WorldWideScience

Sample records for minimum chamber volume

  1. A measurement of the holographic minimum-observable beam branching ratio in the Fermilab 15-foot bubble chamber

    CERN Document Server

    Aderholz, Michael; Akbari, H; Allport, P P; Badyal, S K; Ballagh, H C; Barth, Monique; Baton, Jean-Pierre; Bingham, Harry H; Bjelkhagen, H I; Brucker, E B; Burnstein, R A; Campbell, J Ronald; Cence, R J; Chatterjee, T K; Clayton, E F; Corrigan, G; Coutures, C; De Prospo, D F; Devanand, P; De Wolf, E A; Faulkner, P J W; Föth, H; Fretter, W B; Geissler, Kryno K; Gupta, V K; Hanlon, J; Harigel, G G; Harris, F A; Hawkins, J; Jabiol, M A; Jacques, P; Jones, G T; Jones, M D; Kafka, T; Kalelkar, M S; Kasper, P; Kohli, J M; Koller, E L; Krawiec, R J; Lauko, M; Lys, J E; Marage, P; Milburn, R H; Miller, D B; Mitra, I S; Mobayyen, M M; Moreels, J; Morrison, Douglas Robert Ogston; Myatt, Gerald; Naon, R; Napier, A; Naylor, P; Neveu, M; Passmore, D; Peters, M W; Peterson, V Z; Plano, R J; Rao, N K; Rubin, H A; Sacton, J; Sambyal, S S; Schmitz, N; Schneps, J; Sekulin, R L; Sewell, S J; Singh, J B; Smart, W M; Stamer, P E; Varvell, K E; Verluyten, L; Voyvodic, L; Wachsmuth, H W; Wainstein, S; Williams, W; Willocq, S; Yost, G P

    1999-01-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at Fermilab, during a physics run. The innovative system combined the reference beam with the object beam, illuminating a conical volume of $\\sim 1.4$~m$^3$. Bubble tracks from neutrino interactions with a width of $\\sim 120\\;\\mu$m have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the Beam Branching Ratio. We obtained in our experiment an exceedingly small minimum-observable ratio of $(0.54 \\pm 0.21) \\times 10^{-7}$. The technology has the potential for a wide range of applications.

  2. A measurement of the holographic minimum-observable beam branching ratio in the FERMILAB 15-ft bubble chamber

    Science.gov (United States)

    Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Badyal, S. K.; Ballagh, H. C.; Barth, M.; Baton, J. P.; Bingham, H. H.; Bjelkhagen, H.; Brucker, E. B.; Burnstein, R. A.; Campbell, J. R.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; DeProspo, D.; Devanand; De Wolf, E. A.; Faulkner, P. J. W.; Foeth, H.; Fretter, W. B.; Geissler, K.; Gupta, V. K.; Hanlon, J.; Harigel, G. G.; Harris, F. A.; Hawkins, J.; Jabiol, M. A.; Jacques, P.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J. E.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R. O.; Myatt, G.; Naon, R.; Napier, A.; Naylor, P.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Sekulin, R. L.; Sewell, S.; Singh, J. B.; Smart, W.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Voyvodic, L.; Wachsmuth, H.; Wainstein, S.; Williams, W.; Willocq, S.; Yost, G. P.; E-632 Collaboration

    1999-01-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-foot bubble chamber at Fermilab, during a physics run. The innovative system combined the reference beam with the object beam, irradiating a conical volume of ˜1.4 m 3. Bubble tracks from neutrino interactions with a width of ˜120 μm have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the beam branching ratio. We obtained in our experiment an exceedingly small minimum-observable ratio of (0.54±0.21)×10 -7. The technology has the potential for a wide range of applications.

  3. [Hospitals failing minimum volumes in 2004: reasons and consequences].

    Science.gov (United States)

    Geraedts, M; Kühnen, C; Cruppé, W de; Blum, K; Ohmann, C

    2008-02-01

    In 2004 Germany introduced annual minimum volumes nationwide on five surgical procedures: kidney, liver, stem cell transplantation, complex oesophageal, and pancreatic interventions. Hospitals that fail to reach the minimum volumes are no longer allowed to perform the respective procedures unless they raise one of eight legally accepted exceptions. The goal of our study was to investigate how many hospitals fell short of the minimum volumes in 2004, whether and how this was justified, and whether hospitals that failed the requirements experienced any consequences. We analysed data on meeting the minimum volume requirements in 2004 that all German hospitals were obliged to publish as part of their biannual structured quality reports. We performed telephone interviews: a) with all hospitals not achieving the minimum volumes for complex oesophageal, and pancreatic interventions, and b) with the national umbrella organisations of all German sickness funds. In 2004, one quarter of all German acute care hospitals (N=485) performed 23,128 procedures where minimum volumes applied. 197 hospitals (41%) did not meet at least one of the minimum volumes. These hospitals performed N=715 procedures (3.1%) where the minimum volumes were not met. In 43% of these cases the hospitals raised legally accepted exceptions. In 33% of the cases the hospitals argued using reasons that were not legally acknowledged. 69% of those hospitals that failed to achieve the minimum volumes for complex oesophageal and pancreatic interventions did not experience any consequences from the sickness funds. However, one third of those hospitals reported that the sickness funds addressed the issue and partially announced consequences for the future. The sickness funds' umbrella organisations stated that there were only sparse activities related to the minimum volumes and that neither uniform registrations nor uniform proceedings in case of infringements of the standards had been agreed upon. In spite of the

  4. Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression.

    Science.gov (United States)

    Zhen, Xiantong; Zhang, Heye; Islam, Ali; Bhaduri, Mousumi; Chan, Ian; Li, Shuo

    2017-02-01

    Cardiac four-chamber volume estimation serves as a fundamental and crucial role in clinical quantitative analysis of whole heart functions. It is a challenging task due to the huge complexity of the four chambers including great appearance variations, huge shape deformation and interference between chambers. Direct estimation has recently emerged as an effective and convenient tool for cardiac ventricular volume estimation. However, existing direct estimation methods were specifically developed for one single ventricle, i.e., left ventricle (LV), or bi-ventricles; they can not be directly used for four chamber volume estimation due to the great combinatorial variability and highly complex anatomical interdependency of the four chambers. In this paper, we propose a new, general framework for direct and simultaneous four chamber volume estimation. We have addressed two key issues, i.e., cardiac image representation and simultaneous four chamber volume estimation, which enables accurate and efficient four-chamber volume estimation. We generate compact and discriminative image representations by supervised descriptor learning (SDL) which can remove irrelevant information and extract discriminative features. We propose direct and simultaneous four-chamber volume estimation by the multioutput sparse latent regression (MSLR), which enables jointly modeling nonlinear input-output relationships and capturing four-chamber interdependence. The proposed method is highly generalized, independent of imaging modalities, which provides a general regression framework that can be extensively used for clinical data prediction to achieve automated diagnosis. Experiments on both MR and CT images show that our method achieves high performance with a correlation coefficient of up to 0.921 with ground truth obtained manually by human experts, which is clinically significant and enables more accurate, convenient and comprehensive assessment of cardiac functions. Copyright © 2016 Elsevier

  5. The decrease of cardiac chamber volumes and output during positive-pressure ventilation

    DEFF Research Database (Denmark)

    Kristensen, Kasper Kyhl; Ahtarovski, Kiril Aleksov; Iversen, Kasper

    2013-01-01

    the effect of PPV on the central circulation by studying cardiac chamber volumes with cardiac magnetic resonance imaging (CMR). We hypothesized that PPV lowers cardiac output (CO) mainly via the Frank-Starling relationship. In 18 healthy volunteers, cardiac chamber volumes and flow in aorta and the pulmonary...... artery were measured by CMR during PPV levels of 0, 10, and 20 cmH2O applied via a respirator and a face mask. All cardiac chamber volumes decreased in proportion to the level of PPV. Following 20-cmH2O PPV, the total diastolic and systolic cardiac volumes (±SE) decreased from 605 (±29) ml to 446 (±29......) ml (P volume decreased by 27 (±4) ml/beat; heart rate increased by 7 (±2) beats/min; and CO decreased by 1.0 (±0.4) l/min (P

  6. Measurement of four chambers' volumes and ventricular masses by cardiac CT examination

    International Nuclear Information System (INIS)

    Kimura, Motomasa; Naito, Hiroaki; Ohta, Mitsushige; Kozuka, Takahiro; Kito, Yoshitsugu

    1983-01-01

    Using cardiac computed tomography (CT), the ''mean'' volume of each cardiac chamber and both ventricular masses were calculated from summation of a sliced volume by ungated scans obtained using rapid sequential scanning covering the whole heart. 1. Estimation of a normal value of each chamber's volume was attempted in 20 patients with ischemic heart disease and with normal heart function. The ''mean'' volume of the right atrium (RAMV), right ventricle (RVMV), and left atrium (LAMV) was 22.3 +- 6.5, 40.3 +- 6.5 and 28.7 +- 8.2ml/m 2 , respectively. 2. In 54 patients with valvular heart diseases, each chamber's volume obrained by CT was compared with the grade of tricuspid regurgitation (TR) estimated by ultrasonic Doppler technique or the grade of mitral regurgitation (MR) by left ventriculography (LVG). The RAMV (234 +- 119 ml/m 2 ) and the RVMV (101 +- 39 ml/m 2 ) were markedly increased in patients with severe TR (grade 3 to 4) (p 2 ) was also increased in patients with severe mitral regurgitation (grade 3 to 4) (p<0.01). 3. In 46 patients with valvular heart diseases, the LVMV by CT was well correlated with end-diastolic volume (EDV) obtained by LVG (r=0.92), and the LVEDVs by ECG gated CT and by LVG showed a fairly good correlation (r=0.95). 4. CT examination was performed before and after surgery in 17 patients with MR or TR for evaluation of the change of chamber volumes. The mean reduction ratio (MRR) of the RAMV after tricuspid annuloplasty, the LVMV after mitral valve plasty, and the LAMV after left atrial plication was 44%, 41%, and 60%, respectively. (author)

  7. Correlation determination for the free air chamber volume

    International Nuclear Information System (INIS)

    Cardoso, R.S.; Peixoto, J.G.P.

    2017-01-01

    Ionization chambers are, in principle, the simplest gaseous detectors. Its normal operation is based on the all charges collection created by gas volume direct ionization, through the application of an electric field. In order to guarantee the measurements’ traceability obtained during the comparison with the BIPM, new tests were performed. (author)

  8. Aseptic minimum volume vitrification technique for porcine parthenogenetically activated blastocyst.

    Science.gov (United States)

    Lin, Lin; Yu, Yutao; Zhang, Xiuqing; Yang, Huanming; Bolund, Lars; Callesen, Henrik; Vajta, Gábor

    2011-01-01

    Minimum volume vitrification may provide extremely high cooling and warming rates if the sample and the surrounding medium contacts directly with the respective liquid nitrogen and warming medium. However, this direct contact may result in microbial contamination. In this work, an earlier aseptic technique was applied for minimum volume vitrification. After equilibration, samples were loaded on a plastic film, immersed rapidly into factory derived, filter-sterilized liquid nitrogen, and sealed into sterile, pre-cooled straws. At warming, the straw was cut, the filmstrip was immersed into a 39 degree C warming medium, and the sample was stepwise rehydrated. Cryosurvival rates of porcine blastocysts produced by parthenogenetical activation did not differ from control, vitrified blastocysts with Cryotop. This approach can be used for minimum volume vitrification methods and may be suitable to overcome the biological dangers and legal restrictions that hamper the application of open vitrification techniques.

  9. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  10. Environmental gamma radiation monitoring system with a large volume air ionization chamber

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Strachotinsky, C.; Witzani, J.

    1986-01-01

    An improved environmental monitoring system has been designed and tested consisting of an ionization chamber with 120 l sensitive volume, operated at atmospheric pressure, and a commercial electrometer amplifier with digital voltmeter. The system is controlled by a desk calculator with printer for automated operation and calculation of dose and doserate. The ionization chamber provides superior dosimetric performance as compared to usual GM-counters and high pressure chambers. The system has been field-tested during the 'European Intercomparison Programme for Environmental Monitoring Instruments' organized by the Commission of the European Communities. (Author)

  11. A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection

    KAUST Repository

    Park, Chiwoo; Huang, Jianhua Z.; Ding, Yu

    2010-01-01

    A minimum volume set of a probability density is a region of minimum size among the regions covering a given probability mass of the density. Effective methods for finding the minimum volume sets are very useful for detecting failures or anomalies in commercial and security applications-a problem known as novelty detection. One theoretical approach of estimating the minimum volume set is to use a density level set where a kernel density estimator is plugged into the optimization problem that yields the appropriate level. Such a plug-in estimator is not of practical use because solving the corresponding minimization problem is usually intractable. A modified plug-in estimator was proposed by Hyndman in 1996 to overcome the computation difficulty of the theoretical approach but is not well studied in the literature. In this paper, we provide theoretical support to this estimator by showing its asymptotic consistency. We also show that this estimator is very competitive to other existing novelty detection methods through an extensive empirical study. ©2010 INFORMS.

  12. A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection

    KAUST Repository

    Park, Chiwoo

    2010-10-01

    A minimum volume set of a probability density is a region of minimum size among the regions covering a given probability mass of the density. Effective methods for finding the minimum volume sets are very useful for detecting failures or anomalies in commercial and security applications-a problem known as novelty detection. One theoretical approach of estimating the minimum volume set is to use a density level set where a kernel density estimator is plugged into the optimization problem that yields the appropriate level. Such a plug-in estimator is not of practical use because solving the corresponding minimization problem is usually intractable. A modified plug-in estimator was proposed by Hyndman in 1996 to overcome the computation difficulty of the theoretical approach but is not well studied in the literature. In this paper, we provide theoretical support to this estimator by showing its asymptotic consistency. We also show that this estimator is very competitive to other existing novelty detection methods through an extensive empirical study. ©2010 INFORMS.

  13. Technical Note: Influence of Compton currents on profile measurements in small-volume ion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, Sean; Sperling, Nicholas; Parsai, E. Ishmael, E-mail: e.parsai@utoledo.edu [Department of Radiation Oncology, University of Toledo Medical Center, 1325 Conference Drive, Toledo, Ohio 43614 (United States); Holmes, Shannon [Standard Imaging, 3120 Deming Way, Middleton, Wisconsin 53562 (United States)

    2015-10-15

    Purpose: This work is to evaluate the effects of Compton current generation in three small-volume ionization chambers on measured beam characteristics for electron fields. Methods: Beam scans were performed using Exradin A16, A26, and PTW 31014 microchambers. Scans with varying chamber components shielded were performed. Static point measurements, output factors, and cable only irradiations were performed to determine the contribution of Compton currents to various components of the chamber. Monte Carlo simulations were performed to evaluate why one microchamber showed a significant reduction in Compton current generation. Results: Beam profiles demonstrated significant distortion for two of the three chambers when scanned parallel to the chamber axis, produced by electron deposition within the wire. Measurements of ionization produced within the cable identified Compton current generation as the cause of these distortions. The size of the central collecting wire was found to have the greatest influence on the magnitude of Compton current generation. Conclusions: Microchambers can demonstrate significant (>5%) deviations from properties as measured with larger volume chambers (0.125 cm{sup 3} and above). These deviations can be substantially reduced by averaging measurements conducted at opposite polarities.

  14. Comparison between two pencil-type ionization chambers with sensitive volume length of 30 cm

    International Nuclear Information System (INIS)

    Castro, Maysa C. de; Xavier, Marcos; Silva, Natalia F.; Caldas, Linda V.E.

    2016-01-01

    Computed tomography (CT) for imaging procedures has been growing due to advances in the equipment technology, providing a higher dose to the patient, in relation to other diagnostic radiology tests, resulting in a concern for the patients. The dosimetry in CT is carried out with a pencil-type ionization chamber with sensitive volume length of 10 cm. Studies have shown the underestimation of the dose values. In this work two ionization chambers with the sensitive volume length of 30 cm were developed. They were submitted to the main characterization tests; the results showed to be within the international recommended limits. (author)

  15. Dosimetry in VMAT for prostate using ionization chambers of different volumes

    International Nuclear Information System (INIS)

    Groppo, Daniela P.; Anderson, Ernani; Pavan, Guilherme A.; Caldas, Linda V.E.

    2016-01-01

    The volumetric modulated arc therapy is one of the most modern radiotherapy techniques. The advents of this modality in the dose delivery can also contribute to errors during the execution of the treatment, therefore various types of quality control are carried out. The individual assessment of dose delivered to the patient is also an important quality control test and required by the current regulations. The objective of this study was to evaluate the use of different volume ionization chambers for dosimetry of VMAT treatments for prostate cancer. Three ionization chambers were evaluated and all of them showed satisfactory results. (author)

  16. An open-walled ionization chamber appropriate to tritium monitoring for glovebox

    International Nuclear Information System (INIS)

    Chen Zhilin; Chang Ruiming; Mu Long; Song Guoyang; Wang Heyi; Wu Guanyin; Wei Xiye

    2010-01-01

    An open-walled ionization chamber is developed to monitor the tritium concentration in gloveboxes in tritium processing systems. Two open walls are used to replace the sealed wall in common ionization chambers, through which the tritium gas can diffuse into the chamber without the aid of pumps and pipelines. Some basic properties of the chamber are examined to evaluate its performance. Results turn out that an open-walled chamber of 1 l in volume shows a considerably flat plateau over 700 V for a range of tritium concentration. The chamber also gives a good linear response to gamma fields over 4 decades under a pressure condition of 1 atm. The pressure dependence characteristics show that the ionization current is only sensitive at low pressures. The pressure influence becomes weaker as the pressure increases mainly due to the decrease in the mean free path of β particles produced by tritium decay. The minimum detection limit of the chamber is 3.7x10 5 Bq/m 3 .

  17. SU-E-T-623: Polarity Effects for Small Volume Ionization Chambers in Cobalt-60 Beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y; Bhatnagar, J; Huq, M Saiful [Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC Cancer Center, Pittsburgh, PA (United States)

    2015-06-15

    Purpose: To investigate the polarity effects for small volume ionization chambers in {sup 60}Co gamma-ray beams using the Leksell Gamma Knife Perfexion. Methods: Measurements were made for 7 small volume ionization chambers (a PTW 31016, an Exradin A14, 2 Capintec PR0-5P, and 3 Exradin A16) using a PTW UNIDOSwebline Universal Dosemeter and an ELEKTA solid water phantom with proper inserts. For each ion chamber, the temperature/pressure corrected electric charge readings were obtained for 16 voltage values (±50V, ±100V, ±200V, ±300V, ±400V, ±500V, ±600V, ±700V). For each voltage, a five-minute leakage charge reading and a series of 2-minute readings were continuously taken during irradiation until 5 stable signals (less than 0.05% variation) were obtained. The average of the 5 reading was then used for the calculation of the polarity corrections at the voltage and for generating the saturation curves. Results: The polarity effects are more pronounced at high or low voltages than at the medium voltages for all chambers studied. The voltage dependence of the 3 Exradin A16 chambers is similar in shape. The polarity corrections for the Exradin A16 chambers changes rapidly from about 1 at 500V to about 0.98 at 700V. The polarity corrections for the 7 ion chambers at 300V are in the range from 0.9925 (for the PTW31016) to 1.0035 (for an Exradin A16). Conclusion: The polarity corrections for certain micro-chambers are large even at normal operating voltage.

  18. Reference ionization chamber

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    The paper presents the design of ionization chamber devoted for the determination of the absolute value of the absorbed dose in tissue-equivalent material. The special attention was paid to ensure that the volume of the active gas cavity was constant and well known. A specific property of the chamber design is that the voltage insulators are 'invisible' from any point of the active volume. Such configuration ensures a very good time stability of the electrical field and defines the active volume. The active volume of the chamber was determined with accuracy of 0.3%. This resulted in accuracy of 0.8% in determination of the absorbed dose in the layer of material adherent to the gas cavity. The chamber was applied for calibration purposes at radiotherapy facility in Joint Institute for Nuclear Research in Dubna (Russia) and in the calibration laboratory of the Institute of Atomic Energy in Swierk. (author)

  19. Numerical evaluation of acoustic characteristics and their damping of a thrust chamber using a constant-volume bomb model

    Directory of Open Access Journals (Sweden)

    Jianxiu QIN

    2018-03-01

    Full Text Available In order to numerically evaluate the acoustic characteristics of liquid rocket engine thrust chambers by means of a computational fluid dynamics method, a mathematical model of an artificial constant-volume bomb is proposed in this paper. A localized pressure pulse with a very high amplitude can be imposed on specified regions in a combustion chamber, the numerical procedure of which is described. Pressure oscillations actuated by the released constant-volume bomb can then be analyzed via Fast Fourier Transformation (FFT, and their modes can be identified according to the theoretical acoustic eigenfrequencies of the thrust chamber. The damping performances of the corresponding acoustic modes are evaluated by the half-power bandwidth method. The predicted acoustic characteristics and their damping for a special engine combustor agree well with the experimental data, validating the mathematical model and its numerical procedures. A small-thrust liquid rocket engine chamber is then analyzed by the present model. The First Longitudinal (1L acoustic mode can be excited easily and is hard to be damped. The axial position of the central constant-volume bomb has little influence on the amplitude and damping capacity of the First Radial (1R and 1L acoustic modes. Tangential acoustic modes can only be triggered by an off-centered constant-volume bomb, among which the First Tangential (1T mode is the strongest and regarded as the most harmful one. The amplitude of the 1L acoustic mode is smaller, but its damping factor is larger, as a constant-volume bomb is imposed approaching the injector face. These results are contributed to evaluate the acoustic characteristics and their damping of the combustion chamber. Keywords: Acoustic mode, Constant-volume bomb, Damping characteristics, Damping factor, Half-power bandwidth, Pressure oscillation

  20. Response to 'Comments on 'Ionization chamber volume determination and quality assurance using micro-CT imaging''

    International Nuclear Information System (INIS)

    McNiven, Andrea L; Holdsworth, David W; Battista, Jerry J; Umoh, Joseph; Kron, Tomas

    2009-01-01

    Air ionization chamber dosimetry plays a crucial role in international dose calibration for the radiotherapy clinical environment. Micro-CT images of ion chambers can play an important role in quality assurance of these devices by detecting internal geometry, materials and defects non-invasively, as we demonstrated (McNiven et al 2008 Phys. Med. Biol. 53 5029-43). We also suggested that electric-field simulation based upon these accurate chamber-specific 3D images rather than manufacturer blueprints could be valuable in assessing ionometric sensitivity. As recently performed by Ross et al these electric field simulations play a vital role in understanding key components that contribute to the chamber sensitive volume and ionization calibration coefficients. (letter to the editor)

  1. Numerical evaluation of acoustic characteristics and their damping of a thrust chamber using a constant-volume bomb model

    OpenAIRE

    Jianxiu QIN; Huiqiang ZHANG; Bing WANG

    2018-01-01

    In order to numerically evaluate the acoustic characteristics of liquid rocket engine thrust chambers by means of a computational fluid dynamics method, a mathematical model of an artificial constant-volume bomb is proposed in this paper. A localized pressure pulse with a very high amplitude can be imposed on specified regions in a combustion chamber, the numerical procedure of which is described. Pressure oscillations actuated by the released constant-volume bomb can then be analyzed via Fas...

  2. Ionization chamber

    International Nuclear Information System (INIS)

    Jilbert, P.H.

    1975-01-01

    The invention concerns ionization chambers with particular reference to air-equivalent ionization chambers. In order to ensure that similar chambers have similar sensitivities and responses the surface of the chamber bounding the active volume carries a conducting material, which may be a colloidal graphite, arranged in the form of lines so that the area of the conducting material occupies only a small proportion of the area of said surface. (U.S.)

  3. Heat release determination in a constant volume combustion chamber from the instantaneous cylinder pressure

    International Nuclear Information System (INIS)

    Lapuerta, Magín; Sanz-Argent, Josep; Raine, Robert

    2014-01-01

    A diagnostic method has been developed to interpret the results of basic combustion studies with diesel-like fuels performed in a constant volume reactor originally conceived for cetane number measurements. The main target of the method is to calculate the instantaneous heat release over time from the chamber pressure experimental signal. The method incorporates filtering of the raw data to eliminate the oscillations recorded as a consequence of the location of the pressure sensor. It considers homogeneity of the gaseous mixture (single zone model) and change in its composition due to the combustion process. A semi-empirical heat transfer model was also proposed and its coefficients were fitted from experimental results obtained in the constant volume chamber using diesel fuel. -- Highlights: • A diagnostic model for constant volume reactors has been developed and tested. • Updating the gas composition after combustion improves accuracy of the method. • Heat transfer coefficients are used for the fulfillment of boundary conditions. • The model provides a deeper insight than the apparent heat release analysis

  4. A large volume striped bass egg incubation chamber: design and comparison with a traditional method

    Science.gov (United States)

    Harper, C.J.

    2009-01-01

    I conducted a comparative study of a new jar design (experimental chamber) with a standard egg incubation vessel (McDonald jar). Experimental chambers measured 0.4 m in diameter by 1.3 m in height and had a volume of 200 L. McDonald hatching jars measured 16 cm in diameter by 45 cm in height and had a volume of 6 L. Post-hatch survival was estimated at 48, 96 and 144 h. Stocking rates resulted in an average egg density of 21.9 eggs ml-1 (range = 21.6 – 22.1) for McDonald jars and 10.9 eggs ml-1 (range = 7.0 – 16.8) for experimental chambers. I was unable to detect an effect of container type on survival to 48, 96 or 144 h. At 144 h striped bass fry survival averaged 37.3% for McDonald jars and 34.2% for experimental chambers. Survival among replicates was significantly different. Survival of striped bass significantly decreased between 96 and 144 h. Mean survival among replicates ranged from 12.4 to 57.3%. I was unable to detect an effect of initial stocking density on survival. Experimental jars allow for incubation of a larger number of eggs in a much smaller space. As hatchery production is often limited by space or water supply, experimental chambers offer an alternative to extending spawning activities, thereby reducing manpower and cost. However, the increase in the number of eggs per rearing container does increase the risk associated with catastrophic loss of a production unit. I conclude the experimental chamber is suitable for striped bass egg incubation.

  5. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2

  6. Age estimation based on pulp chamber volume of first molars from cone-beam computed tomography images.

    Science.gov (United States)

    Ge, Zhi-pu; Ma, Ruo-han; Li, Gang; Zhang, Ji-zong; Ma, Xu-chen

    2015-08-01

    To establish a method that can be used for human age estimation on the basis of pulp chamber volume of first molars and to identify whether the method is good enough for age estimation in real human cases. CBCT images of 373 maxillary first molars and 372 mandibular first molars were collected to establish the mathematical model from 190 female and 213 male patients whose age between 12 and 69 years old. The inclusion criteria of the first molars were: no caries, no excessive tooth wear, no dental restorations, no artifacts due to metal restorative materials present in adjacent teeth, and no pulpal calcification. All the CBCT images were acquired with a CBCT unit NewTom VG (Quantitative Radiology, Verona, Italy) and reconstructed with a voxel-size of 0.15mm. The images were subsequently exported as DICOM data sets and imported into an open source 3D image semi-automatic segmenting and voxel-counting software ITK-SNAP 2.4 for the calculation of pulp chamber volumes. A logarithmic regression analysis was conducted with age as dependent variable and pulp chamber volume as independent variables to establish a mathematical model for the human age estimation. To identify the precision and accuracy of the model for human age estimation, another 104 maxillary first molars and 103 mandibular first molars from 55 female and 57 male patients whose age between 12 and 67 years old were collected, too. Mean absolute error and root mean square error between the actual age and estimated age were used to determine the precision and accuracy of the mathematical model. The study was approved by the Institutional Review Board of Peking University School and Hospital of Stomatology. A mathematical model was suggested for: AGE=117.691-26.442×ln (pulp chamber volume). The regression was statistically significant (p=0.000volume of first molar is a useful index for the estimation of human age with reasonable precision and accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights

  7. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa

    Science.gov (United States)

    Hawks, John; Elliott, Marina; Schmid, Peter; Churchill, Steven E; de Ruiter, Darryl J; Roberts, Eric M; Hilbert-Wolf, Hannah; Garvin, Heather M; Williams, Scott A; Delezene, Lucas K; Feuerriegel, Elen M; Randolph-Quinney, Patrick; Kivell, Tracy L; Laird, Myra F; Tawane, Gaokgatlhe; DeSilva, Jeremy M; Bailey, Shara E; Brophy, Juliet K; Meyer, Marc R; Skinner, Matthew M; Tocheri, Matthew W; VanSickle, Caroline; Walker, Christopher S; Campbell, Timothy L; Kuhn, Brian; Kruger, Ashley; Tucker, Steven; Gurtov, Alia; Hlophe, Nompumelelo; Hunter, Rick; Morris, Hannah; Peixotto, Becca; Ramalepa, Maropeng; van Rooyen, Dirk; Tsikoane, Mathabela; Boshoff, Pedro; Dirks, Paul HGM; Berger, Lee R

    2017-01-01

    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species. DOI: http://dx.doi.org/10.7554/eLife.24232.001 PMID:28483039

  8. Imploded test-chamber for an ISR intersection

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    At the ISR intersection points the vacuum chambers had to be as "transparent" as possible, for the p-p collision product particles to reach the detectors with minimum hindrance. This meant the choice of a light, yet very strong, metal; minimum thickness; and corrugation for mechanical strength. The test-chamber seen here was made of 0.6 mm thick corrugated titanium, obviously not strong enough to withstand the atmospheric pressure.

  9. SU-F-T-293: Experimental Comparisons of Ionization Chambers with Different Volumes for CyberKnife Delivery Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, M [Kobe Minimally invasive Cancer Center, Kobe, Hyogo (Japan); Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Munetomo, Y; Ogata, T; Uehara, K; Tsudou, S; Nishimura, H; Mayahara, H [Kobe Minimally invasive Cancer Center, Kobe, Hyogo (Japan); Sasaki, R [Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan)

    2016-06-15

    Purpose: To evaluate the practicality use of ionization chambers with different volumes for delivery quality assurance of CyberKnife plans, Methods: Dosimetric measurements with a spherical solid water phantom and three ionization chambers with volumes of 0.13, 0.04, and 0.01 cm3 (IBA CC13, CC04, and CC01, respectively) were performed for various CyberKnife clinical treatment plans including both isocentric and nonisocentric delivery. For each chamber, the ion recombination correction factors Ks were calculated using the Jaffe plot method and twovoltage method at a 10-cm depth for a 60-mm collimator field in a water phantom. The polarity correction factors Kpol were determined for 5–60-mm collimator fields in same experimental setup. The measured doses were compared to the doses for the detectors calculated using a treatment planning system. Results: The differences in the Ks between the Jaffe plot method and two-voltage method were −0.12, −0.02, and 0.89% for CC13, CC04, and CC01, respectively. The changes in Kpol for the different field sizes were 0.2, 0.3, and 0.8% for CC13, CC04, and CC01, respectively. The measured doses for CC04 and CC01 were within 3% of the calculated doses for the clinical treatment plans with isocentric delivery with collimator fields greater than 12.5 mm. Those for CC13 had differences of over 3% for the plans with isocentric delivery with collimator fields less than 15 mm. The differences for the isocentric plans were similar to those for the single beam plans. The measured doses for each chamber were within 3% of the calculated doses for the non-isocentric plans except for that with a PTV volume less than 1.0 cm{sup 3}. Conclusion: Although there are some limitations, the ionization chamber with a smaller volume is a better detector for verification of the CyberKnife plans owing to the high spatial resolution.

  10. An estimation of the minimum effective anesthetic volume of 2% lidocaine in ultrasound-guided axillary brachial plexus block.

    LENUS (Irish Health Repository)

    O'Donnell, Brian D

    2009-07-01

    Ultrasound guidance facilitates precise needle and injectate placement, increasing axillary block success rates, reducing onset times, and permitting local anesthetic dose reduction. The minimum effective volume of local anesthetic in ultrasound-guided axillary brachial plexus block is unknown. The authors performed a study to estimate the minimum effective anesthetic volume of 2% lidocaine with 1:200,000 epinephrine (2% LidoEpi) in ultrasound-guided axillary brachial plexus block.

  11. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    Science.gov (United States)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  12. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y; Yu, J; Xiao, Y [Thomas Jefferson University Hospital, Philadelphia, PA (United States)

    2015-06-15

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.

  13. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    International Nuclear Information System (INIS)

    Gong, Y; Yu, J; Xiao, Y

    2015-01-01

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant

  14. Flame kernel characterization of laser ignition of natural gas-air mixture in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Dharamshi, Kewal; Agarwal, Avinash Kumar

    2011-09-01

    In this paper, laser-induced ignition was investigated for compressed natural gas-air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air-fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel-air mixture was investigated under different relative air-fuel ratios ( λ=1.2-1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas-air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

  15. Semi-empirical approach for calibration of CR-39 detectors in diffusion chambers for radon measurements

    International Nuclear Information System (INIS)

    Pereyra A, P.; Lopez H, M. E.; Palacios F, D.; Sajo B, L.; Valdivia, P.

    2016-10-01

    Simulated and measured calibration of PADC detectors is given for cylindrical diffusion chambers employed in environmental radon measurements. The method is based on determining the minimum alpha energy (E min ), average critical angle (<Θ c >), and fraction of 218 Po atoms; the volume of the chamber (f 1 ), are compared to commercially available devices. Radon concentration for exposed detectors is obtained from induced track densities and the well-established calibration coefficient for NRPB monitor. Calibration coefficient of a PADC detector in a cylindrical diffusion chamber of any size is determined under the same chemical etching conditions and track analysis methodology. In this study the results of numerical examples and comparison between experimental calibration coefficients and simulation purpose made code. Results show that the developed method is applicable when uncertainties of 10% are acceptable. (Author)

  16. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  17. Semi-empirical approach for calibration of CR-39 detectors in diffusion chambers for radon measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra A, P.; Lopez H, M. E. [Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, San Miguel Lima 32 (Peru); Palacios F, D.; Sajo B, L. [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apartado 89000 Caracas (Venezuela, Bolivarian Republic of); Valdivia, P., E-mail: ppereyr@pucp.edu.pe [Universidad Nacional de Ingenieria, Av. Tupac Amaru s/n, Rimac, Lima 25 (Peru)

    2016-10-15

    Simulated and measured calibration of PADC detectors is given for cylindrical diffusion chambers employed in environmental radon measurements. The method is based on determining the minimum alpha energy (E{sub min}), average critical angle (<Θ{sub c}>), and fraction of {sup 218}Po atoms; the volume of the chamber (f{sub 1}), are compared to commercially available devices. Radon concentration for exposed detectors is obtained from induced track densities and the well-established calibration coefficient for NRPB monitor. Calibration coefficient of a PADC detector in a cylindrical diffusion chamber of any size is determined under the same chemical etching conditions and track analysis methodology. In this study the results of numerical examples and comparison between experimental calibration coefficients and simulation purpose made code. Results show that the developed method is applicable when uncertainties of 10% are acceptable. (Author)

  18. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm

  19. Loss of ions in cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.; Tran, N.T.; Kim, E.; Marsoem, P.; Kurosawa, T.; Koyama, Y.

    2005-01-01

    Ion losses due to initial recombination, volume recombination, and back diffusion were each determined by measurements and calculations for different size cylindrical ionization chambers and spherical ionization chambers. By measuring signal currents from these ionization chambers irradiated with 60 Co gamma rays, two groups of ion losses were obtained. (Group 1) Ion loss due to initial recombination and diffusion, which changes proportionally to the inverse of the voltage applied to the ionization chambers; (and group 2) ion loss due to volume recombination, which changes proportionally to the inverse of the square of the applied voltage. The diffusion loss was obtained separately by computing electric field distributions in the ionization chambers. It was found that diffusion loss is larger than initial recombination loss for the cylindrical ionization chambers and vise versa for the spherical ionization chambers

  20. Polarity effects and apparent ion recombination in microionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jessica R., E-mail: miller@humonc.wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 and Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Hooten, Brian D. [Standard Imaging, Middleton, Wisconsin 53562 (United States); Micka, John A.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2016-05-15

    Purpose: Microchambers demonstrate anomalous voltage-dependent polarity effects. Existing polarity and ion recombination correction factors do not account for these effects. As a result, many commercial microchamber models do not meet the specification of a reference-class ionization chamber as defined by the American Association of Physicists in Medicine. The purpose of this investigation is to determine the cause of these voltage-dependent polarity effects. Methods: A series of microchamber prototypes were produced to isolate the source of the voltage-dependent polarity effects. Parameters including ionization-chamber collecting-volume size, stem and cable irradiation, chamber assembly, contaminants, high-Z materials, and individual chamber components were investigated. Measurements were performed with electrodes coated with graphite to isolate electrode conductivity. Chamber response was measured as the potential bias of the guard electrode was altered with respect to the collecting electrode, through the integration of additional power supplies. Ionization chamber models were also simulated using COMSOL Multiphysics software to investigate the effect of a potential difference between electrodes on electric field lines and collecting volume definition. Results: Investigations with microchamber prototypes demonstrated that the significant source of the voltage-dependent polarity effects was a potential difference between the guard and collecting electrodes of the chambers. The voltage-dependent polarity effects for each prototype were primarily isolated to either the guard or collecting electrode. Polarity effects were reduced by coating the isolated electrode with a conductive layer of graphite. Polarity effects were increased by introducing a potential difference between the electrodes. COMSOL simulations further demonstrated that for a given potential difference between electrodes, the collecting volume of the chamber changed as the applied voltage was altered

  1. Dosimetry in VMAT for prostate using ionization chambers of different volumes; Verificacao dosimetrica em VMAT para prostata com camaras de ionizacao de volumes diferentes

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, Daniela P.; Anderson, Ernani; Pavan, Guilherme A., E-mail: danielagroppo@grupocoi.com, E-mail: ernanianderson@grupocoi.com [Clinicas Oncologicas Integradas (Grupo COI), Rio de Janeiro, RJ (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    The volumetric modulated arc therapy is one of the most modern radiotherapy techniques. The advents of this modality in the dose delivery can also contribute to errors during the execution of the treatment, therefore various types of quality control are carried out. The individual assessment of dose delivered to the patient is also an important quality control test and required by the current regulations. The objective of this study was to evaluate the use of different volume ionization chambers for dosimetry of VMAT treatments for prostate cancer. Three ionization chambers were evaluated and all of them showed satisfactory results. (author)

  2. Comparison among different CT ionization chambers

    International Nuclear Information System (INIS)

    Castro, Maysa C. de; Xavier, Marcos; Caldas, Linda V.E.

    2015-01-01

    The dosimetry in computed tomography (CT) is carried out by the use of a pencil type ionization-chamber, because it has a uniform response at all angles relative to the incident beam of radiation, which is essential for CT equipment since the X-ray tube executes a circular movement around the table during irradiation. The commercial ionization chamber used to perform quality control procedures of this kind of equipment has a length of the sensitive volume of 10 cm. In the Calibration Laboratory of Instruments (LCI) of the IPEN there were already developed some prototypes with small differences in construction, when compared to commercially available ionization chambers. They have been used in previous studies and showed results within internationally acceptable limits. The ionization chambers tested in this study present the sensitive volume lengths of 1 cm, 3 cm and 10 cm. The objective of this study was to present results on the stability test of the three homemade ionization chambers and a commercial chamber, as well to obtain the calibration coefficients for each of them in CT standard X radiation beams. The obtained results for both characterization tests are within the recommended limits, except for the homemade ionization chambers with sensitive volume lengths of 3 cm and 1 cm in the case of the stability test. (author)

  3. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  4. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min; Lee, Yonggyu

    2012-01-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  5. Minimum Effective Volume of Lidocaine for Ultrasound-Guided Costoclavicular Block.

    Science.gov (United States)

    Sotthisopha, Thitipan; Elgueta, Maria Francisca; Samerchua, Artid; Leurcharusmee, Prangmalee; Tiyaprasertkul, Worakamol; Gordon, Aida; Finlayson, Roderick J; Tran, De Q

    This dose-finding study aimed to determine the minimum effective volume in 90% of patients (MEV90) of lidocaine 1.5% with epinephrine 5 μg/mL for ultrasound-guided costoclavicular block. Using an in-plane technique and a lateral-to-medial direction, the block needle was positioned in the middle of the 3 cords of the brachial plexus in the costoclavicular space. The entire volume of lidocaine was deposited in this location. Dose assignment was carried out using a biased-coin-design up-and-down sequential method, where the total volume of local anesthetic administered to each patient depended on the response of the previous one. In case of failure, the next subject received a higher volume (defined as the previous volume with an increment of 2.5 mL). If the previous patient had a successful block, the next subject was randomized to a lower volume (defined as the previous volume with a decrement of 2.5 mL), with a probability of b = 0.11, or the same volume, with a probability of 1 - b = 0.89. Success was defined, at 30 minutes, as a minimal score of 14 of 16 points using a sensorimotor composite scale. Patients undergoing surgery of the elbow, forearm, wrist, or hand were prospectively enrolled until 45 successful blocks were obtained. This clinical trial was registered with ClinicalTrials.gov (ID NCT02932670). Fifty-seven patients were included in the study. Using isotonic regression and bootstrap confidence interval, the MEV90 for ultrasound-guided costoclavicular block was estimated to be 34.0 mL (95% confidence interval, 33.4-34.4 mL). All patients with a minimal composite score of 14 points at 30 minutes achieved surgical anesthesia intraoperatively. For ultrasound-guided costoclavicular block, the MEV90 of lidocaine 1.5% with epinephrine 5 μg/mL is 34 mL. Further dose-finding studies are required for other concentrations of lidocaine, other local anesthetic agents, and multiple-injection techniques.

  6. The KEK 1 m hydrogen bubble chamber

    International Nuclear Information System (INIS)

    Doi, Yoshikuni; Araoka, Osamu; Hayashi, Kohei; Hayashi, Yoshio; Hirabayashi, Hiromi.

    1978-03-01

    A medium size hydrogen bubble chamber has been constructed at the National Laboratory for High Energy Physics, KEK. The bubble chamber has been designed to be operated with a maximum rate of three times per half a second in every two second repetition time of the accelerator, by utilizing a hydraulic expansion system. The bubble chamber has a one meter diameter and a visible volume of about 280 l. A three-view stereo camera system is used for taking photographic pictures of the chamber. A 2 MW bubble chamber magnet is constructed. The main part of the bubble chamber vessel is supported by the magnet yoke. The magnet gives a maximum field of 18.4 kG at the centre of the fiducial volume of the chamber. The overall system of the KEK 1 m hydrogen bubble chamber facility is described in some detail. Some operational characteristics of the facility are also reported. (auth.)

  7. A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse.

    Science.gov (United States)

    Gotz, M; Karsch, L; Pawelke, J

    2017-11-01

    In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 [Formula: see text] at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.

  8. [Falling Short of Minimum Volume Standards, Exemptions and Their Consequences from 2018 Onwards. Complex Procedures on Oesophagus and Pancreas in German Hospitals from 2006 to 2014].

    Science.gov (United States)

    de Cruppé, Werner; Geraedts, Max

    2018-03-16

    The minimum volume standards for hospitals in Germany, in force since 2004, provide four exemptions for non-complying hospitals. This study investigates the extent and importance of these exemptions for complex procedures on the oesophagus and pancreas for all non-complying hospitals and for the revised minimum volume regulations in force since the beginning of 2018. Longitudinal, descriptive analyses of data on minimum volume standards and their exemptions for complex procedures on the oesophagus and pancreas, as presented by the hospital quality report cards of the reporting years from 2006 to 2014. For each year and both procedures, about 120 hospitals with some 500 cases report non-compliance with the minimum volume standards. Of these a third report no exemptions (with 180 procedures), a third state emergencies (110), and another third report exemptions due to internal hospital restructuring (210). Ensuring geographical access to care as an exemption is of no importance. After the three year exemption period for installation of a new service line, 20% of the hospitals with procedures on the oesophagus and 30% on the pancreas complied with the minimum volume standards. After the two-year period for staff realignment, the figures were 40 and 50%, respectively. Exemptions do not entirely explain all procedures performed by hospitals not complying with the minimum volume standards. The revised minimum volume regulations' restructuring of exemptions to "emergencies" and "new or renewed service lines" with a two year exemption period, are concordant with the empirical findings of this study. Georg Thieme Verlag KG Stuttgart · New York.

  9. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained

  10. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  11. SU-D-213-04: Accounting for Volume Averaging and Material Composition Effects in An Ionization Chamber Array for Patient Specific QA

    International Nuclear Information System (INIS)

    Fugal, M; McDonald, D; Jacqmin, D; Koch, N; Ellis, A; Peng, J; Ashenafi, M; Vanek, K

    2015-01-01

    Purpose: This study explores novel methods to address two significant challenges affecting measurement of patient-specific quality assurance (QA) with IBA’s Matrixx Evolution™ ionization chamber array. First, dose calculation algorithms often struggle to accurately determine dose to the chamber array due to CT artifact and algorithm limitations. Second, finite chamber size and volume averaging effects cause additional deviation from the calculated dose. Methods: QA measurements were taken with the Matrixx positioned on the treatment table in a solid-water Multi-Cube™ phantom. To reduce the effect of CT artifact, the Matrixx CT image set was masked with appropriate materials and densities. Individual ionization chambers were masked as air, while the high-z electronic backplane and remaining solid-water material were masked as aluminum and water, respectively. Dose calculation was done using Varian’s Acuros XB™ (V11) algorithm, which is capable of predicting dose more accurately in non-biologic materials due to its consideration of each material’s atomic properties. Finally, the exported TPS dose was processed using an in-house algorithm (MATLAB) to assign the volume averaged TPS dose to each element of a corresponding 2-D matrix. This matrix was used for comparison with the measured dose. Square fields at regularly-spaced gantry angles, as well as selected patient plans were analyzed. Results: Analyzed plans showed improved agreement, with the average gamma passing rate increasing from 94 to 98%. Correction factors necessary for chamber angular dependence were reduced by 67% compared to factors measured previously, indicating that previously measured factors corrected for dose calculation errors in addition to true chamber angular dependence. Conclusion: By comparing volume averaged dose, calculated with a capable dose engine, on a phantom masked with correct materials and densities, QA results obtained with the Matrixx Evolution™ can be significantly

  12. Very high intensity reaction chamber design

    International Nuclear Information System (INIS)

    Devaney, J.J.

    1975-09-01

    The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the 3 / 2 power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given

  13. Left ventricular pressure and volume data acquisition and analysis using LabVIEW.

    Science.gov (United States)

    Cassidy, S C; Teitel, D F

    1997-03-01

    To automate analysis of left ventricular pressure-volume data, we used LabVIEW to create applications that digitize and display data recorded from conductance and manometric catheters. Applications separate data into cardiac cycles, calculate parallel conductance, and calculate indices of left ventricular function, including end-systolic elastance, preload-recruitable stroke work, stroke volume, ejection fraction, stroke work, maximum and minimum derivative of ventricular pressure, heart rate, indices of relaxation, peak filling rate, and ventricular chamber stiffness. Pressure-volume loops can be graphically displayed. These analyses are exported to a text-file. These applications have simplified and automated the process of evaluating ventricular function.

  14. N-decane-air end-gas auto-ignition induced by flame propagation in a constant volume chamber: Influence of compression history

    OpenAIRE

    Quintens , Hugo; Strozzi , Camille; Zitoun , Ratiba; Bellenoue , Marc

    2017-01-01

    International audience; The present study aims at characterizing the end-gas auto-ignition of n-decane – air mixtures induced by a flame propagation in a constant volume chamber. A numerical tool is developed, and the study is first focused on academic compressions, e.g. at constant rate of pressure rise. Thermodynamic conditions of transition from deflagration to auto-ignition are first determined, and the involved physical processes are highlighted. A square section combustion chamber is th...

  15. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  16. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  17. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  18. A liquid ionization chamber using tetramethylsilane

    International Nuclear Information System (INIS)

    Engler, J.; Keim, H.

