WorldWideScience

Sample records for minimizing water loss

  1. Minimizing water consumption when producing hydropower

    Science.gov (United States)

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and

  2. Opportunity Loss Minimization and Newsvendor Behavior

    Directory of Open Access Journals (Sweden)

    Xinsheng Xu

    2017-01-01

    Full Text Available To study the decision bias in newsvendor behavior, this paper introduces an opportunity loss minimization criterion into the newsvendor model with backordering. We apply the Conditional Value-at-Risk (CVaR measure to hedge against the potential risks from newsvendor’s order decision. We obtain the optimal order quantities for a newsvendor to minimize the expected opportunity loss and CVaR of opportunity loss. It is proven that the newsvendor’s optimal order quantity is related to the density function of market demand when the newsvendor exhibits risk-averse preference, which is inconsistent with the results in Schweitzer and Cachon (2000. The numerical example shows that the optimal order quantity that minimizes CVaR of opportunity loss is bigger than expected profit maximization (EPM order quantity for high-profit products and smaller than EPM order quantity for low-profit products, which is different from the experimental results in Schweitzer and Cachon (2000. A sensitivity analysis of changing the operation parameters of the two optimal order quantities is discussed. Our results confirm that high return implies high risk, while low risk comes with low return. Based on the results, some managerial insights are suggested for the risk management of the newsvendor model with backordering.

  3. Reduction of water losses by rehabilitation of water distribution network.

    Science.gov (United States)

    Güngör, Mahmud; Yarar, Ufuk; Firat, Mahmut

    2017-09-11

    Physical or real losses may be indicated as the most important component of the water losses occurring in a water distribution network (WDN). The objective of this study is to examine the effects of piping material management and network rehabilitation on the physical water losses and water losses management in a WDN. For this aim, the Denizli WDN consisting of very old pipes that have exhausted their economic life is selected as the study area. The fact that the current network is old results in the decrease of pressure strength, increase of failure intensity, and inefficient use of water resources thus leading to the application of the rehabilitation program. In Denizli, network renewal works have been carried out since the year 2009 under the rehabilitation program. It was determined that the failure rate at regions where network renewal constructions have been completed decreased down to zero level. Renewal of piping material enables the minimization of leakage losses as well as the failure rate. On the other hand, the system rehabilitation has the potential to amortize itself in a very short amount of time if the initial investment cost of network renewal is considered along with the operating costs of the old and new systems, as well as water loss costs. As a result, it can be stated that renewal of piping material in water distribution systems, enhancement of the physical properties of the system, provide significant contributions such as increase of water and energy efficiency and more effective use of resources.

  4. Low-Voltage Consumption Coordination for Loss Minimization and Voltage Control

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for minimizing active power losses in low-voltage grids, by coordinating the consumption of electric vehicles and power generation from solar panels. We show that minimizing losses, also reduces voltage variations, and illustrate how this may be employed for increasing...

  5. Minimization of transmission loss using distributed generation approach

    Directory of Open Access Journals (Sweden)

    Lamin Chaantrea Miky

    2018-01-01

    Full Text Available The goal of this work is to calculate the total loss in the system and minimize this loss by implementation of distributed generation (DG technology. In this paper, load flow analysis method is followed to calculate the loss in the system in conjunction with the line flows. A simple 5 bus system with the main bus of the substation as the slack bus, three Plant generators at the generator bus and three load buses are taken for analysis. For loss minimization two distributed generators at two load buses are connected. One generator is a synchronous type model and the other is asynchronous type model. We searched for the most economical penetration level and the ratings of the distributed generators are decided by the magnitude of penetration power at each load bus. Using software, power system simulation for electrical (PSSE, the system with and without DG technology is modeled and the output from the PSSE is observed.

  6. Statistical quality control a loss minimization approach

    CERN Document Server

    Trietsch, Dan

    1999-01-01

    While many books on quality espouse the Taguchi loss function, they do not examine its impact on statistical quality control (SQC). But using the Taguchi loss function sheds new light on questions relating to SQC and calls for some changes. This book covers SQC in a way that conforms with the need to minimize loss. Subjects often not covered elsewhere include: (i) measurements, (ii) determining how many points to sample to obtain reliable control charts (for which purpose a new graphic tool, diffidence charts, is introduced), (iii) the connection between process capability and tolerances, (iv)

  7. 13 CFR 115.17 - Minimization of Surety's Loss.

    Science.gov (United States)

    2010-01-01

    ... and collateral—(1) Requirements. The Surety must take all reasonable action to minimize risk of Loss... indemnity agreement must be secured by such collateral as the Surety or SBA finds appropriate. Indemnity...

  8. Loss Minimization Sliding Mode Control of IPM Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Mehran Zamanifar

    2010-01-01

    Full Text Available In this paper, a nonlinear loss minimization control strategy for an interior permanent magnet synchronous motor (IPMSM based on a newly developed sliding mode approach is presented. This control method sets force the speed control of the IPMSM drives and simultaneously ensures the minimization of the losses besides the uncertainties exist in the system such as parameter variations which have undesirable effects on the controller performance except at near nominal conditions. Simulation results are presented to show the effectiveness of the proposed controller.

  9. 13 CFR 115.34 - Minimization of Surety's Loss.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Minimization of Surety's Loss. 115.34 Section 115.34 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SURETY BOND GUARANTEE... strategy in maximizing recovery. See also § 115.17(b). ...

  10. Minimization of Ohmic losses for domain wall motion in ferromagnetic nanowires

    Science.gov (United States)

    Abanov, Artem; Tretiakov, Oleg; Liu, Yang

    2011-03-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain wall velocity we find the time-dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic. This work was supported by the NSF Grant No. 0757992 and Welch Foundation (A-1678).

  11. Performance potential of mechanical ventilation systems with minimized pressure loss

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2013-01-01

    simulations that quantify fan power consumption, heating demand and indoor environmental conditions. The system was designed with minimal pressure loss in the duct system and heat exchanger. Also, it uses state-of-the-art components such as electrostatic precipitators, diffuse ceiling inlets and demand......In many locations mechanical ventilation has been the most widely used principle of ventilation over the last 50 years but the conventional system design must be revised to comply with future energy requirements. This paper examines the options and describes a concept for the design of mechanical...... ventilation systems with minimal pressure loss and minimal energy use. This can provide comfort ventilation and avoid overheating through increased ventilation and night cooling. Based on this concept, a test system was designed for a fictive office building and its performance was documented using building...

  12. Minimization of Ohmic Losses for Domain Wall Motion in a Ferromagnetic Nanowire

    Science.gov (United States)

    Tretiakov, O. A.; Liu, Y.; Abanov, Ar.

    2010-11-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain-wall velocity we find the time dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic.

  13. Microgrids: Energy management by loss minimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.K. [Electrical Engineering Dept., Jadavpur University & 20/2, Khanpur Road, Kolkata 700047 (India); Chowdhury, S.; Chowdhury, S.P. [Electrical Engineering Department, University of Cape Town & Private Bag X3, Menzies Building, Room-517, Rondebosch, Cape Town 7701 (India)

    2011-07-01

    Energy management is a techno-economic issue, which dictates, in the context of microgrids, how optimal investment in technology front could bring optimal power quality and reliability (PQR) of supply to the consumers. Investment in distributed energy resources (DERs), with their connection to the utility grid at optimal locations and with optimal sizes, saves energy in the form of line loss reduction. Line loss reduction is the indirect benefit to the microgrid owner who may recover it as an incentive from utility. The present paper focuses on planning of optimal siting and sizing of DERs based on minimization of line loss. Optimal siting is done, here, on the loss sensitivity index (LSI) method and optimal sizing by differential evolution (DE) algorithms, which is, again, compared with particle swarm optimization (PSO) technique. Studies are conducted on 6-bus and 14-bus radial networks under islanded mode of operation with electric demand profile. Islanding helps planning of DER capacity of microgrid, which is self-sufficient to cater its own consumers without utility's support.

  14. Loss Minimization and Voltage Control in Smart Distribution Grid

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for increasing the installation of electric vehicles and solar panels in low-voltage grids, while obeying voltage variation constraints. Our approach employs minimization of active power losses for coordinating consumption and generation of power, as well as reactive...

  15. Guidelines to come to minimized tensile strength loss upon cellulase application

    NARCIS (Netherlands)

    Lenting, H.B.M.; Lenting, H.B.M.; Warmoeskerken, Marinus

    2001-01-01

    Application of cellulase technology in the textile production process often results in a certain loss of tensile strength along with the desired performance. In this paper guidelines are given how to come to minimization or even prevention of tensile strength loss. Part of the considerations is

  16. Optimal Allocation of Renewable Energy Sources for Energy Loss Minimization

    Directory of Open Access Journals (Sweden)

    Vaiju Kalkhambkar

    2017-03-01

    Full Text Available Optimal allocation of renewable distributed generation (RDG, i.e., solar and the wind in a distribution system becomes challenging due to intermittent generation and uncertainty of loads. This paper proposes an optimal allocation methodology for single and hybrid RDGs for energy loss minimization. The deterministic generation-load model integrated with optimal power flow provides optimal solutions for single and hybrid RDG. Considering the complexity of the proposed nonlinear, constrained optimization problem, it is solved by a robust and high performance meta-heuristic, Symbiotic Organisms Search (SOS algorithm. Results obtained from SOS algorithm offer optimal solutions than Genetic Algorithm (GA, Particle Swarm Optimization (PSO and Firefly Algorithm (FFA. Economic analysis is carried out to quantify the economic benefits of energy loss minimization over the life span of RDGs.

  17. Effective Loss Minimization and Allocation of Unbalanced Distribution Network

    Directory of Open Access Journals (Sweden)

    Manvir Kaur

    2017-11-01

    Full Text Available An efficient distribution network must be able to supply power with good voltage profile. The main objective of the proposed work is to allocate losses of the unbalanced distribution network by the firefly algorithm in regulated and deregulated environments before and after loss minimization. Reconfiguration is one of the methods for loss reduction of unbalanced distribution network. Further, optimal placement of distributed generation and capacitor in the reconfigured unbalanced distribution network can further reduce the loss. The results of reconfigured unbalanced distribution network in regulated environment have already been reported. In this paper reconfiguration of an unbalanced distribution network in a deregulated environment is also carried out using an established Fuzzy Firefly algorithm. Loss sensitivity factor of unbalanced distribution networks is used to get the appropriate location of distributed generation and capacitor to be placed in the unbalanced distribution network. Their ratings have been found out by using bacteria foraging optimization algorithm (BFOA. The suggested loss allocation method using Firefly algorithm is implemented at first on 13 node unbalanced distribution network to check the performance of the proposed loss allocation method when compared to other available method. Finally the proposed method has been implemented on 25 node unbalanced distribution network. Both of the implementations are carried out under MATLAB environment.

  18. Varietal improvement of irrigated rice under minimal water conditions

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Marziah Mahmood; Sobri Hussein

    2010-01-01

    Varietal improvement of irrigated rice under minimal water condition is a research project under Program Research of Sustainable Production of High Yielding Irrigated Rice under Minimal Water Input (IRPA- 01-01-03-0000/ PR0068/ 0504). Several agencies were involved in this project such as Malaysian Nuclear Agency (MNA), Malaysian Agricultural Research and Development Institute (MARDI), Universiti Putra Malaysia (UPM) and Ministry of Agriculture (MOA). The project started in early 2004 with approved IRPA fund of RM 275,000.00 for 3 years. The main objective of the project is to generate superior genotypes for minimal water requirement through induced mutation techniques. A cultivated rice Oryza sativa cv MR219 treated with gamma radiation at 300 and 400 Gray were used in the experiment. Two hundred gm M2 seeds from each dose were screened under minimal water stress in greenhouse at Mardi Seberang Perai. Five hundred panicles with good filled grains were selected for paddy field screening with simulate precise water stress regime. Thirty eight potential lines with required adaptive traits were selected in M3. After several series of selection, 12 promising mutant line were observed tolerance to minimal water stress where two promising mutant lines designated as MR219-4 and MR219-9 were selected for further testing under several stress environments. (author)

  19. Significant reduction in blood loss in patients undergoing minimal extracorporeal circulation

    NARCIS (Netherlands)

    Gerritsen, W. B.; van Boven, W. J.; Smelt, M.; Morshuis, W. J.; van Dongen, H. P.; Haas, F. J.; Aarts, L. P.

    2006-01-01

    Several recent studies have shown differences in blood loss and allogeneic transfusion requirements between on-pump and off-pump coronary artery bypass grafting (CABG). Recently a new concept, the mini-extracorporeal circulation, was introduced to minimize the side effects of extracorporeal

  20. Water Loss in Small Settlements

    OpenAIRE

    Mindaugas Rimeika; Anželika Jurkienė

    2014-01-01

    The main performance indicators of a water supply system include the quality and safety of water, continuous work, relevant pressure and small water loss. The majority of foreign and local projects on reducing water loss have been carried out in the water supply systems of metropolitans; however, the specificity of small settlements differs from that of big cities. Differences can be observed not only in the development of infrastructure and technical indicators but also in the features of wa...

  1. Dew-point hygrometry system for measurement of evaporative water loss in infants.

    Science.gov (United States)

    Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J

    1997-03-01

    Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.

  2. Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization

    International Nuclear Information System (INIS)

    Moghadam, Ahmad; Seifi, Ali Reza

    2014-01-01

    Highlights: • A new approach to the problem of optimal reactive power control variables planning is proposed. • The energy loss minimization problem has been formulated by modeling the load of system as a Load Duration Curve. • To solving the energy loss problem, the classic methods and the evolutionary methods are used. • A new proposed fuzzy teaching–learning based algorithm is applied to energy loss problem. • Simulations are done to show the effectiveness and superiority of the proposed algorithm compared with other methods. - Abstract: This paper offers a new approach to the problem of optimal reactive power control variables planning (ORPVCP). The basic idea is division of Load Duration Curve (LDC) into several time intervals with constant active power demand in each interval and then solving the energy loss minimization (ELM) problem to obtain an optimal initial set of control variables of the system so that is valid for all time intervals and can be used as an initial operating condition of the system. In this paper, the ELM problem has been solved by the linear programming (LP) and fuzzy linear programming (Fuzzy-LP) and evolutionary algorithms i.e. MHBMO and TLBO and the results are compared with the proposed Fuzzy-TLBO method. In the proposed method both objective function and constraints are evaluated by membership functions. The inequality constraints are embedded into the fitness function by the membership function of the fuzzy decision and the problem is modeled by fuzzy set theory. The proposed Fuzzy-TLBO method is performed on the IEEE 30 bus test system by considering two different LDC; and it is shown that using this method has further minimized objective function than original TLBO and other optimization techniques and confirms its potential to solve the ORPCVP problem with considering ELM as the objective function

  3. On eco-efficient technologies to minimize industrial water consumption

    Science.gov (United States)

    Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem

    2016-07-01

    Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.

  4. Loss minimization control and efficiency determination of electric drives in traction applications

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Thomas; Hofmann, Wilfried [Technische Univ. Dresden (Germany). Lehrstuhl fuer Elektrische Maschinen und Antriebe

    2012-11-01

    High-power electric drives in automotive traction applications consume a large part of the disposable electric energy. For this reason the energy efficiency of the drives is of great importance for range and fuel consumption of the hybrid electric vehicle. The paper describes two possible drives with different electric motors from a control point of view. The electric power losses in the drive system are determined depending on the operating point of the machine. With these loss characteristics the control of the drives is optimized to produce minimal losses. Finally the energy efficiency for a realistic urban bus drive cycle is calculated to compare the two types. (orig.)

  5. Water-loss dehydration and aging.

    Science.gov (United States)

    Hooper, Lee; Bunn, Diane; Jimoh, Florence O; Fairweather-Tait, Susan J

    2014-01-01

    This review defines water-loss and salt-loss dehydration. For older people serum osmolality appears the most appropriate gold standard for diagnosis of water-loss dehydration, but clear signs of early dehydration have not been developed. In older adults, lower muscle mass, reduced kidney function, physical and cognitive disabilities, blunted thirst, and polypharmacy all increase dehydration risk. Cross-sectional studies suggest a water-loss dehydration prevalence of 20-30% in this population. Water-loss dehydration is associated with higher mortality, morbidity and disability in older people, but evidence is still needed that this relationship is causal. There are a variety of ways we may be able to help older people reduce their risk of dehydration by recognising that they are not drinking enough, and being helped to drink more. Strategies to increase fluid intake in residential care homes include identifying and overcoming individual and institutional barriers to drinking, such as being worried about not reaching the toilet in time, physical inability to make or to reach drinks, and reduced social drinking and drinking pleasure. Research needs are discussed, some of which will be addressed by the FP7-funded NU-AGE (New dietary strategies addressing the specific needs of elderly population for a healthy ageing in Europe) trial. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Water Loss Reduction as the Basis of Good Water Supply Companies’ Management

    Directory of Open Access Journals (Sweden)

    Ociepa-Kubicka Agnieszka

    2017-01-01

    Full Text Available Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK. The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI, as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  7. Water Loss Reduction as the Basis of Good Water Supply Companies' Management

    Science.gov (United States)

    Ociepa-Kubicka, Agnieszka; Wilczak, Krzysztof

    2017-10-01

    Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK). The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI), as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  8. Pressure control for minimizing leakage in water distribution systems

    OpenAIRE

    Nourhan Samir; Rawya Kansoh; Walid Elbarki; Amr Fleifle

    2017-01-01

    In the last decades water resources availability has been a major issue on the international agenda. In a situation of worsening scarcity of water resources and the rapidly increasing of water demands, the state of water losses management is part of manâs survival on earth. Leakage in water supply networks makes up a significant amount, sometimes more than 70% of the total water losses. The best practices suggest that pressure management is one of the most effective way to reduce the amount o...

  9. Improved water chemistry controls for minimizing degradation of materials

    International Nuclear Information System (INIS)

    Sawochka, S.G.

    1986-01-01

    The Electric Power Research Institute and the Steam Generator Owners Group have sponsored several efforts to develop secondary water chemistry guidelines to minimize pressurized water reactor (PWR) steam generator tubing degradation. To develop these guidelines, chemical species known to accelerate corrosion of Alloy 600 were identified, and values for normal and abnormal chemistry situations were established. For example, sodium hydroxide was known to accelerate Alloy 600 intergranular attack stress corrosion cracking; thus, guidelines were developed for blowdown sodium concentrations in recirculating steam generator systems. Similarly, formation of acidic solutions, particularly as a result of chloride ingress at seawater sites, was known to accelerate denting; thus, chloride guidelines were established. A blowdown cation conductivity limit was established to minimize concentrations of other anionic species. Guidelines also were developed for condensate and feedwater chemistry to minimize general corrosion of system materials, thereby minimizing sludge and deposit buildup in the steam generators

  10. Minimizing Adverse Environmental Impact: How Murky the Waters

    Directory of Open Access Journals (Sweden)

    Reed W. Super

    2002-01-01

    Full Text Available The withdrawal of water from the nation’s waterways to cool industrial facilities kills billions of adult, juvenile, and larval fish each year. U.S. Environmental Protection Agency (EPA promulgation of categorical rules defining the best technology available to minimize adverse environmental impact (AEI could standardize and improve the control of such mortality. However, in an attempt to avoid compliance costs, industry has seized on the statutory phrase “adverse environmental impact” to propose significant procedural and substantive hurdles and layers of uncertainty in the permitting of cooling-water intakes under the Clean Water Act. These include, among other things, a requirement to prove that a particular facility threatens the sustainability of an aquatic population as a prerequisite to regulation. Such claims have no foundation in science, law, or the English language. Any nontrivial aquatic mortality constitutes AEI, as the EPA and several state and federal regulatory agencies have properly acknowledged. The focus of scientists, lawyers, regulators, permit applicants, and other interested parties should not be on defining AEI, but rather on minimizing AEI, which requires minimization of impingement and entrainment.

  11. Making the most of minimal water | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-15

    Dec 15, 2010 ... "Water conservation requires behavioural change at the societal level, ... and meager water supply, which becomes further depleted with increased use, ... for particular uses, or changing the timing of water use to avoid losses.

  12. Power Loss Minimization for Transformers Connected in Parallel with Taps Based on Power Chargeability Balance

    Directory of Open Access Journals (Sweden)

    Álvaro Jaramillo-Duque

    2018-02-01

    Full Text Available In this paper, a model and solution approach for minimizing internal power losses in Transformers Connected in Parallel (TCP with tap-changers is proposed. The model is based on power chargeability balance and seeks to keep the load voltage within an admissible range. For achieving this, tap positions are adjusted in such a way that all TCP are set in similar/same power chargeability. The main contribution of this paper is the inclusion of several construction features (rated voltage, rated power, voltage ratio, short-circuit impedance and tap steps in the minimization of power losses in TCP that are not included in previous works. A Genetic Algorithm (GA is used for solving the proposed model that is a system of nonlinear equations with discrete decision variables. The GA scans different sets for tap positions with the aim of balancing the power supplied by each transformer to the load. For this purpose, a fitness function is used for minimizing two conditions: The first condition consists on the mismatching between power chargeability for each transformer and a desired chargeability; and the second condition is the mismatching between the nominal load voltage and the load voltage obtained by changing the tap positions. The proposed method is generalized for any given number of TCP and was implemented for three TCP, demonstrating that the power losses are minimized and the load voltage remains within an admissible range.

  13. Implementing tactical plans to improve water-energy loss management

    OpenAIRE

    Loureiro, D.; Alegre, H.; Silva, M. S.; Ribeiro, R.; Mamade, A.; Poças, A.

    2015-01-01

    Water utilities are aware of the water-energy loss relevance in supply systems. However, they still mainly focus on daily water loss control (real and apparent losses), without considering the impact on embedded energy. Moreover, they are mostly concerned with the economic dimension and, in most cases, tend to disregard the impact that water-energy loss may have on the quality of service, communication with the customers, social awareness, water quality and environment. This paper focuses on ...

  14. Parameter-free Network Sparsification and Data Reduction by Minimal Algorithmic Information Loss

    KAUST Repository

    Zenil, Hector

    2018-02-16

    The study of large and complex datasets, or big data, organized as networks has emerged as one of the central challenges in most areas of science and technology. Cellular and molecular networks in biology is one of the prime examples. Henceforth, a number of techniques for data dimensionality reduction, especially in the context of networks, have been developed. Yet, current techniques require a predefined metric upon which to minimize the data size. Here we introduce a family of parameter-free algorithms based on (algorithmic) information theory that are designed to minimize the loss of any (enumerable computable) property contributing to the object\\'s algorithmic content and thus important to preserve in a process of data dimension reduction when forcing the algorithm to delete first the least important features. Being independent of any particular criterion, they are universal in a fundamental mathematical sense. Using suboptimal approximations of efficient (polynomial) estimations we demonstrate how to preserve network properties outperforming other (leading) algorithms for network dimension reduction. Our method preserves all graph-theoretic indices measured, ranging from degree distribution, clustering-coefficient, edge betweenness, and degree and eigenvector centralities. We conclude and demonstrate numerically that our parameter-free, Minimal Information Loss Sparsification (MILS) method is robust, has the potential to maximize the preservation of all recursively enumerable features in data and networks, and achieves equal to significantly better results than other data reduction and network sparsification methods.

  15. Assessment of evaporative water loss from Dutch cities

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Elbers, J.A.; Brolsma, R.; Hartogensis, O.K.; Moors, E.J.; Rodríguez-CarreteroMárquez, M.T.; Hove, van B.

    2015-01-01

    Reliable estimates of evaporative water loss are required to assess the urban water budget in support of division of water resources among various needs, including heat mitigation measures in cities relying on evaporative cooling. We report on urban evaporative water loss from Arnhem and Rotterdam

  16. Soil, water and nutrient losses by interrill erosion from green cane cultivation

    Directory of Open Access Journals (Sweden)

    Gilka Rocha Vasconcelos da Silva

    2012-06-01

    Full Text Available Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface, and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.

  17. Evaluation of the carotid artery stenosis based on minimization of mechanical energy loss of the blood flow.

    Science.gov (United States)

    Sia, Sheau Fung; Zhao, Xihai; Li, Rui; Zhang, Yu; Chong, Winston; He, Le; Chen, Yu

    2016-11-01

    Internal carotid artery stenosis requires an accurate risk assessment for the prevention of stroke. Although the internal carotid artery area stenosis ratio at the common carotid artery bifurcation can be used as one of the diagnostic methods of internal carotid artery stenosis, the accuracy of results would still depend on the measurement techniques. The purpose of this study is to propose a novel method to estimate the effect of internal carotid artery stenosis on the blood flow based on the concept of minimization of energy loss. Eight internal carotid arteries from different medical centers were diagnosed as stenosed internal carotid arteries, as plaques were found at different locations on the vessel. A computational fluid dynamics solver was developed based on an open-source code (OpenFOAM) to test the flow ratio and energy loss of those stenosed internal carotid arteries. For comparison, a healthy internal carotid artery and an idealized internal carotid artery model have also been tested and compared with stenosed internal carotid artery in terms of flow ratio and energy loss. We found that at a given common carotid artery bifurcation, there must be a certain flow distribution in the internal carotid artery and external carotid artery, for which the total energy loss at the bifurcation is at a minimum; for a given common carotid artery flow rate, an irregular shaped plaque at the bifurcation constantly resulted in a large value of minimization of energy loss. Thus, minimization of energy loss can be used as an indicator for the estimation of internal carotid artery stenosis.

  18. Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.K.; Hirschfeld, T.B.

    1981-03-26

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  19. Phosphorus loss to runoff water twenty-four hours after application of liquid swine manure or fertilizer.

    Science.gov (United States)

    Tabbara, Hadi

    2003-01-01

    Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.

  20. A trim-loss minimization in a produce-handling vehicle production plant

    Directory of Open Access Journals (Sweden)

    Apichai Ritvirool

    2007-01-01

    Full Text Available How to cut out the required pieces from raw materials by minimizing waste is a trim-loss problem. The integer linear programming (ILP model was developed to solve this problem. In addition, this ILPmodel could be used for planning an order over some future time period. Time horizon of ordering raw material including weekly, monthly, quarterly, and annually could be planned to reduce the trim loss. Thenumerical examples using an industrial case study of a produce-handling vehicle production plant were presented to illustrate how the proposed ILP model could be applied to actual systems and the types ofinformation that was obtained relative to implementation. The results showed that the proposed ILP model can be used as a decision support tool for selecting time horizon of order planning and cutting patterns todecrease material cost and waste from cutting raw material.

  1. Minimizing secondary coolant blowdown in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Ryu, J. S.; Cho, Y. G.; Lim, N. Y.

    2000-01-01

    There is about 80m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30MW research reactor. The evaporation and the windage is necessary loss to maintain the performance of cooling tower, but the blowdown is artificial lose to get rid of the foreign material and to maintain the quality of the secondary cooling water. Therefore, minimizing the blowdown loss was studied. It was confirmed, through the relation of the number of cycle and the loss rate of secondary coolant, that the number of cycle is saturated to 12 without blowdown because of the windage loss. When the secondary coolant is treated by high Ca-hardness treatment program (the number of cycle > 10) to maintain the number of cycle around 12 without blowdown, only the turbidity exceeds the limit. By adding filtering system it was confirmed, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2% of filtering rate without blowdown. And it was verified, through the performance test of back-flow filtering unit, that this unit gets rid of foreign material up to 95% of the back-flow and that the water can be reused as coolant. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  2. Can Sophie's choice be adequately captured by cold computation of minimizing losses? An fMRI study of vital loss decisions.

    Directory of Open Access Journals (Sweden)

    Qi Li

    Full Text Available The vast majority of decision-making research is performed under the assumption of the value maximizing principle. This principle implies that when making decisions, individuals try to optimize outcomes on the basis of cold mathematical equations. However, decisions are emotion-laden rather than cool and analytic when they tap into life-threatening considerations. Using functional magnetic resonance imaging (fMRI, this study investigated the neural mechanisms underlying vital loss decisions. Participants were asked to make a forced choice between two losses across three conditions: both losses are trivial (trivial-trivial, both losses are vital (vital-vital, or one loss is trivial and the other is vital (vital-trivial. Our results revealed that the amygdala was more active and correlated positively with self-reported negative emotion associated with choice during vital-vital loss decisions, when compared to trivial-trivial loss decisions. The rostral anterior cingulate cortex was also more active and correlated positively with self-reported difficulty of choice during vital-vital loss decisions. Compared to the activity observed during trivial-trivial loss decisions, the orbitofrontal cortex and ventral striatum were more active and correlated positively with self-reported positive emotion of choice during vital-trivial loss decisions. Our findings suggest that vital loss decisions involve emotions and cannot be adequately captured by cold computation of minimizing losses. This research will shed light on how people make vital loss decisions.

  3. Evaluating the effect placement capacitor and distributed photovoltaic generation for power system losses minimization in radial distribution system

    Science.gov (United States)

    Rahman, Yuli Asmi; Manjang, Salama; Yusran, Ilham, Amil Ahmad

    2018-03-01

    Power loss minimization have many advantagess to the distribution system radial among others reduction of power flow in feeder lines, freeing stress on feeder loading, deterrence of power procurement from the grid and also the cost of loss compensating instruments. This paper, presents capacitor and photovoltaic (PV) placement as alternative means to decrease power system losses. The paper aims to evaluate the best alternative for decreasing power system losses and improving voltage profile in the radial distribution system. To achieve the objectives of paper, they are used three cases tested by Electric Transient and Analysis Program (ETAP) simulation. Firstly, it performs simulation of placement capacitor. Secondly, simulated placement of PV. Lastly, it runs simulation of placement capacitor and PV simultaneously. The simulations were validated using the IEEE 34-bus test system. As a result, they proved that the installation of capacitor and PV integration simultaneously leading to voltage profile correction and power losses minimization significantly.

  4. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.

    Science.gov (United States)

    Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min

    2014-05-13

    The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.

  5. Significance of losses in water distribution systems in India.

    Science.gov (United States)

    Raman, V

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the system. At a conservative estimate, the national loss of processed water through leaks in the water distribution systems amounts to 10(12) litres per year, which is equivalent to 500 million rupees.It is possible to bring down the water losses in the pipe mains to 3-5% of the total flow, and the cost incurred on the control programme can be recovered in 6-18 months. Appropriate conservation measures will help in achieving the goals of the International Water Supply and Sanitation Decade to provide clean water for all.

  6. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    Science.gov (United States)

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  7. A phylogenetic approach to total evaporative water loss in mammals.

    Science.gov (United States)

    Van Sant, Matthew J; Oufiero, Christopher E; Muñoz-Garcia, Agustí; Hammond, Kimberly A; Williams, Joseph B

    2012-01-01

    Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.

  8. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  9. New hybrid frequency reuse method for packet loss minimization in LTE network.

    Science.gov (United States)

    Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H

    2015-11-01

    This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.

  10. Escape of atmospheres and loss of water

    International Nuclear Information System (INIS)

    Hunten, D.M.; Donahue, T.M.; Walker, J.C.G.; Kasting, J.F.

    1989-01-01

    The properties and limitations of several loss processes for atmospheric gases are presented and discussed. They include thermal loss (Jeans and hydrodynamic); nonthermal loss (all processes involve charged particles); and impact erosion, including thermal escape from a molten body heated by rapid accretion. Hydrodynamic escape, or blowoff, is of particular interest because it offers the prospect of processing large quantities of gas and enriching the remainder in heavy elements and isotopes. In a second part, the water budgets and likely evolutionary histories of Venus, Earth and Mars are assessed. Although it is tempting to associate the great D/H enrichment on Venus with loss of a large initial endowment, a steady state with juvenile water (perhaps from comets) is equally probable

  11. Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus Species Are Determined by Pericarp Anatomy

    Science.gov (United States)

    Xia, Ke; Daws, Matthew I.; Stuppy, Wolfgang; Zhou, Zhe-Kun; Pritchard, Hugh W.

    2012-01-01

    Desiccation-sensitive recalcitrant seeds and fruits are killed by the loss of even moderate quantities of water. Consequently, minimizing the rate of water loss may be an important ecological factor and evolutionary driver by reducing the risk of mortality during post-dispersal dry-spells. For recalcitrant fruits of a range of Quercus species, prolonged drying times have been observed previously. However, the underlying mechanism(s) for this variation is unknown. Using nine Quercus species we investigated the major route(s) of water flow into and out of the fruits and analysed the relative importance of the different pericarp components and their anatomy on water uptake/loss. During imbibition (rehydration), the surface area of the cupule scar and the frequency and area of the vascular bundles contained therein were significantly correlated with the rates of water uptake across the scar. The vascular bundles serving the apex of the fruit were a minor contributor to overall water. Further, the rate of water uptake across the remainder of the pericarp surface was significantly correlated with the thickness of the vascularised inner layer in the pericarp. Fruits of Q. franchetii and Q. schottkyana dried most slowly and had a comparatively small scar surface area with few vascular bundles per unit area. These species inhabit drier regions than the other species studied, suggesting these anatomical features may have ecological value by reducing the risk of desiccation stress. However, this remains to be tested in the field. PMID:23071795

  12. Water Loss Management: Tools and Methods for Developing Countries

    OpenAIRE

    Mutikanga, H.E.

    2012-01-01

    Water utilities in developing countries are struggling to provide customers with a reliable level of service due to their peculiar water distribution characteristics including poorly zoned networks with irregular supply operating under restricted budgets. These unique conditions demand unique tools and methods for water loss control. Water loss management: Tools and Methods for Developing Countries provide a decision support toolbox (appropriate tools and methodologies) for assessing, quantif...

  13. Water loss in Mafraq governorate, Jordan

    OpenAIRE

    Al-Ansari, Nadhir; Al-Oun, Salem; Hadad, Wafa; Knutsson, Sven

    2013-01-01

    Jordan is located in the Middle East and covers an area of 89,342 km2. The total population of Jordan is 6,508,271. Jordan is rapidly facing a severe water supply crisis due to greater demands on a finite quantity of available water. If current trends continue, it has been estimated that the country will experience a chronic water shortage by 2020. Despite these shortages, water loss in the distribution network is relatively high where it reaches 46%. Mafraq Governorate has the maximum water ...

  14. Evaporative water loss from welded tuff

    International Nuclear Information System (INIS)

    Hadley, G.R.; Turner, J.R. Jr.

    1980-04-01

    Welded tuff is one of the many candidate rocks presently being considered as a host medium for the disposal of radioactive waste. In the case where the disposal site lies above the water table, the host rock will in general be only partially saturated. This condition leads to a number of mass transfer processes of interest, including evaporative drying, two-phase water flow due to pressure gradients, capillary movement, plus others. Although these processes have all been known about for decades, it is not clear at this time what the relative importance of each is with regard to geologic media in a waste disposal environment. In particular, there seems to be no data available for tuff that would allow an investigator to sort out mechanisms. This work is intended to be a start in that direction. This paper reports the measurement of water loss rate for welded tuff at various temperatures due to the action of evaporative drying. The initial saturation was unknown, but the average initial water content was found to be 7% by weight. The resulting data show that the water loss rate declines monotonically with time at a given temperature and increases with increasing temperature as expected. Somewhat surprising, however, is the fact that over 90% of the water from a sample was lost by evaporation at room temperature within 72 hours. All the water loss data, including that taken at temperatures as high as 150 0 C, are explained to within a factor of two by a simple evaporation front model. The latter assumes the water is lost by the molecular diffusion of water vapor from a receding evaporation front. The motion of the evaporation front seems to depend on mass balance rather than energy balance. Capillary forces and the resulting liquid diffusion are evidently not strong enough to wash out the evaporation front, since the front model seems to fit the data well

  15. Industrial wastewater minimization using water pinch analysis: a case study on an old textile plant.

    Science.gov (United States)

    Ujang, Z; Wong, C L; Manan, Z A

    2002-01-01

    Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively.

  16. Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides).

    Science.gov (United States)

    Withers, Philip C; Cooper, Christine E; Nespolo, Roberto F

    2012-08-15

    We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.

  17. Significance of losses in water distribution systems in India

    OpenAIRE

    Raman, V.

