearity simplifies greatly the device optimization. Indeed, the behavior of the developed electrostatic harvester is shown to be very comparable to that of piezoelectric harvesters, which are very well understood and documented. The influence of several design parameters on output power performance is investigated. As long as pull-in and breakdown voltage effects can be avoided, the electret surface potential should be maximized and the air gap minimized. We also investigate theoretically the influence of three types of electret on the generated power: planar, corrugated with partial charge coverage, and corrugated with full charge coverage. With the dimensions corresponding to our MEMS devices, the output power characteristics for the three types of electret are similar. However, it is shown that this is not always true. In some conditions, corrugated electrets with full charge coverage are detrimental for the generated power. (paper)

  19. Adaptive jump barrier height in Monte Carlo configuration kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Martin; Pfeiler, Wolfgang; Pueschl, Wolfgang [Dynamics of Condensed Systems, Faculty of Physics, University of Vienna, Strudlhofgasse 4, A-1090 Wien (Austria); Vogtenhuber, Doris [Computational Materials Science, Faculty of Physics, University of Vienna, Sensengasse 8, A-1090 Wien (Austria)

    2008-07-01

    In usual MC simulations of configuration kinetics atom jump probabilities are calculated from energies of the initial and/or final bound states of the moving atom, leaving aside the exact energy of the intermediate saddle point state. This energy may however be critically influenced by the local atomic environment. We propose a strategy to explicitly take account of this influence. The basis is ab initio calculation of representative jump paths in the framework of the nudged elastic band method. From these results, an influence function is derived which modifies the energy of the saddle point and therefore the effective jump barrier height as calculated from the initial and final states according to a cluster expansion scheme. The overall effect is demonstrated on the NiAl system.

  20. Prototype equipment status monitor for plant operational configuration management

    International Nuclear Information System (INIS)

    DeVerno, M.; Trask, D.; Groom, S.

    1998-01-01

    CANDU plants, such as the Point Lepreau GS, have tens of thousands of operable devices. The status of each operable device must be immediately available to plan and execute future changes to the plant. Historically, changes to the plant's operational configuration have been controlled using manual and administrative methods where the status of each operable device is maintained on operational flowsheets located in the work control area of the main control room. The operational flowsheets are used to plan and develop Operating Orders (OOs) or Order-to-Operate (OTOs) and the control centre work processes are used to manage their execution. After performing each OO procedure, the operational flowsheets are updated to reflect the new plant configuration. This process can be very time consuming, and due to the manual processes, can lead to the potential for time lags and errors in the recording of the current plant configuration. Through a cooperative research and development program, Canadian CANDU utilities and Atomic Energy of Canada Limited, the design organization, have applied modern information technologies to develop a prototype Equipment Status Monitor (ESM) to address processes and information flow for efficient operational configuration management. The ESM integrates electronic operational flowsheets, equipment databases, engineering and work management systems, and computerized procedures to assess, plan, execute, track, and record changes to the plant's operational configuration. This directly leads to improved change control, more timely and accurate plant status information, fewer errors, and better decision making regarding future changes. These improvements to managing the plant's operational configuration are essential to increasing plant safety, achieving a high plant availability, and maintaining high capability and capacity factors. (author)

  1. Investigating the minimum achievable variance in a Monte Carlo criticality calculation

    Energy Technology Data Exchange (ETDEWEB)

    Christoforou, Stavros; Eduard Hoogenboom, J. [Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2008-07-01

    The sources of variance in a Monte Carlo criticality calculation are identified and their contributions analyzed. A zero-variance configuration is initially simulated using analytically calculated adjoint functions for biasing. From there, the various sources are analyzed. It is shown that the minimum threshold comes from the fact that the fission source is approximated. In addition, the merits of a simple variance reduction method, such as implicit capture, are shown when compared to an analog simulation. Finally, it is shown that when non-exact adjoint functions are used for biasing, the variance reduction is rather insensitive to the quality of the adjoints, suggesting that the generation of the adjoints should have as low CPU cost as possible, in order to o et the CPU cost in the implementation of the biasing of a simulation. (authors)

  2. Development of energy-efficient processes for natural gas liquids recovery

    International Nuclear Information System (INIS)

    Yoon, Sekwang; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2017-01-01

    A new NGL (natural gas liquids) recovery process configuration is proposed which can offer improved energy efficiency and hydrocarbon recovery. The new process configuration is an evolution of the conventional turboexpander processes with the introduction of a split stream transferring part of the feed to the demethanizer column. In this way additional heat recovery is possible which improves the energy efficiency of the process. To evaluate the new process configuration a number of different NGL recovery process configurations are optimized and compared using a process simulator linked interactively with external optimization methods. Process integration methodology is applied as part of the optimization to improve energy recovery during the optimization. Analysis of the new process configuration compared with conventional turbo-expander process designs demonstrates the benefits of the new process configuration. - Highlights: • Development of a new energy-efficient natural gas liquids recovery process. • Improving energy recovery with application of process integration techniques. • Considering multiple different structural changes lead to considerable energy savings.

  3. Ab‐initio study of germanium di-interstitial using a hybrid functional (HSE)

    Energy Technology Data Exchange (ETDEWEB)

    Igumbor, E., E-mail: elgumuk@gmail.com [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Department of Mathematics and Physical Sciences, Samuel Adegboyega University, Km 1 Ogwa/Ehor Rd, Ogwa, Edo State (Nigeria); Ouma, C.N.M.; Webb, G. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Meyer, W.E., E-mail: wmeyer@up.ac.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa)

    2016-01-01

    In this work, we present ab‐initio calculation results of Ge di-interstitials (I{sub 2(Ge)}) in the framework of the density functional theory (DFT) using the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional. The formation energy, transition levels and minimum energy configurations were obtained for I{sub 2(Ge)} −2, −1, 0, +1 and +2 charge states. The calculated formation energies show that for all charge states of I{sub 2(Ge)}, the double tetrahedral (T) configuration formed the most stable defect with a binding energy of 1.24 eV in the neutral state. We found the (+2/+1) charge state transition level for the T lying below the conduction band minimum and (+2/+1) for the split[110]-tetrahedral configuration lying deep at 0.41 eV above the valence band maximum. The di-interstitials in Ge exhibited the properties of both shallow and deep donor levels at (+2/+1) within the band gap and depending on the configurations. I{sub 2(Ge)} gave rise to negative-U, with effective-U values of −0.61 and −1.6 eV in different configurations. We have compared our results with calculations of di-interstitials in silicon and available experimental data.

  4. Structure and Absolute Configuration of Nyasol and Hinokiresinol via Synthesis and Vibrational Circular Dichroism Spectroscopy

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard

    2005-01-01

    The absolute configuration of the norlignan (+)-nyasol was determined to be S by comparison of the experimental vibrational circular dichroism data with first-principle calculations taking into account the eight lowest energy conformations. The established absolute configuration of (+)-nyasol...... enables establishment of the absolute configuration of (-)-hinokiresinol, which is concluded to be S. A total synthesis and resolution of hinokiresinol has been performed to resolve the conflicting reports of the coupling constant of the vinylic protons of the disubstituted double bond in this molecule...

  5. Application of Configurators in Networks

    DEFF Research Database (Denmark)

    Malis, Martin; Hvam, Lars

    2003-01-01

    Shorter lead-time, improved quality of product specifications and better communication with customers and suppliers are benefits derived from the application of configurators. Configurators are knowledge-based IT-systems that can be applied to deal with product knowledge and to support different...... processes in a company. Traditionally, configurators have been used as an internal tool. In this paper focus will be on the application of configurators in a network of companies, and a procedure for developing product configurators in a network of companies will be presented. The aim is to present...... a structured guideline, tools and methods on how to successfully develop configurators in a network perspective. Findings presented in this paper are supported by research in a case company. The results from the empirical work show a huge potential for the application of configurators in networks of companies....

  6. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  7. Total integrated energy system (TIES) feasibility analysis for the downtown redevelopment project, Pasadena, California

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    The purpose of this study is to determine the most desirable method of serving the energy needs of a commercial development to be constructed in Pasadena, California. The factors that determine maximum desirability consist of the following: (1) maximum economic benefit to the energy user and to the surrounding community; (2) minimum usage of energy by both the energy user and the surrounding community; and (3) minimum introduction of pollutants into the community. The methods studied were the Total Integrated Energy System (TIES) concept in several configurations. The TIES concept differs from the ''total energy concept'' in the respect that the electric power output of the local power generation plant goes into the utility company distribution grid, rather than to the user. The user is served power from the grid, as with a conventional system, but also receives heating and cooling media produced from power generation by-product heat from the TIES plant. The effect of this concept is that a very large source-sink for electric energy is provided by the utility company grid. This, in turn, permits the plant to operate in response to instantaneous thermal demand, rather than instantaneous power demand. No auxiliary firing is ever required. No waste of unneeded by-product energy to atmosphere ever occurs. Balance is achieved by either delivering excess power into the grid or by withdrawing power production deficiency from the grid. Near-optimum efficiency is achieved during all operating conditions. There is no need whatsoever for the power-generating plant to be sized to meet the power demand, since it seldom, if ever, tracks the power demand. Sizing of the electric generation is solely a function of economics and the demand for waste heat.

  8. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model

    Directory of Open Access Journals (Sweden)

    Akira Takada

    2018-03-01

    Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.

  9. Detailed spectroscopy in the superdeformed second minimum of 240Pu

    International Nuclear Information System (INIS)

    Thirolf, P.G.; Gassmann, D.; Habs, D.; Chromik, M.J.; Eisermann, Y.; Graw, G.; Hertenberger, R.; Maier, H.J.; Metz, A.; Reiter, P.