    1983-12-01

    First results with a liquid ionization chamber using tetramethylsilane (TMS) are presented. A stack of iron plates was tested with cosmic ray muons and the charge output for minimum ionizing particles was measured. (orig.) [de

  19. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    Science.gov (United States)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  20. Comparison of soot formation for diesel and jet-a in a constant volume combustion chamber using two-color pyrometry

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2014-01-01

    The measurement of the two-color line of sight soot and KL factor for NO.2 diesel and jet-A fuels was conducted in an optical constant volume combustion chamber by using a high speed camera under 1000 K ambient temperature and varied oxygen

  1. Tracking with wire chambers at high luminosities

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1989-12-01

    Radiation damage and rate limitations impose severe constraints on wire chambers at the SSC. Possible conceptual designs for wire chamber tracking systems that satisfy these constraints are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 11 refs., 10 figs

  2. Evaluation of thermal stress in the anode chamber wall of a large volume magnetic bucket ion source

    International Nuclear Information System (INIS)

    Wells, Russell; Horiike, Hiroshi; Kuriyama, Masaaki; Ohara, Yoshihiro

    1984-02-01

    Thermal stress analysis was performed on the plasma chamber of the Large Volume Magnetic Multipole Bucket Ion Source (LVB) designed for use on the JT-60 NBI system. The energy absorbed by the walls of the plasma chambers of neutral beam injectors is of the order of 1% of the accelerator electrical drain power. A previous study indicates that a moderately high heat flux, of about 600W/cm 2 , is concentrated on the magnetic field cusp lines during normal full power operation. Abnormal arc discharges during conditioning of a stainless steel LVB produced localized melting of the stainless steel at several locations near the cusps lines. The power contained in abnormal arc discharges (arc spots) was estimated from the observed melting. Thermal stress analysis was performed numerically on representative sections of the copper LVB design for both stable and abnormal arc discharge conditions. Results show that this chamber should not fail due to thermal fatigue stesses arising from normal arc discharges. However, fatigue failure may occur after several hundred to a few thousand arc spots of 30mS duration at any one location. Limited arc discharge operation of the copper bucket was performed to partially verify the chamber's durability. (author)

  3. Analysis of dosimetry of a Gamma Knife Perfexion using polystyrene and solid water phantoms for small volume ionization chambers; Analise da dosimetria de um Gamma Knife Perfexion utilizando phantoms de poliestireno e de agua solida para camaras de ionizacao de volume pequeno

    Energy Technology Data Exchange (ETDEWEB)

    Costa, N.A.; Potiens, M.P.A., E-mail: nathaliaac@ymail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Saraiva, C.W.C. [Hospital do Coracao (HCor), Sao Paulo, SP (Brazil); Benmakhlouf, H. [Stockholm University, Karolinska Hospital (Sweden)

    2016-07-01

    The Gamma Knife Perfexion (GKP) is a radiosurgery equipment that has been developed by Elekta. Its dose-rate calibration is performed using phantoms developed by Elekta and a small volume ionization chamber. The purpose of this study was to evaluate the collected charge values obtained in its dosimetry using two different phantoms, polystyrene and solid water and the ion chambers PTW Semiflex, volume 0,125 cm{sup 3}, model 31010 and PTW Pinpoint, volume 0,016 cm{sup 3}, model 31016. (author)

  4. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  5. Correlation determination for the free air chamber volume; Determinação de correlação volumétrica da câmara de ar livre

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, R.S.; Peixoto, J.G.P., E-mail: ricardo@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Ionization chambers are, in principle, the simplest gaseous detectors. Its normal operation is based on the all charges collection created by gas volume direct ionization, through the application of an electric field. In order to guarantee the measurements’ traceability obtained during the comparison with the BIPM, new tests were performed. (author)

  6. DESIGNING HYDRAULIC AIR CHAMBER IN WATER TRANSMISSION SYSTEMS USING GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    Abdorahim Jamal

    2016-09-01

    Full Text Available Transient flow control in Water Transmission Systems (WTS is one of the requirements of designing these systems. Hence, among control equipment, air chambers offer the best solution to control transient flow effects, i.e. both prevents water column separation and absorbs pressure increase. It is essential to carry out an accurate and optimized design of air chambers, not only due to high costs of their manufacturing but also their important protective role. Accordingly, hydraulic design parameters comprise tank volume, diameter of nozzle and coefficients of inflow and outflow of nozzle. In this paper, it is intended to optimize these parameters in order to minimize manufacturing costs. On the other hand, maximum and minimum pressures in main pipeline are considered as constraints which shall fall in allowed range. Therefore, a model has been developed which is a combination of a hydraulic simulation model of WTS and an optimization model based on genetic algorithm. This model is first applied to WTS of Dehgolan-Ghorveh plain as a case study. Results of this research demonstrate that based on suggested model, negative wave creation and pressure increase in pipeline is prevented as well as decrease in manufacturing costs of air chamber.

  7. Piezoelectric energy harvesting in coupling-chamber excited by the vortex-induced pressure

    Science.gov (United States)

    Cheng, Tinghai; Wang, Yingting; Qin, Feng; Song, Zhaoyang; Lu, Xiaohui; Bao, Gang; Zhao, Xilu

    2016-08-01

    The performance of a piezoelectric energy harvester with a coupling chamber was investigated under vortex-induced pressure. The harvester consisted of a power chamber, a buffer, and a storage chamber. Different types of vortex (i.e., clockwise or counter-clockwise) could be induced by changing the volume ratio between the power chamber and the storage chamber. The peak voltage of the harvester could be tuned by changing the volume ratio. For example, under a pressure of 0.30 MPa, input cycle of 2.0 s, and flow rate of 200 l/min, the peak voltage decreased from 79.20 to 70.80 V with increasing volume ratio. The optimal volume ratio was 2.03, which resulted in the formation of a clockwise vortex. The corresponding effective power through a 600 kΩ resistor was 1.97 mW.

  8. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  9. Tracking with wire chambers at the SSC

    International Nuclear Information System (INIS)

    Hanson, G.G.; Gundy, M.C.; Palounek, A.P.T.

    1989-07-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tacking systems that meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 13 refs., 11 fig., 1 tab

  10. Do minimum wages reduce poverty? Evidence from Central America ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In all three countries, these multiple minimum wages are negotiated among representatives of the central government, labour unions and the chambers of commerce. Minimum wage legislation applies to all private-sector employees, but in all three countries a large part of the work force is self-employed or works as unpaid ...

  11. Cardiac chamber volumes by echocardiography using a new mathematical method: A promising technique for zero-G use

    Science.gov (United States)

    Buckey, J. C.; Beattie, J. M.; Gaffney, F. A.; Nixon, J. V.; Blomqvist, C. G.

    1984-01-01

    Accurate, reproducible, and non-invasive means for ventricular volume determination are needed for evaluating cardiovascular function zero-gravity. Current echocardiographic methods, particularly for the right ventricle, suffer from a large standard error. A new mathematical approach, recently described by Watanabe et al., was tested on 1 normal formalin-fixed human hearts suspended in a mineral oil bath. Volumes are estimated from multiple two-dimensional echocardiographic views recorded from a single point at sequential angles. The product of sectional cavity area and center of mass for each view summed over the range of angles (using a trapezoidal rule) gives volume. Multiple (8-14) short axis right ventricle and left ventricle views at 5.0 deg intervals were videotaped. The images were digitized by two independent observers (leading-edge to leading-edge technique) and analyzed using a graphics tablet and microcomputer. Actual volumes were determined by filling the chambers with water. These data were compared to the mean of the two echo measurements.

  12. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulation results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.

  13. Identification of Pulmonary Hypertension Caused by Left-Sided Heart Disease (World Health Organization Group 2) Based on Cardiac Chamber Volumes Derived From Chest CT Imaging.

    Science.gov (United States)

    Aviram, Galit; Rozenbaum, Zach; Ziv-Baran, Tomer; Berliner, Shlomo; Topilsky, Yan; Fleischmann, Dominik; Sung, Yon K; Zamanian, Roham T; Guo, Haiwei Henry

    2017-10-01

    Evaluations of patients with pulmonary hypertension (PH) commonly include chest CT imaging. We hypothesized that cardiac chamber volumes calculated from the same CT scans can yield additional information to distinguish PH related to left-sided heart disease (World Health Organization group 2) from other PH subtypes. Patients who had PH confirmed by right heart catheterization and contrast-enhanced chest CT studies were enrolled in this retrospective multicenter study. Cardiac chamber volumes were calculated using automated segmentation software and compared between group 2 and non-group 2 patients with PH. This study included 114 patients with PH, 27 (24%) of whom were classified as group 2 based on their pulmonary capillary wedge pressure. Patients with group 2 PH exhibited significantly larger median left atrial (LA) volumes (118 mL vs 63 mL; P volumes (90 mL vs 76 mL; P = .02), and smaller median right ventricular (RV) volumes (173 mL vs 210 mL; P = .005) than did non-group 2 patients. On multivariate analysis adjusted for age, sex, and mean pulmonary arterial pressure, group 2 PH was significantly associated with larger median LA and LV volumes (P volume ratios of RA/LA, RV/LV, and RV/LA (P = .001, P = .004, and P volumes demonstrated a high discriminatory ability for group 2 PH (area under the curve, 0.92; 95% CI, 0.870-0.968). Volumetric analysis of the cardiac chambers from nongated chest CT scans, particularly with findings of an enlarged left atrium, exhibited high discriminatory ability for identifying patients with PH due to left-sided heart disease. Copyright © 2017. Published by Elsevier Inc.

  14. Argus drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, M; Nagovizin, V; Hasemann, H; Michel, E; Schmidt-Parzefall, W; Wurth, R; Kim, P

    1983-11-15

    The ARGUS detector came into operation at the DORIS-II e/sup +/s/sup -/ storage ring at the end of 1982. Its two meter long drift chamber contains 5940 sense and 24588 field wires organized in uniform 18x18.8 mm/sup 2/ drift cells filling the whole volume. These cells form 36 layers, 18 of which provide stereo views. Each sense wire is equipped with a single hit TDC and ADC for coordinate and dE/dx measurements. The chamber is operated with propane to improve momentum and dE/dx resolution. The drift chamber design and initial performance are presented. With a very crude space-time relation approximation and without all the necessary corrections applied a spatial resolution of about 200 ..mu..m was obtained for half of the drift cell volume. Further corrections should improve this result. An intrinsic dE/dx resolution of 4.2% and an actual resolution of 5% were obtained for cosmic muons and also for Bhabha scattered electrons. An actual dE/dx resolution of 5.6% was obtained for pions from e/sup +/e/sup -/ annihilation data with almost no track selection. A relativistic rise of 30% was observed in good agreement with theory. The long-term stability is still to be investigated.

  15. Shape and dimensions of cardiac chambers: Importance of CT section thickness and orientation

    International Nuclear Information System (INIS)

    Hoffman, E.A.; Ritman, E.L.

    1985-01-01

    Three-dimensional (3D) computed tomography (CT) scan data were used to quantitate the geometry of all heart chambers. The Dynamic Spatial Reconstructor (DSR) was used to scan dogs with in situ casts of the cardiac chambers. Chamber volumes estimated from DSR images were accurate within 5% of water displacement volume measurements of the actual casts for chambers greater than 11 ml and within 10% of water displacement volumes for chambers less than 11 ml. Anatomic features of the actual cast correlated closely with anatomy visible in computer-generated surface images of the 3D DSR image data. The important effect of reconstructed section thickness and orientation on the fidelity of 3D cardiac geometry is demonstrated

  16. Results from beam tests of a 2.4 m straw chamber

    International Nuclear Information System (INIS)

    Cizeron, R.; Fournier, D.; Noppe, J.M.; Perdereau, O.; Schaffer, A.C.

    1991-03-01

    Straw chambers have been shown to have good position resolution. By virtue of their cylindrical geometry they are capable of operating in vacuum, which opens the interesting possibility of tracking with a minimum of material. The feasibility of constructing a large surface straw chamber has been studied. A prototype chamber with 2.4 m long straws capable of operating in vacuum has been developed and tested in beams at CERN

  17. Construction of radon/radon daughter calibraton chamber

    International Nuclear Information System (INIS)

    Fry, J.; Gan, T.H.; Leach, V.A.; Saddlier, J.; Solomon, S.B.; Tam, K.K.; Travis, E.; Wykes, P.

    1983-01-01

    The radon/radon daughter test chamber is a copper lined room 1.65x1.75x2.75m with an effective volume of 8000 litres. The air residence time is controlled by circulating the air in the chamber through absolute filters which remove 99.9% of particulates. Radon is drawn into the chamber from a 17 μCi 226 RaCl source using the pressure differential across the blowers (<3 psi)

  18. Volume-based characterization of postocclusion surge.

    Science.gov (United States)

    Zacharias, Jaime; Zacharias, Sergio

    2005-10-01

    To propose an alternative method to characterize postocclusion surge using a collapsible artificial anterior chamber to replace the currently used rigid anterior chamber model. Fundación Oftamológica Los Andes, Santiago, Chile. The distal end of a phacoemulsification handpiece was placed inside a compliant artificial anterior chamber. Digital recordings of chamber pressure, chamber volume, inflow, and outflow were performed during occlusion break of the phacoemulsification tip. The occlusion break profile of 2 different consoles was compared. Occlusion break while using a rigid anterior chamber model produced a simultaneous increase of chamber inflow and outflow. In the rigid chamber model, pressure decreased sharply, reaching negative pressure values. Alternatively, with the collapsible chamber model, a delay was observed in the inflow that occurs to compensate the outflow surge. Also, the chamber pressure drop was smaller in magnitude, never undershooting below atmospheric pressure into negative values. Using 500 mm Hg as vacuum limit, the Infiniti System (Alcon) performed better that the Legacy (Alcon), showing an 18% reduction in peak volume variation. The collapsible anterior chamber model provides a more realistic representation of the postocclusion surge events that occur in the real eye during cataract surgery. Peak volume fluctuation (mL), half volume recovery time(s), and volume fluctuation integral value (mL x s) are proposed as realistic indicators to characterize the postocclusion surge performance. These indicators show that the Infiniti System has a better postocclusion surge behavior than the Legacy System.

  19. Investigation of thermal and temporal responses of ionization chambers in radiation dosimetry.

    Science.gov (United States)

    AlMasri, Hussein; Funyu, Akira; Kakinohana, Yasumasa; Murayama, Sadayuki

    2012-07-01

    The ionization chamber is a primary dosimeter that is used in radiation dosimetry. Generally, the ion chamber response requires temperature/pressure correction according to the ideal gas law. However, this correction does not consider the thermal volume effect of chambers. The temporal and thermal volume effects of various chambers (CC01, CC13, NACP parallel-plate, PTW) with different wall and electrode materials have been studied in a water phantom. Measurements were done after heating the water with a suitable heating system, and chambers were submerged for a sufficient time to allow for temperature equilibrium. Temporal results show that all chambers equilibrate quickly in water. The equilibration time was between 3 and 5 min for all chambers. Thermal results show that all chambers expanded in response to heating except for the PTW, which contracted. This might be explained by the differences in the volumes of all chambers and also by the difference in wall material composition of PTW from the other chambers. It was found that the smallest chamber, CC01, showed the greatest expansion. The magnitude of the expansion was ~1, 0.8, and 0.9% for CC01, CC13, and parallel-plate chambers, respectively, in the temperature range of 295-320 K. The magnitude of the detected contraction was <0.3% for PTW in the same temperature range. For absolute dosimetry, it is necessary to make corrections for the ion chamber response, especially for small ion chambers like the CC01. Otherwise, room and water phantom temperatures should remain within a close range.

  20. Uncertainty evaluation of the kerma in the air, related to the active volume in the ionization chamber of concentric cylinders, by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Lo Bianco, A.S.; Oliveira, H.P.S.; Peixoto, J.G.P.

    2009-01-01

    To implant the primary standard of the magnitude kerma in the air for X-ray between 10 - 50 keV, the National Metrology Laboratory of Ionizing Radiations (LNMRI) must evaluate all the uncertainties of measurement related with Victtoren chamber. So, it was evaluated the uncertainty of the kerma in the air consequent of the inaccuracy in the active volume of the chamber using the calculation of Monte Carlo as a tool through the Penelope software

  1. Ionization chamber gradient effects in nonstandard beam configurations

    International Nuclear Information System (INIS)

    Bouchard, Hugo; Seuntjens, Jan; Carrier, Jean-Francois; Kawrakow, Iwan

    2009-01-01

    Purpose: For the purpose of nonstandard beam reference dosimetry, the current concept of reporting absorbed dose at a point in water located at a representative position in the chamber volume is investigated in detail. As new nonstandard beam reference dosimetry protocols are under development, an evaluation of the role played by the definition of point of measurement could lead to conceptual improvements prior to establishing measurement procedures. Methods: The present study uses the current definition of reporting absorbed dose to calculate ionization chamber perturbation factors for two cylindrical chamber models (Exradin A12 and A14) using the Monte Carlo method. The EGSnrc based user-code EGS lowbar chamber is used to calculate chamber dose responses of 14 IMRT beams chosen to cause considerable dose gradients over the chamber volume as previously used by Bouchard and Seuntjens [''Ionization chamber-based reference dosimetry of intensity modulated radiation beams,'' Med. Phys. 31(9), 2454-5465 (2004)]. Results: The study shows conclusively the relative importance of each physical effect involved in the nonstandard beam correction factors of 14 IMRT beams. Of all correction factors involved in the dosimetry of the beams studied, the gradient perturbation correction factor has the highest magnitude, on average, 11% higher compared to reference conditions for the Exradin A12 chamber and about 5% higher for the Extradin A14 chamber. Other perturbation correction factors (i.e., P wall , P stem , and P cel ) are, on average, less than 0.8% different from reference conditions for the chambers and beams studied. The current approach of reporting measured absorbed dose at a point in water coinciding with the location of the centroid of the chamber is the main factor responsible for large correction factors in nonstandard beam deliveries (e.g., intensity modulated radiation therapy) reported in literature. Conclusions: To reduce or eliminate the magnitude of

  2. Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields

    Science.gov (United States)

    McNiven, Andrea L.

    The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the

  3. Single wire drift chamber design

    International Nuclear Information System (INIS)

    Krider, J.

    1987-01-01

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 μm rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles

  4. Tracking simulation and wire chamber requirements for the SSC

    International Nuclear Information System (INIS)

    Hanson, G.G.; Niczyporuk, B.B.; Palounek, A.P.T.

    1988-11-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tracking systems which meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 16 refs., 16 figs., 2 tabs

  5. Pre-irradiation effects on ionization chambers used in radiation therapy

    International Nuclear Information System (INIS)

    McCaffrey, J P; Downton, B; Shen, H; Niven, D; McEwen, M

    2005-01-01

    Dosimetry protocols recommend that ionization chambers used in radiation therapy be pre-irradiated until they 'settle', i.e., until a stable reading is obtained. Previous reports have claimed that a lack of pre-irradiation could result in errors up to several per cent. Recently, data collected for a large number of commonly used ion chambers at the Institute for National Measurement Standards, NRC, Canada, have been collated and analysed, with additional data contributed by the National Physical Laboratory, UK. With this data set, it was possible to relate patterns of ion chamber behaviour to design parameters. While several mechanisms seem to contribute to this behaviour, the most obvious correlations implicate the type of insulator surrounding the central collector electrode, the extent of collector electrode shielding and possibly the area of the insulator exposed at the base of the active air volume. The results show that ion chambers with electrode connections guarded up to the active air volume settle quickly (∼9 min) and the change in response is small (less than ∼0.2%). For ion chambers where the guard connection surrounding the central collector does not extend up to the active air volume, settling times of 15-20 min and an associated change in response of up to 1% are typical. For some models of ion chambers, the irradiation rate may also play a role in settling behaviour. Settling times for the ion chambers studied here were found to be independent of beam quality. (note)

  6. A Radon Chamber without Radium Source for Detector Calibration and Radon Measurements

    International Nuclear Information System (INIS)

    Al-Azmi, D.; Karunakara, N.

    2008-01-01

    A radon chamber of volume 216 liters was designed and constructed for calibration of radon detectors and radon test measurements. The main feature of this chamber is that the active 226 Ra source, to generate the 222 Rn inside the chamber volume, is not required. Instead, 222 Rn from soil gas is utilized for this purpose. The supply of radon comes from the soil gas. Soil gas is drawn from the soil to fill the chamber with high radon concentration levels (∼ 80 kBq/m3). Desired radon concentration levels can be obtained by drawing the soil gas for different time durations and/or flow rate (author)

  7. Small-sized reverberation chamber for the measurement of sound absorption

    International Nuclear Information System (INIS)

    Rey, R. del; Alba, J.; Bertó, L.; Gregori, A.

    2017-01-01

    This paper presents the design, construction, calibration and automation of a reverberation chamber for small samples. A balance has been sought between reducing sample size, to reduce the manufacturing costs of materials, and finding the appropriate volume of the chamber, to obtain reliable values at high and mid frequencies. The small-sized reverberation chamber, that was built, has a volume of 1.12 m3 and allows for the testing of samples of 0.3 m2. By using diffusers, to improve the diffusion degree, and automating measurements, we were able to improve the reliability of the results, thus reducing test errors. Several comparison studies of the measurements of the small-sized reverberation chamber and the standardised reverberation chamber are shown, and a good degree of adjustment can be seen between them, within the range of valid frequencies. This paper presents a small laboratory for comparing samples and making decisions before the manufacturing of larger sizes. [es

  8. Influence of reaction chamber shape on cast-iron spheroidization process in-mold

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available This paper presents a results concerning the influence of reaction chamber shape on cast – iron spheroidization process in form. The volume of the tested reaction chambers was about 118000mm3. Reaction chambers in the shape of: rectangular, cylinder and spherical cap were examined. It has been shown that the best graphite spheroidizing process was provided by spherical cap chamber shape. The reaction of cast – iron with magnesium in reaction chamber depends on the flow of cast – iron in the chamber. In rectangular and cylinder shape chambers proceed the impact of diphase stream on flat bottom wall. It causes the creation on its surface film, called: cast – iron “film”, where single grains of magnesium master alloy exist. The largest part of master alloy is drifted by liquid cast – iron to the top and only there graphite spheroidization process proceed. In the spherical cap shape reaction chamber, as a result of rotation movement of liquid cast – iron throughout its volume, graphite spheroidization process proceed. Apart from the reaction chamber shape, applying of mixing chamber ensure full cast – iron spheroidization process.

  9. Diogene pictorial drift chamber

    International Nuclear Information System (INIS)

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive)

  10. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  11. Ion recombination characteristics of the MDH 10X5-6 ionisation chamber under continuous exposure

    International Nuclear Information System (INIS)

    Cerra, F.

    1982-01-01

    Volume recombination of the induced ionization in an X-ray ionization chamber is an important factor affecting the collection efficiency of the charge when such chambers are operated at atmospheric pressure. The volume recombination process is also dependent on the X-ray exposure rate. The theory for recombination in a cylindrical ionization chamber is shown to be in agreement with experimental measurements. For the MDH 10X5-6 cylindrical ionization chamber, the recombination loss is unimportant at exposure rates consistent with its intended usage. (U.K.)

  12. Observation of Cherenkov rings using a low-pressure parallel-plate chamber and a solid cesium-iodide photocathode

    International Nuclear Information System (INIS)

    Lockyer, N.S.; Millan, J.E.; Lu, C.; McDonald, K.T.; Lopez, A.

    1993-01-01

    We have observed Cherenkov rings from minimum-ionizing particles using a low-pressure, parallel-plate pad-chamber with a cesium-iodide solid photocathode. This detector is blind to minimum-ionizing particles, and sensitive to Cherenkov photons of wavelengths 170-210 nm. An average of 5 photoelectrons per Cherenkov ring were detected using a 2-cm-thick radiator of liquid C 6 F 14 . This paper reports on the chamber construction, photocathode preparation and testbeam results. (orig.)

  13. Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Dezhi Ning

    2017-09-01

    Full Text Available The performance of a dual-chamber Oscillating Water Column (OWC Wave Energy Converter (WEC is considered in the present study. The device has two sub-chambers with a shared orifice. A two-dimensional (2D fully nonlinear numerical wave flume based on the potential-flow theory and the time-domain higher-order boundary element method (HOBEM is applied for the simulation. The incident waves are generated by using the immerged sources and the air-fluid coupling influence is considered with a simplified pneumatic model. In the present study, the variation of the surface elevation and the water column volume in the two sub-chambers are investigated. The effects of the chamber geometry (i.e., the draft and breadth of two chambers on the surface elevation and the air pressure in the chamber are investigated, respectively. It is demonstrated that the surface elevations in the two sub-chambers are strongly dependent on the wave conditions. The larger the wavelength, the more synchronous motion of the two water columns in the two sub-chambers, thus, the lager the variation of the water column volume.

  14. High-resolution recording of particle tracks with in-line holography in a large cryogenic bubble chamber

    CERN Document Server

    Harigel, G G

    2000-01-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at the Fermi National Accelerator Laboratory (FNAL), during a physics run in a high-energy neutrino beam. The innovative system combined the reference beam with the object beam, irradiating a conical volume of ~1.5 m/sup 3/. Bubble tracks from neutrino interactions with a width of ~120 mu m have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the beam branching ratio (BBR). We obtained in our experiment an exceedingly small minimum-observable ratio of BBR=(0.54/0.21)*10/sup -7/. The technology has the potential for a wide range of applications. This paper describes the various difficulties in achieving the success. It required the development of laser pulse stretching via enhanced closed loop control with slow Q-switching, to overcome excessive heating of the cryogenic l...

  15. Age estimation by assessment of pulp chamber volume: a Bayesian network for the evaluation of dental evidence.

    Science.gov (United States)

    Sironi, Emanuele; Taroni, Franco; Baldinotti, Claudio; Nardi, Cosimo; Norelli, Gian-Aristide; Gallidabino, Matteo; Pinchi, Vilma

    2017-11-14

    The present study aimed to investigate the performance of a Bayesian method in the evaluation of dental age-related evidence collected by means of a geometrical approximation procedure of the pulp chamber volume. Measurement of this volume was based on three-dimensional cone beam computed tomography images. The Bayesian method was applied by means of a probabilistic graphical model, namely a Bayesian network. Performance of that method was investigated in terms of accuracy and bias of the decisional outcomes. Influence of an informed elicitation of the prior belief of chronological age was also studied by means of a sensitivity analysis. Outcomes in terms of accuracy were adequate with standard requirements for forensic adult age estimation. Findings also indicated that the Bayesian method does not show a particular tendency towards under- or overestimation of the age variable. Outcomes of the sensitivity analysis showed that results on estimation are improved with a ration elicitation of the prior probabilities of age.

  16. Development and characterization of special ionization chambers for computed tomography beams

    International Nuclear Information System (INIS)

    Castro, Maysa Costa de

    2016-01-01

    The use of computed tomography (CT) for imaging procedures is growing due to advances in the CT equipment technology, because they allow the obtention of images with better resolution than through other techniques. Therefore, they are responsible for increasing the dose radiation of patients during the procedure. This fact led to a greater concern about the doses received by patients who undergo this type of examination. To perform the dosimetry in CT beams, the most widely used instrument is the pencil type ionization chamber, because this dosimeter has a uniform response to the incident radiation beam for all angles. The conventional ionization chamber, which is available on the market, has a sensitive volume length of 10 cm; however, some studies have shown that this dosimeter has underestimated the dose values. Therefore, in this study two ionization chambers with sensitive volume lengths of 10 cm and 30 cm, making use of low cost national materials, were developed at the Calibration Laboratory of Instruments (LCI-IPEN/CNEN). The characterization of these chambers was performed, and the results were obtained within the international recommended limits. As an application, the developed ionization chambers and a commercial chamber were tested in a clinical tomograph. The developed ionization chambers were analyzed in a complete way for their possible uses. (author)

  17. Micromachined filter-chamber array with passive valves for biochemical assays on beads

    NARCIS (Netherlands)

    Lichtenberg, Jan; Verpoorte, Elisabeth; De Rooij, Nico F.

    2001-01-01

    The filter-chamber array presented here enables a real-time parallel analysis of three different samples on beads in a volume of 3 nL, on a 1 cm2chip. The filter-chamber array is a system containing three filter-chambers, three passive valves at the inlet channels and a common outlet. The design

  18. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  19. SU-G-BRB-12: Polarity Effects in Small Volume Ionization Chambers in Small Fields

    International Nuclear Information System (INIS)

    Arora, V; Parsai, E; Mathew, D; Tanny, S; Sperling, N

    2016-01-01

    Purpose: Dosimetric quantities such as the polarity correction factor (Ppol) are important parameters for determining the absorbed dose and can influence the choice of dosimeter. Ppol has been shown to depend on beam energy, chamber design, and field size. This study is to investigate the field size and detector orientation dependence of Ppol in small fields for several commercially available micro-chambers. Methods: We evaluate the Exradin A26, Exradin A16, PTW 31014, PTW 31016, and two prototype IBA CC-01 micro-chambers in both horizontal and vertical orientations. Measurements were taken at 10cm depth and 100cm SSD in a Wellhofer BluePhantom2. Measurements were made at square fields of 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.4, 3.0, and 5.0 cm on each side using 6MV with both ± 300VDC biases. PPol was evaluated as described in TG-51, reported using −300VDC bias for Mraw. Ratios of PPol measured in the clinical field to the reference field are presented. Results: A field size dependence of Ppol was observed for all chambers, with increased variations when mounted vertically. The maximum variation observed in PPol over all chambers mounted horizontally was <1%, and occurred at different field sizes for different chambers. Vertically mounted chambers demonstrated variations as large as 3.2%, always at the smallest field sizes. Conclusion: Large variations in Ppol were observed for vertically mounted chambers compared to horizontal mountings. Horizontal mountings demonstrated a complicated relationship between polarity variation and field size, probably relating to differing details in each chambers construction. Vertically mounted chambers consistently demonstrated the largest PPol variations for the smallest field sizes. Measurements obtained with a horizontal mounting appear to not need significant polarity corrections for relative measurements, while those obtained using a vertical mounting should be corrected for variations in PPol.

  20. SU-G-BRB-12: Polarity Effects in Small Volume Ionization Chambers in Small Fields

    Energy Technology Data Exchange (ETDEWEB)

    Arora, V; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States); Mathew, D [University of Minnesota, Minneapolis, MN (United States); Tanny, S [SUNY Upstate Medical University, Syracuse NY (United States); Sperling, N [University of Toledo Medical Center, Sylvania, OH (United States)

    2016-06-15

    Purpose: Dosimetric quantities such as the polarity correction factor (Ppol) are important parameters for determining the absorbed dose and can influence the choice of dosimeter. Ppol has been shown to depend on beam energy, chamber design, and field size. This study is to investigate the field size and detector orientation dependence of Ppol in small fields for several commercially available micro-chambers. Methods: We evaluate the Exradin A26, Exradin A16, PTW 31014, PTW 31016, and two prototype IBA CC-01 micro-chambers in both horizontal and vertical orientations. Measurements were taken at 10cm depth and 100cm SSD in a Wellhofer BluePhantom2. Measurements were made at square fields of 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.4, 3.0, and 5.0 cm on each side using 6MV with both ± 300VDC biases. PPol was evaluated as described in TG-51, reported using −300VDC bias for Mraw. Ratios of PPol measured in the clinical field to the reference field are presented. Results: A field size dependence of Ppol was observed for all chambers, with increased variations when mounted vertically. The maximum variation observed in PPol over all chambers mounted horizontally was <1%, and occurred at different field sizes for different chambers. Vertically mounted chambers demonstrated variations as large as 3.2%, always at the smallest field sizes. Conclusion: Large variations in Ppol were observed for vertically mounted chambers compared to horizontal mountings. Horizontal mountings demonstrated a complicated relationship between polarity variation and field size, probably relating to differing details in each chambers construction. Vertically mounted chambers consistently demonstrated the largest PPol variations for the smallest field sizes. Measurements obtained with a horizontal mounting appear to not need significant polarity corrections for relative measurements, while those obtained using a vertical mounting should be corrected for variations in PPol.

  1. Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils

    International Nuclear Information System (INIS)

    Bolte, W.J.; Collar, J.I.; Crisler, M.; Hall, J.; Holmgren, D.; Nakazawa, D.; Odom, B.; O'Sullivan, K.; Plunkett, R.; Ramberg, E.; Raskin, A.; Sonnenschein, A.; Vieira, J.D.

    2007-01-01

    The viability of using Bubble Chambers as dark matter particle detectors is considered. Techniques leading to the enhanced chamber stability needed for this new application are described in detail. Prototype trials show that sensitivity to the low-energy nuclear recoils induced by Weakly Interacting Massive Particles (WIMP) is possible in conditions of extreme insensitivity to minimum ionizing backgrounds. An understanding of detector response is demonstrated using existing theoretical models. We briefly comment on the prospects for detection of supersymmetric dark matter with large CF 3 I chambers

  2. One cubic metre NIST traceable radon test chamber

    International Nuclear Information System (INIS)

    Kotrappa, P.; Stieff, F.

    2008-01-01

    With the availability of the National Inst. of Standards and Technology (NIST) Radon Emanation Standard with a content of ∼5000 Bq of 226 Ra, it is possible to build a flow through a practical radon test chamber. A standard glove box with four gloves and a transfer port is used. Air is pumped through a flow integrator, water jar for humidification and NIST source holder, and into the glove box through a manifold. A derived theoretical expression provides the calculated radon concentration inside the chamber. The calculation includes a derived decay correction due to the large volume and low flow rate of the system. Several calibrated continuous radon monitors and passive integrating electret ion chambers tested in the chamber agreed fairly well with the calculated radon concentrations. The chamber is suitable for handling the calibration of several detectors at the same time. (authors)

  3. Some Features of Aerodynamics of Cyclonic Chamber with Free Exit

    Directory of Open Access Journals (Sweden)

    A. N. Orekhov

    2007-01-01

    Full Text Available The paper cites results of an experimental research in aerodynamics of a cyclonic chamber with a free exit that has a large relative length. Distributions of aerodynamic stream characteristics depending on geometry of working volume of the cyclonic chamber are given in the paper. Calculative dependences are proposed in the paper.

  4. Fuel spray and combustion characteristics of butanol blends in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Liu, Yu; Li, Jun; Jin, Chao

    2015-01-01

    Highlights: • A sudden drop is observed in spray penetration for B10S10D80 fuel at 800 and 900 K. • With increasing of temperature, auto-ignition timings of fuels become unperceivable. • Low n-butanol addition has little effect on autoignition timings from 800 to 1200 K. • n-Butanol additive can reduce soot emissions at the near-wall regions. • Larger soot reduction is seen at higher ambient temperatures for n-butanol addition. - Abstract: The processes of spray penetrations, flame propagation and soot formation and oxidation fueling n-butanol/biodiesel/diesel blends were experimentally investigated in a constant volume combustion chamber with an optical access. B0S20D80 (0% n-butanol, 20% soybean biodiesel, and 80% diesel in volume) was prepared as the base fuel. n-Butanol was added into the base fuel by volumetric percent of 5% and 10%, denoted as B5S15D80 (5% n-butanol/15% soybean biodiesel/80% diesel) and B10S10D80 (10% n-butanol/10% soybean biodiesel/80% diesel). The ambient temperatures at the time of fuel injection were set to 800 K, 900 K, 1000 K, and 1200 K. Results indicate that the penetration length reduces with the increase of n-butanol volumes in blending fuels and ambient temperatures. The spray penetration presents a sudden drop as fueling B10S10D80 at 800 K and 900 K, which might be caused by micro-explosion. A larger premixed combustion process is observed at low ambient temperatures, while the heat release rate of high ambient temperatures presents mixing controlled diffusion combustion. With a lower ambient temperature, the auto-ignition delay becomes longer with increasing of n-butanol volume in blends. However, with increasing of ambient temperatures, the auto-ignition timing between three fuels becomes unperceivable. Generally, low n-butanol addition has a limited or no effect on the auto-ignition timing in the current conditions. Compared with the base fuel of B0S20D80, n-butanol additive with 5% or 10% in volume can reduce soot

  5. Design report on a 10-in. multiwire proportional chamber (MWPC) and associated electronics

    International Nuclear Information System (INIS)

    MacArthur, D.W.

    1987-02-01

    We discuss the design and specifications of a 10-in. x 10-in. active area wire chamber. Several of these chambers will be combined with polyethylene converters to make a large volume detector intended for use as a high-energy detector displaying moderate energy resolution. We also discuss the amplifiers and discriminators that have been designed for these chambers. This report only concerns the wire chambers and electronics

  6. Evaluation of dose distributions in gamma chamber using glass plate detector

    Directory of Open Access Journals (Sweden)

    Narayan Pradeep

    2008-01-01

    Full Text Available A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique.

  7. An open-flow pulse ionization chamber for alpha spectrometry of large-area samples

    International Nuclear Information System (INIS)

    Johansson, L.; Roos, B.; Samuelsson, C.

    1992-01-01

    The presented open-flow pulse ionization chamber was developed to make alpha spectrometry on large-area surfaces easy. One side of the chamber is left open, where the sample is to be placed. The sample acts as a chamber wall and therby defeins the detector volume. The sample area can be as large as 400 cm 2 . To prevent air from entering the volume there is a constant gas flow through the detector, coming in at the bottom of the chamber and leaking at the sides of the sample. The method results in good energy resolution and has considerable applicability in the retrospective radon research. Alpha spectra obtained in the retrospective measurements descend from 210 Po, built up in the sample from the radon daughters recoiled into a glass surface. (au)

  8. Holography in small bubble chambers

    International Nuclear Information System (INIS)

    Lecoq, P.

    1984-01-01

    This chapter reports on an experiment to determine the total charm cross section at different incident momenta using the small, heavy liquid bubble chamber HOBC. Holography in liquid hydrogen is also tested using the holographic lexan bubble chamber HOLEBC with the aim of preparing a future holographic experiment in hydrogen. The high intensity tests show that more than 100 incident tracks per hologram do not cause a dramatic effect on the picture quality. Hydrogen is more favorable than freon as the bubble growth is much slower in hydrogen. An advantage of holography is to have the maximum resolution in the full volume of the bubble chamber, which allows a gain in sensitivity by a factor of 10 compared to classical optics as 100 tracks per hologram look reasonable. Holograms are not more difficult to analyze than classical optics high-resolution pictures. The results show that holography is a very powerful technique which can be used in very high resolution particle physics experiments

  9. A new mini-extrapolation chamber for beta source uniformity measurements

    International Nuclear Information System (INIS)

    Oliveira, M.L.; Caldas, L.V.E.

    2006-01-01

    According to recent international recommendations, beta particle sources should be specified in terms of absorbed dose rates to water at the reference point. However, because of the clinical use of these sources, additional information should be supplied in the calibration reports. This additional information include the source uniformity. A new small volume extrapolation chamber was designed and constructed at the Calibration Laboratory at Instituto de Pesquisas Energeticas e Nucleares, IPEN, Brazil, for the calibration of 90 Sr+ 90 Y ophthalmic plaques. This chamber can be used as a primary standard for the calibration of this type of source. Recent additional studies showed the feasibility of the utilization of this chamber to perform source uniformity measurements. Because of the small effective electrode area, it is possible to perform independent measurements by varying the chamber position by small steps. The aim of the present work was to study the uniformity of a 90 Sr+ 90 Y plane ophthalmic plaque utilizing the mini extrapolation chamber developed at IPEN. The uniformity measurements were performed by varying the chamber position by steps of 2 mm in the source central axis (x-and y-directions) and by varying the chamber position off-axis by 3 mm steps. The results obtained showed that this small volume chamber can be used for this purpose with a great advantage: it is a direct method, being unnecessary a previously calibration of the measurement device in relation to a reference instrument, and it provides real -time results, reducing the time necessary for the study and the determination of the uncertainties related to the measurements. (authors)

  10. Development of a parallel plate ion chamber for radiation protection level

    International Nuclear Information System (INIS)

    Bottaro, Marcio; Landi, Mauricio; Moralles, Mauricio

    2011-01-01

    A new parallel plate vented ion chamber is proposed in this paper. The application of this chamber was primarily intended to the measurement of stray radiation in interventional procedures, but the energy response of about 2.6%, which was obtained in the first prototype, on the range from 40 to 150 kV using ISO 4037-1 narrow qualities, provided the possibility of a wide modality application on radiation protection. Primary studies with Maxwell 2D electromagnetic field simulator revealed an optimized model regarding effective volume and saturation voltage levels, which conferred to the ion chamber a dual entrance window feature. The development of this ion chamber has the main contribution of Monte Carlo calculations as a support tool to the establishment of the effective volume of the chamber and determination of the best materials for housing mounting and conductive elements, such as guard rings, electrode, and windows. Even the composition of the conductive layers, which would be neglected due to their very small thicknesses (about 35 μm), had important influence on the results and could be better understood with Monte Carlo N-Particle Transport Code System (MCNP) simulations. (author)

  11. Assembly of Drift Tubes (DT) Chambers at CIEMAT (Madrid)

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    The construction of muon drift tube chambers (DT) has been carried out in four different european institutes: Aachen (Germany), CIEMAT-Madrid (Spain), Legnaro and Turin (Italy), all of them following similar procedures and quality tests. Each chamber is composed by three or two independent units called superlayers, with four layers of staggered drift cells each. The assembly of a superlayer is a succesive glueing of aluminium plates and I-beams with electrodes previously attached, forming a rectangular and gas-tight volume. These pictures illustrate the various processes of material preparation, construction, equipment and assembly of full chambers at CIEMAT (Madrid).

  12. Simulated annealing algorithm for solving chambering student-case assignment problem

    Science.gov (United States)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  13. Impact of minimum contrast media volumes during elective percutaneous coronary intervention for prevention of contrast-induced nephropathy in patients with stable coronary artery disease.

    Science.gov (United States)

    Ebisawa, Soichiro; Kurita, Tairo; Tanaka, Nobuyoshi; Nasu, Kenya; Kimura, Masashi; Ito, Tatsuya; Kinoshita, Yoshihisa; Tsuchikane, Etsuo; Terashima, Mitsuyasu; Suzuki, Takahiko

    2016-01-01

    Contrast-induced nephropathy (CIN) is an important complication following percutaneous coronary intervention (PCI). The clinical importance of a minimum contrast media volume (CMV) for PCI to prevent CIN has not been well evaluated. The purpose of this study was to evaluate the impact of minimum CMV to prevent CIN after PCI. In this study, 2052 consecutive patients who underwent elective PCI in our institute were analyzed. We divided patients into two groups according to CMV: a minimum CMV PCI group [CMV ≤50 ml (n = 94)] and a non-minimum CMV PCI group [CMV >50 ml (n = 1958)]. CIN occurred in 160 (7.8 %) patients. The incidence of CIN was significantly lower in the minimum CMV PCI group than in the non-minimum CMV PCI group (2.1 vs. 8.1 %; P = 0.03). According to multivariate analysis, elderly patients and diabetes mellitus patients were at high risk of developing CIN in this study population. When analyzing only high-risk patients, the incidence of CIN was also significantly lower in the minimum CMV group than in the non-minimum CMV group (2.6 vs. 10.3 %; P = 0.03). Minimum CMV PCI could reduce the incidence of CIN, particularly in high-risk patients; as such, defining the minimum CMV clinical cut-off values may be useful for the prevention of CIN.

  14. Proportional chambers and multiwire drift chambers at high rates

    International Nuclear Information System (INIS)

    Walenta, A.H.

    1977-01-01

    The high event and particle rates expected for ISABELLE intersecting storage rings raise the question whether PWC's and drift chambers, now widely in use in experiments, still can operate under such conditions. Various effects depend on the number of avalanches produced per length of wire N and the size of the avalanche Q, i.e., on the number of positive ions created in an avalanche. Therefore the important parameter for the following discussion is the product QN. The minimum Q is determined by the type and noise level of preamplifiers used. Examples are given for a typical low noise amplifier as well as for a typical integrated ''cheap'' amplifier. The rate/wire length N depends on the chamber arrangement, wire spacing, etc. In multiwire drift chambers, a single wire shows space-charge effects reducing the pulse height by 1% at a rate of N = 7 x 10 3 mm -1 sec -1 . At a rate of N approximately equal to 10 5 mm -1 sec -1 an efficiency loss of the order of 1% was noticed. The aging effect due to deposits on the anode wire can be reduced using low noise amplifiers and low gas gain to such an extent that a lifetime of about half a year at ISABELLE can be expected. The use of conventional cheap preamplifiers will result in a typical lifetime of about 30 days. Improvements are probable. The time resolution of Δt/sub r/ = 4 nsec fwhm seems adequate for event rates of 10 7 sec -1 . The memory time Δt/sub m/ greater than or equal to 100 nsec may cause serious problems for pattern recognition depending on layout and readout. The use of induced signals on cathode pads, thus reading out shorter parts of the wire, can solve the problem

  15. Hadron component in families observed with the Mt. Fuji thick type emulsion chamber

    International Nuclear Information System (INIS)

    Konishi, Eiichi

    1978-01-01

    Analysis of hadron component was made on the families detected with the thick type emulsion chamber exposed at Mt. Fuji. The thickness of the emulsion chamber was 70 c.u of Pb. The collecting power was 17 m 2 year. The character of hadrons in the families and their correlations with accompanying gamma-rays are shown. The energy spectra of ten families with number of gamma-ray not less than 5, gamma energy sum not less than 20 TeV and number of Pb jet not less than 5 minimum energy = 2 TeV, and their lateral distribution were investigated. These thick type emulsion chamber data are useful for the analysis of gamma-ray families observed by the thin type emulsion chamber. (Yoshimori, M.)

  16. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    Directory of Open Access Journals (Sweden)

    Hongzhan Xie

    2015-06-01

    Full Text Available The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100, such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa using a common rail system equipped with a constant volume chamber. The characteristic data was extracted from spray images grabbed by a high speed visualization system. The results showed that the ambient pressure and injection pressure had significant effects on the spray characteristics. As the ambient pressure increased, the spray angle increased, while the spray tip penetration and the peak of average tip velocity decreased. As the injection pressure increased, the spray tip penetration, spray angle, spray area and spray volume increased. The increasing blend ratio of biodiesel brought about a shorter spray tip penetration and a smaller spray angle compared with those of diesel. This is due to the comparatively higher viscosity and surface tension of biodiesel, which enhanced the friction effect between fuel and the injector nozzle surface and inhibited the breakup of the liquid jet.

  17. Magmatic densities control erupted volumes in Icelandic volcanic systems

    Science.gov (United States)

    Hartley, Margaret; Maclennan, John

    2018-04-01

    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  18. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley

    2018-04-01

    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  19. Vacuum chamber-free centrifuge with magnetic bearings.

    Science.gov (United States)

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  20. On the Existence of Shock Instabilities at Hugoniot Pressures Beyond the Minimum Volume

    Science.gov (United States)

    Heuzé, Olivier; Pain, Jean-Christophe; Salin, Gwenael

    2009-12-01

    Flow instabilities are among the main issues of ICF studies. Heterogeneities and defects of the material or the geometry are generally considered among the sources of instabilities which are strongly amplified in spherical geometries. According to the theory of D'yakov, some ranges of the Equation of State (EOS) also generate or amplify instabilities in shock waves, which can be considered among the origin of Richtmyer-Meshkov instabilities. It is well known that, on the Hugoniot curve of most materials, the volume decreases versus pressure down to a minimum and then increases with ionization towards an asymptotic value. Recent results in this range of pressure allow us to investigate now the stability conditions. The first question to raise is the possibility of existence of such instabilities. We focus here on the properties of several elements (aluminium, iron, copper) in this range of pressure to try to give a first answer to this question.

  1. Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples

    Directory of Open Access Journals (Sweden)

    L. Renbaum-Wolff

    2013-01-01

    Full Text Available Herein, a method for the determination of viscosities of small sample volumes is introduced, with important implications for the viscosity determination of particle samples from environmental chambers (used to simulate atmospheric conditions. The amount of sample needed is < 1 μl, and the technique is capable of determining viscosities (η ranging between 10−3 and 103 Pascal seconds (Pa s in samples that cover a range of chemical properties and with real-time relative humidity and temperature control; hence, the technique should be well-suited for determining the viscosities, under atmospherically relevant conditions, of particles collected from environmental chambers. In this technique, supermicron particles are first deposited on an inert hydrophobic substrate. Then, insoluble beads (~1 μm in diameter are embedded in the particles. Next, a flow of gas is introduced over the particles, which generates a shear stress on the particle surfaces. The sample responds to this shear stress by generating internal circulations, which are quantified with an optical microscope by monitoring the movement of the beads. The rate of internal circulation is shown to be a function of particle viscosity but independent of the particle material for a wide range of organic and organic-water samples. A calibration curve is constructed from the experimental data that relates the rate of internal circulation to particle viscosity, and this calibration curve is successfully used to predict viscosities in multicomponent organic mixtures.