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the sys...

  18. Simulation of water management for fodder beet to reduce yield losses under late season drought

    Directory of Open Access Journals (Sweden)

    T. Noreldin

    2016-12-01

    Full Text Available The objectives of this study were to calibrate CropSyst model for fodder beet grown under full and late season drought and to use the simulation results to analyze the relationship between irrigation amount and yield, as well as in water management to reduce yield losses under full and late season drought. For this reason, two field experiments were implemented at El-Serw Agricultural Research Station in Demiatte governorate, during 2011/12 and 2012/13 growing seasons. Two irrigation treatments were studied: full irrigation and late season drought. The model was calibrated using the data obtained from the two seasons. Results indicated that the reduction in fodder beet yield under late season drought was 11 and 12% in 2011/12 and 2012/13 growing seasons, respectively. Calibration of CropSyst revealed that the percentage of difference between measured and predicted values were low in both growing seasons. The results also indicated that changing irrigation schedule after examining water stress index under full and late season drought led to increase in fodder beet yield, as well as water and land productivity. Thus, CropSyst model can give insight into when to apply irrigation water to minimize yield losses under late season drought.

  19. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame...

  20. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  1. A new approach for optimum DG placement and sizing based on voltage stability maximization and minimization of power losses

    International Nuclear Information System (INIS)

    Aman, M.M.; Jasmon, G.B.; Bakar, A.H.A.; Mokhlis, H.

    2013-01-01

    Highlights: • A new algorithm is proposed for optimum DG placement and sizing.• I 2 R losses minimization and voltage stability maximization is considered in fitness function.• Bus voltage stability and line stability is considered in voltage stability maximization.• Multi-objective PSO is used to solve the problem.• Proposed method is compared with analytical and grid search algorithm. - Abstract: Distributed Generation (DG) placement on the basis of minimization of losses and maximization of system voltage stability are two different approaches, discussed in research. In the new proposed algorithm, a multi-objective approach is used to combine the both approaches together. Minimization of power losses and maximization of voltage stability due to finding weakest voltage bus as well as due to weakest link in the system are considered in the fitness function. Particle Swarm Optimization (PSO) algorithm is used in this paper to solve the multi-objective problem. This paper will also compare the propose method with existing DG placement methods. From results, the proposed method is found more advantageous than the previous work in terms of voltage profile improvement, maximization of system loadability, reduction in power system losses and maximization of bus and line voltage stability. The results are validated on 12-bus, 30-bus, 33-bus and 69-bus radial distribution networks and also discussed in detailed

  2. Evaluation of the apparent losses caused by water meter under-registration in intermittent water supply.

    Science.gov (United States)

    Criminisi, A; Fontanazza, C M; Freni, G; Loggia, G La

    2009-01-01

    Apparent losses are usually caused by water theft, billing errors, or revenue meter under-registration. While the first two causes are directly related to water utility management and may be reduced by improving company procedures, water meter inaccuracies are considered to be the most significant and hardest to quantify. Water meter errors are amplified in networks subjected to water scarcity, where users adopt private storage tanks to cope with the intermittent water supply. The aim of this paper is to analyse the role of two variables influencing the apparent losses: water meter age and the private storage tank effect on meter performance. The study was carried out in Palermo (Italy). The impact of water meter ageing was evaluated in laboratory by testing 180 revenue meters, ranging from 0 to 45 years in age. The effects of the private water tanks were determined via field monitoring of real users and a mathematical model. This study demonstrates that the impact on apparent losses from the meter starting flow rapidly increases with meter age. Private water tanks, usually fed by a float valve, overstate meter under-registration, producing additional apparent losses between 15% and 40% for the users analysed in this study.

  3. Partitioning of transpiratory water loss of the desert scorpion, Hadrurus arizonensis (Iuridae).

    Science.gov (United States)

    Gefen, Eran; Ung, Cuong; Gibbs, Allen G

    2009-06-01

    Terrestrial arthropods lose body water to the environment mainly through transpiration. The aim of this study was to determine the fraction of respiratory losses from total transpiratory water loss in scorpions, as relatively high respiratory losses would indicate a fitness benefit from regulation of gas-exchange rate under stressful desiccating conditions. We measured metabolic rates and water-loss rates of Hadrurus arizonensis (Iuridae) at a range of ecologically-relevant temperatures. Calculation of respiratory water losses was based on increased metabolic and water-loss rates during nocturnal activity (assuming no change in cuticular resistance at a given constant experimental temperature). Respiratory losses accounted for 9.0+/-1.7% of total transpiratory losses at 25 degrees C, doubled to 17.9+/-1.8% at 30 degrees C and increased to 31.0+/-2.0% at 35 degrees C (n=5, 15 and 15, respectively). Furthermore, the relative importance of respiratory transpiration is likely to be higher at temperatures above 35 degrees C, which have been recorded even within the burrows of H. arizonensis. Measurements of cuticular lipid melting points do not provide evidence for increased cuticular resistance to water loss at higher temperatures. However, the relatively high fraction of respiratory water losses reported here for H. arizonensis supports the notion of respiratory regulation as an evolved mechanism for conserving scorpion body water stores under stressful conditions.

  4. Water losses during technical snow production

    Science.gov (United States)

    Grünewald, Thomas; Wolfsperger, Fabian

    2017-04-01

    These days, the production of technical snow can be seen as a prerequisite for winter tourism. Huge amounts of water are used for technical snow production by ski resorts, especially in the beginning of the winter season. The aim is to guarantee an appropriate amount of snow to reliably provide optimal ski runs until the date of season opening in early December. Technical snow is generated by pumping pressurized water through the nozzles of a snow machine and dispersing the resulting spray of small water droplets which freeze during their travel to the ground. Cooling and freezing of the droplets can only happen if energy is emitted to the air mass surrounding the droplets. This heat transfer is happening through convective cooling and though evaporation and sublimation of water droplets and ice particles. This means that also mass is lost from the droplets and added in form of vapor to the air. It is important to note that not all water that is pumped through the snow machine is converted to snow distributed on the ground. Significant amounts of water are lost due to wind drift, sublimation and evaporation while droplets are traveling through the air or to draining of water which is not fully frozen when arriving at the ground. Studies addressing this question are sparse and the quantity of the water losses is still unclear. In order to assess this question in more detail, we obtained several systematic field observations at a test site near Davos, Switzerland. About a dozen of snow making tests had been performed during the last winter seasons. We compare the amount of water measured at the intake of the snow machine with the amount of snow accumulating at the ground during a night of snow production. The snow mass was calculated from highly detailed repeated terrestrial laser scanning measurements in combination with manually gathered snow densities. In addition a meteorological station had been set up in the vicinity observing all relevant meteorological

  5. Domestic water buffaloes: Access to surface water, disease prevalence and associated economic losses.

    Science.gov (United States)

    Elahi, Ehsan; Abid, Muhammad; Zhang, Huiming; Cui, Weijun; Ul Hasson, Shabeh

    2018-06-01

    Given the shortage and non-availability of freshwater in Pakistan, wastewater is being used for bathing water buffaloes; however, this has a negative impact on animal welfare. Although there is a vast literature on indirect linkages between wastewater and animal productivity, studies focusing on the direct impacts of water buffaloes bathing in wastewater on animal productivity and economic losses are rare. Therefore, using 360 domestic water buffalo farms, this study examines the expenditure and production losses associated with bathing (in wastewater and freshwater) and non-bathing water buffaloes by employing partial budgeting and resource adjustment component techniques. Furthermore, it investigates the prevalence of animal diseases and associated economic effects using correlation analysis and propensity score matching techniques, respectively. The findings reveal that compared to their counterparts (freshwater bathing and non-bathing water buffaloes), buffaloes bathing in wastewater are at increased risk of clinical mastitis, foot and mouth disease (FMD) and tick infestation. Moreover, the use of wastewater for bathing buffaloes also leads to higher economic and production losses by affecting milk productivity, causing premature culling, and reducing slaughter value. The findings of the double-log model show that economic losses are higher if buffaloes bathe in wastewater within 30 min after milking, as there are more chances that those buffaloes would be exposed to bacterial penetration in the teat ducts, which may result in intramammary infection. According to the propensity score matching method, the higher economic damages per month are associated with buffaloes bathing in wastewater and freshwater, 155 and 110 USD per farm, respectively. The study findings reference the need for policies to restrict wastewater access by water buffaloes, and a regular check of and access to cool clean water wallows for bathing during hot summer days, to reduce excess

  6. Economic evaluation of water loss saving due to the biological ...

    African Journals Online (AJOL)

    This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year's Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, ...

  7. Minimizing the Effect of Substantial Perturbations in Military Water Systems for Increased Resilience and Efficiency

    Directory of Open Access Journals (Sweden)

    Corey M. James

    2017-10-01

    Full Text Available A model predictive control (MPC framework, exploiting both feedforward and feedback control loops, is employed to minimize large disturbances that occur in military water networks. Military installations’ need for resilient and efficient water supplies is often challenged by large disturbances like fires, terrorist activity, troop training rotations, and large scale leaks. This work applies the effectiveness of MPC to provide predictive capability and compensate for vast geographical differences and varying phenomena time scales using computational software and actual system dimensions and parameters. The results show that large disturbances are rapidly minimized while maintaining chlorine concentration within legal limits at the point of demand and overall water usage is minimized. The control framework also ensures pumping is minimized during peak electricity hours, so costs are kept lower than simple proportional control. Thecontrol structure implemented in this work is able to support resiliency and increased efficiency on military bases by minimizing tank holdup, effectively countering large disturbances, and efficiently managing pumping.

  8. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  9. Minimization of distribution system losses by exploiting storage and anticipating market-driven behaviour of wind power producers

    NARCIS (Netherlands)

    Farrokhseresht, M.; Paterakis, N.G.; Gibescu, M.; Slootweg, J.G.

    2017-01-01

    This paper presents a stochastic bi-level optimization model to determine the optimal dispatch of energy storage systems controlled directly by the distribution system operator (DSO) in order to achieve minimization of active power losses, taking into account the profit-driven participation of

  10. Water loss from terrestrial planets with CO2-rich atmospheres

    International Nuclear Information System (INIS)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-01-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO 2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO 2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO 2 -rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m –2 (global mean) unlikely to lose more than one Earth ocean of H 2 O over their lifetimes unless they lose all their atmospheric N 2 /CO 2 early on. Because of the variability of H 2 O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO 2 /H 2 O-rich atmospheres, and high mean surface temperatures.

  11. Review of reactive power dispatch strategies for loss minimization in a DFIG-based wind farm

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Hou, Peng

    2017-01-01

    power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle......This paper reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and fourWind Turbine (WT) level reactive...... Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations on a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake...

  12. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-01-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  13. The assessment of water loss from a damaged distribution pipe using the FEFLOW software

    Directory of Open Access Journals (Sweden)

    Iwanek Małgorzata

    2017-01-01

    Full Text Available Common reasons of real water loss in distribution systems are leakages caused by the failures or pipe breakages. Depending on the intensity of leakage from a damaged buried pipe, water can flow to the soil surface just after the failure occurs, much later or never at all. The localization of the place where the pipe breakage occurs is relatively easy when water outflow occurs on the soil surface. The volume of lost water strongly depends on the time it takes to localize the place of a pipe breakage. The aim of this paper was to predict the volume of water lost between the moment of a failure occurring and the moment of water outflow on the soil surface, during a prospective failure in a distribution system. The basis of the analysis was a numerical simulation of a water pipe failure using the FEFLOW v. 5.3 software (Finite Element subsurface FLOW systems for a real middle-sized distribution system. Simulations were conducted for variants depending on pipes’ diameter (80÷200 mm for minimal and maximal hydraulic pressure head in the system (20.14 and 60.41 m H2O, respectively. FEFLOW software application enabled to select places in the water system where possible failures would be difficult to detect.

  14. Multi-criteria decision analysis : A strategic planning tool for water loss management

    NARCIS (Netherlands)

    Mutikanga, H.E.; Sharma, S.K.; Vairavamoorthy, K.

    2011-01-01

    Water utilities particularly in the developing countries continue to operate with considerable inefficiencies in terms of water and revenue losses. With increasing water demand and scarcity, utilities require effective strategies for optimum use of available water resources. Diverse water loss

  15. How Does Silicon Mediate Plant Water Uptake and Loss Under Water Deficiency?

    Directory of Open Access Journals (Sweden)

    Daoqian Chen

    2018-03-01

    Full Text Available In plants, water deficiency can result from a deficit of water from the soil, an obstacle to the uptake of water or the excess water loss; in these cases, the similar consequence is the limitation of plant growth and crop yield. Silicon (Si has been widely reported to alleviate the plant water status and water balance under variant stress conditions in both monocot and dicot plants, especially under drought and salt stresses. However, the underlying mechanism is unclear. In addition to the regulation of leaf transpiration, recently, Si application was found to be involved in the adjustment of root hydraulic conductance by up-regulating aquaporin gene expression and concentrating K in the xylem sap. Therefore, this review discusses the potential effects of Si on both leaf transpiration and root water absorption, especially focusing on how Si modulates the root hydraulic conductance. A growing number of studies support the conclusion that Si application improves plant water status by increasing root water uptake, rather than by decreasing their water loss under conditions of water deficiency. The enhancement of plant water uptake by Si is achievable through the activation of osmotic adjustment, improving aquaporin activity and increasing the root/shoot ratio. The underlying mechanisms of the Si on improving plant water uptake under water deficiency conditions are discussed.

  16. Loss of Water to Space from Mars: Processes and Implications

    Science.gov (United States)

    Kass, D. M.

    2001-12-01

    One of the major sinks for water on Mars is the loss to space. This occurs via a complex series of processes that transport the individual atoms to the upper atmosphere, where several escape mechanisms remove them. Hydrogen and deuterium are lost primarily by Jeans escape. Non-thermal processes also remove H and D, but are only important in determining D loss at solar minimum under modern conditions. The present H loss rate is equivalent to the loss of 10-3~pr-\\micron~yr-1 of water. The loss of oxygen is more complicated. The three main processes are indirect (or ionospheric) sputtering, solar wind pickup of O+, and O2+ dissociative recombination. Their relative importance has varied over the history of Mars. The combined effect of the O loss processes is to remove a ~ 50~m global layer of water over the last 3.5 Gyr. Based on photochemical modeling, the loss of oxygen and hydrogen are balanced (over geological timescales) by a feedback process. During the early history of Mars, impact erosion and hydrodynamic blow-off may have removed significant water. But, it is difficult to estimate their quantitative effects. The transport of individual H, D and O atoms to the exosphere where they can escape is not completely understood. It occurs primarily via intermediate species, H2, HD, O2 and CO2. The H2 and HD are formed by photolysis of water and the odd hydrogen photochemistry. One open issue is the mechanism regulating the partitioning of D between HDO and HD (which controls the supply of D available for escape from the exosphere). The various loss processes isotopically enrich Martian water since the exospheric escape source region is depleted. Jeans escape and the transport from the lower atmosphere further fractionate hydrogen, the most useful isotopic system. Based on recent observations, the D/H fractionation factor, F ~ 0.02. Measurements of atmospheric water vapor indicate it is enriched in deuterium, with a D/H ratio ~ 5 times the terrestrial value. Since

  17. Effects of Material Choice on Biocide Loss in Orion Water Storage Tanks

    Science.gov (United States)

    Wallace, W. T.; Wallace, S. L.; Gazda, D. B.; Lewis, J. F.

    2016-01-01

    When preparing for long-duration spaceflight missions, maintaining a safe supply of potable water is of the utmost importance. One major aspect of that is ensuring that microbial growth is minimized. Historically, this challenge has been addressed through the use of biocides. When using biocides, the choice of materials for the storage containers is important, because surface reactions can reduce biocide concentrations below their effective range. In the water storage system baselined for the Orion vehicle, the primary wetted materials are stainless steel (316 L) and a titanium alloy (Ti6Al4V). Previous testing with these materials has shown that the biocide selected for use in the system (ionic silver) will plate out rapidly upon initial wetting of the system. One potential approach for maintaining an adequate biocide concentration is to spike the water supply with high levels of biocide in an attempt to passivate the surface. To evaluate this hypothesis, samples of the wetted materials were tested individually and together to determine the relative loss of biocide under representative surface area-to-volume ratios after 24 hours. Additionally, we have analyzed the efficacy of disinfecting a system containing these materials by measuring reductions in bacterial counts in the same test conditions. Preliminary results indicate that the use of titanium, either individually or in combination with stainless steel, can result in over 95% loss of biocide, while less than 5% is lost when using stainless steel. In bacterial testing, viable organisms were recovered from samples exposed to the titanium coupons after 24 hours. By comparison, no organisms were recovered from the test vessels containing only stainless steel. These results indicate that titanium, while possessing some favorable attributes, may pose additional challenges when used in water storage tanks with ionic silver biocide.

  18. Thin minimal rim width at Bruch’s membrane opening is associated with glaucomatous paracentral visual field loss

    Directory of Open Access Journals (Sweden)

    Taniguchi EV

    2017-12-01

    between eyes with early paracentral VF loss and those with isolated peripheral VF loss (187.6±43.4 vs 200.6±36.3 µm; p>0.99. In contrast, the minimal BMO-MRW was lower in eyes with early paracentral loss (69.0±33.6 µm than in eyes with isolated peripheral loss (107.7±40.2 µm; p=0.03 or control eyes (200.1±40.8 µm; p<0.001. Average and thinnest RNFL thickness did not differ between OAG groups (p=0.61 and 0.19, respectively. Horizontal and vertical LCD did not differ among the OAG groups and controls (p=0.80 and 0.82, respectively. Multivariable linear regression analysis among OAG cases confirmed the association between lower minimal BMO-MRW and early paracentral VF loss (β=–38.3 µm; 95% confidence interval, –69.8 to –6.8 µm; p=0.02 after adjusting for age, gender, MD, and disc size.Conclusion: Thin minimal BMO-MRW may represent a new structural biomarker associated with early glaucomatous paracentral VF loss. Keywords: paracentral loss, BMO-MRW, open angle glaucoma, optic nerve damage, swept-source OCT

  19. Curtailment of nutrient losses at the farm level

    NARCIS (Netherlands)

    Oenema, O.; Boer, den D.J.; Erp, van P.J.

    1990-01-01

    A combination of various measures is proposed to minimize losses of nutrients from dairy farms and arable farms to groundwater, surface water and the atmosphere. These measures necessitate adjustment of fertilization practices and farm management. Fo

  20. Real-time dynamic hydraulic model for potable water loss reduction

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2016-08-01

    Full Text Available South Africa is a water scarce country with limited water resources and steadily growing water demand. Unacceptably high water losses and non-revenue water threaten our water resource security as well as the financial viability of municipal water...

  1. Use of Hydraulic Model for Water Loss Reduction

    OpenAIRE

    Mindaugas Rimeika; Anželika Jurkienė

    2016-01-01

    Hydraulic modeling is the modern way to apply world water engineering experience in every day practice. Hydraulic model is an effective tool in order to perform analysis of water supply system, optimization of its operation, assessment of system efficiency potential, evaluation of water network development, fire flow capabilities, energy saving opportunities and water loss reduction and ect. Hydraulic model shall include all possible engineering elements and devices allocated in a real water ...

  2. Optimization of the conditions for the precipitation of thorium oxalate. II. Minimization of the product losses

    International Nuclear Information System (INIS)

    Pazukhin, E.M.; Smirnova, E.A.; Krivokhatskii, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1987-01-01

    The precipitation of thorium as a poorly soluble oxalate was investigated. An equation relating the concentrations of the metal and nitric acid in the initial solution and the amount of precipitant required to minimize the product losses was derived. A graphical solution of the equation is presented for the case where the precipitant is oxalic acid at a concentration of 0.78 M

  3. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wordsworth, R. D.; Pierrehumbert, R. T., E-mail: rwordsworth@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 60637 IL (United States)

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  4. Enhanced GSA-Based Optimization for Minimization of Power Losses in Power System

    Directory of Open Access Journals (Sweden)

    Gonggui Chen

    2015-01-01

    Full Text Available Gravitational Search Algorithm (GSA is a heuristic method based on Newton’s law of gravitational attraction and law of motion. In this paper, to further improve the optimization performance of GSA, the memory characteristic of Particle Swarm Optimization (PSO is employed in GSAPSO for searching a better solution. Besides, to testify the prominent strength of GSAPSO, GSA, PSO, and GSAPSO are applied for the solution of optimal reactive power dispatch (ORPD of power system. Conventionally, ORPD is defined as a problem of minimizing the total active power transmission losses by setting control variables while satisfying numerous constraints. Therefore ORPD is a complicated mixed integer nonlinear optimization problem including many constraints. IEEE14-bus, IEEE30-bus, and IEEE57-bus test power systems are used to implement this study, respectively. The obtained results of simulation experiments using GSAPSO method, especially the power loss reduction rates, are compared to those yielded by the other modern artificial intelligence-based techniques including the conventional GSA and PSO methods. The results presented in this paper reveal the potential and effectiveness of the proposed method for solving ORPD problem of power system.

  5. Virtual water trade and time scales for loss of water sustainability: a comparative regional analysis.

    Science.gov (United States)

    Goswami, Prashant; Nishad, Shiv Narayan

    2015-03-20

    Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective.

  6. Firefly algorithm based solution to minimize the real power loss in a power system

    Directory of Open Access Journals (Sweden)

    P. Balachennaiah

    2018-03-01

    Full Text Available This paper proposes a method to minimize the real power loss (RPL of a power system transmission network using a new meta-heuristic algorithm known as firefly algorithm (FA by optimizing the control variables such as transformer taps, UPFC location and UPFC series injected voltage magnitude and phase angle. A software program is developed in MATLAB environment for FA to minimize the RPL by optimizing (i only the transformer tap values, (ii only UPFC location and its variables with optimized tap values and (iii UPFC location and its variables along with transformer tap setting values simultaneously. Interior point successive linear programming (IPSLP technique and real coded genetic algorithm (RCGA are considered here to compare the results and to show the efficiency and superiority of the proposed FA towards the optimization of RPL. Also in this paper, bacteria foraging algorithm (BFA is adopted to validate the results of the proposed algorithm.

  7. Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Wang, A.; Zhao, J.; Robinson, S.J.; Bowden, S.; Green, M.A. [New South Wales Univ., Kensington, NSW (Australia). Centre for Photovoltaic Devices and Systems; Heiser, G. [New South Wales Univ., Sydney, NSW (Australia). School of Computer Science and Engineering; Aberle, A.G. [Institut fuer Solarenergieforschung (ISFH), Emmerthal (Germany)

    1996-11-01

    This paper presents an improved method for measuring the total lumped series resistance (R{sub s}) of high-efficiency solar cells. Since this method greatly minimizes the influence of non-linear recombination processes on the measured R{sub s} values, it is possible to determine R{sub s} as a function of external current density over a wide range of illumination levels with a significantly improved level of accuracy. This paper furthermore explains how resistive losses in the emitter, the base, the metal/silicon contacts and the front metal grid can be separately determined by combining measurements and multi-dimensional numerical simulations. A novel combination of device simulation and circuit simulation is introduced in order to simulate complete 2 x 2 cm s sq. P:ERL (`passivated emitter and rear locally-diffused`) silicon solar cells. These computer simulations provide improved insight into the dynamics of resistive losses, and thus allow new strategies for the optimization of resistive losses to be developed. The predictions have been experimentally verified with PERL cells, whose resistive losses were reduced to approximately half of their previous values, contributing to a new efficiency world record (24.0%) for silicon solar cells under terrestrial illumination. The measurement techniques and optimization strategies presented here can be applied to most other types of solar cells, and to materials other than silicon. (Author)

  8. A Temperature-Based Bioimpedance Correction for Water Loss Estimation During Sports.

    Science.gov (United States)

    Ring, Matthias; Lohmueller, Clemens; Rauh, Manfred; Mester, Joachim; Eskofier, Bjoern M

    2016-11-01

    The amount of total body water (TBW) can be estimated based on bioimpedance measurements of the human body. In sports, TBW estimations are of importance because mild water losses can impair muscular strength and aerobic endurance. Severe water losses can even be life threatening. TBW estimations based on bioimpedance, however, fail during sports because the increased body temperature corrupts bioimpedance measurements. Therefore, this paper proposes a machine learning method that eliminates the effects of increased temperature on bioimpedance and, consequently, reveals the changes in bioimpedance that are due to TBW loss. This is facilitated by utilizing changes in skin and core temperature. The method was evaluated in a study in which bioimpedance, temperature, and TBW loss were recorded every 15 min during a 2-h running workout. The evaluation demonstrated that the proposed method is able to reduce the error of TBW loss estimation by up to 71%, compared to the state of art. In the future, the proposed method in combination with portable bioimpedance devices might facilitate the development of wearable systems for continuous and noninvasive TBW loss monitoring during sports.

  9. A Numerical Study of Water Loss Rate Distributions in MDCT-based Human Airway Models

    Science.gov (United States)

    Wu, Dan; Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2015-01-01

    Both three-dimensional (3D) and one-dimensional (1D) computational fluid dynamics (CFD) methods are applied to study regional water loss in three multi-detector row computed-tomography (MDCT)-based human airway models at the minute ventilations of 6, 15 and 30 L/min. The overall water losses predicted by both 3D and 1D models in the entire respiratory tract agree with available experimental measurements. However, 3D and 1D models reveal different regional water loss rate distributions due to the 3D secondary flows formed at bifurcations. The secondary flows cause local skewed temperature and humidity distributions on inspiration acting to elevate the local water loss rate; and the secondary flow at the carina tends to distribute more cold air to the lower lobes. As a result, the 3D model predicts that the water loss rate first increases with increasing airway generation, and then decreases as the air approaches saturation, while the 1D model predicts a monotonic decrease of water loss rate with increasing airway generation. Moreover, the 3D (or 1D) model predicts relatively higher water loss rates in lower (or upper) lobes. The regional water loss rate can be related to the non-dimensional wall shear stress (τ*) by the non-dimensional mass transfer coefficient (h0*) as h0* = 1.15 τ*0.272, R = 0.842. PMID:25869455

  10. WATER LOSS OF KOKA RESERVOIR, ETHIOPIA: COMMENTS ON

    African Journals Online (AJOL)

    to be used for Awash River simulation model. Key words/phrases: Ethiopia, Koka Reservoir water loss, leakage rate, subsurface inflow, water balance. INTRODUCTION. Koka Dam was built on Awash River, Ethiopia, in 1960 for hydropower and irrigation purposes. It is located at 8°24'N latitude and 39°05'E longitude (Fig.

  11. Water Loss from Young Planets

    Science.gov (United States)

    Tian, Feng; Güdel, Manuel; Johnstone, Colin P.; Lammer, Helmut; Luger, Rodrigo; Odert, Petra

    2018-04-01

    Good progress has been made in the past few years to better understand the XUV evolution trend of Sun-like stars, the capture and dissipation of hydrogen dominant envelopes of planetary embryos and protoplanets, and water loss from young planets around M dwarfs. This chapter reviews these recent developments. Observations of exoplanets and theoretical works in the near future will significantly advance our understanding of one of the fundamental physical processes shaping the evolution of solar system terrestrial planets.

  12. The Dehydration of Water Worlds via Atmospheric Losses

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chuanfei; Bhattacharjee, Amitava [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas [Center for Space Environment Modeling, University of Michigan, Ann Arbor, MI 48109 (United States); Lingam, Manasvi, E-mail: dcfy@princeton.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-09-20

    We present a three-species multi-fluid magnetohydrodynamic model (H{sup +}, H{sub 2}O{sup +}, and e {sup −}), endowed with the requisite atmospheric chemistry, that is capable of accurately quantifying the magnitude of water ion losses from exoplanets. We apply this model to a water world with Earth-like parameters orbiting a Sun-like star for three cases: (i) current normal solar wind conditions, (ii) ancient normal solar wind conditions, and (iii) one extreme “Carrington-type” space weather event. We demonstrate that the ion escape rate for (ii), with a value of 6.0 × 10{sup 26} s{sup −1}, is about an order of magnitude higher than the corresponding value of 6.7 × 10{sup 25} s{sup −1} for (i). Studies of ion losses induced by space weather events, where the ion escape rates can reach ∼10{sup 28} s{sup −1}, are crucial for understanding how an active, early solar-type star (e.g., with frequent coronal mass ejections) could have accelerated the depletion of the exoplanet’s atmosphere. We briefly explore the ramifications arising from the loss of water ions, especially for planets orbiting M-dwarfs where such effects are likely to be significant.

  13. The Dehydration of Water Worlds via Atmospheric Losses

    International Nuclear Information System (INIS)

    Dong, Chuanfei; Bhattacharjee, Amitava; Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas; Lingam, Manasvi

    2017-01-01

    We present a three-species multi-fluid magnetohydrodynamic model (H"+, H_2O"+, and e "−), endowed with the requisite atmospheric chemistry, that is capable of accurately quantifying the magnitude of water ion losses from exoplanets. We apply this model to a water world with Earth-like parameters orbiting a Sun-like star for three cases: (i) current normal solar wind conditions, (ii) ancient normal solar wind conditions, and (iii) one extreme “Carrington-type” space weather event. We demonstrate that the ion escape rate for (ii), with a value of 6.0 × 10"2"6 s"−"1, is about an order of magnitude higher than the corresponding value of 6.7 × 10"2"5 s"−"1 for (i). Studies of ion losses induced by space weather events, where the ion escape rates can reach ∼10"2"8 s"−"1, are crucial for understanding how an active, early solar-type star (e.g., with frequent coronal mass ejections) could have accelerated the depletion of the exoplanet’s atmosphere. We briefly explore the ramifications arising from the loss of water ions, especially for planets orbiting M-dwarfs where such effects are likely to be significant.

  14. Reducing phosphorus loss in tile water with managed drainage in a claypan soil.

    Science.gov (United States)

    Nash, Patrick R; Nelson, Kelly A; Motavalli, Peter P; Nathan, Manjula; Dudenhoeffer, Chris

    2015-03-01

    Installing subsurface tile drain systems in poorly drained claypan soils to improve corn ( L.) yields could potentially increase environmental phosphorus (P) loss through the tile drainage system. The objectives of the study were to quantify the average concentration and loss of ortho-P in tile drain water from a claypan soil and to determine whether managed subsurface drainage (MD) could reduce ortho-P loss in tile water compared with free subsurface drainage (FD). Flow-weighted ortho-P concentration in the tile water was significantly lower with MD (0.09 mg L) compared with that of FD (0.15 mg L). Ortho-P loss in the tile water of this study was reduced with MD (36 g ha) by 80% compared with FD (180 g ha). Contrary to previous research, reduced ortho-P loss observed over the 4-yr study was not solely due to the reduced amount of water drained annually (63%) with MD compared with FD. During the spring period, when flow was similar between MD and FD, the concentration of ortho-P in the tile water generally was lower with MD compared with FD, which resulted in significantly less ortho-P loss with MD. We speculate that MD's ability to conserve water during the dry summer months increased corn's uptake of water and P, which reduced the amount of P available for leaching loss in the subsequent springs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. LOSS OF WATER IN PUBLIC BUILDINGS (ON THE EXAMPLE OF MGSU

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2016-09-01

    Full Text Available Any public building is a consumer of water resources. A huge amount of clean drinking water is used for various needs especially in buildings where there are a large number of people, for example, institutions of higher education. It should be noted that today all buildings must meet requirements for water conservation. This is because a large amount of drinking water is wasted. The author considers the problems characteristic of public buildings, because of which losses of water in the inner water supply systems happen. The variants are offered how to reduce wasteful expenses by installing contactless water intake devices, wastewater intake as well as water-saving headers and waterless urinals. The use of polymer materials and copper pipelines during reconstruction of the system in order to reduce water losses is justified.

  16. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks

    OpenAIRE

    Kazeem B. Adedeji; Yskandar Hamam; Bolanle T. Abe; Adnan M. Abu-Mahfouz

    2017-01-01

    Water loss through leaking pipes constitutes a major challenge to the operational service of water utilities. In recent years, increasing concern about the financial loss and environmental pollution caused by leaking pipes has been driving the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs) are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s) of the network and the exa...

  17. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  18. A method for the measurement of physiologic evaporative water loss.

    Science.gov (United States)

    1963-10-01

    The precise measurement of evaporative water loss is essential to an accurate evaluation of this avenue of heat loss in acute and chronic exposures to heat. In psychological studies, the quantitative measurement of palmar sweating plays an equally im...

  19. Reducing water losses via intelligent pressure management; Reduzierung von Wasserverlusten durch intelligentes Druckmanagement

    Energy Technology Data Exchange (ETDEWEB)

    Oppinger, Peter [VAG-Armaturen GmbH, Mannheim (Germany). Marketing

    2008-03-15

    Leaks in water pipes and leaking municipal water-transmission and piping systems, particularly in developing and threshold countries account for water-losses of up to 50% of the water supplied by the waterworks. This article examines three different solutions for effective pressure management on the basis of an intelligent control system, by means of which water-losses can be reduced to a stable and economically rational level. (orig.)

  20. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies' Functions.

    Science.gov (United States)

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-22

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies' functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident's origin and other indirect losses. In the valuation of damage to people's life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water's recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole.

  1. Signal Enhancement as Minimization of Relevant Information Loss

    OpenAIRE

    Geiger, Bernhard C.; Kubin, Gernot

    2012-01-01

    We introduce the notion of relevant information loss for the purpose of casting the signal enhancement problem in information-theoretic terms. We show that many algorithms from machine learning can be reformulated using relevant information loss, which allows their application to the aforementioned problem. As a particular example we analyze principle component analysis for dimensionality reduction, discuss its optimality, and show that the relevant information loss can indeed vanish if the r...

  2. Clinical symptoms, signs and tests for identification of impending and current water-loss dehydration in older people.

    Science.gov (United States)

    Hooper, Lee; Abdelhamid, Asmaa; Attreed, Natalie J; Campbell, Wayne W; Channell, Adam M; Chassagne, Philippe; Culp, Kennith R; Fletcher, Stephen J; Fortes, Matthew B; Fuller, Nigel; Gaspar, Phyllis M; Gilbert, Daniel J; Heathcote, Adam C; Kafri, Mohannad W; Kajii, Fumiko; Lindner, Gregor; Mack, Gary W; Mentes, Janet C; Merlani, Paolo; Needham, Rowan A; Olde Rikkert, Marcel G M; Perren, Andreas; Powers, James; Ranson, Sheila C; Ritz, Patrick; Rowat, Anne M; Sjöstrand, Fredrik; Smith, Alexandra C; Stookey, Jodi J D; Stotts, Nancy A; Thomas, David R; Vivanti, Angela; Wakefield, Bonnie J; Waldréus, Nana; Walsh, Neil P; Ward, Sean; Potter, John F; Hunter, Paul

    2015-04-30

    There is evidence that water-loss dehydration is common in older people and associated with many causes of morbidity and mortality. However, it is unclear what clinical symptoms, signs and tests may be used to identify early dehydration in older people, so that support can be mobilised to improve hydration before health and well-being are compromised. To determine the diagnostic accuracy of state (one time), minimally invasive clinical symptoms, signs and tests to be used as screening tests for detecting water-loss dehydration in older people by systematically reviewing studies that have measured a reference standard and at least one index test in people aged 65 years and over. Water-loss dehydration was defined primarily as including everyone with either impending or current water-loss dehydration (including all those with serum osmolality ≥ 295 mOsm/kg as being dehydrated). Structured search strategies were developed for MEDLINE (OvidSP), EMBASE (OvidSP), CINAHL, LILACS, DARE and HTA databases (The Cochrane Library), and the International Clinical Trials Registry Platform (ICTRP). Reference lists of included studies and identified relevant reviews were checked. Authors of included studies were contacted for details of further studies. Titles and abstracts were scanned and all potentially relevant studies obtained in full text. Inclusion of full text studies was assessed independently in duplicate, and disagreements resolved by a third author. We wrote to authors of all studies that appeared to have collected data on at least one reference standard and at least one index test, and in at least 10 people aged ≥ 65 years, even where no comparative analysis has been published, requesting original dataset so we could create 2 x 2 tables. Diagnostic accuracy of each test was assessed against the best available reference standard for water-loss dehydration (serum or plasma osmolality cut-off ≥ 295 mOsm/kg, serum osmolarity or weight change) within each study. For

  3. Reduction of water losses in the water utilities and in industrial plants. Senkung der Wasserverluste in oeffentlichen Versorgungen und Industrieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bolte, O.G.; Hammerer, M.; Heide, G.F.; Heydenreich, M.; Hoch, W.; Holtschulte, H.; Lienhard, K.; Sewerin, P.