    2000-01-01

    Complete text of publication follows. Superdeformed prolate nuclei, having an axis ratio of about 2:1, have first been discovered in fission isomers in the actinide region almost 40 years ago by Polikanov et al.. Their interpretation of being the result of microscopic shell corrections on top of the macroscopic liquid drop potential leading to a second minimum in the nuclear potential energy surface is well established. 240 Pu with its 3.7 ns fission isomer may be regarded as the prototype nucleus for spectroscopic studies of superdeformed actinide nuclei since the identification of the ground state rotational band in conversion electron measurements [1]. Though from the knowledge on excited states in the first minimum and previous measurements in the second minimum low-lying collective excitations in the second minimum low-lying collective excitations in the second well of 240 Pu can be expected, none of them has been experimentally identified so far. Quite surprisingly, no low-lying collective quadrupole excitations could be observed in a recent detailed high-resolution and high-efficiency γ-spectroscopy experiment [2]. Complementary information could be obtained in conversion electron measurements in coincidence with isomeric fission performed at the Garching Accelerator Laboratory, resulting in the first identification of the lowest β-vibrational band [3]. In a combined analysis of the γ-spectroscopic and conversion electron data conversion coefficients α K or limits on α K could be deduced, thus allowing to determine the multipolarities of the transitions. A predominant population of negative parity states in the second well could be observed that can be explained by the filtering function of the inner and outer fission barrier. Complementary transmission resonance measurements have been performed, yielding new information on the fine structure of (β-)vibrational multi-phonon states. A new method could be established to determine the excitation energy of

  10. The key point of fragmentation of quasiparticle-phonon configurations in the order-disorder transformations of atomic nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1993-01-01

    To find out at what excitation energies the order-disorder transformations occur in intermediate and heavy nuclei, it is suggested to study fragmentation of multiquasiparticle and quasiparticle-phonon configurations. One-nucleon transfer reactions on odd-odd targets, for instance on 176 Lu and 180 Ta, should be taken as a particular case of fragmentation of three-quasiparticle configurations on the long living isomer 178 m 2 Hf-fragmentation of five-quasiparticle configurations. From the analysis of γ-decay of high-spin isomers one can information on fragmentation of quasi-phonon configurations

  11. Optimal sensor configuration for flexible structures with multi-dimensional mode shapes

    International Nuclear Information System (INIS)

    Chang, Minwoo; Pakzad, Shamim N

    2015-01-01

    A framework for deciding the optimal sensor configuration is implemented for civil structures with multi-dimensional mode shapes, which enhances the applicability of structural health monitoring for existing structures. Optimal sensor placement (OSP) algorithms are used to determine the best sensor configuration for structures with a priori knowledge of modal information. The signal strength at each node is evaluated by effective independence and modified variance methods. Euclidean norm of signal strength indices associated with each node is used to expand OSP applicability into flexible structures. The number of sensors for each method is determined using the threshold for modal assurance criterion (MAC) between estimated (from a set of observations) and target mode shapes. Kriging is utilized to infer the modal estimates for unobserved locations with a weighted sum of known neighbors. A Kriging model can be expressed as a sum of linear regression and random error which is assumed as the realization of a stochastic process. This study presents the effects of Kriging parameters for the accurate estimation of mode shapes and the minimum number of sensors. The feasible ranges to satisfy MAC criteria are investigated and used to suggest the adequate searching bounds for associated parameters. The finite element model of a tall building is used to demonstrate the application of optimal sensor configuration. The dynamic modes of flexible structure at centroid are appropriately interpreted into the outermost sensor locations when OSP methods are implemented. Kriging is successfully used to interpolate the mode shapes from a set of sensors and to monitor structures associated with multi-dimensional mode shapes. (paper)

  12. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  13. Configurational entropy and effective temperature in systems of active Brownian particles

    NARCIS (Netherlands)

    Preisler, Zdeněk; Dijkstra, Marjolein

    2016-01-01

    We propose a method to determine the effective density of states and configurational entropy in systems of active Brownian particles by measuring the probability distribution function of potential energy at varying temperatures. Assuming that the entropy is a continuous and monotonically increasing

  14. The International Thermonuclear Experimental Reactor configuration evolution

    International Nuclear Information System (INIS)

    Lousteau, D.C.; Nelson, B.E.; Lee, V.D.; Thomson, S.L.; Miller, J.M.; Lindquist, W.B.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) conceptual design activities consist of two phases: a definition phase, completed in September 1988, and a design phase, now in progress. The definition phase was successful in identifying a consistent set of technical characteristics and the broad definition of the required reactor configuration and hardware. Scheduled for completion in November 1990, the design phase is producing a more detailed definition of the required components, a first cost estimate, and a description of site requirements. A major activity in the ITER design phase is the period of joint work conducted at the Max Planck Institute for Plasma Physics, Garching, Federal Republic of Germany, from June through October 1989. An official report of the findings and conclusions of this activity will be submitted to and published by the International Atomic Energy Agency (IAEA). This paper highlights the evolution of the reactor mechanical configuration since the conclusion of the definition phase. 8 figs., 2 tabs

  15. A Single Tower Configuration of the Modular Gamma Box Counter System - 13392

    Energy Technology Data Exchange (ETDEWEB)

    Morris, K.; Nakazawa, D.; Francalangia, J.; Gonzalez, H. [Canberra Industries Inc., 800 Research Parkway, Meriden, CT, 06450 (United States)

    2013-07-01

    Canberra's Standard Gamma Box Counter System is designed to perform accurate quantitative assays of gamma emitting nuclides for a wide range of large containers including B-25 crates and ISO shipping containers. Using a modular building-block approach, the system offers tremendous flexibility for a variety of measurement situations with wide ranges of sample activities and throughput requirements, as well as the opportunity to modify the configuration for other applications at a later date. The typical configuration consists of two opposing towers each equipped with two high purity germanium detectors, and an automated container trolley. This paper presents a modified configuration, consisting of a single tower placed inside a measurement trailer with three detector assemblies, allowing for additional vertical segmentation as well as a viewing a container outside the trailer through the trailer wall. An automatic liquid nitrogen fill system is supplied for each of the detectors. The use of a forklift to move the container for horizontal segmentation is accommodated by creating an additional operational and calibration set-up in the NDA 2000 software to allow for the operator to rotate the container and assay the opposite side, achieving the same sensitivity as a comparable two-tower system. This Segmented Gamma Box Counter System retains the core technologies and design features of the standard configuration. The detector assemblies are shielded to minimize interference from environmental and plant background, and are collimated to provide segmentation of the container. The assembly positions can also be modified in height and distance from the container. The ISOCS calibration software provides for a flexible approach to providing the calibrations for a variety of measurement geometries. The NDA 2000 software provides seamless operation with the current configuration, handling the data acquisition and analysis. In this paper, an overview of this system is

  16. Configurational forces in electronic structure calculations using Kohn-Sham density functional theory

    Science.gov (United States)

    Motamarri, Phani; Gavini, Vikram

    2018-04-01

    We derive the expressions for configurational forces in Kohn-Sham density functional theory, which correspond to the generalized variational force computed as the derivative of the Kohn-Sham energy functional with respect to the position of a material point x . These configurational forces that result from the inner variations of the Kohn-Sham energy functional provide a unified framework to compute atomic forces as well as stress tensor for geometry optimization. Importantly, owing to the variational nature of the formulation, these configurational forces inherently account for the Pulay corrections. The formulation presented in this work treats both pseudopotential and all-electron calculations in a single framework, and employs a local variational real-space formulation of Kohn-Sham density functional theory (DFT) expressed in terms of the nonorthogonal wave functions that is amenable to reduced-order scaling techniques. We demonstrate the accuracy and performance of the proposed configurational force approach on benchmark all-electron and pseudopotential calculations conducted using higher-order finite-element discretization. To this end, we examine the rates of convergence of the finite-element discretization in the computed forces and stresses for various materials systems, and, further, verify the accuracy from finite differencing the energy. Wherever applicable, we also compare the forces and stresses with those obtained from Kohn-Sham DFT calculations employing plane-wave basis (pseudopotential calculations) and Gaussian basis (all-electron calculations). Finally, we verify the accuracy of the forces on large materials systems involving a metallic aluminum nanocluster containing 666 atoms and an alkane chain containing 902 atoms, where the Kohn-Sham electronic ground state is computed using a reduced-order scaling subspace projection technique [P. Motamarri and V. Gavini, Phys. Rev. B 90, 115127 (2014), 10.1103/PhysRevB.90.115127].

  17. Minimum income protection in the Netherlands

    NARCIS (Netherlands)

    van Peijpe, T.