  2. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  3. The minimum knowledge base for predicting organ-at-risk dose-volume levels and plan-related complications in IMRT planning

    International Nuclear Information System (INIS)

    Zhang, Hao H; D'Souza, Warren D; Meyer, Robert R; Shi Leyuan

    2010-01-01

    IMRT treatment planning requires consideration of two competing objectives: achieving the required amount of radiation for the planning target volume and minimizing the amount of radiation delivered to all other tissues. It is important for planners to understand the tradeoff between competing factors so that the time-consuming human interaction loop (plan-evaluate-modify) can be eliminated. Treatment-plan-surface models have been proposed as a decision support tool to aid treatment planners and clinicians in choosing between rival treatment plans in a multi-plan environment. In this paper, an empirical approach is introduced to determine the minimum number of treatment plans (minimum knowledge base) required to build accurate representations of the IMRT plan surface in order to predict organ-at-risk (OAR) dose-volume (DV) levels and complications as a function of input DV constraint settings corresponding to all involved OARs in the plan. We have tested our approach on five head and neck patients and five whole pelvis/prostate patients. Our results suggest that approximately 30 plans were sufficient to predict DV levels with less than 3% relative error in both head and neck and whole pelvis/prostate cases. In addition, approximately 30-60 plans were sufficient to predict saliva flow rate with less than 2% relative error and to classify rectal bleeding with an accuracy of 90%.

  4. A magnetically levitated electrode ionization chamber of the noncontact measurement type

    International Nuclear Information System (INIS)

    Kawaguchi, Toshiro; Yoshimura, Atsushi

    2002-01-01

    A new type of ionization chamber with levitated electrode has been developed. In this ionization chamber, an ion-collection electrode levitates in the air without getting any physical support from the insulator. The electrode is charged by an electrostatic charger without physical contact. The charge of the electrode is read out at a Faraday cage periodically at a given time interval without physical contact. Because its electrode levitates, the ionization chamber produces no background current caused by leaks or piezo current. In addition, as the charging of its electrode and the read-out of its charge are carried out without physical contact, no irregular charge or contact potential difference due to the chattering between electrode and contact point occurs. Through experiments, it was found that this ionization chamber was able to measure the γ-ray dose such as the environmental radiation with a high degree of sensitivity. The minimum detectable value of ionization current when accumulated for 1 h is about 1.3x10 -17 A

  5. A magnetically levitated electrode ionization chamber of the noncontact measurement type

    CERN Document Server

    Kawaguchi, T

    2002-01-01

    A new type of ionization chamber with levitated electrode has been developed. In this ionization chamber, an ion-collection electrode levitates in the air without getting any physical support from the insulator. The electrode is charged by an electrostatic charger without physical contact. The charge of the electrode is read out at a Faraday cage periodically at a given time interval without physical contact. Because its electrode levitates, the ionization chamber produces no background current caused by leaks or piezo current. In addition, as the charging of its electrode and the read-out of its charge are carried out without physical contact, no irregular charge or contact potential difference due to the chattering between electrode and contact point occurs. Through experiments, it was found that this ionization chamber was able to measure the gamma-ray dose such as the environmental radiation with a high degree of sensitivity. The minimum detectable value of ionization current when accumulated for 1 h is a...

  6. Influence of an additional ballast volume on a pulsed ICP discharge

    International Nuclear Information System (INIS)

    Bogdanov, E A; Jr, C A DeJoseph; Demidov, V I; Kudryavtsev, A A; Serditov, K Yu

    2007-01-01

    A spatial and temporal numerical simulation has been carried out of a pulsed (100% modulated), rf inductively coupled plasma discharge in argon, connected to an additional (ballast) diffusion chamber of much larger volume. It is demonstrated that during the active phase, the presence of the large ballast volume has a small impact on the parameters of the plasma in the smaller discharge chamber. In this case the plasma parameters in the discharge chamber can be estimated separately from the diffusion chamber by a standard method using the characteristic ambipolar diffusion time (for example, using a global model). However, during the afterglow phase, the situation is changed significantly. In the afterglow, the densities of charged particles in the discharge chamber become lower than in the large ballast chamber due to more rapid diffusion loss. As a result, the reverse of the active phase situation occurs, namely, the plasma does not flow from the small to the large chamber, but in the opposite direction, from diffusive to discharge volume, and both the plasma density gradient and the self-consistent ambipolar electric field in the small chamber change directions. This phenomenon leads to new effects in the discharge volume, in particular a decreasing rate of decay of densities of charged particles and electron temperature. Thus, in the afterglow the presence of a large additional ballast volume has a significant impact on the plasma transport. In this case, a simple treatment of the plasma in the discharge chamber in the framework of a spatially averaged model (for example, the global model) is inadequate

  7. A New Approach on Output Current Calculation for Thimble-type Ionization Chamber with Variation of Gamma-ray Irradiation Angle

    International Nuclear Information System (INIS)

    Kim, Jae Cheon; Kim, Soon Young; Kim, Yong Kyun; Kim, Jong Kyung

    2006-01-01

    The output current of an ionization chamber is directly connected with the size of the active volume and ion-pair distribution in air volume. Their accurate assessments are significantly important in order to analyze the design characteristics of an ionization chamber and interpret the measurements with it. It has been generally assumed that ion-pairs are generated uniformly in air volume for simplicity although they are not uniformly distributed due to various source and geometry conditions. Ion-pair distribution is mainly dependent on the irradiation source conditions, while active volume is deeply related to the ionization chamber design. Therefore, such assumption should be examined if the ion-pair distribution affects real output current of the active volume defined by electric field. A new analytical approach considering both electric field and ion-pair nonuniformity has been proposed to analyze accurately the design characteristics of an ionization chamber and interpretation of measurements with it. The angular dependence analysis was carried out to validate the new concept for calculation of output current

  8. The drift velocity monitoring system of the CMS barrel muon chambers

    CERN Document Server

    Altenhoefer, Georg Friedrich; Heidemann, Carsten Andreas; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel Francois

    2017-01-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  9. The drift velocity monitoring system of the CMS barrel muon chambers

    Science.gov (United States)

    Altenhöfer, Georg; Hebbeker, Thomas; Heidemann, Carsten; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel

    2018-04-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  10. Ion-recombination correction factor κsat for spherical ion chambers irradiated by continuous photom beams

    International Nuclear Information System (INIS)

    Piermattei, A.; Azario, L.; Arcovito, G.

    1996-01-01

    The large range of reference air kerma rates of brachytherapy sources involves the use of large-volume ionization chambers. When such ionization chambers are used the ion-recombination correction factor k sat has to be determined. In this paper three spherical ion chambers with volume ranging from 30 to 10 4 cm 3 have been irradiated by photons of a 192 Ir source to determine the k sat factors. The ionization currents of the ion chambers as a function of the applied voltage and the air kerma rate have been analysed to determine the contribution of the initial and general ion recombination. The k sat values for large-volume ionization chambers obtained by considering the general ion recombination as predominant (Almond's approach) are in disagreement with the results obtained using methods that consider both initial and general ion-recombination contributions (Niatel's approach). Such disagreement can reach 0.7% when high currents are measured for a high-activity source calibration in terms of reference air kerma rate. In this study a new 'two-voltage' method, independent of the voltage ratio given by a dosimetry system, is proposed for practical dosimetry of continuous x-and gamma-radiation beams. In the case where the Almond approach is utilized, the voltage ratio V 1 /V 2 should be less than 2 instead of Almond's limit of V 1 /V 2 <5. (Author)

  11. Wire chamber requirements and tracking simulation studies for tracking systems at the superconducting super collider

    International Nuclear Information System (INIS)

    Hanson, G.G.; Niczyporuk, B.B.; Palounek, A.P.T.

    1989-02-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tracking systems which meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. Such computer simulation studies are necessary to determine the feasibility of wire chamber tracking systems for complex events in a high-rate environment such as the SSC. 11 refs., 9 figs., 1 tab

  12. In Vitro Culturing and Live Imaging of Drosophila Egg Chambers: A History and Adaptable Method.

    Science.gov (United States)

    Peters, Nathaniel C; Berg, Celeste A

    2016-01-01

    The development of the Drosophila egg chamber encompasses a myriad of diverse germline and somatic events, and as such, the egg chamber has become a widely used and influential developmental model. Advantages of this system include physical accessibility, genetic tractability, and amenability to microscopy and live culturing, the last of which is the focus of this chapter. To provide adequate context, we summarize the structure of the Drosophila ovary and egg chamber, the morphogenetic events of oogenesis, the history of egg-chamber live culturing, and many of the important discoveries that this culturing has afforded. Subsequently, we discuss various culturing methods that have facilitated analyses of different stages of egg-chamber development and different types of cells within the egg chamber, and we present an optimized protocol for live culturing Drosophila egg chambers.We designed this protocol for culturing late-stage Drosophila egg chambers and live imaging epithelial tube morphogenesis, but with appropriate modifications, it can be used to culture egg chambers of any stage. The protocol employs a liquid-permeable, weighted "blanket" to gently hold egg chambers against the coverslip in a glass-bottomed culture dish so the egg chambers can be imaged on an inverted microscope. This setup provides a more buffered, stable, culturing environment than previously published methods by using a larger volume of culture media, but the setup is also compatible with small volumes. This chapter should aid researchers in their efforts to culture and live-image Drosophila egg chambers, further augmenting the impressive power of this model system.

  13. Effect of hydration status on atrial and ventricular volumes and function in healthy adult volunteers.

    Science.gov (United States)

    Schantz, Daryl I; Dragulescu, Andreea; Memauri, Brett; Grotenhuis, Heynric B; Seed, Mike; Grosse-Wortmann, Lars

    2016-10-01

    Assessment of cardiac chamber volumes is a fundamental part of cardiac magnetic resonance (CMR) imaging. While the effects of inter- and intraobserver variability have been studied and have a recognized effect on the comparability of serial cardiac MR imaging studies, the effect of differences in hydration status has not been evaluated. To evaluate the effects of volume administration on cardiac chamber volumes. Thirteen healthy adults underwent a baseline cardiac MR to evaluate cardiac chamber volumes after an overnight fast. They were then given two saline boluses of 10 ml/kg of body weight and the cardiac MR was repeated immediately after each bolus. From the baseline scan to the final scan there was a significant increase in all four cardiac chamber end-diastolic volumes. Right atrial volumes increased 8.0%, from 61.1 to 66.0 ml/m2 (PHydration status has a significant effect on the end-diastolic volumes of all cardiac chambers assessed by cardiac MR. Thus, hydration represents a "variable" that should be taken into account when assessing cardiac chamber volumes, especially when performing serial imaging studies in a patient.

  14. Performance tests of a special ionization chamber for X-rays in mammography energy range

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.O., E-mail: jonas.silva@ufg.br [Universidade Federal de Goiás (UFG), Goiânia (Brazil). Instituto de Física; Caldas, L.V.E. [Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP (Brazil). Centro de Metrologia das Radiações

    2017-07-01

    A special mammography homemade ionization chamber was developed to be applied for mammography energy range dosimetry. This chamber has a total sensitive volume of 6 cm{sup 3} and is made of a PMMA body and graphite coated collecting electrode. Performance tests as saturation, ion collection efficiency, linearity of chamber response versus air kerma rate and energy dependence were determined. The results obtained with this special homemade ionization chamber are within the limits stated in international recommendations. This chamber can be used in quality control programs of mammography energy range. All measurements were carried out at the Calibration Laboratory of IPEN. (author)

  15. Express determination of the volume 222Rn activity using the Lucas Type scintillation cells

    International Nuclear Information System (INIS)

    Muellerova, M.; Holy, K.; Polaskova, A.

    2006-01-01

    This report deals with the possibility of the accurate determination of the volume radon activity using the Lucas type scintillation chamber before the radioactive equilibrium between the radon and its decay products is achieved. This method allows to obtain data about the volume activity of the sample promptly and also it offers a possibility to apply the detector for measurements more times a day. We developed a method for the determination of the detection efficiency of the scintillation chamber for varied time periods after the chamber was filled up with a sample. The volume radon activity calculated from the count rates in saturated conditions is in a good agreement with the volume radon activity calculated from our derived relation. It was shown that the scintillation chamber can be used for the express determination of the volume radon activity. The time between the individual applications of the scintillation chamber can be compressed maintaining of sufficient accuracy of the determination of the volume radon activity. (authors)

  16. Computational investigation of the temperature separation in vortex chamber

    International Nuclear Information System (INIS)

    Anish, S.; Setoguchi, T.; Kim, H. D.

    2014-01-01

    The vortex chamber is a mechanical device, without any moving parts that separates compressed gas into a high temperature region and a low temperature region. Functionally vortex chamber is similar to a Ranque-Hilsch vortex tube (RVHT), but it is a simpler and compact structure. The objective of the present study is to investigate computationally the physical reasoning behind the energy separation mechanism inside a vortex chamber. A computational analysis has been performed using three-dimensional compressible Navier Stokes equations. A fully implicit finite volume scheme was used to solve the governing equations. A commercial software ANSYS CFX is used for this purpose. The computational predictions were validated with existing experimental data. The results obtained show that the vortex chamber contains a large free vortex zone and a comparatively smaller forced vortex region. The physical mechanism that causes the heating towards periphery of the vortex chamber is identified as the work done by the viscous force. The cooling at the center may be due to expansion of the flow. The extent of temperature separation greatly depends on the outer diameter of the vortex chamber. A small amount of compression is observed towards the periphery of the vortex chamber when the outer diameter is reduced.

  17. New Submersed Chamber for Calibration of Relative Humidity Instruments at HMI/FSB-LPM

    Science.gov (United States)

    Sestan, D.; Zvizdic, D.; Sariri, K.

    2018-02-01

    This paper gives a detailed description of a new chamber designed for calibration of relative humidity (RH) instruments at Laboratory for Process Measurement (HMI/FSB-LPM). To the present time, the calibrations of RH instruments at the HMI/FSB-LPM were done by comparison method using a climatic chamber of large volume and calibrated dew point hygrometer with an additional thermometer. Since 2010, HMI/FSB-LPM in cooperation with Centre for Metrology and Accreditation in Finland (MIKES) developed the two primary dew point generators which cover the dew point temperature range between - 70 {°}C and 60 {°}C. In order to utilize these facilities for calibrations of the RH instruments, the new chamber was designed, manufactured and installed in the existing system, aiming to extend its range and reduce the related calibration uncertainties. The chamber construction allows its use in a thermostatic bath of larger volume as well as in the climatic chambers. In the scope of this paper, performances of the new chamber were tested while it was submersed in a thermostated bath. The chamber can simultaneously accommodate up to three RH sensors. In order to keep the design of the chamber simple, only cylindrical RH sensors detachable from display units can be calibrated. Possible optimizations are also discussed, and improvements in the design proposed. By using the new chamber, HMI/FSB-LPM reduced the expanded calibration uncertainties (level of confidence 95 %, coverage factor k=2) from 0.6 %rh to 0.25 %rh at 30 %rh (23 {°}C), and from 0.8 %rh to 0.53 %rh at 70 %rh (23 {°}C).

  18. TH-E-BRE-03: A Novel Method to Account for Ion Chamber Volume Averaging Effect in a Commercial Treatment Planning System Through Convolution

    International Nuclear Information System (INIS)

    Barraclough, B; Li, J; Liu, C; Yan, G

    2014-01-01

    Purpose: Fourier-based deconvolution approaches used to eliminate ion chamber volume averaging effect (VAE) suffer from measurement noise. This work aims to investigate a novel method to account for ion chamber VAE through convolution in a commercial treatment planning system (TPS). Methods: Beam profiles of various field sizes and depths of an Elekta Synergy were collected with a finite size ion chamber (CC13) to derive a clinically acceptable beam model for a commercial TPS (Pinnacle 3 ), following the vendor-recommended modeling process. The TPS-calculated profiles were then externally convolved with a Gaussian function representing the chamber (σ = chamber radius). The agreement between the convolved profiles and measured profiles was evaluated with a one dimensional Gamma analysis (1%/1mm) as an objective function for optimization. TPS beam model parameters for focal and extra-focal sources were optimized and loaded back into the TPS for new calculation. This process was repeated until the objective function converged using a Simplex optimization method. Planar dose of 30 IMRT beams were calculated with both the clinical and the re-optimized beam models and compared with MapCHEC™ measurements to evaluate the new beam model. Results: After re-optimization, the two orthogonal source sizes for the focal source reduced from 0.20/0.16 cm to 0.01/0.01 cm, which were the minimal allowed values in Pinnacle. No significant change in the parameters for the extra-focal source was observed. With the re-optimized beam model, average Gamma passing rate for the 30 IMRT beams increased from 92.1% to 99.5% with a 3%/3mm criterion and from 82.6% to 97.2% with a 2%/2mm criterion. Conclusion: We proposed a novel method to account for ion chamber VAE in a commercial TPS through convolution. The reoptimized beam model, with VAE accounted for through a reliable and easy-to-implement convolution and optimization approach, outperforms the original beam model in standard IMRT QA

  19. High volume tidal or current flow harnessing system

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, A.M.

    1984-08-07

    Apparatus permitting the utilization of large volumes of water in the harnessing and extracting of a portion of the power generated by the rise and fall of ocean tides, ocean currents, or flowing rivers includes the provision of a dam, and a specialized single cavity chamber of limited size as compared with the water head enclosed by the dam, and an extremely high volume gating system in which all or nearly all of the water between the high and low levels on either side of the dam is cyclically gated through the single chamber from one side of the dam to the other so as to alternately provide positive air pressure and a partial vacuum within the single chamber. In one embodiment, the specialized chamber has a barrier at the bottom which divides the bottom of the chamber in half, large ports at the bottom of the chamber to permit inflow and outflow of high volumes of water, and ganged structures having a higher total area than that of corresponding ports, in which the structures form sluice gates to selectively seal off and open different sets of ports. In another embodiment, a single chamber is used without a barrier. In this embodiment, vertical sluice gates are used which may be activated automatically by pressures acting on the sluice gates as a result of ingested and expelled water.

  20. Magma Chamber Model of Batur Caldera, Bali, Indonesia: Compositional Variation of Two Facies, Large-Volume Dacitic Ignimbrites

    Directory of Open Access Journals (Sweden)

    Igan S. Sutawidjaja

    2015-05-01

    Full Text Available DOI:10.17014/ijog.2.2.111-124Batur is one of the finest known calderas on Earth, and is the source of at least two major ignimbrite eruptions with a combined volume of some 84 km3 and 19 km3. These ignimbrites have a similar compositions, raising the question of whether they are geneticaly related. The Batur Ignimbrite-1 (BI-1 is crystal poor, containing rhyodacitic (68 - 70wt % SiO2, white to grey pumices and partly welded and unwelded. The overlying Batur Ignimbrite-2 (BI-2 is a homogeneous grey to black dacitic pumices (64 - 66 wt % SiO2, unwelded and densely welded (40 - 60% vesicularity, crystal and lithic rich. Phase equilibria indicate that the Batur magma equilibrated at temperatures of 1100 - 1300oC with melt water contents of 3 - 6 wt%. The post-eruptive Batur magma was cooler (<1100oC and it is melt more water rich (> 6 wt % H2O. A pressure of 20 kbar is infered from mineral barometry for the Batur magma chamber. Magmatic chamber model is one in which crystals and melt separate from a convecting Batur magma by density differences, resulting in a stratified magma chamber with a homogeneous central zone, a crystal-rich accumulation zone near the walls or base, and a buoyant, melt-rich zone near the top. This is consistent with the estimated magma temperatures and densities: the pre-eruptive BI-1 magma was hoter (1300oC and more volatile rich (6 wt % H2O with density 2.25 g/cm3 than the BI-2 magma (1200oC; 4 wt % H2O in density was higher (2.50 g/cm3. Batur melt characteristics and intensive parameters are consistent with a volatile oversaturation-driven eruption. However, the higher H2O content, high viscosity and low crystal content of the BI-1 magma imply an external eruption trigger.

  1. Effect of hydration status on atrial and ventricular volumes and function in healthy adult volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Schantz, Daryl I. [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); University of Manitoba, Variety Children' s Heart Centre, Winnipeg, MB (Canada); Dragulescu, Andreea [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); Memauri, Brett [University of Manitoba, Department of Radiology, St. Boniface General Hospital, Winnipeg, MB (Canada); Grotenhuis, Heynric B. [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); Wilhelmina Children' s Hospital, Utrecht (Netherlands); Seed, Mike; Grosse-Wortmann, Lars [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada)

    2016-10-15

    Assessment of cardiac chamber volumes is a fundamental part of cardiac magnetic resonance (CMR) imaging. While the effects of inter- and intraobserver variability have been studied and have a recognized effect on the comparability of serial cardiac MR imaging studies, the effect of differences in hydration status has not been evaluated. To evaluate the effects of volume administration on cardiac chamber volumes. Thirteen healthy adults underwent a baseline cardiac MR to evaluate cardiac chamber volumes after an overnight fast. They were then given two saline boluses of 10 ml/kg of body weight and the cardiac MR was repeated immediately after each bolus. From the baseline scan to the final scan there was a significant increase in all four cardiac chamber end-diastolic volumes. Right atrial volumes increased 8.0%, from 61.1 to 66.0 ml/m2 (P<0.001), and left atrial volumes increased 10.0%, from 50.0 to 55.0 ml/m2 (P<0.001). Right ventricular volumes increased 6.0%, from 91.1 to 96.5 ml/m2 (P<0.001), and left ventricular volumes increased 3.2%, from 87.0 to 89.8 ml/m2 (P<0.001). Hydration status has a significant effect on the end-diastolic volumes of all cardiac chambers assessed by cardiac MR. Thus, hydration represents a ''variable'' that should be taken into account when assessing cardiac chamber volumes, especially when performing serial imaging studies in a patient. (orig.)

  2. Effect of hydration status on atrial and ventricular volumes and function in healthy adult volunteers

    International Nuclear Information System (INIS)

    Schantz, Daryl I.; Dragulescu, Andreea; Memauri, Brett; Grotenhuis, Heynric B.; Seed, Mike; Grosse-Wortmann, Lars

    2016-01-01

    Assessment of cardiac chamber volumes is a fundamental part of cardiac magnetic resonance (CMR) imaging. While the effects of inter- and intraobserver variability have been studied and have a recognized effect on the comparability of serial cardiac MR imaging studies, the effect of differences in hydration status has not been evaluated. To evaluate the effects of volume administration on cardiac chamber volumes. Thirteen healthy adults underwent a baseline cardiac MR to evaluate cardiac chamber volumes after an overnight fast. They were then given two saline boluses of 10 ml/kg of body weight and the cardiac MR was repeated immediately after each bolus. From the baseline scan to the final scan there was a significant increase in all four cardiac chamber end-diastolic volumes. Right atrial volumes increased 8.0%, from 61.1 to 66.0 ml/m2 (P<0.001), and left atrial volumes increased 10.0%, from 50.0 to 55.0 ml/m2 (P<0.001). Right ventricular volumes increased 6.0%, from 91.1 to 96.5 ml/m2 (P<0.001), and left ventricular volumes increased 3.2%, from 87.0 to 89.8 ml/m2 (P<0.001). Hydration status has a significant effect on the end-diastolic volumes of all cardiac chambers assessed by cardiac MR. Thus, hydration represents a ''variable'' that should be taken into account when assessing cardiac chamber volumes, especially when performing serial imaging studies in a patient. (orig.)

  3. Uncertainty evaluation of the kerma in the air, related to the active volume in the ionization chamber of concentric cylinders, by Monte Carlo simulation; Avaliacao de incerteza no kerma no ar, em relacao ao volume ativo da camara de ionizacao de cilindros concentricos, por simulacao de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Lo Bianco, A.S.; Oliveira, H.P.S.; Peixoto, J.G.P., E-mail: abianco@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI)

    2009-07-01

    To implant the primary standard of the magnitude kerma in the air for X-ray between 10 - 50 keV, the National Metrology Laboratory of Ionizing Radiations (LNMRI) must evaluate all the uncertainties of measurement related with Victtoren chamber. So, it was evaluated the uncertainty of the kerma in the air consequent of the inaccuracy in the active volume of the chamber using the calculation of Monte Carlo as a tool through the Penelope software

  4. High resolution imaging of particle interactions in a large bubble chamber using holographic techniques

    International Nuclear Information System (INIS)

    Akbari, Homaira.

    1988-01-01

    Particle interactions were recorded holographically in a large volume of the 15-foot Bubble Chamber at Fermilab. This cryogenic bubble chamber was filled with a heavy Neon-Hydrogen mixture and was exposed to a wideband neutrino beam with mean energy of 150 GeV. The use of holography in combination with conventional photography provides a powerful tool for direct detection of short-lived particles. Holography gives a high resolution over a large depth of field which can not be achieved with conventional photography. A high-power pulsed ruby laser was used as the holographic light source. Since short pulses of some 50 ns duration at the required energy were found to give rise to boiling during the chamber's expansion, a reduction of the instantaneous power at a given energy was required to suppress this unwanted after-effect. This was achieved by developing a unique technique for stretching the pulses using an electro-optic feedback loop. One hundred thousand holograms were produced during a wide-band neutrino experiment (E-632, 1985) using a dark-field holographic system. Analysis of a sample of holograms shows a resolution of 150 μm was achieved in an ovoidal shape fiducial volume of 0.48 m 3 % of the 14 m 3 total fiducial volume of the chamber

  5. Metrology of the radon in air volume activity at the italian radon reference chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sciocchetti, G.; Cotellessa, G.; Soldano, E.; Pagliari, M. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia Roma (Italy)

    2006-07-01

    The approach of the Italian National Institute of Ionising Radiations (I.N.M.R.I.-ENEA) on radon metrology has been based on a complete and integrated system which can be used to calibrate the main types of {sup 222}Rn in air measuring instruments with international traceability. The Italian radon reference chamber is a research and calibration facility developed at the Casaccia Research Center in Roma. This facility has an inner volume of one m{sup 3}. The wall is a cylindrical stainless steel vessel coupled with an automated climate apparatus operated both at steady and dynamic conditions. The control and data acquisition equipment is based on Radotron system, developed to automate the multitasking management of different sets of radon monitors and climatic sensors. A novel approach for testing passive radon monitors with an alpha track detector exposure standard has been developed. It is based on the direct measurement of radon exposure with a set of passive integrating monitors based on the new ENEA piston radon exposure meter. This paper describes the methodological approach on radon metrology, the status-of-art of experimental apparatus and the standardization procedures. (authors)

  6. Metrology of the radon in air volume activity at the italian radon reference chamber

    International Nuclear Information System (INIS)

    Sciocchetti, G.; Cotellessa, G.; Soldano, E.; Pagliari, M.

    2006-01-01

    The approach of the Italian National Institute of Ionising Radiations (I.N.M.R.I.-ENEA) on radon metrology has been based on a complete and integrated system which can be used to calibrate the main types of 222 Rn in air measuring instruments with international traceability. The Italian radon reference chamber is a research and calibration facility developed at the Casaccia Research Center in Roma. This facility has an inner volume of one m 3 . The wall is a cylindrical stainless steel vessel coupled with an automated climate apparatus operated both at steady and dynamic conditions. The control and data acquisition equipment is based on Radotron system, developed to automate the multitasking management of different sets of radon monitors and climatic sensors. A novel approach for testing passive radon monitors with an alpha track detector exposure standard has been developed. It is based on the direct measurement of radon exposure with a set of passive integrating monitors based on the new ENEA piston radon exposure meter. This paper describes the methodological approach on radon metrology, the status-of-art of experimental apparatus and the standardization procedures. (authors)

  7. Prototype exposure chamber of radon for animal experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuji; Koizumi, Akira; Yonehara, Hidenori; Shimo, Michikuni; Inaba, Jiro [National Institute of Radiological Sciences, Chiba (Japan)

    1998-12-31

    To evaluate a dose conversion factor from the `Working Level of Month` (WLM) of radon to the absorbed dose (mGy), the quality of radon and its progeny was assessed, and exposures controlled for each deposition region were planed as follows: 1) exposure of radon gas to the entire respiratory tract, 2) exposure of `unattached` fractions to the upper respiratory tract, 3) exposure of `attached` fractions onto ultrafine particles to the deep lung, 4) exposure of `attached` fractions onto fine particles to the lower respiratory tract, 5) exposure of `attached` fractions onto coarse particles to the upper respiratory tract. In this preliminary study, a prototype exposure system of radon and its progeny for small rodents was designed. A whole body exposure chamber with a volume of about 0.5 m{sup 3} was used, which it held 20 rats. The aging and mixing chamber separated by the exposure chamber had a volume of about 1 m{sup 3}. As career aerosols of radon progeny, carnauba wax aerosols as solid particles, DOS aerosols as liquid particles and NaCl aerosols as hygroscopic particles were selected. These aerosols generated using a vaporization-condensation method and/or an electrical classification method were almost monodisperse with {sigma}{sub g} of <1.2. The monitoring data on biologically related gases showed an importance in the oxygen injection system and the carbon dioxide absorption system. (author)

  8. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    Science.gov (United States)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  9. Investigations in a drift chamber using 250 MHz analogue-digital-converters

    International Nuclear Information System (INIS)

    Scharf, F.A.

    1993-06-01

    The performance of a new 250 MHz FADC module was investigated in a small drift chamber system. Straight tracks were induced in the chamber volume by UV-LASER beams. The time resolution was determined from drift time measurements for four neighbouring signal wires. By use of a beam splitter a pair of parallel beams was produced. An appropriate rotation of this pair relative to the signal wire plane allowed the determination of the double hit resolution. A comparison of the obtained values with the results achieved with 100 MHz FADC modules showed that the new module is well suited for chamber read out. The attainable improvements however are small. (orig.) [de

  10. Hydrostatic Hyperbaric Chamber Ventilation System

    Science.gov (United States)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  11. Left-sided cardiac chamber evaluation using single-phase mid-diastolic coronary computed tomography angiography: derivation of normal values and comparison with conventional end-diastolic and end-systolic phases

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Jonathan R. [Technion-Israel Institute of Technology, Haifa (Israel); Abadi, Sobhi [Rambam Health Care Campus, Medical Imaging Department, Haifa (Israel); Solomonica, Amir [Rambam Health Care Campus, Cardiology Department, Haifa (Israel); Mutlak, Diab; Aronson, Doron; Agmon, Yoram; Lessick, Jonathan [Rambam Health Care Campus, Cardiology Department, Haifa (Israel); Technion-Israel Institute of Technology, Haifa (Israel)

    2016-10-15

    With increasing use of prospective scanning techniques for cardiac computed tomography (CT), meaningful evaluation of chamber volumes is no longer possible due to lack of normal values. We aimed to define normal values for mid-diastolic (MD) chamber volumes and to determine their significance in comparison to maximum volumes. Normal ranges at MD for left ventricular (LV) volume and mass and left atrial (LA) volume were determined from 101 normal controls. Thereafter, 109 consecutive CT scans, as well as 21 post-myocardial infarction patients, were analysed to determine the relationship between MD and maximum volumes. MD volumes correlated closely with maximal volumes (r = 0.99) for both LV and LA, and could estimate maximum volumes accurately. LV mass, measured at ED or MD, were very similar (r = 0.99). Abnormal MD volumes had excellent sensitivity and specificity to detect chamber enlargement based on maximal volumes (LV 86 %, 100 %, respectively; LA 100 %, 92 %, respectively). A single MD phase can identify patients with cardiomegaly or LV hypertrophy with a high degree of accuracy and MD volumes can give an accurate estimate of maximum LV and LA volumes. circle Traditionally, helical cardiac CT provided clinically important information from chamber volume analysis. (orig.)

  12. Linear accelerator section alignment in a vacuum chamber

    International Nuclear Information System (INIS)

    Vengrov, R.M.; Vinogradskij, N.N.; Danil'tsev, E.N.; Iosseliani, D.D.; Kosyak, V.S.; Porubaj, N.I.; Ugarov, S.B.

    1989-01-01

    Alignment technique for multisectional accelerating structures, that may be used in designing new accelerators for experimental and applied purposes, is described. The accuracy of the alignment of four-chamber resonator sections directly in an accelerator vacuum volume without its depressurization is not less than 100 μm. 8 refs.; 5 figs.; 5 tabs

  13. Flatness of two-dimensional beam profile measured with an ionization chamber array

    International Nuclear Information System (INIS)

    Stefanovski, Z.

    2006-01-01

    Open beam profiles are basic dosimetric characteristics for the formation of the dose calculation algorithms parameters and for determination of beam quality. One characteristic of the beam profiles as a measure for the beam quality is the field flatness defined as ratio of the difference of maximum and minimum dose in central 80% of the field to the sum of these doses in the part of the field. The measurements, instead with an ordinary ionization chamber, were performed with a chamber array in two depths (1.6 cm and 10 cm) in water phantom. Nominal photon beam energy was 6 MV and field size was 25 cm x 25 cm on the water surface. Field flatness was in the range of 1-2 % which is in accordance with the data acquired during the acceptance testing and commissioning of the accelerators. with the array chamber the beam profiles can be performed quickly and preciously. These features recommend a chamber array as an excellent tool for periodic quality control of beam profiles. (Author)

  14. Experiences with large-area frisch grid chambers in low-level alpha spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Winkler, R. (Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Strahlenschutz)

    1984-06-15

    The properties of parallel-plate gridded ionization chambers with areas of 300 cm/sup 2/, developed by us for alpha spectrometry of samples with low specific alpha activity are reported. Several practical hints for optimum operating conditions are presented. The chambers can be operated routinely at atmospheric pressure for several days, without the need for purification of the gas filling (P10). The minimum detectable activity at 5 MeV is 0.01 pCi, based on 4.65 standard deviations of background and 1000 min counting time. At the GSF Research Center ionization chambers of this type are used for the analysis of natural alpha emitters, as well as of transuranium nuclides in environmental samples by: a) direct alpha spectrometry without any previous treatment of the sample, b) semi-direct spectrometry after removal of organic matter by low-temperature ashing and c) spectrometry after chemical separation. Some typical example of application are given. Furthermore the range of application of the chambers in comparison to semiconductor detectors in the field of low-level alpha spectrometry is discussed.

  15. Experiences with large-area frisch grid chambers in low-level alpha spectrometry

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1984-01-01

    The properties of parallel-plate gridded ionization chambers with areas of 300 cm 2 , developed by us for alpha spectrometry of samples with low specific alpha activity are reported. Several practical hints for optimum operating conditions are presented. The chambers can be operated routinely at atmospheric pressure for several days, without the need for purification of the gas filling (P10). The minimum detectable activity at 5 MeV is 0.01 pCi, based on 4.65 standard deviations of background and 1000 min counting time. At the GSF Research Center ionization chambers of this type are used for the analysis of natural alpha emitters, as well as of transuranium nuclides in environmental samples by: a) direct alpha spectrometry without any previous treatment of the sample, b) semi-direct spectrometry after removal of organic matter by low-temperature ashing and c) spectrometry after chemical separation. Some typical example of application are given. Furthermore the range of application of the chambers in comparison to semiconductor detectors in the field of low-level alpha spectrometry is discussed. (orig.)

  16. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    Science.gov (United States)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  17. Evaluation of a new pencil-type ionization chamber for dosimetry in computerized tomography beams

    International Nuclear Information System (INIS)

    Castro, Maysa C. de; Neves, Lucio P.; Silva, Natalia F. da; Santos, William de S.; Caldas, Linda V.E.

    2014-01-01

    For performing dosimetry in computed tomography beams (CT), use is made of a pencil-type ionization chamber, since this has a uniform response to this type of beam. The common commercial chambers in Brazil have a sensitive volume length of 10 cm. Several studies of prototypes of this type of ionization chamber have been conducted, using different materials and geometric configurations, in the Calibration Laboratory Instruments of the Institute of Nuclear and Energy Research (LCI) and these showed results within internationally acceptable limits. These ion chambers of 10 cm are widely used nowadays, however studies have revealed that they have underestimated the dose values. In order to solve this problem, we developed a chamber with sensitive volume length of 30 cm. As these are not yet very common and no study has yet been performed on LCI conditions on their behavior, is important that the characteristics of these dosemeters are known, and the influence of its various components. For your review, we will use the Monte Carlo code Penelope, freely distributed by the IAEA. This method has revealed results consistent with other codes. The results for this new prototype can be used in dosimetry of the CT of the hospitals and calibration laboratories as the LCI

  18. Neutrino Interactions in a Hybrid Emulsion - Bubble Chamber Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbladt, Robert Ludwig [Univ. of Washington, Seattle, WA (United States)

    1981-05-01

    target consisting of 22 - 1 liter stacks of cryogenically sensitive nuclear emulsion has been exposed inside the 15 Foot Bubble Chamber to the Fermilab wide-band neutrino beam. A hybrid system of emulsion plus bubble chamber was used to find and analyze neutrino interactions with nuclei in the emulsion target. The average multiplicity of charged minimum ionization tracks of the 45 events was found to be 6.8 ± 0.5. The normalized multiplicity with respect to neutrino - proton interactions at the same average hadronic center of mass energy was found to be 1.3 ± 0.2. When compared to neutrino - proton interactions, the rapidity distribution shows a clear signal for intranuclear cascading in the target fragmentation region. Measured rapidity and multiplicity distributions are compared with predictions of the Growth of Longitudinal Distances Model of Nikolaev and the Coherent Tube Model.

  19. Common support and integration of the BMS/BMF type MDT/RPC chambers of the muon spectrometer of the ATLAS experiment

    International Nuclear Information System (INIS)

    Barashkov, A.V.; Glonti, G.L.; Gongadze, A.L.; Gostkin, M.I.; Gus'kov, A.V.; Dedovich, D.V.; Demichev, M.A.; Zhemchugov, A.S.; Il'yushenko, E.N.; Kotov, S.A.; Korolevich, Ya.V.; Kruchonok, V.G.; Krumshtejn, Z.V.; Kuznetsov, N.K.; Lomidze, D.D.; Potrap, I.N.; Kharchenko, D.V.; Tskhadadze, Eh.G.; Chepurnov, V.F.; Shelkov, G.A.; Podkladkin, S.Yu.; Sekhniaidze, G.G.

    2005-01-01

    The common support system for muon BMS/BMF drift chambers with trigger RPC chambers for the muon spectrometer of the ATLAS experiment is described. The support systems are intended for the chambers integration into combined modules and for the subsequent installation in the experimental set-up. The technology of chambers integration is described. The sagging of the drift chambers was tested by tilting the modules at different angles. The measurements were performed by means of the RASNIK optical system. The normal operation of kinematic supports was confirmed. We also present the method of the sag regulation for the BMS/BMF chambers lying in the horizontal plane which provides the minimum difference between signal wire and detector tube body sags when the modules are later installed in their working positions

  20. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin

    2013-07-01

    The enhancement of laminar flame development using microwave-assisted spark ignition has been investigated for methane-air mixtures at a range of initial pressures and equivalence ratios in a 1.45. l constant volume combustion chamber. Microwave enhancement was evaluated on the basis of several parameters including flame development time (FDT) (time for 0-10% of total net heat release), flame rise time (FRT) (time for 10-90% of total net heat release), total net heat release, flame kernel growth rate, flame kernel size, and ignitability limit extension. Compared to a capacitive discharge spark, microwave-assisted spark ignition extended the lean and rich ignition limits at all pressures investigated (1.08-7.22. bar). The addition of microwaves to a capacitive discharge spark reduced FDT and increased the flame kernel size for all equivalence ratios tested and resulted in increases in the spatial flame speed for sufficiently lean flames. Flame enhancement is believed to be caused by (1) a non-thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure of the mixture increases, with negligible flame enhancement observed above 3. bar. © 2013 The Combustion Institute.

  1. Study of the collecting electrode material of an extrapolation chamber by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Vedovato, Uly Pita; Santos, William S.; Perini, Ana Paula; Belinato, Walmir

    2017-01-01

    In this work, the influence of different materials of the collecting electrode on the response of an extrapolation ionization chamber, was evaluated. This ionization chamber was simulated with the MCNP-4C Monte Carlo code and the spectrum of a standard diagnostic radiology beam (RQR5) was utilized. The different results are due to interactions of photons with different materials of the collecting electrode contributing with different values of energy deposited in the sensitive volume of the ionization chamber, which depends on the atomic number of the evaluated materials. The material that presented the least influence was graphite, the original constituent of the ionization chamber. (author)

  2. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    International Nuclear Information System (INIS)

    Thies, C.; Geddis, A.M.; Guzman, A.G.

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1 degrees C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm 3 with less than 1% error

  3. Design and construction of a radiation monitor with ionization chamber

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1994-01-01

    The design and construction of a portable radiation monitor with ionization chamber for gamma and x rays measurements in the range from 40 KeV to 2 MeV are described in detail. The monitor is calibrated to give the exposure rate in Roentgens/hour in three linear ranges: 0-25 mR/h, 0-250 mR/h and 0-2500 mR/h for an ionization chamber with a sensitive volume of 600 cubic centimeters. Two conventional 9 V alkaline batteries are used to energize the monitor. The small current coming from the ionization chamber is measured by an operational amplifier with electrometer characteristics. The high voltage power supply to bias the chamber is made with a blocking oscillator and a ferrite transformer. Starting form a discussion of the desired characteristics of the monitor, the technical specifications are established. The design criteria for every section are shown. The testing procedures used to qualify every block and the results for three units are reported. (Author)

  4. Technical Note: Impact of the geometry dependence of the ion chamber detector response function on a convolution-based method to address the volume averaging effect

    Energy Technology Data Exchange (ETDEWEB)

    Barraclough, Brendan; Lebron, Sharon [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32608 and J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Li, Jonathan G.; Fan, Qiyong; Liu, Chihray; Yan, Guanghua, E-mail: yangua@shands.ufl.edu [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32608 (United States)

    2016-05-15

    Purpose: To investigate the geometry dependence of the detector response function (DRF) of three commonly used scanning ionization chambers and its impact on a convolution-based method to address the volume averaging effect (VAE). Methods: A convolution-based approach has been proposed recently to address the ionization chamber VAE. It simulates the VAE in the treatment planning system (TPS) by iteratively convolving the calculated beam profiles with the DRF while optimizing the beam model. Since the convolved and the measured profiles are subject to the same VAE, the calculated profiles match the implicit “real” ones when the optimization converges. Three DRFs (Gaussian, Lorentzian, and parabolic function) were used for three ionization chambers (CC04, CC13, and SNC125c) in this study. Geometry dependent/independent DRFs were obtained by minimizing the difference between the ionization chamber-measured profiles and the diode-measured profiles convolved with the DRFs. These DRFs were used to obtain eighteen beam models for a commercial TPS. Accuracy of the beam models were evaluated by assessing the 20%–80% penumbra width difference (PWD) between the computed and diode-measured beam profiles. Results: The convolution-based approach was found to be effective for all three ionization chambers with significant improvement for all beam models. Up to 17% geometry dependence of the three DRFs was observed for the studied ionization chambers. With geometry dependent DRFs, the PWD was within 0.80 mm for the parabolic function and CC04 combination and within 0.50 mm for other combinations; with geometry independent DRFs, the PWD was within 1.00 mm for all cases. When using the Gaussian function as the DRF, accounting for geometry dependence led to marginal improvement (PWD < 0.20 mm) for CC04; the improvement ranged from 0.38 to 0.65 mm for CC13; for SNC125c, the improvement was slightly above 0.50 mm. Conclusions: Although all three DRFs were found adequate to

  5. Determination of the minimum size of a statistical representative volume element from a fibre-reinforced composite based on point pattern statistics

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl

    2013-01-01

    In a previous study, Trias et al. [1] determined the minimum size of a statistical representative volume element (SRVE) of a unidirectional fibre-reinforced composite primarily based on numerical analyses of the stress/strain field. In continuation of this, the present study determines the minimu...... size of an SRVE based on a statistical analysis on the spatial statistics of the fibre packing patterns found in genuine laminates, and those generated numerically using a microstructure generator. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  6. Dual chamber system providing simultaneous etch and deposition on opposing substrate sides for growing low defect density epitaxial layers

    Science.gov (United States)

    Kulkarni, Nagraj S [Knoxville, TN; Kasica, Richard J. ,

    2011-03-08

    A dual-chamber reactor can include a housing enclosing a volume having a divider therein, where the divider defines a first chamber and a second chamber. The divider can include a substrate holder that supports at least one substrate and exposes a first side of the substrate to the first chamber and a second side of the substrate to the second chamber. The first chamber can include an inlet for delivering at least one reagent to the first chamber for forming a film on the first side of the substrate, and the second chamber can include a removal device for removing material from the second side of the substrate.

  7. A special mini-extrapolation chamber for calibration of 90Sr+90Y sources

    International Nuclear Information System (INIS)

    Oliveira, Mercia L; Caldas, Linda V E

    2005-01-01

    90 Sr+ 90 Y applicators are commonly utilized in brachytherapy, including ophthalmic procedures. The recommended instruments for the calibration of these applicators are extrapolation chambers, which are ionization chambers that allow the variation of their sensitive volume. Using the extrapolation method, the absorbed dose rate at the applicator surface can be determined. The aim of the present work was to develop a mini-extrapolation chamber for the calibration of 90 Sr+ 90 Y beta ray applicators. The developed mini-chamber has a 3.0 cm outer diameter and is 11.3 cm in length. An aluminized polyester foil is used as the entrance window while the collecting electrode is made of graphited polymethylmethacrylate. This mini-chamber was tested in 90 Sr+ 90 Y radiation beams from a beta particle check source and with a plane ophthalmic applicator, showing adequate results

  8. The Bern Infinitesimal Bubble Chamber (BIBC)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The chamber body was machined from a block of aluminium. The visible volume was cylindrical with 65 mm diameter and 35 mm depth. It was filled with propane or freon. It was meant as vertex detector in the search of short-lived particles. It was also used with in-line holography resulting in 8 µm bubble size and 9 cm depth of the field. See E. Ramseyer, B. Hahn and E. Hugentobler, Nucl. Instrum. Methods 201 (1982) 335.

  9. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    International Nuclear Information System (INIS)

    Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.

    2017-01-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (k e ) and photon scattering correction factor (k sc ) are needed. k e factor corrects the charge loss from the collecting volume and k sc factor corrects the scattering of photons into collecting volume. In this work k e and k sc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the k e and k sc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  10. Micromachined filter-chamber array with passive valves for biochemical assays on beads.

    Science.gov (United States)

    Andersson, H; van der Wijngaart, W; Stemme, G

    2001-01-01

    The filter-chamber array presented here enables a real-time parallel analysis of three different samples on beads in a volume of 3 nL, on a 1 cm2 chip. The filter-chamber array is a system containing three filter-chambers, three passive valves at the inlet channels and a common outlet. The design enables parallel sample handling and time-controlled analysis. The device is microfabricated in silicon and sealed with a Pyrex lid to enable real-time analysis. Single nucleotide polymorphism analysis by using pyrosequencing has successfully been performed in single filter-chamber devices. The passive valves consist of plasma-deposited octafluorocyclobutane and show a much higher resistance towards water and surface-active solutions than previous hydrophobic patches. The device is not sensitive to gas bubbles, clogging is rare and reversible, and the filter-chamber array is reusable. More complex (bio)chemical reactions on beads can be performed in the devices with passive valves than in the devices without valves.

  11. Diastolic chamber properties of the left ventricle assessed by global fitting of pressure-volume data: improving the gold standard of diastolic function.