    1987-01-01

    Although municipal and rural supply structures have little changed in principle, the reduction of water losses has become a topical subject to be coped with. The paper deals with the causes and implications of water losses, the influx analysis, water loss analysis, influx analysis in the case of large-scale water supply systems, the pressure feeding method, the detection of leaks with the help of correlation analyses, the quantitave measurement of drinking water supplies and a method serving to detect least defects. In each case reference is made to the limitations of the respective methods and processes. With 95 figs..

  4. Relative specificities of water and ammonia losses from backbone fragments in collision-activated dissociation

    DEFF Research Database (Denmark)

    Savitski, Mikhail M; Kjeldsen, Frank; Nielsen, Michael L

    2007-01-01

    isotope of the water loss and the monoisotope of the ammonia loss to be distinguished. Contrary to a popular belief, water losses from y' ions are not specific enough to rely upon for detecting the presence of amino acids with oxygen in the side chains. At the same time, ammonia loss from b ions...

  5. Minimization of Distribution Grid Losses by Consumption Coordination

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Andersen, Palle; Wisniewski, Rafal

    2013-01-01

    for coordinating consumption of electrical energy within the community, with the purpose of reducing grid loading and active power losses. For this we present a simplified model of the electrical grid, including system losses and capacity constraints. Coordination is performed in a distributed fashion, where each...... are obeyed. These objectives are enforced by coordinating consumers through nonlinear tariffs on power consumption. We present simulation test-cases, illustrating that significant reduction of active losses, can be obtained by such coordination. The distributed optimization algorithm, employs the alternating...

  6. The 2014 water release into the arid Colorado River delta and associated water losses by evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Daesslé, L.W., E-mail: walter@uabc.edu.mx [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, CarreteraTranspeninsular Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, CP 22860 Ensenada, Baja California (Mexico); Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Geldern, R. van [Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Orozco-Durán, A. [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, CarreteraTranspeninsular Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, CP 22860 Ensenada, Baja California (Mexico); Barth, J.A.C. [Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany)

    2016-01-15

    For the first time in history, water was intentionally released for environmental purposes into the final, otherwise dry, 160-km stretch of the Colorado River basin, south of the Mexican border. Between March and May 2014 three pulses of water with a total volume of 132 × 10{sup 6} m{sup 3} were released to assess the restoration potential of endemic flora along its course and to reach its estuary. The latter had not received a sustained input of fresh water and nutrients from its main fluvial source for over 50 years because of numerous upstream dam constructions. During this pulse flow large amounts of water were lost and negligible amounts reached the ocean. While some of these water losses can be attributed to plant uptake and infiltration, we were able to quantify evaporation losses between 16.1 to 17.3% of the original water mass % within the first 80 km after the Morels Dam with water stable isotope data. Our results showed no evidence for freshwater reaching the upper Colorado River estuary and it is assumed that the pulse flow had only negligible influences on the coastal ecosystem. Future water releases that aim on ecological restoration need to become more frequent and should have larger volumes if more significant effects are to be established on the area. - Highlights: • Isotope ratios of oxygen and hydrogen quantify water lost through evaporation. • Evaporation losses between 16.1 and 17.3% during the 2014 Colorado River • Larger water volumes are required to influence the estuary ecosystem.

  7. The 2014 water release into the arid Colorado River delta and associated water losses by evaporation

    International Nuclear Information System (INIS)

    Daesslé, L.W.; Geldern, R. van; Orozco-Durán, A.; Barth, J.A.C.

    2016-01-01

    For the first time in history, water was intentionally released for environmental purposes into the final, otherwise dry, 160-km stretch of the Colorado River basin, south of the Mexican border. Between March and May 2014 three pulses of water with a total volume of 132 × 10"6 m"3 were released to assess the restoration potential of endemic flora along its course and to reach its estuary. The latter had not received a sustained input of fresh water and nutrients from its main fluvial source for over 50 years because of numerous upstream dam constructions. During this pulse flow large amounts of water were lost and negligible amounts reached the ocean. While some of these water losses can be attributed to plant uptake and infiltration, we were able to quantify evaporation losses between 16.1 to 17.3% of the original water mass % within the first 80 km after the Morels Dam with water stable isotope data. Our results showed no evidence for freshwater reaching the upper Colorado River estuary and it is assumed that the pulse flow had only negligible influences on the coastal ecosystem. Future water releases that aim on ecological restoration need to become more frequent and should have larger volumes if more significant effects are to be established on the area. - Highlights: • Isotope ratios of oxygen and hydrogen quantify water lost through evaporation. • Evaporation losses between 16.1 and 17.3% during the 2014 Colorado River • Larger water volumes are required to influence the estuary ecosystem.

  8. Revitalization model of tapioca industry through environmental awareness reinforcement for minimizing water body contamination

    Science.gov (United States)

    Banowati, E.; Indriyanti, D. R.; Juhadi

    2018-03-01

    Tapioca industry in Margoyoso District is a household industry which positively contributes to the growth of the region's economy as it is able to absorb 6,61% of productive age populationor absorb 3,300 workers.On the other hand, the industry impacts contamination of river water in the form of pollutants dissolved materials and particulates into water bodies so that the quality of water decreases even does not work anymore in accordance with the allocation for irrigation or run off of agriculture. The purpose of this research is to: strengthen environmental awareness; calculate the success of the reinforcement action and minimize water body contamination. The research was conducted in two villages of tapioca industry center in Margoyoso district - Pati Regency Administration Area. The determination coefficient of R Square is 0.802 which indicates a successful effort of 80.2%. Regression equation Y = 34.097 + 0.608 X. Industrial entrepreneur's concern increased on 8.45 from total indicator or position to 70.72 so that the gradual effort showed success to minimize water contamination of Suwatu River. The business community of tapioca should build installation of wastewater treatment.

  9. Evaluation of the correlations for predicting evaporative loss from water body

    International Nuclear Information System (INIS)

    Yilmaz, T.P.; Aybar, H.S.

    1999-01-01

    Water evaporation (evaporation from here on) is a natural phenomenon that is important for system design and system safety in many engineering branches. Indeed, evaporative heat and mass loss are observed and calculated in very diverse situations, such as irrigation plants, water purification plants, cooling ponds, lakes, dams, swimming pools, health spas, management of liquid wastes as in evaporation pools, and spent fuel pools in nuclear power plants. There are a number of correlations obtained from experimental studies that predict the evaporative heat and mass loss from a water body. This study aims to summarize and to compare the existing evaporation correlations to determine the upper and lower bounding correlations for use in various thermal-hydraulic analyses of systems. Currently and widely used, six correlations found in the literature have been selected and tested using the major parameters of evaporation such as water temperature, air relative humidity, air velocity, and temperature. The comparison test cases show that ASHRAE (1991) and Ryan et al. (1974) equations result in the highest evaporative loss, while the Brady et al. (1969) equation provides the lowest evaporative loss in most conditions. Engineering designers may sometimes need the upper bound value of evaporative loss or sometimes the lower bound value for a conservative calculation. The authors conclude that using a single equation does not provide the conservative calculation for every situation and show which correlation gives the lower or upper bound for different conditions

  10. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies’ Functions

    Science.gov (United States)

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-01

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies’ functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident’s origin and other indirect losses. In the valuation of damage to people’s life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water’s recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole. PMID:26805869

  11. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies’ Functions

    Directory of Open Access Journals (Sweden)

    Hong Yao

    2016-01-01

    Full Text Available The number of surface water pollution accidents (abbreviated as SWPAs has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies’ functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident’s origin and other indirect losses. In the valuation of damage to people’s life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water’s recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole.

  12. Waste minimization through process optimization/integration and resource management at eco-friendly Heavy Water Plants

    International Nuclear Information System (INIS)

    Nageshri, Jagdish; Gupta, S.K.

    2004-01-01

    Heavy Water Board has celebrated 2003 as Environmental Conservation Year captivating a range of enviro-friendly measures. This article attempts to give a brief overview of the outcome of systems and adapted procedures for waste minimization through process integration and resource management at Heavy Water Plants

  13. The Influence of Water and Mineral Oil On Volumetric Losses in a Hydraulic Motor

    Directory of Open Access Journals (Sweden)

    Śliwiński Pawel

    2017-04-01

    Full Text Available In this paper volumetric losses in hydraulic motor supplied with water and mineral oil (two liquids having significantly different viscosity and lubricating properties are described and compared. The experimental tests were conducted using an innovative hydraulic satellite motor, that is dedicated to work with different liquids, including water. The sources of leaks in this motor are also characterized and described. On this basis, a mathematical model of volumetric losses and model of effective rotational speed have been developed and presented. The results of calculation of volumetric losses according to the model are compared with the results of experiment. It was found that the difference is not more than 20%. Furthermore, it has been demonstrated that this model well describes in both the volumetric losses in the motor supplied with water and oil. Experimental studies have shown that the volumetric losses in the motor supplied with water are even three times greater than the volumetric losses in the motor supplied with oil. It has been shown, that in a small constant stream of water the speed of the motor is reduced even by half in comparison of speed of motor supplied with the same stream of oil.

  14. Vector Control Using Series Iron Loss Model of Induction, Motors and Power Loss Minimization

    OpenAIRE

    Kheldoun Aissa; Khodja Djalal Eddine

    2009-01-01

    The iron loss is a source of detuning in vector controlled induction motor drives if the classical rotor vector controller is used for decoupling. In fact, the field orientation will not be satisfied and the output torque will not truck the reference torque mostly used by Loss Model Controllers (LMCs). In addition, this component of loss, among others, may be excessive if the vector controlled induction motor is driving light loads. In this paper, the series iron loss model ...

  15. Apparent losses due to domestic water meter under-registration in ...

    African Journals Online (AJOL)

    2015-10-05

    Oct 5, 2015 ... water in terms of volume, but 69% in terms of financial loss to the utility ... trative errors to vary between 2% and 10% of billed metered consumption. ... important from a water management perspective, but fell out- side the ...

  16. Potential of Rainwater Harvesting and Greywater Reuse for Water Consumption Reduction and Wastewater Minimization

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López Zavala

    2016-06-01

    Full Text Available Northeastern Mexico is a semiarid region with water scarcity and a strong pressure on water sources caused by the rapid increase of population and industrialization. In this region, rainwater harvesting alone is not enough to meet water supply demands due to the irregular distribution of rainfall in time and space. Thus, in this study the reliability of integrating rainwater harvesting with greywater reuse to reduce water consumption and minimize wastewater generation in the Tecnológico de Monterrey, Monterrey Campus, was assessed. Potable water consumption and greywater generation in main facilities of the campus were determined. Rainwater that can be potentially harvested in roofs and parking areas of the campus was estimated based on a statistical analysis of the rainfall. Based on these data, potential water savings and wastewater minimization were determined. Characterization of rainwater and greywater was carried out to determine the treatment necessities for each water source. Additionally, the capacity of water storage tanks was estimated. For the selected treatment systems, an economic assessment was conducted to determine the viability of the alternatives proposed. Results showed that water consumption can be reduced by 48% and wastewater generation can be minimized by 59%. Implementation of rainwater harvesting and greywater reuse systems in the Monterrey Campus will generate important economic benefits to the institution. Amortization of the investments will be achieved in only six years, where the net present value (NPV will be on the order of US $50,483.2, the internal rate of return (IRR of 4.6% and the benefits–investment ratio (B/I of 1.7. From the seventh year, the project will present an IRR greater than the minimum acceptable rate of return (MARR. In a decade, the IRR will be 14.4%, more than twice the MARR, the NPV of US $290,412.1 and the B/I of 3.1, denoting economic feasibility. Based on these results, it is clear that

  17. Frequency dependent loss analysis and minimization of system losses in switchmode audio power amplifiers

    DEFF Research Database (Denmark)

    Yamauchi, Akira; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2014-01-01

    In this paper, frequency dependent losses in switch-mode audio power amplifiers are analyzed and a loss model is improved by taking the voltage dependence of the parasitic capacitance of MOSFETs into account. The estimated power losses are compared to the measurement and great accuracy is achieved...

  18. Baby-Friendly Practices Minimize Newborn Infants Weight Loss.

    Science.gov (United States)

    Procaccini, Diane; Curley, Ann L Cupp; Goldman, Martha

    2018-04-01

    It is accepted that newborns lose weight in the first few days of life. Baby-Friendly practices that support breastfeeding may affect newborn weight loss. The objective of this study were: 1) To determine whether Baby-Friendly practices are associated with term newborn weight loss day 0-2 in three feeding categories (exclusively breastfed, mixed formula fed and breastfed, and formula fed). 2) To determine whether Baby-Friendly practices increase exclusive breast feeding rates in different ethnic populations. This was a retrospective case-control study. Term newborn birth weight, neonatal weights days 0-2, feeding type, type of birth, and demographic information were collected for 1,000 births for the year before Baby-Friendly designation (2010) and 1,000 in 2013 (after designation). Ultimately 683 in the first group and 518 in the second met the inclusion criteria. Mean weight loss decreased day 0-2 for infants in all feeding types after the initiation of Baby-Friendly practices. There was a statistically significant effect of Baby-Friendly designation on weight loss for day 0-2 in exclusively breastfed infants (p Baby-Friendly practices were put in place. There was a decrease in mean weight loss day 0-2 regardless of feeding type after Baby-Friendly designation. Exclusive breast feeding increased in the presence of Baby-Friendly practices.

  19. A New GIS-Nitrogen Trading Tool Concept to Minimize Reactive Nitrogen losses to the Environment

    Science.gov (United States)

    Nitrogen (N) is an essential element which is needed to maximize agricultural production and sustainability of worldwide agroecosystems. N losses to the environment are impacting water and air quality that has become an environmental concern for the future generations. It has led to the need for dev...

  20. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize ( Zea mays l.) in subtropical northeastern Himalayas

    Science.gov (United States)

    Marwein, M. A.; Choudhury, B. U.; Chakraborty, D.; Kumar, M.; Das, A.; Rajkhowa, D. J.

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ETc) of maize crop under controlled condition (pot experiment) of water deficit (W25-25 % and W50-50 % of field capacity soil moistures) and well watered (W100 = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ETc losses and water use efficiency was also studied. The measured seasonal ETc loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant ( p < 0.05) reduction (by 33-50 %) of seasonal ETc losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha-1 significantly ( p < 0.05) increased ETc losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W25) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W100) while seasonal ETc loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ETc losses while weekly crop ETc loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ETc losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg-1 water and 4.21 to 8.56 g dry matter kg-1, respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ETc loss, growth duration, grain formation, and water use efficiency of maize.

  1. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize (Zea mays l.) in subtropical northeastern Himalayas.

    Science.gov (United States)

    Marwein, M A; Choudhury, B U; Chakraborty, D; Kumar, M; Das, A; Rajkhowa, D J

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ET c ) of maize crop under controlled condition (pot experiment) of water deficit (W 25 -25 % and W 50 -50 % of field capacity soil moistures) and well watered (W 100  = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ET c losses and water use efficiency was also studied. The measured seasonal ET c loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant (p losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha -1 significantly (p losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W 25 ) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W 100 ) while seasonal ET c loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ET c losses while weekly crop ET c loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ET c losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg -1  water and 4.21 to 8.56 g dry matter kg -1 , respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ET c loss, growth duration, grain formation, and water use efficiency of maize.

  2. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Discontinuous gas exchange, water loss, and metabolism in Protaetia cretica (Cetoniinae, Scarabaeidae).

    Science.gov (United States)

    Matthews, Philip G D; White, Craig R

    2012-01-01

    Insects are at high risk of desiccation because of their small size, high surface-area-to-volume ratio, and air-filled tracheal system that ramifies throughout their bodies to transport O(2) and CO(2) to and from respiring cells. Although the tracheal system offers a high-conductance pathway for the movement of respiratory gases, it has the unintended consequence of allowing respiratory transpiration to the atmosphere. When resting, many species exchange respiratory gases discontinuously, and an early hypothesis for the origin of these discontinuous gas exchange cycles (DGCs) is that they serve to reduce respiratory water loss. In this study, we test this "hygric" hypothesis by comparing rates of CO(2) exchange and water loss among flower beetles Protaetia cretica (Cetoniinae, Scarabaeidae) breathing either continuously or discontinuously. We show that, consistent with the expectations of the hygric hypothesis, rates of total water loss are higher during continuous gas exchange than during discontinuous gas exchange and that the ratio of respiratory water loss to CO(2) exchange is lower during discontinuous gas exchange. This conclusion is in agreement with other studies of beetles and cockroaches that also support the hygric hypothesis. However, this result does not exclude other adaptive hypotheses supported by work on ants and moth pupae. This ambiguity may arise because there are multiple independent evolutionary origins of DGCs and no single adaptive function underlying their genesis. Alternatively, the observed reduction in water loss during DGCs may be a side effect of a nonadaptive gas exchange pattern that is elicited during periods of inactivity.

  4. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  5. Stochastic LMP (Locational marginal price) calculation method in distribution systems to minimize loss and emission based on Shapley value and two-point estimate method

    International Nuclear Information System (INIS)

    Azad-Farsani, Ehsan; Agah, S.M.M.; Askarian-Abyaneh, Hossein; Abedi, Mehrdad; Hosseinian, S.H.

    2016-01-01

    LMP (Locational marginal price) calculation is a serious impediment in distribution operation when private DG (distributed generation) units are connected to the network. A novel policy is developed in this study to guide distribution company (DISCO) to exert its control over the private units when power loss and green-house gases emissions are minimized. LMP at each DG bus is calculated according to the contribution of the DG to the reduced amount of loss and emission. An iterative algorithm which is based on the Shapley value method is proposed to allocate loss and emission reduction. The proposed algorithm will provide a robust state estimation tool for DISCOs in the next step of operation. The state estimation tool provides the decision maker with the ability to exert its control over private DG units when loss and emission are minimized. Also, a stochastic approach based on the PEM (point estimate method) is employed to capture uncertainty in the market price and load demand. The proposed methodology is applied to a realistic distribution network, and efficiency and accuracy of the method are verified. - Highlights: • Reduction of the loss and emission at the same time. • Fair allocation of loss and emission reduction. • Estimation of the system state using an iterative algorithm. • Ability of DISCOs to control DG units via the proposed policy. • Modeling the uncertainties to calculate the stochastic LMP.

  6. Thermoregulation and evaporative water loss in growing African ...

    African Journals Online (AJOL)

    Kalahari Gemsbok National Park, Private Bag X5890, Upington, 8800 Republic of South AfricaWith an increase in mass, weaned giant rat pups Cricetomys gambianus, showed a corresponding decline in mass specific metabolism, conductance and evaporative water loss. The decline in metabolism correlates better with ...

  7. Minimal watering regime impacts on desert adapted green roof plant performance

    Science.gov (United States)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and

  8. Body ion loss as a bioindicator of water quality impaired by coal mining

    International Nuclear Information System (INIS)

    Grippo, R.S.; Dunson, W.A.

    1994-01-01

    Protection of surface waters receiving discharges from coal mines is currently based on performance standards set by the EPA after passage of the Clean Water Act. These standards were technology-driven and reflect the Best Achievable Control Technology (BAT) available at the time of promulgation. Changes proposed as part of the upcoming reauthorization of the US Clean Water Act suggest that such technology-based standards may be reevaluated in light of more recent information on the toxicological effect of mine discharges on aquatic biota. The authors present here a physiological-based method for evaluating the site-specific toxicity of mine-derived discharges into receiving waters. They tested the usefulness of the body ion loss rate bioassay by exposing fathead minnows, brook charr and stoneflies to coal mine-impacted waters (elevated acidity and trace metals) in the field and to artificial mine water (AMW) in the laboratory. Body ion loss rate was significantly correlated with levels of mine pollution in the field. Body ion loss measured in AMW revealed strong interactions between metals and acid. Because the test animals exhibited differing levels of sensitivity to mine discharge, the selection of an appropriate organism for the body ion loss bioassay may vary depending on the (1) physical characteristics, (2) chemical characteristics and (3) pre-existing level of mine impact of the receiving waters

  9. Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg2(dobpdc).

    Science.gov (United States)

    Milner, Phillip J; Martell, Jeffrey D; Siegelman, Rebecca L; Gygi, David; Weston, Simon C; Long, Jeffrey R

    2018-01-07

    Alkyldiamine-functionalized variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary , secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2 (dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2 (dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2 (pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para -carboxylate), which, in contrast to Mg 2 (dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2 (pc-dobpdc) with large diamines such as N -( n -heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of

  10. Use of glutaraldehyde and benzalkonium chloride for minimizing post-harvest physio-chemical and microbial changes responsible for sucrose losses in sugar cane.

    Science.gov (United States)

    Singh, Pushpa; Arya, Namita; Tiwari, Priyanka; Suman, Archna; Rai, R K; Shrivastava, A K; Solomon, S

    2008-08-27

    Sugar cane is sensitive to enormous sucrose losses induced by physio-chemical and microbial changes, the severity being increased during the time lag between harvest and crushing in the mills. Minimization of the sucrose losses in the field is essential for better sugar recovery and prevention of sucrose losses. An experiment was conducted to evaluate the efficacy of glutaraldehyde and benzalkonium chloride for their effects on the microbial counts and physio-chemical changes responsible for sucrose losses. Glutaraldehyde and benzalkonium chloride (1000 + 250 ppm) reduced the losses in sucrose content to 7.1% as compared to the 30.8% loss in the control, thus improving the performance by 76.9%. The application of chemicals reduced the acid invertase activity (by 60%), lowered weight loss, titrable acidity, reducing sugars content, dextran, ethanol, and ethylene production and respiration rates. The application led to the reduction in the total bacterial, fungal, Leuconostoc, and yeast counts by 67.92, 51.3%, 26.08, and 51.2%, respectively.

  11. Hydric "Costs" of Reproduction: Pregnancy Increases Evaporative Water Loss in the Snake Vipera aspis.

    Science.gov (United States)

    Lourdais, Olivier; Dupoué, Andréaz; Guillon, Michaël; Guiller, Gaëtan; Michaud, Bruno; DeNardo, Dale F

    Water constraints can mediate evolutionary conflict either among individuals (e.g., parent-offspring conflict, sexual conflict) or within an individual (e.g., cost of reproduction). During pregnancy, water is of particular importance because the female provides all water needed for embryonic development and experiences important maternal shifts in behavior and physiology that, together, can compromise female water balance if water availability is limited. We examined the effect of pregnancy on evaporative water loss and microhabitat selection in a viviparous snake, the aspic viper. We found that both physiological (increased metabolism and body temperature) and morphological (body distension) changes contribute to an increased evaporative water loss in pregnant females. We also found that pregnant females in the wild select warmer and moister basking locations than nonreproductive females, likely to mitigate the conflict between thermal needs and water loss. Water resources likely induce significant reproductive constraints across diverse taxa and thus warrant further consideration in ecological research. From an evolutionary perspective, water constraints during reproduction may contribute to shaping reproductive effort.

  12. Nutrient losses in forest plantations in Sabah, Malaysia

    International Nuclear Information System (INIS)

    Nykvist, N.; Grip, A.; Malmer, A.

    1994-01-01

    Inorganic nutrients are lost from terrestrial ecosystems through the harvesting of plant products, leaching, soil erosion and volatilization of nitrogen and sulfur compounds. In this study, carried out in a tropical rain forest ecosystem in Sabah, Malaysia, losses of inorganic nutrients through log removal and runoff/leaching to stream water were compared in clear-fellings, harvested and prepared for planting in two different ways: (i) tractor logging/burning; (ii) and manual logging/no burning. The major findings of the study were that nutrient losses in stream water were reduced by 50% and growth of the planted forest was twice as fast on the catchment where soil disturbance was minimized and burning not used. Weeds were more abundant after burning, and the extra weeding needed increased costs for plantation establishment. Ways of decreasing the loss of inorganic nutrients when clear-felling tropical rain forests are discussed. 32 refs, 4 figs, 3 tabs

  13. Apparent losses due to domestic water meter under-registration in ...

    African Journals Online (AJOL)

    By combining these results with the average age of meters in South Africa, estimated from the National Water Demand Archive, it was possible to estimate the average meter under-registration due to meter aging. The study concluded that apparent losses due to water meter under-registration are around 5% of consumption ...

  14. Time course of cortisol loss in hair segments under immersion in hot water.

    Science.gov (United States)

    Li, Jifeng; Xie, Qiaozhen; Gao, Wei; Xu, Youyun; Wang, Shuang; Deng, Huihua; Lu, Zuhong

    2012-02-18

    Hair cortisol is supposed to be a good biomarker of chronic stress. Major loss of hair cortisol in long-term exposure to environmental factors affected strongly its proper assessment of chronic stress in human. However, there was no research on time course of hair cortisol loss during the long-term exposure. Hair samples with longer than 1cm in the posterior vertex region were cut as close as possible to the scalp. The 1-cm hair samples were treated by ultraviolet irradiation or immersion in shampoo solution or water immersion at 40, 65 and 80°C. Hair cortisol content was determined with high performance liquid chromatography tandem mass spectrometry. Ultraviolet irradiation and immersion in shampoo solution and hot water gave rise to the significant cortisol loss in hair. Hair cortisol content was sharply decreased with water immersion duration during initial stage and slowly decreased in the following stage. The 2-stage loss process with water immersion duration modeled to some extent time course of hair cortisol loss in long-term exposure to external environments. Cortisol from hair samples closest to the scalp in the posterior vertex could represent more accurately central hypothalamo-pituitary-adrenal activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Formulation and evaluation of the use of edible coatings based on gellan chunks of fresh pineapple cut to minimize deterioration of quality attributes and mass loss

    International Nuclear Information System (INIS)

    Saborio Marin, Laura

    2014-01-01

    The result of the use of edible coatings on special based of gellan in various formulations applied on pieces of fresh cut pineapple is evaluated to reduce the degradation of the quality characteristics and mass loss, as a plan to increase the usefulness. The effect of storage time of the fruit before processing (TAP), the application of vacuum pressure and concentration has been studied of the active components (gellan (0,50-1,00%), oil (0,00 -0,20%), glycerol and sorbitol (1,5-2,5%), CaCl 2 (1.0-10,0%)) of the forming solutions of coating. Several parameters are evaluated: the loss of juice, weight and composition of O 2 and CO 2 in the headspace, content of soluble solids (SS), titratable acidity (TA) color, darkening and appearance of pineapple chunks. The effect of forming solutions is measured on the adhesion, uniformity, coverage and determination of the water vapor resistance (RVA) coating and the presence of molds and yeasts during refrigerated storage at 5 degrees Celsius and 80% relative humidity. Another finding was that the loss of juice of the pieces uncoated increased (p≤0,05) as the increase TAP of 1 to 3 weeks, still higher than those of the coated pieces (0,50-0,75% gellan ), which have been minimal, while weight loss has decreased. The application of a vacuum pressure of 0,08 MPa before coating the pieces has favored the juice loss after the first two weeks of storage and reduced weight loss of uncoated pieces along the storage. The formulation comprised of 0,75% gellan, 1,5% glycerol, 0,10% oil and 1,0% of CaCl 2 has been which allows further reduction of juice loss and weight of pineapple chunks stored at 5 degrees Celsius and 80% RH [es

  16. WATER PINCH TECHNOLOGY APPLICATION TO MINIMIZE SULPHUROUS WASTEWATER IN AN OIL REFINERY

    Directory of Open Access Journals (Sweden)

    Gabriel Orlando Lobelles Sardiñas

    2017-01-01

    Full Text Available In oil refining industries there is a high water consumption, which influences the high production costs and impacts the environment due to the discharge of their wastes. It is known that there are no technological conditions for the reuse of industrial water at the oil refineries, based on hydroskimming processes. The objective of this study is to implement the process integration methodology, Water Pinch, to a sour water stripper unit, as a unitary process of an oil refinery, to minimize the amount of sulphurous waste water and reduce contamination of the bay that receives these wastes. The technology is applied to evaluate the volume of sulphurous wastewater generated in the Cienfuegos oil refinery. This technology allows identifying opportunities for recovery and reuse of water, based on concentration ranges of contaminants. To achieve this purpose, a sour water stripper tower was assessed with the help of Water Pinch software, which provided an optimized distribution network, as a proposed technological improvement. This facilitated to recover and reuse 667 757, 28 m3 of water per year, and 1 035 023, 78 CUC were saved, at the same time the amount of polluting effluents decreased in approximately 2 % of non-reusable treated water.

  17. Minimization of thermal insulation thickness taking into account condensation on external walls

    OpenAIRE

    Nurettin Yamankaradeniz

    2015-01-01

    Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calcu...

  18. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.)

    KAUST Repository

    Parsons, Eugene P.; Popopvsky, Sigal; Lohrey, Gregory T.; Lu, Shiyou; Alkalai-Tuvia, Sharon; Perzelan, Yaacov; Paran, Ilan; Fallik, Elazar; Jenks, Matthew A.

    2012-01-01

    To understand the role of fruit cuticle lipid composition in fruit water loss, an advanced backcross population, the BC2F2, was created between the Capsicum annuum (PI1154) and the Capsicum chinense (USDA162), which have high and low post-harvest water loss rates, respectively. Besides dramatic differences in fruit water loss, preliminary studies also revealed that these parents exhibited significant differences in both the amount and composition of their fruit cuticle. Cuticle analysis of the BC2F2 fruit revealed that although water loss rate was not strongly associated with the total surface wax amount, there were significant correlations between water loss rate and cuticle composition. We found a positive correlation between water loss rate and the amount of total triterpenoid plus sterol compounds, and negative correlations between water loss and the alkane to triterpenoid plus sterol ratio. We also report negative correlations between water loss rate and the proportion of both alkanes and aliphatics to total surface wax amount. For the first time, we report significant correlations between water loss and cutin monomer composition. We found positive associations of water loss rate with the total cutin, total C16 monomers and 16-dihydroxy hexadecanoic acid. Our results support the hypothesis that simple straight-chain aliphatic cuticle constituents form more impermeable cuticular barriers than more complex isoprenoid-based compounds. These results shed new light on the biochemical basis for cuticle involvement in fruit water loss. © 2012 Physiologia Plantarum.

  19. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.)

    KAUST Repository

    Parsons, Eugene P.

    2012-03-05

    To understand the role of fruit cuticle lipid composition in fruit water loss, an advanced backcross population, the BC2F2, was created between the Capsicum annuum (PI1154) and the Capsicum chinense (USDA162), which have high and low post-harvest water loss rates, respectively. Besides dramatic differences in fruit water loss, preliminary studies also revealed that these parents exhibited significant differences in both the amount and composition of their fruit cuticle. Cuticle analysis of the BC2F2 fruit revealed that although water loss rate was not strongly associated with the total surface wax amount, there were significant correlations between water loss rate and cuticle composition. We found a positive correlation between water loss rate and the amount of total triterpenoid plus sterol compounds, and negative correlations between water loss and the alkane to triterpenoid plus sterol ratio. We also report negative correlations between water loss rate and the proportion of both alkanes and aliphatics to total surface wax amount. For the first time, we report significant correlations between water loss and cutin monomer composition. We found positive associations of water loss rate with the total cutin, total C16 monomers and 16-dihydroxy hexadecanoic acid. Our results support the hypothesis that simple straight-chain aliphatic cuticle constituents form more impermeable cuticular barriers than more complex isoprenoid-based compounds. These results shed new light on the biochemical basis for cuticle involvement in fruit water loss. © 2012 Physiologia Plantarum.

  20. A Study on the Rate of Events and Water Loss in Water Distribution Network of Azna, Lorstan, Iran during 2008-2014 and Its Associated Factors

    Directory of Open Access Journals (Sweden)

    Mohammad Adeli

    2016-12-01

    Full Text Available Introduction and purpose: One of the problems of water distribution systems is loss of large volumes of water due to the occurrence of various events, which incurs a huge financial loss. Regarding this, the aim of the present study was to investigate the rate of events and water loss in the water distribution system and its related factors in Azna, Lorestan province, Iran, during 2008-2014. Methods: This cross-sectional study was conducted using census method, surveys, and field data collection. The amount of water production and consumption, the volumes of water loss, the number of accidents, type of pipe, pressure zone, as well as the age and length of the pipes recorded during 2008- 2014 were studied and analyzed. Results: According to the results, the highest (34.48% and lowest (20.57% amount of water losses happened in 2008 and 2014, respectively. High pressures in water systems had significant relationship with the number of events as well as the amount of water loss and water consumption. In addition, higher length and age of the pipes had a direct correlation with increased number of events and water loss. Furthermore, the maximum number of events were found to occur in the pipe embranchment and galvanized pipes. Conclusion: This study showed that of events was directly related to the length and age of the pipes, the water pressure, and number of branches. Also water loss quantity can be reduced by applying suitable management techniques in different sections. Furthermore, the water loss can be significantly controlled by taking such measures as reducing the pressure in the high-pressure zones, timely replacement of old and inappropriate pipes, appropriate fixing of the pipes, replacement of the galvanized pipe, and standard implementation of pipes and fittings.

  1. [Effects of strip planting and fallow rotation on the soil and water loss and water use efficiency of slope farmland].

    Science.gov (United States)

    Hou, Xian-Qing; Li, Rong; Han, Qing-Fang; Jia, Zhi-Kuan; Wang, Wei; Yan, Bo; Yang, Bao-Ping

    2012-08-01

    In order to enhance the soil water-retaining capacity of slope farmland and reduce its soil and water loss, a field study was conducted in 2007-2010 to examine the effects of strip planting and fallow rotation on the soil water regime, soil and water loss characteristics, and water use efficiency of a 10 degrees-15 degrees slope farmland in the arid area of southern Ningxia, Northwest China. Compared with the traditional no-strip planting, strip planting and fallow rotation increased the soil water content in 0-200 cm layer significantly, with an increment of 4.9% -7.0%. Strip planting and fallow rotation pattern could also effectively conserve the soil water in rain season, and obviously improve the soil water regime at crops early growth stages. As compared to no-strip planting, strip planting and fallow rotation increased the soil water content in 0-200 cm layer by 5.4%-8.5%, decreased the surface runoff by 0.7-3.2 m3 x hm(-2), sediment runoff by 0.2-1.9 t x hm(-2), and soil total N loss by 42.1% -73.3%, while improved the crop water use efficiency by 6.1% -24.9% and the precipitation use efficiency by 6.3% -15.3%.

  2. Diet change and food loss reduction: What is their combined impact on global water use and scarcity?

    Science.gov (United States)

    Jalava, Mika; Guillaume, Joseph H. A.; Kummu, Matti; Porkka, Miina; Siebert, Stefan; Varis, Olli

    2016-03-01

    There is a pressing need to improve food security and reduce environmental impacts of agricultural production globally. Two of the proposed measures are diet change from animal-based to plant-based foodstuffs and reduction of food losses and waste. These two measures are linked, as diet change affects production and consumption of foodstuffs and consequently loss processes through their different water footprints and loss percentages. This paper takes this link into account for the first time and provides an assessment of the combined potential contribution of diet change and food loss reduction for reducing water footprints and water scarcity. We apply scenarios in which we change diets to follow basic dietary recommendations, limit animal-based protein intake to 25% of total protein intake, and halve food losses to study single and combined effects of diet change and loss reduction. Dietary recommendations alone would achieve 6% and 7% reductions of blue and green water consumption, respectively, while changing diets to contain less animal products would result in savings of 11% and 18%, respectively. Halving food loss would alone achieve 12% reductions for both blue and green water. Combining the measures would reduce water consumption by 23% and 28%, respectively, lowering water scarcity in areas with a population of over 600 million. At a global scale, effects of diet change and loss reduction were synergistic with loss reductions being more effective under changed diet. This demonstrates the importance of considering the link between diet change and loss reduction in assessments of food security and resource use.