    2009-01-01

    This article offers an overview of the Dutch legal system of minimum income protection through collective bargaining, social security, and statutory minimum wages. In addition to collective agreements, the Dutch statutory minimum wage offers income protection to a small number of workers. Its

  18. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    Science.gov (United States)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  19. Magnetic Configuration Effects Under Neutral Beam Injection at TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1998-01-01

    The theoretical analysis of NBI absorption and losses, done for the Reference configuration of TJ-II, has been extended to other magnetic configurations of the flexibility diagram. The main results obtained are the following: Fast ion losses. mainly direct ones, are the determinant factor the absorption behaviour. In the absence of radial electric field, the contribution of the delayed fast ion losses in minimal, as well with CX as without, and corresponds, almost exclusively, to low energy trapped ions (1 to t KeV). There is a strong difference between the direct los behaviour corresponding to both injection directions CO and COUNTER. The first one gives always higher losses in TJ-II. For the extreme configurations the direct losses are very high and are originated by resonant effects, that can be observed even for null electric field, and are due to the 0 and-2 resonances. The intermediate configurations are equally separated from both resonances, in consequence the loss level is lower, producing absorption ratios very, acceptable, higher than 60% of the power entering torus at high density and 40 keV. This corresponds to about 1.2 MW absorbed in plasma under balanced injection. In conclusion, the possible presence of resonant effects on the direct losses is the key element to explain the absorption behaviour for the different magnetic configurations. In addition all the configurations placed inside a wide region around the Reference case in the flexibility diagram seem equally convenient for NBI in TJ-II. (Author) 18 refs

  20. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2014-03-01

    Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  1. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    International Nuclear Information System (INIS)

    Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.

    2010-01-01

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.

  2. Simulator configuration maintenance

    International Nuclear Information System (INIS)

    2006-01-01

    Requirements and recommendations of this section defines NPP personnel activity aimed to the provision of the simulator configuration compliance with the current configuration of the power-generating unit-prototype, standard and technical requirements and describe a monitoring procedure for a set of simulator software and hardware, training, organizational and technical documents

  3. Power Management Strategy by Enhancing the Mission Profile Configuration of Solar-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Parvathy Rajendran

    2016-01-01

    Full Text Available Solar energy offers solar-powered unmanned aerial vehicle (UAV the possibility of unlimited endurance. Some researchers have developed techniques to achieve perpetual flight by maximizing the power from the sun and by flying in accordance with its azimuth angles. However, flying in a path that follows the sun consumes more energy to sustain level flight. This study optimizes the overall power ratio by adopting the mission profile configuration of optimal solar energy exploitation. Extensive simulation is conducted to optimize and restructure the mission profile phases of UAV and to determine the optimal phase definition of the start, ascent, and descent periods, thereby maximizing the energy from the sun. In addition, a vertical cylindrical flight trajectory instead of maximizing the solar inclination angle has been adopted. This approach improves the net power ratio by 30.84% compared with other techniques. As a result, the battery weight may be massively reduced by 75.23%. In conclusion, the proposed mission profile configuration with the optimal power ratio of the trajectory of the path planning effectively prolongs UAV operation.

  4. Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto; Ruiz, Ana Maria; Pavon, Mariana; Hall, Stephen

    2011-06-01

    Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrence Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The

  5. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.

    Science.gov (United States)

    Liu, Lili; Niu, Zhiqiang; Chen, Jun

    2016-07-25

    As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at

  6. Photon energy tunability of advanced photon source undulators

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices

  7. Performance investigation of solid desiccant evaporative cooling system configurations in different climatic zones

    International Nuclear Information System (INIS)

    Ali, Muzaffar; Vukovic, Vladimir; Sheikh, Nadeem Ahmed; Ali, Hafiz M.

    2015-01-01

    Highlights: • Five configurations of a DEC system are analyzed in five climate zones. • DEC system model configurations are developed in Dymola/Modelica. • Performance analysis predicted a suitable DEC system configuration for each climate zone. • Results show that climate of Vienna, Sao Paulo, and Adelaide favors the ventilated-dunkle cycle. • While ventilation cycle configuration suits the climate of Karachi and Shanghai. - Abstract: Performance of desiccant evaporative cooling (DEC) system configurations is strongly influenced by the climate conditions and varies widely in different climate zones. Finding the optimal configuration of DEC systems for a specific climatic zone is tedious and time consuming. This investigation conducts performance analysis of five DEC system configurations under climatic conditions of five cities from different zones: Vienna, Karachi, Sao Paulo, Shanghai, and Adelaide. On the basis of operating cycle, three standard and two modified system configurations (ventilation, recirculation, dunkle cycles; ventilated-recirculation and ventilated-dunkle cycles) are analyzed in these five climate zones. Using an advance equation-based object-oriented (EOO) modeling and simulation approach, optimal configurations of a DEC system are determined for each climate zone. Based on the hourly climate data of each zone for its respective design cooling day, performance of each system configuration is estimated using three performance parameters: cooling capacity, COP, and cooling energy delivered. The results revealed that the continental/micro-thermal climate of Vienna, temperate/mesothermal climate of Sao Paulo, and dry-summer subtropical climate of Adelaide favor the use of ventilated-dunkle cycle configuration with average COP of 0.405, 0.89 and 1.01 respectively. While ventilation cycle based DEC configuration suits arid and semiarid climate of Karachi and another category of temperate/mesothermal climate of Shanghai with average COP of

  8. Minimum long-term cost solution for remote telecommunication stations on the basis of photovoltaic-based hybrid power systems

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Ninou, I.; Zafirakis, D.

    2011-01-01

    In the case of the telecommunication (T/C) services' expansion to rural and remote areas, the market generally responds with the minimum investments required. Considering the existing situation, cost-effective operation of the T/C infrastructure installed in these regions (i.e. remote T/C stations) becomes critical. However, since in most cases grid-connection is not feasible, the up-to-now electrification solution for remote T/C stations is based on the operation of costly, oil consuming and heavy polluting diesel engines. Instead, the use of photovoltaic (PV)-based hybrid power stations is currently examined, using as a case study a representative remote T/C station of the Greek territory. In this context, the present study is concentrated on the detailed cost-benefit analysis of the proposed solution. More precisely, the main part of the analysis is devoted to develop a complete electricity production cost model, accordingly applied for numerous oil consumption and service period scenarios. Note that in all cases examined, zero load rejections is a prerequisite while minimum long-term cost solutions designated are favorably compared with the diesel-only solution. Finally, a sensitivity analysis, demonstrating the impact of the main economic parameters on the energy production cost of optimum sized PV-diesel hybrid power stations, is also provided. - Research highlights: → Expansion of telecommunication (T/C) in remote areas is vital for their development. → Off-grid T/C stations employed in such areas operate on diesel engines. → The use of PV-diesel-battery hybrid power stations is currently examined. → A detailed long-term electricity production cost model is developed. → Cost-effectiveness of the proposed system is reflected for numerous configurations.

  9. Contact configuration and energy consumption in spinal cord stimulation

    NARCIS (Netherlands)

    de Vos, Cecilia Cecilia Clementine; Hilgerink, M.P.; Buschman, H.P.J.; Holsheimer, J.; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc; Haueisen, Jens

    2009-01-01

    Objective: To test the hypothesis that, in contrast to an increase of the number of anodes which reduces energy consumption per pulse, an increase of the number of cathodes raises the energy consumption. Materials and Methods: Patients with an Itrel 3 Pulse Generator and a Pisces Quad quadripolar

  10. Photon detector configured to employ the Gunn effect and method of use

    Science.gov (United States)

    Cich, Michael J

    2015-03-17

    Embodiments disclosed herein relate to photon detectors configured to employ the Gunn effect for detecting high-energy photons (e.g., x-rays and gamma rays) and methods of use. In an embodiment, a photon detector for detecting high-energy photons is disclosed. The photon detector includes a p-i-n semiconductor diode having a p-type semiconductor region, an n-type semiconductor region, and a compensated i-region disposed between the p-type semiconductor region and the n-type semiconductor region. The compensated i-region and has a width of about 100 .mu.m to about 400 .mu.m and is configured to exhibit the Gunn effect when the p-i-n semiconductor diode is forward biased a sufficient amount. The compensated i-region is doped to include a free carrier concentration of less than about 10.sup.10 cm.sup.-3.

  11. Minimum bias and underlying event studies at CDF

    International Nuclear Information System (INIS)

    Moggi, Niccolo

    2010-01-01

    Soft, non-perturbative, interactions are poorly understood from the theoretical point of view even though they form a large part of the hadronic cross section at the energies now available. We review the CDF studies on minimum-bias ad underlying event in p(bar p) collisions at 2 TeV. After proposing an operative definition of 'underlying event', we present part of a systematic set of measurements carried out by the CDF Collaboration with the goal to provide data to test and improve the QCD models of hadron collisions. Different analysis strategies of the underlying event and possible event topologies are discussed. Part of the CDF minimum-bias results are also presented: in this sample, that represent the full inelastic cross-section, we can test simultaneously our knowledge of all the components that concur to form hadronic interactions. Comparisons with MonteCarlo simulations are always shown along with the data. These measurements will also contribute to more precise estimates of the soft QCD background of high-p T observables.

  12. Remembering facial configurations.

    Science.gov (United States)

    Bruce, V; Doyle, T; Dench, N; Burton, M

    1991-02-01

    Eight experiments are reported showing that subjects can remember rather subtle aspects of the configuration of facial features to which they have earlier been exposed. Subjects saw several slightly different configurations (formed by altering the relative placement of internal features of the face) of each of ten different faces, and they were asked to rate the apparent age and masculinity-femininity of each. Afterwards, subjects were asked to select from pairs of faces the configuration which was identical to one previously rated. Subjects responded strongly to the central or "prototypical" configuration of each studied face where this was included as one member of each test pair, whether or not it had been studied (Experiments 1, 2 and 4). Subjects were also quite accurate at recognizing one of the previously encountered extremes of the series of configurations that had been rated (Experiment 3), but when unseen prototypes were paired with seen exemplars subjects' performance was at chance (Experiment 5). Prototype learning of face patterns was shown to be stronger than that for house patterns, though both classes of patterns were affected equally by inversion (Experiment 6). The final two experiments demonstrated that preferences for the prototype could be affected by instructions at study and by whether different exemplars of the same face were shown consecutively or distributed through the study series. The discussion examines the implications of these results for theories of the representation of faces and for instance-based models of memory.