    Science.gov (United States)

    Bermejo, Javier; Yotti, Raquel; Pérez del Villar, Candelas; del Álamo, Juan C; Rodríguez-Pérez, Daniel; Martínez-Legazpi, Pablo; Benito, Yolanda; Antoranz, J Carlos; Desco, M Mar; González-Mansilla, Ana; Barrio, Alicia; Elízaga, Jaime; Fernández-Avilés, Francisco

    2013-08-15

    In cardiovascular research, relaxation and stiffness are calculated from pressure-volume (PV) curves by separately fitting the data during the isovolumic and end-diastolic phases (end-diastolic PV relationship), respectively. This method is limited because it assumes uncoupled active and passive properties during these phases, it penalizes statistical power, and it cannot account for elastic restoring forces. We aimed to improve this analysis by implementing a method based on global optimization of all PV diastolic data. In 1,000 Monte Carlo experiments, the optimization algorithm recovered entered parameters of diastolic properties below and above the equilibrium volume (intraclass correlation coefficients = 0.99). Inotropic modulation experiments in 26 pigs modified passive pressure generated by restoring forces due to changes in the operative and/or equilibrium volumes. Volume overload and coronary microembolization caused incomplete relaxation at end diastole (active pressure > 0.5 mmHg), rendering the end-diastolic PV relationship method ill-posed. In 28 patients undergoing PV cardiac catheterization, the new algorithm reduced the confidence intervals of stiffness parameters by one-fifth. The Jacobian matrix allowed visualizing the contribution of each property to instantaneous diastolic pressure on a per-patient basis. The algorithm allowed estimating stiffness from single-beat PV data (derivative of left ventricular pressure with respect to volume at end-diastolic volume intraclass correlation coefficient = 0.65, error = 0.07 ± 0.24 mmHg/ml). Thus, in clinical and preclinical research, global optimization algorithms provide the most complete, accurate, and reproducible assessment of global left ventricular diastolic chamber properties from PV data. Using global optimization, we were able to fully uncouple relaxation and passive PV curves for the first time in the intact heart.

  12. Global end-diastolic volume an emerging preload marker vis-a-vis other markers - Have we reached our goal?

    Directory of Open Access Journals (Sweden)

    P M Kapoor

    2016-01-01

    Full Text Available A reliable estimation of cardiac preload is helpful in the management of severe circulatory dysfunction. The estimation of cardiac preload has evolved from nuclear angiography, pulmonary artery catheterization to echocardiography, and transpulmonary thermodilution (TPTD. Global end-diastolic volume (GEDV is the combined end-diastolic volumes of all the four cardiac chambers. GEDV has been demonstrated to be a reliable preload marker in comparison with traditionally used pulmonary artery catheter-derived pressure preload parameters. Recently, a new TPTD system called EV1000™ has been developed and introduced into the expanding field of advanced hemodynamic monitoring. GEDV has emerged as a better preload marker than its previous conventional counterparts. The advantage of it being measured by minimum invasive methods such as PiCCO™ and newly developed EV1000™ system makes it a promising bedside advanced hemodynamic parameter.

  13. Device for automatically operating cooling mode of water in a pressure suppression chamber

    International Nuclear Information System (INIS)

    Sato, Hideyuki.

    1975-01-01

    Object: To provide a system for removing residual heat in a reactor safety system, which can automatically cool water in a pressure suppression chamber when a load on a generator is cut off, so as not to scram the reactor. Structure: When a load cut-off signal is generated by means of rapid closure of a turbine regulating valve or due to the load unbalance relay of generator output, or the like, a sea water pump is started to fully open an outlet valve for the sea water pump, a heat exchanging inlet valve and a minimum crow valve and to fully close a heat exchanging bypass valve. In this manner, cooling water for the heat exchanger is secured to start the pump in the system for removing residual heat, and when the pump discharge pressure is in normal condition, the inlet valve in pressure suppression chamber and the spray valve in the pressure suppression chamber are fully opened to automatically cool water in the pressure suppression chamber. (Hanada, M.)

  14. α spectrometer of parallel plate grid ionization chamber of high energy resolution

    International Nuclear Information System (INIS)

    Tong Boting; Wang Jianqing; Dong Mingli; Tang Peijia; Wang Xiaorong; Lin Cansheng

    2000-01-01

    Parallel plate grid ionization chamber with cathode area of 300 cm 2 was developed and applied to detect minimum α-emitters. It consist of a vacuum system, a gas cycle system of the parallel plate grid ionization chamber, electronics (a high voltage supply, a pre-amplifier and a main amplifier) and a computer-multichannel analyzer. The energy resolution is 23 keV FWHM for the 244 Cm electrostatic precipitated source. The integral background is typically 10 counts/h between 4 and 6 MeV. The detector efficiency is 50%. The minimum detecting activity is 3 x 10 -4 Bq (3σ, 30 hours). This spectrometer is suitable for detecting various samples, such as samples of the soil, water, air, bion, food, structural material, geology, archaeology, α-emitters of after processing and measuring α activity of accounting for and control of nuclear material and monitoring the artificial radioactivity nuclides of environment samples around nuclear facilities. The spectrometer is equipped with apparatus for preparing large area α source by using vacuum deposition or ultrasonic pulverization. The operating program of preparing source is simple. The source thickness can be kept in 40-60 μm/cm 2

  15. Evaluation of a tissue equivalent ionization chamber in X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Frimaio, Audrew [Seal Technology Ind. Com. Ltda, Sao Paulo, SP (Brazil); Costa, Paulo R. [Universidade de Sao Paulo (USP/IF), Sao Paulo, SP (Brazil). Inst. de Fisica

    2014-07-01

    Tissue equivalent materials present a variety of uses, including routine quality assurance and quality control programs in both diagnostic and therapeutic physics. They are frequently used in research facilities to measure doses delivered to patients undergoing various clinical procedures. This work presents the development and evaluation of a tissue equivalent ionization chamber, with a sensitive volume of 2.3 cm{sup 3}, for routine use in X-rays beams. This ionization chamber was developed at the Calibration Laboratory/IPEN. The new tissue equivalent material was developed at the Physics Institute of the University of Sao Paulo. In order to evaluate the dosimetric performance of the new ionization chamber, several tests described by international standards were undertaken, and all results were within the recommended limits. (author)

  16. Evaluation of a tissue equivalent ionization chamber in X-ray beams

    International Nuclear Information System (INIS)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E.; Frimaio, Audrew; Costa, Paulo R.

    2014-01-01

    Tissue equivalent materials present a variety of uses, including routine quality assurance and quality control programs in both diagnostic and therapeutic physics. They are frequently used in research facilities to measure doses delivered to patients undergoing various clinical procedures. This work presents the development and evaluation of a tissue equivalent ionization chamber, with a sensitive volume of 2.3 cm 3 , for routine use in X-rays beams. This ionization chamber was developed at the Calibration Laboratory/IPEN. The new tissue equivalent material was developed at the Physics Institute of the University of Sao Paulo. In order to evaluate the dosimetric performance of the new ionization chamber, several tests described by international standards were undertaken, and all results were within the recommended limits. (author)

  17. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    Energy Technology Data Exchange (ETDEWEB)

    Thies, C. [ed.; Geddis, A.M.; Guzman, A.G. [and others

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1{degrees}C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm{sup 3} with less than 1% error.

  18. Glove box chamber

    International Nuclear Information System (INIS)

    Cox, M.E.; Cox, M.E.

    1975-01-01

    An environmental chamber is described which enables an operator's hands to have direct access within the chamber without compromising a special atmosphere within such chamber. A pair of sleeves of a flexible material are sealed to the chamber around associated access apertures and project outwardly from such chamber. Each aperture is closed by a door which is openable from within the sleeve associated therewith so that upon an operator inserting his hand and arm through the sleeve, the operator can open the door to have access to the interior of the chamber. A container which is selectively separable from the remainder of the chamber is also provided to allow objects to be transferred from the chamber without such objects having to pass through the ambient atmosphere. An antechamber permitting objects to be passed directly into the chamber from the ambient atmosphere is included. (auth)

  19. Study of energy dependence of a extrapolation chamber in low energy X-rays beams

    International Nuclear Information System (INIS)

    Bastos, Fernanda M.; Silva, Teogenes A. da

    2014-01-01

    This work was with the main objective to study the energy dependence of extrapolation chamber in low energy X-rays to determine the value of the uncertainty associated with the variation of the incident radiation energy in the measures in which it is used. For studying the dependence of energy, were conducted comparative ionization current measurements between the extrapolation chamber and two ionization chambers: a chamber mammography, RC6M model, Radcal with energy dependence less than 5% and a 2575 model radioprotection chamber NE Technology; both chambers have very thin windows, allowing its application in low power beams. Measurements were made at four different depths of 1.0 to 4.0 mm extrapolation chamber, 1.0 mm interval, for each reference radiation. The study showed that there is a variable energy dependence on the volume of the extrapolation chamber. In other analysis, it is concluded that the energy dependence of extrapolation chamber becomes smaller when using the slope of the ionization current versus depth for the different radiation reference; this shows that the extrapolation technique, used for the absorbed dose calculation, reduces the uncertainty associated with the influence of the response variation with energy radiation

  20. Differences between signal currents for both polarities of applied voltages on cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.

    2000-01-01

    It is necessary to obtain precise values of signal currents for the measurement of exposure rates for gamma rays with cavity ionization chambers. Signal currents are usually expected to have the same absolute values for both polarities of applied voltages. In the case of cylindrical cavity ionization chambers, volume recombination loss of ion pairs depends on the polarity of the applied voltage. This is because the values of mobility are different for positive and negative ions. It was found, however, that values of signal currents from a cylindrical ionization chamber change slightly more with a negative than with a positive applied voltage, even after being corrected for volume recombination loss. Moreover, absolute values of saturation currents, which are obtained by extrapolation of correction of initial recombination and diffusion loss, were larger for the negative than for the positive applied voltage. It is known from an experiment with parallel plate ionization chambers that when negative voltage is applied to the repeller electrode, the saturated signal current decreases with an increase in the applied voltage. This is because secondary electrons are accelerated and the stopping power of air for these electrons decreases. When positive voltage is applied, the reverse is true. The effects of acceleration and deceleration of secondary electrons by the electric field thus seem to cause a tendency opposite to the experimental results on the signal currents from cylindrical ionization chambers. The experimental results for the cylindrical ionization chamber can be explained as follows. When negative voltage is applied, secondary electrons are attracted to the central (collecting) electrode. Consequently, the path length of the trajectories of these secondary electrons in the ionization volume increases and signal current increases. The energy gain from the electric field by secondary electrons which stop in the ionization chamber also contributes to the

  1. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    Yoshizumi, Maira Tiemi

    2010-01-01

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  2. The influence of an extrapolation chamber over the low energy X-ray beam radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Tanuri de F, M. T.; Da Silva, T. A., E-mail: mttf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)

  3. The influence of an extrapolation chamber over the low energy X-ray beam radiation field

    International Nuclear Information System (INIS)

    Tanuri de F, M. T.; Da Silva, T. A.

    2016-10-01

    The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)

  4. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  5. Characteristics of Noble Gas-filled Ionization Chambers for a Low Dose Rate Monitoring

    International Nuclear Information System (INIS)

    Kim, Han Soo; Park, Se Hwan; Ha, Jan Ho; Lee, Jae Hyung; Lee, Nam Ho; Kim, Jung Bok; Kim, Yong Kyun; Kim, Do Hyun; Cho, Seung Yeon

    2007-01-01

    An ionization chamber is still widely used in fields such as an environmental radiation monitoring, a Radiation Monitoring System (RMS) in nuclear facilities, and an industrial application due to its operational stability for a long period and its designs for its applications. Ionization chambers for RMS and an environmental radiation monitoring are requested to detect a low dose rate at as low as 10-2 mR/h and several 3R/h, respectively. Filling gas and its pressure are two of the important factors for an ionization chamber development to use it in these fields, because these can increase the sensitivity of an ionization chamber. We developed cylindrical and spherical ionization chambers for a low dose rate monitoring. Response of a cylindrical ionization chamber, which has a 1 L active volume, was compared when it was filled with Air, Ar, and Xe gas respectively. Response of a spherical ionization chamber was also compared in the case of 9 atm and 25 atm filling-pressures. An inter-comparison with a commercially available high pressure Ar ionization chamber and a fabricated ionization chamber was also performed. A High Pressure Xenon (HPXe) ionization chamber, which was configured with a shielding mesh to eliminate an induced charge of positive ions, was fabricated both for the measurement of an environmental dose rate and for the measurement of an energy spectrum

  6. Data register and processor for multiwire chambers

    International Nuclear Information System (INIS)

    Karpukhin, V.V.

    1985-01-01

    A data register and a processor for data receiving and processing from drift chambers of a device for investigating relativistic positroniums are described. The data are delivered to the register input in the form of the Grey 8 bit code, memorized and transformed to a position code. The register information is delivered to the KAMAK trunk and to the front panel plug. The processor selects particle tracks in a horizontal plane of the facility. ΔY maximum coordinate divergence and minimum point quantity on the track are set from the processor front panel. Processor solution time is 16 μs maximum quantity of simultaneously analyzed coordinates is 16

  7. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  8. Design of the free-air ionization chamber, FAC-IR-150, for X-ray dosimetry

    Science.gov (United States)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-03-01

    The primary standard for X-ray dosimetry is based on the free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) designed the free-air ionization chamber, FAC-IR-150, for low and medium energy X-ray dosimetry. The purpose of this work is the study of the free-air ionization chamber characteristics and the design of the FAC-IR-150. The FAC-IR-150 dosimeter has two parallel plates, a high voltage plate and a collector plate. A guard electrode surrounds the collector and is separated by an air gap. A group of guard strips is used between up and down electrodes to produce a uniform electric field in all the ion chamber volume. This design involves introducing the correction factors and determining the exact dimensions of the ionization chamber by using Monte Carlo simulation.

  9. Testing fireproof materials in a combustion chamber

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results – i.e. thermal distribution inside and heat release rate that has gone through the sample.

  10. Study of an extrapolation chamber in a standard diagnostic radiology beam by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Vedovato, Uly Pita; Silva, Rayre Janaina Vieira; Neves, Lucio Pereira; Santos, William S.; Perini, Ana Paula; Belinato, Walmir

    2016-01-01

    In this work, we studied the influence of the components of an extrapolation ionization chamber in its response. This study was undertaken using the MCNP-5 Monte Carlo code, and the standard diagnostic radiology quality for direct beams (RQR5). Using tally F6 and 2.1 x 10"9 simulated histories, the results showed that the chamber design and material not alter significantly the energy deposited in its sensitive volume. The collecting electrode and support board were the components with more influence on the chamber response. (author)

  11. Modeling of thermal mode of drying special purposes ceramic products in batch action chamber dryers

    Science.gov (United States)

    Lukianov, E. S.; Lozovaya, S. Yu; Lozovoy, N. M.

    2018-03-01

    The article is devoted to the modeling of batch action chamber dryers in the processing line for producing shaped ceramic products. At the drying stage, for various reasons, most of these products are warped and cracked due to the occurrence of irregular shrinkage deformations due to the action of capillary forces. The primary cause is an untruly organized drying mode due to imperfection of chamber dryers design specifically because of the heat-transfer agent supply method and the possibility of creating a uniform temperature field in the whole volume of the chamber.

  12. Calibration of ARI QC ionisation chambers using the Australian secondary standards for activity

    International Nuclear Information System (INIS)

    Mo, L.; Van Der Gaast, H.A.; Alexiev, D.; Butcher, K.S.A.; Davies, J.

    1999-01-01

    The Secondary Standard Activity Laboratory (SSAL) in ANSTO routinely provides standardised radioactive sources, traceable activity measurements and custom source preparation services to customers. The most important activity carried out is the calibration of ionisation chambers located in the Quality Control (QC) section of Australian Radioisotopes (ARI). This ensures that their activity measurements are traceable to the Australian primary methods of standardisation. ARI QC ionisation chambers are calibrated for 99m Tc, 67 Ga, 131 I, 201 Tl and 153 Sm. The SSAL has a TPA ionisation chamber, which has been directly calibrated against a primary standard for a variety of radioactive nuclides. Calibration factors for this chamber were determined specifically for the actual volumes (5ml for 99m Tc, 131 I, 2ml for 67 Ga, 201 Tl and 3 ml for 153 Sm) and types of vial (Wheaton) which are routinely used at ARI. These calibration factors can be used to accurately measure the activity of samples prepared by ARI. The samples can subsequently be used to calibrate the QC ionisation chambers. QC ionisation chambers are re-calibrated biannually

  13. Electroluminescent drift chamber with 16 μm spatial resolution

    International Nuclear Information System (INIS)

    Baskakov, V.I.; Dolgoshein, V.A.; Lebedenko, V.N.

    1978-01-01

    Studied are the characteristics of the dft electroluminscent chamber of an original design. For insuring high spatial resolution, the chamber has been filled with xenon to a pressure of 20 atm, which substantially decreases the electron diffusion during drift. Located at the end of the drift gap is an anode wire, 50 μm in dia. A strong electric field available near the thin wire causes electroluminescence of the electrons. The signal is localized within a small volume and contribution of the luminescence time in the total duration of a signal is small. In this case no electron multiplication occurs at all and, consequently, no space charge of positive ions takes place, which makes it possible to operate at very high loadings (2x10 6 particle/s). The characteristics of the chamber are measured in a beam of the Serpukhov accelerator. Use has been made of a model comprising two chambers, 5 mm thick, located successively along the beam with the effective area being 40x40 mm. The studies and analysis performed reveal that the drift electroluminescent chamber operates reliably in the wide range of the working gas pressure at an intensity of the incident particles up to 10 5 particle/s. The best resolution is obtained at a pressure of 20 atm and it equals 16 μm

  14. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    International Nuclear Information System (INIS)

    Poirier, Aurelie; Douysset, Guilhem

    2006-01-01

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a 192 Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A ±0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations

  15. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Aurelie; Douysset, Guilhem [Laboratoire National Henri Becquerel-LNE, CEA Saclay 91191 Gif-sur-Yvette (France)

    2006-10-07

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a {sup 192}Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A {+-}0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations.

  16. A drift chamber with a new type of straws for operation in vacuum

    Science.gov (United States)

    Azorskiy, N.; Glonti, L.; Gusakov, Yu.; Elsha, V.; Enik, T.; Kakurin, S.; Kekelidze, V.; Kislov, E.; Kolesnikov, A.; Madigozhin, D.; Movchan, S.; Polenkevich, I.; Potrebenikov, Yu.; Samsonov, V.; Shkarovskiy, S.; Sotnikov, S.; Zinchenko, A.; Danielsson, H.; Bendotti, J.; Degrange, J.; Dixon, N.; Lichard, P.; Morant, J.; Palladino, V.; Gomez, F. Perez; Ruggiero, G.; Vergain, M.

    2016-07-01

    A 2150×2150 mm2 registration area drift chamber capable of working in vacuum is presented. Thin-wall tubes (straws) of a new type are used in the chamber. A large share of these 9.80 mm diameter drift tubes are made in Dubna from metalized 36 μm Mylar film welded along the generatrix using an ultrasonic welding machine created at JINR. The main features of the chamber and some characteristics of the drift tubes are described. Four such chambers with the X, Y, U, V coordinates each, containing 7168 straws in total, are designed and produced at JINR and CERN. They are installed in the vacuum volume of the NA62 setup in order to study the ultra-rare decay K+ →π+ vv bar and to search for and study rare meson decays. In autumn 2014 the chambers were used for the first time for the data taking in the experimental run of the NA62 at CERN's SPS.

  17. High-resolution ion pulse ionization chamber with air filling for the {sup 222}Rn decays detection

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilyuk, Yu.M.; Gangapshev, A.M.; Gezhaev, A.M.; Etezov, R.A.; Kazalov, V.V.; Kuzminov, V.V. [Baksan Neutrino Observatory,Institute for Nuclear Research RAS, 361609 Neutrino (Russian Federation); Panasenko, S.I. [V.N.Karazin Kharkiv National University, 61022 Kharkiv (Ukraine); Ratkevich, S.S., E-mail: ssratk@gmail.com [V.N.Karazin Kharkiv National University, 61022 Kharkiv (Ukraine); Tekueva, D.A.; Yakimenko, S.P. [Baksan Neutrino Observatory,Institute for Nuclear Research RAS, 361609 Neutrino (Russian Federation)

    2015-11-21

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the {sup 222}Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented. - Highlights: • The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. • The chamber is intended to register alpha-particles from {sup 222}Rn and its daughter's decays in the filled air sample. • The detector is less sensitive to electromagnetic pick-ups and mechanical noises. • An energy resolution of 1.6% has been achieved for the 5.49 MeV alpha-line. The dependence of the energy resolution on high voltage and working media pressure have been investigated and the results are presented.

  18. 2D convolution kernels of ionization chambers used for photon-beam dosimetry in magnetic fields: the advantage of small over large chamber dimensions

    Science.gov (United States)

    Khee Looe, Hui; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2018-04-01

    This study aims at developing an optimization strategy for photon-beam dosimetry in magnetic fields using ionization chambers. Similar to the familiar case in the absence of a magnetic field, detectors should be selected under the criterion that their measured 2D signal profiles M(x,y) approximate the absorbed dose to water profiles D(x,y) as closely as possible. Since the conversion of D(x,y) into M(x,y) is known as the convolution with the ‘lateral dose response function’ K(x-ξ, y-η) of the detector, the ideal detector would be characterized by a vanishing magnetic field dependence of this convolution kernel (Looe et al 2017b Phys. Med. Biol. 62 5131–48). The idea of the present study is to find out, by Monte Carlo simulation of two commercial ionization chambers of different size, whether the smaller chamber dimensions would be instrumental to approach this aim. As typical examples, the lateral dose response functions in the presence and absence of a magnetic field have been Monte-Carlo modeled for the new commercial ionization chambers PTW 31021 (‘Semiflex 3D’, internal radius 2.4 mm) and PTW 31022 (‘PinPoint 3D’, internal radius 1.45 mm), which are both available with calibration factors. The Monte-Carlo model of the ionization chambers has been adjusted to account for the presence of the non-collecting part of the air volume near the guard ring. The Monte-Carlo results allow a comparison between the widths of the magnetic field dependent photon fluence response function K M(x-ξ, y-η) and of the lateral dose response function K(x-ξ, y-η) of the two chambers with the width of the dose deposition kernel K D(x-ξ, y-η). The simulated dose and chamber signal profiles show that in small photon fields and in the presence of a 1.5 T field the distortion of the chamber signal profile compared with the true dose profile is weakest for the smaller chamber. The dose responses of both chambers at large field size are shown to be altered by not

  19. Ion chamber-electrometer measurement system for radiation protection tests in X-ray equipment for interventional procedures

    International Nuclear Information System (INIS)

    Bottaro, Marcio

    2012-01-01

    A new parallel plate ionization chamber with volume of 500 cc and an electrometer with digital interface for data acquisition, configuring an ion chamber electrometer measurement system, were developed to comply with specific requirements for compulsory radiation protection tests in interventional X-ray equipment. The ion chamber has as main characteristics: low cost, mechanical strength and response variation with beam energy of less than 5% in the 40 kV to 150 kV range. The electrometer has a high gain (5x10 8 V/A) transimpedance amplifier circuit and a data acquisition and control system developed in LabVIEW ® platform, including an integrated power supply for the ion chamber bias with adjustable DC voltage output from O to 1000 V and an air density correction system. Electric field calculations, laboratory measurements in standard beams and computational simulations of radiation interactions in chamber volume with Monte Carlo Method were employed in the elaborated methodology of the ion chamber development, which was tested and validated. It was also developed a simplified methodology for electrometer calibration that assures metrological trustworthiness of the measurement system. Tests for the system performance evaluation as environmental influence response, energy response, angular dependency, linearity and air kerma and air kerma rate dependency were performed according to international standards and requirements. Additionally, for a detailed evaluation of the developed ion chamber, simulations with various scattered radiation spectra were performed. The system was applied in leakage radiation, residual radiation and scattered radiation tests, being compared with other reference systems and validated for laboratorial test routine. (author)

  20. Stability of special ionizing chambers for using in programs of quality control in radiotherapy and radiodiagnostic

    International Nuclear Information System (INIS)

    Afonso, Luciana C.; Caldas, Linda V.E.; Costa, Alessandro M. da

    2004-01-01

    In this work the response stability of two special parallel-plate ionization chambers, developed at the Calibration Laboratory of IPEN, were tested. The chambers are face doubled, with internal collecting electrodes of different materials (graphite and aluminium), in tandem system, and with air volumes of 0.6 cm 3 and 2.5 cm 3 , for radiotherapy and diagnostic radiology levels, respectively. The results showed that the chambers kept constant their metrological characteristics presenting their usefulness for quality control programs in radiotherapy and diagnostic radiology. (author)

  1. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases.

    Science.gov (United States)

    Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin

    2016-04-04

    We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation.

  2. The Mobile Chamber

    Science.gov (United States)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  3. CASA-Mot technology: how results are affected by the frame rate and counting chamber.

    Science.gov (United States)

    Bompart, Daznia; García-Molina, Almudena; Valverde, Anthony; Caldeira, Carina; Yániz, Jesús; Núñez de Murga, Manuel; Soler, Carles

    2018-04-04

    For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10µm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20µm . The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s-1 is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results.

  4. Application of a tandem ionization chamber in a quality control program of X-ray beams, radiotherapy level

    International Nuclear Information System (INIS)

    Yoshizumi, Maira T.; Caldas, Linda V.E.

    2008-01-01

    A tandem ionization chamber, developed at the Instituto de Pesquisas Energeticas e Nucleares (IPEN), for X radiation beams, radiotherapy level, was applied into a quality control program of the Calibration Laboratory of IPEN. This ionization chamber is composed by two ionization chambers, with a volume of 0.6 cm 3 each one. Its inner plane-parallel electrodes and guard rings are made of different materials: one is made of aluminum and the other is made of graphite. Because of this difference in materials, the ionization chamber forms a tandem system. The relative response of the calibration factors of both sides of the chamber allows an easy verification of the X-ray beam qualities stability. The ionization chamber was submitted to some tests to verify the stability of its response: leakage current before and after exposure, repeatability and reproducibility. The performance of the ionization chamber was satisfactory. (author)

  5. Evaluation of functioning of an extrapolation chamber using Monte Carlo method

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Alfonso Laguardia, R.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Braff-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents a simulation for evaluating the functioning of an extrapolation chamber type 23392 of PTW, using the MCNPX Monte Carlo method. In the simulation, the fluence in the air collector cavity of the chamber was obtained. The influence of the materials that compose the camera on its response against beta radiation beam was also analysed. A comparison of the contribution of primary and secondary radiation was performed. The energy deposition in the air collector cavity for different depths was calculated. The component with the higher energy deposition is the Polymethyl methacrylate block. The energy deposition in the air collector cavity for chamber depth 2500 μm is greater with a value of 9.708E-07 MeV. The fluence in the air collector cavity decreases with depth. It's value is 1.758E-04 1/cm 2 for chamber depth 500 μm. The values reported are for individual electron and photon histories. The graphics of simulated parameters are presented in the paper. (Author)

  6. Drift chamber

    International Nuclear Information System (INIS)

    Inagaki, Yosuke

    1977-01-01

    Drift chamber is becoming an important detector in high energy physics as a precision and fast position detector because of its high spatial resolution and count-rate. The basic principle is that it utilizes the drift at constant speed of electrons ionized along the tracks of charged particles towards the anode wire in the nearly uniform electric field. The method of measuring drift time includes the analog and digital ones. This report describes about the construction of and the application of electric field to the drift chamber, mathematical analysis on the electric field and equipotential curve, derivation of spatial resolution and the factor for its determination, and selection of gas to be used. The performance test of the chamber was carried out using a small test chamber, the collimated β source of Sr-90, and 500 MeV/C electron beam from the 1.3 GeV electron synchrotron in the Institute of Nuclear Study, University of Tokyo. Most chambers to date adopted one dimensional read-out, but it is very advantageous if the two dimensional read-out is feasible with one chamber when the resolution in that direction is low. The typical methods of delay line and charge division for two dimensional read-out are described. The development of digital read-out system is underway, which can process the signal of a large scale drift chamber at high speed. (Wakatsuki, Y.)

  7. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A multi-chambered ionisation detector enables the amount of radiation entering each chamber from a single radioactive, eg β, source to be varied by altering the proportion of the source protruding into each chamber. Electrodes define chambers and an extended radioactive source is movable to alter the source length in each chamber. Alternatively, the source is fixed relative to outer electrodes but the central electrode may be adjusted by an attached support altering the chamber dimensions and hence the length of source in each. Also disclosed are a centrally mounted source tiltable towards one or other chamber and a central electrode tiltable to alter chamber dimensions. (U.K.)

  8. Baby fission chambers; Etude de chambres a fission miniatures

    Energy Technology Data Exchange (ETDEWEB)

    Guery, U; Tachon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author) [French] Le present rapport se propose, d'une part, d'exposer les principales realisations de chambres a fission, d'autre part de faire une mise au point a caractere plus general sur ces detecteurs. Au depart, c'est surtout en vue des mesures de densite neutronique dans 'Proserpine' que les auteurs ont etudie ces chambres; au cours de la mise au point, il a paru interessant de developper leur etude pour des applications plus generales: mesures de densites de neutrons de differentes energies dans un element de volume tres reduit et avec faible perturbation locale. (auteur)

  9. Doriot Climatic Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers are two, 60-feet long, 11-feet high, 15-feet wide chambers that are owned and operated by NSRDEC. The Doriot Climatic Chambers are among...

  10. Wide Field-of-View Fluorescence Imaging with Optical-Quality Curved Microfluidic Chamber for Absolute Cell Counting

    Directory of Open Access Journals (Sweden)

    Mohiuddin Khan Shourav

    2016-07-01

    Full Text Available Field curvature and other aberrations are encountered inevitably when designing a compact fluorescence imaging system with a simple lens. Although multiple lens elements can be used to correct most such aberrations, doing so increases system cost and complexity. Herein, we propose a wide field-of-view (FOV fluorescence imaging method with an unconventional optical-quality curved sample chamber that corrects the field curvature caused by a simple lens. Our optics simulations and proof-of-concept experiments demonstrate that a curved substrate with lens-dependent curvature can reduce greatly the distortion in an image taken with a conventional planar detector. Following the validation study, we designed a curved sample chamber that can contain a known amount of sample volume and fabricated it at reasonable cost using plastic injection molding. At a magnification factor of approximately 0.6, the curved chamber provides a clear view of approximately 119 mm2, which is approximately two times larger than the aberration-free area of a planar chamber. Remarkably, a fluorescence image of microbeads in the curved chamber exhibits almost uniform intensity over the entire field even with a simple lens imaging system, whereas the distorted boundary region has much lower brightness than the central area in the planar chamber. The absolute count of white blood cells stained with a fluorescence dye was in good agreement with that obtained by a commercially available conventional microscopy system. Hence, a wide FOV imaging system with the proposed curved sample chamber would enable us to acquire an undistorted image of a large sample volume without requiring a time-consuming scanning process in point-of-care diagnostic applications.

  11. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-11-15

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  12. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed

  13. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  14. Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla - a pilot study

    International Nuclear Information System (INIS)

    Knobelsdorff-Brenkenhoff, Florian von; Schulz-Menger, Jeanette; Frauenrath, Tobias; Hezel, Fabian; Prothmann, Marcel; Dieringer, Matthias A.; Niendorf, Thoralf; Renz, Wolfgang; Kretschel, Kerstin

    2010-01-01

    Interest in cardiovascular magnetic resonance (CMR) at 7 T is motivated by the expected increase in spatial and temporal resolution, but the method is technically challenging. We examined the feasibility of cardiac chamber quantification at 7 T. A stack of short axes covering the left ventricle was obtained in nine healthy male volunteers. At 1.5 T, steady-state free precession (SSFP) and fast gradient echo (FGRE) cine imaging with 7 mm slice thickness (STH) were used. At 7 T, FGRE with 7 mm and 4 mm STH were applied. End-diastolic volume, end-systolic volume, ejection fraction and mass were calculated. All 7 T examinations provided excellent blood/myocardium contrast for all slice directions. No significant difference was found regarding ejection fraction and cardiac volumes between SSFP at 1.5 T and FGRE at 7 T, while volumes obtained from FGRE at 1.5 T were underestimated. Cardiac mass derived from FGRE at 1.5 and 7 T was larger than obtained from SSFP at 1.5 T. Agreement of volumes and mass between SSFP at 1.5 T and FGRE improved for FGRE at 7 T when combined with an STH reduction to 4 mm. This pilot study demonstrates that cardiac chamber quantification at 7 T using FGRE is feasible and agrees closely with SSFP at 1.5 T. (orig.)

  15. A metal aerosol holding chamber devised for young children with asthma

    DEFF Research Database (Denmark)

    Bisgaard, H

    1995-01-01

    in the chamber and to ensure unidirectional airflow. Dead space between the valves was minimized to less than 2 ml. The dose-delivery and rate of passive disappearance of a budesonide pMDI aerosol were compared between this prototype and the large-volume, single-valved plastic Nebuhaler, in 164 asthmatic...

  16. 2π proportional counting chamber for large-area-coated β sources

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. 2 π proportional counting chamber for large-area-coated β sources ... A provision is made for change ofthe source and immediate measurement of source activity. These sources are used to calibrate the efficiency of contamination monitors at radiological ...

  17. Study of Parameters Effect on Hydrodynamics of a Gas-Solid Chamber Experimentally and Numerically

    Directory of Open Access Journals (Sweden)

    Rahimzadeh Hassan

    2012-04-01

    Full Text Available In this research, gas velocity, initial static bed height and particle size effect on hydrodynamics of a non-reactive gas–solid fluidized bed chamber were studied experimentally and computationally. A multi fluid Eulerian model incorporating the kinetic theory for solid particles was applied to simulate the unsteady state behavior of this chamber and momentum exchange coefficients were calculated by using the Syamlal- O’Brien drag functions. Simulation results were compared with the experimental data in order to validate the CFD model. Pressure drops predicted by the simulations at different particle sizes and initial static bed height were in good agreement with experimental measurements at superficial gas velocity higher than the minimum fluidization velocity. Simulation results also indicated that small bubbles were produced at the bottom of the bed. These bubbles collided with each other as they moved upwards forming larger bubbles. Furthermore, this comparison showed that the model can predict hydrodynamic behavior of gas solid fluidized bed chambers reasonably well.

  18. Performance of microstrip gas chambers in BNL-E885: a search for LAMBDA LAMBDA-hypernuclei

    CERN Document Server

    Landry, M; Davis, C A; Faszer, W; Gan, L; Lee, L; Page, S A; Ramsay, W D; Salomon, M; Oers, W T H

    1999-01-01

    The performance of MicroStrip Gas Chambers (MSGC) in BNL Experiment 885, a search for LAMBDA LAMBDA-hypernuclei, is detailed. Chambers with an active area of 80x50 mm sup 2 were instrumented and operated as a vertex detector in the experiment. Furthermore, two distinct types of microstrip prints were utilized in these chambers. Prints manufactured with Integrated Circuit (IC) photolithographic technology have fine tolerances and thin minimum trace widths, but can suffer from a high rate of defects per print and are more costly. Prints constructed with Printed Circuit (PC) photolithographic technology have coarser tolerances but relatively few defects per print, and are extremely cost-effective. Results of bench and beam tests of both IC and PC based MSGCs are presented and their performance in BNL-E885 is discussed. E885 marks the first use of PC based MSGCs in an experiment.

  19. Geophysical Evidence for the Locations, Shapes and Sizes, and Internal Structures of Magma Chambers beneath Regions of Quaternary Volcanism

    Science.gov (United States)

    Iyer, H. M.

    1984-04-01

    delineating magma chambers with minimum horizontal and vertical dimensions of about 6 km. This technique has been used successfully to detect low-velocity anomalies, interpreted as magma bodies in the volume range 103-106 km3, in several volcanic centres in the U.S.A. and in Mt Etna, Sicily. Velocity models developed using teleseismic residuals of the Cascades volcanoes of Oregon and California, and Kilauea volcano, Hawaii, do not show appreciable storage of magma in the crust. However, regional models imply that large volumes of parental magma may be present in the upper mantle of these regions. In some volcanic centres, teleseismic delays are accompanied by P-wave attenuation, and linear inversion of spectral data have enabled computation of three-dimensional Q-models for these areas. The use of gravity data for magma chamber studies is illustrated by a study in the Geysers-Clear Lake volcanic field in California, where a strong gravity low has been modelled as a low-density body in the upper crust. This body is approximately in the same location as the low-velocity body delineated with teleseismic delays, and is interpreted as a magma body. In Yellowstone National Park, magnetic field data have been used to map the depth to the Curie isotherm, and the results show that high temperatures may be present at shallow depths beneath the Yellowstone caldera. The main application of electrical techniques in magma-related studies has been to understand the deep structure of continental rifts. Electromagnetic studies in several rift zones of the world provide constraints on the thermal structure and magma storage beneath these regions. Geophysical tools commonly used in resource exploration and earth-structure studies are also suited for the detection of magma chambers. Active seismic techniques, with controlled sources, and passive seismic techniques, with local and regional earthquakes and teleseisms, can be used to detect the drastic changes in velocity and attenuation that occur

  20. Prototype for the ALEPH Time Projection Chamber

    CERN Multimedia

    1980-01-01

    This is a prototype endplate piece constructed during R&D for the ALEPH Time Projection Chamber (TPC). ALEPH was one of 4 experiments at CERN's 27km Large Electron Positron collider (LEP) that ran from 1989 to 2000. ALEPH's TPC was a large-volume tracking chamber, 4.4 metres long and 3.6 metres in diameter - the largest TPC in existance at the time. This object is one of the endplates of a “Kind” sector, the smallest of the three types of sectors. The patterns etched into the copper form the cathode pads that measured particle track coordinates in the r-phi direction. It included a laser calibration system, a gating system to prevent space charge buildup, and a new radial pad geometry to improve resolution. the ALEPH TPC allowed for precise momentum measurements of the high-momentum particles from W and Z decays. The following institutes participated: CERN, Athens, Glasgow, Mainz, MPI Munich, INFN-Pisa, INFN-Trieste, Wisconsin.

  1. Evaluation of the Effects of Menstrual Cycle on Anterior Chamber Parameters as Measured with Pentacam

    Directory of Open Access Journals (Sweden)

    Arzu Seyhan Karatepe

    2013-01-01

    Full Text Available Pur po se: To evaluate the effects of endogenous gonadotropic hormones (follicle-stimulating hormone, luteinizing hormone and sex steroids (progesterone, estrogen to anterior segment parameters. Ma te ri al and Met hod: Thirty healthy females who had a menstrual cycle of 28±1 day and with a mean age of 36.5±7.56 (range, 20 – 46 years were included in the study. Starting from the first day of their cycle, Pentacam Scheimpflug camera measurements were performed on the 1st, 3rd, 7th, 12th, 16th, 21st, 26th, and 28th days. The central corneal thickness, anterior chamber depth, anterior segment volume, keratometric values, anterior chamber angle value, and pupilla diameter of both eyes were evaluated. Repeated measures analysis of variance test was used for statistical analysis. Re sults: No difference that reaches statistical significance was found in the means of central corneal thickness, anterior chamber volume, keratometric values, anterior chamber angle, and pupilla diameter between the days. Mean anterior chamber depth measurement of the right eyes on the 1st day was 2.72±0.44 mm, whereas it was 2.77±0.46 mm on the 26th day. Mean anterior chamber depth measurement of the left eyes on the 1st day was 2.74±0.42 mm, whereas it was 2.80±0.43 mm on the 26th day. This increment of anterior chamber depth value from the 1st to the 26th days was found to be statistically significant (p≤0.05. Dis cus si on: Progesterone and estrogen that rise in the second half of the menstrual cycle might have a deepening effect on the anterior chamber. These findings should be further investigated with more profound studies that also evaluate the hormonal values and their correlations with anterior segment parameters. (Turk J Ophthalmol 2013; 43: 15-8

  2. Design and testing of a model CELSS chamber robot

    Science.gov (United States)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-08-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  3. Characterization of an extrapolation chamber for low-energy X-rays: Experimental and Monte Carlo preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Silva, Eric A.B., E-mail: ebrito@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Maidana, Nora L., E-mail: nmaidana@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2012-07-15

    The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IPEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. - Highlights: Black-Right-Pointing-Pointer A homemade extrapolation chamber was studied experimentally and with Monte Carlo. Black-Right-Pointing-Pointer It was characterized as a secondary dosimetry standard, for low energy X-rays. Black-Right-Pointing-Pointer Several characterization tests were performed and the results were satisfactory. Black-Right-Pointing-Pointer Simulation showed that its components may influence the response up to 11.0%. Black-Right-Pointing-Pointer This chamber may be used as a secondary standard at our laboratory.

  4. A closed unventilated chamber for the measurement of transepidermal water loss.

    Science.gov (United States)

    Nuutinen, Jouni; Alanen, Esko; Autio, Pekka; Lahtinen, Marjo-Riitta; Harvima, Ilkka; Lahtinen, Tapani

    2003-05-01

    Open chamber systems for measuring transepidermal water loss (TEWL) have limitations related to ambient and body-induced airflows near the probe, probe size, measurement sites and angles, and measurement range. The aim of the present investigation was to develop a closed chamber system for the TEWL measurement without significant blocking of normal evaporation through the skin. Additionally, in order to use the evaporimeter to measure evaporation rates through other biological and non-biological specimens and in the field applications, a small portable, battery-operated device was a design criteria. A closed unventilated chamber (inner volume 2.0 cm(3) was constructed. For the skin measurement, the chamber with one side open (open surface area 1.0 cm(2) is placed on the skin. The skin application time was investigated at low and high evaporation rates in order to assess the blocking effect of the chamber on normal evaporation. From the rising linear part of the relative humidity (RH) in the chamber the slope was registered. The slope was calibrated into a TEWL value by evaporating water at different temperatures and measuring the water loss of heated samples with a laboratory scale. The closed chamber evaporation technique was compared with a conventional evaporimeter based on an open chamber method (DermaLab), Cortex Technology, Hadsund, Denmark). The reproducibility of the closed chamber method was measured with the water samples and with volar forearm and palm of the hand in 10 healthy volunteers. The skin application time varied between 7 and 9 s and the linear slope region between 3 and 5 s at the evaporation rates of 3-220 g/m(2) h. A correlation coefficient between the TEWL value from the closed chamber measurements and the readings of the laboratory scale was 0.99 (P measurements with the water samples was 4.0% at the evaporation rate of 40 g/m(2) h. A correlation coefficient of the TEWL values between the closed chamber and open chamber measurements was 0

  5. Software development minimum guidance system. Algorithm and specifications of realizing special hardware processor data prefilter program

    International Nuclear Information System (INIS)

    Baginyan, S.A.; Govorun, N.N.; Tkhang, T.L.; Shigaev, V.N.

    1982-01-01

    Software development minimum guidance system for measuring pictures of bubble chamber on the base of a scanner (HPD) and special hardware processor (SHP) is described. The algorithm of selective filter is proposed. The local software structure and functional specifications of its major parts are described. Some examples of processing picture from HBC-1 (JINR) are also presented

  6. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry

    International Nuclear Information System (INIS)

    Perini, Ana P.; Neves, Lucio P.; Caldas, Linda V.E.

    2014-01-01

    Diagnostic x-rays are the greatest source of exposition to ionizing radiation of the population worldwide. In order to obtain accurate and lower-cost dosimeters for quality control assurance of medical x-ray facilities, a special ionization chamber was designed at the Calibration Laboratory of the IPEN, for dosimetry in diagnostic radiology beams. For the chamber characterization some tests were undertaken. Monte Carlo simulations were proposed to evaluate the distribution of the deposited energy in the sensitive volume of the ionization chamber and the collecting electrode effect on the chamber response. According to the obtained results, this special ionization chamber presents potential use for dosimetry of conventional diagnostic radiology beams. - Highlights: • An ionization chamber with a novel design was characterized for x-ray beam dosimetry. • This ionization chamber was evaluated in diagnostic radiology qualities. • The characterization tests results were within the recommended limits. • Monte Carlo simulations were employed to evaluate the design of the dosimeter. • The developed prototype is a good alternative for calibration laboratories and clinics

  7. Optical design of a reaction chamber for weakly absorbed light. II. Parallel mirrors, multitravel

    International Nuclear Information System (INIS)

    Devaney, J.J.; Finch, F.T.

    1975-06-01

    This report outlines the possibilities to be found using one or more diffraction-limited high-quality light beams to activate a weakly absorbing gas in a regime where the diffraction spread can be controlled by converging optical devices to within a ratio of √2 of the minimum at the beam waist (corresponding lengths between converging elements are within twice the Rayleigh range). Our designs use plane or cylindrical parallel mirrors down which a light beam is repeatedly reflected. In the first design variation, the beam is re-reflected up the parallel mirrors to the entrance aperture where it can be returned repeatedly for a number of multiply reflecting ''travels'' up and down the parallel mirror reaction chamber. In the second variation, the return of the beam after each multiply reflecting ''travel'' down the chamber is external to the chamber and is achieved by two mirror reflections. For diffraction control the return mirrors can be made converging. For multiple laser excitation, any of the external return mirrors can be replaced by a laser. The advantage of these designs is a high degree of uniformity of chamber illumination with a reasonably high number of passes. Drawbacks of the designs are the large space needed for beam return (many tens of meters for some parameters) and (common to all high optical quality chambers) the figuring and reflectivity demands on the mirrors. (U.S.)

  8. Peltier-based cloud chamber

    Science.gov (United States)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  9. Haemodynamic effects of dual-chamber pacing versus ventricular pacing during a walk test in patients with depressed or normal left ventricular function

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Adele; Salvatore, Marco; Cuocolo, Alberto [University Federico II, Department of Biomorphological and Functional Sciences, Institute of Biostructure and Bioimages of the National Council of Research, Naples (Italy); Duilio, Carlo; Santomauro, Maurizio [University Federico II, Department of Clinical Medicine, Cardiovascular and Immunological Sciences, Naples (Italy)

    2005-09-01

    Dual-chamber rate-modulated pacing provides haemodynamic benefits compared with ventricular pacing at rest, but it is unclear whether this also holds true during physical exercise in patients with heart failure. This study assessed the haemodynamic response to a walk test during dual-chamber pacing and ventricular pacing in patients with depressed or normal left ventricular (LV) function. Twelve patients with an LV ejection fraction <50% and 11 patients with an LV ejection fraction {>=}50% underwent two randomised 6-min walk tests under dual-chamber rate-modulated pacing and ventricular pacing at a fixed rate of 70 beats/min. All patients had a dual-chamber pacemaker implanted for complete heart block. LV function was monitored by a radionuclide ambulatory system. In patients with depressed LV function, the change from dual-chamber pacing to ventricular pacing induced a decrease in end-systolic volume at the peak of the walk test (P<0.05), with no difference in end-diastolic volume. As a consequence, higher increases in LV ejection fraction (P<0.0001) and stroke volume (P<0.01) were observed during ventricular pacing. No difference in cardiac output was found between the two pacing modes. In patients with normal LV function, the change from dual-chamber pacing to ventricular pacing induced a significant decrease in cardiac output (P<0.005 at rest and P<0.05 at the peak of the walk test). Compared with dual-chamber rate-modulated pacing, ventricular pacing improves cardiac function and does not affect cardiac output during physical activity in patients with depressed LV function, whereas it impairs cardiac output in those with normal function. (orig.)