  3. Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems

    International Nuclear Information System (INIS)

    Chen, Gonggui; Liu, Lilan; Song, Peizhu; Du, Yangwei

    2014-01-01

    Highlights: • New method for MOORPD problem using MOCIPSO and MOIPSO approaches. • Constrain-prior Pareto-dominance method is proposed to meet the constraints. • The limits of the apparent power flow of transmission line are considered. • MOORPD model is built up for MOORPD problem. • The achieved results by MOCIPSO and MOIPSO approaches are better than MOPSO method. - Abstract: Multi-objective optimal reactive power dispatch (MOORPD) seeks to not only minimize power losses, but also improve the stability of power system simultaneously. In this paper, the static voltage stability enhancement is achieved through incorporating L index in MOORPD problem. Chaotic improved PSO-based multi-objective optimization (MOCIPSO) and improved PSO-based multi-objective optimization (MOIPSO) approaches are proposed for solving complex multi-objective, mixed integer nonlinear problems such as minimization of power losses and L index in power systems simultaneously. In MOCIPSO and MOIPSO based optimization approaches, crossover operator is proposed to enhance PSO diversity and improve their global searching capability, and for MOCIPSO based optimization approach, chaotic sequences based on logistic map instead of random sequences is introduced to PSO for enhancing exploitation capability. In the two approaches, constrain-prior Pareto-dominance method (CPM) is proposed to meet the inequality constraints on state variables, the sorting and crowding distance methods are considered to maintain a well distributed Pareto optimal solutions, and moreover, fuzzy set theory is employed to extract the best compromise solution over the Pareto optimal curve. The proposed approaches have been examined and tested in the IEEE 30 bus and the IEEE 57 bus power systems. The performances of MOCIPSO, MOIPSO, and multi-objective PSO (MOPSO) approaches are compared with respect to multi-objective performance measures. The simulation results are promising and confirm the ability of MOCIPSO and

  4. Linking ceragenins to water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  5. Not all water becomes wine: Sulfur inputs as an opportune tracer of hydrochemical losses from vineyards

    Science.gov (United States)

    Hinckley, Eve-Lyn S.; Kendall, Carol; Loague, Keith

    2008-07-01

    California's widespread and economically important vineyards offer substantial opportunities to understand the interface between hydrology and biogeochemistry in agricultural soils. The common use of native sulfur (S) as a fumigant or soil additive provides a novel way to isotopically differentiate among sulfate (SO42-) pools, allowing the estimation of water and SO42- budgets. The objectives of this study were (1) to characterize the near-surface hydrological flow paths in a vineyard during irrigation and storm events and (2) to determine how those flow paths affect the fate and transport of SO42- across seasons. Integrating hydrological theory with measurements of SO42- concentration and sulfate-S isotopic ratios (expressed as [SO42-] and δ34S, respectively) in inputs, soil water, and leachate provided a means of determining flow paths. Low [SO42-] and δ34S in leachate during 4-h irrigation events reflect minimal engagement of the soil matrix, indicating that preferential flow was the dominant path for water in the near surface. In contrast, high [SO42-] and δ34S values during 8-h irrigation and storm events reflect near-complete engagement of the soil matrix, indicating that lateral flow was the dominant pathway. Because hydrologic response and SO42- mobility are tightly coupled in these soils, the magnitude of water fluxes through the near surface controls S cycling both on and off site. These results indicate that preferential flow is an important loss pathway to consider in managing both water resources and water quality (reactive elements) in vineyard land use systems.

  6. Hormonal control of integumentary water-loss: evidence for a novel neuroendocrine system in an insect (Periplaneta americana).

    Science.gov (United States)

    Treherne, J E; Willmer, P G

    1975-08-01

    An accelerated water-loss was observed in decapitated individuals, no equivalent increase being obtained following severance of the nervous connectives in the neck. Injection of brain and, to a lesser extent, corpus cardiacum extract resulted in a significant reduction in the rate of loss of water from decapitated individuals. The accelerated water-loss observed following decapitation appeared not to result from significant increase in excretory output or loss of water through the spiracles. It is suggested that integumentary transpiration may be affected by a blood-borne factor, or factors, which originate in the brain and corpus cardiacum.

  7. Buoyancy driven flow in a hot water tank due to standby heat loss

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank...... show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow...... with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different...

  8. Intensified water storage loss by biomass burning in Kalimantan: Detection by GRACE

    Science.gov (United States)

    Han, Jiancheng; Tangdamrongsub, Natthachet; Hwang, Cheinway; Abidin, Hasanuddin Z.

    2017-03-01

    Biomass burning is the principal tool for land clearing and a primary driver of land use change in Kalimantan (the Indonesian part of Borneo island). Biomass burning here has consumed millions of hectares of peatland and swamp forests. It also degrades air quality in Southeast Asia, perturbs the global carbon cycle, threatens ecosystem health and biodiversity, and potentially affects the global water cycle. Here we present the optimal estimate of water storage changes over Kalimantan from NASA's Gravity Recovery and Climate Experiment (GRACE). Over August 2002 to December 2014, our result shows a north-south dipole pattern in the long-term changes in terrestrial water storage (TWS) and groundwater storage (GWS). Both TWS and GWS increase in the northern part of Kalimantan, while they decrease in the southern part where fire events are the most severe. The loss rates in TWS and GWS in the southern part are 0.56 ± 0.11 cm yr-1 and 0.55 ± 0.10 cm yr-1, respectively. We use GRACE estimates, burned area, carbon emissions, and hydroclimatic data to study the relationship between biomass burning and water storage losses. The analysis shows that extensive biomass burning results in excessive evapotranspiration, which then increases long-term water storage losses in the fire-prone region of Kalimantan. Our results show the potentials of GRACE and its follow-on missions in assisting water storage and fire managements in a region with extensive biomass burning such as Kalimantan.

  9. Water concentration/activity and loss of vitamins B1 and E in pork due to gamma radiation

    International Nuclear Information System (INIS)

    Fox, J.B. Jr.; Lakritz, L.; Kohout, K.M.; Thayer, D.W.

    1994-01-01

    When irradiated, increasing the water content of pork by partial rehydration of freeze-dried L. dorsi muscle resulted in increasing rate of thiamin loss from zero in dry tissue to ca 6%/kGy of irradiation in tissue with 70% water. Conversely, the rate of loss of alpha-tocopherol decreased from 44%/kGy at 0% to 32%/kGy at 70% water. Decreasing water activity in buffers or in ground or freeze-dried pork by salt or sucrose had no effect on rate of loss of either vitamin following irradiation. Salt decreased the loss of both vitamins in pork due to competition for the hydroxyl radical by chloride ions

  10. Respiratory evaporative water loss during hovering and forward flight in hummingbirds.

    Science.gov (United States)

    Powers, Donald R; Getsinger, Philip W; Tobalske, Bret W; Wethington, Susan M; Powers, Sean D; Warrick, Douglas R

    2012-02-01

    Hummingbirds represent an end point for small body size and water flux in vertebrates. We explored the role evaporative water loss (EWL) plays in management of their large water pool and its use in dissipating metabolic heat. We measured respiratory evaporative water loss (REWL) in hovering hummingbirds in the field (6 species) and over a range of speeds in a wind tunnel (1 species) using an open-circuit mask respirometry system. Hovering REWL during the active period was positively correlated with operative temperature (T(e)) likely due to some combination of an increase in the vapor-pressure deficit, increase in lung ventilation rate, and reduced importance of dry heat transfer at higher T(e). In rufous hummingbirds (Selasphorus rufus; 3.3g) REWL during forward flight at 6 and 10 m/s was less than half the value for hovering. The proportion of total dissipated heat (TDH) accounted for by REWL during hovering at T(e)> 40°C was hummingbirds is a relatively small component of the water budget compared with other bird species (hummingbirds. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. DRINKING WATER CONSUMPTION AND LOSS IN ALGERIA THE CASE OF NETWORKS WITH LOW LEVEL COUNTING

    Directory of Open Access Journals (Sweden)

    Rachid Masmoudi

    2016-01-01

    Full Text Available Demand for drinking domestic water is continuously increasing specially in urban centres which experience high demographic expansion. The decrease of water losses in water supply networks can help preserve such a rare resource. Low number of water meters and intermittent supply make it difficult to quantify the leaking volumes of water. This article presents an analysis of the consumption for drinking water based on an extrapolation from a sample of consumers on whom data are available. Comparison of the volumes of water produced allows a determination of the losses in the water supply system. This analysis is completed by measurements of night flows. The results obtained may be relied on for an evaluation of the needs for drinking water in the South of Algeria, and for future regional development. The study indicates a high rate of water losses in the distribution network, reaching about 40%, and over-consumption due to an insufficient number of water meters and discontinuous supply. It is recommended that water meters come into general use and defective parts of the network are rehabilitated. We will try then to make the necessary recommendations in order to better functioning of the water supply systems in Algeria.

  12. Water loss in table grapes: model development and validation under dynamic storage conditions

    Directory of Open Access Journals (Sweden)

    Ericsem PEREIRA

    2017-09-01

    Full Text Available Abstract Water loss is a critical problem affecting the quality of table grapes. Temperature and relative humidity (RH are essential in this process. Although mathematical modelling can be applied to measure constant temperature and RH impacts, it is proved that variations in storage conditions are normally encountered in the cold chain. This study proposed a methodology to develop a weight loss model for table grapes and validate its predictions in non-constant conditions of a domestic refrigerator. Grapes were maintained under controlled conditions and the weight loss was measured to calibrate the model. The model described the water loss process adequately and the validation tests confirmed its predictive ability. Delayed cooling tests showed that estimated transpiration rates in subsequent continuous temperature treatment was not significantly influenced by prior exposure conditions, suggesting that this model may be useful to estimate the weight loss consequences of interruptions in the cold chain.

  13. Minimally invasive spine surgery: Hurdles to be crossed

    Directory of Open Access Journals (Sweden)

    Mahesh Bijjawara

    2014-01-01

    Full Text Available MISS as a concept is noble and all surgeons need to address and minimize the surgical morbidity for better results. However, we need to be cautions and not fall prey into accepting that minimally invasive spine surgery can be done only when certain metal access systems are used. Minimally invasive spine surgery (MISS has come a long way since the description of endoscopic discectomy in 1997 and minimally invasive TLIF (mTLIF in 2003. Today there is credible evidence (though not level-I that MISS has comparable results to open spine surgery with the advantage of early postoperative recovery and decreased blood loss and infection rates. However, apart from decreasing the muscle trauma and decreasing the muscle dissection during multilevel open spinal instrumentation, there has been little contribution to address the other morbidity parameters like operative time , blood loss , access to decompression and atraumatic neural tissue handling with the existing MISS technologies. Since all these parameters contribute to a greater degree than posterior muscle trauma for the overall surgical morbidity, we as surgeons need to introspect before we accept the concept of minimally invasive spine surgery being reduced to surgeries performed with a few tubular retractors. A spine surgeon needs to constantly improve his skills and techniques so that he can minimize blood loss, minimize traumatic neural tissue handling and minimizing operative time without compromising on the surgical goals. These measures actually contribute far more, to decrease the morbidity than approach related muscle damage alone. Minimally invasine spine surgery , though has come a long way, needs to provide technical solutions to minimize all the morbidity parameters involved in spine surgery, before it can replace most of the open spine surgeries, as in the case of laparoscopic surgery or arthroscopic surgery.

  14. How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment

    NARCIS (Netherlands)

    Limpens, J.; Holmgren, M.; Jacobs, C.M.J.; Zee, van der S.E.A.T.M.; Karofeld, E.; Berendse, F.

    2014-01-01

    Raised bogs have accumulated more atmospheric carbon than any other terrestrial ecosystem on Earth. Climate-induced expansion of trees and shrubs may turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increasing water loss through tree

  15. Analytical Approach for Loss Minimization in Distribution Systems by Optimum Placement and Sizing of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Bakshi Surbhi

    2016-01-01

    Full Text Available Distributed Generation has drawn the attention of industrialists and researchers for quite a time now due to the advantages it brings loads. In addition to cost-effective and environmentally friendly, but also brings higher reliability coefficient power system. The DG unit is placed close to the load, rather than increasing the capacity of main generator. This methodology brings many benefits, but has to address some of the challenges. The main is to find the optimal location and size of DG units between them. The purpose of this paper is distributed generation by adding an additional means to reduce losses on the line. This paper attempts to optimize the technology to solve the problem of optimal location and size through the development of multi-objective particle swarm. The problem has been reduced to a mathematical optimization problem by developing a fitness function considering losses and voltage distribution line. Fitness function by using the optimal value of the size and location of this algorithm was found to be minimized. IEEE-14 bus system is being considered, in order to test the proposed algorithm and the results show improved performance in terms of accuracy and convergence rate.

  16. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, Peter A., E-mail: crozier@asu.edu [School for the Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106 (United States); Aoki, Toshihiro [LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704 (United States); Liu, Qianlang [School for the Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106 (United States)

    2016-10-15

    Understanding the role of water, hydrate and hydroxyl species on nanoparticle surfaces and interfaces is very important in both physical and life sciences. Detecting the presence of oxygen-hydrogen species with nanometer resolution is extremely challenging at present. Here we show that the recently developed vibrational electron energy-loss spectroscopy using subnanometer focused electron beams can be employed to spectroscopically identify the local presence and variation of OH species on nanoscale surfaces. The hydrogen-oxygen fingerprint can be correlated with highly localized structural and morphological information obtained from electron imaging. Moreover, the current approach exploits the aloof beam mode of spectral acquisition which does not require direct electron irradiation of the sample thus greatly reducing beam damage to the OH bond. These findings open the door for using electron microscopy to probe local hydroxyl and hydrate species on nanoscale organic and inorganic structures. - Highlights: • High spatial resolution spectroscopic detection of water related species in nanoparticles. • Detection of OH stretch modes with vibrational EELS. • Differentiation between hydrate and hydroxide species on or on nanoparticles. • Detection of hydrate on a single 60 nm oxide nanoparticle of MgO. • Use of aloof beam EELS to minimize radiation damage.

  17. Water loss at normal enamel histological points during air drying at room temperature.

    Science.gov (United States)

    De Medeiros, R C G; De Lima, T A S; Gouveia, C R; De Sousa, F B

    2013-06-01

    This in vitro study aimed to quantify water loss at histological points in ground sections of normal enamel during air drying at room temperature (25°C) and relative humidity of 50%. From each of 10 ground sections of erupted permanent human normal enamel, three histological points (n = 30) located at 100, 300 and 500 μm from enamel surface and along a transversal following prisms paths were characterized regarding the mineral, organic and water volumes. Water loss during air drying was from 0 to 48 h. Drying occurred with both falling and constant-drying rates, and drying stabilization times (Teq ) ranged from 0.5 to 11 h with a mean 0.26 (±0.12)% weight loss. In some samples (n = 5; 15 points), Teq increased as a function of the distance from the enamel surface, and drying occurred at an apparent diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹. Our data provide evidence of air drying resulting in air replacing enamel's loosely bound water in prisms sheaths following a unidirectional water diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹ (from the original enamel surface inward), not necessarily resulting in water evaporating directly into air, with important implications for transport processes and optical and mechanical properties. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  18. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Science.gov (United States)

    2010-01-01

    .... (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K... 22161.) (b) The factors in the USLE equation are: (1) A is the estimation of average annual soil loss in... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to water...

  19. Not all water becomes wine: Sulfur inputs as an opportune tracer of hydrochemical losses from vineyards

    Science.gov (United States)

    Hinckley, Eve-Lyn S.; Kendall, Carol; Loague, Keith

    2009-01-01

    California's widespread and economically important vineyards offer substantial opportunities to understand the interface between hydrology and biogeochemistry in agricultural soils. The common use of native sulfur (S) as a fumigant or soil additive provides a novel way to isotopically differentiate among sulfate (SO42−) pools, allowing the estimation of water and SO42− budgets. The objectives of this study were (1) to characterize the near‐surface hydrological flow paths in a vineyard during irrigation and storm events and (2) to determine how those flow paths affect the fate and transport of SO42− across seasons. Integrating hydrological theory with measurements of SO42−concentration and sulfate‐S isotopic ratios (expressed as [SO42−] and δ34S, respectively) in inputs, soil water, and leachate provided a means of determining flow paths. Low [SO42−] and δ34S in leachate during 4‐h irrigation events reflect minimal engagement of the soil matrix, indicating that preferential flow was the dominant path for water in the near surface. In contrast, high [SO42−] and δ34S values during 8‐h irrigation and storm events reflect near‐complete engagement of the soil matrix, indicating that lateral flow was the dominant pathway. Because hydrologic response and SO42− mobility are tightly coupled in these soils, the magnitude of water fluxes through the near surface controls S cycling both on and off site. These results indicate that preferential flow is an important loss pathway to consider in managing both water resources and water quality (reactive elements) in vineyard land use systems.

  20. PERBEDAAN SKIN CAPACITANCE DAN TRANSEPIDERMAL WATER LOSS PADA KULIT NON-LESI PASIEN PITIRIASIS VERSIKOLOR DENGAN NON-PITIRIASIS VERSIKOLOR

    Directory of Open Access Journals (Sweden)

    Satya Wydya Yenny

    2008-09-01

    Full Text Available AbstrakPada pitiriasis versikolor sering timbul kekambuhan, diduga salah satu penyebabnya adalah kelembaban kulit yang tinggi. Kelembaban kulit dipengaruhi oleh skin capacitance dan transepidermal water loss.Mengetahui skin capacitance dan transepidermal water loss kulit pasien pitiriasis versikolor dan perbedaannya dengan non-pitiriasis versikolor.Penelitian ini merupakan studi potong lintang perbandingan antar kelompok, yang dilakukan pada bulan September sampai dengan Nopember 2004 di Rumah Sakit Dr. Cipto Mangunkusumo. Subyek penelitian pasien pitiriasis versikolor dan kontrol non-pitiriasis versikolor yang dipasangkan dalam hal umur dan jenis kelamin dan dilakukan pemeriksaan skin capacitance dan transepidermal water loss pada kulit yang tampak normal di punggung menggunakan alat Tewameter/Corneometer 350.Dalam kurun waktu tersebut telah diperiksa sebanyak 32 pasien pitiriasis versikolor dan 32 kontrol non-pitiriasis versikolor. Skin capacitance pasien pitiriasis versikolor secara statistik tidak berbeda dengan kontrol non-pitiriasis versikolor (p = 0,730. Transepidermal water loss pasien pitiriasis versikolor secara bermakna lebih rendah dari pada kelompok kontrol non-pitiriasis versikolor (p = 0,000.Tidak ada perbedaan skin capacitance kulit pasien pitiriasis versikolor dengan non-pitiriasis versikolor. Transepidermal water loss kulit pasien pitiriasis versikolor lebih rendah daripada non-pitiriasis versikolor.Kata kunci: pitiriasis versikolor, skin capacitance, transepidermal water lossAbstractThe recurrence of pityriasis versicolor is high, it could be caused by high skin hydration. Skin hydration was influenced by skin capacitance and transepidermal water loss.ARTIKEL PENELITIAN168The purpose of this study was to compare the differences of the skin capacitance and transepidermal water loss between the pityriasis versicolor skin and healthy non-pityriasis versicolor skin.The design of this study was comparative cross-sectional study

  1. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  2. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  3. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks

    Directory of Open Access Journals (Sweden)

    Kazeem B. Adedeji

    2017-10-01

    Full Text Available Water loss through leaking pipes constitutes a major challenge to the operational service of water utilities. In recent years, increasing concern about the financial loss and environmental pollution caused by leaking pipes has been driving the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s of the network and the exact leaking pipelines connected to this segment(s where higher background leakage outflow occurs is a challenging task. Background leakage concerns the outflow from small cracks or deteriorated joints. In addition, because they are diffuse flow, they are not characterised by quick pressure drop and are not detectable by measuring instruments. Consequently, they go unreported for a long period of time posing a threat to water loss volume. Most of the existing research focuses on the detection and localisation of burst type leakages which are characterised by a sudden pressure drop. In this work, an algorithm for detecting and estimating background leakage in water distribution networks is presented. The algorithm integrates a leakage model into a classical WDN hydraulic model for solving the network leakage flows. The applicability of the developed algorithm is demonstrated on two different water networks. The results of the tested networks are discussed and the solutions obtained show the benefits of the proposed algorithm. A noteworthy evidence is that the algorithm permits the detection of critical segments or pipes of the network experiencing higher leakage outflow and indicates the probable pipes of the network where pressure control can be performed. However, the possible position of pressure control elements along such critical pipes will be addressed in future work.

  4. Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010

    Directory of Open Access Journals (Sweden)

    Gang Sun Kim

    2017-06-01

    Full Text Available Afforestation of forests in South Korea may provide an example of the benefit of afforestation on precipitation storage and erosion control. In this study, we presented the effects of afforestation on water supply and soil loss prevention. A spatio-temporal simulation of forest water yield and soil loss was performed from 1971–2010 using InVEST water yield and SWAT models. A forest stock change map was produced by combining land cover data and National Forest Inventory data. The forest water yield increased about twice with changes in forest stock and climate from 1971–2010 and showed a spatially homogeneous water supply capacity. In the same period, the soil loss decreased more than three times, and the volatility of soil loss, in the 2010s, was smaller than before. The analysis of the change in forest stock without considering climate change showed an increase of 43% in forest water yield and a decrease of 87% in soil loss. An increase in precipitation increased the water yield, but also increased the soil loss volume. A change in forest stock led to positive changes in both. This study presents functional positive effects of the afforestation program in South Korea that can be useful in various afforestation programs in other countries.

  5. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  6. A survey of preharvest conditions affecting the regulation of water loss during vase life

    NARCIS (Netherlands)

    Fanourakis, D.; Velez-Ramirez, A.I.; In, B.C.; Barendse, H.; Meeteren, van U.; Woltering, E.J.

    2015-01-01

    Vase life (VL) tests on cut roses obtained from commercial sources were conducted at FloraHolland. Water stress symptoms were the most important criterion terminating VL in 46 out of 50 assessed cultivars. These symptoms appear when water loss exceeds water uptake. Inadequate control of water

  7. Assessment of electrical stunning in fresh water of African Catfish (Clarias gariepinus) and chilling in ice water for loss of consciousness and sensibility

    NARCIS (Netherlands)

    Lambooij, E.; Kloosterboer, R.J.; Gerritzen, M.A.; Vis, van de J.W.

    2006-01-01

    The overall objective of the study was to evaluate loss of consciousness and sensibility after electrical stunning in fresh water and live chilling in ice water for slaughter of African catfish using measurement of electrical brain and heart activity. To provoke immediate loss of consciousness and

  8. Drainage water management combined with cover crop enhances reduction of soil phosphorus loss.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T; Wang, Y T

    2017-05-15

    Integrating multiple practices for mitigation of phosphorus (P) loss from soils may enhance the reduction efficiency, but this has not been studied as much as individual ones. A four-year study was conducted to determine the effects of cover crop (CC) (CC vs. no CC, NCC) and drainage water management (DWM) (controlled drainage with sub-irrigation, CDS, vs. regular free tile drainage, RFD) and their interaction on P loss through both surface runoff (SR) and tile drainage (TD) water in a clay loam soil of the Lake Erie region. Cover crop reduced SR flow volume by 32% relative to NCC, regardless of DWM treatment. In contrast, CC increased TD flow volume by 57 and 9.4% with CDS and RFD, respectively, compared to the corresponding DWM treatment with NCC. The total (SR+TD) field water discharge volumes were comparable amongst all the treatments. Cover crop reduced flow-weighted mean (FWM) concentrations of particulate P (PP) by 26% and total P (TP) by 12% in SR, while it didn't affect the FWM dissolved reactive P (DRP) concentration, regardless of DWM treatments. Compared with RFD, CDS reduced FWM DRP concentration in TD water by 19%, while CC reduced FWM PP and TP concentrations in TD by 21 and 17%, respectively. Total (SR+TD) soil TP loss was the least with CDS-CC followed by RFD-CC, CDS-NCC, and RFD-NCC. Compared with RFD-NCC, currently popular practice in the region, total TP loss was reduced by 23% with CDS-CC. The CDS-CC system can be an effective practice to ultimately mitigate soil P loading to water resource. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Measurement of transepidermal water loss in Tanzanian cot-nursed neonates and its relation to postnatal weight loss

    NARCIS (Netherlands)

    Thijs, HFH; Massawe, AW; Okken, A; Coenraads, PJ; Muskiet, FAJ; Huisman, M; Boersma, ER

    In healthy cot-nursed Tanzanian neonates (n = 92, gestation 26-42 weeks) measurements of transepidermal water loss (TEWL) and weight change were performed during the first 24 h after birth at an average ambient humidity of 70% and an environmental temperature of 32 degrees C. Urine production on day

  10. Analysis of loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Moldaschl, H.

    1982-01-01

    Analysis of loss-of-coolant accidents in pressurized water reactors -Quantification of the influence of leak size, control assembly worth, boron concentration and initial power by a dynamic operations criterion. Neutronic and thermohydraulic behaviour of a pressurized water reactor during a loss-of-coolant accident (LOCA) is mainly influenced by -change of fuel temperature, -void in the primary coolant. They cause a local stabilization of power density, that means that also in the case of small leaks local void is the main stabilization effect. As a consequence the increase of fuel temperature remains very small even under extremely hypothetical assumptions: small leak, positive reactivity feedback (positive coolant temperature coefficient, negative density coefficient) at the beginning of the accident and all control assemblies getting stuck. Restrictions which have been valid up to now for permitted start-up conditions to fulfill inherent safety requirements can be lossened substantially by a dynamic operations criterion. Burnable poisons for compensation of reactivity theorefore can be omitted. (orig.)

  11. Loss of the CNA I secured river water system: analysis and effect evaluation

    International Nuclear Information System (INIS)

    Berra, Sandra; Guala, Mariana I.; Lorenzo, Andrea T.; Raffo Calderon, Maria C.; Urrutia, Guillermo

    1999-01-01

    In this work the evolution of the plant parameters is evaluated in the case of a loss of the secured circuit of river water (system UK). In particular the systems which are affected for this loss were studied. It was evaluated the functional degradation of these systems. (author)

  12. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Sergey [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Misra, Manoj; Shi, Shanling [Unilever Research and Development, Trumbull, CT 06611 (United States); Firlar, Emre [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Libera, Matthew, E-mail: mlibera@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2010-06-15

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10{sup 5} e/nm{sup 2} despite the fact that observable damage begins at doses as low as 10{sup 3} e/nm{sup 2}. The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  13. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yakovlev, Sergey; Misra, Manoj; Shi, Shanling; Firlar, Emre; Libera, Matthew

    2010-01-01

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10 5 e/nm 2 despite the fact that observable damage begins at doses as low as 10 3 e/nm 2 . The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  14. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis.

    Science.gov (United States)

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  15. Legionellosis prevention in building water and HVAC systems a practical guide for design, operation and maintenance to minimize the risk

    CERN Document Server

    Joppolo, Cesare Maria; Pitera, Luca Alberto; Angermann, Jean Pierre; Izard, Mark

    2013-01-01

    This Guidebook is a practical guide for design, operation and maintenance to minimize the risk of legionellosis in building water and HVAC systmes. It is devided into several themes such as: Air conditioning of the air (by water – humidification), Production of hot water for washing (fundamentally but not only hot water for washing) and Evaporative cooling tower.

  16. Dynamics of organic carbon losses by water erosion after biocrust removal

    Directory of Open Access Journals (Sweden)

    Cantón Yolanda

    2014-12-01

    Full Text Available In arid and semiarid ecosystems, plant interspaces are frequently covered by communities of cyanobacteria, algae, lichens and mosses, known as biocrusts. These crusts often act as runoff sources and are involved in soil stabilization and fertility, as they prevent erosion by water and wind, fix atmospheric C and N and contribute large amounts of C to soil. Their contribution to the C balance as photosynthetically active surfaces in arid and semiarid regions is receiving growing attention. However, very few studies have explicitly evaluated their contribution to organic carbon (OC lost from runoff and erosion, which is necessary to ascertain the role of biocrusts in the ecosystem C balance. Furthermore, biocrusts are not resilient to physical disturbances, which generally cause the loss of the biocrust and thus, an increase in runoff and erosion, dust emissions, and sediment and nutrient losses. The aim of this study was to find out the influence of biocrusts and their removal on dissolved and sediment organic carbon losses. One-hour extreme rainfall simulations (50 mm h-1 were performed on small plots set up on physical soil crusts and three types of biocrusts, representing a development gradient, and also on plots where these crusts were removed from. Runoff and erosion rates, dissolved organic carbon (DOC and organic carbon bonded to sediments (SdOC were measured during the simulated rain. Our results showed different SdOC and DOC for the different biocrusts and also that the presence of biocrusts substantially decreased total organic carbon (TOC (average 1.80±1.86 g m-2 compared to physical soil crusts (7.83±3.27 g m-2. Within biocrusts, TOC losses decreased as biocrusts developed, and erosion rates were lower. Thus, erosion drove TOC losses while no significant direct relationships were found between TOC losses and runoff. In both physical crusts and biocrusts, DOC and SdOC concentrations were higher during the first minutes after runoff

  17. Water Table Management Reduces Tile Nitrate Loss in Continuous Corn and in a Soybean-Corn Rotation

    Directory of Open Access Journals (Sweden)

    Craig F. Drury

    2001-01-01

    Full Text Available Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR system was compared over 8 years (1991 to 1999 to a controlled tile drainage/subirrigation (CDS system on a low-slope (0.05 to 0.1% Brookston clay loam soil (Typic Argiaquoll in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994, continuous corn (Zea mays, L. was grown with annual nitrogen (N fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999, a soybean (Glycine max L., Merr.-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l–1 under DR (11.4 mg N l–1, but not under CDS (7.0 mg N l–1. In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l–1 and CDS (4.0 mg N l–1. During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge

  18. Boiling water reactor

    International Nuclear Information System (INIS)

    Matsumoto, Tomoyuki; Inoue, Kotaro; Ishida, Masayoshi.

    1975-01-01

    Object: To connect a feedwater pipe to a recycling pipe line, the recycling pipe line being made smaller in diameter, thereby minimizing loss of coolant resulting from rupture of the pipe and improving safety against trouble of coolant loss. Structure: A feedwater pipe is directly connected to a recycling pipe line before a booster pump, and a mixture of recycling water and feedwater is increased in pressure by the booster pump, after which it is introduced into a jet pump in the form of water for driving the jet pump to suck surrounding water causing it to be flown into the core. In accordance with the abovementioned structure, since the flow of feedwater can be used as a part of water for driving the jet pump, the flow within the recycling pipe line may be decreased so that the recycling pipe line can be made smaller in diameter to reduce the flow of coolant in the reactor, which flows out when the pipe is ruptured. (Furukawa, Y.)

  19. Water consumption increases weight loss during a hypocaloric diet intervention in middle-aged and older adults.

    Science.gov (United States)

    Dennis, Elizabeth A; Dengo, Ana Laura; Comber, Dana L; Flack, Kyle D; Savla, Jyoti; Davy, Kevin P; Davy, Brenda M

    2010-02-01

    Water consumption acutely reduces meal energy intake (EI) among middle-aged and older adults. Our objectives were to determine if premeal water consumption facilitates weight loss among overweight/obese middle-aged and older adults, and to determine if the ability of premeal water consumption to reduce meal EI is sustained after a 12-week period of increased water consumption. Adults (n = 48; 55-75 years, BMI 25-40 kg/m(2)) were assigned to one of two groups: (i) hypocaloric diet + 500 ml water prior to each daily meal (water group), or (ii) hypocaloric diet alone (nonwater group). At baseline and week 12, each participant underwent two ad libitum test meals: (i) no preload (NP), and (ii) 500 ml water preload (WP). Meal EI was assessed at each test meal and body weight was assessed weekly for 12 weeks. Weight loss was ~2 kg greater in the water group than in the nonwater group, and the water group (beta = -0.87, P hypocaloric diet, consuming 500 ml water prior to each main meal leads to greater weight loss than a hypocaloric diet alone in middle-aged and older adults. This may be due in part to an acute reduction in meal EI following water ingestion.

  20. Whole-field macro- and micro-deformation characteristic of unbound water-loss in dentin hard tissue.

    Science.gov (United States)

    Chen, Zhenning; Nadeau, Bobby; Yu, Kevin; Shao, Xinxing; He, Xiaoyuan; Goh, M Cynthia; Kishen, Anil

    2018-04-06

    High-resolution deformation measurements in a functionally graded hard tissue such as human dentin are essential to understand the unbound water-loss mediated changes and their role in its mechanical integrity. Yet a whole-field, 3-dimensional (3D) measurement and characterization of fully hydrated dentin in both macro- and micro-scales remain to be a challenge. This study was conducted in 2 stages. In stage-1, a stereo-digital image correlation approach was utilized to determine the water-loss and load-induced 3D deformations of teeth in a sagittal section over consecutively acquired frames, from a fully hydrated state to nonhydrated conditions for a period up to 2 hours. The macroscale analysis revealed concentrated residual deformations at the dentin-enamel-junction and the apical regions of root in the direction perpendicular to the dentinal tubules. Significant difference in the localized deformation characteristics was observed between the inner and outer aspects of the root dentin. During quasi-static loadings, further increase in the residual deformation was observed in the dentin. In stage-2, dentin microstructural variations induced by dynamic water-loss were assessed with environmental scanning electron microscopy and atomic force microscopy (AFM), showing that the dynamic water-loss induced distention of dentinal tubules with concave tubular edges, and concurrent contraction of intertubular dentin with convex profile. The findings from the current macro- and micro-scale analysis provided insight on the free-water-loss induced regional deformations and ultrastructural changes in human dentin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Entropy Generation Minimization for Reverse Water Gas Shift (RWGS Reactors

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-05-01

    Full Text Available Thermal design and optimization for reverse water gas shift (RWGS reactors is particularly important to fuel synthesis in naval or commercial scenarios. The RWGS reactor with irreversibilities of heat transfer, chemical reaction and viscous flow is studied based on finite time thermodynamics or entropy generation minimization theory in this paper. The total entropy generation rate (EGR in the RWGS reactor with different boundary conditions is minimized subject to specific feed compositions and chemical conversion using optimal control theory, and the optimal configurations obtained are compared with three reference reactors with linear, constant reservoir temperature and constant heat flux operations, which are commonly used in engineering. The results show that a drastic EGR reduction of up to 23% can be achieved by optimizing the reservoir temperature profile, the inlet temperature of feed gas and the reactor length simultaneously, compared to that of the reference reactor with the linear reservoir temperature. These optimization efforts are mainly achieved by reducing the irreversibility of heat transfer. Optimal paths have subsections of relatively constant thermal force, chemical force and local EGR. A conceptual optimal design of sandwich structure for the compact modular reactor is proposed, without elaborate control tools or excessive interstage equipment. The results can provide guidelines for designing industrial RWGS reactors in naval or commercial scenarios.

  2. The effect of fibers on the loss of water by evaporation and shrinkage of concrete

    Directory of Open Access Journals (Sweden)

    N. M. P. Pillar

    Full Text Available Shrinkage is one of the least desirable attributes in concrete. Large areas of exposed concrete surfaces , such as in shotcrete tunnel linings, where it is practically impossible to make a moist cure, are highly susceptible to plastic shrinkage at early ages. The autogenous and drying shrinkage can lead to states of greater than threshold strength, causing fracture, mechanical damage and lack of durability of concrete structures. The addition of fibers can greatly reduce plastic shrinkage, but has limited effect in mitigating autogenous and drying shrinkage. To evaluate the performance of polypropylene and steel fibers to understand their effect on shrinkage of concrete, a study was carried out to relate the loss of water from the paste and the shrinkage during the first 28 days of age, and compare it with a control mix without fiber. The loss of water was obtained by the weight loss of the specimens at different ages, since the only component that could contribute for the loss of weight was the water lost by the paste of the concrete. And the paste itself is the only source of shrinkage. Uniaxial compressive tests from very early ages enabled the determination of time when plastic shrinkage ended. It was observed that the control concrete mix lost three times more water and developed plastic and drying shrinkage 60 % higher than the fiber reinforced concrete mixes. It was possible to demonstrate that the reduced loss of water caused by the incorporation of fibers is related to the mitigation of plastic shrinkage. It was observed that the fibers are effective to restrain the movement of water through the cement paste in the plastic state, however such effect is limited after concrete starts the hardening state.