  13. Impact of spectral transition zone in reference ENIGMA configuration

    International Nuclear Information System (INIS)

    Aliberti, G.; Palmiotti, G.; Taiwo, T. A.; Tommasi, J.

    2005-01-01

    The gas-cooled fast reactor (GFR) is one of six advanced nuclear energy systems being studied under the auspices of the Gen IV International Forum (GIF). In a bilateral International Nuclear Energy Research Initiative (I-NERI) project French and U.S. national laboratories, industry, and universities are collaborating on the development of the GFR. This effort is led by the ANL in the U.S. and the CEA in France. Some of the attractions of the GFR include: (1) Hard spectrum and core breeding ratio, BR ∼ 1. These features allow minimal waste production, improved transmutation capability, optimal and flexible use of natural resources, potentially better economy (because of use of higher power density relative to current thermal gas-cooled systems), and improved non-proliferation (no fertile blanket); (2) Temperature resistant fuel and structure elements that are favorable to tight fission product confinement and system operation at high temperature; (3) High temperature and transparent helium (He) gas coolant that allows a high thermodynamic conversion efficiency, other energy applications (e.g., hydrogen production), and ease of in-service inspection and repair; and (4) Possible direct energy conversion cycle leading to a simpler design, increased conversion efficiency, and lower investment costs. The French strategy for advanced systems includes the development of the GFR and sodium-cooled fast reactor (SFR) to levels that allow industries to be able to make an informed choice of the fast spectrum system that would provide a sustainable nuclear energy generation option for the future. Current planning calls for the construction of a small experimental research and technology development reactor (ETDR) around 2009 (first operation in 2015) at CEA-Cadarache, France. This would be followed by the construction of a GFR industrial prototype, around 2025. In support of the GFR development efforts, a new physics experimental program (called ENIGMA, Experimental Neutron

  14. Understanding the Minimum Wage: Issues and Answers.

    Science.gov (United States)

    Employment Policies Inst. Foundation, Washington, DC.

    This booklet, which is designed to clarify facts regarding the minimum wage's impact on marketplace economics, contains a total of 31 questions and answers pertaining to the following topics: relationship between minimum wages and poverty; impacts of changes in the minimum wage on welfare reform; and possible effects of changes in the minimum wage…

  15. Youth minimum wages and youth employment

    NARCIS (Netherlands)

    Marimpi, Maria; Koning, Pierre

    2018-01-01

    This paper performs a cross-country level analysis on the impact of the level of specific youth minimum wages on the labor market performance of young individuals. We use information on the use and level of youth minimum wages, as compared to the level of adult minimum wages as well as to the median

  16. A unix configuration engine

    International Nuclear Information System (INIS)

    Burgess, M.

    1994-06-01

    A high level description language is presented for the purpose of automatically configuring large heterogeneous networked unix environments, based on class-oriented abstractions. The configuration engine is portable and easily extensible

  17. Energy analysis of alternative CO2 refrigeration system configurations for retail food applications in moderate and warm climates

    International Nuclear Information System (INIS)

    Tsamos, K.M.; Ge, Y.T.; Santosa, IDewa; Tassou, S.A.; Bianchi, G.; Mylona, Z.

    2017-01-01

    Highlights: • Alternative CO 2 refrigeration technologies are compared for temperate and warm climates. • The CO 2 booster system with parallel compression was found to be the most energy efficient system. • Parallel compression can offer efficiency advantages of 3.6% in moderate and 5.0% in warm climates. • Parallel compression in booster CO 2 systems is economically attractive in warm climates. - Abstract: Refrigeration systems are crucial in retail food stores to ensure appropriate merchandising of food products. This paper compares four different CO 2 refrigeration system configurations in terms of cooling performance, environmental impact, power consumption and annual running costs. The systems studied were the conventional booster refrigeration system with gas bypass (reference system), the all CO 2 cascade system with gas bypass, a booster system with a gas bypass compressor, and integrated cascade all CO 2 system with gas bypass compressor. The weather conditions of London, UK, and Athens, Greece, were used for the modelling of energy consumption and environmental impacts to represent moderate and warm climatic conditions respectively. The control strategies for the refrigeration systems were derived from experimental tests in the laboratory on a conventional booster refrigeration system. The results from the analysis showed that the CO 2 booster system with gas bypass compressor can provide best performance with 5.0% energy savings for the warm climate and 3.65% for the moderate climate, followed by the integrated cascade all CO 2 system with gas bypass compressor, with 3.6% and 2.1% savings over the reference system for the warm and moderate climates respectively.

  18. Configuring the SLC linac for injection into PEP

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1989-01-01

    From time to time the normal SLC physics program is to be interrupted so that beam can be delivered to PEP. In order that the switch to PEP injection (and the switch back again) can be accomplished quickly and easily, the gun, the damping rings, the linac phase ramp, the energy profile of the linac klystrons for the scavenger bunch, and the entire positron production system are to be kept the same as in the SLC configuration. What mainly remains to be changed is the linac klystron profile for the leading two bunches - those going to PEP. The new klystron profile must be such that it leaves these two beams (1) with final energies that match that of the storage ring and (2) with final energy spectra that fit within the energy aperture of the PEP transfer line. The conditions that need to be met in order to achieve these two goals are discussed in this note. 1 ref., 2 figs

  19. Momentum accumulation due to solar radiation torque, and reaction wheel sizing, with configuration optimization

    Science.gov (United States)

    Hablani, Hari B.

    1993-01-01

    This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted.

  20. Discretization of space and time: determining the values of minimum length and minimum time

    OpenAIRE

    Roatta , Luca

    2017-01-01

    Assuming that space and time can only have discrete values, we obtain the expression of the minimum length and the minimum time interval. These values are found to be exactly coincident with the Planck's length and the Planck's time but for the presence of h instead of ħ .

  1. Minimum wage development in the Russian Federation

    OpenAIRE

    Bolsheva, Anna

    2012-01-01

    The aim of this paper is to analyze the effectiveness of the minimum wage policy at the national level in Russia and its impact on living standards in the country. The analysis showed that the national minimum wage in Russia does not serve its original purpose of protecting the lowest wage earners and has no substantial effect on poverty reduction. The national subsistence minimum is too low and cannot be considered an adequate criterion for the setting of the minimum wage. The minimum wage d...

  2. Configuration management theory, practice, and application

    CERN Document Server

    Quigley, Jon M

    2015-01-01

    Configuration Management: Theory, Practice, and Application details a comprehensive approach to configuration management from a variety of product development perspectives, including embedded and IT. It provides authoritative advice on how to extend products for a variety of markets due to configuration options. The book also describes the importance of configuration management to other parts of the organization. It supplies an overview of configuration management and its process elements to provide readers with a contextual understanding of the theory, practice, and application of CM. Explaining what a configuration item is and what it implies, the book illustrates the interplay of configuration and data management with all enterprise resources during each phase of a product lifecycle. It also demonstrates the interrelationship of CM to functional resources. Shedding light on current practice, the book describes CM baselines, configuration identification, management baseline changes, and acceptance criteria ...

  3. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    Science.gov (United States)

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  4. Minimum emittance of three-bend achromats

    International Nuclear Information System (INIS)

    Li Xiaoyu; Xu Gang

    2012-01-01

    The calculation of the minimum emittance of three-bend achromats (TBAs) made by Mathematical software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space. The minimum scaling factors of two kinds of widely used TBA lattices are obtained. Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor, when the TBA lattice achieves its minimum emittance. The procedure of analysis and the results can be widely used in achromats lattices, because the calculation is not restricted by the actual lattice. (authors)

  5. Example of software configuration management model

    International Nuclear Information System (INIS)

    Roth, P.

    2006-01-01

    Software configuration management is the mechanism used to track and control software changes and may include the following actions: A tracking system should be established for any changes made to the existing software configuration. Requirement of the configuration management system are the following: - Backup the different software configuration; - Record the details (the date, the subject, the filenames, the supporting documents, the tests, ...) of the changes introduced in the new configuration; - Document all the differences between the different versions. Configuration management allows simultaneous exploitation of one specific version and development of the next version. Minor correction can be perform in the current exploitation version

  6. Configuration studies of LHD plasmas

    International Nuclear Information System (INIS)

    Okamoto, M.

    1997-01-01

    Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration

  7. Configuration studies of LHD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masao

    1997-03-01

    Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration. (author)

  8. A generic analysis of energy use and solvent selection for CO2 separation from post-combustion flue gases

    Science.gov (United States)

    Lu, Y.; Chen, S.; Rostam-Abadi, M.

    2008-01-01

    A thermodynamic calculation was performed to determine the theoretical minimum energy used to separate CO2 from a coal combustion flue gas in a typical adsorption-desorption system. Under ideal conditions, the minimum energy required to separate CO2 from post-combustion flue gas and produce pure CO2 at 1 atmospheric pressure was only about 1183 kJ/kg CO2. This amount could double with the addition of the driving forces of mass and heat transfer and the adverse impacts of absorption heat release on adsorption capacity. Thermodynamic analyses were also performed for the aqueous amine-based absorption process. Two CO2 reaction mechanisms, the carbamate formation reaction with primary/secondary amines and the CO2 hydration reaction with tertiary amines, were included in the absorption reaction. The reaction heat, sensible heat, and stripping heat were all important to the total heat requirement. The heat use of an ideal tertiary amine amounted to 2786 kJ/kg, compared to 3211 kJ/kg for an ideal primary amine. The heat usage of an ideal amine was about 20% lower than that of commercially available amines. Optimizing the absorption process configuration could further reduce energy use. This is an abstract of a paper presented at the 2008 AIChE Spring National Meeting (New Orleans, LA 4/6-10/2008).