  10. Haemodynamic effects of dual-chamber pacing versus ventricular pacing during a walk test in patients with depressed or normal left ventricular function

    International Nuclear Information System (INIS)

    Ferro, Adele; Salvatore, Marco; Cuocolo, Alberto; Duilio, Carlo; Santomauro, Maurizio

    2005-01-01

    Dual-chamber rate-modulated pacing provides haemodynamic benefits compared with ventricular pacing at rest, but it is unclear whether this also holds true during physical exercise in patients with heart failure. This study assessed the haemodynamic response to a walk test during dual-chamber pacing and ventricular pacing in patients with depressed or normal left ventricular (LV) function. Twelve patients with an LV ejection fraction <50% and 11 patients with an LV ejection fraction ≥50% underwent two randomised 6-min walk tests under dual-chamber rate-modulated pacing and ventricular pacing at a fixed rate of 70 beats/min. All patients had a dual-chamber pacemaker implanted for complete heart block. LV function was monitored by a radionuclide ambulatory system. In patients with depressed LV function, the change from dual-chamber pacing to ventricular pacing induced a decrease in end-systolic volume at the peak of the walk test (P<0.05), with no difference in end-diastolic volume. As a consequence, higher increases in LV ejection fraction (P<0.0001) and stroke volume (P<0.01) were observed during ventricular pacing. No difference in cardiac output was found between the two pacing modes. In patients with normal LV function, the change from dual-chamber pacing to ventricular pacing induced a significant decrease in cardiac output (P<0.005 at rest and P<0.05 at the peak of the walk test). Compared with dual-chamber rate-modulated pacing, ventricular pacing improves cardiac function and does not affect cardiac output during physical activity in patients with depressed LV function, whereas it impairs cardiac output in those with normal function. (orig.)

  11. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    Science.gov (United States)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  12. Bubble formation in shear-thinning fluids: Laser image measurement and a novel correlation for detached volume

    Directory of Open Access Journals (Sweden)

    Fan Wenyuan

    2017-01-01

    Full Text Available A laser image system has been established to quantify the characteristics of growing bubbles in quiescent shear-thinning fluids. Bubble formation mechanism was investigated by comparing the evolutions of bubble instantaneous shape, volume and surface area in two shear-thinning liquids with those in Newtonian liquid. The effects of solution mass concentration, gas chamber volume and orifice diameter on bubble detachment volume are discussed. By dimensional analysis, a single bubble volume detached within a moderate gas flowrate range was developed as a function of Reynolds number ,Re, Weber number, We, and gas chamber number, Vc, based on the orifice diameter. The results reveal that the generated bubble presents a slim shape due to the shear-thinning effect of the fluid. Bubble detachment volume increases with the solution mass concentration, gas chamber volume and orifice diameter. The results predicted by the present correlation agree better with the experimental data than the previous ones within the range of this paper.

  13. Glaucoma anterior chamber morphometry based on optical Scheimpflug images.

    Science.gov (United States)

    Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis

    2010-01-01

    To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.

  14. Characterization of a extrapolation chamber in standard X-ray beam, radiodiagnosis level; Caracterizacao de uma camara de extrapolacao em feixes padroes de raios X, nivel radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Eric A.B. da; Caldas, Linda V.E., E-mail: ebrito@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    The extrapolation chamber is a ionization chamber used for detection low energy radiation and can be used as an standard instrument for beta radiation beams. This type of ionization chamber have as main characteristic the variation of sensible volume. This paper performs a study of characterization of a PTW commercial extrapolation chamber, in the energy interval of the qualities of conventional radiodiagnostic

  15. A multi purpose 4 π counter spherical ionization chamber type

    International Nuclear Information System (INIS)

    Calin, Marian Romeo; Calin, Adrian Cantemir

    2004-01-01

    A pressurized ionization chamber detector able to measure radioactive sources in internal 2π or 4π geometry was built in order to characterize alpha and beta radioactive sources, i.e. to calibrate these sources by relative method and to test the behavior of gas mixtures in pressurized-gas radiation detectors. The detector we made is of spherical shape and works by collecting in a uniform electric field the ionization charges resulting from the interaction of ionizing radiation with gas in the sensitive volume of the chamber. An ionizing current proportional to the activity of the radioactive source to be measured is obtained. In this paper a gas counter with a spherical symmetry is described. This detector can work in a very satisfactory manner, either as a flow counter or as a ionization chamber reaching in the latter case a good α pulse height resolution, even with large emitting sources. Calculations are made in order to find the dependence of the pulse shape on the direction of emission of an α-particle by a point source in the chamber (finite track). A good agreement is found between these calculations and the experimental tests performed, which show that this dependence can be employed in high efficiency measurements of angular α-γ correlations. (authors)

  16. Design, development and tests of high-performance silicon vapor chamber

    International Nuclear Information System (INIS)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-01-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 10 3 kg m −3 . Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m −1  ⋅ K −1 . Under high g environment, experimental results show good liquid transport capabilities of the wick structures. (paper)

  17. Design, development and tests of high-performance silicon vapor chamber

    Science.gov (United States)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-03-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 103 kg m-3. Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m-1 ṡ K-1. Under high g environment, experimental results show good liquid transport capabilities of the wick structures.

  18. Energy dependence of an ionization chamber with parallel plates in standard gamma and x-radiation fields

    International Nuclear Information System (INIS)

    Batistella, M.A.; Caldas, L.V.E.

    1988-09-01

    The characteristics of low energy X-radiation standard fields were determined and the energy dependence of a ionization chamber of the superficial type, with parallel plates and fixed volume, normally utilized in the dosimetry at the Radiotherapy level was studied. The possibility of adaptation of this chamber type for use in gamma radiation dosimetry was verified. Different thickness Lucite build-up caps, from 2.0 up to 5.5 mm, were produced and tested in 60 Co and 137 Cs gamma radiation fields. This type of detector, with the adequate build-up cap, presented a performance comparable to that of the thimble type ionization chamber. It was concluded that it is not necessary to use different kinds of chambers for each high and mean energy interval. The superficial chamber, specially produced to detect low energy X-radiation, may be adapted to detect gamma radiation. (author) [pt

  19. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  20. Baby fission chambers; Etude de chambres a fission miniatures

    Energy Technology Data Exchange (ETDEWEB)

    Guery, U.; Tachon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author) [French] Le present rapport se propose, d'une part, d'exposer les principales realisations de chambres a fission, d'autre part de faire une mise au point a caractere plus general sur ces detecteurs. Au depart, c'est surtout en vue des mesures de densite neutronique dans 'Proserpine' que les auteurs ont etudie ces chambres; au cours de la mise au point, il a paru interessant de developper leur etude pour des applications plus generales: mesures de densites de neutrons de differentes energies dans un element de volume tres reduit et avec faible perturbation locale. (auteur)

  1. Changes in ocular biometry and anterior chamber parameters after pharmacologic mydriasis and peripheral iridotomy in primary angle closure suspects

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Razeghinejad

    2016-07-01

    Conclusions: This study showed no change in the ocular biometric and anterior chamber parameters including iridocorneal angle after PI and/or pharmacologic mydriasis except for increments in anterior chamber volume. This factor has the potential to be used as a numerical proxy for iris position in evaluating and monitoring patients with primary angle closure suspects after PI.

  2. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics.

    Science.gov (United States)

    Cira, Nate J; Ho, Jack Y; Dueck, Megan E; Weibel, Douglas B

    2012-03-21

    This article describes a portable microfluidic technology for determining the minimum inhibitory concentration (MIC) of antibiotics against bacteria. The microfluidic platform consists of a set of chambers molded in poly(dimethylsiloxane) (PDMS) that are preloaded with antibiotic, dried, and reversibly sealed to a second layer of PDMS containing channels that connect the chambers. The assembled device is degassed via vacuum prior to its use, and the absorption of gas by PDMS provides the mechanism for actuating and metering the flow of fluid in the microfluidic channels and chambers. During the operation of the device, degas driven flow introduces a suspension of bacterial cells, dissolves the antibiotic, and isolates cells in individual chambers without cross contamination. The growth of bacteria in the chambers in the presence of a pH indicator produces a colorimetric change that can be detected visually using ambient light. Using this device we measured the MIC of vancomycin, tetracycline, and kanamycin against Enterococcus faecalis 1131, Proteus mirabilis HI4320, Klebsiella pneumoniae, and Escherichia coli MG1655 and report values that are comparable to standard liquid broth dilution measurements. The device provides a simple method for MIC determination of individual antibiotics against human pathogens that will have applications for clinical and point-of-care medicine. Importantly, this device is designed around simplicity: it requires a single pipetting step to introduce the sample, no additional components or external equipment for its operation, and provides a straightforward visual measurement of cell growth. As the device introduces a novel approach for filling and isolating dead-end microfluidic chambers that does not require valves and actuators, this technology should find applications in other portable assays and devices.

  3. Flow Characteristics of Multi-circular Jet Plate in Premix Chamber of Air-Assist Atomizer for Burner System

    Directory of Open Access Journals (Sweden)

    Amirnordin Shahrin Hisham

    2016-01-01

    Full Text Available The flow characteristics of multi-circular jet (MCJ plate in the premix chamber of an atomizer were investigated using Computational Fluid Dynamics. Multiphase volume of fluid behavior inside the chamber was determined via steady simulations. The Eulerian–Eulerian two-fluid approach was used for execution mixing of diesel fuel and air. Spray simulation using the discrete phase with injection was generated from the nozzle hole into the ambient atmosphere. The behavior of three MCJ plates in the premix chamber was studied numerically. Results illustrated that plate open area, Ae, influenced the turbulence inside the chamber. MCJ 3, which had the lowest open area, generated the highest flow velocity and turbulence kinetic energy compared with MCJ 1 and 2. The MCJ plates could increase the turbulence in the premix chamber and contribute to the combustion efficiency.

  4. Monitoring and measurement of radon activity in a new design of radon calibration chamber

    International Nuclear Information System (INIS)

    Heidary, S.; Setayeshi, S.; Ghannadi-Maragheh, M.; Negarestani, A.

    2011-01-01

    A new radon calibration chamber has been designed, constructed and tested to set various desired environmental parameters. The chamber is cubic with two trapezoid sides with a total volume size of 0.498 m 3 . The three parameters, temperature, humidity and flow are controlled in the range of 20-45 deg. C (±2 deg. C), 10-70% (±2.5%) and 0.2-10 m 3 /min (±0.1 m 3 /min) respectively. The chamber is equipped with a controllable speed centrifugal fan to achieve a desirably uniform radon flow rate. Many parts of this system are controlled and monitored with a PLC (Programmable Logic Control) and HMI (Human Monitoring Interface) software (Citect Scada). Finally a radon detector (Alpha-Guard) registers the activity parameter.

  5. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  7. Characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Tamayo Garcia, J. A.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Bragg-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents the characterization of an extrapolation chamber in a 90 Sr/ 90 Y beta radiation field. The absorbed dose rate to tissue at a depth of 0.07 mm was calculated and is (0.13206±0.0028) μGy. The extrapolation chamber null depth was determined and its value is 60 μm. The influence of temperature, pressure and humidity on the value of the corrected current was also evaluated. Temperature is the parameter that has more influence on this value and the influence of pressure and the humidity is not very significant. Extrapolation curves were obtained. (Author)

  8. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  9. The recombination correction and the dependence of the response of plane parallel chambers on the polarizing voltage in pulsed electron and photon beams

    International Nuclear Information System (INIS)

    Roos, M.; Derikum, K.

    2000-01-01

    Based on an experimental investigation of the recombination effect in plane parallel chambers, a relation is deduced that allows the correction to be calculated from the electrode spacing and from the dose per pulse. It is shown that the uncertainties caused by the application of the Boag formula for volume recombination (recommended in the International Code of Practice TRS-381) amount to not more than about 0.1% for conventional beams. Calculated recombinations are compared with experimental results concerning the dependence of the response of various commercial plane parallel chambers on the polarizing voltage. Since it cannot be excluded that particular chambers collect a non-negligible amount of charge from regions outside the designated collecting volume or that the effective polarizing voltage is reduced by poor contacts, it seems advisable to experimentally check the chambers before use and before application of the analytical relations. (author)

  10. Destruction of nuclear graphite using closed chamber incineration

    International Nuclear Information System (INIS)

    Senor, D.J.; Hollenberg, G.W.; Morgan, W.C.; Marianowski, L.G.

    1994-01-01

    Closed chamber incineration (CCI) is a novel technique by which irradiated nuclear graphite may be destroyed without the risk of radioactive cation release into the environment. The process utilizes an enclosed combustion chamber coupled with molten carbonate fuel cells (MCFCs). The transport of cations is intrinsically suppressed by the MCFCs, such that only the combustion gases are conducted through for release to the environment. An example CCI design was developed which had as its goal the destruction of graphite fuel elements from the Fort St. Vrain reactor (FSVR). By employing CCI, the volume of high level waste from the FSVR will be reduced by approximately 87 percent. Additionally, the incineration process will convert the SiC coating on the FSVR fuel particles to SiO 2 , thus creating a form potentially suitable for direct incorporation in a vitrification process stream. The design is compact, efficient, and makes use of currently available technology

  11. Exchange of organic solvents between the atmosphere and grass--the use of open top chambers.

    Science.gov (United States)

    Binnie, J; Cape, J N; Mackie, N; Leith, I D

    2002-02-21

    Volatile organic compounds (VOC) are of increasing environmental significance as a result of continually increasing volumes of traffic on European roads. An open-top chamber fumigation system has been devised to investigate how these contaminants transfer between the atmosphere and the ground, and how they partition between and within air-plant-soil systems. Variation in chamber temperature, solar radiation in the chamber and chamber flow rate were identified as factors that affected final air concentrations. These were assessed and quantified for all individual chambers used--effectively characterising each chamber. The real-life VOC concentrations generated were stable and readily reproducible. Grass exposed to benzene, toluene, 1,1,1-trichloroethane and tetrachloroethene, respectively, equilibrated in response to a change in air concentration within hours. The rate of equilibration in exposed grass in all cases was independent of air temperature. 1,1,1-Trichloroethane and tetrachloroethene appear to be biologically inert demonstrating a simple physico-chemical approach to equilibrium, however, benzene and toluene do not appear independent of plant metabolic activity. Aqueous solubility can account for all of the toluene and benzene in the fumigated plant material.

  12. Gas microstrip chambers

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Barasch, E.F.; Bowcock, T.J.V.; Demroff, H.P.; Elliott, S.M.; Howe, M.R.; Lee, B.; Mazumdar, T.K.; Pang, Y.; Smith, D.D.; Wahl, J.; Wu, Y.; Yue, W.K.; Gaedke, R.M.; Vanstraelen, G.

    1992-01-01

    The gas microstrip chamber has been developed from concept to experimental system during the past three years. A pattern of anode and grid lines are microfabricated onto a dielectric substrate and configured as a high-resolution MWPC. Four recent developments are described: Suitable plastic substrates and lithography techniques for large-area chambers; non-planar silicon-based chambers for 20 μm resolution; integrated on-board synchronous front-end electronics and data buffering; and a porous silicon active cathode for enhanced efficiency and time response. The microstrip chamber appears to be a promising technology for applications in microvertex, tracking spectrometer, muon spectrometer, and transition radiation detection. (orig.)

  13. Reduction of waste solution volume generated on electrokinetic remediation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Koo, Dae-Seo; Kim, Seung-Soo; Jeong, Jung-Whan; Han, Gyu-Seong; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this study, for the reduction of volume of metal oxides generated in cathode chamber, the optimum pH of waste electrolyte in cathode chamber were drawn out through several experiments with the manufactured electrokinetic decontamination equipment. Also, the required time to reach to below the clearance concentration level for self- disposal was estimated through experiments using the manufactured electrokinetic decontamination equipment. A diagram of soil decontamination process for the removal of uranium from contaminated soil was drawn out. The optimum pH of waste electrolyte in cathode chamber for the reduction of volume of metal oxides was below 2.35. Also, when the initial uranium concentration of the soils were 7-20 Bq/g, the required times to reach to below the clearance concentration level for self- disposal were 25-40 days. A diagram of soil decontamination process for the removal of uranium from contaminated soil was drawn out.

  14. Investigation of the recombination losses in a three-electrode cylindrical ionization chamber developed for gamma ray dosimetry of fission product activity

    International Nuclear Information System (INIS)

    Ahmad, N.; Matiullah

    1995-01-01

    A three-electrode ionization chamber has been designed and developed for the gamma ray dosimetry of fission product activity and reported elsewhere. In this paper, the (I, V) characteristics of the chamber filled, with argon gas at 1.24 MPa (180 psi) pressure, for fission product gamma rays from spent fuel have been studied. To do so, the chamber was irradiated with gamma rays using different numbers of (i.e. up to 4) spent fuel elements. The plateau region is reached above 1200 V and the detector operating voltage is found to be 2 kV. It is observed that in the plateau region the slope increases with an increase in the exposure rate. The (1/I, 1/V) and (I, 1/V 2 ) characteristic curves reveal the presence of the initial and volume recombination losses. The volume recombination losses are found to be smaller than the initial recombination losses. Both these losses increase with the increasing exposure rate but the increase in the volume recombination losses is slightly greater than that of the initial recombination losses. (orig.)

  15. Double chamber ion source

    International Nuclear Information System (INIS)

    Uman, M.F.; Winnard, J.R.; Winters, H.F.

    1978-01-01

    The ion source is comprised of two discharge chambers one of which is provided with a filament and an aperture leading into the other chamber which in turn has an extraction orifice. A low voltage arc discharge is operated in an inert gas atmosphere in the filament chamber while an arc of higher voltage is operated in the second ionization chamber which contains a vapor which will give the desired dopant ion species. The entire source is immersed in an axial magnetic field parallel to a line connecting the filament, the aperture between the two chambers and the extraction orifice. (author)

  16. Ussing Chamber

    NARCIS (Netherlands)

    Westerhout, J.; Wortelboer, H.; Verhoeckx, K.

    2015-01-01

    The Ussing chamber system is named after the Danish zoologist Hans Ussing, who invented the device in the 1950s to measure the short-circuit current as an indicator of net ion transport taking place across frog skin (Ussing and Zerahn, Acta Physiol Scand 23:110-127, 1951). Ussing chambers are

  17. Evaluation of single right atrial volume and function with magnetic resonance imaging in children with hypoplastic left heart

    Energy Technology Data Exchange (ETDEWEB)

    Vijarnsorn, Chodchanok [University of Alberta, Faculty of Medicine and Dentistry, Stollery Children' s Hospital, Edmonton, AB (Canada); Mahidol University, Siriraj Hospital, Bangkok (Thailand); Myers, Kimberley; Patton, David J. [Alberta Children' s Hospital, Section of Pediatric Cardiology, Department of Pediatrics, Department of Pediatrics, Calgary, AB (Canada); Noga, Michelle; Crawley, Cinzia; Tham, Edythe [University of Alberta, Faculty of Medicine and Dentistry, Stollery Children' s Hospital, Edmonton, AB (Canada)

    2016-06-15

    Standardized methods to evaluate atrial properties in single ventricles are lacking. To determine the feasibility of quantifying right atrial volumes and function in hypoplastic left heart using MRI. We studied 15 infants with hypoplastic left heart prior to Glenn surgery (mean age 4.2 months [standard deviation 0.3]) who underwent cardiac MRI with evaluation of atrial volumes and emptying fraction using monoplane two-chamber, monoplane four-chamber, and biplane methods, all of which were compared to the atrial short-axial oblique stack method. We compared atrial end-diastolic volume, end-systolic volume and emptying fraction among these methods. We analyzed reproducibility of the methods using Bland-Altman plots. Both four-chamber and biplane methods showed high correlations for atrial end-diastolic volume (r = 0.7 and r = 0.8, respectively; P < 0.01) and end-systolic volume (r = 0.8 and r = 0.9, respectively; P < 0.01) with small mean differences (-0.2 ± 2.9 standard deviation [SD] ml and -0.8 ± 1.6 ml, respectively, for atrial end-diastolic volume and -0.8 ± 1.5 ml and -0.9 ± 0.9 ml, respectively, for atrial end-systolic volume). The short-axial oblique method was the most reproducible, followed by the four-chamber method. MRI assessment of atrial volume and function is feasible in hypoplastic left heart and might provide further insight into single-ventricle mechanics. (orig.)

  18. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  19. Micro ionization chamber dosimetry in IMRT verification: Clinical implications of dosimetric errors in the PTV

    International Nuclear Information System (INIS)

    Sanchez-Doblado, Francisco; Capote, Roberto; Rosello, Joan V.; Leal, Antonio; Lagares, Juan I.; Arrans, Rafael; Hartmann, Guenther H.

    2005-01-01

    Background and purpose: Absolute dose measurements for Intensity Modulated Radiotherapy (IMRT) beamlets is difficult due to the lack of lateral electron equilibrium. Recently we found that the absolute dosimetry in the penumbra region of the IMRT beamlet, can suffer from significant errors (Capote et al., Med Phys 31 (2004) 2416-2422). This work has the goal to estimate the error made when measuring the Planning Target Volume's (PTV) absolute dose by a micro ion chamber (μIC) in typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. Materials and Methods: Two IMRT treatment plans for common prostate carcinoma case, derived by forward and inverse optimisation, were considered. Detailed geometrical simulation of the μIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the delivered dose to water and the dose delivered to the active volume of the ion chamber. However, the measured dose in water is usually derived from chamber readings assuming reference conditions. The MC simulation provides needed correction factors for ion chamber dosimetry in non reference conditions. Results: Dose calculations were carried out for some representative beamlets, a combination of segments and for the delivered IMRT treatments. We observe that the largest dose errors (i.e. the largest correction factors) correspond to the smaller contribution of the corresponding IMRT beamlets to the total dose delivered in the ionization chamber within PTV. Conclusion: The clinical impact of the calculated dose error in PTV measured dose was found to be negligible for studied IMRT treatments

  20. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    International Nuclear Information System (INIS)

    DeBlois, Francois; Abdel-Rahman, Wamied; Seuntjens, Jan P.; Podgorsak, Ervin B.

    2002-01-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  1. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  2. Evaluation of a plane-parallel ionization chamber for low-energy radiotherapy beams

    International Nuclear Information System (INIS)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E.

    2014-01-01

    A plane-parallel ionization chamber, with a sensitive volume of 6.3 cm 3 , developed at the Calibration Laboratory of IPEN (LCI), was utilized to verify the possibility of its application in low-energy X-ray beam qualities for radiotherapy (T-qualities). This homemade ion chamber was manufactured using polymethyl methacrylate (PMMA) coated with graphite, and co-axial cables. In order to evaluate the performance of this ionization chamber, some characterization tests were performed: short- and medium-term stability, leakage current, saturation, ion collection efficiency, polarity effect and linearity of response. The maximum value obtained in the short-term stability test was 0.2%, in accordance with the limit value of 0.3% provided by the IEC 60731 standard. The saturation curve was obtained varying the applied voltage from -400 V to +400 V, in steps of 50 V, using the charge collecting time of 20 s. From the saturation curve two other characteristics were analyzed: the polarity effect and the ion collection efficiency, with results within the international recommendations. The leakage current of the ionization chamber was measured in time intervals of 20 minutes, before and after its irradiations, and all the results obtained were in agreement with the IEC 60731 standard. The linearity of response was verified utilizing the T-50(b) radiation quality, and the ionization chamber was exposed to different air kerma rates. The response of the ionization chamber presented a linear behavior. Therefore, all results were considered satisfactory, within international recommendations, indicating that this homemade ionization chamber presents potential routine use in dosimetry of low-energy radiotherapy beams. (author)

  3. Silicon drift chamber studies for the RHIC STAR experiment

    International Nuclear Information System (INIS)

    Humanic, T.J.

    1992-01-01

    The two-hit resolution of a silicon drift chamber is measured using a pulsed Nd:Yag laser and a time digitizer readout. The data is analyzed by forming the covariance matrix in time samples, and transforming to a matrix in amplitude and time variation of each of the two hits. The resolution of the two-hit separation is found to be better than 25 microns with a drift field of 530 V/cm and a separation of more than 500 microns, with the resolution increasing to 50 microns as the separation nears 500 microns. Results are also presented for multiply ionizing tracks, showing a great improvement over single minimum ionizing. 8 refs

  4. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, B., E-mail: babak_sharifi88@yahoo.com [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Zamani Zeinali, H. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of); Soltani, J.; Negarestani, A. [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Shahvar, A. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of)

    2015-01-11

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm{sup 3} dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  5. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies

    Science.gov (United States)

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  6. A novel DC microplasma sensor constructed in a cavity PDMS chamber with needle electrodes for fast detection of methanol-containing spirit.

    Science.gov (United States)

    Luo, Dai-bing; Duan, Yi-xiang; He, Yi; Gao, Bo

    2014-12-12

    A novel microplasma device, for the first time, was constructed in a cavity Poly (dimethylsiloxane) (PDMS) chamber with two normal syringe needles serve as both the gas channels and the electrodes. This device employs argon plasma with direct current for molecular fragmentation and excitation. The microplasma is generated at atmospheric pressure in the PDMS chamber of 0.5 mL (5 × 10 × 10 mm(3)) volume with a sealable plug. Since the microplasma is maintained in a chamber by separation of the discharge zone and the substrate, stability for a long time of the microplasma is realized which could be observed by argon background emission fluctuation and SEM characterization. This property is beneficial for spectrometric detection of many volatile organics in this chamber. Besides, this kind of microplasma sensor has advantages such as flexibility in replacement of electrodes, convenience in clearance of the discharge chamber, small instrument volume, simple structure, and ease of operation. In addition, methanol-containing spirit samples were chosen to estimate the detecting performance of this microplasma for volatile organic compounds (VOCs) analysis by molecular emission spectrometry. Significant differences are observed upon the introduction of the spirit and the methanol-containing spirit samples. A detection limit of 0.3% is obtained on this microplasma device.

  7. Estimation of steam-chamber extent using 4D seismic

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [Waseda Univ., Waseda (Japan); Endo, K. [Japan Canada Oil Sands Ltd., Calgary, AB (Canada); Onozuka, S. [Japan Oil, Gas and Metals National Corp., Tokyo (Japan)

    2009-07-01

    The steam-assisted gravity drainage (SAGD) technique is among the most effective steam injection methods and is widely applied in Canadian oil-sand reservoirs. The SAGD technology uses hot steam to decrease bitumen viscosity and allow it to flow. Japan Canada Oil Sands Limited (JACOS) has been developing an oil-sand reservoir in the Alberta's Hangingstone area since 1997. This paper focused on the western area of the reservoir and reported on a study that estimated the steam-chamber extent generated by horizontal well pairs. It listed steam injection start time for each well of the western area. Steam-chamber distribution was determined by distinguishing high temperature and high pore-pressure zones from low temperature and high pore-pressure zones. The bitumen recovery volume in the steam-chamber zone was estimated and compared with the actual cumulative production. This paper provided details of the methodology and interpretation procedures for the quantitative method to interpret 4D-seismic data for a SAGD process. A procedure to apply a petrophysical model was demonstrated first by scaling laboratory measurements to field-scale applications, and then by decoupling pressure and temperature effects. The first 3D seismic data in this study were already affected by higher pressures and temperatures. 11 refs., 3 tabs., 12 figs.

  8. The Laser Calibration System of the ALICE Time Projection Chamber

    CERN Document Server

    Renault, G; Nielsen, B S; Westergaard, J

    2005-01-01

    A Large Ion Collider Experiment (ALICE) is the only experiment at the Large Hadron Collider (LHC) dedicated to the study of heavy ion collisions. The Time Projection Chamber (TPC) is the main tracking detector covering the pseudo rapidity range $|\\eta|< 0.9$. It is designed for a maximum multiplicity \\dNdy = 8000. The aim of the laser system is to simulate ionizing tracks at predifined positions throughout the drift volume in order to monitor the TPC response to a known source. In particular, the alignment of the read-out chambers will be performed, and variations of the drift velocity due to drift field imperfections can be measured and used as calibration data in the physics data analysis. In this paper we present the design of the pulsed UV laser and optical system, together with the control and monitoring systems.

  9. Performance of an extrapolation chamber in computed tomography standard beams

    International Nuclear Information System (INIS)

    Castro, Maysa C.; Silva, Natália F.; Caldas, Linda V.E.

    2017-01-01

    Among the medical uses of ionizing radiations, the computed tomography (CT) diagnostic exams are responsible for the highest dose values to the patients. The dosimetry procedure in CT scanner beams makes use of pencil ionization chambers with sensitive volume lengths of 10 cm. The aim of its calibration is to compare the values that are obtained with the instrument to be calibrated and a standard reference system. However, there is no primary standard system for this kind of radiation beam. Therefore, an extrapolation ionization chamber built at the Calibration Laboratory (LCI), was used to establish a CT primary standard. The objective of this work was to perform some characterization tests (short- and medium-term stabilities, saturation curve, polarity effect and ion collection efficiency) in the standard X-rays beams established for computed tomography at the LCI. (author)

  10. Performance of an extrapolation chamber in computed tomography standard beams

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maysa C.; Silva, Natália F.; Caldas, Linda V.E., E-mail: mcastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Among the medical uses of ionizing radiations, the computed tomography (CT) diagnostic exams are responsible for the highest dose values to the patients. The dosimetry procedure in CT scanner beams makes use of pencil ionization chambers with sensitive volume lengths of 10 cm. The aim of its calibration is to compare the values that are obtained with the instrument to be calibrated and a standard reference system. However, there is no primary standard system for this kind of radiation beam. Therefore, an extrapolation ionization chamber built at the Calibration Laboratory (LCI), was used to establish a CT primary standard. The objective of this work was to perform some characterization tests (short- and medium-term stabilities, saturation curve, polarity effect and ion collection efficiency) in the standard X-rays beams established for computed tomography at the LCI. (author)

  11. A novel micro liquid ionization chamber for clinical dosimetry

    International Nuclear Information System (INIS)

    Stewart, K.J.; Seuntjens, J.P.

    2002-01-01

    Absorbed-dose-based protocols recommend calibration of clinical linear accelerators using airfilled ionization chambers for which an absorbed-dose to water calibration factor has been established in a 60 Co beam. The factor k Q in these protocols involves the ratio of the mean restricted collision mass stopping power water-to-air, which is energy dependent. For high-energy clinical photon beams, the stopping power ratio water-to-air varies by up to 4%, whereas for electron beams the variation is even larger. For certain insulating liquids, however, the stopping power ratio water-to-liquid shows very little energy dependence, making a liquid-filled ionization chamber a potentially attractive dosimeter for clinical reference dosimetry. In this work some properties of two liquid-filled ionization chambers are investigated including ion recombination and variation of response as a function of energy for photon beams. In this work we used an Exradin A14P planar microchamber with chamber body and electrodes composed of C552 plastic. This chamber was modified, reducing the gap between the cap and collecting electrode to 0.5 mm. The diameter of the collecting electrode is 1.5 mm and the nominal sensitive volume of 1.12 mm 3 was filled with isooctane. This chamber will be referred to as the MicroLIC. The energy response of the MicroLIC was compared to previous results measured using the LIC 9902-mix chamber, developed by G. Wickman of Umea University, Sweden. The sensitive volume of this chamber has a diameter of 2.5 mm, thickness of 0.35 mm and is filled with 60% isooctane, 40% tetramethylsilane by weight. The linear accelerator used was a Varian Clinac 21EX with nominal photon beam energies of 6 and 18 MV. Measurements were done in a 20x20x20 cm 3 RMI Solid Water phantom at 10 cm depth with a 10x10 cm 2 field at the phantom surface. Absorbed dose was determined using an Exradin A12 chamber with an absorbed-dose to water calibration factor for 60 Co established at a

  12. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  13. The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures

    Directory of Open Access Journals (Sweden)

    Xiaohui Zeng

    2016-03-01

    Full Text Available Dual-chamber air springs are used as a key component for vibration isolation in some industrial applications. The working principle of the dual-chamber air spring device as applied to motion suppression of marine structures is similar to that of the traditional air spring, but they differ in their specific characteristics. The stiffness and damping of the dual-chamber air spring device determine the extent of motion suppression. In this article, we investigate the stiffness and damping characteristics of a dual-chamber air spring device applied to marine structure motion suppression using orthogonal analysis and an experimental method. We measure the effects of volume ratio, orifice ratio, excitation amplitude, and frequency on the stiffness and damping of the dual-chamber vibration absorber. Based on the experimental results, a higher-order non-linear regression method is obtained. We achieve a rapid calculation model for dual-chamber air spring stiffness and damping, which can provide guidance to project design.

  14. Characterization of low energy X-rays beams with an extrapolation chamber

    International Nuclear Information System (INIS)

    Bastos, Fernanda Martins

    2015-01-01

    In laboratories involving Radiological Protection practices, it is usual to use reference radiations for calibrating dosimeters and to study their response in terms of energy dependence. The International Organization for Standardization (ISO) established four series of reference X-rays beams in the ISO- 4037 standard: the L and H series, as low and high air Kerma rates, respectively, the N series of narrow spectrum and W series of wide spectrum. The X-rays beams with tube potential below 30 kV, called 'low energy beams' are, in most cases, critical as far as the determination of their parameters for characterization purpose, such as half-value layer. Extrapolation chambers are parallel plate ionization chambers that have one mobile electrode that allows variation of the air volume in its interior. These detectors are commonly used to measure the quantity Absorbed Dose, mostly in the medium surface, based on the extrapolation of the linear ionization current as a function of the distance between the electrodes. In this work, a characterization of a model 23392 PTW extrapolation chamber was done in low energy X-rays beams of the ISO- 4037 standard, by determining the polarization voltage range through the saturation curves and the value of the true null electrode spacing. In addition, the metrological reliability of the extrapolation chamber was studied with measurements of the value of leakage current and repeatability tests; limit values were established for the proper use of the chamber. The PTW23392 extrapolation chamber was calibrated in terms of air Kerma in some of the ISO radiation series of low energy; the traceability of the chamber to the National Standard Dosimeter was established. The study of energy dependency of the extrapolation chamber and the assessment of the uncertainties related to the calibration coefficient were also done; it was shown that the energy dependence was reduced to 4% when the extrapolation technique was used. Finally, the first

  15. Dorsal skinfold chamber models in mice

    Directory of Open Access Journals (Sweden)

    Schreiter, Jeannine

    2017-07-01

    Full Text Available Background/purpose: The use of dorsal skinfold chamber models has substantially improved the understanding of micro-vascularisation in pathophysiology over the last eight decades. It allows pathophysiological studies of vascularisation over a continuous period of time. The dorsal skinfold chamber is an attractive technique for monitoring the vascularisation of autologous or allogenic transplants, wound healing, tumorigenesis and compatibility of biomaterial implants. To further reduce the animals’ discomfort while carrying the dorsal skinfold chamber, we developed a smaller chamber (the Leipzig Dorsal Skinfold Chamber and summarized the commercial available chamber models. In addition we compared our model to the common chamber. Methods: The Leipzig Dorsal Skinfold Chamber was applied to female mice with a mean weight of 22 g. Angiogenesis within the dorsal skinfold chamber was evaluated after injection of fluorescein isothiocyanate dextran with an Axio Scope microscope. The mean vessel density within the dorsal skinfold chamber was assessed over a period of 21 days at five different time points. The gained data were compared to previous results using a bigger and heavier dorsal skinfold model in mice. A PubMed and a patent search were performed and all papers related to “dorsal skinfold chamber” from 1 of January 2006 to 31 of December 2015 were evaluated regarding the dorsal skinfold chamber models and their technical improvements. The main models are described and compared to our titanium Leipzig Dorsal Skinfold Chamber model.Results: The Leipzig Dorsal Skinfold Chamber fulfils all requirements of continuous models known from previous chamber models while reducing irritation to the mice. Five different chamber models have been identified showing substantial regional diversity. The newly elaborated titanium dorsal skinfold chamber may replace the pre-existing titanium chamber model used in Germany so far, as it is smaller and lighter

  16. CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection.

    Science.gov (United States)

    Islamov, Meiirbek; Sypabekova, Marzhan; Kanayeva, Damira; Rojas-Solórzano, Luis

    2017-10-03

    Tuberculosis (TB) remains one of the main causes of human death around the globe. The mortality rate for patients infected with active TB goes beyond 50% when not diagnosed. Rapid and accurate diagnostics coupled with further prompt treatment of the disease is the cornerstone for controlling TB outbreaks. To reduce this burden, the existing gap between detection and treatment must be addressed, and dedicated diagnostic tools such as biosensors should be developed. A biosensor is a sensing micro-device that consists of a biological sensing element and a transducer part to produce signals in proportion to quantitative information about the binding event. The micro-biosensor cell considered in this investigation is designed to operate based on aptamers as recognition elements against Mycobacterium tuberculosis secreted protein MPT64, combined in a microfluidic-chamber with inlet and outlet connections. The microfluidic cell is a miniaturized platform with valuable advantages such as low cost of analysis with low reagent consumption, reduced sample volume, and shortened processing time with enhanced analytical capability. The main purpose of this study is to assess the flooding characteristics of the encapsulated microfluidic cell of an existing micro-biosensor using Computational Fluid Dynamics (CFD) techniques. The main challenge in the design of the microfluidic cell lies in the extraction of entrained air bubbles, which may remain after the filling process is completed, dramatically affecting the performance of the sensing element. In this work, a CFD model was developed on the platform ANSYS-CFX using the finite volume method to discretize the domain and solving the Navier-Stokes equations for both air and water in a Eulerian framework. Second-order space discretization scheme and second-order Euler Backward time discretization were used in the numerical treatment of the equations. For a given inlet-outlet diameter and dimensions of an in-house built cell chamber

  17. A combination drift chamber/pad chamber for very high readout rates

    International Nuclear Information System (INIS)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W.; Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J.; Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P.; Arenton, M.; Conetti, S.; Cox, B.; Dukes, E.; Golovatyuk, V.; Hanlet, P.; McManus, A.; Nelson, K.; Recagni, M.; Segal, J.; Sun, J.; Ballagh, C.; Bingham, H.; Kaeding, T.; Lys, J.; Misawa, S.; Blankman, A.; Borodin, S.; Kononenko, W.; Newcomer, M.; Selove, W.; Trojak, T.; VanBerg, R.; Zhang, S.N.; Block, M.; Corti, G.; LeCompte, T.; Rosen, J.; Yao, T.; Boden, A.; Cline, D.; Ramachandran, S.; Rhoades, J.; Tokar, S.; Budagov, J.; Tsyganov, E.; Cao, Z.L.; He, M.; Wang, C.; Wei, C.; Zhang, N.; Chen, T.Y.; Yao, N.; Clark, K.; Jenkins, M.; Cooper, M.; Creti, P.; Gorini, E.; Grancagnolo, F.; Panareo, M.; Fortney, L.; Kowald, W.; Haire, M.; Judd, D.; Turnbull, L.; Wagoner, D.; Lau, K.; Mo, G.; Trischuk, J.

    1991-11-01

    Six medium-sized (∼1 x 2 m 2 ) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers

  18. A combination drift chamber/pad chamber for very high readout rates

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W. (Fermi National Accelerator Lab., Batavia, IL (United States)); Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J. (Wisconsin Univ., Madison, WI (United States)); Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P. (Pavia Univ. (Italy) Istituto Nazionale di Fisica Nucleare, Rome (Italy)); Arenton, M.; Conetti, S.

    1991-11-01

    Six medium-sized ({approx}1 {times} 2 m{sup 2}) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers.

  19. Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes

    Directory of Open Access Journals (Sweden)

    Petr KOŇAŘÍK

    2009-06-01

    Full Text Available Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cylinder. Presented paper deal with development of extended form of analytic linear model of single piston rod hydraulic cylinder which respects different action piston areas and volumes inside of chambers of hydraulic cylinder and also two different input flows of hydraulic cylinder. In extended model are also considered possibilities of different dead volumes in hoses and intake parts of hydraulic cylinder. Dead volume has impact on damping of hydraulic cylinder. Because the system of hydraulic cylinder is generally presented as a integrative system with inertia of second order: eq , we can than obtain time constants and damping of hydraulic cylinder for each of analytic form model. The model has arisen for needs of model fractionation on two parts. Part of behaviour of chamber A and part of behaviour of chamber B of cylinder. It was created for the reason of analysis and synthesis of control parameters of regulation circuit of multivalve control concept of hydraulic drive with separately controlled chamber A and B which could be then used for.

  20. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  1. Calculation of nondiffused proximity functions from cloud-chamber data

    International Nuclear Information System (INIS)

    Zaider, M.

    1987-01-01

    To a large extent the cloud chamber is an ideal microdosimetric device: by measuring the positions of ionizing events in charged-particle tracks one can generate - with a flexibility matched only by Monte-Carlo simulations-any microdosimetric quantity of interest, ranging from lineal energy spectra (in volumes of practically arbitrary shape and size) to proximity functions, that is, distributions of distances between energy transfer points in the track. Cloud-chamber data analyzed in such ways have been indeed reported for a variety of radiations. In view of these clear advantages it is certainly surprising that, within the microdosimetric community, only one group (at Harwell, UK) is actively involved in such work and that, furthermore, cloud-chamber results are used essentially only as a testing ground for Monte-Carlo calculations. It appears that this reluctance can be traced to the fact that the tracks are distorted by the diffusion of droplets during their growth. This diffusion - which is of the order of several nanometers (in unit-density material), although rather insignificant vis-a-vis conventional microdosimetry, can be a serious limitation in view of modern theories of radiation action which emphasize energy deposition events at the nanometer level. The purpose of this research activity is to show that, using a rather straight-forward mathematical procedure, one can unfold the effect of diffusion from proximity functions. Since the nondiffused proximity function can be used to calculate other microdosimetric quantities an important limitation of the cloud-chamber data can thus be avoided

  2. Analysis Of Primary Coolant Suction Side Pressure In The Delay Chamber Of The RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto

    2000-01-01

    Delay chamber is a tank to delay flow that located in the primary cooling suction side of RSG-GAS. A void occurred when operation reactor caused by too high the delta P at inlet suction pump. The condition may be avoided by using one line mode of the cooling flow. The analysis show that void volume in the delay chamber is occurred because the coolant negative pressure lowers the saturation pressure should be avoided though decreasing the delta P until about 0.1 bar at about 45 exp 0 C. Solution suggested are to use bypass flow from the spent fuel to the delay chamber. Coolant temperature can be also decreased by decreasing the power level of the reactor as well as improving the heat exchanger and cooling tower performances

  3. Fabrication of Free Air Well Type Ionization Chamber and Calculational Assessment and Measurement of Its Operational Characteristics

    Directory of Open Access Journals (Sweden)

    Koroush Arbabi

    2007-12-01

    Full Text Available Introduction: Well type ionization chamber is a measuring device which is used to determine the activity of brachytherapy sources. The chamber has a cylindrical volume in which a cylindrical tube is mounted in the middle of the chamber. For the measurements, the brachytherapy sources are transferred to the middle of the tube. Materials and Methods: For designing the well type chamber, the measurement principals of well type chambers were considered and MCNP-4C code as a calculation tool was used. The designed chamber was simulated and the response of the chamber was evaluated. In this investigation, the chamber operational parameters such as operating voltage, leakage current, reproducibility, reference measuring point, recombination and polarization factors as well as response stability for 137Cs, 57Co and 241Am sources were studied. Results: The chamber leakage currents at the operating voltage in comparison to the chamber response for the measurement of the above mentioned sources were negligible. The responses of the fabricated chamber for these sources are reproducible and its reference measurement position for these sources was obtained at 6 cm from the bottom of the chamber. The recombination factor for the well type chamber was negligible and the polarization factor is close to 1. Therefore, these two factors were not considered in the measurements. The reproducibility of the measurements in different intervals shows the stability of the chamber response for each source. Also the results of the chamber current measurement in term of source strength were compared to the response of the simulated chamber for different source positions and energy ranges of the used sources. Discussion and Conclusion: The results show that the measurement of the reference positions for each source in the simulated and fabricated chamber is quite in a good agreement. Regarding the reliable operational properties of the fabricated chamber, this chamber can be

  4. Change of Pressing Chamber Conicalness at Briquetting Process in Briquetting Machine Pressing Chamber

    Directory of Open Access Journals (Sweden)

    Peter Križan

    2012-01-01

    Full Text Available In this paper, we will present the impact of the conical shape of a pressing chamber, an important structural parameter. Besides the known impact of the technological parameters of pressing chambers, it is also very important to pay attention to their structural parameters. In the introduction, we present a theoretical analysis of pressing chamber conicalness. An experiment aimed at detecting this impact was performed at our institute, and it showed that increasing the conicalness of a pressing chamber improves the quality of the final briquettes. The conicalness of the pressing chamber has a significanteffect on the final briquette quality and on the construction of briquetting machines. The experimental findings presented here show the importance of this parameter in the briquetting process.

  5. Four Channel Mini Wire Chamber to Study Cosmic Rays

    Science.gov (United States)

    Felix, J.; Rodriguez, G. J.

    2018-01-01

    Multiwire proportional chamber is a conventional technique to study radiation in general, and cosmic rays in particular. To study cosmic rays, it was planned, designed, constructed, characterized, and tested a four channel mini wire chamber, based on two 3 cm × 3 cm × 0.6 cm Aluminum frames, two 3 cm × 3 cm × 0.6 cm plastic frames, two 3 cm × 3 cm × 0.3 cm Aluminum frames, two electronic planes each with two Tungsten Gold plated 1 mil diameter wires, parallel and 1 cm apart each other at 25 g stretched-each plane was 90° rotated each other in the final assemble- and two Aluminum foil window to define the gas volume; it was operated with Argon 90%-CH4 10% gas mixture at 1 atmosphere and ambient temperature (20°C in the average). It is presented technical details, results on characterization, and preliminary results on cosmic rays detection.

  6. Measurements of trace contaminants in closed-type plant cultivation chambers

    Science.gov (United States)

    Tani, A.; Kiyota, M.; Aiga, I.; Nitta, K.; Tako, Y.; Ashida, A.; Otsubo, K.; Saito, T.

    Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO_2 and O_2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed^-1 h^-1 for the shiitake mushroom culture bed (volume is 1700 cm^3) and 4.1 ~ 17.3 ng dm^-2h^-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants.

  7. Sleeve reaction chamber system

    Science.gov (United States)

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  8. Dual-chamber inflatable oil boom

    International Nuclear Information System (INIS)

    Blair, R.M.; Tedeschi, E.T.

    1993-01-01

    An elongated floating material containment boom section is described having a normally vertical ballasted skirt depending from flotation means, and convertible from a flattened collapsed condition to a deployable condition wherein buoyancy chamber means extending along the upper edge of said skirt are inflated to expanded buoyant configuration, including: a gas-impervious sleeve extending along the upper edge of said normally vertical skirt forming a first outer collapsible and inflatable flotation chamber, a first inflation valve connecting the interior of said sleeve with the ambient atmosphere, through which gas under pressure may be introduced into said sleeve to inflate said first buoyant outer flotation chamber, elongated gas-impervious tube means positioned inside said outer flotation chamber and forming second collapsible and inflatable internal flotation bladder chamber means, second inflation valve means connecting the interior of said bladder means through said outer flotation chamber to the ambient atmosphere through which gas under pressure may be introduced into said bladder means to inflate it forming said second flotation chamber means inside said outer flotation chamber

  9. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  10. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  11. A low-pressure cloud chamber to study the spatial distribution of ionizations

    International Nuclear Information System (INIS)

    Hodges, D.C.; Marshall, M.

    1977-01-01

    To further the understanding of the biological effects of radiation a knowledge of the spatial distribution of ionizations in small volumes is required. A cloud chamber capable of resolving the droplets formed on individual ions in the tracks of low-energy electrons has been constructed. It is made to high-vacuum specifications and contains a mixture of permanent gases and vapours, unsaturated before expansion, at a total pressure of 10 kPa. Condensation efficiencies close to 100% are obtained without significant background from condensation on uncharged particles and molecular aggregates. This paper describes the chamber, associated equipment and method of operation and discusses the performance of the system. Photographs of the droplets produced from the interaction of low-energy X-rays in the chamber gas for various modes of operation are presented. The mean energy loss per ion pair for electrons produced by the interaction of Al X-rays in the chamber gas (8130 Pa H 2 , 700 Pa C 2 H 5 OH, 690 Pa H 2 O, 400 Pa He, 70 Pa air) has been measured as 29.8 +- 0.7 eV per ion pair compared with a calculated value of 29.6 +- 0.4 eV per ion pair. (author)

  12. Volume and biomass for curlleaf cercocarpus in Nevada

    Science.gov (United States)

    David C. Chojnacky

    1984-01-01

    Volume and biomass equations were developed for curlleaf cercocarpus (Cercocarpus ledifolius Nutt.) in the Egan and Schell Mountains near Ely, NV. The equations predict cubic foot volume of wood and bark for variable minimum branch diameters. Wood density factors are given to convert volume predictions to pounds of fiber biomass. The reliability of...