  3. Low water FGD technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Conventional flue gas desulphurisation (FGD) systems require large supplies of water. Technologies which reduce water usage are becoming more important with the large number of FGD systems being installed in response to ever tightening emission regulations. Reducing water loss is particularly important in arid regions of the world. This report reviews commercial and near commercial low water FGD processes for coal-fired power plants, including dry, semi-dry and multi-pollutant technologies. Wet scrubbers, the most widely deployed FGD technology, account for around 10–15% of the water losses in power plants with water cooling systems. This figure is considerably higher when dry/air cooling systems are employed. The evaporative water losses can be reduced by some 40–50% when the flue gas is cooled before it enters the wet scrubber, a common practice in Europe and Japan. Technologies are under development to capture over 20% of the water in the flue gas exiting the wet scrubber, enabling the power plant to become a water supplier instead of a consumer. The semi-dry spray dry scrubbers and circulating dry scrubbers consume some 60% less water than conventional wet scrubbers. The commercial dry sorbent injection processes have the lowest water consumption, consuming no water, or a minimal amount if the sorbent needs hydrating or the flue gas is humidified to improve performance. Commercial multi-pollutant systems are available that consume no water.

  4. Loss of coolant accident at boiling water reactors

    International Nuclear Information System (INIS)

    Ramirez G, R.

    1975-01-01

    A revision is made with regard to the methods of thermohydraulic analysis which are used at present in order to determine the efficiency of the safety systems against loss of coolant at boiling water reactors. The object is to establish a program of work in the INEN so that the personnel in charge of the safety of the nuclear plants in Mexico, be able to make in a near future, independent valuations of the safety systems which mitigate the consequences of the above mentioned accident. (author)

  5. The U.S. DOE new production reactor/heavy water reactor facility pollution prevention/waste minimization program

    International Nuclear Information System (INIS)

    Kaczmarsky, Myron M.; Tsang, Irving; Stepien, Walter P.

    1992-01-01

    A Pollution Prevention/Waste Minimization Program was established during the early design phase of the U.S. DOE's New Production Reactor/Heavy Water Reactor Facility (NPR/HWRF) to encompass design, construction, operation and decommissioning. The primary emphasis of the program was given to waste elimination, source reduction and/or recycling to minimize the quantity and toxicity of material before it enters the waste stream for treatment or disposal. The paper discusses the regulatory and programmatic background as it applies to the NPR/HWRF and the waste assessment program developed as a phased approach to pollution prevention/waste minimization for the NPR/HWRF. Implementation of the program will be based on various factors including life cycle cost analysis, which will include costs associated with personnel, record keeping, transportation, pollution control equipment, treatment, storage, disposal, liability, compliance and oversight. (author)

  6. Quadratic head loss approximations for optimisation problems in water supply networks

    NARCIS (Netherlands)

    Pecci, Filippo; Abraham, E.; I, Stoianov

    2017-01-01

    This paper presents a novel analysis of the accuracy of quadratic approximations for the Hazen–Williams (HW) head loss formula, which enables the control of constraint violations in optimisation problems for water supply networks. The two smooth polynomial approximations considered here minimise the

  7. Solid Cattle Manure Less Prone to Phosphorus Loss in Tile Drainage Water.

    Science.gov (United States)

    Wang, Y T; Zhang, T Q; Tan, C S; Qi, Z M; Welacky, T

    2018-03-01

    Forms (e.g., liquid and solid) of manure influence the risk of P loss after land application. The objective of this study was to investigate the effects of P-based application of various forms of cattle manure (liquid, LCM; or solid, SCM) or inorganic P as triple superphosphate (IP) on soil P losses in tile drainage water. A 4-yr field experiment was conducted in a clay loam soil with a corn ( L.)-soybean [ (L.) Merr.] rotation in the Lake Erie basin. Over the 4 yr, the dissolved reactive P (DRP) flow-weighted mean concentration (FWMC) in tile drainage water was greater under SCM fertilization than under either IP or LCM fertilization. Despite its lower value on an annual basis, DRP FWMC rose dramatically immediately after LCM application. However, the differences in DRP FWMC did not result in detectable differences in DRP loads. Regarding particulate P and total P losses during the 4 yr, they were 68 and 47%, respectively, lower in the soils amended with SCM than in those with IP, whereas both values were similar between IP and LCM treatments. Overall, the P contained in solid cattle manure was less prone to P loss after land application. Accordingly, the present results can provide a basis for manure storage and application of best management practices designed to reduce P losses and improve crop growth. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Evaluating radon loss from water during storage in standard PET, bio-based PET, and PLA bottles

    International Nuclear Information System (INIS)

    Lucchetti, Carlo; De Simone, Gabriele; Galli, Gianfranco; Tuccimei, Paola

    2016-01-01

    Polyethylene terephthalate (PET) and polylactic acid (PLA) bottles were tested to evaluate radon loss from water during 15 days of storage. PET bottles (lower surface/volume-ratio vials) lost 0.4–7.1% of initial radon, whereas PLA bottles lost 3.7% of it. PET bottles with volume of 0.5 L, lower surface/weight ratio, and hence higher thickness display proportionally reduced radon loss. Corrections for dissolved radium are needed during analyses. Formulas for calculating degassing efficiency and water interference on electrostatic collections are developed. - Highlights: • Radon loss from water during storage in polyethylene terephthalate (PET) and polylactic acid (PLA) bottles was evaluated. • Surface/volume ratio and thickness of plastic materials were studied. • A correction for dissolved radium concentration was applied to estimate gas loss. • Proper corrections for degassing efficiency of aerators were developed. • The interference of H 2 O on radon daughter electrostatic collection was quantified.

  9. Adaptation of metabolism and evaporative water loss along an aridity gradient

    NARCIS (Netherlands)

    Tieleman, BI; Williams, JB; Bloomer, P

    2003-01-01

    Broad-scale comparisons of birds indicate the possibility of adaptive modification of basal metabolic rate (BMR) and total evaporative water loss (TEWL) in species from desert environments, but these might be confounded by phylogeny or phenotypic plasticity. This study relates variation in avian BMR

  10. Water loss in horticultural products. Modelling, data analysis and theoretical considerations

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Jacob, S.; Schouten, R.E.; Fernandez-Trujillo, J.P.; Dos-Santos, N.; Vangdal, E.; Pagan, E.; Perez Pastor, A.

    2010-01-01

    The water loss of individual fruit (melon, plum and mandarin) was analysed using the traditional diffusion based approach and a kinetic approach. Applying simple non linear regression, both approaches are the same, resulting in a quite acceptable analysis. However, by applying mixed effects non

  11. Linearly convergent stochastic heavy ball method for minimizing generalization error

    KAUST Repository

    Loizou, Nicolas

    2017-10-30

    In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss and not on finite-sum minimization, which is typically a much harder problem. While in the analysis we constrain ourselves to quadratic loss, the overall objective is not necessarily strongly convex.

  12. DGA-based VAR rescheduling for transmission loss reduction

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S. [Indian Inst. of Technology, Delhi (India); Taylor, G.A. [Brunel Univ., London (United Kingdom). Brunel Inst. of Power Systems; Reddy, J.B.V. [Government of India, New Delhi (India). Dept. of Science and Technology; Naeem, M.H. [Multimedia Univ. (Malaysia). Faculty of Engineering

    2009-07-01

    Power losses in power transmission lines can be minimized by adjusting transformer taps and switchable VAR sources. Optimal power flow (OPF) is a static, nonlinear, multi-objective optimization challenge in which the optimal settings of control variables must be determined for minimizing the cost of generation, emissions, transmission losses and voltage and power flow deviations. OPF is important in power system operation because a small savings per hour can mean a large annual savings. This paper presented a method to reduce transmission power losses using a Differential Genetic Algorithm (DGA) for VAR rescheduling. The New England 39-bus power system was used as a test case. Power losses were minimized by changing the tap settings of various transformers and by varying the injected reactive power. The paper showed that certain buses in the system can improve the voltage profile and reduce transmission losses through reactive power injections from capacitor banks. In this study, minimum reactive power output of generators was maintained at zero to ensure that the generators did not draw reactive power. The DGA was shown to produce better results than the Conventional Genetic Algorithm in terms of power loss minimization. 12 refs., 1 tab., 2 figs.

  13. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  14. Age, Loss Minimization, and the Role of Probability for Decision-Making.

    Science.gov (United States)

    Best, Ryan; Freund, Alexandra M

    2018-04-05

    Older adults are stereotypically considered to be risk averse compared to younger age groups, although meta-analyses on age and the influence of gain/loss framing on risky choices have not found empirical evidence for age differences in risk-taking. The current study extends the investigation of age differences in risk preference by including analyses on the effect of the probability of a risky option on choices in gain versus loss situations. Participants (n = 130 adults aged 19-80 years) chose between a certain option and a risky option of varying probability in gain- and loss-framed gambles with actual monetary outcomes. Only younger adults displayed an overall framing effect. Younger and older adults responded differently to probability fluctuations depending on the framing condition. Older adults were more likely to choose the risky option as the likelihood of avoiding a larger loss increased and as the likelihood of a larger gain decreased. Younger adults responded with the opposite pattern: they were more likely to choose the risky option as the likelihood of a larger gain increased and as the likelihood of avoiding a (slightly) larger loss decreased. Results suggest that older adults are more willing to select a risky option when it increases the likelihood that larger losses be avoided, whereas younger adults are more willing to select a risky option when it allows for slightly larger gains. This finding supports expectations based on theoretical accounts of goal orientation shifting away from securing gains in younger adulthood towards maintenance and avoiding losses in older adulthood. Findings are also discussed in respect to the affective enhancement perspective and socioemotional selectivity theory. © 2018 S. Karger AG, Basel.

  15. Gauging leaf-level contributions to landscape-level water loss within a Western US dryland fores

    Science.gov (United States)

    Murphy, P.; Potts, D. L.; Minor, R. L.; Hamerlynck, E. P.; Sutter, L., Jr.; Barron-Gafford, G.

    2017-12-01

    Western US forests represent a large constituent of the North American water and carbon cycles, yet the primary controls on water loss from these ecosystems remains unknown. In dryland forests, such as those found in the Southwestern US, water availability is key to ecosystem function, and the timing and magnitude of water loss can have lasting effects on the health of these communities. One poorly defined part of the water balance in these forests is the partitioning of evapotranspiration (ET) into evaporation (E; blue flow) to transpiration (T; green flow). A study of water fluxes at multiple scales in a semiarid montane forest in Southern Arizona speaks to the partitioning of these two water flows. Within the footprint of an eddy covariance system, which estimates ecosystem ET, we have examined the impacts of variation in climate, species makeup, and topographic position on E and T. This was done using leaf-level measures of T, pedon-scale measures of E, and whole-tree water loss by way of sap flux sensors. Where available, we have examined E, T, and ET fluxes across multiple seasons and years of highly variable precipitation records. Understanding the partitioning of ET is crucial, considering that projected changes to dryland ecosystems include longer periods of drought separated by heavier precipitation events. At a moment when potential impacts of changing climate on dryland structure and function are poorly understood, a stronger comprehension of these blue and green water flows is necessary to forecast the productivity of Western US forests into the future.

  16. Reducing Runoff Loss of Applied Nutrients in Oil Palm Cultivation Using Controlled-Release Fertilizers

    Directory of Open Access Journals (Sweden)

    A. Bah

    2014-01-01

    Full Text Available Controlled-release fertilizers are expected to minimize nutrient loss from crop fields due to their potential to supply plant-available nutrients in synchrony with crop requirements. The evaluation of the efficiency of these fertilizers in tropical oil palm agroecological conditions is not yet fully explored. In this study, a one-year field trial was conducted to determine the impact of fertilization with water soluble conventional mixture and controlled-release fertilizers on runoff loss of nutrients from an immature oil palm field. Soil and nutrient loss were monitored for one year in 2012/2013 under erosion plots of 16 m2 on 10% slope gradient. Mean sediments concentration in runoff amounted to about 6.41 t ha−1. Conventional mixture fertilizer posed the greatest risk of nutrient loss in runoff following fertilization due to elevated nitrogen (6.97%, potassium (13.37%, and magnesium (14.76% as percentage of applied nutrients. In contrast, this risk decreased with the application of controlled-release fertilizers, representing 0.75–2.44% N, 3.55–5.09% K, and 4.35–5.43% Mg loss. Meanwhile, nutrient loss via eroded sediments was minimal compared with loss through runoff. This research demonstrates that the addition of controlled-release fertilizers reduced the runoff risks of nutrient loss possibly due to their slow-release properties.

  17. Influence of ionic strength on the viscosities and water loss of bentonite suspensions containing polymers

    Directory of Open Access Journals (Sweden)

    Luciana Viana Amorim

    2007-03-01

    Full Text Available A study was made of the influence of ionic strength (S on the apparent (AV and plastic (PV viscosities and water loss (WL of sodium bentonite suspension with polymers. Na-bentonite was dispersed in water (4.86% w/w of different ionic strengths (S = 0.0, 0.015, 0.030 and 0.045 M followed by the addition of polymer. Three polymer samples were studied, i.e., low viscosity carboxymethyl cellulose (CMC BV, polyanionic cellulose (PAC, and partially hydrolyzed polyacrylamide (HPAM. The results indicated that the presence of salts and increased salinity greatly influence the apparent and plastic viscosities and water loss of bentonite suspensions with polymer.

  18. Silver chemical vapor generation for atomic absorption spectrometry: Minimization of transport losses, interferences and application to water analysis

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Kratzer, Jan; Vobecký, Miloslav; Benada, Oldřich; Matoušek, Tomáš

    2010-01-01

    Roč. 25, č. 10 (2010), s. 1618-1626 ISSN 0267-9477 R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501; CEZ:AV0Z50200510 Keywords : chemical vapor generation * 111Ag radioindicator * transport losses Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.372, year: 2010

  19. Technology Solutions for New and Existing Homes Case Study: Addressing Multifamily Piping Losses with Solar Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    D. Springer, M. Seitzler, and C. Backman

    2016-12-01

    Sun Light & Power, a San Francisco Bay Area solar design-build contractor, teamed with the U.S. Department of Energy’s Building America partner the Alliance for Residential Building Innovation (ARBI) to study this heat-loss issue. The team added three-way valves to the solar water heating systems for two 40-unit multifamily buildings. In these systems, when the stored solar hot water is warmer than the recirculated hot water returning from the buildings, the valves divert the returning water to the solar storage tank instead of the water heater. This strategy allows solar-generated heat to be applied to recirculation heat loss in addition to heating water that is consumed by fixtures and appliances.

  20. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  1. Using a mass balance to determine the potency loss during the production of a pharmaceutical blend.

    Science.gov (United States)

    Mackaplow, Michael B

    2010-09-01

    The manufacture of a blend containing the active pharmaceutical ingredient (API) and inert excipients is a precursor for the production of most pharmaceutical capsules and tablets. However, if there is a net water gain or preferential loss of API during production, the potency of the final drug product may be less than the target value. We use a mass balance to predict the mean potency loss during the production of a blend via wet granulation and fluidized bed drying. The result is an explicit analytical equation for the change in blend potency a function of net water gain, solids losses (both regular and high-potency), and the fraction of excipients added extragranularly. This model predicts that each 1% gain in moisture content (as determined by a loss on drying test) will decrease the API concentration of the final blend at least 1% LC. The effect of pre-blend solid losses increases with their degree of superpotency. This work supports Quality by Design by providing a rational method to set the process design space to minimize blend potency losses. When an overage is necessary, the model can help justify it by providing a quantitative, first-principles understanding of the sources of potency loss. The analysis is applicable to other manufacturing processes where the primary sources of potency loss are net water gain and/or mass losses.

  2. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  3. Electron-induced hydrogen loss in uracil in a water cluster environment

    International Nuclear Information System (INIS)

    Smyth, M.; Kohanoff, J.; Fabrikant, I. I.

    2014-01-01

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A ′ -resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons

  4. Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).

    Science.gov (United States)

    Groenewald, Berlizé; Bazelet, Corinna S; Potter, C Paige; Terblanche, John S

    2013-10-15

    The importance of metabolic rate and/or spiracle modulation for saving respiratory water is contentious. One major explanation for gas exchange pattern variation in terrestrial insects is to effect a respiratory water loss (RWL) saving. To test this, we measured the rates of CO2 and H2O release ( and , respectively) in a previously unstudied, mesic cockroach, Aptera fusca, and compared gas exchange and water loss parameters among the major gas exchange patterns (continuous, cyclic, discontinuous gas exchange) at a range of temperatures. Mean , and per unit did not differ among the gas exchange patterns at all temperatures (P>0.09). There was no significant association between temperature and gas exchange pattern type (P=0.63). Percentage of RWL (relative to total water loss) was typically low (9.79±1.84%) and did not differ significantly among gas exchange patterns at 15°C (P=0.26). The method of estimation had a large impact on the percentage of RWL, and of the three techniques investigated (traditional, regression and hyperoxic switch), the traditional method generally performed best. In many respects, A. fusca has typical gas exchange for what might be expected from other insects studied to date (e.g. , , RWL and cuticular water loss). However, we found for A. fusca that expressed as a function of metabolic rate was significantly higher than the expected consensus relationship for insects, suggesting it is under considerable pressure to save water. Despite this, we found no consistent evidence supporting the conclusion that transitions in pattern type yield reductions in RWL in this mesic cockroach.

  5. A Preliminary Study on Rainfall Interception Loss and Water Yield Analysis on Arabica Coffee Plants in Central Aceh Regency, Indonesia

    Directory of Open Access Journals (Sweden)

    Reza Benara

    2012-12-01

    Full Text Available Rainfall interception loss from plants or trees can reduce a net rainfall as source of water yield. The amount of rainfall interception loss depends on kinds of plants and hydro-meteorological characteristics. Therefore, it is important to study rainfall interception loss such as from Arabica Coffee plantation which is as main agricultural commodity for Central Aceh Regency. In this study, rainfall interception loss from Arabica Coffee plants was studied in Kebet Village of Central Aceh Regency, Indonesia from January 20 to March 9, 2011. Arabica coffee plants used in this study was 15 years old, height of 1.5 m and canopy of 4.567 m2. Rainfall interception loss was determined based on water balance approach of daily rainfall, throughfall, and stemflow data. Empirical regression equation between rainfall interception loss and rainfall were adopted as a model to estimate rainfall interception loss from Arabica Coffee plantation, which the coefficient of correlation, r is 0.98. In water yield analysis, this formula was applied and founded that Arabica Coffee plants intercept 76% of annual rainfall or it leaved over annual net rainfall 24% of annual rainfall. Using this net rainfall, water yield produced from Paya Bener River which is the catchment area covered by Arabica Coffee plantation was analyzed in a planning of water supply project for water needs domestic of 3 sub-districts in Central Aceh Regency. Based on increasing population until year of 2025, the results showed that the water yield will be not enough from year of 2015. However, if the catchment area is covered by forest, the water yield is still enough until year of 2025

  6. Homeostasis in leaf water potentials on leeward and windward sides of desert shrub crowns: water loss control vs. high hydraulic efficiency.

    Science.gov (United States)

    Iogna, Patricia A; Bucci, Sandra J; Scholz, Fabián G; Goldstein, Guillermo

    2013-11-01

    Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.

  7. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L.

    Science.gov (United States)

    Stanton, Kelly M; Mickelbart, Michael V

    2014-01-01

    Two primarily eastern US native shrubs, Spiraea alba Du Roi and Spiraea tomentosa L., are typically found growing in wet areas, often with standing water. Both species have potential for use in the landscape, but little is known of their environmental requirements, including their adaptation to water stress. Two geographic accessions of each species were evaluated for their response to water stress under greenhouse conditions. Above-ground biomass, water relations and gas exchange were measured in well-watered and water stress treatments. In both species, water stress resulted in reduced growth, transpiration and pre-dawn water potential. However, both species also exhibited the ability to osmotically adjust to lower soil water content, resulting in maintained midday leaf turgor potential in all accessions. Net CO2 assimilation was reduced only in one accession of S. alba, primarily due to large reductions in stomatal conductance. S. tomentosa lost a larger proportion of leaves than S. alba in response to water stress. The primary water stress tolerance strategies of S. alba and S. tomentosa appear to be the maintenance of water uptake and reduced water loss.

  8. Nutrient and Organic Carbon Losses, Enrichment Rate, and Cost of Water Erosion

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    Full Text Available ABSTRACT Soil erosion from water causes loss of nutrients and organic carbon, enriches the environment outside the erosion site, and results in costs. The no-tillage system generates increased nutrient and C content in the topsoil and, although it controls erosion, it can produce a more enriched runoff than in the conventional tillage system. This study was conducted in a Humic Cambisol in natural rainfall from 1997 to 2012 to quantify the contents and total losses of nutrients and organic C in soil runoff, and to calculate the enrichment rates and the cost of these losses. The treatments evaluated were: a soil with a crop, consisting of conventional tillage with one plowing + two harrowings (CT, minimum tillage with one chisel plowing + one harrowing (MT, and no tillage (NT; and b bare soil: one plowing + two harrowings (BS. In CT, MT, and NT, black oat, soybean, vetch, corn, turnip, and black beans were cultivated. Over the 15 years, 15.5 Mg ha-1 of limestone, 525 kg ha-1 of N (urea, 1,302 kg ha-1 of P2O5 (triple superphosphate, and 1,075 kg ha-1 of K2O (potassium chloride were used in the soil. The P, K, Ca, Mg, and organic C contents in the soil were determined and also the P, K, Ca, and Mg sediments in the runoff water. From these contents, the total losses, the enrichment rates (ER, and financial losses were calculated. The NT increased the P, K, and organic C contents in the topsoil. The nutrients and organic C content in the runoff from NT was greater than from CT, showing that NT was not a fully conservationist practice for soil. The linear model y = a + bx fit the data within the level of significance (p≤0.01 when the values of P, K, and organic C in the sediments from erosion were related to those values in the soil surface layer. The nutrient and organic C contents were higher in the sediments from erosion than in the soil where the erosion originated, generating values of ER>1 for P, K, and organic C. The value of the total losses

  9. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...... on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank...... by computational fluid dynamics (CFD) calculations and by thermal measurements. A tank with uniform temperatures and thermal stratification is studied. The distribution of the heat loss coefficient for the different parts of the tank is measured by tests and used as input to the CFD model. The investigations focus...

  10. A Stochastic Integer Programming Model for Minimizing Cost in the Use of Rain Water Collectors for Firefighting

    Directory of Open Access Journals (Sweden)

    Luis A. Rivera-Morales

    2014-01-01

    Full Text Available In this paper we propose a stochastic integer programming optimization model to determine the optimal location and number of rain water collectors (RWCs for forest firefighting. The objective is to minimize expected total cost to control forest fires. The model is tested using a real case and several additional realistic scenarios. The impact on the solution of varying the limit on the number of RWCs, the RWC water capacity, the aircraft capacity, the water demands, and the aircraft operating cost is explored. Some observations are that the objective value improves with larger RWCs and with the use of aircraft with greater capacity.

  11. When gains loom larger than losses: reversed loss aversion for small amounts of money.

    Science.gov (United States)

    Harinck, Fieke; Van Dijk, Eric; Van Beest, Ilja; Mersmann, Paul

    2007-12-01

    Previous research has generally shown that people are loss averse; that is, they weigh losses more heavily than gains. In a series of three experiments, we found that for small outcomes, this pattern is reversed, and gains loom larger than losses. We explain this reversal on the basis of (a) the hedonic principle, which states that individuals are motivated to maximize pleasure and to minimize pain, and (b) the assumption that small losses are more easily discounted cognitively than large losses are.

  12. Make or buy analysis model based on tolerance allocation to minimize manufacturing cost and fuzzy quality loss

    Science.gov (United States)

    Rosyidi, C. N.; Puspitoingrum, W.; Jauhari, W. A.; Suhardi, B.; Hamada, K.

    2016-02-01

    The specification of tolerances has a significant impact on the quality of product and final production cost. The company should carefully pay attention to the component or product tolerance so they can produce a good quality product at the lowest cost. Tolerance allocation has been widely used to solve problem in selecting particular process or supplier. But before merely getting into the selection process, the company must first make a plan to analyse whether the component must be made in house (make), to be purchased from a supplier (buy), or used the combination of both. This paper discusses an optimization model of process and supplier selection in order to minimize the manufacturing costs and the fuzzy quality loss. This model can also be used to determine the allocation of components to the selected processes or suppliers. Tolerance, process capability and production capacity are three important constraints that affect the decision. Fuzzy quality loss function is used in this paper to describe the semantic of the quality, in which the product quality level is divided into several grades. The implementation of the proposed model has been demonstrated by solving a numerical example problem that used a simple assembly product which consists of three components. The metaheuristic approach were implemented to OptQuest software from Oracle Crystal Ball in order to obtain the optimal solution of the numerical example.

  13. Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss.

    Science.gov (United States)

    Matthews, Jack S A; Vialet-Chabrand, Silvere R M; Lawson, Tracy

    2017-06-01

    Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO 2 diffusion into the leaf to maintain photosynthetic rates ( A ). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Minimization of the power losses in televisions. Report no. 1

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard, Leo

    1996-03-01

    In order to achieve a simple and a manageable circuit to analyse, the verical deflection circuit is disregarded and the horizontal deflection/EHT circuit is simplified. In the simplified circuit the EHT generator and the deflection circuit are fully coupled and the east/west modulation and the linearity coil are among other facilities ignored. It is argued for that the simplification does not influence the basic mode of operation of the deflection/EHT circuit and the mode of operation is discussed by means of idealised considerations. A laboratory model of the simplified deflection/EHT circuit has been built and connected in parallel to a 100 HZ television set. By doing this no control circuits are needed in the simplified circuit. Measurements on the simplified defelection/EHT circuit are carried out at three different loads of the DST. The measurements are focused on the voltage and the current waveforms on a circuit level and the influence of the parasitic components is discussed. Besides, a comparison of the waveforms at three different loads is performed and comments and conclusions are presented. A general introduction to the facilities in Saber highlights the primary difference between Spice and Saber with focus on the basic architecture of Saber. The procedure of simulating the simplified deflection/EHT circuit is explained and the demarcations are presented. The simulation is performed with both idealised models of the components and with existing models of the components in Saber. The models of both types of components are shortly presented. The simulated waveforms are in close agreement with the measured waveforms apart from the ringing primary caused by the parasitic components in the DST which are not included in the simulation model. The measuring system, the general measuring process and the data processing used when mapping the power losses in the simplified deflection/EHT circuit are explained. The measurements are performed at the working

  15. Electron-induced hydrogen loss in uracil in a water cluster environment

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, M.; Kohanoff, J. [Atomistic Simulation Centre, Queen' s University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom); Fabrikant, I. I., E-mail: ifabrikant1@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, USA and Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2014-05-14

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A{sup ′}-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.

  16. Water pressure control device for control rod drive

    International Nuclear Information System (INIS)

    Sato, Hideyuki.

    1981-01-01

    Purpose: To minimize the fluctuations in the reactor water level upon occurrence of abnormality by inputting the level signal of the reactor to an arithmetic unit for controlling the pressure of control rod drive water to thereby enable effective reactor level control. Constitution: Signal from a flow rate transmitter is inputted into an arithmetic unit to perform constant flow rate control upon normal operation. While on the other hand, if abnormality occurs such as feedwater pump trips, the arithmetic unit is switched from the constant flow rate control to the reactor water level control. Reactor water level signal is inputted into the arithmetic unit and the control valve is most suitably controlled, whereby water is fed from CST to the reactor by way of control rod drive water system to secure the reactor water level if feedwater to the reactor is interrupted by loss of coolants on the feedwater system. Since this enables to minimize the fluctuations in the reactor water level upon abnormality, the reactor water level can be controlled most suitably by the reactor water level signal. (Moriyama, K.)

  17. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss

    Directory of Open Access Journals (Sweden)

    Oliveira Antonio F. M.

    2003-01-01

    Full Text Available The effects of the contents and chemical composition of the foliar epicuticular waxes of species from the caatinga (Aspidosperma pyrifolium, Capparis yco, Maytenus rigida and Ziziphus joazeiro and cerrado (Aristolochia esperanzae, Didymopanax vinosum, Strychnos pseudoquina and Tocoyena formosa were evaluated as to the resistance to water loss by means of an experimental device constructed for this purpose. In general, the waxes of the caatinga species investigated were more efficient against water loss than cerrado species. Increase of the thickness of the waxy deposits from 40 to 90m g.cm-2 had no significant effect on the resistance to water loss. The chemistry of the wax constituents was shown to be an important factor to determine the degree of resistance to evaporation. n-Alkanes and alcoholic triterpenes were the most efficient barriers, while hentriacontan-16-one (a ketone and ursolic acid (an acid triterpene revealed lowefficiency. The higher efficiency of the waxes of the leaves from caatinga species (mainly those of C. yco and Z. joazeiro is probably accounted for the predominance of n-alkanes in their composition. The lower efficiency of the waxes of A. pyrifolium (caatinga, T. formosa and A. esperanzae (both species from the cerrado is probably a consequence of the predominance of triterpenoids in the waxes of the two former species and hentriacontan-16-one in the latter.

  18. Weight loss and survival of Biomphalaria Glabrata deprived of water

    Directory of Open Access Journals (Sweden)

    Marc Vianey-Liaud

    1986-06-01

    Full Text Available Immature and mature Biomphalaria glabrata are kept out of water at relative humidities varying from 0 to 100%. When snails are submitted to a saturated atmosphere, they show a slow weight loss and survival may be long. If relative humidity (RH decreases, weight loss becomes important and survival is short. A reduced RH (0 to 65% produces similar effects. During desiccation, fasting has no noticeable effect; survival depends essentially on weight loss.Biomphalaria glabrata maduros ou imaturos são mantidos fora da água, variando a umidade de 0 a 100%. Quando caramujos são submetidos a uma atmosfera saturada, sofrem uma lenta perda de peso e a sobrevivência pode ser longa. Se a umidade relativa decresce, a perda de peso será importante e a sobrevida será abreviada. Uma umidade relativa de 0 a 65% pode produzir efeitos similares. Durante a dessecação, a privação de alimento não tem efeito notável, a sobrevivência dependendo essencialmente da perda de peso.

  19. PSB-VVER simulation of Kozloduy NPP 'loss of feed water transient'

    Energy Technology Data Exchange (ETDEWEB)

    Groudev, P.P. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)]. E-mail: pavlinpg@inrne.bas.bg; Stefanova, A.E. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)]. E-mail: antoanet@inrne.bas.bg; Gencheva, R.V. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)]. E-mail: roseh@inrne.bas.bg; Pavlova, M.P. [Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shaussee 72, Sofia 1784 (Bulgaria)]. E-mail: pavlova@inrne.bas.bg

    2005-04-01

    This paper provides a comparison between the PSB test facility experimental results obtained during the simulation of loss of feed water transient (LOFW) and the calculation results received by INRNE computer model of the same test facility. Integral thermal-hydraulic PSB-VVER test facility located at Electrogorsk Research and Engineering Center on NPPs Safety (EREC) was put in operation in 1998. The structure of the test facility allows experimental studies under steady state, transient and accident conditions. RELAP5/MOD3.2 computer code has been used to simulate the loss of feed water transient in a PSB-VVER model. This model was developed at the Institute for Nuclear Research and Nuclear Energy for simulation of loss of feed water transient. The objective of the experiment 'loss of feed water', which has been performed at PSB-VVER test facility is simulation of Kozloduy NPP LOFW transient. One of the main requirements to the experiment scenario has been to reproduce all main events and phenomena that occurred in Kozloduy NPP during the LOFW transient. Analyzing the PSB-VVER test with a RELAP5/MOD3.2 computer code as a standard problem allows investigating the phenomena included in the VVER code validation matrix as 'integral system effects' and 'natural circulation'. For assessment of the RELAP5 capability to predict the 'Integral system effect' phenomenon the following RELAP5 quantities are compared with external trends: the primary pressure and the hot and cold leg temperatures. In order to assess the RELAP5 capability to predict the 'Natural circulation' phenomenon the hot and cold leg temperatures behavior have been investigated. This report was possible through the participation of leading specialists from Kozloduy NPP and with the support of Argonne National Laboratory (ANL), under the International Nuclear Safety Program (INSP) of the United States Department of Energy.

  20. Antecedent conditions control carbon loss and downstream water quality from shallow, damaged peatlands.

    Science.gov (United States)

    Grand-Clement, E; Luscombe, D J; Anderson, K; Gatis, N; Benaud, P; Brazier, R E

    2014-09-15

    Losses of dissolved organic carbon (DOC) from drained peatlands are of concern, due to the effects this has on the delivery of ecosystem services, and especially on the long-term store of carbon and the provision of drinking water. Most studies have looked at the effect of drainage in deep peat; comparatively, little is known about the behaviour of shallow, climatically marginal peatlands. This study examines water quality (DOC, Abs(400), pH, E4/E6 and C/C) during rainfall events from such environments in the south west UK, in order to both quantify DOC losses, and understand their potential for restoration. Water samples were taken over a 19 month period from a range of drains within two different experimental catchments in Exmoor National Park; data were analysed on an event basis. DOC concentrations ranging between 4 and 21 mg L(-1) are substantially lower than measurements in deep peat, but remain problematic for the water treatment process. Dryness plays a critical role in controlling DOC concentrations and water quality, as observed through spatial and seasonal differences. Long-term changes in depth to water table (30 days before the event) are likely to impact on DOC production, whereas discharge becomes the main control over DOC transport at the time scale of the rainfall/runoff event. The role of temperature during events is attributed to an increase in the diffusion of DOC, and therefore its transport. Humification ratios (E4/E6) consistently below 5 indicate a predominance of complex humic acids, but increased decomposition during warmer summer months leads to a comparatively higher losses of fulvic acids. This work represents a significant contribution to the scientific understanding of the behaviour and functioning of shallow damaged peatlands in climatically marginal locations. The findings also provide a sound baseline knowledge to support research into the effects of landscape restoration in the future. Crown Copyright © 2014. Published by

  1. RAPID WATER LOSS CAN EXTEND THE LIFETIME OF PLANETARY HABITABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Takanori; Abe, Yutaka [Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033 (Japan); Genda, Hidenori [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Zahnle, Kevin J., E-mail: koda@eps.s.u-tokyo.ac.jp [Space Science and Astrobiology Division, NASA Ames Research Center, California 94035 (United States)

    2015-10-20

    Two habitable planetary states are proposed: an aqua planet like the Earth and a land planet that has a small amount of water. Land planets keep liquid water under larger solar radiation compared to aqua planets. Water loss may change an aqua planet into a land planet, and the planet can remain habitable for a longer time than if it had remained an aqua planet. We calculate planetary evolution with hydrogen escape for different initial water inventories and different distances from the central star. We find that there are two conditions necessary to evolve an aqua planet into a land planet: the critical amount of water on the surface (M{sub ml}) consistent with a planet being a land planet, and the critical amount of water vapor in the atmosphere (M{sub cv}) that defines the onset of the runaway greenhouse state. We find that Earth-sized aqua planets with initial oceans <10% of the Earth's can evolve into land planets if M{sub cv} = 3 m in precipitable water and M{sub ml} = 5% of the Earth's ocean mass. Such planets can keep liquid water on their surface for another 2 Gyr. The initial amount of water and M{sub cv} are shown to be important dividing parameters of the planetary evolution path. Our results indicate that massive hydrogen escape could give a fresh start as another kind of habitable planet rather than the end of its habitability.