  9. 30 CFR 57.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail...

  10. 30 CFR 56.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0-0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...

  11. On the necessary conditions of the regular minimum of the scale factor of the co-moving space

    International Nuclear Information System (INIS)

    Agakov, V.G.

    1980-01-01

    In the framework of homogeneous cosmologic model studied is the behaviour of the comoving space element volume filled with barotropous medium, deprived of energy fluxes. Presented are the necessary conditions at which a regular final minimum of the scale factor of the co-mowing space may take place. It is found that to carry out the above minimum at values of cosmological constant Λ <= 0 the presence of two from three anisotropy factors is necessary. Anisotropy of space deformation should be one of these factors. In case of Λ <= 0 the regular minimum is also possible if all three factors of anisotropy are equal to zero. However if none of the factors of Fsub(i), Asub(ik) anisotropy is equal to zero, the presence of deformation space anisotropy is necessary for final regular minimum appearance

  12. A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Matheswaran Saravanan

    2014-01-01

    Full Text Available Wireless sensor network (WSN consists of sensor nodes that need energy efficient routing techniques as they have limited battery power, computing, and storage resources. WSN routing protocols should enable reliable multihop communication with energy constraints. Clustering is an effective way to reduce overheads and when this is aided by effective resource allocation, it results in reduced energy consumption. In this work, a novel hybrid evolutionary algorithm called Bee Algorithm-Simulated Annealing Weighted Minimal Spanning Tree (BASA-WMST routing is proposed in which randomly deployed sensor nodes are split into the best possible number of independent clusters with cluster head and optimal route. The former gathers data from sensors belonging to the cluster, forwarding them to the sink. The shortest intrapath selection for the cluster is selected using Weighted Minimum Spanning Tree (WMST. The proposed algorithm computes the distance-based Minimum Spanning Tree (MST of the weighted graph for the multihop network. The weights are dynamically changed based on the energy level of each sensor during route selection and optimized using the proposed bee algorithm simulated annealing algorithm.

  13. LOOP- SIMULATION OF THE AUTOMATIC FREQUENCY CONTROL SUBSYSTEM OF A DIFFERENTIAL MINIMUM SHIFT KEYING RECEIVER

    Science.gov (United States)

    Davarian, F.

    1994-01-01

    The LOOP computer program was written to simulate the Automatic Frequency Control (AFC) subsystem of a Differential Minimum Shift Keying (DMSK) receiver with a bit rate of 2400 baud. The AFC simulated by LOOP is a first order loop configuration with a first order R-C filter. NASA has been investigating the concept of mobile communications based on low-cost, low-power terminals linked via geostationary satellites. Studies have indicated that low bit rate transmission is suitable for this application, particularly from the frequency and power conservation point of view. A bit rate of 2400 BPS is attractive due to its applicability to the linear predictive coding of speech. Input to LOOP includes the following: 1) the initial frequency error; 2) the double-sided loop noise bandwidth; 3) the filter time constants; 4) the amount of intersymbol interference; and 5) the bit energy to noise spectral density. LOOP output includes: 1) the bit number and the frequency error of that bit; 2) the computed mean of the frequency error; and 3) the standard deviation of the frequency error. LOOP is written in MS SuperSoft FORTRAN 77 for interactive execution and has been implemented on an IBM PC operating under PC DOS with a memory requirement of approximately 40K of 8 bit bytes. This program was developed in 1986.

  14. Optimization of Wind-Marine Hybrid Power System Configuration Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    SHI Hongda; LI Linna; ZHAO Chenyu

    2017-01-01

    Multi-energy power systems can use energy generated from various sources to improve power generation reliability.This paper presents a cost-power generation model of a wind-tide-wave energy hybrid power system for use on a remote island,where the configuration is optimized using a genetic algorithm.A mixed integer programming model is used and a novel object function,including cost and power generation,is proposed to solve the boundary problem caused by existence of two goals.Using this model,the final optimized result is found to have a good fit with local resources.

  15. Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Tichi, S.G.; Ardehali, M.M.; Nazari, M.E.

    2010-01-01

    The current subsidized energy prices in Iran are proposed to be gradually eliminated over the next few years. The objective of this study is to examine the effects of current and future energy price policies on optimal configuration of combined heat and power (CHP) and combined cooling, heating, and power (CCHP) systems in Iran, under the conditions of selling and not-selling electricity to utility. The particle swarm optimization algorithm is used for minimizing the cost function for owning and operating various CHP and CCHP systems in an industrial dairy unit. The results show that with the estimated future unsubsidized utility prices, CHP and CCHP systems operating with reciprocating engine prime mover have total costs of 5.6 and $2.9x10 6 over useful life of 20 years, respectively, while both systems have the same capital recovery periods of 1.3 years. However, for the same prime mover and with current subsidized prices, CHP and CCHP systems require 4.9 and 5.2 years for capital recovery, respectively. It is concluded that the current energy price policies hinder the promotion of installing CHP and CCHP systems and, the policy of selling electricity to utility as well as eliminating subsidies are prerequisites to successful widespread utilization of such systems.

  16. 30 CFR 77.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...

  17. Business Model Process Configurations

    DEFF Research Database (Denmark)

    Taran, Yariv; Nielsen, Christian; Thomsen, Peter

    2015-01-01

    , by developing (inductively) an ontological classification framework, in view of the BM process configurations typology developed. Design/methodology/approach – Given the inconsistencies found in the business model studies (e.g. definitions, configurations, classifications) we adopted the analytical induction...

  18. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis

    International Nuclear Information System (INIS)

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-01-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved. - Highlights: • Minimum detection limit and spatial resolution determined for FE-EPMA. • Detection sensitivity of FE-EPMA greatly superior to that of STEM-EDX. • Minimum detection limit and spatial resolution controllable by probe current

  19. Designing from minimum to optimum functionality

    Science.gov (United States)

    Bannova, Olga; Bell, Larry

    2011-04-01

    This paper discusses a multifaceted strategy to link NASA Minimal Functionality Habitable Element (MFHE) requirements to a compatible growth plan; leading forward to evolutionary, deployable habitats including outpost development stages. The discussion begins by reviewing fundamental geometric features inherent in small scale, vertical and horizontal, pressurized module configuration options to characterize applicability to meet stringent MFHE constraints. A proposed scenario to incorporate a vertical core MFHE concept into an expanded architecture to provide continuity of structural form and a logical path from "minimum" to "optimum" design of a habitable module. The paper describes how habitation and logistics accommodations could be pre-integrated into a common Hab/Log Module that serves both habitation and logistics functions. This is offered as a means to reduce unnecessary redundant development costs and to avoid EVA-intensive on-site adaptation and retrofitting requirements for augmented crew capacity. An evolutionary version of the hard shell Hab/Log design would have an expandable middle section to afford larger living and working accommodations. In conclusion, the paper illustrates that a number of cargo missions referenced for NASA's 4.0.0 Lunar Campaign Scenario could be eliminated altogether to expedite progress and reduce budgets. The plan concludes with a vertical growth geometry that provides versatile and efficient site development opportunities using a combination of hard Hab/Log modules and a hybrid expandable "CLAM" (Crew Lunar Accommodations Module) element.

  20. Maximum entropy reconstruction of the configurational density of states from microcanonical simulations

    International Nuclear Information System (INIS)

    Davis, Sergio

    2013-01-01

    In this work we develop a method for inferring the underlying configurational density of states of a molecular system by combining information from several microcanonical molecular dynamics or Monte Carlo simulations at different energies. This method is based on Jaynes' Maximum Entropy formalism (MaxEnt) for Bayesian statistical inference under known expectation values. We present results of its application to measure thermodynamic entropy and free energy differences in embedded-atom models of metals.

  1. Evaluation of energy and particle impact on the plasma facing components in DEMO

    International Nuclear Information System (INIS)

    Igitkhanov, Yuri; Bazylev, Boris

    2012-01-01

    Highlights: ► We analyze the first wall blanket W/EUROFER configuration for DEMO under steady-state normal operation and off-normal conditions, such as vertical displacements events (VDE) and runaway electrons (RE). The main issue is to find the optimal thickness of the W armor which will prevent tungsten surface from evaporation and melting and, on the other hand, will keep EUROFER below the critical thermal stresses. ► The minimum thickness of the tungsten amour about 3 mm for W/EUROFER sandwich structure will keep the maximum EUROFER temperature below the critical limit for EUROFER steel under steady-state operation and ITER like cooling conditions. ► The W surface temperature and the max. EUROFER temperature are increasing with incoming heat flux. For reference conditions (Dw ∼3 mm, DEUROFER ∼4 mm) the maximum tolerable heat flux which does not causes in thermal stresses in structural material is about ∼13.5 MW/m 2 . ► The RE deposit their energy deeper into W armour and for energies ≥50 MJ/m 2 and deposition times ≤0.1 s, the minimum armor thickness required to prevent EUROFER from thermal distraction is ≥1.4 cm. ► However, at this thickness the W surface melts. For higher RE energy deposition rates (≥100 MJ/m 2 in 0.1 s), the required armor thickness to prevent thermal destruction is even larger so that the bulk of the armor layer will melt and evaporate. - Abstract: We analyze the first wall blanket W/EUROFER configuration for DEMO under steady-state normal operation and off-normal conditions, such as vertical displacement events (VDE) and runaway electrons (RE). The main issue is to find the optimal thickness of the W armor which will prevent tungsten surface from evaporation and melting and, on the other hand, will keep EUROFER below the critical thermal stresses. Under steady-state operation heat transfer into the coolant must remain below the critical heat flux (CHF) to avoid the possible severe degradation of the coolant heat