  13. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  14. Applying ARIMA model for annual volume time series of the Magdalena River

    Directory of Open Access Journals (Sweden)

    Gloria Amaris

    2017-04-01

    Conclusions: The simulated results obtained with the ARIMA model compared to the observed data showed a fairly good adjustment of the minimum and maximum magnitudes. This allows concluding that it is a good tool for estimating minimum and maximum volumes, even though this model is not capable of simulating the exact behaviour of an annual volume time series.

  15. Response of multi-strip multi-gap resistive plate chamber using pulsed electron beam

    International Nuclear Information System (INIS)

    Datta Pramanik, U.; Chakraborty, S.; Rahaman, A.; Ray, J.; Chatterjee, S.; Bemmerer, D.; Elekes, Z.; Kempe, M.; Sobiella, M.; Stach, D.; Wagner, A.; Yakorev, D.; Leifels, Y.; Simon, H.

    2011-01-01

    A prototype of Multi-strip Multi-gap Resistive Plate Chamber (MMRPC) with active area 40 cm x 20 cm has been developed at SINP, Kolkata. Electron response of the developed detector was studied using the electron linac ELBE at Forschungszentrum Dresden-Rossendorf. The development of this detector started with the aim of developing a neutron detector but this ultrafast timing detector can be used efficiently for the purpose of medical imaging, security purpose and detection of minimum ionising particle. In this article detailed analysis of electron response to our developed MMRPC will be presented

  16. Plastic flashtube chambers

    International Nuclear Information System (INIS)

    Frisken, W.R.

    1977-01-01

    A brief discussion is given of the use and operation of plastic flashtube chambers. Gas leaks, electric pulsing, the glow discharge, and readout methods are considered. Three distinct problems with high rate applications deal with resolving time, dead time, and polarization/neutralization of the chamber

  17. Effect of pulmonary hyperinflation on central blood volume

    DEFF Research Database (Denmark)

    Mijacika, Tanja; Kyhl, Kasper; Frestad, Daria

    2017-01-01

    (11±7%) above the total lung capacity. All cardiac chambers decreased in volume and despite a heart rate increase of 24±29 bpm (39±50%), pulmonary blood flow decreased by 2783±1820mL (43±20%). The pulmonary transit time remained unchanged at 7.5±2.2s and pulmonary blood volume decreased by 354±176m...

  18. A drift chamber tracking system for muon scattering tomography applications

    Science.gov (United States)

    Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.; Snow, S.

    2015-10-01

    Muon scattering tomography (MST) allows the identification of shielded high atomic number (high-Z) materials by measuring the scattering angle of cosmic ray muons passing through an inspection region. Cosmic ray muons scatter to a greater degree due to multiple Coulomb scattering in high-Z materials than low-Z materials, which can be measured as the angular difference between the incoming and outgoing trajectories of each muon. Measurements of trajectory are achieved by placing position sensitive particle tracking detectors above and below the inspection volume. By localising scattering information, the point at which a series of muons scatter can be used to reconstruct an image, differentiating high, medium and low density objects. MST is particularly useful for differentiating between materials of varying density in volumes that are difficult to inspect visually or by other means. This paper will outline the experimental work undertaken to develop a prototype MST system based on drift chamber technology. The planar drift chambers used in this prototype measure the longitudinal interaction position of an ionising particle from the time taken for elections, liberated in the argon (92.5%), carbon dioxide (5%), methane (2.5%) gas mixture, to reach a central anode wire. Such a system could be used to enhance the detection of shielded radiological material hidden within regular shipping cargo.

  19. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  20. A simplified transient three-dimensional model for estimating the thermal performance of the vapor chambers

    International Nuclear Information System (INIS)

    Chen, Y.-S.; Chien, K.-H.; Wang, C.-C.; Hung, T.-C.; Pei, B.-S.

    2006-01-01

    The vapor chambers (flat plate heat pipes) have been applied on the electronic cooling recently. To satisfy the quick-response requirement of the industries, a simplified transient three-dimensional linear model has been developed and tested in this study. In the proposed model, the vapor is assumed as a single interface between the evaporator and condenser wicks, and this assumption enables the vapor chamber to be analyzed by being split into small control volumes. Comparing with the previous available results, the calculated transient responses have shown good agreements with the existing results. For further validation of the proposed model, a water-cooling experiment was conducted. In addition to the vapor chamber, the heating block is also taken into account in the simulation. It is found that the inclusion of the capacitance of heating block shows a better agreement with the measurements

  1. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    Science.gov (United States)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  2. Specification of volume and dose in radiotherapy

    International Nuclear Information System (INIS)

    Levernes, S.

    1997-01-01

    As a result of a questionnaire about dose and volume specifications in radiotherapy in the Nordic countries, a group has been set up to propose common recommendations for these countries. The proposal is partly based on ICRU 50, but with major extensions. These extensions fall into three areas: patient geometry, treatment geometry, and dose specifications. For patient geometry and set-up one need alignment markings and anatomical reference points, the latter can be divided into internal and external reference points. These points are necessary to get relationships between coordinate systems related to patient and to treatment unit. For treatment geometry the main volume will be an anatomical target volume which just encompass the clinical target volume with all its variations and movements. This anatomical volume are the most suitable volume for prescription, optimization and reporting dose. A set-up margin should be added to the beam periphery in beams-eye-view to get the minimum size and shape of the beam. For dose specification the most important parameter for homogeneous dose distributions is the arithmetic mean of dose to the anatomical target volume together with its standard deviation. In addition the dose to the ICRU reference point should be reported for intercomparison, together with minimum and maximum doses or dose volume histograms for the anatomical target volume. (author)

  3. Radionuclide determined pulmonary blood volume in ischaemic heart disease

    International Nuclear Information System (INIS)

    Hannan, W.J.; Vojacek, J.; Connell, H.M. Dewhurst N.G.; Muir, A.L.

    1981-01-01

    Most measurements of pulmonary blood volume have been based on the Stewart-Hamilton dye dilution principle and have required direct catheterisation of the cardiac chambers. Alternatively a precordial counter may be used to detect the composite right and left heart curves after an intravenous injection of radionuclide. We investigated the use of a gamma camera/computer system to determine the radionuclide (sup(99m)Tc) dilution curves from individual cardiac chambers. Pulmonary transit time and pulmonary blood volume were measured in nine normal subjects, eight patients with angina pectoris but without heart failure, and 13 patients with ischaemic heart disease and left ventricular failure. Patients with heart failure had significantly greater (p 0 angle. A reduction in pulmonary blood volume in the tilted position was observed in each subject (p < 0.005). This simple non-invasive measurement should allow more detailed assessment of physiological or pharmacological changes of the pulmonary vascular bed. (author)

  4. Prototype multiwire proportional chamber

    CERN Multimedia

    1975-01-01

    Chambers of this type were initially developed within the Alpha project (finally not approved). They were designed such to minimize the radiation length with a view to a mass spectrometer of high resolution meant to replace the Omega detector. The chambers were clearly forerunners for the (drift) chambers later built for R606 with the novel technique of crimping the wires. See also photo 7510039X.

  5. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  6. Moduli stabilization, large-volume dS minimum without D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi–Yau’s

    CERN Document Server

    Misra, A

    2008-01-01

    We consider two sets of issues in this paper. The first has to do with moduli stabilization, existence of “area codes” [A. Giryavets, New attractors and area codes, JHEP 0603 (2006) 020, hep-th/0511215] and the possibility of getting a non-supersymmetric dS minimum without the addition of -branes as in KKLT for type II flux compactifications. The second has to do with the “inverse problem” [K. Saraikin, C. Vafa, Non-supersymmetric black holes and topological strings, hep-th/0703214] and “fake superpotentials” [A. Ceresole, G. Dall'Agata, Flow equations for non-BPS extremal black holes, JHEP 0703 (2007) 110, hep-th/0702088] for extremal (non-)supersymmetric black holes in type II compactifications. We use (orientifold of) a “Swiss cheese” Calabi–Yau [J.P. Conlon, F. Quevedo, K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 0508 (2005) 007, hep-th/0505076] expressed as a degree-18 hypersurface in WCP4[1,1,1,6,9] in the “large-volume...

  7. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  8. Influence of the Structure of a Solid-Fuel Mixture on the Thermal Efficiency of the Combustion Chamber of an Engine System

    Science.gov (United States)

    Futko, S. I.; Koznacheev, I. A.; Ermolaeva, E. M.

    2014-11-01

    On the basis of thermodynamic calculations, the features of the combustion of a solid-fuel mixture based on the glycidyl azide polymer were investigated, the thermal cycle of the combustion chamber of a model engine system was analyzed, and the efficiency of this chamber was determined for a wide range of pressures in it and different ratios between the components of the combustible mixture. It was established that, when the pressure in the combustion chamber of an engine system increases, two maxima arise successively on the dependence of the thermal efficiency of the chamber on the weight fractions of the components of the combustible mixture and that the first maximum shifts to the side of smaller concentrations of the glycidyl azide polymer with increase in the pressure in the chamber; the position of the second maximum is independent of this pressure, coincides with the minimum on the dependence of the rate of combustion of the mixture, and corresponds to the point of its structural phase transition at which the mole fractions of the carbon and oxygen atoms in the mixture are equal. The results obtained were interpreted on the basis of the Le-Chatelier principle.

  9. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  10. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  11. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. Properties of a barium fluoride-TMAE-multiwire proportional chamber detector using a large single crystal

    International Nuclear Information System (INIS)

    Woody, C.L.; Petridou, C.I.; Smith, G.C.

    1985-01-01

    The properties of a detector consisting of a large barium fluoride crystal and a multiwire proportional chamber operating at low pressure with TMAE have been studied. Measurements of the time resolution, pulse width, energy resolution, photoelectron yield and the effective energy threshold were carried out in a test beam using minimum ionizing particles. Although the detector is sensitive to signals originating from an adsorbed layer of TMAE from the crystal surface, no indication of such a signal was observed. 7 refs., 6 figs

  13. Directional muon jet chamber for a muon collider (Groovy Chamber)

    International Nuclear Information System (INIS)

    Atac, M.

    1996-10-01

    A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-ψ coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas

  14. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    Suzuki, A.

    1979-01-01

    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  15. Improvement of Swirl Chamber Structure of Swirl-Chamber Diesel Engine Based on Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Wenhua Yuan

    2014-10-01

    Full Text Available In order to improve combustion characteristic of swirl chamber diesel engine, a simulation model about a traditional cylindrical flat-bottom swirl chamber turbulent combustion diesel engine was established within the timeframe of the piston motion from the bottom dead centre (BDC to the top dead centre (TDC with the fluent dynamic mesh technique and flow field vector of gas in swirl chamber and cylinder; the pressure variation and temperature variation were obtained and a new type of swirl chamber structure was proposed. The results reveal that the piston will move from BDC; air in the cylinder is compressed into the swirl chamber by the piston to develop a swirl inside the chamber, with the ongoing of compression; the pressure and temperature are also rising gradually. Under this condition, the demand of diesel oil mixing and combusting will be better satisfied. Moreover, the new structure will no longer forma small fluid retention zone at the lower end outside the chamber and will be more beneficial to the mixing of fuel oil and air, which has presented a new idea and theoretical foundation for the design and optimization of swirl chamber structure and is thus of good significance of guiding in this regard.

  16. Production and transport chemistry of atomic fluorine in remote plasma source and cylindrical reaction chamber

    International Nuclear Information System (INIS)

    Gangoli, S P; Johnson, A D; Fridman, A A; Pearce, R V; Gutsol, A F; Dolgopolsky, A

    2007-01-01

    Increasingly, NF 3 -based plasmas are being used in semiconductor manufacturing to clean chemical vapour deposition (CVD) chambers. With advantages such as faster clean times, substantially lower emissions of gases having high global warming potentials, and reduced chamber damage, NF 3 plasmas are now favoured over fluorocarbon-based processes. Typically, a remote plasma source (RPS) is used to dissociate the NF 3 gas and produce atomic fluorine that etches the CVD residues from the chamber surfaces. However, it is important to efficiently transport F atoms from the plasma source into the process chamber. The current work is aimed at understanding and improving the key processes involved in the production and transport of atomic fluorine atoms. A zero-dimensional model of NF 3 dissociation and F production chemistry in the RPS is developed based on various known and derived plasma parameters. Additionally, a model describing the transport of atomic fluorine is proposed that includes both physical (diffusion, adsorption and desorption) and chemical processes (surface and three-body volume recombination). The kinetic model provides an understanding of the impact of chamber geometry, gas flow rates, pressure and temperature on fluorine recombination. The plasma-kinetic model is validated by comparing model predictions (percentage F atom density) with experimental results (etch rates)

  17. General description and first results with the ORIS-LMRI 4 π γ metering chamber

    International Nuclear Information System (INIS)

    Tejera R, A.; Becerril V, A.; Cortes P, A.

    1990-04-01

    A problem that present the ionization chambers is that the response for the radiation is global, that is to say that it cannot discriminate against selectively the relating responses at different energies, if these impact simultaneously in the active volume. This is a reason to calibrate the chambers, if is possible, with gamma monoenergetic emitting and by average calculations to complete the response curve with gamma emitting of well-known yields. To obtain the calibration coefficients and may used them, it is necessary that so much the standardized radioisotopes as the solutions by calibrating, are contained in vessels with the same geometry and the same quantity. In the exposed case, pattern solutions of 5 ml were used contained in glass cruets of 10 ml. The problem solutions are contained in same cruets to those of the patterns. The first results obtained with the ORIS-LMRI 4 π γ metering chamber are presented. (Author)

  18. Echocardiographic chamber quantification in a healthy Dutch population.

    Science.gov (United States)

    van Grootel, R W J; Menting, M E; McGhie, J; Roos-Hesselink, J W; van den Bosch, A E

    2017-12-01

    For accurate interpretation of echocardiographic measurements normative data are required, which are provided by guidelines. For this article, the hypothesis was that these cannot be extrapolated to the Dutch population, since in Dutch clinical practice often higher values are found, which may not be pathological but physiological. Therefore this study aimed to 1) obtain and propose normative values for cardiac chamber quantification in a healthy Dutch population and 2) determine influences of baseline characteristics on these measurements. Prospectively recruited healthy subjects, aged 20-72 years (at least 28 subjects per age decade, equally distributed for gender) underwent physical examination and 2D and 3D echocardiography. Both ventricles and atria were assessed and volumes were calculated. 147 subjects were included (age 44 ± 14 years, 50% female). Overall, feasibility was good for both linear and volumetric measurements. Linear and volumetric parameters were consistently higher than current guidelines recommend, while functional parameters were in line with the guidelines. This was more so in the older population. 3D volumes were higher than 2D volumes. Gender dependency was seen in all body surface area (BSA) corrected volumes and with increasing age, ejection fractions decreased. This study provides 2D and 3D echocardiographic reference ranges for both ventricles and atria derived from a healthy Dutch population. BSA indexed volumes are gender-dependent, age did not influence ventricular volumes and a rise in blood pressure was independently associated with increased right ventricular volumes. The higher volumes found may be indicative for the Dutch population being the tallest in the world.

  19. Tasks related to increase of RA reactor exploitation and experimental potential, 01. Designing the protection chamber in the RA reactor hall for handling the radioactive experimental equipment (I-II) Part II, Vol. II

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    This second volume of the project for construction of the protection chamber in the RA reactor hall for handling the radioactive devices includes the technical description of the chamber, calculation of the shielding wall thickness, bottom lead plate, horizontal stability of the chamber, cost estimation, and the engineering drawings

  20. Establishment of a radon test chamber

    International Nuclear Information System (INIS)

    Chen Chingjiang; Liu Chichang; Lin Yuming

    1993-01-01

    A walk-in type radon test chamber of 23 m 3 has been built for testing and calibration of radon measurement instruments. The environmental conditions of the test chamber can be varied within a wide range of values. The design objectives specification, monitoring instruments and testing results of this chamber are discussed. This test chamber is available for domestic radon researchers and its accuracy can be traced to the international standard. A routine intercomparison study will be held annually by using this chamber. Other tests like radon progeny and thoron standard may also be performed in this chamber. (1 fig.)

  1. Improvement of the drift chamber system in the SAPHIR detector and first measurements of the Φ meson production at threshold

    International Nuclear Information System (INIS)

    Scholmann, J.N.

    1996-09-01

    The SAPHIR detector at ELSA enables the measurement of photon induced Φ meson production from threshold up to 3 GeV in the full kinematical range. A considerable improvement of the drift chamber system is a precondition of gaining the necessary data rate in an acceptable time. The research focuses attention on the choice of the chamber gas and on a different mechanical construction, so as to minimize the negative influences of the photon beam crossing the sensitive volume of the drift chamber system. In addition, first preliminary results of the total and the differential cross section for the Φ meson production close to threshold were evaluated. (orig.)

  2. CONVECTIVE HEAT EXCHANGE ON THE LATERAL SURFACE OF A RELATIVELY LONG CYCLONE CHAMBER

    Directory of Open Access Journals (Sweden)

    E. N. Saburov

    2016-01-01

    Full Text Available The high-turbulent swirling flows of heat carrier that are created by a cyclone chamber are used in industry. They make it possible to intensify processes of heat and mass exchange. The results of an experimental study of convective heat transfer on the lateral surface of the active volume of a relatively long cyclone chamber considerably exceeding the length of the chambers that were used in previously performed studies are presented and analyzed in the article. Air supply in the swirler of the chamber was performed tangentially from diametrically opposite sides of the two input channels. The gas outlet was implemented from the opposite end. The heat transfer by convection to the swirling air flow was studied by the method of changing the state of aggregation of a heating agent – condensation of slightly superheated steam. Collecting condensate from the working section was made through a water seal for maintaining a constant pressure calorimeter. The amount of heat transferred during experiment was determined by weight of the collected condensate. The specific features of influence of geometrical characteristics of cyclone chamber on intensity of heat exchange are considered. In the experiments we varied the relative diameter of the outlet port of the chamber dвых and the relative area of the input channels fвх. Segmental construction of the chamber made it possible to move a calorimeter on its length. The local heat transfer coefficient was determined for various values of the dimensionless longitudinal coordinate z coinciding with the axis of the chamber, and counted from the back end of the swirler. The estimated equations of heat transfer obtained during the research are presented and recommended for use in practice of engineering. The considered problem is of an interest from the point of view of further research of aerodynamics and of convective heat transfer in a highly swirling flow cyclone devices, in order to improve the

  3. Changes in Upper Airway Volume Following Orthognathic Surgery.

    Science.gov (United States)

    Marcussen, Lillian; Stokbro, Kasper; Aagaard, Esben; Torkov, Peter; Thygesen, Torben

    2017-01-01

    Reduced volume of the internal skeletal dimensions of the face is 1 of the main causes of obstructive sleep apnea, and attention to patients' airways is necessary when planning orthognathic treatment. This study aims to describe changes in upper airway volume following virtually planned orthognathic surgery.A retrospective pilot study was designed with 30 randomly selected patients (10 men and 20 women, aged 23.1 ± 6.8 years, molar-relations: 15 neutral, 8 distal, and 7 mesial). Cone-beam computed tomography scans were performed before surgery and 1 week following surgery. The authors did total upper airway volume measurements and obtained 1-mm slices at vertical levels in the velo-, oro-, and hypopharynx and at the smallest visible cross-section.Measurements before and after surgery were compared using Student t test.After orthognathic surgery, the minimum cross-sectional area at the vertical level increased from 83 mm ± 33 before surgery to 102 mm ± 36 after surgery (P = 0.019). In patients with neutral and distal occlusions, the minimum cross-sectional slice volume increased in 87% but in only 57% with mesial occlusion.The present findings suggest that orthognathic surgery increases upper airway volume parameters, but a few patients have continued impairment of the airways following orthognathic surgery. Further studies are needed to confirm an individual surgical planning approach that potentially could bring the minimum cross sectional area out of the risk zone.

  4. Dose rates from a C-14 source using extrapolation chamber and MC calculations

    International Nuclear Information System (INIS)

    Borg, J.

    1996-05-01

    The extrapolation chamber technique and the Monte Carlo (MC) calculation technique based on the EGS4 system have been studied for application for determination of dose rates in a low-energy β radiation field e.g., that from a 14 C source. The extrapolation chamber measurement method is the basic method for determination of dose rates in β radiation fields. Applying a number of correction factors and the stopping power ratio, tissue to air, the measured dose rate in an air volume surrounded by tissue equivalent material is converted into dose to tissue. Various details of the extrapolation chamber measurement method and evaluation procedure have been studied and further developed, and a complete procedure for the experimental determination of dose rates from a 14 C source is presented. A number of correction factors and other parameters used in the evaluation procedure for the measured data have been obtained by MC calculations. The whole extrapolation chamber measurement procedure was simulated using the MC method. The measured dose rates showed an increasing deviation from the MC calculated dose rates as the absorber thickness increased. This indicates that the EGS4 code may have some limitations for transport of very low-energy electrons. i.e., electrons with estimated energies less than 10 - 20 keV. MC calculations of dose to tissue were performed using two models: a cylindrical tissue phantom and a computer model of the extrapolation chamber. The dose to tissue in the extrapolation chamber model showed an additional buildup dose compared to the dose in the tissue model. (au) 10 tabs., 11 ills., 18 refs

  5. SU-F-T-05: Dosimetric Evaluation and Validation of Newlydeveloped Well Chamber for Use in the Calibration of Brachytherapy Sources

    Energy Technology Data Exchange (ETDEWEB)

    Saminathan, S; Godson, H; Ponmalar, R; Manickam, R [Kidwai Memorial Institute of Oncology, Bangalore, Karnataka (India); Mazarello, J [Rosalina India private limited, Mumbai, Maharastra (India)

    2016-06-15

    Purpose: To evaluate the dosimetric characteristics of newly developed well type ionization chamber and to validate the results with the commercially available calibrated well chambers that are being used for the calibration of brachytherapy sources. Methods: The newly developed well type ionization chamber (BDS 1000) has been designed for the convenient use in brachytherapy which is open to atmospheric condition. The chamber has a volume of 240 cm3 and weight of 2.5 Kg. The calibration of the radioactive source with activities from 0.01 mCi to 20 Ci can be carried out using this chamber. The dosimetric parameters such as leakage current, stability, scattering effect, ion collection efficiency, reference air kerma rate and nominal response with energy were carried out with the BDS 1000 well type ion chamber. The evaluated dosimetric characteristics of BDS1000 well chamber were validated with two other commercially available well chambers (HDR 1000 plus and BTC/3007). Results: The measured leakage current observed was negligible for the newly developed BDS 1000 well type ion chamber. The ion collection efficiency was close to 1 and the response of the chamber was found to be very stable. The determined sweet spot was at 42 mm from bottom of the chamber insert. The reference air kerma rate was found to be 4.634 × 105 Gym2hr-1A-1 for the BDS 1000 well chamber. The overall dosimetric characteristics of BDS 1000 well chamber was in good agreement with the dosimetric properties of other two well chambers. Conclusion: The dosimetric study shows that the newly developed BDS 1000 well type ionization chamber is high sensitive and reliable chamber for reference air kerma strength calibration. The results obtained confirm that this chamber can be used for the calibration of HDR and LDR brachytherapy sources.

  6. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  7. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2010-01-01

    The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.

  8. Cobalt as a gastric juice volume marker: Comparison of two methods of estimation

    International Nuclear Information System (INIS)

    Gana, T.J.; MacPherson, B.R.; Ng, D.; Koo, J.

    1990-01-01

    We investigated the use of cobalt-EDTA, a novel, nonabsorbable liquid phase marker, in the estimation of secretory volumes during topical misoprostol (synthetic PGE, analog) administration in the canine chambered gastric segment. We compared atomic absorption spectrophotometry (AAS) and instrumental neutron activation analysis (INAA) in the estimation of [Co]. Mucosal bathing solutions containing cobalt-EDTA were instilled into and recovered from the chamber by gravity every 15-min period as follows: (i) basal--60 min; (ii) misoprostol periods--150 min (plus 0.1-, 1-, 10-, 100-, and 1000-micrograms doses of misoprostol for two periods per dose). The recovered solutions were analyzed for [Co] by AAS and INAA. Total cobalt recovery by AAS after chamber washout was 102.97 +/- 0.98%. Mean +/- SE volumes (12.14 +/- 0.33 and 13.24 +/- 0.60 ml/15 min) obtained respectively from AAS and INAA were significantly higher (P less than 0.001) than the recovered mean volumes (10.51 +/- 0.17 ml/15 min). The percentage error in volume collection increased (range: 9.3-52.7%) with the volume of secretion. Values of [Co] obtained by the two techniques were comparable and not significantly different from each other (P greater than 0.05). INAA-estimated mean +/- SE [Co] showed consistently higher coefficients of variation. Spectra obtained for all samples during INAA measurements showed significant Compton background activity from 24Na and 38Cl. Cobalt-EDTA did not grossly or histologically damage the gastric mucosa. We conclude that cobalt is not adsorbed, absorbed, or metabolized, and is a suitable and reliable volume marker in this model

  9. Cloud Chamber

    DEFF Research Database (Denmark)

    Gfader, Verina

    Cloud Chamber takes its roots in a performance project, titled The Guests 做东, devised by Verina Gfader for the 11th Shanghai Biennale, ‘Why Not Ask Again: Arguments, Counter-arguments, and Stories’. Departing from the inclusion of the biennale audience to write a future folk tale, Cloud Chamber......: fiction and translation and translation through time; post literacy; world picturing-world typing; and cartographic entanglements and expressions of subjectivity; through the lens a social imaginary of worlding or cosmological quest. Art at its core? Contributions by Nikos Papastergiadis, Rebecca Carson...

  10. Characterization and Simulation of a New Design Parallel-Plate Ionization Chamber for CT Dosimetry at Calibration Laboratories

    Science.gov (United States)

    Perini, Ana P.; Neves, Lucio P.; Maia, Ana F.; Caldas, Linda V. E.

    2013-12-01

    In this work, a new extended-length parallel-plate ionization chamber was tested in the standard radiation qualities for computed tomography established according to the half-value layers defined at the IEC 61267 standard, at the Calibration Laboratory of the Instituto de Pesquisas Energéticas e Nucleares (IPEN). The experimental characterization was made following the IEC 61674 standard recommendations. The experimental results obtained with the ionization chamber studied in this work were compared to those obtained with a commercial pencil ionization chamber, showing a good agreement. With the use of the PENELOPE Monte Carlo code, simulations were undertaken to evaluate the influence of the cables, insulator, PMMA body, collecting electrode, guard ring, screws, as well as different materials and geometrical arrangements, on the energy deposited on the ionization chamber sensitive volume. The maximum influence observed was 13.3% for the collecting electrode, and regarding the use of different materials and design, the substitutions showed that the original project presented the most suitable configuration. The experimental and simulated results obtained in this work show that this ionization chamber has appropriate characteristics to be used at calibration laboratories, for dosimetry in standard computed tomography and diagnostic radiology quality beams.

  11. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang

    2016-08-18

    In this paper, spray combustion of diesel (No. 2) and diesel-gasoline blend (dieseline: 80% diesel and 20% gasoline by volume) were investigated in an optically accessible constant volume combustion chamber. Effects of ambient conditions on flame emissions were studied. Ambient oxygen concentration was varied from 12% to 21% and three ambient temperatures were selected: 800 K, 1000 K and 1200 K. An intensified CCD camera coupled with bandpass filters was employed to capture the quasi-steady state flame emissions at 430 nm and 470 nm bands. Under non-sooting conditions, the narrow-band flame emissions at 430 nm and 470 nm can be used as indicators of CH∗ (methylidyne) and HCHO∗ (formaldehyde), respectively. The lift-off length was measured by imaging the OH∗ chemiluminescence at 310 nm. Flame emission structure and intensity distribution were compared between dieseline and diesel at wavelength bands. Flame emission images show that both narrow band emissions become shorter, thinner and stronger with higher oxygen concentration and higher ambient temperature for both fuels. Areas of weak intensity are observed at the flame periphery and the upstream for both fuels under all ambient conditions. Average flame emission intensity and area were calculated for 430 nm and 470 nm narrow-band emissions. At a lower ambient temperature the average intensity increases with increasing ambient oxygen concentration. However, at the 1200 K ambient temperature condition, the average intensity is not increasing monotonically for both fuels. For most of the conditions, diesel has a stronger average flame emission intensity than dieseline for the 430 nm band, and similar phenomena can be observed for the 470 nm band with 800 K and 1200 K ambient temperatures. However, for the 1000 K ambient temperature cases, dieseline has stronger average flame emission intensities than diesel for all oxygen concentrations at 470 nm band. Flame emissions for the two bands have a

  12. Calibration of a large volume argon-41 gas-effluent monitor

    International Nuclear Information System (INIS)

    Wilson, William E.; Lovas, Thomas A.

    1976-01-01

    In September of 1975, a large volume Argon-41 sampler was calibrated using a series connected calibration chamber of known sensitivity and a constant flow of activated Argon gas. The calibration included analysis of the effects of flow rate through the large volume sampler and yielded a calibration constant of 2.34 x 10 -8 μc/cm 3 /CPM. (author)

  13. Effects of hemodialysis on corneal and anterior chamber morphometry and intraocular pressure in patients with end-stage renal disease

    Directory of Open Access Journals (Sweden)

    Mehtap Caglayan

    Full Text Available ABSTRACT Purpose: To evaluate the effects of hemodialysis (HD on corneal and anterior chamber morphometry, as well as intraocular pressure (IOP in patients with end-stage renal disease. Methods: Fifty right eyes were examined 30 minutes before and after HD. IOP was measured with a Goldmann applanation tonometer, and Ehlers' formula was used to calculate the corrected IOP values. The central corneal thickness (CCT, corneal volume (CV, keratometric values, anterior chamber depth (ACD, aqueous depth (AQD, anterior chamber volume (ACV, and anterior chamber angle (ACA in the nasal and temporal quadrants were measured with a Sirius anterior segment analysis system. Blood urea nitrogen levels, body mass, and systolic and diastolic arterial pressure were also measured before and after HD. Results: The mean age was 60.80 ± 13.38 (range: 35-80 years. The mean uncorrected and corrected IOP values decreased from 18.06 ± 3.91 and 18.31 ± 4.83 mmHg to 16.94 ± 3.87 and 16.95 ± 4.74 mmHg after HD, respectively (p=0.011 and p=0.003, respectively. The mean CCT decreased from 536.38 ± 24.73 to 533.18 ± 27.25 µm (p=0.002, and the mean CV decreased from 57.52 ± 3.15 to 55.68 ± 3.55 mm³ (p0.05 for all values. There were no significant correlations between the ocular and systemic parameters (p>0.05 for all correlations. Conclusions: Uncorrected IOP, corrected IOP, CCT, and CV values decreased after HD, whereas the anterior chamber morphometry values remained similar between the measurements performed before and after HD.

  14. A Portable, Low-Power Analyzer and Automated Soil Flux Chamber System for Measuring Wetland GHG Emissions

    Science.gov (United States)

    Nickerson, Nick; Kim-Hak, David; McArthur, Gordon

    2017-04-01

    Preservation and restoration of wetlands has the potential to help sequester large amounts of carbon due to the naturally high primary productivity and slow turnover of stored soil carbon. However, the anoxic environmental conditions present in wetland soils are also the largest natural contributor to global methane emissions. While it is well known that wetlands are net carbon sinks over long time scales, given the high global warming potential of methane, the short-term balances between C uptake and storage and loss as CO2 and CH4 need to be carefully considered when evaluating the climate effects of land-use change. It is relatively difficult to measure methane emissions from wetlands with currently available techniques given the temporally and spatially sporadic nature of the processes involved (methanogenesis, methane oxidation, ebullition, etc.). For example, using manual soil flux chambers can often only capture a portion of either the spatial or temporal variability, and often have other disadvantages associated with soil atmosphere disturbance during deployment in these relatively compressible wetland soils. Automated chamber systems offer the advantage of collecting high-resolution time series of gaseous fluxes while reducing some human and method induced biases. Additionally, new laser-based analyzers that can be used in situ alongside automated chambers offer a greater minimum detectable flux than can be achieved using alternative methods such as Gas Chromatography. Until recently these types of automated measurements were limited to areas that had good power coverage, as laser based systems were power intensive and could not easily be supplemented with power from field-available sources such as solar. Recent advances in laser technology has reduced the power needed and made these systems less power intensive and more field portable in the process. Here we present data using an automated chamber system coupled to a portable laser based greenhouse gas

  15. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. Optimisation of the parameters of a pump chamber for solid-state lasers with diode pumping by the optical boiler method

    Energy Technology Data Exchange (ETDEWEB)

    Kiyko, V V; Kislov, V I; Ofitserov, E N; Suzdal' tsev, A G [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    A pump chamber of the optical boiler type for solid-state lasers with transverse laser diode pumping is studied theoretically and experimentally. The pump chamber parameters are optimised using the geometrical optics approximation for the pump radiation. According to calculations, the integral absorption coefficient of the active element at a wavelength of 808 nm is 0.75 – 0.8 and the relative inhomogeneity of the pump radiation distribution over the active element volume is 17% – 19%. The developed pump chamber was used in a Nd:YAG laser. The maximum cw output power at a wavelength of 1064 nm was ∼480 W at the optical efficiency up to 19.6%, which agrees with theoretical estimates. (lasers)

  19. Normal values of left ventricularmass and cardiac chamber volumes assessed by 320-detector computed tomography angiography in the Copenhagen General Population Study

    DEFF Research Database (Denmark)

    Fuchs, Andreas; Mejdahl, Mads Rams; Kühl, J Tobias

    2016-01-01

    Aims Normal values of left ventricular mass (LVM) and cardiac chamber sizes are prerequisites for the diagnosis of individuals with heart disease. LVM and cardiac chamber sizes may be recorded during cardiac computed tomography angiography (CCTA), and thus modality specific normal values are need...

  20. Minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    A parametric calculational analysis has been performed in order to estimate the minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems. The analysis was performed using a version of the SCALE-4.0 code system and the 27-group ENDF/B-IV cross-section library. Water-moderated uranyl fluoride (UO{sub 2}F{sub 2} and H{sub 2}O) and hydrofluoric-acid-moderated uranium hexaflouride (UF{sub 6} and HF) systems were considered in the analysis over enrichments of 1.4 to 5 wt % {sup 235}U. Estimates of the minimum critical volume, minimum critical mass of uranium, and the minimum mass of moderator required for criticality are presented. There was significant disagreement between the values generated in this study when compared with a similar undocumented study performed in 1983 using ANISN and the Knight-modified Hansen-Roach cross sections. An investigation into the cause of the disagreement was made, and the results are presented.

  1. Minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    A parametric calculational analysis has been performed in order to estimate the minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems. The analysis was performed using a version of the SCALE-4.0 code system and the 27-group ENDF/B-IV cross-section library. Water-moderated uranyl fluoride (UO[sub 2]F[sub 2] and H[sub 2]O) and hydrofluoric-acid-moderated uranium hexaflouride (UF[sub 6] and HF) systems were considered in the analysis over enrichments of 1.4 to 5 wt % [sup 235]U. Estimates of the minimum critical volume, minimum critical mass of uranium, and the minimum mass of moderator required for criticality are presented. There was significant disagreement between the values generated in this study when compared with a similar undocumented study performed in 1983 using ANISN and the Knight-modified Hansen-Roach cross sections. An investigation into the cause of the disagreement was made, and the results are presented.

  2. Criteria for controlled atmosphere chambers

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1980-03-01

    The criteria for design, construction, and operation of controlled atmosphere chambers intended for service at ORNL are presented. Classification of chambers, materials for construction, design criteria, design, controlled atmosphere chamber systems, and operating procedures are presented. ORNL Safety Manual Procedure 2.1; ORNL Health Physics Procedure Manual Appendix A-7; and Design of Viewing Windows are included in 3 appendices

  3. Minimum airflow reset of single-duct VAV terminal boxes

    Science.gov (United States)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  4. Proceedings of workshop on streamer chamber

    International Nuclear Information System (INIS)

    Itoh, Hidihiko; Takahashi, Kaoru; Hirose, Tachishige; Masaike, Akira

    1978-08-01

    For high accuracy observation of multiple-body reactions, a vertex detector of high efficiency is essential. A bubble chamber, though excellent for tracks detection, is problematic in statistics accuracy. The vertex detector with a wire chamber, while better in this respect, difficult in multiple-particle detection etc. The workshop has had several meetings on a streamer chamber as a detector combining features of both bubble chamber and counter, with emphasis on tracks observation in avalanche mode and recordings not using films. Contents are on streamer chamber gas, analytical photography, data processing, simulation program, etc. (Mori, K.)

  5. Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    Manero Amoros, F.

    1962-01-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs

  6. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo, E-mail: Yongkoo.Seol@netl.doe.gov; Choi, Jeong-Hoon; Dai, Sheng [National Energy Technology Laboratory, U.S. Department of Energy, Morgantown, West Virginia 26507 (United States)

    2014-08-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field.

  7. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Choi, Jeong-Hoon; Dai, Sheng

    2014-01-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field

  8. Volumes and doses for external radiotherapy - Definitions and recommendations; Volum og doser i ekstern straaleterapi - Definisjoner og anbefalinger

    Energy Technology Data Exchange (ETDEWEB)

    Levernes, Sverre (ed.)

    2012-07-01

    The report contains definitions of volume and dose parameters for external radiotherapy. In addition the report contains recommendations for use, documentation and minimum reporting for radiotherapy of the individual patient.(Author)

  9. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  10. A Monte Carlo study of radon detection in cylindrical diffusion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Rickards, Jorge, E-mail: rickards@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico); Golzarri, Jose-Ignacio, E-mail: golzarri@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico); Espinosa, Guillermo, E-mail: espinosa@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico)

    2010-05-15

    The functioning of radon diffusion chambers was studied using the Monte Carlo code RAMMX developed here. The alpha particles from radon are assumed randomly produced in the volume of the cylinder, and those from the progeny are assumed to originate randomly at the cylindrical surface. The energy spectrum, the distribution of incident angles, and the distribution of path lengths of the alpha particles on the detector were obtained. These quantities vary depending on input parameters such as initial alpha particle energy, radius and depth of the diffusion chamber, detector size and atmospheric pressure. The calculated energy spectrum for both {sup 222}Rn and {sup 220}Rn was compared with experiment, permitting the identification of each peak and its origin, and a better understanding of radon monitoring. Three aspects not considered in previous calculations are progeny alphas coming from surfaces of the monitor, taking into account the atmospheric pressure, and including the isotope {sup 220}Rn.

  11. Muon Chamber Endcap Upgrade of the CMS Experiment with Gas Electron Multiplier (GEM) Detectors and their Performance

    CERN Document Server

    Gola, Mohit

    2017-01-01

    As the CERN LHC is heading towards a high luminosity phase a very high flux is expected in the endcaps of the CMS Detector. The presence of muons in collision events can be due to rare or new physics so it is important to maintain the high trigger efficiency of the CMS muon system. The CMS Collaboration has proposed to instrument the high-eta region (1.6 lt IetaI lt 2.2) of the muon endcaps with Gas Electron Multiplier (GEM) detectors, referred to as GE1/1 chambers, during the LS2. This technology will help in maintaining optimum trigger performance with maximum selection efficiency of muons even in a high flux environment. We describe plans for a Slice Test to installa few GE1/1 chambers covering 50 degrees in azimuthal angle within the CMS detector in 2017, with subsequent operation during the current Run 2 of the LHC. We show the performance of the GE1/1 chambers to be installed during the slice test, specifically GEM foil leakage currents, chamber gas volume integrity, high voltage circuit performanc...

  12. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  13. Absorbed dose measurement by using tissue equivalent ionization chamber (pair ionization chamber) in the Yayoi reactor

    International Nuclear Information System (INIS)

    Sasuga, N.; Okamura, K.; Terakado, T.; Mabuchi, Y.; Nakagawa, T.; Sukegawa, Toshio; Aizawa, C.; Saito, I.; Oka, Yoshiaki

    1998-01-01

    Each dose rate of neutron and gamma ray in the thermal column of the Yayoi reactor, in which an epithermal neutron field will be used for the boron neutron capture therapy, was measured by using a tissue equivalent ionization chamber and a graphite chamber. The tissue equivalent ionization chamber has some response to both neutron and gamma ray, but the graphite chamber has a few response to the neutron, so called pair ionization chamber method. The epithermal neutron fluxes of the thermal column were calculated by ANISN (one dimensional neutron-gamma transport code). A measured value for gamma dose rate by the pair ionization chamber agrees relevantly with a calculated result. For neutron dose rate, however, the measured value was too much small in comparison with the calculated result. The discrepancy between the measured value and the calculated result for neutron dose rate is discussed in detail in the report. (M. Suetake)

  14. Development of secondary chamber for tar cracking-improvement of wood pyrolysis performance in pre-vacuum chamber

    Science.gov (United States)

    Siahaan, S.; Homma, H.; Homma, H.

    2018-02-01

    Energy crisis and global warming, in other words, climate change are critical topics discussed in various parts of the world. Global warming primarily result from too much emission of carbon dioxide (CO2) in the atmosphere. To mitigate global warming, or climate change and improve electrification in rural areas, wood pyrolysis technology is developed in a laboratory scale, of which gases are directly applicable to the gas engine generator. Our laboratory has developed a prototype of wood pyrolysis plant with a pre-vacuum chamber. However, tar yield was around 40 wt% of feedstock. This research aims to reduce tar yield by secondary tar cracking. For the secondary tar cracking, a secondary pre-vacuum chamber is installed after primary pre-vacuum chamber. Gases generated in the primary pre-vacuum chamber are lead into the secondary chamber that is heated up to 1000 K. This paper reports performance of the secondary chamber for secondary tar cracking in homogeneous mode and heterogeneous mode with char.

  15. A large-area grid ionisation chamber with high resolution for the measurement of alpha sources in samples with low specific activity

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1978-06-01

    Construction and properties of a gridded ionization chamber for α-paricle spectrometry of low-level large-area samples are presented. Great importance was attached to high spectrometric resolution, low background, long-term stability, simple construction and operation, and easy decontamination if necessary. Using modern charge-sensitive preamplifiers spectrometric resolution is 20,6 keV FWHM (0,4%) at 5,30 MeV over the total effective area of 300 m 2 . Counting gas is an argon-methane mixture (P-10 gas) at atmospheric pressure. Background is 13 cph in the energy interval from 4 to 6 MeV and minimum detectable activity is 0.01 pCi Pu-239 at 1000 min measuring time. Ionization chambers of this type are used for direct α-spectrometric surveillance of long-lived α-emitting nuclides in the atmosphere after electrostatic deposition of the aerosols and for the determination of α-emitting nuclides in the emissions of nuclear power plants. After plasma ashing of the aerosols on filters from the stack monitoring system the minimum detectable concentration of e.g. Pu-239/240 in the gaseous effluent of a nuclear power plant is about 0.1 fCi per m 3 . (orig.) [de

  16. Proportional chamber with data analog output

    International Nuclear Information System (INIS)

    Popov, V.E.; Prokof'ev, A.N.

    1977-01-01

    A proportional multiwier chamber is described. The chamber makes it possible to determine angles at wich a pion strikes a polarized target. A delay line, made of 60-core flat cable is used for removing signals from the chamber. From the delay line, signals are amplified and successively injected into shapers and a time-to-amplitude converter. An amplitude of the time-to amplitude converter output signal unambiguously determines the coordinate of a point at which a particle strikes the chamber plane. There are also given circuits of amplifiers, which consist of a preamplifier with gain 30 and a main amplifier with adjustable gain. Data on testing the chamber with the 450 MeV pion beam is demonstrated. The chamber features an efficiency of about 98 per cent under load of 2x10 5 s -1

  17. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  19. Using a tandem ionization chamber for quality control of X-ray beams

    International Nuclear Information System (INIS)

    Yoshizumi, Maira T.; Caldas, Linda V.E.

    2011-01-01

    X-ray beam qualities are defined by both the mean energies and by the half-value layers (HVL). Many international protocols use the half-value layer and the beam voltage to characterize the X-ray beam quality. A quality control program for X-ray equipment includes the constancy check of beam qualities, i.e., the periodical verification of the half-value layer, which can be a time consumable procedure. A tandem ionization chamber, developed at Instituto de Pesquisas Energeticas e Nucleares, was used to determine the HVL and its constancy for five radiotherapy standard beam qualities. This ionization chamber is composed by two sensitive volumes with inner electrodes made of different materials: aluminum and graphite. The beam quality constancy check test was performed during two months and the maximum variation obtained was 1.24% for the radiation beam quality T-10. This result is very satisfactory according to national recommendations. (author)

  20. Development of a low-level radon reference chamber; Entwicklung einer Low-Level-Radon-Referenzkammer

    Energy Technology Data Exchange (ETDEWEB)

    Linzmaier, Diana

    2013-01-04

    The naturally occurring, radioactive noble gas radon-222 exists worldwide in different activity concentrations in the air. During the decay of radon-222, decay products are generated which are electrically charged and attach to aerosols in the air. Together with the aerosols, the radon is inhaled and exhaled by humans. While the radon is nearly completely exhaled, ca. 20 % of the inhaled aerosols remain in the lungs in one breath cycle. Due to ionizing radiation, in a chain of events, lung cancer might occur. Consequently, radon and its decay products are according to the current findings the second leading cause of lung cancer. At the workplace and in the home measurements of radon activity concentration are performed to determine the radiation exposition of humans. All measurement devices for the determination of radon activity concentration are calibrated above 1000 Bq/m{sup 3}, even though the mean value of the present investigation in Germany shows only 50 Bq/m{sup 3}. For the calibration of measurement devices in the range below 1000 Bq/m{sup 3} over a long time period, the generation of a stable reference atmosphere is presented in this work. Due to a long term calibration (t>5 days) of the measurement devices, smaller uncertainties result for the calibration factor. For the calibration procedure, a so-called low-level radon reference chamber was set up and started operation. The generation of a stable reference atmosphere is effected by means of emanation sources which consist of a radium-226 activity standard. On the basis of {gamma}-spectrometry, the effective emanation coefficient ofthe emanation sources is determined. The traceability of the activity concentration in the reference volume is realized via the activity ofthe radium-226, the emanation coefficient and the volume. With the emanation sources produced, stable reference atmospheres within the range of 150 Bq/m{sup 3} to 1900 Bq/m{sup 3} are achieved. For the realization, maintenance and

  1. Transportable aerosol sampling station with fixed volume (15 l) DMPA-15

    International Nuclear Information System (INIS)

    Giolu, G.; Guta, V.

    1999-01-01

    The mobile installation is used for air-sampling operations with fixed intake volumes, to be analysed by laboratories of routine environmental air monitoring. The station consists of several units, installed on a two-wheel mobile carriage-type platform: - a double - diaphragm pump (ensuring oil separation) that provides air intake and its evacuation to the air-analysers. The sampling and control unit has the following functions: - intake ensured by the pump that aspirates fixed volumes of air from the ambient atmosphere and feeding with it an inflatable rubber chamber. Air intake is automatically stopped as the cushion is filled up completely. A separation clamp is provided to seal up the cushion; - exhaust - allows the residual air to be evacuated from the cushion, ensuring its 'self-cleaning'; - shut down, manually operated; - analyse, the aerosol containing sample is aspirated from the inflatable rubber chamber and evacuated through a flow regulator to the analyser; - stop, canceling any previous commands. A relay unit controls the pneumatic lines and a pressure relay provides automatic stop of air intake process. The following technical features are given: - The fixed air volume in the chamber, 15 l - the air flow at the exit from the flow-meter, 0 - 15 l/min; - power requirements, 220 V/ 50 Hz; - power consumption, max. 1,5 kW; - overall dimensions, 460 x 500 x 820 mm; - weight, 53 kg. (authors)

  2. Pressure vessel rupture within a chamber: the pressure history on the chamber wall

    International Nuclear Information System (INIS)

    Baum, M.R.