  2. RAPID WATER LOSS CAN EXTEND THE LIFETIME OF PLANETARY HABITABILITY

    International Nuclear Information System (INIS)

    Kodama, Takanori; Abe, Yutaka; Genda, Hidenori; Zahnle, Kevin J.

    2015-01-01

    Two habitable planetary states are proposed: an aqua planet like the Earth and a land planet that has a small amount of water. Land planets keep liquid water under larger solar radiation compared to aqua planets. Water loss may change an aqua planet into a land planet, and the planet can remain habitable for a longer time than if it had remained an aqua planet. We calculate planetary evolution with hydrogen escape for different initial water inventories and different distances from the central star. We find that there are two conditions necessary to evolve an aqua planet into a land planet: the critical amount of water on the surface (M ml ) consistent with a planet being a land planet, and the critical amount of water vapor in the atmosphere (M cv ) that defines the onset of the runaway greenhouse state. We find that Earth-sized aqua planets with initial oceans <10% of the Earth's can evolve into land planets if M cv = 3 m in precipitable water and M ml = 5% of the Earth's ocean mass. Such planets can keep liquid water on their surface for another 2 Gyr. The initial amount of water and M cv are shown to be important dividing parameters of the planetary evolution path. Our results indicate that massive hydrogen escape could give a fresh start as another kind of habitable planet rather than the end of its habitability

  3. Minimally Invasive Surgery (MIS) Approaches to Thoracolumbar Trauma.

    Science.gov (United States)

    Kaye, Ian David; Passias, Peter

    2018-03-01

    Minimally invasive surgical (MIS) techniques offer promising improvements in the management of thoracolumbar trauma. Recent advances in MIS techniques and instrumentation for degenerative conditions have heralded a growing interest in employing these techniques for thoracolumbar trauma. Specifically, surgeons have applied these techniques to help manage flexion- and extension-distraction injuries, neurologically intact burst fractures, and cases of damage control. Minimally invasive surgical techniques offer a means to decrease blood loss, shorten operative time, reduce infection risk, and shorten hospital stays. Herein, we review thoracolumbar minimally invasive surgery with an emphasis on thoracolumbar trauma classification, minimally invasive spinal stabilization, surgical indications, patient outcomes, technical considerations, and potential complications.

  4. The effects of uncoated paper on skin moisture and transepidermal water loss in bedridden patients.

    Science.gov (United States)

    Shin, Yong Soon; Kim, Hyun Jung; Moon, Nam-Kyung; Ahn, Young Hee; Kim, Kyoung-Ok

    2012-09-01

    The aims of this study were to measure skin moisture and transepidermal water loss after application of uncoated paper and to compare skin moisture and transepidermal water loss after use of uncoated paper and disposable underpads. The study was a cross-over, prospective, open-labeled, randomized trial. Bedridden patients aged≥18 years at a medical center in Korea were included. Treatment order was randomly assigned using block randomization, with a block size of 4 and an assignment rate of one-by-one. Skin moisture was measured using a Corneometer 825 and transepidermal water loss was measured using a Tewameter 300. Skin moisture after application of an uncoated paper was significantly lower than observed after application of a disposable underpad (mean 40.6 and SD 13.1 vs. mean 64.6 and SD 23.7, p<0.001). Transepidermal water loss also showed greater health scores after using uncoated paper (mean 11.1 and SD 5.7 g/m2/hour) than after applying a disposable underpad (mean 23.2 and SD 11.1 g/m2 /hour, p<0.001). There were no statistical between-group differences in room temperature, relative humidity, and body temperature. We found that uncoated paper was helpful in avoiding excessive moisture without adverse effects. As indicated by the results of this study, uncoated paper can be applied to bed-ridden patients who required incontinence care. Nurses may consider using uncoated paper as one of nursing methods in the routine care of bed-ridden patients for moisture control. © 2012 Blackwell Publishing Ltd.

  5. 7 CFR 760.611 - Qualifying losses, eligible causes and types of loss.

    Science.gov (United States)

    2010-01-01

    ... final planting date; (4) The cause of loss was due to water contained or released by any governmental... containment or release of the water; (5) The cause of loss was due to conditions or events occurring outside...) Losses caused by a failure of power supply or brownout as defined in § 760.602; (2) Losses caused by the...

  6. Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs

    Directory of Open Access Journals (Sweden)

    Sonia E. Eynard

    2018-01-01

    Full Text Available Genomic selection (GS is commonly used in livestock and increasingly in plant breeding. Relying on phenotypes and genotypes of a reference population, GS allows performance prediction for young individuals having only genotypes. This is expected to achieve fast high genetic gain but with a potential loss of genetic diversity. Existing methods to conserve genetic diversity depend mostly on the choice of the breeding individuals. In this study, we propose a modification of the reference population composition to mitigate diversity loss. Since the high cost of phenotyping is the limiting factor for GS, our findings are of major economic interest. This study aims to answer the following questions: how would decisions on the reference population affect the breeding population, and how to best select individuals to update the reference population and balance maximizing genetic gain and minimizing loss of genetic diversity? We investigated three updating strategies for the reference population: random, truncation, and optimal contribution (OC strategies. OC maximizes genetic merit for a fixed loss of genetic diversity. A French Montbéliarde dairy cattle population with 50K SNP chip genotypes and simulations over 10 generations were used to compare these different strategies using milk production as the trait of interest. Candidates were selected to update the reference population. Prediction bias and both genetic merit and diversity were measured. Changes in the reference population composition slightly affected the breeding population. Optimal contribution strategy appeared to be an acceptable compromise to maintain both genetic gain and diversity in the reference and the breeding populations.

  7. Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs.

    Science.gov (United States)

    Eynard, Sonia E; Croiseau, Pascal; Laloë, Denis; Fritz, Sebastien; Calus, Mario P L; Restoux, Gwendal

    2018-01-04

    Genomic selection (GS) is commonly used in livestock and increasingly in plant breeding. Relying on phenotypes and genotypes of a reference population, GS allows performance prediction for young individuals having only genotypes. This is expected to achieve fast high genetic gain but with a potential loss of genetic diversity. Existing methods to conserve genetic diversity depend mostly on the choice of the breeding individuals. In this study, we propose a modification of the reference population composition to mitigate diversity loss. Since the high cost of phenotyping is the limiting factor for GS, our findings are of major economic interest. This study aims to answer the following questions: how would decisions on the reference population affect the breeding population, and how to best select individuals to update the reference population and balance maximizing genetic gain and minimizing loss of genetic diversity? We investigated three updating strategies for the reference population: random, truncation, and optimal contribution (OC) strategies. OC maximizes genetic merit for a fixed loss of genetic diversity. A French Montbéliarde dairy cattle population with 50K SNP chip genotypes and simulations over 10 generations were used to compare these different strategies using milk production as the trait of interest. Candidates were selected to update the reference population. Prediction bias and both genetic merit and diversity were measured. Changes in the reference population composition slightly affected the breeding population. Optimal contribution strategy appeared to be an acceptable compromise to maintain both genetic gain and diversity in the reference and the breeding populations. Copyright © 2018 Eynard et al.

  8. Apparent losses due to domestic water meter under-registration in South Africa

    OpenAIRE

    Couvelis, FA; van Zyl, JE

    2015-01-01

    This study investigated the extent of apparent losses due to water meter under-registration in South Africa. This was done by first estimating the under-registration of new meters due to on-site leakage, and then the additional under-registration due to meter aging. The extent and flow distributions of on-site leakage were determined through field studies in Cape Town, Mangaung and Johannesburg, by measuring the flow through new water meters when no legitimate consumption occurred on the prop...

  9. Effects of cropping systems on water runoff, soil erosion and nutrient loss in the Moldavian Plateau, Romania

    Energy Technology Data Exchange (ETDEWEB)

    Ailincai, C.; Jitareanu, G.; Bucur, D.; Ailincai, D.; Raus, L.; Filipov, F.

    2009-07-01

    The experiments carried out at the Podu-lloaiei Agricultural Research Sation, during 1986-2008, had the following objectives: the study of water runoff and soil losses, by erosion, in different crops; the annual rate of erosion process under the influence of anti-erosion protection of different crops; the influence of water runoff and soil erosion on losses of organic matter and mineral elements from soil. (Author) 7 refs.

  10. Effects of cropping systems on water runoff, soil erosion and nutrient loss in the Moldavian Plateau, Romania

    International Nuclear Information System (INIS)

    Ailincai, C.; Jitareanu, G.; Bucur, D.; Ailincai, D.; Raus, L.; Filipov, F.

    2009-01-01

    The experiments carried out at the Podu-lloaiei Agricultural Research Sation, during 1986-2008, had the following objectives: the study of water runoff and soil losses, by erosion, in different crops; the annual rate of erosion process under the influence of anti-erosion protection of different crops; the influence of water runoff and soil erosion on losses of organic matter and mineral elements from soil. (Author) 7 refs.

  11. Effect of slope and plant cover on run-off, soil loss and water use ...

    African Journals Online (AJOL)

    An average of 6,2t/ha soil loss and 80,6% run-off of the amount of water applied occurred from the pioneer veld (0,7% basal cover) on the steepest slope. In all the successional stages more run-off and less soil loss occurred from wet soil than from dry soil. Significant (P<0,01) relationships between basal and canopy cover ...

  12. Transfer, loss and physical processing of water in hit-and-run collisions of planetary embryos

    Science.gov (United States)

    Burger, C.; Maindl, T. I.; Schäfer, C. M.

    2018-01-01

    Collisions between large, similar-sized bodies are believed to shape the final characteristics and composition of terrestrial planets. Their inventories of volatiles such as water are either delivered or at least significantly modified by such events. Besides the transition from accretion to erosion with increasing impact velocity, similar-sized collisions can also result in hit-and-run outcomes for sufficiently oblique impact angles and large enough projectile-to-target mass ratios. We study volatile transfer and loss focusing on hit-and-run encounters by means of smooth particle hydrodynamics simulations, including all main parameters: impact velocity, impact angle, mass ratio and also the total colliding mass. We find a broad range of overall water losses, up to 75% in the most energetic hit-and-run events, and confirm the much more severe consequences for the smaller body also for stripping of volatile layers. Transfer of water between projectile and target inventories is found to be mostly rather inefficient, and final water contents are dominated by pre-collision inventories reduced by impact losses, for similar pre-collision water mass fractions. Comparison with our numerical results shows that current collision outcome models are not accurate enough to reliably predict these composition changes in hit-and-run events. To also account for non-mechanical losses, we estimate the amount of collisionally vaporized water over a broad range of masses and find that these contributions are particularly important in collisions of ˜ Mars-sized bodies, with sufficiently high impact energies, but still relatively low gravity. Our results clearly indicate that the cumulative effect of several (hit-and-run) collisions can efficiently strip protoplanets of their volatile layers, especially the smaller body, as it might be common, e.g., for Earth-mass planets in systems with Super-Earths. An accurate model for stripping of volatiles that can be included in future planet

  13. A new algorithm for optimum voltage and reactive power control for minimizing transmission lines losses

    International Nuclear Information System (INIS)

    Ghoudjehbaklou, H.; Danai, B.

    2001-01-01

    Reactive power dispatch for voltage profile modification has been of interest to power utilities. Usually local bus voltages can be altered by changing generator voltages, reactive shunts, ULTC transformers and SVCs. Determination of optimum values for control parameters, however, is not simple for modern power system networks. Heuristic and rather intelligent algorithms have to be sought. In this paper a new algorithm is proposed that is based on a variant of a genetic algorithm combined with simulated annealing updates. In this algorithm a fuzzy multi-objective a approach is used for the fitness function of the genetic algorithm. This fuzzy multi-objective function can efficiently modify the voltage profile in order to minimize transmission lines losses, thus reducing the operating costs. The reason for such a combination is to utilize the best characteristics of each method and overcome their deficiencies. The proposed algorithm is much faster than the classical genetic algorithm and cna be easily integrated into existing power utilities software. The proposed algorithm is tested on an actual system model of 1284 buses, 799 lines, 1175 fixed and ULTC transformers, 86 generators, 181 controllable shunts and 425 loads

  14. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    This paper presents numerical investigations of thermal stratification in a vertical cylindrical hot water tank established by standby heat loss from the tank. The transient fluid flow and heat transfer in the tank during cooling caused by standby heat loss are calculated by means of validated...... computational fluid dynamics (CFD) models. The measured heat loss coefficient for the different parts of the tank is used as input to the CFD model. Parametric studies are carried out using the validated models to investigate the influence on thermal stratification of the tank by the downward flow...... the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The results show that 20–55% of the side heat loss drops to layers below in the part of the tank without the presence of thermal stratification. A heat loss removal factor is introduced...

  15. Metabolic rate and evaporative water loss of Mexican Spotted and Great Horned Owls

    Science.gov (United States)

    Joseph L. Ganey; Russell P. Balda; Rudy M. King

    1993-01-01

    We measured rates of oxygen consumption and evaporative water loss (EWL) of Mexican Spotted (Strix occidentalis lucida) and Great Horned (Bubo virginianus) owls in Arizona. Basal metabolic rate averaged 0.84 ccO2. g-1. h-1...

  16. Method for reducing heat loss during injection of hot water into an oil stratum

    Energy Technology Data Exchange (ETDEWEB)

    Evgenev, A E; Kalashnikov, V N; Raiskii, Yu D

    1968-07-01

    A method is described for reduction of heat loss during the injection of hot water into an oil stratum. During the transportation of the hot water to the face of the bore holes, it has high-molecular polymers added to it. The high-molecular polymer may be guanidine or polyoxyethylene in the quantity of 0.01 to 0.03% by wt.

  17. The minimal ice water caloric test compared with established vestibular caloric test procedures.

    Science.gov (United States)

    Schmäl, Frank; Lübben, Björn; Weiberg, Kerstin; Stoll, Wolfgang

    2005-01-01

    Caloric testing of the vestibular labyrinth is usually performed by classical caloric test procedures (CCTP) using water warmed to 30 degrees C and 44 degrees C. Ice water irrigation (4 degrees C) is usually not performed, although it might be useful as a bedside test. To verify the validity of the Minimal Ice Water Caloric Test (MIWCT), comparative video-oculographic investigations were performed in 22 healthy subjects using ice water (0.5 ml, 1.0 ml, 2 ml), CCTP, and cold air (27 degrees C). Frequency, amplitude, slow phase velocity (SPV), the onset, and the duration of nystagmus were documented. After addition of three ice cubes, the temperature of conventional tap water (16 degrees C) fell within 13 min to 4 degrees C. In pessimum position the subjects demonstrated no nystagmus response. Compared to CCTP, MIWCT was associated with a significantly later onset of nystagmus and a significant prolongation of the nystagmus reaction. In contrast to air stimulation (27 degrees C), a significant Spearman's correlation was noted between MIWCT (1 and 2 ml) and established CCTP in respect of essential nystagmus parameters (frequency, amplitude and SPV). Furthermore, MIWCT (0.5 and 1 ml) showed a higher sensitivity and specificity with regard to the detection of canal paresis based on Jongkees' formula compared to stimulation with air 27 degrees C. Thus, MIWCT appears to be a suitable procedure for bedside investigation of vestibular function outside the vestibular laboratory, e.g. in a hospital ward, where bedridden patients with vertigo occasionally require vestibular testing.

  18. Considerations for surviving the loss of a main feedwater pump at full power

    International Nuclear Information System (INIS)

    Gaydos, K.A.; Calvo, R.; Conroy, P.W.; Klein, C.M.; Mellers, J.E.

    1990-01-01

    Today's economics dictate that nuclear power operational costs be contained by addressing frequently-occurring trips that might be minimized or avoided via specific upgrades. Much recent attention has focused on the significant percentage of plant trips related to feedwater flow regulation; however, another frequent feedwater-related trip stems from the loss of a single main feedwater pump while operating at high power levels, causing a plant trip on low steam generator water-level. This paper summarizes the results of several plant-specific studies that evaluate a unit's capabilities to consistently survive the loss of a main feedwater pump from full power, and outlines a methodology for analyzing this capability

  19. Minimizing Exposure at Work

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticide Health and Safety Information Safe Use Practices Minimizing Exposure at Work Pesticides - Pennsylvania State University Cooperative Extension Personal Protective Equipment for Working

  20. Children with minimal sensorineural hearing loss: prevalence, educational performance, and functional status.

    Science.gov (United States)

    Bess, F H; Dodd-Murphy, J; Parker, R A

    1998-10-01

    This study was designed to determine the prevalence of minimal sensorineural hearing loss (MSHL) in school-age children and to assess the relationship of MSHL to educational performance and functional status. To determine prevalence, a single-staged sampling frame of all schools in the district was created for 3rd, 6th, and 9th grades. Schools were selected with probability proportional to size in each grade group. The final study sample was 1218 children. To assess the association of MSHL with educational performance, children identified with MSHL were assigned as cases into a subsequent case-control study. Scores of the Comprehensive Test of Basic Skills (4th Edition) (CTBS/4) then were compared between children with MSHL and children with normal hearing. School teachers completed the Screening Instrument for Targeting Education Risk (SIFTER) and the Revised Behavior Problem Checklist for a subsample of children with MSHL and their normally hearing counterparts. Finally, data on grade retention for a sample of children with MSHL were obtained from school records and compared with school district norm data. To assess the relationship between MSHL and functional status, test scores of all children with MSHL and all children with normal hearing in grades 6 and 9 were compared on the COOP Adolescent Chart Method (COOP), a screening tool for functional status. MSHL was exhibited by 5.4% of the study sample. The prevalence of all types of hearing impairment was 11.3%. Third grade children with MSHL exhibited significantly lower scores than normally hearing controls on a series of subtests of the CTBS/4; however, no differences were noted at the 6th and 9th grade levels. The SIFTER results revealed that children with MSHL scored poorer on the communication subtest than normal-hearing controls. Thirty-seven percent of the children with MSHL failed at least one grade. Finally, children with MSHL exhibited significantly greater dysfunction than children with normal hearing

  1. CNE (Embalse nuclear power plant): probabilistic safety study. Loss of service water. Probabilistic evaluation and analysis through events sequence

    International Nuclear Information System (INIS)

    Couto, A.J.; Perez, S.S.

    1987-01-01

    This work is part of a study on the service water systems of the Embalse nuclear power plant from a safety point of view. The faults of service water systems of high and low pressure that can lead to situations threatening the plant safety were analyzed in a previous report. The event 'total loss of low pressure service water' causes the largest number of such conditions. Such event is an operational incident that can lead to an accident situation due to faults in the required process systems or by omission of a procedure. The annual frequency of the event 'total loss of low pressure service water' is calculated. The main contribution comes from pump failure. The evaluation of the accident sequences shows that the most direct way to the liberation of fission products is the loss of steam generators as heat sink. The contributions to small and large LOCA and electric supply loss are analyzed. The sequence that leads to tritium release through boiling of moderator is also evaluated. (Author)

  2. Respiratory water loss during rest and flight in European Starlings (Sturnus vulgaris)

    NARCIS (Netherlands)

    Engel, Sophia; Suthers, Roderick A.; Biebach, Herbert; Visser, G. Henk

    2006-01-01

    Respiratory water loss in Starlings (Sturnus vulgaris) at rest and during flight at ambient temperatures (T-amb) between 6 and 25 degrees C was calculated from respiratory airflow and exhaled air temperature. At rest, breathing frequency f(1.4 +/- 0.3 Hz) and tidal volume V-t (1.9 +/- 0.4 ml) were

  3. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system.

    Science.gov (United States)

    Liang, Kaiming; Zhong, Xuhua; Huang, Nongrong; Lampayan, Rubenito M; Liu, Yanzhuo; Pan, Junfeng; Peng, Bilin; Hu, Xiangyu; Fu, Youqiang

    2017-12-31

    Nitrogen non-point pollution and greenhouse gas (GHG) emission are major challenges in rice production. This study examined options for both economic and environmental sustainability through optimizing water and N management. Field experiments were conducted to examine the crop yields, N use efficiency (NUE), greenhouse gas emissions, N losses under different N and water management. There were four treatments: zero N input with farmer's water management (N0), farmer's N and water management (FP), optimized N management with farmer's water management (OPT N ) and optimized N management with alternate wetting and drying irrigation (OPT N +AWD). Grain yields in OPT N and OPT N +AWD treatments increased by 13.0-17.3% compared with FP. Ammonia volatilization (AV) was the primary pathway for N loss for all treatments and accounted for over 50% of the total losses. N losses mainly occurred before mid-tillering. N losses through AV, leaching and surface runoff in OPT N were reduced by 18.9-51.6% compared with FP. OPT N +AWD further reduced N losses from surface runoff and leaching by 39.1% and 6.2% in early rice season, and by 46.7% and 23.5% in late rice season, respectively, compared with OPT N . The CH 4 emissions in OPT N +AWD were 20.4-45.4% lower than in OPT N and FP. Total global warming potential of CH 4 and N 2 O was the lowest in OPT N +AWD. On-farm comparison confirmed that N loss through runoff in OPT N +AWD was reduced by over 40% as compared with FP. OPT N and OPT N +AWD significantly increased grain yield by 6.7-13.9%. These results indicated that optimizing water and N management can be a simple and effective approach for enhancing yield with reduced environmental footprints. Copyright © 2017. Published by Elsevier B.V.

  4. Lake and wetland ecosystem services measuring water storage and local climate regulation

    Science.gov (United States)

    Wong, Christina P.; Jiang, Bo; Bohn, Theodore J.; Lee, Kai N.; Lettenmaier, Dennis P.; Ma, Dongchun; Ouyang, Zhiyun

    2017-04-01

    Developing interdisciplinary methods to measure ecosystem services is a scientific priority, however, progress remains slow in part because we lack ecological production functions (EPFs) to quantitatively link ecohydrological processes to human benefits. In this study, we tested a new approach, combining a process-based model with regression models, to create EPFs to evaluate water storage and local climate regulation from a green infrastructure project on the Yongding River in Beijing, China. Seven artificial lakes and wetlands were established to improve local water storage and human comfort; evapotranspiration (ET) regulates both services. Managers want to minimize the trade-off between water losses and cooling to sustain water supplies while lowering the heat index (HI) to improve human comfort. We selected human benefit indicators using water storage targets and Beijing's HI, and the Variable Infiltration Capacity model to determine the change in ET from the new ecosystems. We created EPFs to quantify the ecosystem services as marginal values [Δfinal ecosystem service/Δecohydrological process]: (1) Δwater loss (lake evaporation/volume)/Δdepth and (2) Δsummer HI/ΔET. We estimate the new ecosystems increased local ET by 0.7 mm/d (20.3 W/m2) on the Yongding River. However, ET rates are causing water storage shortfalls while producing no improvements in human comfort. The shallow lakes/wetlands are vulnerable to drying when inflow rates fluctuate, low depths lead to higher evaporative losses, causing water storage shortfalls with minimal cooling effects. We recommend managers make the lakes deeper to increase water storage, and plant shade trees to improve human comfort in the parks.

  5. Soil loss by water erosion in areas under maize and jack beans intercropped and monocultures

    Directory of Open Access Journals (Sweden)

    Pedro Luiz Terra Lima

    2014-04-01

    Full Text Available Adequate soil management can create favorable conditions to reduce erosion and water runoff, consequently increase water soil recharge. Among management systems intercropping is highly used, especially for medium and small farmers. It is a system where two or more crops with different architectures and vegetative cycles are explored simultaneously at the same location. This research investigated the effects of maize intercropped with jack bean on soil losses due to water erosion, estimate C factor of Universal Soil Losses Equation (USLE and how it can be affected by soil coverage. The results obtained also contribute to database generation, important to model and estimate soil erosion. Total soil loss by erosion caused by natural rain, at Lavras, Minas Gerais, Brazil, were: 4.20, 1.86, 1.38 and 1.14 Mg ha-1, respectively, for bare soil, maize, jack bean and the intercropping of both species, during evaluated period. Values of C factor of USLE were: 0.039, 0.054 and 0.077 Mg ha Mg-1 ha-1 for maize, jack bean and intercropping between both crops, respectively. Maize presented lower vegetation cover index, followed by jack beans and consortium of the studied species. Intercropping between species showed greater potential on soil erosion control, since its cultivation resulted in lower soil losses than single crops cultivation, and this aspect is really important for small and medium farmers in the studied region.

  6. Transepidermal water loss in cats: comparison of three differently clipped sites to assess the influence of hair coat on transepidermal water loss values.

    Science.gov (United States)

    Momota, Yutaka; Shimada, Kenichiroh; Takami, Akina; Akaogi, Harumi; Takasaki, Mariko; Mimura, Kana; Azakami, Daigo; Ishioka, Katsumi; Nakamura, Yuka; Sako, Toshinori

    2013-08-01

    The measurement of transepidermal water loss (TEWL) is one of the parameters that can be used to assess skin barrier function. The variability and reliability of TEWL measurements in dogs have been controversial, and the hair coat has been considered as one of the factors that may cause variation of TEWL values. The aims of the study were to establish a suitable procedure for measuring feline TEWL, to evaluate the influence of hair coat on TEWL measurements and to assess variations of TEWL at different anatomical sites. Transepidermal water loss was measured using a closed-chamber evaporimeter, the VapoMeter(®). We compared three adjacent sites in the groin area of 10 clinically normal, domestic short hair cats. One site was unclipped, the second was trimmed with scissors and the third was shaved using electric clippers. Values of TEWL were obtained for 48 h after trimming with scissors and clippers. Five sites were clipped (upper back, lumbar back, lateral thigh, axillae and groin), and the TEWL was measured. The mean and SD of TEWL values of the clipper-trimmed site were the smallest, followed in order by the site trimmed with scissors and the unclipped site. The TEWL values were statistically constant in the clipper-trimmed site, while the values in the unclipped sites were not. There was no statistically significant difference in TEWL values between all of the anatomical sites except for the axillae. Hair clipping of sites with electric clippers is recommended for TEWL measurement in cats. © 2013 ESVD and ACVD.

  7. Phosphate dosing of mains water : novel approaches to water loss reduction through leakage detection and policy [abstract

    OpenAIRE

    Ascott, M.J.; Gooddy, D.C.; Lapworth, D.J.; Stuart, M.E.

    2016-01-01

    Detection and t racing of leakage in the environment are essential component s of water loss reduction strategies. Industry standard techniques for tracing leaks include analysis of chlorine and trihalomethane concentrations, but levels of these determinands can fall belo w detection limits due to their volatile nature 1 . Consequently additional tools to trace leakage in the environment are a useful step ...

  8. Evaluation of select trade-offs between ground-water remediation and waste minimization for petroleum refining industry

    International Nuclear Information System (INIS)

    Andrews, C.D.; McTernan, W.F.; Willett, K.K.

    1996-01-01

    An investigation comparing environmental remediation alternatives and attendant costs for a hypothetical refinery site located in the Arkansas River alluvium was completed. Transport from the land's surface to and through the ground water of three spill sizes was simulated, representing a base case and two possible levels of waste minimization. Remediation costs were calculated for five alternative remediation options, for three possible regulatory levels and alternative site locations, for four levels of technology improvement, and for eight different years. It is appropriate from environmental and economic perspectives to initiate significant efforts and expenditures that are necessary to minimize the amount and type of waste produced and disposed during refinery operations; or conversely, given expected improvements in technology, is it better to wait until remediation technologies improve, allowing greater environmental compliance at lower costs? The present work used deterministic models to track a light nonaqueous phase liquid (LNAPL) spill through the unsaturated zone to the top of the water table. Benzene leaching from LNAPL to the ground water was further routed through the alluvial aquifer. Contaminant plumes were simulated over 50 yr of transport and remediation costs assigned for each of the five treatment options for each of these years. The results of these efforts show that active remediation is most cost effective after a set point or geochemical quasi-equilibrium is reached, where long-term improvements in technology greatly tilt the recommended option toward remediation. Finally, the impacts associated with increasingly rigorous regulatory levels present potentially significant penalties for the remediation option, but their likelihood of occurrence is difficult to define

  9. Measurement of evaporative water loss in small animals by dew-point hygrometry.

    Science.gov (United States)

    Bernstein, M H; Hudson, D M; Stearns, J M; Hoyt, R W

    1977-08-01

    This paper presents the procedures and equations to be utilized for measurement of evaporative water loss (mw), by use of the dew-point hygrometer, in small animals exposed to air containing water vapor in an open-flow system. The system accounted accurately for the water evaporated from a bubble flask. In addition, hygrometric measurements of pulmocutaneous mw in pigeons (Columba livia, mean mass 0.31 kg) agreed closely with simultaneous gravimetric measurements, utilizing a desiccant in the sample stream, in a manner independently of air temperature (Ta, 20 or 40 degrees C), ambient water vapor pressure (PW, 4-16 10(2) Pa), or mw (5-66 mg-min-1). Evaporation in pigeons was independent of PW at 20 degrees C, but increased with decreasing PW at 40 degrees C, suggesting differences in ventilatory adjustments to changes in PW at the two temperatures.

  10. Configuration optimization of series flow double-effect water-lithium bromide absorption refrigeration systems by cost minimization

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Cignitti, Stefano; Mansouri, Seyed Soheil

    2018-01-01

    An optimal process configuration for double-effect water-lithium bromide absorption refrigeration systems with series flow – where the solution is first passed through the high-temperature generator – is obtained by minimization of the total annual cost for a required cooling capacity. To this end......) takes place entirely at the high-temperature zone, and the sizes and operating conditions of the other process units change accordingly in order to meet the problem specification with the minimal total annual cost. This new configuration was obtained for wide ranges of the cooling capacity (150–450 k.......9%, respectively. Most importantly, the obtained optimal solution eliminates the low-temperature solution heat exchanger from the conventional configuration, rendering a new process configuration. The energy integration between the weak and strong lithium bromide solutions (cold and hot streams, respectively...

  11. Loss of Propiconazole and Its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Rebecca D. Miller

    2011-08-01

    Full Text Available Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-water slurries spiked with the fungicide at 50 mg/L was followed under aerobic conditions over five months; the t1/2 was 45 and 51 days for the two soil slurries. To accurately assess environmental and human risk, it is necessary to analyze the separate stereoisomers of chiral pollutants, because it is known that for most such pollutants, both biotransformation and toxicity are likely to be stereoselective. Micellar electrokinetic chromatography (MEKC, the mode of capillary electrophoresis used for analysis of neutral chemicals, was used for analysis of the four propiconazole stereoisomers with time in the water phase of the slurries. MEKC resulted in baseline separation of all stereoisomers, while GC-MS using a chiral column gave only partial separation. The four stereoisomers of propiconazole were lost from the aqueous phase of the slurries at experimentally equivalent rates, i.e., there was very little, if any, stereoselectivity. No loss of propiconazole was observed from the autoclaved controls of either soil, indicating that the loss from active samples was most likely caused by aerobic biotansformation, with a possible contribution by sorption to the non-autoclaved active soils. MEKC is a powerful tool for separation of stereoisomers and can be used to study the fate and transformation kinetics of chiral pesticides in water and soil.

  12. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes.

    Science.gov (United States)

    Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R

    2018-01-01

    Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.

  13. Agarwood Waste as A New Fluid Loss Control Agent in Water-based Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Azlinda Azizi

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Agarwood has been used widely in various ways, including traditional medicine and art. The usage of agarwood has grown broader in modern times include in therapeutic medicines and perfumery. In this paper the agarwood waste has been explored to be used as a fluid loss control agent to control fluid loss without affecting the drilling fluid rheological properties which are density, pH, viscosity, yield point and gel strength. Agarwood waste was used as an additive in the drilling fluid system due to its unique characteristic. Rheological and filtration measurements were performed on the formulated water-based drilling fluid. Formulations of a base solution of fresh water, sodium hydroxide, bentonite, barite, and xanthan gum were presented. The performance of the agarwood waste as the fluid loss control agent was compared with based fluid formulation and water-based drilling fluid with treating with conventional fluid loss control agent (starch. The filtrate volume of drilling fluid with agarwood waste was about 13 ml while for drilling fluid with conventional fluid loss control agent, starch gave 12 ml of filtrate volume after undergoing filtration test by using LPLT filter press. The performance of drilling fluid with agarwood was efficient as drilling fluid with starch. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso

  14. Making the most of minimal water

    International Development Research Centre (IDRC) Digital Library (Canada)

    MENA region share lessons on how demand management can avert a looming water crisis. ... volume of renewable water resources make the Middle East ... the tools they need to create and implement ... integrated with traditional knowledge.

  15. Low Loss Advanced Metallic Fuel Casting Evaluation

    International Nuclear Information System (INIS)

    Kim, Kihwan; Ko, Youngmo; Kim, Jonghwan; Song, Hoon; Lee Chanbock

    2014-01-01

    The fabrication process for SFR fuel is composed of fuel slug casting, loading and fabrication of the fuel rods, and the fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycles streams in the fabrication process. Recycle streams include fuel slug reworks, returned scraps, and fuel casting heels, which are a special concern in the counter gravity injection casting process because of the large masses involved. Large recycle and waste streams result in lowering the productivity and the economic efficiency of fuel production. To increase efficiency the fuel losses in the furnace chamber, crucible, and the mold, after casting a considerable amount of fuel alloy in the casting furnace, will be quantitatively evaluated. After evaluation the losses will be identified and minimized. It is expected that this study will contribute to the minimization of fuel losses and the wastes streams in the fabrication process of the fuel slugs. Also through this study the technical readiness level of the metallic fuel fabrication process will be further enhanced. In this study, U-Zr alloy system fuel slugs were fabricated by a gravity casting method. Metallic fuel slugs were successfully fabricated with 19 slugs/batch with diameter of 5mm and length of 300mm. Fuel losses was quantitatively evaluated in casting process for the fuel slugs. Fuel losses of the fuel slugs were so low, 0.1∼1.0%. Injection casting experiments have been performed to reduce the fuel loss and improve the casting method. U-Zr fuel slug having φ5.4-L250mm was soundly fabricated with 0.1% in fuel loss. The fuel losses could be minimized to 0.1%, which showed that casting technology of fuel slugs can be a feasible approach to reach the goal of the fuel losses of 0.1% or less in commercial scale

  16. LLNL Waste Minimization Program Plan

    International Nuclear Information System (INIS)

    1990-01-01

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs

  17. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  18. Consumption of low-moderate level arsenic contaminated water does not increase spontaneous pregnancy loss: a case control study.

    Science.gov (United States)

    Bloom, Michael S; Neamtiu, Iulia A; Surdu, Simona; Pop, Cristian; Lupsa, Ioana Rodica; Anastasiu, Doru; Fitzgerald, Edward F; Gurzau, Eugen S

    2014-10-13

    Previous work suggests an increased risk for spontaneous pregnancy loss linked to high levels of inorganic arsenic (iAs) in drinking water sources (>10 μg/L). However, there has been little focus to date on the impact of low-moderate levels of iAs in drinking water (control study in Timis County, Romania. We recruited women with incident spontaneous pregnancy loss of 5-20 weeks completed gestation as cases (n = 150), and women with ongoing pregnancies matched by gestational age (±1 week) as controls (n = 150). Participants completed a physician-administered questionnaire and we collected water samples from residential drinking sources. We reconstructed residential drinking water exposure histories using questionnaire data weighted by iAs determined using hydride generation-atomic absorption spectrometry (HG-AAS). Logistic regression models were used to generate odds ratios (OR) and 95% confidence intervals (CI) for associations between iAs exposure and loss, conditioned on gestational age and adjusted for maternal age, cigarette smoking, education and prenatal vitamin use. We explored potential interactions in a second set of models. Drinking water arsenic concentrations ranged from 0.0 to 175.1 μg/L, with median 0.4 μg/L and 90th%tile 9.4 μg/L. There were no statistically significant associations between loss and average or peak drinking water iAs concentrations (OR 0.98, 95% CI 0.96-1.01), or for daily iAs intake (OR 1.00, 95% CI 0.98-1.02). We detected modest evidence for an interaction between average iAs concentration and cigarette smoking during pregnancy (P = 0.057) and for daily iAs exposure and prenatal vitamin use (P = 0.085). These results suggest no increased risk for spontaneous pregnancy loss in association with low to moderate level drinking water iAs exposure. Though imprecise, our data also raise the possibility for increased risk among cigarette smokers. Given the low exposures overall, these data should reassure pregnant

  19. Building America Case Study: Addressing Multifamily Piping Losses with Solar Hot Water, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  20. A Novel Approach for Risk Minimization in Life-Cycle Oil Production Optimization

    DEFF Research Database (Denmark)

    Capolei, Andrea; Christiansen, Lasse Hjuler; Jørgensen, John Bagterp

    2017-01-01

    The oil research community has invested much effort into computer aided optimization to enhance oil recovery. While simulation studies have demonstrated the potential of model-based technology to improve industrial standards, the largely unknown geology of subsurface reservoirs limits applications...... to commercial oil fields. In particular, uncertain model descriptions lead to risks of profit loss. To address the challenges of geological uncertainty, this paper proposes offset risk minimization. As opposed to existing methodologies of the oil literature, the offset approach minimizes risk of profit loss...