  2. Evaluation of energy and particle impact on the plasma facing components in DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yuri, E-mail: juri.gitkhanov@ihm.fzk.de [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Bazylev, Boris [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer We analyze the first wall blanket W/EUROFER configuration for DEMO under steady-state normal operation and off-normal conditions, such as vertical displacements events (VDE) and runaway electrons (RE). The main issue is to find the optimal thickness of the W armor which will prevent tungsten surface from evaporation and melting and, on the other hand, will keep EUROFER below the critical thermal stresses. Black-Right-Pointing-Pointer The minimum thickness of the tungsten amour about 3 mm for W/EUROFER sandwich structure will keep the maximum EUROFER temperature below the critical limit for EUROFER steel under steady-state operation and ITER like cooling conditions. Black-Right-Pointing-Pointer The W surface temperature and the max. EUROFER temperature are increasing with incoming heat flux. For reference conditions (Dw {approx}3 mm, DEUROFER {approx}4 mm) the maximum tolerable heat flux which does not causes in thermal stresses in structural material is about {approx}13.5 MW/m{sup 2}. Black-Right-Pointing-Pointer The RE deposit their energy deeper into W armour and for energies {>=}50 MJ/m{sup 2} and deposition times {<=}0.1 s, the minimum armor thickness required to prevent EUROFER from thermal distraction is {>=}1.4 cm. Black-Right-Pointing-Pointer However, at this thickness the W surface melts. For higher RE energy deposition rates ({>=}100 MJ/m{sup 2} in 0.1 s), the required armor thickness to prevent thermal destruction is even larger so that the bulk of the armor layer will melt and evaporate. - Abstract: We analyze the first wall blanket W/EUROFER configuration for DEMO under steady-state normal operation and off-normal conditions, such as vertical displacement events (VDE) and runaway electrons (RE). The main issue is to find the optimal thickness of the W armor which will prevent tungsten surface from evaporation and melting and, on the other hand, will keep EUROFER below the critical thermal stresses. Under steady

  3. Correlation as a Determinant of Configurational Entropy in Supramolecular and Protein Systems

    Science.gov (United States)

    2015-01-01

    For biomolecules in solution, changes in configurational entropy are thought to contribute substantially to the free energies of processes like binding and conformational change. In principle, the configurational entropy can be strongly affected by pairwise and higher-order correlations among conformational degrees of freedom. However, the literature offers mixed perspectives regarding the contributions that changes in correlations make to changes in configurational entropy for such processes. Here we take advantage of powerful techniques for simulation and entropy analysis to carry out rigorous in silico studies of correlation in binding and conformational changes. In particular, we apply information-theoretic expansions of the configurational entropy to well-sampled molecular dynamics simulations of a model host–guest system and the protein bovine pancreatic trypsin inhibitor. The results bear on the interpretation of NMR data, as they indicate that changes in correlation are important determinants of entropy changes for biologically relevant processes and that changes in correlation may either balance or reinforce changes in first-order entropy. The results also highlight the importance of main-chain torsions as contributors to changes in protein configurational entropy. As simulation techniques grow in power, the mathematical techniques used here will offer new opportunities to answer challenging questions about complex molecular systems. PMID:24702693

  4. Predicting minimum uncertainties in the inversion of ocean color geophysical parameters based on Cramer-Rao bounds.

    Science.gov (United States)

    Jay, Sylvain; Guillaume, Mireille; Chami, Malik; Minghelli, Audrey; Deville, Yannick; Lafrance, Bruno; Serfaty, Véronique

    2018-01-22

    We present an analytical approach based on Cramer-Rao Bounds (CRBs) to investigate the uncertainties in estimated ocean color parameters resulting from the propagation of uncertainties in the bio-optical reflectance modeling through the inversion process. Based on given bio-optical and noise probabilistic models, CRBs can be computed efficiently for any set of ocean color parameters and any sensor configuration, directly providing the minimum estimation variance that can be possibly attained by any unbiased estimator of any targeted parameter. Here, CRBs are explicitly developed using (1) two water reflectance models corresponding to deep and shallow waters, resp., and (2) four probabilistic models describing the environmental noises observed within four Sentinel-2 MSI, HICO, Sentinel-3 OLCI and MODIS images, resp. For both deep and shallow waters, CRBs are shown to be consistent with the experimental estimation variances obtained using two published remote-sensing methods, while not requiring one to perform any inversion. CRBs are also used to investigate to what extent perfect a priori knowledge on one or several geophysical parameters can improve the estimation of remaining unknown parameters. For example, using pre-existing knowledge of bathymetry (e.g., derived from LiDAR) within the inversion is shown to greatly improve the retrieval of bottom cover for shallow waters. Finally, CRBs are shown to provide valuable information on the best estimation performances that may be achieved with the MSI, HICO, OLCI and MODIS configurations for a variety of oceanic, coastal and inland waters. CRBs are thus demonstrated to be an informative and efficient tool to characterize minimum uncertainties in inverted ocean color geophysical parameters.

  5. A Phosphate Minimum in the Oxygen Minimum Zone (OMZ) off Peru

    Science.gov (United States)

    Paulmier, A.; Giraud, M.; Sudre, J.; Jonca, J.; Leon, V.; Moron, O.; Dewitte, B.; Lavik, G.; Grasse, P.; Frank, M.; Stramma, L.; Garcon, V.

    2016-02-01

    The Oxygen Minimum Zone (OMZ) off Peru is known to be associated with the advection of Equatorial SubSurface Waters (ESSW), rich in nutrients and poor in oxygen, through the Peru-Chile UnderCurrent (PCUC), but this circulation remains to be refined within the OMZ. During the Pelágico cruise in November-December 2010, measurements of phosphate revealed the presence of a phosphate minimum (Pmin) in various hydrographic stations, which could not be explained so far and could be associated with a specific water mass. This Pmin, localized at a relatively constant layer ( 20minimum with a mean vertical phosphate decrease of 0.6 µM but highly variable between 0.1 and 2.2 µM. In average, these Pmin are associated with a predominant mixing of SubTropical Under- and Surface Waters (STUW and STSW: 20 and 40%, respectively) within ESSW ( 25%), complemented evenly by overlying (ESW, TSW: 8%) and underlying waters (AAIW, SPDW: 7%). The hypotheses and mechanisms leading to the Pmin formation in the OMZ are further explored and discussed, considering the physical regional contribution associated with various circulation pathways ventilating the OMZ and the local biogeochemical contribution including the potential diazotrophic activity.

  6. Diffusion of a protein in configuration space

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Blumenfeld, R.; Hummer, G.; Sobehart, J.

    1995-09-01

    Simulations of biomolecular dynamics are commonly interpreted in terms of harmonic or quasi-harmonic models for the dynamics of the system. These models assume that biomolecules exhibit oscillations around a single energy minimum. However, spectroscopic data on myoglobin suggest that proteins sample multiple minima. Transitions between minima reveal a broad distribution of energy barriers. This behavior has been observed in other biomolecular systems. To elucidate the nature of protein dynamics the authors have studied a 1.2ns molecular dynamics trajectory of crambin in aqueous solution. This trajectory samples multiple local energy minima. Transitions between minima involve collective motions of amino acids over long distances. The authors show that nonlinear motions are responsible for most of the atomic fluctuations of the protein. These atomic fluctuations are not well described by large motions of individual atoms or a small group of atoms, but rather by concerted motions of many atoms. These nonlinear motions describe transitions between different basins of attraction. The signature of these motions manifests in local and global structural variables. A method for extracting Molecule Optimal Dynamic Coordinates (MODC) is presented.

  7. Deep Trek Re-configurable Processor for Data Acquisition (RPDA)

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme; Michael Johnson

    2009-06-30

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop a high-temperature Re-configurable Processor for Data Acquisition (RPDA). The RPDA development has incorporated multiple high-temperature (225C) electronic components within a compact co-fired ceramic Multi-Chip-Module (MCM) package. This assembly is suitable for use in down-hole oil and gas applications. The RPDA module is programmable to support a wide range of functionality. Specifically this project has demonstrated functional integrity of the RPDA package and internal components, as well as functional integrity of the RPDA configured to operate as a Multi-Channel Data Acquisition Controller. This report reviews the design considerations, electrical hardware design, MCM package design, considerations for manufacturing assembly, test and screening, and results from prototype assembly and characterization testing.

  8. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  9. Multiparticle-multihole configurations and photoproton spectrum from /sup 26/Mg nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Varlamov, V V; Zhivopistsev, F A; Ishkhanov, B S; Lukashev, A V [Moskovskii Gosudarstvennyi Univ. (USSR). Inst. Yadernoi Fiziki

    1975-01-01

    Results of calculating the spectrum of photoprotons for /sup 26/Mg nucleus within the framework of the model of multiparticle-multihole configurations are reported. The results obtained are compared to the experimental spectrum of photoprotons produced by means of bremsstrahlung radiation with maximum energy of Esub(..gamma..)sup(max)=32.0 MeV.