    1989-04-01

    Generally there is a large number of pressure vessels containing high pressure gas on power stations and chemical plant. In many instances, particularly on power plant, these vessels are within the main building. If a pressure vessel were to fail, the surrounding structures would be exposed to blast loads and the forces resulting from jets of fluid issuing from the breached vessel. In the case where the vessel is in a relatively closed chamber there would also be a general overpressurisation of the chamber. At the design stage it is therefore essential to demonstrate that the plant could be safely shut down in the event of a pressure vessel failure, that is, it must be shown that the chamber will not collapse thus putting the building at risk or hazarding equipment essential for a safe shut down. Such an assessment requires the loads applied to the chamber walls, roof, etc. to be known. (author)

  3. Microbial volatile organic compounds in moldy interiors: a long-term climate chamber study.

    Science.gov (United States)

    Schuchardt, Sven; Strube, Andrea

    2013-06-01

    The present study simulated large-scale indoor mold damage in order to test the efficiency of air sampling for the detection of microbial volatile organic compounds (MVOCs). To do this, a wallpaper damaged by condensation was stored in a climate chamber (representing a hypothetical test room of 40 m(3) volume) and was inoculated with 14 typical indoor fungal strains. The chamber ventilation conditions were adjusted to common values found in moldy homes, and the mold growth was allowed to continue to higher than average values. The MVOC content of the chamber air was analyzed daily for a period of 105 days using coupled gas chromatography/mass spectrometry (GC-MS). This procedure guarantees MVOC profiling without external factors such as outdoor air, building materials, furniture, and occupants. However, only nine MVOCs could be detected during the sampling period, which indicates that the very low concentrated MVOCs are hardly accessible, even under these favorable conditions. Furthermore, most of the MVOCs that were detected cannot be considered as reliable indicators of mold growth in indoor environments. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Wet drift chambers for precise luminosity

    International Nuclear Information System (INIS)

    Anderson, B.E.; Kennedy, B.W.; Ahmet, K.; Attree, D.J.; Barraclough, G.A.; Cresswell, M.J.; Hayes, D.A.; Miller, D.J.; Selby, C.; Sherwood, P.

    1994-01-01

    A set of high-precision compact drift chambers has been a vital component of the OPAL luminosity monitor since the start of data-taking at LEP. They were augmented in 1992 by the addition of Small Angle Reference Chambers with a very similar design to the original chamber. The performance of the chambers is reviewed, highlighting both the importance of using polyalkylene glycol (Breox) to maintain a uniform and parallel electric field and the construction techniques used to sustain the required field strength. We describe some of the operating problems, with their solutions, and show how the chambers have been used in achieving a systematic error of 0.41% on the luminosity measurement. ((orig.))

  5. The Boycott effect in magma chambers

    Science.gov (United States)

    Blanchette, F.; Peacock, T.; Bush, J. W. M.

    2004-03-01

    We investigate the plausibility of the stratified Boycott effect as a source of layering in magma chambers. Crystal settling within the magma chamber will generate buoyant fluid near the sloping sidewalls whose vertical ascent may be limited by the ambient stratification associated with vertical gradients in SiO2. The resulting flow may be marked by a layered structure, each layer taking the form of a convection cell spanning the lateral extent of the magma chamber. Using parameters relevant to magma chambers, we estimate that such convection cells would be established over a timescale of a month and have a depth on the order of 4m, which is roughly consistent with field observations of strata within solidified chambers.

  6. FAST (Four chamber view And Swing Technique) Echo: a Novel and Simple Algorithm to Visualize Standard Fetal Echocardiographic Planes

    Science.gov (United States)

    Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.

    2010-01-01

    Objective To describe a novel and simple algorithm (FAST Echo: Four chamber view And Swing Technique) to visualize standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) “swings” through the ductal arch image (“swing technique”), providing an infinite number of cardiac planes in sequence. Each line generated the following plane(s): 1) Line 1: three-vessels and trachea view; 2) Line 2: five-chamber view and long axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); 3) Line 3: four-chamber view; and 4) “Swing” line: three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach. The algorithm was then tested in 50 normal hearts (15.3 – 40 weeks of gestation) and visualization rates for cardiac diagnostic planes were calculated. To determine if the algorithm could identify planes that departed from the normal images, we tested the algorithm in 5 cases with proven congenital heart defects. Results In normal cases, the FAST Echo algorithm (3 locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long axis view of the aorta, four-chamber view): 1) individually in 100% of cases [except for the three-vessel and trachea view, which was seen in 98% (49/50)]; and 2) simultaneously in 98% (49/50). The “swing technique” was able to generate the three-vessels and trachea view, five-chamber

  7. Four-chamber view and 'swing technique' (FAST) echo: a novel and simple algorithm to visualize standard fetal echocardiographic planes.

    Science.gov (United States)

    Yeo, L; Romero, R; Jodicke, C; Oggè, G; Lee, W; Kusanovic, J P; Vaisbuch, E; Hassan, S

    2011-04-01

    To describe a novel and simple algorithm (four-chamber view and 'swing technique' (FAST) echo) for visualization of standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) 'swings' through the ductal arch image (swing technique), providing an infinite number of cardiac planes in sequence. Each line generates the following plane(s): (a) Line 1: three-vessels and trachea view; (b) Line 2: five-chamber view and long-axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); (c) Line 3: four-chamber view; and (d) 'swing line': three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach. The algorithm was then tested in 50 normal hearts in fetuses at 15.3-40 weeks' gestation and visualization rates for cardiac diagnostic planes were calculated. To determine whether the algorithm could identify planes that departed from the normal images, we tested the algorithm in five cases with proven congenital heart defects. In normal cases, the FAST echo algorithm (three locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long-axis view of the aorta, four-chamber view) individually in 100% of cases (except for the three-vessels and trachea view, which was seen in 98% (49/50)) and simultaneously in 98% (49/50). The swing technique was able to generate the three-vessels and trachea view, five-chamber view and/or long

  8. Investigation of very long jet chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, H J; Va' vra, J; Zankel, K; Dudziak, U; Schaile, D; Schaile, O; Igo-Kemenes, P; Lennert, P

    1986-04-01

    The electrostatic properties and the performances of very long jet chambers have been investigated. Using 100 MHz FADC wave form digitisers, the tracking accuracy, the charge division and the dE/dx performance of two chambers, one with 4.5 m long tungsten wires and one with 4 m long highly resistive ''NiCoTi'' wires have been studied. The geometry of the chambers was chosen to define some of the design parameters of the jet chamber for the OPAL detector for LEP.

  9. IFE chamber technology testing program in NIF and chamber development test plan

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1995-01-01

    Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF

  10. [Pigment dispersion syndrome and pigmentary glaucoma. Morphometric analysis of the anterior chamber segment with SL-OCT].

    Science.gov (United States)

    Birner, B; Tourtas, T; Wessel, J M; Jünemann, A G; Mardin, C Y; Kruse, F E; Laemmer, R

    2014-01-01

    The purpose of this study was to analyze if anterior chamber parameters are risk factors for the development of pigment dispersion syndrome (PDS) and/or for the conversion to pigmentary glaucoma (PG). This study included a total of 63 eyes from 35 patients with PDS and PG and 65 eyes from 49 unaffected volunteers as the control group. The following parameters were measured by slit lamp optical coherence tomography (SL-OCT): anterior chamber volume (ACV) and depth (ACD), angle opening distance (AOD) and the trabecular iris space area (TISA) at 500 µm and 750 μm from the scleral spur. Comparisons between the following groups were performed: between the PDS/PG and the control group, between PDS and PG and between male and female patients. The results of ACV, ACD, AOD and TISA were significantly higher in PDS/PG patients when compared to the control group. There were no significant differences between PDS and PG. The gender-specific comparison also showed no significant differences. Significantly higher anterior chamber parameters are a possible risk factor for development of PDS; however, a higher risk of conversion to PG does not seem to correlate with increased anterior chamber parameters. The parameters of the anterior chamber are apparently not associated with the male predominance of PDS and PG.

  11. Impedances in lossy elliptical vacuum chambers

    International Nuclear Information System (INIS)

    Piwinski, A.

    1994-04-01

    The wake fields of a bunched beam caused by the resistivity of the chamber walls are investigated for a vacuum chamber with elliptical cross section. The longitudinal and transverse impedances are calculated for arbitrary energies and for an arbitrary position of the beam in the chamber. (orig.)

  12. Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring nighttime respiration on porous peat soil

    Science.gov (United States)

    Koskinen, M.; Minkkinen, K.; Ojanen, P.; Kämäräinen, M.; Laurila, T.; Lohila, A.

    2013-08-01

    We built an automatic chamber system to measure greehouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpackin addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the nighttime respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the type of the fit (linear and polynomial), (2) the starting point of the fit after closing the chamber, (3) the length of the fit, (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u*). The best fitting method (the most robust, least random variation) was linear fitting with the period of 120-240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If nighttime problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.

  13. Comparison of measurements of absorbed dose to water using a water calorimeter and ionization chambers for clinical radiotherapy photon and electron beams

    International Nuclear Information System (INIS)

    Marles, A.E.M.

    1981-01-01

    With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers. For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber. For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent. The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response

  14. Investigation of very long jet chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, H J; Va' vra, J; Zankel, K; Dudziak, U; Schaile, D; Schaile, O; Igo-Kemenes, P; Lennert, P

    1986-04-01

    The electrostatic properties and the performances of very long jet chambers have been investigated. Using 100 MHz FADC wave form digitisers, the tracking accuracy, the charge division and the dE/dx performance of two chambers, one with 4.5 m long tungsten wires and one with 4 m long highly resistive ''NiCoTi'' wires have been studied. The geometry of the chambers was chosen to define some of the design parameters of the jet chamber for the OPAL detector for LEP. (orig.).

  15. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1995-01-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (approx-lt 0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (approx-gt.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius (∼ 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity

  16. Improvement in minimum detectable activity for low energy gamma by optimization in counting geometry

    Directory of Open Access Journals (Sweden)

    Anil Gupta

    2017-01-01

    Full Text Available Gamma spectrometry for environmental samples of low specific activities demands low minimum detection levels of measurement. An attempt has been made to lower the gamma detection level of measurement by optimizing the sample geometry, without compromising on the sample size. Gamma energy of 50–200 keV range was chosen for the study, since low energy gamma photons suffer the most self-attenuation within matrix. The simulation study was carried out using MCNP based software “EffCalcMC” for silica matrix and cylindrical geometries. A volume of 250 ml sample geometry of 9 cm diameter is optimized as the best suitable geometry for use, against the in-practice 7 cm diameter geometry of same volume. An increase in efficiency of 10%–23% was observed for the 50–200 keV gamma energy range and a corresponding lower minimum detectable activity of 9%–20% could be achieved for the same.

  17. Comparison of Geometrical Layouts for a Multi-Box Aerosol Model from a Single-Chamber Dispersion Study

    Directory of Open Access Journals (Sweden)

    Alexander C. Ø. Jensen

    2018-04-01

    Full Text Available Models are increasingly used to estimate and pre-emptively calculate the occupational exposure of airborne released particulate matter. Typical two-box models assume instant and fully mixed air volumes, which can potentially cause issues in cases with fast processes, slow air mixing, and/or large volumes. In this study, we present an aerosol dispersion model and validate it by comparing the modelled concentrations with concentrations measured during chamber experiments. We investigated whether a better estimation of concentrations was possible by using different geometrical layouts rather than a typical two-box layout. A one-box, two-box, and two three-box layouts were used. The one box model was found to underestimate the concentrations close to the source, while overestimating the concentrations in the far field. The two-box model layout performed well based on comparisons from the chamber study in systems with a steady source concentration for both slow and fast mixing. The three-box layout was found to better estimate the concentrations and the timing of the peaks for fluctuating concentrations than the one-box or two-box layouts under relatively slow mixing conditions. This finding suggests that industry-relevant scaled volumes should be tested in practice to gain more knowledge about when to use the two-box or the three-box layout schemes for multi-box models.

  18. Water calorimetry and ionization chamber dosimetry in an 85-MeV clinical proton beam.

    Science.gov (United States)

    Palmans, H; Seuntjens, J; Verhaegen, F; Denis, J M; Vynckier, S; Thierens, H

    1996-05-01

    In recent years, the increased use of proton beams for clinical purposes has enhanced the demand for accurate absolute dosimetry for protons. As calorimetry is the most direct way to establish the absorbed dose and because water has recently been accepted as standard material for this type of beam, the importance of water calorimetry is obvious. In this work we report water calorimeter operation in an 85-MeV proton beam and a comparison of the absorbed dose to water measured by ionometry with the dose resulting from water calorimetric measurements. To ensure a proper understanding of the heat defect for defined impurities in water for this type of radiation, a relative response study was first done in comparison with theoretical calculations of the heat defect. The results showed that pure hypoxic water and hydrogen-saturated water yielded the same response with practically zero heat defect, in agreement with the model calculations. The absorbed dose inferred from these measurements was then compared with the dose derived from ionometry by applying the European Charged Heavy Particle Dosimetry (ECHED) protocol. Restricting the comparison to chambers recommended in the protocol, the calorimeter dose was found to be 2.6% +/- 0.9% lower than the average ionometry dose. In order to estimate the significance of chamber-dependent effects in this deviation, measurements were performed using a set of ten ionization chambers of five different types. The maximum internal deviation in the ionometry results amounted to 1.1%. We detected no systematic chamber volume dependence, but observed a small but systematic effect of the chamber wall thickness. The observed deviation between calorimetry and ionometry can be attributed to a combination of the value of (Wair/e)p for protons, adopted in the ECHED protocol, the mass stopping power ratios of water to air for protons, and possibly small ionization chamber wall effects.

  19. Multiwire proportional chamber and multistage avalanche chamber with low concentration photoionization gas

    International Nuclear Information System (INIS)

    Zhao Pingde; Xu Zhiqing; Tang Xiaowei

    1986-01-01

    The characteristics of multiwire proportional chamber and multistage avalanche chamber filled with argon and photoionization gas (C 2 H 5 ) 3 N were measured. The spatial resolution curves and output pulse height spectra were measured as well. Low concentration (C 2 H 5 ) 3 N can play an effective part in quenching. At very low concentration, the phenomena of avalanche transverse expansion was observed obviously

  20. PEP quark search proportional chambers

    Energy Technology Data Exchange (ETDEWEB)

    Parker, S I; Harris, F; Karliner, I; Yount, D [Hawaii Univ., Honolulu (USA); Ely, R; Hamilton, R; Pun, T [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; Guryn, W; Miller, D; Fries, R [Northwestern Univ., Evanston, IL (USA)

    1981-04-01

    Proportional chambers are used in the PEP Free Quark Search to identify and remove possible background sources such as particles traversing the edges of counters, to permit geometric corrections to the dE/dx and TOF information from the scintillator and Cerenkov counters, and to look for possible high cross section quarks. The present beam pipe has a thickness of 0.007 interaction lengths (lambdasub(i)) and is followed in both arms each with 45/sup 0/ <= theta <= 135/sup 0/, ..delta..phi=90/sup 0/ by 5 proportional chambers, each 0.0008 lambdasub(i) thick with 32 channels of pulse height readout, and by 3 thin scintillator planes, each 0.003 lambdasub(i) thick. Following this thin front end, each arm of the detector has 8 layers of scintillator (one with scintillating light pipes) interspersed with 4 proportional chambers and a layer of lucite Cerenkov counters. Both the calculated ion statistics and measurements using He-CH/sub 4/ gas in a test chamber indicate that the chamber efficiencies should be >98% for q=1/3. The Landau spread measured in the test was equal to that observed for normal q=1 traversals. One scintillator plane and thin chamber in each arm will have an extra set of ADC's with a wide gate bracketing the normal one so timing errors and tails of earlier pulses should not produce fake quarks.

  1. Argus target chamber

    International Nuclear Information System (INIS)

    Rienecker, F. Jr.; Glaros, S.S.; Kobierecki, M.

    1975-01-01

    A target chamber for application in the laser fusion program must satisfy some very basic requirements. (1) Provide a vacuum on the order of 10 -6 torr. (2) Support a microscopically small target in a fixed point in space and verify its location within 5 micrometers. (3) Contain an adjustable beam focusing system capable of delivering a number of laser beams onto the target simultaneously, both in time and space. (4) Provide access for diagnostics to evaluate the results of target irradiation. (5) Have flexibility to allow changes in targets, focusing optics and number of beams. The ARGUS laser which is now under construction at LLL will have a target chamber which meets these requirements in a simple economic manner. The chamber and auxiliary equipment are described, with reference to two double beam focusing systems; namely, lenses and ellipsoidal mirrors. Provision is made for future operation with four beams, using ellipsoidal mirrors for two-sided illumination and lens systems for tetragonal and tetrahedral irradiation

  2. Cylindrical ionization chamber with compressed krypton

    International Nuclear Information System (INIS)

    Kuz'minov, V.V.; Novikov, V.M.; Pomanskii, A.A.; Pritychenko, B.V.; Viyar, J.; Garcia, E.; Morales, A.; Morales, J.; Nunes-Lagos, R.; Puimedon, J.; Saens, K.; Salinas, A.; Sarsa, M.

    1993-01-01

    A cylindrical ionization chamber with a grid is used to search for double positron decay and atomic electron conversion to a positron in 78 Kr. Krypton is the working gas material of the chamber. The spectrometric characteristics of the chamber filled with krypton and xenon are presented. The energy resolution is 2.1% for an energy of 1.84 MeV (the source of γ-quanta is 88 Y) when the chamber is filled with a mixture of Kr+0.2% H 2 under a pressure of 25 atm

  3. Update on 13C-labelling of plant materials through the use of walk-in growth chambers [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Mayr, Leo; Resch, Christian; Weltin, Georg; Dercon, Gerd

    2014-01-01

    In 2013, the Soil and Water Management & Crop Nutrition Laboratory installed a pair of walk-in growth chambers with an effective volume of about 12 m 3 each. These growth chambers with temperature, relative humidity and carbon dioxide (CO 2 ) control, are being used within the framework of research activities for improving climate-smart agriculture in Member States

  4. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  5. An electrodeless drift chamber

    International Nuclear Information System (INIS)

    Allison, J.; Barlow, R.J.; Bowdery, C.K.; Duerdoth, I.; Rowe, P.G.

    1982-01-01

    We describe a chamber in which the drift field is controlled by the deposition of electrostatic charge on an insulating surface. The chamber operates with good efficiency and precision for observed drift distances of up to 45 cm, promises to be extremely robust and adaptable and offers a very cheap way of making particle detectors. (orig.)

  6. DELPHI time projection chamber

    CERN Multimedia

    1989-01-01

    The time projection chamber is inserted inside the central detector of the DELPHI experiment. Gas is ionised in the chamber as a charged particle passes through, producing an electric signal from which the path of the particle can be found. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  7. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1996-01-01

    Chamber transport is a key area of study for heavy ion fusion. Final focus and chamber transport are high leverage areas providing opportunities to decrease significantly the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (below about 0.003 Torr), ballistic or nearly ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (above about 0.1 Torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber and then transporting it at small radius (about 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity. (orig.)

  8. How to build a cloud chamber?

    International Nuclear Information System (INIS)

    Mariaud, C.

    2012-01-01

    The cloud chamber had its heyday in the first half of last century and allowed the discovery of new particles such as the anti-electron, the muon and the neutral and the charged kaon. The bubble chamber replaced it in the mid fifties. This article recalls the principle of the cloud chamber and shows, in a detailed way, how to proceed to build one with on-the-shelf materials. This design is based on the use of isopropanol whose liquefaction through the form of droplets materializes the track of the particle and on the use of combined Peltier cells (instead of CO 2 snow) to cool the chamber. This cloud chamber has been successfully used in schools to observe particles mainly electrons, alphas and muons generated by cosmic rays. (A.C.)

  9. Possible role of mechanical force in regulating regeneration of the vascularized fat flap inside a tissue engineering chamber.

    Science.gov (United States)

    Ye, Yuan; Yuan, Yi; Lu, Feng; Gao, Jianhua

    2015-12-01

    In plastic and reconstructive surgery, adipose tissue is widely used as effective filler for tissue defects. Strategies for treating soft tissue deficiency, which include free adipose tissue grafts, use of hyaluronic acid, collagen injections, and implantation of synthetic materials, have several clinical limitations. With the aim of overcoming these limitations, researchers have recently utilized tissue engineering chambers to produce large volumes of engineered vascularized fat tissue. However, the process of growing fat tissue in a chamber is still relatively limited, and can result in unpredictable or dissatisfactory final tissue volumes. Therefore, detailed understanding of the process is both necessary and urgent. Many studies have shown that mechanical force can change the function of cells via mechanotransduction. Here, we hypothesized that, besides the inflammatory response, one of the key factors to control the regeneration of vascularized fat flap inside a tissue engineering chamber might be the balance of mechanical forces. To test our hypothesis, we intend to change the balance of forces by means of measures in order to make the equilibrium point in favor of the direction of regeneration. If those measures proved to be feasible, they could be applied in clinical practice to engineer vascularized adipose tissue of predictable size and shape, which would in turn help in the advancement of tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Quality control of ATLAS muon chambers

    CERN Document Server

    Fabich, Adrian

    ATLAS is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN. Its Muon Spectrometer will require ∼ 5500m2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5m to 15m length, embedded in a magnetic field of ∼ 0.5T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼ 1200 drift chambers. The performance of the MDT chambers is very much dependent on the mechanical quality of the chambers. The uniformity and stability of the performance can only be assured providing very high quality control during production. Gas tightness, high-voltage behaviour and dark currents are global parameters which are common to gas detectors. For all chambers, they will be tested immediately after the chamber assembly at every production site. Functional tests, for example radioactive source scans and cosmic-ray runs, will be performed in order to establish detailed performan...

  11. Hyperbaric and hypobaric chamber fires: a 73-year analysis.

    Science.gov (United States)

    Sheffield, P J; Desautels, D A

    1997-09-01

    Fire can be catastrophic in the confined space of a hyperbaric chamber. From 1923 to 1996, 77 human fatalities occurred in 35 hyperbaric chamber fires, three human fatalities in a pressurized Apollo Command Module, and two human fatalities in three hypobaric chamber fires reported in Asia, Europe, and North America. Two fires occurred in diving bells, eight occurred in recompression (or decompression) chambers, and 25 occurred in clinical hyperbaric chambers. No fire fatalities were reported in the clinical hyperbaric chambers of North America. Chamber fires before 1980 were principally caused by electrical ignition. Since 1980, chamber fires have been primarily caused by prohibited sources of ignition that an occupant carried inside the chamber. Each fatal chamber fire has occurred in an enriched oxygen atmosphere (> 28% oxygen) and in the presence of abundant burnable material. Chambers pressurized with air (Hyperbaric Medical Society's Chamber Experience and Mishap Database. This epidemiologic review focuses on information learned from critical analyses of chamber fires and how it can be applied to safe operation of hypobaric and hyperbaric chambers.

  12. HVAC&R Equipment Environmental Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — Description:Large "Truck" ChamberThe large "truck" chamber provides controlled air conditions from -7 °C (20 °F) to 65 °C (150 °F).Air-Conditioner and Heat Pump Test...

  13. Ionization chamber for smoke detector and the like

    International Nuclear Information System (INIS)

    Rork, G.D.; Thorp, E.J.; Zegarski, R.J.

    1985-01-01

    This invention relates to detectors of the ionization type for detecting airborne particulate matter and, in particular, to the construction of an ionization chamber for such a detector. This invention may be used for detecting a variety of materials, such as dust, fog and the like, but is particularly useful for detecting combustion products such as smoke. The smoke detector ionization chamber has two electrodes connected to a source of electric power; means defining access openings for enabling air flow into and out of the chamber; and means for causing ionization within the chamber. It has control structure means within the chamber in the path of the airflow cooperating with the electrodes to establish within the chamber an electric field having a higher intensity close to the access openings and a lower intensity in the remainder of the chamber without significantly impairing the flow of neutral particles into the chamber. The control structure reduces airflow velocity within the chamber without adversely affecting the access of airborne particles to the chamber

  14. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  15. Long-Term Prediction of Emergency Department Revenue and Visitor Volume Using Autoregressive Integrated Moving Average Model

    Directory of Open Access Journals (Sweden)

    Chieh-Fan Chen

    2011-01-01

    Full Text Available This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.

  16. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  17. Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil

    Directory of Open Access Journals (Sweden)

    M. Koskinen

    2014-01-01

    Full Text Available We built an automatic chamber system to measure greenhouse gas (GHG exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpack in addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2 respiration flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the night-time respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1 the starting point of the fit after closing the chamber, (2 the length of the fit, (3 the type of the fit (linear and polynomial, (4 the speed of the fan mixing the air inside the chamber, and (5 atmospheric turbulence (friction velocity, u*. The best fitting method (the most robust, least random variation for respiration measurements on our sites was linear fitting with the period of 120–240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If night-time problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.

  18. Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil

    Science.gov (United States)

    Koskinen, M.; Minkkinen, K.; Ojanen, P.; Kämäräinen, M.; Laurila, T.; Lohila, A.

    2014-01-01

    We built an automatic chamber system to measure greenhouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpack in addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) respiration flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the night-time respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the starting point of the fit after closing the chamber, (2) the length of the fit, (3) the type of the fit (linear and polynomial), (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u*). The best fitting method (the most robust, least random variation) for respiration measurements on our sites was linear fitting with the period of 120-240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If night-time problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.

  19. Large volume axionic Swiss cheese inflation

    Science.gov (United States)

    Misra, Aalok; Shukla, Pramod

    2008-09-01

    Continuing with the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi Yau's, arXiv: 0707.0105 [hep-th], Nucl. Phys. B, in press], after inclusion of perturbative and non-perturbative α corrections to the Kähler potential and (D1- and D3-) instanton generated superpotential, we show the possibility of slow roll axionic inflation in the large volume limit of Swiss cheese Calabi Yau orientifold compactifications of type IIB string theory. We also include one- and two-loop corrections to the Kähler potential but find the same to be subdominant to the (perturbative and non-perturbative) α corrections. The NS NS axions provide a flat direction for slow roll inflation to proceed from a saddle point to the nearest dS minimum.

  20. Large volume axionic Swiss cheese inflation

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2008-01-01

    Continuing with the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau's, (arXiv: 0707.0105 [hep-th]), Nucl. Phys. B, in press], after inclusion of perturbative and non-perturbative α ' corrections to the Kaehler potential and (D1- and D3-) instanton generated superpotential, we show the possibility of slow roll axionic inflation in the large volume limit of Swiss cheese Calabi-Yau orientifold compactifications of type IIB string theory. We also include one- and two-loop corrections to the Kaehler potential but find the same to be subdominant to the (perturbative and non-perturbative) α ' corrections. The NS-NS axions provide a flat direction for slow roll inflation to proceed from a saddle point to the nearest dS minimum

  1. The Mark II Vertex Drift Chamber

    International Nuclear Information System (INIS)

    Alexander, J.P.; Baggs, R.; Fujino, D.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 μm spatial resolution and 2 gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO 2 mixtures are presented. 10 refs., 12 figs., 1 tab

  2. Bicone vacuum chamber for ISR intersection

    CERN Multimedia

    1975-01-01

    This is one of the bicone chambers made of titanium for experiment R 702. The central corrugated part had a very thin titanium wall (0.28 mm). The first of these chambers collapsed in its central part when baked at 300 C (August 1975). After an intensive effort to develop better quality and reproducible welds for this special material, the ISR workshop was able to build two new chambers of this type. One of them was installed at I 7 for R 702 in 1976 and worked perfectly. It was at that time the most "transparent" intersection vacuum chamber. See also 7609219, 7609221.

  3. Right ventricular volume determination by two-dimensional echocardiography and radiography in model hearts using a subtraction method

    International Nuclear Information System (INIS)

    Krebs, W.; Erbel, R.; Schweizer, P.; Richter, H.A.; Massberg, I.; Meyer, J.; Effert, S.; Henn, G.

    1982-01-01

    The irregularity and complexity of the right ventricle is the reason why no accurate method for right ventricular volume determination exists. A new method for right ventricular volume determination particularly for two-dimensional echocardiography was developed - it is called subtraction method - and was compared with the pyramid and Simpson's methods. The partial volume of the left ventricle and septum was subtracted from total volume of right and left ventricle including interventricular septum. Thus right ventricular volume resulted. Total and partial volume were computer-assisted calculated by use of biplane methods, preferably Simpson's rule. The method was proved with thinwall silicon-rubber model hearts of the left and right ventricle. Two orthogonal planes in the long-axis were filmed by radiography or scanned in a water bath by two-dimensional echocardiography equivalent to RAO and LAO-projections of cineangiocardiograms or to four- and two-chamber views of apical two-dimensional echocardiograms. For calculation of the major axes of the elliptical sections, summed up by Simpson's rule, they were derived from the LAO-projection and the four-chamber view, respectively, the minor axis approximated from the RAO-projection and the two-chamber view. For comparison of direct-measured volume and two-dimensional echocardiographically determined volume, regression equation was given by y = 1.01 x - 3.2, correlation-coefficient, r = 0.977, and standard error of estimate (SEE) +-10.5 ml. For radiography, regression equation was y = 0.909 x + 13.3, r = 0.983, SEE = +-8.0 ml. For pyramid method and Simpson's rule, higher standard errors and lower correlation coefficients were found. Between radiography and two-dimensional echocardiography a mean difference of 4.3 +- 13.2 ml, using subtraction method, and -10.2 +- 22.9 ml, using pyramid method, as well as -0.6 +- 18.5 ml, using Simpson's rule, were calculated for right ventricular volume measurements. (orig./APR) [de

  4. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber-grown biofilms are addressed....

  5. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    International Nuclear Information System (INIS)

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH 4 (10%) and He-C 2 H 6 (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C 2 H 6 (50%) and Ar-C 2 H 6 (50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability

  6. Inspiratory time and tidal volume during intermittent positive pressure ventilation.

    OpenAIRE

    Field, D; Milner, A D; Hopkin, I E

    1985-01-01

    We measured the tidal volume achieved during intermittent positive pressure ventilation using various inspiratory times with a minimum of 0.2 seconds. Results indicate that tidal volume shows no reduction with inspiratory times down to 0.4 seconds. An inspiratory time of 0.3 seconds, however, is likely to reduce tidal volume by 8%, and at 0.2 seconds a 22% fall may be anticipated.

  7. On the necessary conditions of the regular minimum of the scale factor of the co-moving space

    International Nuclear Information System (INIS)

    Agakov, V.G.

    1980-01-01

    In the framework of homogeneous cosmologic model studied is the behaviour of the comoving space element volume filled with barotropous medium, deprived of energy fluxes. Presented are the necessary conditions at which a regular final minimum of the scale factor of the co-mowing space may take place. It is found that to carry out the above minimum at values of cosmological constant Λ <= 0 the presence of two from three anisotropy factors is necessary. Anisotropy of space deformation should be one of these factors. In case of Λ <= 0 the regular minimum is also possible if all three factors of anisotropy are equal to zero. However if none of the factors of Fsub(i), Asub(ik) anisotropy is equal to zero, the presence of deformation space anisotropy is necessary for final regular minimum appearance

  8. Second coordinate readout in drift chambers by timing of the electromagnetic wave propagating along the anode wire

    International Nuclear Information System (INIS)

    Boie, R.A.; Radeka, V.; Rehak, P.; Xi, D.M.

    1980-11-01

    The feasibility of using an anode wire and surrounding electrodes in drift chambers as a transmission line for second coordinate readout has been studied. The method is based on propagation of the electromagnetic wave along the anode wire is determined by measurement, in an optimized electronic readout system, of the time difference between the arrivals of the signal to the ends of the wire. The resolution obtained on long wires (approx. 2 meters) is about 2 cm FWHM for minimum ionizing particles at a gas gain of approx. = 10 5

  9. Multi-stage low-pressure avalanche chamber

    International Nuclear Information System (INIS)

    Zanevskij, Yu.V.; Peshekhonov, V.D.; Smykov, L.P.

    1985-01-01

    A multi-stage avalanche-chamber filled with isobutane operating at the pressure of 6 torr is described. The chamber comprises an amplifying gap, drift gap and multiwire proportional chamber with interelectrode gaps equal to 4 mm. The anode plane of the proportional chamber is winded of wire 2 μm in diameter with 2 mm pitch. The cathode are winded orthogonally to anode wires of wire 50 μm in diameter with 1 mm pitch. Drift and preamplifier gaps are formed by grid electrodes made of wire 50 μm in diameter with dimension of the cell equal to 1x1 mm. Width of the drift gap is 5 mm, width of the preamplification gap is 3 or 9 mm. Coordinate data are removed from the cathodes of the proportional chamber by means of delay lines. Sensitive square of the chamber equals 240x180 mm. Gas gain coefficient is 3x10 6 at its square nonuniformity equal to approximately 3%. Spatial resolution by both coordinates equals 170 μm; spatial resolution for isotropic α-emitters located close to the preamplifier gap is equal to 500 μm

  10. Monitored Drift Chambers in the ATLAS Detector

    CERN Multimedia

    Herten, G

    Monitored Drift Chambers (MDT) are used in the ATLAS Detector to measure the momentum of high energy muons. They consist of drift tubes, which are filled with an Ar-CO2 gas mixture at 3 bar gas pressure. About 1200 drift chambers are required for ATLAS. They are up to 6 m long. Nevertheless the position of every wire needs to be known with a precision of 20 µm within a chamber. In addition, optical alignment sensors are required to measure the relative position of adjacent chambers with a precision of 30µm. This gigantic task seems impossible at first instance. Indeed it took many years of R&D to invent the right tools and methods before the first chamber could be built according to specifications. Today, at the time when 50% of the chambers have been produced, we are confident that the goal for ATLAS can be reached. The mechanical precision of the chambers could be verified with the x-ray tomograph at CERN. This ingenious device, developed for the MDT system, is able to measure the wire position insid...

  11. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  12. Left ventricular volume determination from single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Bunker, S.R.; Hartshorne, M.F.; Schmidt, W.P.; Cawthon, M.A.; Karl, R.D. Jr.; Bauman, J.M.; Howard, W.H. III; Rubal, B.J.

    1985-01-01

    To compare the accuracy of single-photon emission computed tomography (SPECT) with that of contrast cineangiography in measuring left ventricular end-diastolic volume, 25 consecutive patients undergoing catheterizaiton for coronary artery or valvular heart disease were first evaluated scintigraphically. SPECT volume values showed a high degree of correlation with those determined by angiography with a standard error of the estimate of 23 ml. SPECT offers a highly accurate and essentially noninvasive method for measuring chamber volumes that is independent of geometric assumptions about ventricular configuration and chest wall attenuation and does not require blood sample counting

  13. Left ventricular volume determination from single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bunker, S.R.; Hartshorne, M.F.; Schmidt, W.P.; Cawthon, M.A.; Karl, R.D. Jr.; Bauman, J.M.; Howard, W.H. III; Rubal, B.J.

    1985-02-01

    To compare the accuracy of single-photon emission computed tomography (SPECT) with that of contrast cineangiography in measuring left ventricular end-diastolic volume, 25 consecutive patients undergoing catheterizaiton for coronary artery or valvular heart disease were first evaluated scintigraphically. SPECT volume values showed a high degree of correlation with those determined by angiography with a standard error of the estimate of 23 ml. SPECT offers a highly accurate and essentially noninvasive method for measuring chamber volumes that is independent of geometric assumptions about ventricular configuration and chest wall attenuation and does not require blood sample counting.

  14. Exploring Dutch surgeons' views on volume-based policies: a qualitative interview study.

    Science.gov (United States)

    Mesman, Roos; Faber, Marjan J; Westert, Gert P; Berden, Bart

    2018-01-01

    Objective In many countries, the evidence for volume-outcome associations in surgery has been transferred into policy. Despite the large body of research that exists on the topic, qualitative studies aimed at surgeons' views on, and experiences with, these volume-based policies are lacking. We interviewed Dutch surgeons to gain more insight into the implications of volume-outcome policies for daily clinical practice, as input for effective surgical quality improvement. Methods Semi-structured interviews were conducted with 20 purposively selected surgeons from a stratified sample for hospital type and speciality. The interviews were recorded, transcribed verbatim and underwent inductive content analysis. Results Two overarching themes were inductively derived from the data: (1) minimum volume standards and (2) implications of volume-based policies. Although surgeons acknowledged the premise 'more is better', they were critical about the validity and underlying evidence for minimum volume standards. Patients often inquire about caseload, which is met with both understanding and discomfort. Surgeons offered many examples of controversies surrounding the process of determining thresholds as well as the ways in which health insurers use volume as a purchasing criterion. Furthermore, being held accountable for caseload may trigger undesired strategic behaviour, such as unwarranted operations. Volume-based policies also have implications for the survival of low-volume providers and affect patient travel times, although the latter is not necessarily problematic in the Dutch context. Conclusions Surgeons in this study acknowledged that more volume leads to better quality. However, validity issues, undesired strategic behaviour and the ways in which minimum volume standards are established and applied have made surgeons critical of current policy practice. These findings suggest that volume remains a controversial quality measure and causes polarization that is not

  15. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering

    Science.gov (United States)

    Baxter, D.; Chen, C. J.; Crisler, M.; Cwiok, T.; Dahl, C. E.; Grimsted, A.; Gupta, J.; Jin, M.; Puig, R.; Temples, D.; Zhang, J.

    2017-06-01

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a Cf 252 neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19 ±6 keV (1 σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3 ×10-7 bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF3 I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  16. The little holographic bubble chambers

    International Nuclear Information System (INIS)

    Herve, A.

    1983-01-01

    The lifetime study of the charmed particles has readvanced the idea to use holography for the little fast-cycle bubble chambers. A pilot experiment has been realised in 1982 with a little bubble chamber filled up with freon-115. 40000 holograms have been recorded [fr

  17. On the high gain operation of low-pressure microdot gas avalanche chambers

    International Nuclear Information System (INIS)

    Breskin, A.

    1997-01-01

    Microdot avalanche chambers (MDOT) equipped with thin semitransparent Cr photocathodes, were characterized with UV photons at low gas pressure. Gains superior to 10 4 were reached with gas multiplication at the dots. In a mode where preamplification in the gas volume precedes the additional dot multiplication, gains superior to 10 6 were measured at 30-60 torr of propane. The fast amplification mechanism results in narrow high amplitude pulses with 2-3 ns rise time, visible with no further electronic amplification means. We present here our preliminary results and briefly discuss potential applications. (orig.)

  18. A Preliminary Study on Time Projection Chamber Simulation for Fission Cross Section Measurements with Geant4

    International Nuclear Information System (INIS)

    Kim, Jong Woon; Lee, Youngouk; Kim, Jae Cheon

    2014-01-01

    We present the details of the TPC simulation with Geant4 and show the results. TPC can provide more information than a fission chamber in that it is possible to distinguish different particle types. Simulations are conducted for uranium and plutonium targets with 20MeV neutrons. The simulation results are compared with the reference and show reasonable results. This is the first phase of study for realizing a TPC in the NFS at RAON, and we have more work to do, such as applying an electric field, signal processing in the simulation, and manufacturing of a TPC. The standard in fission cross section measurement is a fission chamber. It is basically just two parallel plates separated by a few centimeters of gas. A power supply connected to the plates sets up a moderate electric field. The target is deposited onto one of the plates. When fission occurs, the fragments ionize the gas, and the electric field causes the produced electrons to drift to the opposite plate, which records the total energy deposited in the chamber. A Time Projection Chamber (TPC) is a gas ionization detector similar to a fission chamber. However, it can measure the charged particle trajectories in the active volume in three dimensions by adding several readouts on the pad plane (fission chamber has only one readout one a pad plane). The specific ionization for each particle track enables the TPC to distinguish different particle types. A TPC will be used for fission cross section measurements in the Neutron Science Facility (NSF) at RAON. As a preliminary study, we present details of TPC simulation with Geant4 and discuss the results

  19. Pelletron general purpose scattering chamber

    International Nuclear Information System (INIS)

    Chatterjee, A.; Kailas, S.; Kerekette, S.S.; Navin, A.; Kumar, Suresh

    1993-01-01

    A medium sized stainless steel scattering chamber has been constructed for nuclear scattering and reaction experiments at the 14UD pelletron accelerator facility. It has been so designed that several types of detectors, varying from small sized silicon surface barrier detectors to medium sized gas detectors and NaI detectors can be conveniently positioned inside the chamber for detection of charged particles. The chamber has been planned to perform the following types of experiments : angular distributions of elastically scattered particles, fission fragments and other charged particles, angular correlations for charged particles e.g. protons, alphas and fission fragments. (author). 2 figs

  20. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji

    2013-07-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm and 650. nm, 10. nm FWHM). After calibration, statistical analysis shows that the uncertainty of the two-color temperature is less than 5%, while it is about 50% for the KL factor. This technique is then applied to the spray combustion of biodiesel and diesel fuels under an ambient oxygen concentration of 21% and ambient temperatures of 800, 1000 and 1200. K. The heat release result shows higher energy utilization efficiency for biodiesel compared to diesel under all conditions; meanwhile, diesel shows a higher pressure increase due to its higher heating value. Biodiesel yields a lower temperature inside the flame area, a longer soot lift-off length, and a smaller soot area compared to diesel. Both the KL factor and the total soot with biodiesel are lower than with diesel throughout the entire combustion process, and this difference becomes larger as the ambient temperature decreases. Biodiesel shows approximately 50-100. K lower temperatures than diesel at the quasi-steady stage for 1000 and 1200. K ambient temperature, while diesel shows a lower temperature than biodiesel at 800. K ambient. This result may raise the question of how important the flame temperature is in explaining the higher NO. x emissions often observed during biodiesel combustion. Other factors may also play an important role in controlling NO. x emissions. Both biodiesel and diesel temperature measurements show a monotonic dependence on the ambient temperature. However, the ambient temperature appears to have a more significant effect on the soot formation and oxidation in diesel combustion, while biodiesel combustion soot characteristics shows relative insensitivity to the ambient temperature. © 2013 Elsevier Ltd.

  1. Radon diffusion chamber

    International Nuclear Information System (INIS)

    Pretzsch, G.; Boerner, E.; Lehmann, R.; Sarenio, O.

    1986-01-01

    The invention relates to the detection of radioactive gases emitting alpha particles like radon, thoron and their alpha-decaying daughters by means of a diffusion chamber with a passive detector, preferably with a solid state track detector. In the chamber above and towards the detector there is a single metallized electret with negative polarity. The distance between electret and detector corresponds to the range of the alpha particles of radon daughters in air at the most. The electret collects the positively charged daughters and functions as surface source. The electret increases the sensitivity by the factor 4

  2. Multispecimen dual-beam irradiation damage chamber

    International Nuclear Information System (INIS)

    Packan, N.H.; Buhl, R.A.

    1980-06-01

    An irradiation damage chamber that can be used to rapidly simulate fast neutron damage in fission or fusion materials has been designed and constructed. The chamber operates in conjunction with dual Van de Graaff accelerators at ORNL to simulate a wide range of irradiation conditions, including pulsed irradiation. Up to six experiments, each with up to nine 3-mm disk specimens, can be loaded into the ultrahigh vacuum chamber. Specimen holders are heated with individual electron guns, and the temperature of each specimen can be monitored during bombardment by an infrared pyrometer. Three different dose levels may be obtained during any single bombardment, and the heavy-ion flux on each of the nine specimens can be measured independently with only a brief interruption of the beam. The chamber has been in service for nearly three years, during which time approximately 250 bombardments have been successfully carried out. An appendix contains detailed procedures for operating the chamber

  3. Bi-cone vacuum chamber in the ISR

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The "bi-cone" vacuum chamber in ISR intersection I-7, for experiment R702. Made from 0.28 mm thick titanium, it was at its time the most transparent chamber ever built. Ian Wilson is standing next to the chamber. See also 7609219.

  4. Device for gamma-chamber transducer alignment

    International Nuclear Information System (INIS)

    Mirkhodzhaev, A.Kh.; Kuznetsov, N.K.; Ostryj, Yu.E.

    1987-01-01

    The device consists of the upper part of the gamma chamber pilar to which a rod is rigidly fastened with a disk of acrylic plastic moving freely on the opposite end. The disk is placed coaxially and is equal to the gamma chamber detector crystal. The device makes it possible to use ordinary medical couches covered with a porolone mattress when the gamma chamber detector is placed below

  5. Bubble chamber: Omega production and decay

    CERN Document Server

    1973-01-01

    This image is taken from one of CERN's bubble chambers and shows the decay of a positive kaon in flight. The decay products of this kaon can be seen spiraling in the magnetic field of the chamber. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that has been heated to boiling point.

  6. Venturi vacuum systems for hypobaric chamber operations.

    Science.gov (United States)

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  7. Do Minimum Wages Fight Poverty?

    OpenAIRE

    David Neumark; William Wascher

    1997-01-01

    The primary goal of a national minimum wage floor is to raise the incomes of poor or near-poor families with members in the work force. However, estimates of employment effects of minimum wages tell us little about whether minimum wages are can achieve this goal; even if the disemployment effects of minimum wages are modest, minimum wage increases could result in net income losses for poor families. We present evidence on the effects of minimum wages on family incomes from matched March CPS s...

  8. Update on {sup 13}C-labelling of plant materials through the use of walk-in growth chambers [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Leo; Resch, Christian; Weltin, Georg; Dercon, Gerd [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria)

    2014-07-15

    In 2013, the Soil and Water Management & Crop Nutrition Laboratory installed a pair of walk-in growth chambers with an effective volume of about 12 m{sup 3} each. These growth chambers with temperature, relative humidity and carbon dioxide (CO{sub 2}) control, are being used within the framework of research activities for improving climate-smart agriculture in Member States.

  9. HOLRED - a machine for the replay of holograms made in a large bubble chamber

    International Nuclear Information System (INIS)

    Aderholz, M.; Allport, P.P.

    1989-09-01

    The Fermilab 15' Bubble Chamber, exposed to a beam of neutrinos generated at the Fermilab Tevatron, has been equipped with holographic optics in order to provide a high resolution view of particle interactions over a volume of several m 3 . A machine, ''Holred'', has been constructed to replay the holograms recorded. The principles of the machine and aspects of its construction and operation are described. Results are presented comparing holographic and conventional recordings of neutrino interactions. (author)

  10. LES of explosions in venting chamber: A test case for premixed turbulent combustion models

    OpenAIRE

    Vermorel , Olivier; Quillatre , Pierre; Poinsot , Thierry

    2017-01-01

    International audience; This paper presents a new experimental and Large Eddy Simulation (LES) database to study upscaling effects in vented gas explosions. The propagation of premixed flames in three setups of increasing size is investigated experimentally and numerically. The baseline model is the well-known laboratory-scale combustion chamber from Sydney (Kent et al., 2005; Masri et al., 2012); two exact replicas at scales 6 and 24.4 were set up by GexCon (Bergen, Norway). The volume ratio...

  11. Apparatus for reading and recharging condenser ionization chambers

    International Nuclear Information System (INIS)

    McCall, R.C.

    1977-01-01

    A metering circuit for a condenser ionization chamber is disclosed for simultaneously recharging the ionization chamber and reading out the amount of charge required to recharge the chamber. During the recharging process, the amount of charge necessary to recharge the ionization chamber capacitor is placed on an integrating capacitor in the metering apparatus. The resultant voltage across the integrating capacitor is a measure of the radiation to which the ionization chamber was exposed. 9 claims, 1 figure

  12. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  13. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, John T., E-mail: jnewberg@udel.edu; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia [Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Åhlund, John [Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  14. Assessment of the anterior chamber parameters after laser iridotomy in primary angle close suspect using Pentacam and gonioscopy.

    Science.gov (United States)

    Esmaeili, Alireza; Barazandeh, Behzad; Ahmadi, Sina; Haghi, Alireza; Ahmadi Hosseini, Seyed Mahdi; Abolbashari, Fereshteh

    2013-01-01

    To evaluate the changes in the anterior segment parameters of the subjects with primary angle closure suspect (PACS) before and after laser iridotomy (LI) using the Pentacam and gonioscopy. Forty-eight eyes of 48 PACS were included. Anterior chamber angle (ACA), central anterior chamber depth (ACD), anterior chamber volume (ACV) and central corneal thickness (CCT) were recorded from the Pentacam before and one month after LI. ACA was graded according to Shaffer classification using the Goldmann gonioscopy. ACA increased significantly from 25.59±4.41 to 26.46±4.33 degrees (P=0.009) and ACV changed from 85.97±16.07mm(3) to 99.25±15.83mm(3) (P=0.000). The changes in ACD, CCT and intraocular pressure were non-significant (P>0.05). Gonioscopy showed significant widening of the Shaffer angle in 4 quadrants (P<0.001). Pentacam can serve as the objective instrument in assessing the efficacy of LI.