  1. Effect of cuticular abrasion and recovery on water loss rates in queens of the desert harvester ant Messor pergandei.

    Science.gov (United States)

    Johnson, Robert A; Kaiser, Alexander; Quinlan, Michael; Sharp, William

    2011-10-15

    Factors that affect water loss rates (WLRs) are poorly known for organisms in natural habitats. Seed-harvester ant queens provide an ideal system for examining such factors because WLRs for mated queens excavated from their incipient nests are twofold to threefold higher than those of alate queens. Indirect data suggest that this increase results from soil particles abrading the cuticle during nest excavation. This study provides direct support for the cuticle abrasion hypothesis by measuring total mass-specific WLRs, cuticular abrasion, cuticular transpiration, respiratory water loss and metabolic rate for queens of the ant Messor pergandei at three stages: unmated alate queens, newly mated dealate queens (undug foundresses) and mated queens excavated from their incipient nest (dug foundresses); in addition we examined these processes in artificially abraded alate queens. Alate queens had low WLRs and low levels of cuticle abrasion, whereas dug foundresses had high WLRs and high levels of cuticle abrasion. Total WLR and cuticular transpiration were lowest for alate queens, intermediate for undug foundresses and highest for dug foundresses. Respiratory water loss contributed ~10% of the total WLR and was lower for alate queens and undug foundresses than for dug foundresses. Metabolic rate did not vary across stages. Total WLR and cuticular transpiration of artificially abraded alate queens increased, whereas respiratory water loss and metabolic rate were unaffected. Overall, increased cuticular transpiration accounted for essentially all the increased total water loss in undug and dug foundresses and artificially abraded queens. Artificially abraded queens and dug foundresses showed partial recovery after 14 days.

  2. Effects on weight loss in adults of replacing diet beverages with water during a hypoenergetic diet: a randomized, 24-wk clinical trial.

    Science.gov (United States)

    Madjd, Ameneh; Taylor, Moira A; Delavari, Alireza; Malekzadeh, Reza; Macdonald, Ian A; Farshchi, Hamid R

    2015-12-01

    Obese people believe that drinking diet beverages (DBs) may be a simple strategy to achieve weight loss. However, nutritionists advise drinking water when attempting to lose weight. It is unclear how important drinking water instead of DBs is during a weight-loss program. In this study, we compared the effect on weight loss of either replacing DBs with water or continuing to consume DBs in adults during a 24-wk weight-loss program. Overweight and obese women [n = 89; body mass index (BMI; in kg/m(2)): 27-40; age: 18-50 y] who usually consumed DBs in their diet were asked to either substitute water for DBs (water group) or continue drinking DBs 5 times/wk after their lunch for 24 wk (DB group) while on a weight-loss program. Sixty-two participants (71%) completed the trial (32 in the DB group, 30 in the water group). Baseline variables were not statistically significantly different between groups. A statistically significant reduction in anthropometric measurements and statistically significant improvements in cardiometabolic risk characteristics were observed over 24 wk in both groups. Compared with the DB group, the water group had a greater decrease in weight (mean ± SD: water: -8.8 ± 1.9 kg; DBs: -7.6 ± 2.1 kg; P = 0.015, time × group), fasting insulin (mean ± SD: water: -2.84 ± 0.77 mU/L; DBs: -1.78 ± 1.25 mU/L, P water: -0.097 ± 0.049; DBs: -0.057 ± 0.042, P water: -1.02 ± 0.25 mmol/L; DBs: -0.72 ± 0.27 mmol/L; P fasting plasma glucose, and lipid profiles within both groups over 24 wk. Replacement of DBs with water after the main meal may lead to greater weight reduction during a weight-loss program. It may also offer clinical benefits to improve insulin resistance. This trial was registered at www.irct.ir/ as IRCT201402177754N5. © 2015 American Society for Nutrition.

  3. Development document for best technology available for the location, design, construction, and capacity of cooling water intake structures for minimizing adverse environmental impact

    International Nuclear Information System (INIS)

    Train, R.E.; Breidenbach, A.W.; Hall, E.P.; Barnes, D.

    1976-04-01

    This document presents the findings of an extensive study of the available technology for the location, design construction and capacity of cooling water intake structures for minimizing adverse environmental impact, in compliance with and to implement Section 316(b) of the Federal Water Pollution Control Act Amendments of 1972

  4. Simplified current minimization control of vector controlled Interior ...

    Indian Academy of Sciences (India)

    Thakur Sumeet Singh

    2018-04-12

    Apr 12, 2018 ... looked into loss-minimization control of PM motors by use of polynomial .... the chosen motor (''Appendix'') falls outside of its range. Figure 1. ..... command, mmf balance along q-axis should be maintained: (Lq being ...

  5. Reducing Nutrient Losses with Directed Fertilization of Degraded Soils

    Science.gov (United States)

    Menzies, E.; Walter, M. T.; Schneider, R.

    2016-12-01

    Degraded soils around the world are stunting agricultural productivity in places where people need it the most. In China, hundreds of years of agriculture and human activity have turned large swaths of productive grasslands into expanses of sandy soils where nothing can grow. Returning soils such as these to healthy productive landscapes is crucial to the livelihoods of rural families and to feeding the expanding population of China and the world at large. Buried wood chips can be used to improve the soils' water holding capacity but additional nutrient inputs are crucial to support plant growth and completely restore degraded soils in China and elsewhere. Improperly applied fertilizer can cause large fluxes of soluble nutrients such as nitrogen (N) and phosphorus (P) to pollute groundwater, and reach surface water bodies causing harmful algal blooms or eutrophication. Similarly, fertilization can create increases in nutrient losses in the form of greenhouse gases (GHGs). It is imperative that nutrient additions to this system be done in a way that fosters restoration and a return to productivity, but minimizes nutrient losses to adjacent surface water bodies and the atmosphere. The primary objective of this study is to characterize soluble and gaseous N and P losses from degraded sandy soils with wood chip and fertilizer amendments in order to identify optimal fertilization methods, frequencies, and quantities for soil restoration. A laboratory soil column study is currently underway to begin examining these questions results of this study will be presented at the Fall Meeting.

  6. Physical and transcript map of the region between D6S264 and D6S149 on chromosome 6q27, the minimal region of allele loss in sporadic epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Liu, Ying; Emilion, Gracy; Mungall, Andrew J

    2002-01-01

    We have previously shown a high frequency of allele loss at D6S193 (62%) on chromosomal arm 6q27 in ovarian tumours and mapped the minimal region of allele loss between D6S297 and D6S264 (3 cM). We isolated and mapped a single non-chimaeric YAC (17IA12, 260-280 kb) containing D6S193 and D6S297...

  7. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  8. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    International Nuclear Information System (INIS)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models

  9. Optimizing Processes to Minimize Risk

    Science.gov (United States)

    Loyd, David

    2017-01-01

    NASA, like the other hazardous industries, has suffered very catastrophic losses. Human error will likely never be completely eliminated as a factor in our failures. When you can't eliminate risk, focus on mitigating the worst consequences and recovering operations. Bolstering processes to emphasize the role of integration and problem solving is key to success. Building an effective Safety Culture bolsters skill-based performance that minimizes risk and encourages successful engagement.

  10. Wastewater minimization in multipurpose batch plants with a regeneration unit: multiple contaminants

    CSIR Research Space (South Africa)

    Adekola, O

    2011-12-01

    Full Text Available Wastewater minimization can be achieved by employing water reuse opportunities. This paper presents a methodology to address the problem of wastewater minimization by extending the concept of water reuse to include a wastewater regenerator...

  11. The Effect of Different Water Temperatures on Retention Loss and Material Degradation of Locator Attachments.

    Science.gov (United States)

    Chiu, Lillian Pui Yuk; Vitale, Nicola Di; Petridis, Haralampos; McDonald, Ailbhe

    2017-08-01

    To examine the changes in Locator attachments after exposure to different water temperatures and cyclic loading. Four groups of pink Locator attachments (3.0 lb. light retention replacement patrix attachments; 10 per group) were soaked for the equivalent of 5 years of use in distilled water at the following temperatures: 20°C, 37°C, 60°C. One group was kept dry to test the effect of water. A universal testing machine was used to measure the retention force of each treated attachment during 5500 insertion and removal cycles, simulating approximately 5 years of use. The results were compared using Kruskal-Wallis one-way ANOVA by ranks. Surface changes of tested attachments were examined using scanning electron microscopy (SEM). The exposure to 60°C water significantly increased the percentage of retention loss in Locator attachments (p < 0.05) compared to the 20°C water group and significantly reduced the final retention force compared to the other groups (p < 0.05). SEM examinations revealed severe cracking and material degradation in Locator attachments after exposure to 60°C water and cyclic loading, which were not evident in other groups. Cracking was observed after exposure to 60˚C water before cyclic loading. Exposure to 60°C water, potentially similar to denture cleansing procedures, could cause cracking in Locator attachments. Cracking is associated with hydrolytic degradation of nylon at 60°C. The change in structure could result in a significant loss of retention. © 2016 by the American College of Prosthodontists.

  12. Estimation of phosphorus loss from agricultural land in the Heartland region using the APEX model: a first step to evaluating phosphorus indices

    Science.gov (United States)

    Purpose. Phosphorus (P) indices are a key tool to minimize P loss from agricultural fields but there is insufficient water quality data to fully test them. Our goal is to use the Agricultural Policy/Environmental eXtender Model (APEX), calibrated with existing edge-of-field runoff data, to refine P...

  13. Water deprivation induces appetite and alters metabolic strategy in Notomys alexis: unique mechanisms for water production in the desert.

    Science.gov (United States)

    Takei, Yoshio; Bartolo, Ray C; Fujihara, Hiroaki; Ueta, Yoichi; Donald, John A

    2012-07-07

    Like many desert animals, the spinifex hopping mouse, Notomys alexis, can maintain water balance without drinking water. The role of the kidney in producing a small volume of highly concentrated urine has been well-documented, but little is known about the physiological mechanisms underpinning the metabolic production of water to offset obligatory water loss. In Notomys, we found that water deprivation (WD) induced a sustained high food intake that exceeded the pre-deprivation level, which was driven by parallel changes in plasma leptin and ghrelin and the expression of orexigenic and anorectic neuropeptide genes in the hypothalamus; these changed in a direction that would stimulate appetite. As the period of WD was prolonged, body fat disappeared but body mass increased gradually, which was attributed to hepatic glycogen storage. Switching metabolic strategy from lipids to carbohydrates would enhance metabolic water production per oxygen molecule, thus providing a mechanism to minimize respiratory water loss. The changes observed in appetite control and metabolic strategy in Notomys were absent or less prominent in laboratory mice. This study reveals novel mechanisms for appetite regulation and energy metabolism that could be essential for desert rodents to survive in xeric environments.

  14. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. TECHNICAL FACT SHEET: A Systematic Evaluation of Dissolved Metals Loss during Water Sample Filtration

    Science.gov (United States)

    This research study examined how water quality collection and filtration approaches, including commonly used capsule and disc syringe filters, may cause losses in the amounts of soluble lead and copper found in a sample. A variety of commercially available filter materials with a...

  16. ITER SAFETY TASK NID-5D: Operational tritium loss and accident investigation for heat transport and water detritiation systems

    International Nuclear Information System (INIS)

    Kalyanam, K.M.; Fong, C.; Moledina, M.; Natalizio, A.

    1995-02-01

    The task objectives are to: a) determine major pathways for tritium loss during normal operation of the cooling systems and water detritiation system, b) estimate operational losses and environmental tritium releases from the heat transport and water detritiation systems of ITER, and c) prepare a preliminary Failure Modes and Effects Analysis (FMEA) for the ITER Water Detritiation System. The analysis will be used to estimate chronic environmental tritium releases (airborne and waterborne) for the ITER Cooling Systems and Water Detritiation System. The assessment will form the basis for demonstrating the acceptability of ITER for siting in the Early Safety and Environmental Characterization Study (ESECS), to be issued in early 1995. (author). 7 refs., 10 tabs., 11 figs

  17. An Optimal Design Model for New Water Distribution Networks in ...

    African Journals Online (AJOL)

    The mathematical formulation is a Linear Programming Problem (LPP) which involves the design of a new network of water distribution considering the cost in the form of unit price of pipes, the hydraulic gradient and the loss of pressure. The objective function minimizes the cost of the network which is computed as the sum ...

  18. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  19. Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles

    Directory of Open Access Journals (Sweden)

    R. M. Garland

    2005-01-01

    Full Text Available While water insoluble organics are prevalent in the atmosphere, it is not clear how the presence of such species alters the chemical and physical properties of atmospheric aerosols. Here we use a combination of FTIR spectroscopy, Transmission Electron Microscopy (TEM and Aerosol Mass Spectrometry (AMS to characterize ammonium sulfate particles coated with palmitic acid. Coated aerosols were generated by atomizing pure ammonium sulfate, mixing the particles with a heated flow of nitrogen with palmitic acid vapor, and then flowing the mixture through an in-line oven to create internally mixed particles. The mixing state of the particles was probed using the AMS data and images from the TEM. Both of these probes suggest that the particles were internally mixed. Water uptake by the mixed particles was then probed at 273 K. It was found that for ammonium sulfate containing ~20 wt% palmitic acid the deliquescence relative humidity (DRH was the same as for pure ammonium sulfate (80±3% RH. For particles with ~50 wt% palmitic acid however, the mixed particles began to take up water at relative humidities as low at 69% and continued to slowly take up water to 85% RH without fully deliquescing. In addition to studies of water uptake, water loss was also investigated. Here coatings of up to 50 wt% had no impact on the efflorescence relative humidity. These studies suggest that even if insoluble substances coat salt particles in the atmosphere, there may be relatively little effect on the resulting water uptake and loss.

  20. Soil, water, and nutrient losses from management alternatives for degraded pasture in Brazilian Atlantic Rainforest biome.

    Science.gov (United States)

    Rocha Junior, Paulo Roberto da; Andrade, Felipe Vaz; Mendonça, Eduardo de Sá; Donagemma, Guilherme Kangussú; Fernandes, Raphael Bragança Alves; Bhattharai, Rabin; Kalita, Prasanta Kumar

    2017-04-01

    The objective of this study was to evaluate sediment, water and nutrient losses from different pasture managements in the Atlantic Rainforest biome. A field study was carried out in Alegre Espiríto Santo, Brazil, on a Xanthic Ferralsol cultivated with braquiaria (Brachiaria brizantha). The six pasture managements studied were: control (CON), chisel (CHI), fertilizer (FER), burned (BUR), plowing and harrowing (PH), and integrated crop-livestock (iCL). Runoff and sediment samples were collected and analyzed for calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P) and organic carbon contents. Soil physical attributes and above and below biomass were also evaluated. The results indicated that higher water loss was observed for iCL (129.90mm) and CON (123.25mm) managements, and the sediment losses were higher for CON (10.24tha -1 ) and BUR (5.20tha -1 ) managements when compared to the other managements. Majority of the nutrients losses occurred in dissolved fraction (99% of Ca, 99% of Mg, 96% of K, and 65% of P), whereas a significant fraction of organic carbon (80%) loss occurred in a particulate form. Except for P, other nutrients (Ca, Mg and K) and organic carbon losses were higher in coarse sediment compared to fine sediment. The greater losses of sediment, organic carbon, and nutrients were observed for CON followed by BUR management (plosses from various practices, to reduce pasture degradation, farmers should adopt edaphic practices by applying lime and fertilize to improve pasture growth and soil cover, and reducing soil erosion in the hilly Brazilian Atlantic Rainforest biome. Copyright © 2016. Published by Elsevier B.V.

  1. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (capsicum)

    Science.gov (United States)

    Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of post-harvest fruit quality during commercial marketing. We’ve examined the fruit cuticles from 50 diverse pepper genotypes from a world c...

  2. A Tool for Assessing Future Capacity Loss Due to Sedimentation in the United States' Reservoirs

    Science.gov (United States)

    Pinson, A. O.; Baker, B.; White, K. D.

    2017-12-01

    Federal reservoirs are critical components of the United States' water supply, flood risk management, hydropower and navigation infrastructure. These reservoirs included capacity for storage loss due to the deposition of sediment by inflowing streams in their original design. However, the actual rate of capacity loss experienced is controlled in part by climate, topography, soils, and land use/land cover, and may vary from the design. To assess the current and future vulnerability of its reservoirs to sedimentation. USACE has developed an online planning tool to identify USACE reservoirs where sedimentation is currently a problem (e.g., sedimentation rate exceeds design sedimentation rate, or zone losses disproportionately affect authorized purposes), and reservoirs where rates are expected to increase significantly in the future. The goal is to be able to prioritize operation and maintenance actions to minimize the effects of reservoir capacity loss on authorized purposes and help maximize reservoir use life.

  3. Extension to AC Loss Minimisation in High Temperature Superconductors

    National Research Council Canada - National Science Library

    Campbell, Archie

    2004-01-01

    ...: (a) Measure the AC losses of appropriate Yttrium Barium Copper Oxide (YBCO) samples with strong potential for minimizing losses at high frequencies and magnetic fields with the existing equipment. (b...

  4. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    Energy Technology Data Exchange (ETDEWEB)

    Al-Falahi, A. [Helsinki Univ. of Technology, Espoo (Finland); Haennine, M. [VTT Energy, Espoo (Finland); Porkholm, K. [IVO International, Ltd., Vantaa (Finland)

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  5. Simulating water and nitrogen loss from an irrigated paddy field under continuously flooded condition with Hydrus-1D model.

    Science.gov (United States)

    Yang, Rui; Tong, Juxiu; Hu, Bill X; Li, Jiayun; Wei, Wenshuo

    2017-06-01

    Agricultural non-point source pollution is a major factor in surface water and groundwater pollution, especially for nitrogen (N) pollution. In this paper, an experiment was conducted in a direct-seeded paddy field under traditional continuously flooded irrigation (CFI). The water movement and N transport and transformation were simulated via the Hydrus-1D model, and the model was calibrated using field measurements. The model had a total water balance error of 0.236 cm and a relative error (error/input total water) of 0.23%. For the solute transport model, the N balance error and relative error (error/input total N) were 0.36 kg ha -1 and 0.40%, respectively. The study results indicate that the plow pan plays a crucial role in vertical water movement in paddy fields. Water flow was mainly lost through surface runoff and underground drainage, with proportions to total input water of 32.33 and 42.58%, respectively. The water productivity in the study was 0.36 kg m -3 . The simulated N concentration results revealed that ammonia was the main form in rice uptake (95% of total N uptake), and its concentration was much larger than for nitrate under CFI. Denitrification and volatilization were the main losses, with proportions to total consumption of 23.18 and 14.49%, respectively. Leaching (10.28%) and surface runoff loss (2.05%) were the main losses of N pushed out of the system by water. Hydrus-1D simulation was an effective method to predict water flow and N concentrations in the three different forms. The study provides results that could be used to guide water and fertilization management and field results for numerical studies of water flow and N transport and transformation in the future.

  6. Loss of Propiconazole and its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis

    Science.gov (United States)

    Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-wa...

  7. Minimizing the Fluid Used to Induce Fracturing

    Science.gov (United States)

    Boyle, E. J.

    2015-12-01

    The less fluid injected to induce fracturing means less fluid needing to be produced before gas is produced. One method is to inject as fast as possible until the desired fracture length is obtained. Presented is an alternative injection strategy derived by applying optimal system control theory to the macroscopic mass balance. The picture is that the fracture is constant in aperture, fluid is injected at a controlled rate at the near end, and the fracture unzips at the far end until the desired length is obtained. The velocity of the fluid is governed by Darcy's law with larger permeability for flow along the fracture length. Fracture growth is monitored through micro-seismicity. Since the fluid is assumed to be incompressible, the rate at which fluid is injected is balanced by rate of fracture growth and rate of loss to bounding rock. Minimizing injected fluid loss to the bounding rock is the same as minimizing total injected fluid How to change the injection rate so as to minimize the total injected fluid is a problem in optimal control. For a given total length, the variation of the injected rate is determined by variations in overall time needed to obtain the desired fracture length, the length at any time, and the rate at which the fracture is growing at that time. Optimal control theory leads to a boundary condition and an ordinary differential equation in time whose solution is an injection protocol that minimizes the fluid used under the stated assumptions. That method is to monitor the rate at which the square of the fracture length is growing and adjust the injection rate proportionately.

  8. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  9. U.S. Geological Survey Virginia and West Virginia Water Science Center

    Science.gov (United States)

    Jastram, John D.

    2017-08-22

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. In support of this mission, the USGS Virginia and West Virginia Water Science Center works in cooperation with many entities to provide reliable, impartial scientific information to resource managers, planners, and the public.

  10. Using ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: a hierarchical approach.

    Science.gov (United States)

    Day, John W; Yañéz Arancibia, Alejandro; Mitsch, William J; Lara-Dominguez, Ana Laura; Day, Jason N; Ko, Jae-Young; Lane, Robert; Lindsey, Joel; Lomeli, David Zarate

    2003-12-01

    Human activities are affecting the environment at continental and global scales. An example of this is the Mississippi basin where there has been a large scale loss of wetlands and water quality deterioration over the past century. Wetland and riparian ecosystems have been isolated from rivers and streams. Wetland loss is due both to drainage and reclamation, mainly for agriculture, and to isolation from the river by levees, as in the Mississippi delta. There has been a decline in water quality due to increasing use of fertilizers, enhanced drainage and the loss of wetlands for cleaning water. Water quality has deteriorated throughout the basin and high nitrogen in the Mississippi river is causing a large area of hypoxia in the Gulf of Mexico adjacent to the Mississippi delta. Since the causes of these problems are distributed over the basin, the solution also needs to be distributed over the basin. Ecotechnology and ecological engineering offer the only ecologically sound and cost-effective method of solving these problems. Wetlands to promote nitrogen removal, mainly through denitrification but also through burial and plant uptake, offer a sound ecotechnological solution. At the level of the Mississippi basin, changes in farming practices and use of wetlands for nitrogen assimilation can reduce nitrogen levels in the River. There are additional benefits of restoration of wetland and riverine ecosystems, flood control, reduction in public health threats, and enhanced wildlife and fisheries. At the local drainage basin level, the use of river diversions in the Mississippi delta can address both problems of coastal land loss and water quality deterioration. Nitrate levels in diverted river water are rapidly reduced as water flows through coastal watersheds. At the local level, wetlands are being used to treat municipal wastewater. This is a cost-effective method, which results in improved water quality, enhanced wetland productivity and increased accretion. The

  11. Expanded prediction equations of human sweat loss and water needs.

    Science.gov (United States)

    Gonzalez, R R; Cheuvront, S N; Montain, S J; Goodman, D A; Blanchard, L A; Berglund, L G; Sawka, M N

    2009-08-01

    The Institute of Medicine expressed a need for improved sweating rate (msw) prediction models that calculate hourly and daily water needs based on metabolic rate, clothing, and environment. More than 25 years ago, the original Shapiro prediction equation (OSE) was formulated as msw (g.m(-2).h(-1))=27.9.Ereq.(Emax)(-0.455), where Ereq is required evaporative heat loss and Emax is maximum evaporative power of the environment; OSE was developed for a limited set of environments, exposures times, and clothing systems. Recent evidence shows that OSE often overpredicts fluid needs. Our study developed a corrected OSE and a new msw prediction equation by using independent data sets from a wide range of environmental conditions, metabolic rates (rest to losses were carefully measured in 101 volunteers (80 males and 21 females; >500 observations) by using a variety of metabolic rates over a range of environmental conditions (ambient temperature, 15-46 degrees C; water vapor pressure, 0.27-4.45 kPa; wind speed, 0.4-2.5 m/s), clothing, and equipment combinations and durations (2-8 h). Data are expressed as grams per square meter per hour and were analyzed using fuzzy piecewise regression. OSE overpredicted sweating rates (Pdata (21 males and 9 females; >200 observations). OSEC and PW were more accurate predictors of sweating rate (58 and 65% more accurate, Perror (standard error estimate<100 g.m(-2).h(-1)) for conditions both within and outside the original OSE domain of validity. The new equations provide for more accurate sweat predictions over a broader range of conditions with applications to public health, military, occupational, and sports medicine settings.

  12. Soil phosphorus loss in tile drainage water from long-term conventional- and non-tillage soils of Ontario with and without compost addition.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Wang, Y T; Ma, B L; Welacky, T

    2017-02-15

    Recent ascertainment of tile drainage a predominant pathway of soil phosphorus (P) loss, along with the rise in concentration of soluble P in the Lake Erie, has led to a need to re-examine the impacts of agricultural practices. A three-year on-farm study was conducted to assess P loss in tile drainage water under long-term conventional- (CT) and non-tillage (NT) as influenced by yard waste leaf compost (LC) application in a Brookston clay loam soil. The effects of LC addition on soil P loss in tile drainage water varied depending on P forms and tillage systems. Under CT, dissolved reactive P (DRP) loss with LC addition over the study period was 765g P ha -1 , 2.9 times higher than CT without LC application, due to both a 50% increase in tile drainage flow volume and a 165% increase in DRP concentration. Under NT, DRP loss in tile drainage water with LC addition was 1447gPha -1 , 5.3 times greater than that for NT without LC application; this was solely caused by a 564% increase in DRP concentration. However, particulate P loads in tile drainage water with LC application remained unchanged, relative to non-LC application, regardless of tillage systems. Consequently, LC addition led to an increase in total P loads in tile drainage water by 57 and 69% under CT and NT, respectively. The results indicate that LC application may become an environmental concern due to increased DRP loss, particularly under NT. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  13. A closed unventilated chamber for the measurement of transepidermal water loss.

    Science.gov (United States)

    Nuutinen, Jouni; Alanen, Esko; Autio, Pekka; Lahtinen, Marjo-Riitta; Harvima, Ilkka; Lahtinen, Tapani

    2003-05-01

    Open chamber systems for measuring transepidermal water loss (TEWL) have limitations related to ambient and body-induced airflows near the probe, probe size, measurement sites and angles, and measurement range. The aim of the present investigation was to develop a closed chamber system for the TEWL measurement without significant blocking of normal evaporation through the skin. Additionally, in order to use the evaporimeter to measure evaporation rates through other biological and non-biological specimens and in the field applications, a small portable, battery-operated device was a design criteria. A closed unventilated chamber (inner volume 2.0 cm(3) was constructed. For the skin measurement, the chamber with one side open (open surface area 1.0 cm(2) is placed on the skin. The skin application time was investigated at low and high evaporation rates in order to assess the blocking effect of the chamber on normal evaporation. From the rising linear part of the relative humidity (RH) in the chamber the slope was registered. The slope was calibrated into a TEWL value by evaporating water at different temperatures and measuring the water loss of heated samples with a laboratory scale. The closed chamber evaporation technique was compared with a conventional evaporimeter based on an open chamber method (DermaLab), Cortex Technology, Hadsund, Denmark). The reproducibility of the closed chamber method was measured with the water samples and with volar forearm and palm of the hand in 10 healthy volunteers. The skin application time varied between 7 and 9 s and the linear slope region between 3 and 5 s at the evaporation rates of 3-220 g/m(2) h. A correlation coefficient between the TEWL value from the closed chamber measurements and the readings of the laboratory scale was 0.99 (P measurements with the water samples was 4.0% at the evaporation rate of 40 g/m(2) h. A correlation coefficient of the TEWL values between the closed chamber and open chamber measurements was 0

  14. Baking loss of bread with special emphasis on increasing water holding capacity.

    Science.gov (United States)

    Kotoki, D; Deka, S C

    2010-01-01

    Potato flour (PF), hydroxypropyl methylcellulose (HPMC) and honey were used as baking agents and their effects on baking loss and sensory quality were studied. PF at 1, 2 and 4% levels decreased baking loss followed by HPMC and honey. Water absorption was substantially high with the HPMC (70.8-80.8%) and PF (61.7-71.7%) compared to honey and normal standard bread. PF incorporation increased shelf-life (6-7 days) as compared to HPMC and honey. HPMC incorporated bread had higher moisture content (36.8-38.0%) followed by PF (34.5-35.8%) and honey (34.7%). The ash content was in the order of PF (1%) > honey (4%) > PF (2%) > normal bread > HPMC (0.5 g) > PF (4%) > HPMC (1 g) > HPMC (1.5 g). PF incorporated bread had sensorily highest acceptance followed by HPMC and honey.

  15. Importance of water source in controlling leaf leaching losses in a dwarf red mangrove ( Rhizophora mangle L.) wetland

    Science.gov (United States)

    Davis, Stephen E., III; Childers, Daniel L.

    2007-01-01

    The southern Everglades mangrove ecotone is characterized by extensive dwarf Rhizophora mangle L. shrub forests with a seasonally variable water source (Everglades - NE Florida Bay) and residence times ranging from short to long. We conducted a leaf leaching experiment to understand the influence that water source and its corresponding water quality have on (1) the early decay of R. mangle leaves and (2) the early exchange of total organic carbon (TOC) and total phosphorus (TP) between leaves and the water column. Newly senesced leaves collected from lower Taylor River (FL) were incubated in bottles containing water from one of three sources (Everglades, ambient mangrove, and Florida Bay) that spanned a range of salinity from 0 to 32‰, [TOC] from 710 to 1400 μM, and [TP] from 0.17 to 0.33 μM. We poisoned half the bottles in order to quantify abiotic processes (i.e., leaching) and assumed that non-poisoned bottles represented both biotic (i.e., microbial) and abiotic processes. We sacrificed bottles after 1,2, 5, 10, and 21 days of incubation and quantified changes in leaf mass and changes in water column [TOC] and [TP]. We saw 10-20% loss of leaf mass after 24 h—independent of water treatment—that leveled off by Day 21. After 3 weeks, non-poisoned leaves lost more mass than poisoned leaves, and there was only an effect of salinity on mass loss in poisoned incubations—with greatest leaching-associated losses in Everglades freshwater. Normalized concentrations of TOC in the water column increased by more than two orders of magnitude after 21 days with no effect of salinity and no difference between poisoned and non-poisoned treatments. However, normalized [TP] was lower in non-poisoned incubations as a result of immobilization by epiphytic microbes. This immobilization was greatest in Everglades freshwater and reflects the high P demand in this ecosystem. Immobilization of leached P in mangrove water and Florida Bay water was delayed by several days and may

  16. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Zamansky, Vladimir M.; Lissianski, Vitali V.

    2001-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO x and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO x control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO x reduction in basic coal reburning depends on process conditions, initial NO x and coal type. Up to 60% NO x reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO x reduction in reburning by coal gasification products. Modeling predicted that composition of coal

  17. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China.

    Science.gov (United States)

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau.

  18. Water management in container nurseries to minimize pests

    Science.gov (United States)

    R. Kasten Dumroese; Diane L. Haase

    2018-01-01

    Water is the most important and most common chemical used in plant nurseries. It is also the most dangerous chemical used. Insufficient water, excessive water, and poorly timed irrigation can all lead to poor-quality crops and unacceptable mortality. Anticipated future declines of water availability, higher costs to use it, and continuing concerns about irrigation...

  19. Streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, 2008-10

    Science.gov (United States)

    Banta, J. Ryan; Lambert, Rebecca B.; Slattery, Richard N.; Ockerman, Darwin J.

    2012-01-01

    The U.S. Geological Survey-in cooperation with the U.S. Army Corps of Engineers, The Nature Conservancy, the Real Edwards Conservation and Reclamation District, and the Texas Parks and Wildlife Department-investigated streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, specifically in the watersheds of the West Nueces, Nueces, Dry Frio, Frio, and Sabinal Rivers upstream from the Edwards aquifer outcrop. Streamflow in these rivers is sustained by groundwater contributions (for example, from springs) and storm runoff from rainfall events. To date (2012), there are few data available that describe streamflow and water-quality conditions of the rivers within the upper Nueces River Basin. This report describes streamflow gain-loss characteristics from three reconnaissance-level synoptic measurement surveys (hereinafter referred to as "surveys") during 2008-10 in the upper Nueces River Basin. To help characterize the hydrology, groundwater-level measurements were made, and water-quality samples were collected from both surface-water and groundwater sites in the study area from two surveys during 2009-10. The hydrologic (streamflow, springflow, and groundwater) measurements were made during three reconnaissance-level synoptic measurement surveys occurring in July 21-23, 2008; August 8-18, 2009; and March 22-24, 2010. These survey periods were selected to represent different hydrologic conditions. Streamflow gains and losses were based on streamflow and springflow measurements made at 74 sites in the study area, although not all sites were measured during each survey. Possible water chemistry relations among sample types (streamflow, springflow, or groundwater), between surveys, and among watersheds were examined using water-quality samples collected from as many as 20 sites in the study area.

  20. Minimization of thermal insulation thickness taking into account condensation on external walls

    Directory of Open Access Journals (Sweden)

    Nurettin Yamankaradeniz

    2015-09-01

    Full Text Available Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calculations of heat and mass transfers in the structure elements are expressed in a graphical form. While there was an increase in the required thermal insulation thickness subsequent to an increase in the internal environment’s temperature, relative humidity, and the external environment’s relative humidity, the required thickness decreased with an increase in the external environment’s temperature. The amount of water vapor transferred varied with internal or external conditions and the thickness of the insulation. A change in the vapor diffusion resistance of the insulation material can increase the risk of condensation on the internal or external surfaces of the insulation.

  1. Coal consumption minimizing by increasing thermal energy efficiency at ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Preda, Marius Cristian

    2006-01-01

    ROMAG-PROD Heavy Water Plant is a large thermal energy consumer using almost all the steam output from ROMAG-TERMO Power Plant - the steam cost weight in the total heavy water price is about 40%. The steam consumption minimizing by modernization of isotopic exchange facilities and engineering development in ROMAG-PROD Heavy Water Plant results in an corresponding decrease of coal amount burned at ROMAG-TERMO boilers. This decrease could be achieved mainly by the followings ways: - Facility wrappings integrity; - High performance heat exchangers; - Refurbished heat insulations; - Modified condenser-collecting pipeline routes; - High performance steam traps; - Heat electric wire. When coal is burned in Power Plant burners to obtain thermal energy, toxic emissions results in flue gases, such as: - CO 2 and NO x with impact on climate warming; - SO 2 which results in ozone layer thinning effect and in acid rain falls. From the value of steam output per burned coal: 1 GCal steam = 1.41 tone steam = 0.86 thermal MW = 1.1911 tones burned coal (lignite), it is obvious that by decreasing the thermal energy consumption provided for ROMAG PROD, a coal amount decrease is estimated at about 45 t/h, or about 394,200 t/year coal, which means about 10% of the current coal consumption at ROMAG-TERMO PP. At the same time, by reducing the burned coal amount, an yearly decrease in emissions into air to about 400,000 tones CO 2 is expected

  2. Loss-of-Fluid Test findings in pressurized water reactor core's thermal-hydraulic behavior

    International Nuclear Information System (INIS)

    Russell, M.