  10. Design and analysis of Helium Brayton cycle for energy conversion system of RGTT200K

    International Nuclear Information System (INIS)

    Ignatius Djoko Irianto

    2016-01-01

    The helium Brayton cycle for the design of cogeneration energy conversion system for RGTT200K have been analyzed to obtain the higher thermal efficiency and energy utilization factor. The aim of this research is to analyze the potential of the helium Brayton cycle to be implemented in the design of cogeneration energy conversion system of RGTT200K. Three configuration models of cogeneration energy conversion systems have been investigated. In the first configuration model, an intermediate heat exchanger (IHX) is installed in series with the gas turbine, while in the second configuration model, IHX and gas turbines are installed in parallel. The third configuration model is similar to the first configuration, but with two compressors. Performance analysis of Brayton cycle used for cogeneration energy conversion system of RGTT200K has been done by simulating and calculating using CHEMCAD code. The simulation result shows that the three configuration models of cogeneration energy conversion system give the temperature of thermal energy in the secondary side of IHX more than 800 °C at the reactor coolant mass flow rate of 145 kg/s. Nevertheless, the performance parameters, which include thermal efficiency and energy utilization factor (EUF), are different for each configuration model. By comparing the performance parameter in the three configurations of helium Brayton cycle for cogeneration energy conversion systems RGTT200K, it is found that the energy conversion system with a first configuration has the highest thermal efficiency and energy utilization factor (EUF). Thermal efficiency and energy utilization factor for the first configuration of the reactor coolant mass flow rate of 145 kg/s are 35.82 % and 80.63 %. (author)

  11. Ab initio calculation of diffusion barriers for Cu adatom hopping on Cu(1 0 0) surface and evolution of atomic configurations

    Science.gov (United States)

    Zhang, Wei; Gan, Jie; Li, Qian; Gao, Kun; Sun, Jian; Xu, Ning; Ying, Zhifeng; Wu, Jiada

    2011-06-01

    The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.

  12. Ab initio calculation of diffusion barriers for Cu adatom hopping on Cu(1 0 0) surface and evolution of atomic configurations

    International Nuclear Information System (INIS)

    Zhang Wei; Gan Jie; Li Qian; Gao Kun; Sun Jian; Xu Ning; Ying Zhifeng; Wu Jiada

    2011-01-01

    The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.

  13. Knowledge Based Product Configuration - a documentatio tool for configuration projects

    DEFF Research Database (Denmark)

    Hvam, Lars; Malis, Martin

    2003-01-01

    . A lot of knowledge isput into these systems and many domain experts are involved. This calls for an effective documentation system in order to structure this knowledge in a way that fits to the systems. Standard configuration systems do not support this kind of documentation. The chapter deals...... with the development of a Lotus Notes application that serves as a knowledge based documentation tool for configuration projects. A prototype has been developed and tested empirically in an industrial case-company. It has proved to be a succes....

  14. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    Science.gov (United States)

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  15. Investigation of the Ergopeptide Epimerization Process

    Directory of Open Access Journals (Sweden)

    Karsten Andrae

    2014-08-01

    Full Text Available Ergopeptides, like ergocornine and a-ergocryptine, exist in an S- and in an R-configuration. Kinetic experiments imply that certain configurations are preferred depending on the solvent. The experimental methods are explained in this article. Furthermore, computational methods are used to understand this configurational preference. Standard quantum chemical methods can predict the favored configurations by using minimum energy calculations on the potential energy landscape. However, the explicit role of the solvent is not revealed by this type of methods. In order to better understand its influence, classical mechanical molecular simulations are applied. It appears from our research that “folding” the ergopeptide molecules into an intermediate state (between the S- and the R-configuration is mechanically hindered for the preferred configurations.

  16. Viscous Design of TCA Configuration

    Science.gov (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  17. Reactor Configuration Development for ARIES-CS

    International Nuclear Information System (INIS)

    Ku LP

    2005-01-01

    New compact, quasi-axially symmetric stellarator configurations have been developed as part of the ARIES-CS reactor studies. These new configurations have good plasma confinement and transport properties, including low losses of α particles and good integrity of flux surfaces at high β. We summarize the recent progress by showcasing two attractive classes of configurations--configurations with judiciously chosen rotational transforms to avoid undesirable effects of low order resonances on the flux surface integrity and configurations with very small aspect ratios (∼2.5) that have excellent quasi-axisymmetry and low field ripples

  18. Determination of the 3d34d and 3d35s configurations of Fe V

    International Nuclear Information System (INIS)

    Azarov, V.I.

    2001-01-01

    The analysis of the spectrum of four times ionized iron, Fe V, has led to the determination of the 3d 3 4d and 3d 3 5s configurations. From 975 classified lines in the region 645-1190 A we have established 123 of 168 theoretically possible 3d 3 4d levels and 26 of 38 possible 3d 3 5s levels. The estimated accuracy of values of energy levels of these two configurations is about 0.7 cm -1 and 1.0 cm -1 , respectively. The level structure of the system of the 3d 4 , 3d 3 4s, 3d 3 4d and 3d 3 5s configurations has been theoretically interpreted and the energy parameters have been determined by a least squares fit to the observed levels. A comparison of parameters in Cr III and Fe V ions is given. (orig.)

  19. Device configuration-management system

    International Nuclear Information System (INIS)

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  20. Tank waste remediation system configuration management plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  1. Comparative Studies of Traditional (Non-Energy Integration and Energy Integration of Catalytic Reforming Unit using Pinch Analysis

    Directory of Open Access Journals (Sweden)

    M. Alta

    2012-12-01

    Full Text Available Energy Integration of Catalytic Reforming Unit (CRU of Kaduna Refinery and petrochemicals Company Kaduna Nigeria was carried out using Pinch Technology. The pinch analysis was carried out using Maple. Optimum minimum approach temperature of 20 °C was used to determine the energy target. The pinch point temperature was found to be 278 °C. The utilities targets for the minimum approach temperature were found to be 72711839.47 kJ/hr and 87105834.43 kJ/hr for hot and cold utilities respectively. Pinch analysis as an energy integration technique was found to save more energy and utilities cost than the traditional energy technique. Key words: Pinch point, CRU, Energy Target, Maple

  2. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    Science.gov (United States)

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  3. Nuclear Power, Energy Economics and Energy Security

    International Nuclear Information System (INIS)

    2013-01-01

    Economic development requires reliable, affordable electricity that is provided in sufficient quantities to satisfy the minimum energy requirements at a local, regional or national level. As simple as this recipe for economic development appears, technological, infrastructural, financial and developmental considerations must be analysed and balanced to produce a national energy strategy. Complicating that task is the historic fact that energy at the desired price and in the desired quantities can be neither taken for granted nor guaranteed. Energy economics and energy security determine the options available to nations working to establish a sustainable energy strategy for the future.

  4. Planner's energy workbook: a manual for exploring relationships between land use and energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, T.O.; Nathans, R.; Palmedo, P.F.; Stern, R.

    1977-06-01

    It has been clear that the magnitude and character of a region's energy requirements are intimately related to the spatial configuration and mix of land use activities. To the degree to which they can shape the future configurations of residential, commercial, industrial, and transportation activities, local governments and their planners must give serious consideration to the energy implications of those configurations in the light of future social goals and requirements. This Planner's Energy Workbook describes a set of procedures that can be used to carry out community and regional energy analyses. The choice of land use activity parameters and their relation to energy use characteristics are associated with the normal planning concepts of land use density, type of residential development, commercial floorspace, industrial sales and employment, and shopping and work trip lengths. At the same time these energy related intensity coefficients are expressed in a form that permits the analysis of short-term conservation strategies such as the retrofit of insulation and the introduction of new technologies such as solar energy. An integrating framework is provided to construct total community or area energy consumption profiles and future needs; to examine compatibility between area requirements and the energy supply-distribution system serving the area; and to evaluate the implications for energy use of the physical configuration of urban, suburban and rural areas. Two cases illustrate the application of this Workbook. The Long Island area is representative of major suburban regions throughout the U.S. which have undergone major growth and development. A community redevelopment design in Tuscon, Arizona is typical of rapid and major land use development within the environs of an existing city.

  5. The LHCb configuration database

    CERN Document Server

    Abadie, Lana; Gaspar, Clara; Jacobsson, Richard; Jost, Beat; Neufeld, Niko

    2005-01-01

    The Experiment Control System (ECS) will handle the monitoring, configuration and operation of all the LHCb experimental equipment. All parameters required to configure electronics equipment under the control of the ECS will reside in a configuration database. The database will contain two kinds of information: 1.\tConfiguration properties about devices such as hardware addresses, geographical location, and operational parameters associated with particular running modes (dynamic properties). 2.\tConnectivity between devices : this consists of describing the output and input connections of a device (static properties). The representation of these data using tables must be complete so that it can provide all the required information to the ECS and must cater for all the subsystems. The design should also guarantee a fast response time, even if a query results in a large volume of data being loaded from the database into the ECS. To fulfil these constraints, we apply the following methodology: Determine from the d...

  6. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions.