  15. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  16. Temperature Studies for ATLAS MDT BOS Chambers

    CERN Document Server

    Engl, A.; Biebel, O.; Mameghani, R.; Merkl, D.; Rauscher, F.; Schaile, D.; Ströhmer, R.

    Data sets with high statistics taken at the cosmic ray facility, equipped with 3 ATLAS BOS MDT chambers, in Garching (Munich) have been used to study temperature and pressure effects on gas gain and drifttime. The deformation of a thermally expanded chamber was reconstructed using the internal RasNik alignment monitoring system and the tracks from cosmic data. For these studies a heating system was designed to increase the temperature of the middle chamber by up to 20 Kelvins over room temperature. For comparison the temperature effects on gas properties have been simulated with Garfield. The maximum drifttime decreased under temperature raise by -2.21 +- 0.08 ns/K, in agreement with the results of pressure variations and the Garfield simulation. The increased temperatures led to a linear increase of the gas gain of about 2.1% 1/K. The chamber deformation has been analyzed with the help of reconstructed tracks. By the comparison of the tracks through the reference chambers with these through the test chamber ...

  17. Brookhaven National Laboratory's multiparticle spectrometer drift chamber system

    International Nuclear Information System (INIS)

    Etkin, A.; Kramer, M.A.

    1979-01-01

    A system of drift chambers is being built to replace the present spark chambers in the Brookhaven National Laboratory's Multiparticle Spectrometer. This system will handle a beam of approx. 3 million particles per second and have a resolution of 200 μm. A summary of the status of the chambers and the custom integrated circuits is presented. The data acquisition system is described. Prototype chambers have been built and tested with results that are consistent with the expected chamber properties

  18. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  19. LONGITUDINAL QUANTITATIVE EVALUATION OF PHOTORECEPTOR VOLUME FOLLOWING REPAIR OF MACULA-OFF RETINAL DETACHMENT.

    Science.gov (United States)

    Narala, Ramsudha; Scarinci, Fabio; Shaarawy, Amr; Simonett, Joseph M; Flaxel, Christina J; Fawzi, Amani A

    2016-08-01

    To quantify photoreceptor volume changes after successful surgical repair of macula-off retinal detachment and to correlate these volumetric changes to postoperative best-corrected visual acuity (BCVA). Retrospective study of 15 eyes of 15 patients with macula-off retinal detachment who underwent successful surgical repair. A minimum of 4 optical coherence tomography scans that straddled the foveal center was used to quantify the central photoreceptor volume (central 1 mm). Mean photoreceptor volume at the first postoperative visit was 0.451 mm, increasing to 0.523 mm at the final postoperative visit (P = 0.004). Mean BCVA improved from 1.13 ± 0.59 logarithm of the minimum angle of resolution units (∼20/270) preoperatively to 0.52 ± 0.42 logarithm of the minimum angle of resolution units (∼20/66) at the final postoperative visit (P = 0.001). Mean photoreceptor volume at either the initial or final visit demonstrated significant correlations with final postoperative BCVA (r = -0.670, P = 0.017 and r = -0.753, P = 0.005, respectively). Shorter time interval from diagnosis to surgery was significantly associated with greater mean final postoperative photoreceptor volume (r = -0.588, P = 0.021) and better mean final postoperative BCVA (r = 0.709, P = 0.003). We observed a significant increase in photoreceptor volume after successful retinal detachment repair; photoreceptor volume was positively associated with BCVA and time to surgery. Our series emphasizes the importance of prompt surgical repair and shows that photoreceptor recovery and volumetric improvement correlate significantly with BCVA.

  20. Note: Small anaerobic chamber for optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Adrien A. P., E-mail: adrien.chauvet@gmail.com; Chergui, Majed [Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, 1015 Lausanne (Switzerland); Agarwal, Rachna; Cramer, William A. [Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  1. Structural Analysis of Extended Plasma Focus Chamber

    International Nuclear Information System (INIS)

    Mohd Azhar Ahmad; Abdul Halim Baijan; Siti Aiasah Hashim

    2016-01-01

    Accelerator Development Centre (ADC) of Nuclear Malaysia intends to upgrade the plasma focus device. It involves the extension part placed on top of the existing plasma focus vacuum chamber. This extended vacuum chamber purposely to give an extra space in conducting experiments on the existing plasma focus chamber. The aim of upgrading the plasma focus device is to solve the limitation in research and analysis of sample due to its done in an open system that cause analysis of samples is limited and less optimal. This extended chamber was design in considering the ease of fabrication as well as durability of its structural. Thus, this paper discusses the structural analysis in term of pressure loading effect in extended chamber. (author)

  2. γ-converting plate system for neutrino-deuterium exposures in the FNAL 15-foot bubble chamber

    International Nuclear Information System (INIS)

    Hanlon, J.; Mann, W.A.; Sommars, S.; Wald, H.

    1978-01-01

    During May 18-20 of this year the hydrogen-filled 15-foot bubble chamber at Fermilab was operated with an array of four half-inch thick stainless steel plates mounted in downstream portions of the fiducial volume. Notes from the test run, and results from a Monte Carlo study of efficiencies of the plate array for detection of photons and positrons in final states produced in a wide-band neutrino--deuterium exposure, are presented

  3. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  4. Presentation of an experimental method to induce in vitro ("organ chambers") respiratory acidosis and its effect on vascular reactivity.

    Science.gov (United States)

    Nadai, Tales Rubens de; Silveira, Ana Paula Cassiano; Monteiro, Ariadne Santana e Neves; Campos, Debora Ribeiro; Carvalho, Marco Tulio Rezende de; Albuquerque, Agnes Afrodite Sumarelli; Celotto, Andrea Carla; Evora, Paulo Roberto Barbosa

    2014-11-01

    To create in vitro a model to generate acidosis by CO2 bubbling "organ chambers", which would be useful for researchers that aim to study the effects of acid-base disturbs on the endothelium-dependent vascular reactivity. Eighteen male Wistar rats (230-280 g) were housed, before the experiments, under standard laboratory conditions (12h light/dark cycle at 21°C), with free access to food and water. The protocol for promoting in vitro respiratory acidosis was carried out by bubbling increased concentrations of CO2. The target was to achieve an ideal way to decrease the pH gradually to a value of approximately 6.6.It was used, initially, a gas blender varying concentrations of the carbogenic mixture (95% O2 + 5% CO2) and pure CO2. 1) 100% CO2, pH variation very fast, pH minimum 6.0; 2) 90%CO2 pH variation bit slower, pH minimum 6.31; 3) 70%CO2, pH variation slower, pH minimum 6.32; 4) 50% CO2, pH variation slower, pH minimum 6:42; 5) 40 %CO2, Adequate record, pH minimum 6.61, and; 6) 30 %CO2 could not reach values below pH minimum 7.03. Based on these data the gas mixture (O2 60% + CO2 40%) was adopted. This gas mixture (O2 60% + CO2 40%) was effective in inducing respiratory acidosis at a speed that made, possible the recording of isometric force.

  5. Wire chamber degradation at the Argonne ZGS

    International Nuclear Information System (INIS)

    Haberichter, W.; Spinka, H.

    1986-01-01

    Experience with multiwire proportional chambers at high rates at the Argonne Zero Gradient Synchrotron is described. A buildup of silicon on the sense wires was observed where the beam passed through the chamber. Analysis of the chamber gas indicated that the density of silicon was probably less than 10 ppM

  6. Drift chamber vertex detectors for SLC/LEP

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, K G

    1988-03-01

    Factors influencing the design of drift chamber vertex detectors for SLC and LEP are discussed including global strategy, chamber gas, cell design, and signal processing. The designs of the vertex chambers for the L3 and OPAL experiments at LEP and the Mark II experiment at the SLC are described.

  7. Radon-daughter chamber instrumentation system reference manual

    International Nuclear Information System (INIS)

    Showalter, R.; Johnson, L.

    1985-01-01

    The radon-daughter chamber instrumentation system collects environmental data from the radon-daughter chamber. These data are then recorded on a Tandberg system tape cartridge and transmitted to the HP-1000 computer for processing. Generators which inject radon and condensation nuclei into the chamber are also included with the instrumentation system

  8. Nuclear design considerations for Z-IFE chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W.R. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States)]. E-mail: meier5@llnl.gov; Schmitt, R.C. [Bettis Atomic Power Laboratory, Pittsburgh, PA 15203 (United States); Abbott, R.P. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States); Latkowski, J.F. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States); Reyes, S. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States)

    2006-02-15

    Z-pinch driven IFE (Z-IFE) requires the design of a repetitive target insertion system that allows coupling of the pulsed power to the target with adequate standoff, and a chamber that can withstand blast and radiation effects from large yield targets. The present strategy for Z-IFE is to use high yield targets ({approx}2-3 GJ/shot), low repetition rate per chamber ({approx}0.1 Hz), and 10 chambers per power plant. In this study, we propose an alternative power plant configuration that uses very high yield targets (20 GJ/shot) in a single chamber operating at 0.1 Hz. A thick-liquid-wall chamber is proposed to absorb the target emission (X-rays, debris and neutrons) and mitigate the blast effects on the chamber wall. The target is attached to the end of a conical shaped recyclable transmission line (RTL) made from a solid coolant (e.g., frozen flibe), or a material that is easily separable from the coolant (e.g., steel). The RTL/target assembly is inserted through a single opening at the top of the chamber for each shot. This study looks at the RTL material choice from a safety and environmental point of view. Materials were assessed according to waste disposal rating (WDR) and contact dose rate (CDR). Neutronics calculations, using the TART2002 Monte Carlo code from Lawrence Livermore National Laboratory (LLNL), were performed for the RTL and Z-IFE chamber, and key results reported here.

  9. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  10. PWCs and drift chambers at ISABELLE

    International Nuclear Information System (INIS)

    Okuno, H.; Teramoto, Y.; Wheeler, C.D.

    1978-01-01

    Rate effects in proportional chambers and drift chambers are addressed first. The widely used high-gas-gain chambers would have impaired performance at ISABELLE data rates. Improvement can be expected with lower gas gain, and this possibility is investigated with respect to position and time resolution. Results on chamber lifetime are summarized; space-charge effects, gain saturation, and radiation hardness of electronics are considered. The resolution of drift chambers is discussed in some detail; time resolution, double pulse resolution, and momentum resolution and multiple scattering are included. The expected high multiplicity of tracks from a single event, the high event rates, and the requirement for low gas gain necessitate revision of the methods for measuring the second coordinate. Known methods of two-dimensional point localization are summarized according to spatial accuracy, electronics requirements, and multihit capability. Delay lines, charge division, and cathode strips are considered. Particle identification by means of measurement of the relativistic rise of energy loss by conventional and unconventional means was investigated. 32 references, 3 figures, 4 tables

  11. Improved climatic chamber for desiccation simulation

    Directory of Open Access Journals (Sweden)

    Lozada Catalina

    2016-01-01

    Full Text Available The climatic chamber at the Universidad de Los Andes was improved for modeling desiccation in soil layers. This chamber allows the measurement of different environmental variables. In this research, evaporation tests were conducted in water imposing boundary conditions for drying, and then these tests were performed in a soil layer. The soil was prepared from a slurry state and was drying controlling the temperature, the infrared radiation, the wind velocity, and the relative humidity. In the first part of this paper, a description of the climatic chamber, operation ranges and theoretical work principles of the climatic chamber are presented. Then, the second part shows the results for desiccation in water and soil. The desiccation tests performed with the climatic chamber allow simulating all environmental conditions accurately during drying coupling the effect of all environmental variables. As a result, the evaporation rate increases with infrared radiation in soil and water. The rate at the beginning of the desiccation tests in clays is the same as in water. However, this evaporation rate decreases as the soil becomes desiccated.

  12. Minimum Additive Waste Stabilization (MAWS)

    International Nuclear Information System (INIS)

    1994-02-01

    In the Minimum Additive Waste Stabilization(MAWS) concept, actual waste streams are utilized as additive resources for vitrification, which may contain the basic components (glass formers and fluxes) for making a suitable glass or glassy slag. If too much glass former is present, then the melt viscosity or temperature will be too high for processing; while if there is too much flux, then the durability may suffer. Therefore, there are optimum combinations of these two important classes of constituents depending on the criteria required. The challenge is to combine these resources in such a way that minimizes the use of non-waste additives yet yields a processable and durable final waste form for disposal. The benefit to this approach is that the volume of the final waste form is minimized (waste loading maximized) since little or no additives are used and vitrification itself results in volume reduction through evaporation of water, combustion of organics, and compaction of the solids into a non-porous glass. This implies a significant reduction in disposal costs due to volume reduction alone, and minimizes future risks/costs due to the long term durability and leach resistance of glass. This is accomplished by using integrated systems that are both cost-effective and produce an environmentally sound waste form for disposal. individual component technologies may include: vitrification; thermal destruction; soil washing; gas scrubbing/filtration; and, ion-exchange wastewater treatment. The particular combination of technologies will depend on the waste streams to be treated. At the heart of MAWS is vitrification technology, which incorporates all primary and secondary waste streams into a final, long-term, stabilized glass wasteform. The integrated technology approach, and view of waste streams as resources, is innovative yet practical to cost effectively treat a broad range of DOE mixed and low-level wastes

  13. Mixed field dosimetry with the twin chamber technique

    International Nuclear Information System (INIS)

    Burger, G.; Maier, E.

    1974-04-01

    For the separate dosimetry of the neutron- and gamma-component in a mixed beam it is principally possible to use two ionization chambers with different ratios of neutron- to gamma sensitivity. Several authors proposed for this purpose the use of a homogenious TE-chamber filled with the TE-gas and of a carbon-chamber filled with CO 2 -gas. This chamber combination is also commercially available in several countries. The chambers are normally equipped with a continuous gas-flow provision and with a waterproof-housing for the use within liquid phantoms. The application of such chambers for mixed field dosimetry in the intercomparison project of the ICRU at the RARAF-facility in Brookhaven (International Neutron Dosimetry Intercomparison - INDI) is described. (orig./HP) [de

  14. Drift chamber tracking with neural networks

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed

  15. Making MUSIC: A multiple sampling ionization chamber

    International Nuclear Information System (INIS)

    Shumard, B.; Henderson, D.J.; Rehm, K.E.; Tang, X.D.

    2007-01-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction

  16. Making MUSIC: A multiple sampling ionization chamber

    Science.gov (United States)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  17. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  18. Simple Cloud Chambers Using Gel Ice Packs

    Science.gov (United States)

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  19. Performance characteristics of a low-volume PM10 sampler

    Science.gov (United States)

    Four identical PM10 pre-separators, along with four identical low-volume (1m3 hr-1) total suspended particulate (TSP) samplers were tested side-by-side in a controlled laboratory particulate matter (PM) chamber. The four PM10 and four TSP samplers were also tested in an oil pipe-cleaning field to ev...

  20. Effect of Combustion-chamber Shape on the Performance of a Prechamber Compression-ignition Engine

    Science.gov (United States)

    Moore, C S; Collins, J H , Jr

    1934-01-01

    The effect on engine performance of variations in the shape of the prechamber, the shape and direction of the connecting passage, the chamber volume using a tangential passage, the injection system, and the direction od the fuel spray in the chamber was investigated using a 5 by 7 inch single-cylinder compression-ignition engine. The results show that the performance of this engine can be considerably improved by selecting the best combination of variables and incorporating them in a single design. The best combination as determined from these tests consisted of a disk-shaped chamber connected to the cylinder by means of a flared tangential passage. The fuel was injected through a single-orifice nozzle directed normal to the air swirl and in the same plane. At an engine speed of 1,500 r.p.m. and with the theoretical fuel quantity for no excess air, the engine developed a brake mean effective pressure of 115 pounds per square inch with a fuel consumption of 0.49 pound per brake horsepower-hour and an explosion pressure of 820 pounds per square inch. A brake mean effective pressure of 100 pounds per square inch with a brake-fuel consumption of 0.44 pound per horsepower-hour at 1,500 r.p.m. was obtained.

  1. An experimental propane bubble chamber

    International Nuclear Information System (INIS)

    Rogozinski, A.

    1957-01-01

    Describes a propane bubble chamber 10 cm in diameter and 5 cm deep. The body of the chamber is in stainless steel, and it has two windows of polished hardened glass. The compression and decompression of the propane are performed either through a piston in direct contact with the liquid, or by the action on the liquid, through a triple-mylar-Perbunan membrane, of a compressed gas. The general and also optimum working conditions of the chamber are described, and a few results are given concerning, in particular, the tests of the breakage-resistance of the windows and the measurements of the thermal expansion of the compressibility isotherm for the propane employed. (author) [fr

  2. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Liquid ionization chambers [1] (LICs) have have been used in the last decades as background dosemeters. Since a few years LICs are also commercially available for dosimetry and are used for measurements of dose distributions where a high spatial distribution is necessary. Also in the last decades...... a differential equation applying several simplifications and approximations leading to discrepancies between theory and experiments [3]. The theory predicts the collection efficiency as a function of the electrical field and was applied for both air filled ionization chambers and liquid filled ionization...... chambers. For liquids the LET can be roughly deduced from the collection efficiency dependency on the electrical field inside a liquid ionization chambers [4] using an extrapolation method. We solved the fundamental differential equation again presented by Jaffe numerically, but now taking into account...

  3. Computational analysis of particle reinforced viscoelastic polymer nanocomposites - statistical study of representative volume element

    Science.gov (United States)

    Hu, Anqi; Li, Xiaolin; Ajdari, Amin; Jiang, Bing; Burkhart, Craig; Chen, Wei; Brinson, L. Catherine

    2018-05-01

    The concept of representative volume element (RVE) is widely used to determine the effective material properties of random heterogeneous materials. In the present work, the RVE is investigated for the viscoelastic response of particle-reinforced polymer nanocomposites in the frequency domain. The smallest RVE size and the minimum number of realizations at a given volume size for both structural and mechanical properties are determined for a given precision using the concept of margin of error. It is concluded that using the mean of many realizations of a small RVE instead of a single large RVE can retain the desired precision of a result with much lower computational cost (up to three orders of magnitude reduced computation time) for the property of interest. Both the smallest RVE size and the minimum number of realizations for a microstructure with higher volume fraction (VF) are larger compared to those of one with lower VF at the same desired precision. Similarly, a clustered structure is shown to require a larger minimum RVE size as well as a larger number of realizations at a given volume size compared to the well-dispersed microstructures.

  4. DORIOT CLIMATIC CHAMBERS

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers reproduce environmental conditions occurring anywhere around the world. They provide an invaluable service by significantly reducing the...

  5. Practical electron dosimetry: a comparison of different types of ionization chambers

    International Nuclear Information System (INIS)

    Dohm, O.S.; Christ, G.

    2002-01-01

    Since Markus chambers are no longer recommended in the 1997 DIN 6800-2 version there are uncertainties as to the use of alternative chamber types for electron dosimetry. Therefore, we performed a comparison between different types of ionization chambers. In particular, the widespread Farmer and Roos chambers were compared with the Markus chamber for polarity effect, chamber-to-chamber variation, and deviations of the measured absorbed dose relative to the value obtained with the Roos chamber (which is regarded as an ideal Bragg-Gray-chamber). The perturbation correction factor at 60 Co radiation was determined experimentally as 1,029 ± 0,5% (Roos chamber) and 1,018 ± 0,5% (Markus chamber) for the investigated plane-parallel chambers. In addition, we could show that the Roos chambers do not have a larger chamber-to-chamber variation than the Farmer chambers. Likewise, our results suggest that Farmer chambers could be used for electron energies above 6 MeV. (orig.) [de

  6. Sensitivity of gaseous xenon ionisation chambers (1961)

    International Nuclear Information System (INIS)

    Schuhl, C.

    1960-01-01

    It seems advantageous to fill an ionization chamber with xenon gas when this chamber is used for measuring a low intensity and high energy electron or positron beam, or monitoring a gamma beam. In the study of 5 to 50 MeV electrons, xenon allows for the ionization chamber yield, an improvement of a factor 4,5. (author) [fr

  7. Ionization chamber correction factors for MR-linacs.

    Science.gov (United States)

    Pojtinger, Stefan; Dohm, Oliver Steffen; Kapsch, Ralf-Peter; Thorwarth, Daniela

    2018-06-07

    Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B . The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0-2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.

  8. Ionization chamber correction factors for MR-linacs

    Science.gov (United States)

    Pojtinger, Stefan; Steffen Dohm, Oliver; Kapsch, Ralf-Peter; Thorwarth, Daniela

    2018-06-01

    Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B. The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0–2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.

  9. Bubble chamber: Omega production and decay

    CERN Multimedia

    1973-01-01

    This image is of real particle tracks taken from the CERN 2 m liquid hydrogen bubble chamber and shows the production and decay of a negative omega particle. A negative kaon enters the chamber which decays into many particles, including a negative omega that travels a short distance before decaying into more particles. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  10. Evaluation of carbon dioxide dissipation within a euthanasia chamber.

    Science.gov (United States)

    Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P-

    2014-07-01

    CO₂ euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO₂ to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO₂ levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO₂ dropped to below 10% COv within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO₂ dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO₂ dissipation. We recommend that users allow 2 min for CO₂ to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate.

  11. D0 central tracking chamber performance studies

    International Nuclear Information System (INIS)

    Pizzuto, D.

    1991-12-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an RΦ tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against γ → e + e - events

  12. Influence of size of the ionization chamber in determination of the quality of an X-ray field of references

    International Nuclear Information System (INIS)

    Viana, R.N.; Cassiano, D.H.; Peixoto, J.G.P.

    2005-01-01

    The quality of an X-ray field of reference can be evaluated with the determination of the values of the first and second half-value layer - 1 st and 2 nd CSR, from measurements carried out with appropriate ionisation chambers. The acceptance criteria of ISO 4037-1 states that the values of 1 st and 2 nd CSR may not differ by more than -5% of the reference values. Procedures have been developed on X-ray equipment PANTAK, model HF160, adjusted to produce a field of 48 keV X-ray, to investigate the determination of the values of 1 st and 2 nd CSR with the use of different ionization chambers of varying volumes. The initial results indicate that the values of 1 st and 2 nd CSR are influenced by the size of the ionization chamber used, which suggests the determination of algorithm for the determination of a single value of 1 st and 2 nd CSR

  13. Characterization of Gas Transport Properties of Fractured Rocks By Borehole and Chamber Tests.

    Science.gov (United States)

    Shimo, M.; Shimaya, S.; Maejima, T.

    2014-12-01

    Gas transport characteristics of fractured rocks is a great concern to variety of engineering applications such as underground storage of LPG, nuclear waste disposal, CCS and gas flooding in the oil field. Besides absolute permeability, relative permeability and capillary pressure as a function of water saturation have direct influences to the results of two phase flow simulation. However, number of the reported gas flow tests for fractured rocks are limited, therefore, the applicability of the conventional two-phase flow functions used for porous media, such as Mualem-van Genuchten model, to prediction of the gas transport in the fractured rock mass are not well understood. The authors conducted the two types of in-situ tests, with different scales, a borehole gas-injection test and a chamber gas-injection test in fractured granitic rock. These tests were conducted in the Cretaceous granitic rocks at the Namikata underground LPG storage cavern construction site in Ehime Prefecture in Japan, preceding to the cavern scale gas-tightness test. A borehole injection test was conducted using vertical and sub-vertical boreholes drilled from the water injection tunnel nearly at the depth of the top of the cavern, EL-150m. A new type downhole gas injection equipment that is capable to create a small 'cavern' within a borehole was developed. After performing a series of preliminary tests to investigate the hydraulic conductivity and gas-tightness, i.e. threshold pressure, gas injection tests were conducted under different gas pressure. Fig.1 shows an example of the test results From a chamber test using a air pressurizing chamber with volume of approximately166m3, the gas-tightness was confirmed within the uncertainty of 22Pa under the storage pressure of 0.7MPa, however, significant air leakage occurred possibly through an open fracture intersecting the chamber just after cavern pressure exceeds the initial hydrostatic pressure at the ceiling level of the chamber. Anomalies

  14. A cylindrical drift chamber for radiative muon capture experiments at TRIUMF

    International Nuclear Information System (INIS)

    Henderson, R.S.; Dawson, R.J.; Azuelos, G.; Robertson, B.C.; Hasinoff, M.D.; Ahamad, S.; Gorringe, T.P.; Serna-Angel, A.; Blecher, M.; Wright, D.H.

    1990-01-01

    In the Standard Model, the weak interaction is purely V-A in character. However in semileptonic reactions the strong force induces additional couplings. Radiative muon capture (RMC), μ - Z → ν(Z-1)γ, is a process which is particularly sensitive to the induced pseudoscalar coupling constant, g p , which is still very poorly determined experimentally. Due to the extremely small branching ratio (∼ 6 x 10 -8 ), the elementary reaction μ - p → νnγ has never been measured. Effort to date has concentrated on nuclear RMC where the branching ratio is much larger, but the interpretation of these results is hindered by nuclear structure uncertainties. A measurement is being carried out at TRIUMF to determine the rate of RMC on hydrogen to a precision of 8% leading to a determination of g p with an error of 10%. The detection system is based on a large volume cylindrical drift chamber, in an axial magnetic field, acting as an e + e - pair spectrometer with a solid angle of ≅ 2 π. The design, construction and performance of the cylindrical drift chamber are discussed

  15. Flow structure of conical distributed multiple gas jets injected into a water chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiajun; Yu, Yonggang [Nanjing University of Science and Technology, Nanjing (China)

    2017-04-15

    Based on an underwater gun firing project, a mock bullet with several holes on the head was designed and experimented to observe the combustion gas injected into a cylindrical water chamber through this mock bullet. The combustion gas jets contain one vertical central jet and 4 to 8 slant lateral jets. A high speed camera system was used to record the expansion of gas jets in the experimental study. In numerical simulations, the Euler two-fluid model and volume of fluid method were adopted to describe the gas-liquid flow. The results show the backflow zone in lateral jet is the main factor influencing the gas-liquid turbulent mixing in downstream. On cross sections, the gas volume fraction increased with time but the growth rate decreased. With a change of nozzle structure, the gas fraction was more affected than the shock structure.

  16. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Vijande, J. [Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and Instituto de Física Corpuscular (UV-CSIC), Paterna 46980 (Spain); García-Martínez, T. [Radiation Oncology Department, Hospital La Ribera, Alzira 46600 (Spain); Niatsetski, Y.; Nauta, G.; Schuurman, J. [Elekta Brachytherapy, Veenendaal 3905 TH (Netherlands); Ouhib, Z. [Radiation Oncology Department, Lynn Regional Cancer Center, Boca Raton Community Hospital, Boca Raton, Florida 33486 (United States); Ballester, F. [Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Perez-Calatayud, J. [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain and Department of Radiotherapy, Clínica Benidorm, Benidorm 03501 (Spain)

    2015-08-15

    Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate of the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%–2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers

  17. The non-uniformity correction factor for the cylindrical ionization chambers in dosimetry of an HDR 192Ir brachytherapy source

    International Nuclear Information System (INIS)

    Majumdar, Bishnu; Patel, Narayan Prasad; Vijayan, V.

    2006-01-01

    The aim of this study is to derive the non-uniformity correction factor for the two therapy ionization chambers for the dose measurement near the brachytherapy source. The two ionization chambers of 0.6 cc and 0.1 cc volume were used. The measurement in air was performed for distances between 0.8 cm and 20 cm from the source in specially designed measurement jig. The non-uniformity correction factors were derived from the measured values. The experimentally derived factors were compared with the theoretically calculated non-uniformity correction factors and a close agreement was found between these two studies. The experimentally derived non-uniformity correction factor supports the anisotropic theory. (author)

  18. The wide gap resistive plate chamber

    International Nuclear Information System (INIS)

    Crotty, I.; Lamas Valverde, J.; Hatzifotiadou, D.; Williams, M.C.S.; Zichichi, A.

    1995-01-01

    The resistive plate chamber (RPC) has good time and position resolution; these factors (coupled to its simple construction) make it an attractive candidate for muon trigger systems at future colliders. However, operated in spark mode, the RPC has severe rate problems that make it unusable above 10 Hz/cm 2 . We have previously published our results concerning the operation of the RPC in spark and in avalanche mode; we have shown that the rate limit can be increased to 150 Hz/cm 2 if the RPC is operated in avalanche mode. Here, we discuss the performance of chambers with 6 and 8 mm gas gaps (compared to the more usual 2 mm gap). We outline the reasons for this choice, and also discuss anode versus cathode strip readout. We have measured the efficiency versus flux, and also show that an enhanced rate limit can be obtained if only a small region of the chamber is exposed to the beam (spot illumination). Finally we have tested the performance of chambers constructed with other materials for the resistiv e plate and compare it to chambers constructed with our preferred plastic, melamine laminate. (orig.)

  19. HYLIFE-II reactor chamber design refinements

    International Nuclear Information System (INIS)

    House, P.A.

    1994-06-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li 2 BeF 4 ) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (>12 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GWe and 2 GWe reactor chamber are presented

  20. Rising above the Minimum Wage.

    Science.gov (United States)

    Even, William; Macpherson, David

    An in-depth analysis was made of how quickly most people move up the wage scale from minimum wage, what factors influence their progress, and how minimum wage increases affect wage growth above the minimum. Very few workers remain at the minimum wage over the long run, according to this study of data drawn from the 1977-78 May Current Population…

  1. Dilution refrigeration with multiple mixing chambers

    International Nuclear Information System (INIS)

    Coops, G.M.

    1981-01-01

    A dilution refrigerator is an instrument to reach temperatures in the mK region in a continuous way. The temperature range can be extended and the cooling power can be enlarged by adding an extra mixing chamber. In this way we obtain a double mixing chamber system. In this thesis the theory of the multiple mixing chamber is presented and tested on its validity by comparison with the measurements. Measurements on a dilution refrigerator with a circulation rate up to 2.5 mmol/s are also reported. (Auth.)

  2. MDT Commissioning Procedures Guidelines for Certifying RFI Chambers

    CERN Document Server

    Beretta, M; Branchini, P; Kourkoumelis, C; Dubbert, J; Gazis, E N; Hertenberger, R; Hurst, P; Kojine, A; Lanza, A; Marin, A; Mockett, P; Petridou, C; Tskhadadze, E G; Valente, P; Wotschack, J; Xie, Y; Zhao, Z

    2004-01-01

    Aim of the document is the definition of a common set of guidelines and test procedures for commissioning the MDT chambers. Commissioning is different for Barrel and Endcap chambers. The former will be tested at a single chamber level before going to the ATLAS pit, ready for the last quick test before final installation, while the latter will be first tested at a single chamber level (phase one), then installed into the Small and Big Wheel sectors (SW and BW), tested after the integration (phase two) and transported to the ATLAS pit for final wheel installation. The present document concerns all tests, including those of phase two for Endcap chambers, but it is possible that some specific tests, at the moment not planned, will be implemented during the Endcap phase two commissioning. It is composed of three sections: 1 â€" Guidelines for checking chamber conformity, where the main rules for declaring that chambers conform to the reference drawings and requirements are described; 2 â€" Commissioning tests,...

  3. Lifetime survivability of contaminated target-chamber optics

    International Nuclear Information System (INIS)

    Rainer, F.; Anderson, A.; Burnham, A.; Milam, D.; Turner, R.

    1996-11-01

    Target chambers used for Inertial Confinement Fusion (ICF) expose laser optics to a very hostile environment, not only from high-fluence laser irradiation but also x-ray irradiation and particulate debris from targets and chamber wall materials. Expendable debris shields provide the first line of defense to more costly optics upstream in the laser beam path to contaminants generated within the target chamber. However, the replacement of a large number of debris shields is also an expensive proposition so that extending their usable lifetime within the chamber is important. We have conducted tests to show that optics can both be cleaned and damaged by laser irradiation at 355 nm after being contaminated with potential chamber-wall materials such as B 4 C and Al 2 O 3 . Such optics can survive from one to hundreds of laser shots, depending on degree of contamination and laser fluence levels. Similarly, we have studied the survivability of optics that have been exposed to direct contamination from representative target materials irradiated in the target chamber. We have also studied the effects on optics that were not directly exposed to targets, yet received secondary exposure from the above directly-exposed samples

  4. Special design issues. Ion beam driver-reaction chamber interfaces

    International Nuclear Information System (INIS)

    Moir, R.W.; Peterson, R.R.; Kessler, G.

    1995-01-01

    Design issues of the interface between ion beam drivers and the reaction chamber for heavy ion beam and light ion beam inertial fusion drivers are discussed. The interface must provide for radiation protection of final focusing magnets, pumping of evaporated material and non-condensable gas that enter the beam ports, thermal insulation, heat removal, a.o.. Beam ports and focal magnets must be protected by neutronically thick shielding between the beam path and the magnet conductor. The required thickness of the shielding determines the minimum spacing between individual beams in a cluster of beams. The cone angle of this cluster can affect target performance. The beamlines are subjected to evaporated material, debris, and rapidly moving droplets. The reaction chambers used here are HYLIFE-II for indirect, HIBALL-II for direct drive. The light ion beam interface is based on the LIBRA and LIBRA-LiTE studies. In the case of HYLIFE-II, liquid jets must be demonstrated with a thickness of 0.5 m and with an edge that comes to within 10 mm of the beam edges to protect the ports. Design of compact focal arrays with enough shielding to give magnets an adequate lifetime must be achieved. As shielding is added the size of the beam array will grow and the target will drop. For HIBALL neutron shielding of the focal magnets provides an adequate lifetime. Replaceable special INPORT units will have to be developed in the region of the beam ports. For light ions transport issues have led to structures being placed close enough to the target that they experience a higher neutron damage rate and must be replaced once or twice a year, which would require remote maintenance. Light ion concepts could greatly benefit from a self-pinched transport scheme, though the details are unclear and the effect on availability is uncertain. Light and heavy ions have similar problems in keeping the gas in the drivers at a low density. Both will require active means to preserve this low density, while

  5. Combustion characteristics of stratified mixture. 1st Report. Measurement of mixture distribution in a constant-volume combustion chamber using laser-induced NO2 fluorescence; Sojo kongoki no nensho tokusei ni kansuru kenkyu. 1. Laser reiki NO2 keikoho ni yoru teiyo nenshokinai kongoki bunpu no keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, M.; Nishida, K.; Hiroyasu, H. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering; Tabata, M. [Mazda Motor Corp., Hiroshima (Japan)

    1996-06-25

    Laser-induced fluorescence from nitrogen dioxide (NO2) as gas fuel tracer was applied to determine mixture stratification in a pancake-type constant-volume combustion chamber using propane and hydrogen fuels. The second-harmonic output of a pulsed Nd: YAG laser was used as a light source for fluorescence excitation. The fluorescence images were corrected by a gated image-intensified CCD camera. The quantitative analysis of fuel concentration was made possible by the application of linearity between fluorescence intensity and NO2 concentration at a low trace level. The stratified mixture (center-rich or center-lean) was concentrically formed in the central region of the chamber by a jet flow from a tangentially oriented port. The concentration difference in the radial direction of the chamber decreased with time from the start of injection. The rate of decrease was faster for hydrogen than for propane. After 300 ms from start of injection, however, the time histories of the concentration difference were nearly constant for both fuels regardless of overall concentration. 10 refs., 16 figs., 1 tab.

  6. Vacuum Chamber for the Booster Bending Magnets

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    To minimize eddy currents, induced by the rising magnetic field, the chamber was made from thin stainless steel of high specific electric resistance. For mechanical stength, it was corrugated in a hydro-forming process. The chamber is curved, to follow the beam's orbital path. Under vacuum, the chamber tends to staighten, the ceramic spacer along half of its length keeps it in place (see also 7402458).

  7. Construction and performance of large flash chambers

    International Nuclear Information System (INIS)

    Taylor, F.E.; Bogert, D.; Fisk, R.; Stutte, L.; Walker, J.K.; Wolfson, J.; Abolins, M.; Ernwein, J.; Owen, D.; Lyons, T.

    1979-01-01

    The construction and performance of 12' x 12' flash chambers used in a 340 ton neutrino detector under construction at Fermilab is described. The flash chambers supply digital information with a spatial resolution of 0.2'', and are used to finely sample the shower development of the reaction products of neutrino interactions. The flash chambers are easy and inexpensive to build and are electronically read out

  8. Characterization of a free-air ionization chamber in direct X-ray beams as used in mammography

    International Nuclear Information System (INIS)

    Lima, Mateus Hilario de

    2014-01-01

    At this work stability and characterization tests were undertaken on a Victoreen free-air ionization chamber, model 481. The tests were realized using direct X-ray beams as a contribution for its establishment as a primary standard system of the quantity air kerma. The characterization tests were: saturation curve, ion collection efficiency, polarity effect, response linearity with the air kerma rate and response linearity with the chamber volume variation. The ion collection efficiency allowed the determination of the ion recombination factor. Most of the test results showed agreement with the limits established by international standards. Furthermore, the air attenuation factors for the mammography beams with aluminum and molybdenum filters were obtained. The factors for photon transmission and scattering at the diaphragm edges were also determined for mammography beams with aluminum filter and for the standard beam with molybdenum filter. (author)

  9. The knife-edge chamber

    International Nuclear Information System (INIS)

    Barasch, E.F.; Bowcock, T.J.V.; Drew, M.M.; Elliott, S.M.; Lee, B.; McIntyre, P.M.; Pang, Y.; Popovic, M.; Smith, D.D.

    1990-01-01

    In this paper the design for a new technology for particle track detectors is described. Using standard IC fabrication techniques, a pattern of microscopic knife edges and field-shaping electrodes can be fabricated on a silicon substrate. The knife-edge chamber uniquely offers attractive performance for the track chambers required for SSC detectors, for which no present technology is yet satisfactory. Its features include: excellent radiation hardness (10 Mrad), excellent spatial resolution (∼20 μm), short drift time (20 ns), and large pulse height (1 mV)

  10. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1982-01-01

    An ionization smoke detector employs a single radiation source in a construction comprising at least two chambers with a center or node electrode. The radioactive source is associated with this central electrode, and its positioning may be adjusted relative to the electrode to alter the proportion of the source that protrudes into each chamber. The source may also be mounted in the plane of the central electrode, and positioned relative to the center of the electrode. The central electrode or source may be made tiltable relative to the body of the detector

  11. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic (oxygen...

  12. Unified Analysis of Multi-Chamber Contact Tanks and Mixing Efficiency Based on Vorticity Field. Part I: Hydrodynamic Analysis

    Directory of Open Access Journals (Sweden)

    Ender Demirel

    2016-11-01

    Full Text Available Multi-chamber contact tanks have been extensively used in industry for water treatment to provide potable water to communities, which is essential for human health. To evaluate the efficiency of this treatment process, flow and tracer transport analysis have been used in the literature using Reynolds averaged Navier–Stokes (RANS and large-eddy simulations (LES. The purpose of this study is two-fold. First a unifying analysis of the flow field is presented and similarities and differences in the numerical results that were reported in the literature are discussed. Second, the vorticity field is identified as the key parameter to use in separating the mean flow (jet zone and the recirculating zones. Based on the concepts of vorticity gradient and flexion product, it is demonstrated that the separation of the recirculation zone and the jet zone, fluid-fluid flow separation, is possible. The separation of the recirculation zones and vortex core lines are characterized using the definition of the Lamb vector. The separated regions are used to characterize the mixing efficiency in the chambers of the contact tank. This analysis indicates that the recirculation zone and jet zone formation are three-dimensional and require simulations over a long period of time to reach stability. It is recognized that the characteristics of the jet zones and the recirculation zones are distinct for each chamber and they follow a particular pattern and symmetry between the alternating chambers. Hydraulic efficiency coefficients calculated for each chamber show that the chambers having an inlet adjacent to the free surface may be designed to have larger volumes than the chambers having wall bounded inlets to improve the efficiency of the contact tank. This is a simple design alternative that would increase the efficiency of the system. Other observations made through the chamber analysis are also informative in redefining the characteristics of the efficiency of the

  13. A small flat fission chamber

    International Nuclear Information System (INIS)

    Li Yijun; Wang Dalun; Chen Suhe

    1999-01-01

    With fission materials of depleted uranium, natural uranium, enriched uranium, 239 Pu, and 237 Np, the authors have designed and made a series of small flat fission chamber. The authors narrated the construction of the fission chamber and its technological process of manufacture, and furthermore, the authors have measured and discussed the follow correct factor, self-absorption, boundary effect, threshold loss factor, bottom scatter and or so

  14. Analog-to-digital conversion using custom CMOS analog memory for the EOS time projection chamber

    International Nuclear Information System (INIS)

    Lee, K.L.; Arthur, A.A.; Jones, R.W.; Matis, H.S.; Nakamura, M.; Kleinfelder, S.A.; Ritter, H.G.; Wienman, H.H.

    1990-01-01

    This paper describes the multiplexing scheme of custom CMOS analog memory integrated circuits, 16 channels x 256 cells, into analog to digital converters (ADC's) to handle 15,360 signal channels of a time projection, chamber detector system. Primary requirements of this system are high density, low power and large dynamic range. The analog memory device multiplexing scheme was designed to digitize the information stored in the memory cells. The digitization time of the ADC's and the settling times for the memory unit were carefully interleaved to optimize the performance and timing during the multiplexing operation. This kept the total number of ADC's, a costly and power dissipative component, to an acceptable minimum

  15. Lifetime tests for MAC vertex chamber

    International Nuclear Information System (INIS)

    Nelson, H.

    1986-01-01

    A vertex chamber for MAC was proposed in fall 1983 to increase precision in the measurement of the B hadron and tau lepton lifetimes. The chamber had to be placed within the existing central drift chamber, making access for repairs difficult and costly. Therefore for detector elements thin-walled aluminized mylar drift tubes (straws) were used because of their simplicity and robustness. The diameter of the drift tubes was 6.9 mm. The radial extent of the proposed chamber was from 3 cm to 10 cm, the inner wall of the central drift. It was clear that radiation levels, from synchrotron x-rays and overfocussed electrons, were potentially high. Since the drift distance is short in the straws, it was desirable to operate them at the highest possible gas gain, to achieve the best spatial resolution. There was a likelihood of drawing large currents in the chamber and thus causing radiation damage. Therefore a study of radiation hardness under the conditions of their proposed design was undertaken. In tests, argon-hydrocarbon mixtures consistently became unusable at ∼0.05 C/cm collected charge, due to anode buildup. Argon-CO 2 mixtures, while underquenched, were operational to 0.25 C/cm, at which point loss of cathode material became intolerable. Argon-xenon-CO 2 proved to be quenched as well as argon-hydrocarbons, but was limited by cathode damage. The MAC vertex chamber has operated at a distance of 4.6 cm from the e + e - interaction point at PEP for two years and has shown no aging effects

  16. Association of biometric factors with anterior chamber angle widening and intraocular pressure reduction after uneventful phacoemulsification for cataract.

    Science.gov (United States)

    Huang, Guofu; Gonzalez, Eduardo; Lee, Roland; Chen, Yi-Chun; He, Mingguang; Lin, Shan C

    2012-01-01

    To evaluate anterior chamber biometric factors associated with the degree of angle widening and intraocular pressure (IOP) reduction after phacoemulsification. University of California, San Francisco, California, USA. Case series. Anterior chamber parameters obtained by anterior segment coherence tomography were compared preoperatively and 3 months postoperatively. Measurements included the angle opening distance 500 μm anterior to the scleral spur (AOD500), trabecular-iris space area 500 μm from the scleral spur (TISA500), iris curvature (I-Curv), anterior chamber angle (ACA), trabecular-iris space area, anterior chamber volume, anterior chamber width, and lens vault (LV). The study enrolled 73 eyes. The mean patient age was 77.45 years ± 7.84 (SD); 65.75% of patients were women. From preoperatively to 3 months postoperatively, the mean AOD500 increased significantly (0.254 ± 0.105 to 0.433 ± 0.108 mm) and the mean IOP decreased significantly (14.97 ± 3.35 to 12.62 ± 3.37 mm Hg) (P<.001). The reduction in IOP was correlated with the increase in AOD500 (r = 0.240, P=.041) and preoperative LV (r = 0.235, P=.045). After adjusting for related factors, AOD500 widening was positively correlated with LV (β = 0.458, P=.044) and I-Curv (β = 0.235, P=.043) and negatively correlated with preoperative TISA500 (β = -0.269, P=.025) and ACA (β = -0.919, P=.027). Surgically induced AOD widening was significantly correlated with anterior chamber biometric factors. Preoperative LV appears to be a significant factor in angle widening and IOP reduction after phacoemulsification. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  18. Acoustic-Levitation Chamber

    Science.gov (United States)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  19. Magma Chambers, Thermal Energy, and the Unsuccessful Search for a Magma Chamber Thermostat

    Science.gov (United States)

    Glazner, A. F.

    2015-12-01

    Although the traditional concept that plutons are the frozen corpses of huge, highly liquid magma chambers ("big red blobs") is losing favor, the related notion that magma bodies can spend long periods of time (~106years) in a mushy, highly crystalline state is widely accepted. However, analysis of the thermal balance of magmatic systems indicates that it is difficult to maintain a significant portion in a simmering, mushy state, whether or not the system is eutectic-like. Magma bodies cool primarily by loss of heat to the Earth's surface. The balance between cooling via energy loss to the surface and heating via magma accretion can be denoted as M = ρLa/q, where ρ is magma density, L is latent heat of crystallization, a is the vertical rate of magma accretion, and q is surface heat flux. If M>1, then magma accretion outpaces cooling and a magma chamber forms. For reasonable values of ρ, L, and q, the rate of accretion amust be > ~15 mm/yr to form a persistent volume above the solidus. This rate is extremely high, an order of magnitude faster than estimated pluton-filling rates, and would produce a body 10 km thick in 700 ka, an order of magnitude faster than geochronology indicates. Regardless of the rate of magma supply, the proportion of crystals in the system must vary dramatically with depth at any given time owing to transfer of heat. Mechanical stirring (e.g., by convection) could serve to homogenize crystal content in a magma body, but this is unachievable in crystal-rich, locked-up magma. Without convection the lower part of the magma body becomes much hotter than the top—a process familiar to anyone who has scorched a pot of oatmeal. Thermal models that succeed in producing persistent, large bodies of magma rely on scenarios that are unrealistic (e.g., omitting heat loss to the planet's surface), self-fulfilling prophecies (e.g., setting unnaturally high temperatures as fixed boundary conditions), or physically unreasonable (e.g., magma is intruded

  20. Comparison of soot formation for diesel and jet-a in a constant volume combustion chamber using two-color pyrometry

    KAUST Repository

    Jing, Wei

    2014-04-01

    The measurement of the two-color line of sight soot and KL factor for NO.2 diesel and jet-A fuels was conducted in an optical constant volume combustion chamber by using a high speed camera under 1000 K ambient temperature and varied oxygen concentration conditions. The ambient conditions were set as follows: four oxygen cases including 10%, 15%, 18% and 21% at 1000 K ambient temperature. KL factor and soot temperature were determined based on the two-color pyrometry technique using two band-pass filters with wavelengths of 650 nm and 550 nm. The results show that low soot temperature is observed in the upstream inner flame along the centerline, which is surrounded by high soot temperature regions, and a high KL factor is found in the same region with a low soot temperature. The results under different times suggest that soot temperature is higher for high O2 conditions during the entire flame development; meanwhile, both integrated KL factor and soot area decrease with the increase of O2 concentration. The two fuels share a similar trend of soot temperature and KL factor, however, diesel flame has a higher soot temperature and a larger high soot temperature area compared to jet-A flame. On the other hand, diesel flame shows a lower soot level during the quasi-steady state with a higher total soot level at the end of the combustion under low O2 conditions. A lower O2 concentration range from 10% to 15% is expected to have the possibility to achieve a simultaneous reduction of soot and NOx in sooting flames under the 1000 K ambient temperature condition. Copyright © 2014 SAE International.