    Science.gov (United States)

    Woolf, Dominic; Lehmann, Johannes; Fisher, Elizabeth M; Angenent, Largus T

    2014-06-03

    Coproduction of biofuels with biochar (the carbon-rich solid formed during biomass pyrolysis) can provide carbon-negative bioenergy if the biochar is sequestered in soil, where it can improve fertility and thus simultaneously address issues of food security, soil degradation, energy production, and climate change. However, increasing biochar production entails a reduction in bioenergy obtainable per unit biomass feedstock. Quantification of this trade-off for specific biochar-biofuel pathways has been hampered by lack of an accurate-yet-simple model for predicting yields, product compositions, and energy balances from biomass slow pyrolysis. An empirical model of biomass slow pyrolysis was developed and applied to several pathways for biochar coproduction with gaseous and liquid biofuels. Here, we show that biochar production reduces liquid biofuel yield by at least 21 GJ Mg(-1) C (biofuel energy sacrificed per unit mass of biochar C), with methanol synthesis giving this lowest energy penalty. For gaseous-biofuel production, the minimum energy penalty for biochar production is 33 GJ Mg(-1) C. These substitution rates correspond to a wide range of Pareto-optimal system configurations, implying considerable latitude to choose pyrolysis conditions to optimize for desired biochar properties or to modulate energy versus biochar yields in response to fluctuating price differentials for the two commodities.

  7. Pair creation by dynamic field configurations

    International Nuclear Information System (INIS)

    Aoyama, H.

    1982-01-01

    This thesis deals with the dynamics of the classical configuration of a quantum field unstable due to pair creation. The effective action method is developed first to treat such problems for a simple two-field model. Physical quantities such as pair creation probabilities are related to a complex function called the effective configuration, which is defined to minimize the effective action. Unitarity of the S-matrix is verified at the lowest order of the weak-field approximation. At the same order, the real valued vacuum expectation value of the quantum field, named the real configuration, is constructed in terms of the effective configuration. An integro-differential equation for the real configuration is given and is used to show that the real configuration is causal, while the effective configuration is not. Two practical applications of the effective action method are discussed. The first deals with pair creation in an anisotropic universe, and the real geometry is given in terms of the effective geometry in the samll anisotropy limit. The second deals with expanding vacuum bubbles. Corresponding to three possible situations, three kinds of field equations of each of the effective configuration and the real configuration are obtained. The behavior of the bubble is also studied by a semi-classical method, and one of the three situations is suggested to be plausible

  8. Configuration management

    International Nuclear Information System (INIS)

    Beavers, R.R.; Sumiec, K.F.

    1989-01-01

    Increasing regulatory and industry attention has been focused on properly controlling electrical design changes. These changes can be controlled by using configuration management techniques. Typically, there are ongoing modifications to various process systems or additions due to new requirements at every power plant. Proper control of these changes requires that an organized method be used to ensure that all important parameters of the electrical auxiliary systems are analyzed and that these parameters are evaluated accurately. This process, commonly referred to as configuration management, is becoming more important on both fossil and nuclear plants. Recent NRC- and utility-initiated inspections have identified problems due to incomplete analysis of changes to electrical auxiliary systems at nuclear stations

  9. Deterministic alternatives to the full configuration interaction quantum Monte Carlo method for strongly correlated systems

    Science.gov (United States)

    Tubman, Norm; Whaley, Birgitta

    The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.

  10. The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors

    Directory of Open Access Journals (Sweden)

    Jingmin Wang

    2017-07-01

    Full Text Available A virtual power plant (VPP is a special virtual unit that integrates various distributed energy resources (DERs distributed in the generation and consumption sides. The optimal configuration scheme of the VPP needs to break the geographical restrictions to make full use of DERs, considering the uncertainties. First, the components of the DERs and the structure of the VPP are briefly introduced. Next, the cubic exponential smoothing method is adopted to predict the VPP load requirement. Finally, the optimal configuration of the DER capacities inside the VPP is calculated by using portfolio theory and genetic algorithms (GA. The results show that the configuration scheme can optimize the DER capacities considering uncertainties, guaranteeing economic benefits of investors, and fully utilizing the DERs. Therefore, this paper provides a feasible reference for the optimal configuration scheme of the VPP from the perspective of investors.

  11. Initial DEMO tokamak design configuration studies

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Christian, E-mail: christian.bachmann@efda.org [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Aiello, G. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Albanese, R.; Ambrosino, R. [ENEA/CREATE, Universita di Napoli Federico II, Naples (Italy); Arbeiter, F. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Boccaccini, L.; Carloni, D. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Federici, G. [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Kovari, M. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Li Puma, A. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Loving, A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maione, I. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Mattei, M. [ENEA/CREATE, Universita di Napoli Federico II, Naples (Italy); Mazzone, G. [ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Meszaros, B. [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Riccardo, V. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2015-10-15

    Highlights: • A definition of main DEMO requirements. • A description of the DEMO tokamak design configuration. • A description of issues yet to be solved. - Abstract: To prepare the DEMO conceptual design phase a number of physics and engineering assessments were carried out in recent years in the frame of EFDA concluding in an initial design configuration of a DEMO tokamak. This paper gives an insight into the identified engineering requirements and constraints and describes their impact on the selection of the technologies and design principles of the main tokamak components. The EU DEMO program aims at making best use of the technologies developed for ITER (e.g., magnets, vessel, cryostat, and to some degree also the divertor). However, other systems in particular the breeding blanket require design solutions and advanced technologies that will only partially be tested in ITER. The main differences from ITER include the requirement to breed, to extract, to process and to recycle the tritium needed for plasma operation, the two orders of magnitude larger lifetime neutron fluence, the consequent radiation dose levels, which limit remote maintenance options, and the requirement to use low-activation steel for in-vessel components that also must operate at high temperature for efficient energy conversion.

  12. 12 CFR 564.4 - Minimum appraisal standards.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Minimum appraisal standards. 564.4 Section 564.4 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPRAISALS § 564.4 Minimum appraisal standards. For federally related transactions, all appraisals shall, at a minimum: (a...

  13. The levels of the first excited configuration of one-electron ions in intensive alternating field

    International Nuclear Information System (INIS)

    Klimchitskaya, G.L.

    1984-01-01

    The relativistic generalization of the quasi-energy method is applied for the calculation of the influence of spatjally-homogeneous electric field with the periodic time dependence on the energy levels of the first excited configuration of one-electron multiply charged ions. The dependence is found of the corresponding quasi-energy levels on the amplitude and frequency of intensive external field which wholly mixes the levels of fine structure

  14. The minimum wage in the Czech enterprises

    OpenAIRE

    Eva Lajtkepová

    2010-01-01

    Although the statutory minimum wage is not a new category, in the Czech Republic we encounter the definition and regulation of a minimum wage for the first time in the 1990 amendment to Act No. 65/1965 Coll., the Labour Code. The specific amount of the minimum wage and the conditions of its operation were then subsequently determined by government regulation in February 1991. Since that time, the value of minimum wage has been adjusted fifteenth times (the last increase was in January 2007). ...

  15. Minimum Wages and Regional Disparity: An analysis on the evolution of price-adjusted minimum wages and their effects on firm profitability (Japanese)

    OpenAIRE

    MORIKAWA Masayuki

    2013-01-01

    This paper, using prefecture level panel data, empirically analyzes 1) the recent evolution of price-adjusted regional minimum wages and 2) the effects of minimum wages on firm profitability. As a result of rapid increases in minimum wages in the metropolitan areas since 2007, the regional disparity of nominal minimum wages has been widening. However, the disparity of price-adjusted minimum wages has been shrinking. According to the analysis of the effects of minimum wages on profitability us...

  16. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  17. Roton Minimum as a Fingerprint of Magnon-Higgs Scattering in Ordered Quantum Antiferromagnets.

    Science.gov (United States)

    Powalski, M; Uhrig, G S; Schmidt, K P

    2015-11-13

    A quantitative description of magnons in long-range ordered quantum antiferromagnets is presented which is consistent from low to high energies. It is illustrated for the generic S=1/2 Heisenberg model on the square lattice. The approach is based on a continuous similarity transformation in momentum space using the scaling dimension as the truncation criterion. Evidence is found for significant magnon-magnon attraction inducing a Higgs resonance. The high-energy roton minimum in the magnon dispersion appears to be induced by strong magnon-Higgs scattering.

  18. Detection of minimum-ionizing particles in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Kaplan, S.N.; Fujieda, I.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.

    1987-09-01

    Based on previously-reported results of the successful detection of alpha particles and 1- and 2-MeV protons with hydrogenated amorphous silicon (a-Si : H) diodes, detection of a single minimum-ionizing particle will require a total sensitive thickness of approximately 100 to 150 μm, either in the form of a single thick diode, or as a stack of several thinner diodes. Signal saturation at high dE/dx makes it necessary to simulate minimum ionization in order to evaluate present detectors. Two techniques, using pulsed infrared light, and pulsed x-rays, give single-pulse signals large enough for direct measurements. A third, using beta rays, requires multiple-transit signal averaging to produce signals measurable above noise. Signal amplitudes from the a-Si : H limit at 60% of the signal size from Si crystals extrapolated to the same thickness. This is consistent with an a-Si : H radiation ionization energy, W = 6 eV/electron-hole pair. Beta-ray signals are observed at the expected amplitude

  19. A hybrid configuration interaction treatment based on seniority number and excitation schemes

    International Nuclear Information System (INIS)

    Alcoba, Diego R.; Capuzzi, Pablo; Torre, Alicia; Lain, Luis; Oña, Ofelia B.; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri

    2014-01-01

    We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method

  20. A hybrid configuration interaction treatment based on seniority number and excitation schemes

    Energy Technology Data Exchange (ETDEWEB)

    Alcoba, Diego R.; Capuzzi, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644 E-48080 Bilbao (Spain); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina); Van Raemdonck, Mario; Bultinck, Patrick [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent (Belgium); Van Neck, Dimitri [Center for Molecular Modelling, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2014-12-28

    We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.