    1983-01-01

    This paper summarizes the pressurized water reactor (PWR) core's thermal-hydraulic behavior findings from experiments performed at the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The potential impact of these findings on the safety and economics of PWR's generation of electricity is also discussed. Reviews of eight important findings in the core's physical behavior and in experimental methods are presented with supporting evidence

  3. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  4. Use of the Universal Soil-Loss Equation to determine water erosion with the semi-circular bund water-harvesting technique in the Syrian Steppe

    Directory of Open Access Journals (Sweden)

    Hamdan Al Mahmoud

    2014-05-01

    Full Text Available This research was conducted through the rain season 2009 -2010, in Mehasseh Research Center at (Al Qaryatein, The area is characterized by a hot and dry climate in summer and cold in winter with an annual average rainfall of 114 mm. Three slopes (8%, 6%, 4% were used in semicircular bunds water -harvesting techniques with bunds parallel to the contours lines at flow distance of 18, 12 and 6 m. The bunds were planted with Atriplex Halimus seedlings. Graded metal rulers were planted inside the bunds to determine soil loss and sedimentation associated with the surface runoff, and metallic tanks were placed at the end of the flow paths to determine agricultural soil loss from water runoff. A rain intensity gauge was placed near the experiment site to determine the rainfall intensity that produced runoff. The treatments were done in three replications. The amount of soil erosion (in tons per hectare per year increased with increasing of the slope, the highest recorded value was 38.66 at slope of 8% and the lowest 0.05 at 4% slope. The amount of soil erosion also increased with increasing of water run distance, which was 38.66 T.ha-1.yr-1 at 18 m and 0.05 T.ha-1.yr-1 at 6 m . Bunds with different diameter of water harvesting reduced soil erosion by about 65% at slope of 8%, 55% at 6%, and 46% at 4%. The input parameters of Universal soil-loss equation were found to be suitable for determining soil erosion in this arid and semi-arid region. DOI: http://dx.doi.org/10.3126/ije.v3i2.10499 International Journal of the Environment Vol.3(2 2014: 1-11

  5. Evaluation of Control and Protection System for Loss of Electrical Power Supply System of Water-Cooling Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suhaemi, Tjipta; Djen Djen; Setyono; Jambiar, Riswan; Rozali, Bang; Setyo P, Dwi; Tjahyono, Hendro

    2000-01-01

    Evaluation of control and protection system for loss of electrical power supply system of water-cooled nuclear power plant has been done. The loss of electrical power supply. The accident covered the loss of external electrical load and loss of ac power to the station auxiliaries. It is analysed by studying and observing the mechanism of electrical power system and mechanism of related control and protection system. The are two condition used in the evaluation i e without turbine trip and with turbine trip. From the evaluation it is concluded that the control and protection system can handled the failure caused by the loss of electrical power system

  6. Metabolic rate, evaporative water loss and thermoregulatory state in four species of bats in the Negev desert.

    Science.gov (United States)

    Muñoz-Garcia, Agustí; Larraín, Paloma; Ben-Hamo, Miriam; Cruz-Neto, Ariovaldo; Williams, Joseph B; Pinshow, Berry; Korine, Carmi

    2016-01-01

    Life in deserts is challenging for bats because of their relatively high energy and water requirements; nevertheless bats thrive in desert environments. We postulated that bats from desert environments have lower metabolic rates (MR) and total evaporative water loss (TEWL) than their mesic counterparts. To test this idea, we measured MR and TEWL of four species of bats, which inhabit the Negev desert in Israel, one species mainly restricted to hyper-arid deserts (Otonycteris hemprichii), two species from semi-desert areas (Eptesicus bottae and Plecotus christii), and one widespread species (Pipistrellus kuhlii). We also measured separately, in the same individuals, the two components of TEWL, respiratory water loss (RWL) and cutaneous evaporative water loss (CEWL), using a mask. In all the species, MR and TEWL were significantly reduced during torpor, the latter being a consequence of reductions in both RWL and CEWL. Then, we evaluated whether MR and TEWL in bats differ according to their geographic distributions, and whether those rates change with Ta and the use of torpor. We did not find significant differences in MR among species, but we found that TEWL was lowest in the species restricted to desert habitats, intermediate in the semi-desert dwelling species, and highest in the widespread species, perhaps a consequence of adaptation to life in deserts. Our results were supported by a subsequent analysis of data collected from the literature on rates of TEWL for 35 bat species from desert and mesic habitats. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Cs-134 transfer from water or food to the Ciprinid Tinca tinca Linnaeus: uptake and loss kinetics

    International Nuclear Information System (INIS)

    Corisco, J.A.G.; Carreiro, M.C.V.

    1991-01-01

    Experiments with 134 Cs and the fish Tinca tinca Linnaeus (fam. Cyprinidae), as a part of a more extensive work, concerning a simplified freshwater trophic chain using water from Fratel dam, (at Tejo River), were undertaken. Direct uptake from water, during a period of about 30 days, leads to a kinetics expressed by the power function: CF (t) = 0.58 t 0.781 (t in days), the concentration factor (CF) referred to wet weight. Retention study, showed the existence of two biological half-lives, Tb 1 = 7 days and Tb 2 = 87 days, which might concern respectively, the 134 Cs desorption from the transit organs and the loss of the assimilated isotope from the storage organs. In the accumulation through the food chain, using planktonic crustacean Daphnia magna Straus (Cladocera) as prey, a transfer factor (TF) related to wet weight of both fish and prey, is estimated through the power function: TF (t) = 0.022 t 0.578 (t in days). Finally, the retention study following the food pathway contamination, stresses the existence of one long term component, with half-life Tb = 61 days. The transfer factor kinetics seems to point out to a rather slow process, leading to lower 134 Cs concentration values, than the contamination through the water. The loss of the assimilated 134 Cs, uptaken through both pathways, water or food, is a slow process. The longer biological half-life is very important in Radiological Protection, once it may be attributed to the radionuclide loss from the muscular mass. (author)

  8. Deformation of log-likelihood loss function for multiclass boosting.

    Science.gov (United States)

    Kanamori, Takafumi

    2010-09-01

    The purpose of this paper is to study loss functions in multiclass classification. In classification problems, the decision function is estimated by minimizing an empirical loss function, and then, the output label is predicted by using the estimated decision function. We propose a class of loss functions which is obtained by a deformation of the log-likelihood loss function. There are four main reasons why we focus on the deformed log-likelihood loss function: (1) this is a class of loss functions which has not been deeply investigated so far, (2) in terms of computation, a boosting algorithm with a pseudo-loss is available to minimize the proposed loss function, (3) the proposed loss functions provide a clear correspondence between the decision functions and conditional probabilities of output labels, (4) the proposed loss functions satisfy the statistical consistency of the classification error rate which is a desirable property in classification problems. Based on (3), we show that the deformed log-likelihood loss provides a model of mislabeling which is useful as a statistical model of medical diagnostics. We also propose a robust loss function against outliers in multiclass classification based on our approach. The robust loss function is a natural extension of the existing robust loss function for binary classification. A model of mislabeling and a robust loss function are useful to cope with noisy data. Some numerical studies are presented to show the robustness of the proposed loss function. A mathematical characterization of the deformed log-likelihood loss function is also presented. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Assessment of Loss-of-Coolant Effect on Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Won Young; Park, Joo Hwan; Kim, Bong Ghi

    2009-01-01

    A CANDU reactor is a heavy-water-moderated, natural uranium fuelled reactor with a pressure tube. The reactor contains a horizontal cylindrical vessel (calandria) and each pressure tube is isolated from the heavy-water moderator in a calandria. This allows the moderator system to be operated of a high-pressure and of a high-temperature coolant in pressure tube. This causes the pressurized liquid coolant in the channel to void and therefore give rise to a reactivity transient in the event of a break or fault in the coolant circuit. In particular, all CANDU reactors are well known to have a positive void reactivity coefficient and thus this phenomenon may lead to a positive feedback, which can cause a large power pulse. We assess the loss-of-coolant effect by coolant void reactivity versus fuel burnup, four factor parameters for fresh fuel and equilibrium fuel, reactivity change due to the change of coolant density and reactivity change in the case of half- and full-core coolant

  10. Review of boiling water reactor small break loss of coolant accidents

    International Nuclear Information System (INIS)

    Gururaj, P.M.; Dua, S.S.; Rao, A.S.

    1981-01-01

    This paper presents a review of the analytical and the experimental work performed by the General Electric Company to determine the performance of boiling water reactors (BWR) following postulated small break accidents (SBA). This review paper addresses the following issues: (1) the response of the BWR following small loss of inventory events; (2) methods of analysis and their justification; (3) necessity, if any, of operator action and the length of time available in which such action can be performed; and (4) operator interface following the SBA event. The results from these SBA studies for different BWR product lines show that even with the multiple system failures assumed, the BWR can successfully withstand an SBA. For a typical BWR/6, it takes the failure of 13 water delivery pumps to cause any significant core heatup. The only operator actions determined to be necessary are simple ones and ample time is available to the operator to perform these actions, if needed

  11. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

    2002-09-10

    This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO{sub x} reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO{sub x} reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO{sub x} reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO{sub x} reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO{sub x} reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO{sub x} reduction on the surface of char played important role. Economic analysis confirmed

  12. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Vitali V. Lissianski

    2001-09-07

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO{sub x} and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO{sub x} control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO{sub x} reduction in basic coal reburning depends on process conditions, initial NO{sub x} and coal type. Up to 60% NO{sub x} reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO{sub x} reduction in reburning by coal gasification products. Modeling predicted that

  13. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

    2002-01-01

    This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO x reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO x reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO x reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO x reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO x reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO x reduction on the surface of char played important role. Economic analysis confirmed economic benefits of the FFR

  14. Global Water Cycle Diagrams Minimize Human Influence and Over-represent Water Security

    Science.gov (United States)

    Abbott, B. W.; Bishop, K.; Zarnetske, J. P.; Minaudo, C.; Chapin, F. S., III; Plont, S.; Marçais, J.; Ellison, D.; Roy Chowdhury, S.; Kolbe, T.; Ursache, O.; Hampton, T. B.; GU, S.; Chapin, M.; Krause, S.; Henderson, K. D.; Hannah, D. M.; Pinay, G.

    2017-12-01

    The diagram of the global water cycle is the central icon of hydrology, and for many people, the point of entry to thinking about key scientific concepts such as conservation of mass, teleconnections, and human dependence on ecological systems. Because humans now dominate critical components of the hydrosphere, improving our understanding of the global water cycle has graduated from an academic exercise to an urgent priority. To assess how the water cycle is conceptualized by researchers and the general public, we analyzed 455 water cycle diagrams from textbooks, scientific articles, and online image searches performed in different languages. Only 15% of diagrams integrated human activity into the water cycle and 77% showed no sign of humans whatsoever, although representation of humans varied substantially by region (lowest in China, N. America, and Australia; highest in Western Europe). The abundance and accessibility of freshwater resources were overrepresented, with 98% of diagrams omitting water pollution and climate change, and over 90% of diagrams making no distinction for saline groundwater and lakes. Oceanic aspects of the water cycle (i.e. ocean size, circulation, and precipitation) and related teleconnections were nearly always underrepresented. These patterns held across disciplinary boundaries and through time. We explore the historical and contemporary reasons for some of these biases and present a revised version of the global water cycle based on research from natural and social sciences. We conclude that current depictions of the global water cycle convey a false sense of water security and that reintegrating humans into water cycle diagrams is an important first step towards understanding and sustaining the hydrosocial cycle.

  15. Predicting camber, deflection, and prestress losses in prestressed concrete members.

    Science.gov (United States)

    2011-07-01

    Accurate predictions of camber and prestress losses for prestressed concrete bridge girders are essential to minimizing the frequency and cost of construction problems. The time-dependent nature of prestress losses, variable concrete properties, and ...

  16. LLNL Waste Minimization Program Plan

    International Nuclear Information System (INIS)

    1990-05-01

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). Now legislation at the federal level is being introduced. Passage will result in new EPA regulations and also DOE orders. At the state level the Hazardous Waste Reduction and Management Review Act of 1989 was signed by the Governor. DHS is currently promulgating regulations to implement the new law. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements

  17. Water motion and movement without sticking, weight loss and cross-contaminant in superhydrophobic glass tube.

    Science.gov (United States)

    Yuan, Jian-Jun; Jin, Ren-Hua

    2010-02-10

    We report that a simple fabrication of a superhydrophobic nanosurface consisted of a grass-like silica thin film on the inner wall of a glass tube and its feature in water motion and water movement. The glass tube with a superhydrophobic inner wall can make the water flow with friction-drag reduction and completely preventing water sticking. Transferring water by this tube did not cause weight loss at all. Therefore, aqueous solutions containing high content metal ions were cross-moved without washing the tube used and no cross-contamination occurred after cross-movement. Furthermore, in an inside diameter of 6.0 mm glass tube where the half-length of the inner surface is covered by superhydrophobic nanograss and the other half is an unmodified hydrophilic surface, the water droplets flowing down from the hydrophilic side can be stopped spontaneously at the hydrophilic-superhydrophobic boundary as if there is an invisible flow-stopping fence built inside the glass tube.

  18. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    Science.gov (United States)

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.

  19. Effects of centrifugation on transmembrane water loss from normal and pathologic erythrocytes

    International Nuclear Information System (INIS)

    Kaperonis, A.A.; Chien, S.

    1989-01-01

    Plasma 125 I-albumin was used as a marker of extracellular dilution in order to study the effect of high-speed centrifugation on transmembrane water distribution in several types of human red cells, including normal (AA), hemoglobin variants (beta A, AS, SC, beta S, and SS), and those from patients with hereditary spherocytosis. SS and AA erythrocytes were also examined for changes in intracellular hemoglobin concentration of three different density fractions and with increasing duration of spin. The minimum force and duration of centrifugation required to impair water permeability were found to vary with the red cell type, the anticoagulant used (heparin or EDTA), the initial hematocrit of the sample centrifuged, as well as among the individual erythrocyte fractions within the same sample. When subjecting pathologic erythrocytes to high-speed centrifugation, the 125 I-albumin dilution technique can be used to determine whether the centrifugation procedure has led to an artifactual red cell water loss and to correct for this when it does occur. An abnormal membrane susceptibility to mechanical stress was demonstrated in erythrocytes from patients with hereditary spherocytosis and several hemoglobinopathies

  20. Selecting Suitable Drainage Pattern to Minimize Flooding in ...

    African Journals Online (AJOL)

    Water shed analysis is a geographic information system (GIS) based technique designed to model the way surface water flows on the earth surface. This was the method adopted to select suitable drainage pattern to minimized flood in some parts of sangere. The process of watershed computes the local direction of flow ...

  1. Use of L-cysteine for minimization of inorganic Hg loss during thermal neutron irradiation

    International Nuclear Information System (INIS)

    Anderson, D.L.

    2009-01-01

    Thermal neutron irradiation experiments performed with cellulose-based L-cysteine-treated and untreated Hg standards showed Hg losses of 59-81% for untreated standards but only about a 0.2% loss for treated standards. These results and others for multielement standards showed that Hg loss is highly dependent on total mass and placement of materials in the irradiation vessel and that distribution of volatilized Hg was fairly uniform throughout the sample-containing region of the vessel. Polyethylene trapped volatile Hg much more efficiently than cellulose and a multielement standard containing inorganic Se selectively trapped Hg lost from a co-irradiated multielement standard containing Hg. (author)

  2. Analysis of water hammer-structure interaction in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; Yang Jinglong; He Feng; Wang Xuefang

    2000-01-01

    The conventional analysis of water hammer and dynamics response of structure in piping system is divided into two parts, and the interaction between them is neglected. The mechanism of fluid-structure interaction under the double-end break pipe in piping system is analyzed. Using the characteristics method, the numerical simulation of water hammer-structure interaction in piping system is completed based on 14 parameters and 14 partial differential equations of fluid-piping cell. The calculated results for a loss of coolant accident (LOCA) in primary loop of pressurized water reactor show that the waveform and values of pressure and force with time in piping system are different from that of non-interaction between water hammer and structure in piping system, and the former is less than the later

  3. A Study on Distribution Measurement and Mechanism of Deformation due to Water Loss of Overburden Layer in Vertical Shaft

    Directory of Open Access Journals (Sweden)

    Chunde Piao

    2015-01-01

    Full Text Available Based on FBG fiber Bragg grating technology and BOTDA distributed optical fiber sensing technology, this study uses fine sand to simulate overburden layer in vertical shaft model equipment. It studies the placing technique and test method for optical fiber sensors in the overburden layer, combined with MODFLOW software to simulate the change of the water head value when the overburden layer is losing water, and obtains the deformation features of overburden layer. The results show, at the beginning of water loss, the vertical deformation increases due to larger hydraulic pressure drop, while the deformation decreases gradually and tends to be stable with the hydraulic pressure drop reducing. The circumferential deformation is closely related to such factors as the distance between each drainage outlet, the variations of water head value, and the method of drainage. The monitoring result based on optical fiber sensing technology is consistent with the characteristics of water loss in overburden layer simulated by MODFLOW software, which shows that the optical fiber sensing technology applied to monitor shaft overburden layer is feasible.

  4. Use of dew-point hygrometry, direct sweat collection, and measurement of body water losses to determine sweating rates in exercising horses.

    Science.gov (United States)

    Kingston, J K; Geor, R J; McCutcheon, L J

    1997-02-01

    To compare dew-point hygrometry, direct sweat collection, and measurement of body water loss as methods for determination of sweating rate (SR) in exercising horses. 6 exercise-trained Thoroughbreds. SR was measured in 6 horses exercising at 40% of the speed that elicited maximum oxygen consumption for 45 km, with a 15-minute rest at the end of each 15-km phase. Each horse completed 2 exercise trials. Dew-point hygrometry, as a method of local SR determination, was validated in vitro by measurement of rate of evaporative water loss. During exercise, local SR was determined every 10 minutes by the following 2 methods: (1) dew-point hygrometry on the neck and lateral area of the thorax, and (2) on the basis of the volume of sweat collected from a sealed plastic pouch attached to the lateral area of the thorax. Mean whole body SR was calculated from total body water loss incurred during exercise. Evaporation rate measured by use of dew-point hygrometry was significantly correlated (r2 = 0.92) with the actual rate of evaporative water loss. There was a similar pattern of change in SR measured by dew-point hygrometry on the neck and lateral area of the thorax during exercise, with a significantly higher SR on the neck. The SR measured on the thorax by direct sweat collection and by dew-point hygrometry were of similar magnitude. Mean whole body SR calculated from total body water loss was not significantly different from mean whole body SR estimated from direct sweat collection or dew-point hygrometry measurements on the thorax. Dew-point hygrometry and direct sweat collection are useful methods for determination of local SR in horses during prolonged, steady-state exercise in moderate ambient conditions. Both methods of local SR determination provide an accurate estimated of whole body SR.

  5. Systematic design of loss-engineered slow-light waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Mørk, Jesper

    2012-01-01

    This paper employs topology optimization to systematically design free-topology loss-engineered slow-light waveguides with enlarged group index bandwidth product (GBP). The propagation losses of guided modes are evaluated by the imaginary part of eigenvalues in complex band structure calculations......, where the scattering losses due to manufacturing imperfections are represented by an edge-related effective dissipation. The loss engineering of slow-light waveguides is realized by minimizing the propagation losses of design modes. Numerical examples illustrate that the propagation losses of free......-topology dispersion-engineered waveguides can be significantly suppressed by loss engineering. Comparisons between fixed- and free-topology loss-engineered waveguides demonstrate that the GBP can be enhanced significantly by the free-topology loss-engineered waveguides with a small increase of the propagation losses....

  6. Loss of coolant analysis for the tower shielding reactor 2

    International Nuclear Information System (INIS)

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs

  7. Minimizing resputtering of Pt-coated microspheres in a batch magnetron sputtering process

    International Nuclear Information System (INIS)

    Plake, A.L.

    1981-01-01

    Preventing DT loss from glass microspheres being smoothly coated with PT is needed during fabrication of laser fusion targets. Evidence indicates that the increase of substrate temperature due to resputtering will cause DT loss. Resputtering will prevent a smooth and uniform coating on these glass microspheres (140 μm in diameter). This paper reviews the method that was developed to find a set of coating conditions to minimize the DT loss, and still be able to produce thick smooth Pt coated glass microspheres

  8. Foraging Activity Pattern Is Shaped by Water Loss Rates in a Diurnal Desert Rodent.

    Science.gov (United States)

    Levy, Ofir; Dayan, Tamar; Porter, Warren P; Kronfeld-Schor, Noga

    2016-08-01

    Although animals fine-tune their activity to avoid excess heat, we still lack a mechanistic understanding of such behaviors. As the global climate changes, such understanding is particularly important for projecting shifts in the activity patterns of populations and communities. We studied how foraging decisions vary with biotic and abiotic pressures. By tracking the foraging behavior of diurnal desert spiny mice in their natural habitat and estimating the energy and water costs and benefits of foraging, we asked how risk management and thermoregulatory requirements affect foraging decisions. We found that water requirements had the strongest effect on the observed foraging decisions. In their arid environment, mice often lose water while foraging for seeds and cease foraging even at high energetic returns when water loss is high. Mice also foraged more often when energy expenditure was high and for longer times under high seed densities and low predation risks. Gaining insight into both energy and water balance will be crucial to understanding the forces exerted by changing climatic conditions on animal energetics, behavior, and ecology.

  9. Lipofilling With Minimal Access Cranial Suspension Lifting for Enhanced Rejuvenation

    NARCIS (Netherlands)

    Willemsen, Joep C. N.; Mulder, Karlijn M.; Stevens, Hieronymus P. J. D.

    Background: Loss of volume is an important aspect in facial aging, but its relevance is frequently neglected during treatment. Objectives: The authors discuss lipofilling as an ancillary procedure to improve the impact of facelifting procedures. Methods: Fifty patients who underwent minimal access

  10. Linearly convergent stochastic heavy ball method for minimizing generalization error

    KAUST Repository

    Loizou, Nicolas; Richtarik, Peter

    2017-01-01

    In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss

  11. Performance test of filtering system for controlling the turbidity of secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Jo, Y. K.; Loo, J. S.; Lim, N. Y.

    2001-01-01

    There is about 80 m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30 MW research reactor. When the secondary cooling water is treated by high Ca-hardness treatment program for minimizing the blowdown loss, only the trubidity exceeds the limit. By adding filtering system it was confirned, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2 % of filtering rate without blowdown. And it was verified, through the field performace test of filtering system under normal operation condition, that the circulation pumps get proper capacity and that filter units reduce the turbidity below the limit. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  12. Antibiotic losses from unprotected manure stockpiles.

    Science.gov (United States)

    Dolliver, Holly A S; Gupta, Satish C

    2008-01-01

    Manure management is a major concern in livestock production systems. Although historically the primary concerns have been nutrients and pathogens, manure is also a source of emerging contaminants, such as antibiotics, to the environment. There is a growing concern that antibiotics in manure are reaching surface and ground waters and contributing to the development and spread of antibiotic resistance in the environment. One such pathway is through leaching and runoff from manure stockpiles. In this study, we quantified chlortetracycline, monensin, and tylosin losses in runoff from beef manure stockpiles during two separate but consecutive experiments representing different weather conditions (i.e., temperature and precipitation amount and form). Concentrations of chlortetracycline, monensin, and tylosin in runoff were positively correlated with initial concentrations of antibiotics in manure. The highest concentrations of chlortetracycline, monensin, and tylosin in runoff were 210, 3175, and 2544 microg L(-1), respectively. Relative antibiotic losses were primarily a function of water losses. In the experiment that had higher runoff water losses, antibiotic losses ranged from 1.2 to 1.8% of total extractable antibiotics in manure. In the experiment with lower runoff water losses, antibiotic losses varied from 0.2 to 0.6% of the total extractable antibiotics in manure. Manure analysis over time suggests that in situ degradation is an important mechanism for antibiotic losses. Degradation losses during manure stockpiling may exceed cumulative losses from runoff events. Storing manure in protected (i.e., covered) facilities could reduce the risk of aquatic contamination associated with manure stockpiling and other outdoor manure management practices.

  13. Electrolyte-carbohydrate beverage prevents water loss in the early stage of high altitude training.

    Science.gov (United States)

    Yanagisawa, Kae; Ito, Osamu; Nagai, Satsuki; Onishi, Shohei

    2012-01-01

    To prevent water loss in the early stage of high altitude training, we focused on the effect of electrolyte-carbohydrate beverage (EC). Subjects were 16 male university students who belonged to a ski club. They had ski training at an altitude of 1,800 m. The water (WT) group drank only water, and the EC group drank only an electrolyte-carbohydrate beverage. They arrived at the training site in the late afternoon. The study started at 7 pm on the day of arrival and continued until noon of the 4(th) day. In the first 12 hours, 1 L of beverages were given. On the second and third days, 2.5 L of beverages were given. All subjects ate the same meals. Each morning while in fasting condition, subjects were weighed and blood was withdrawn for various parameters (hemoglobin, hematocrit, sodium, potassium and aldosterone). Urine was collected at 12 hour intervals for a total 60 hours (5 times). The urine volume, gravity, sodium and potassium concentrations were measured. Peripheral oxygen saturation and heart rate were measured during sleep with a pulse oximeter. Liquid intakes in both groups were similar, hence the electrolytes intake was higher in the EC group than in the WT group. The total urine volume was lower in the EC group than in the WT group, respectively (paltitude training may be effective in decreasing urinary output and preventing loss of blood plasma volume.

  14. Lipid composition of the stratum corneum and cutaneous water loss in birds along an aridity gradient

    NARCIS (Netherlands)

    Champagne, Alex M.; Munoz-Garcia, Agusti; Shtayyeh, Tamer; Tieleman, B. Irene; Hegemann, Arne; Clement, Michelle E.; Williams, Joseph B.

    2012-01-01

    Intercellular and covalently bound lipids within the stratum corneum (SC), the outermost layer of the epidermis, are the primary barrier to cutaneous water loss (CWL) in birds. We compared CWL and intercellular SC lipid composition in 20 species of birds from desert and mesic environments.

  15. Assessment of the intrinsic vulnerability of agricultural land to water and nitrogen losses: case studies in Italy and Greece

    Science.gov (United States)

    Aschonitis, V. G.; Mastrocicco, M.; Colombani, N.; Salemi, E.; Castaldelli, G.

    2014-09-01

    LOS indices (abbr. of Losses) can be used for the assessment of the intrinsic vulnerability of agricultural land to water and nitrogen losses through percolation and runoff. The indices were applied on the lowland region of Ferrara Province (FP) in Italy and the upland region of Sarigkiol Basin (SB) in Greece. The most vulnerable zones in FP were the coastal areas consisting of high permeability sandy dunes and the areas close to riverbanks and palaeochannels, and in SB were the areas characterized by high slopes and high permeability soils at high altitude and areas belonging to the upper part of the alluvial plain close to the boundaries between agricultural land and mountainous regions. The application of LOS indices highlighted the specific features of both lowland and upland regions that contribute to water and nitrogen losses and showed their ability for use as tools in designing environmental management plans.

  16. Rhodamine-WT dye losses in a mountain stream environment

    Science.gov (United States)

    Bencala, Kenneth E.; Rathburn, Ronald E.; Jackman, Alan P.; Kennedy, Vance C.; Zellweger, Gary W.; Avanzino, Ronald J.

    1983-01-01

    A significant fraction of rhodamine WT dye was lost during a short term multitracer injection experiment in a mountain stream environment. The conservative anion chloride and the sorbing cation lithium were concurrently injected. In-stream rhodamine WT concentrations were as low as 45 percent of that expected, based on chloride data. Concentration data were available from shallow‘wells’dug near the stream course and from a seep of suspected return flow. Both rhodamine WT dye and lithium were nonconservative with respect to the conservative chloride, with rhodamine WT dye closely following the behavior of the sorbing lithium.Nonsorption and sorption mechanisms for rhodamine WT loss in a mountain stream were evaluated in laboratory experiments. Experiments evaluating nonsorption losses indicated minimal losses by such mechanisms. Laboratory experiments using sand and gravel size streambed sediments show an appreciable capacity for rhodamine WT sorption.The detection of tracers in the shallow wells and seep indicates interaction between the stream and the flow in the surrounding subsurface, intergravel water, system. The injected tracers had ample opportunity for intimate contact with materials shown in the laboratory experiments to be potentially sorptive. It is suggested that in the study stream system, interaction with streambed gravel was a significant mechanism for the attenuation of rhodamine WT dye (relative to chloride).

  17. [Strategy for minimally invasive cochlear implantation and residual hearing preservation].

    Science.gov (United States)

    Huang, Y Y; Chen, J Y; Shen, M; Yang, J

    2018-01-07

    In the past few decades, considerable development was achieved in the cochlear implantation following the emergence of innovative electrode array and advances in minimally invasive surgery. Minimally invasive technique led to a better preservation of residual low-frequency hearing. The loss of residual hearing was caused by complicated factors. According to previous studies, a slower and stable speed of electrode insertion and the use of perioperative steroids were demonstrated to have a positive impact on hearing preservation. The selection of electrode array or its insertion approaches didn't show any distinctive benefits in hearing preservation.

  18. Pengaruh Pelapis Bionanokomposit terhadap Mutu Mangga Terolah Minimal

    Directory of Open Access Journals (Sweden)

    Ata Aditya Wardana

    2017-04-01

    Full Text Available Abstract Minimally-processed mango is a perishable product due to high respiration and transpiration and microbial decay. Edible coating is one of the alternative methods to maintain the quality of minimally - processed mango. The objective of this study was to evaluate the effects of bionanocomposite edible coating from tapioca and ZnO nanoparticles (NP-ZnO on quality of minimally - processed mango cv. Arumanis, stored for 12 days at 8°C. The combination of tapioca and NP-ZnO (0, 1, 2% by weight of tapioca were used to coat minimally processed mango. The result showed that application of bionanocomposite edible coatings were able to maintain the quality of minimally-processed mango during the storage periods. The bionanocomposite from tapioca + NP-ZnO (2% by weight of tapioca was the most effective in reducing weight loss, firmness, browning index, total acidity, total soluble solids ,respiration, and microbial counts. Thus, the use of bionanocomposite edible coating might provide an alternative method to maintain storage quality of minimally-processed mango. Abstrak Mangga terolah minimal merupakan produk yang cepat mengalami kerusakan dikarenakan respirasi yang cepat, transpirasi dan kerusakan oleh mikroba. Edible coating merupakan salah satu alternatif metode untuk mempertahankan mutu mangga terolah minimal. Tujuan dari penelitian ini adalah untuk mengevaluasi pengaruh pelapis bionanokomposit dari tapioka dan nanopartikel ZnO (NP-ZnO terhadap mutu mangga terolah minimal cv. Arumanis yang disimpan selama 12 hari pada suhu 8oC. Kombinasi dari tapioka dan NP-ZnO (0, 1, 2% b/b tapioka digunakan untuk melapisi mangga terolah minimal. Hasil menunjukkan bahwa pelapisan bionanokomposit mampu mempertahankan mutu mangga terolah minimal selama penyimpanan. Bionanokomposit dari tapioka + NP-ZnO (2% b/b tapioka paling efektif dalam menghambat penurunan susut bobot, kekerasan, indeks pencoklatan, total asam, total padatan terlarut, respirasi dan total

  19. Stable Carbon Isotope Characterization of CO2 Loss in Acid Mine Drainage Impacted Stream Water: Observations from a Laboratory Experiment

    Science.gov (United States)

    Ali, H. N.; Atekwana, E. A.

    2007-05-01

    Water from an acid mine drainage spring, ground water from a mine tailings pile, stream water and tap water were acidified to simulate acid mine drainage (AMD) contamination. The objective was to determine how acidification of stream water by AMD affected DIC loss and carbon isotope fraction. Two 20 L HDP containers (reactors) containing samples from each source were left un-acidified and allowed to evolve under ambient conditions for several weeks in the laboratory and two others were acidified. Acidification was carried out progressively with sulfuric acid to pH <3. For acidified samples, one reactor was acidified open to the atmosphere and the other closed from contact with atmosphere and CO2(g) was collected under vacuum. The un-acidified samples did not show significant alkalinity and DIC loss, and the 13C of DIC was enriched with time. The acidified samples showed decrease in alkalinity and DIC and increase in the 13C of DIC and CO2(g) with progressive acidification. The enrichment of 13C of DIC for un-acidified samples was due to exchange with atmospheric CO2. On the other hand, the 13C enrichment in the acidified samples was due to fractionation during dehydration of HCO3- and diffusive loss of CO2(g) from the aqueous phase. The actual values measured depended on the amount of CO2 lost from the aqueous phase during acidification. Samples with greater CO2 loss (closed acidification) had greater 13C enrichment. Beyond the HCO3- titration end point, the δ13C of DIC and CO2(g) was similar and nearly constant. The result of this study suggests that AMD effects on DIC can be modeled as a first order kinetic reaction and the isotope enrichment modeled using Rayleigh distillation.

  20. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  1. Effects of centrifugation on transmembrane water loss from normal and pathologic erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kaperonis, A.A.; Chien, S.

    1989-02-01

    Plasma /sup 125/I-albumin was used as a marker of extracellular dilution in order to study the effect of high-speed centrifugation on transmembrane water distribution in several types of human red cells, including normal (AA), hemoglobin variants (beta A, AS, SC, beta S, and SS), and those from patients with hereditary spherocytosis. SS and AA erythrocytes were also examined for changes in intracellular hemoglobin concentration of three different density fractions and with increasing duration of spin. The minimum force and duration of centrifugation required to impair water permeability were found to vary with the red cell type, the anticoagulant used (heparin or EDTA), the initial hematocrit of the sample centrifuged, as well as among the individual erythrocyte fractions within the same sample. When subjecting pathologic erythrocytes to high-speed centrifugation, the /sup 125/I-albumin dilution technique can be used to determine whether the centrifugation procedure has led to an artifactual red cell water loss and to correct for this when it does occur. An abnormal membrane susceptibility to mechanical stress was demonstrated in erythrocytes from patients with hereditary spherocytosis and several hemoglobinopathies.

  2. Economic simplified boiling water reactor (ESBWR) response to an extended station blackout/ loss of all AC power

    International Nuclear Information System (INIS)

    Barrett, A.J.; Marquino, W.

    2013-01-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackout for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event

  3. Land application of mine water causes minimal uranium loss offsite in the wet-dry tropics: Ranger Uranium Mine, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Mumtaz, Saqib; Streten, Claire; Parry, David L.; McGuinness, Keith A.; Lu, Ping; Gibb, Karen S.

    2015-01-01

    Ranger Uranium Mine (RUM) is situated in the wet-dry tropics of Northern Australia. Land application (irrigation) of stockpile (ore and waste) runoff water to natural woodland on the mine lease is a key part of water management at the mine. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium (U) and other metals concentrations. Knowledge of seasonal and temporal changes in soil U and physicochemical parameters at RUM LAAs is important to develop suitable management and rehabilitation strategies. Therefore, soil samples were collected from low, medium, high and very high U sites at RUM LAAs for two consecutive years and the effect of time and season on soil physicochemical parameters particularly U and other major solutes applied in irrigation water was measured. Concentrations of some of the solutes applied in the irrigation water such as sulphur (S), iron (Fe) and calcium (Ca) showed significant seasonal and temporal changes. Soil S, Fe and Ca concentration decreased from year 1 to year 2 and from dry to wet seasons during both years. Soil U followed the same pattern except that we recorded an increase in soil U concentrations at most of the RUM LAAs after year 2 wet season compared to year 2 dry season. Thus, these sites did not show a considerable decrease in soil U concentration from year 1 to year 2. Sites which contained elevated U after wet season 2 also had higher moisture content which suggests that pooling of U containing rainwater at these sites may be responsible for elevated U. Thus, U may be redistributed within RUM LAAs due to surface water movement. The study also suggested that a decrease in U concentrations in LAA soils at very high U (>900 mg kg"−"1) sites is most likely due to transport of particulate matter bound U by surface runoff and U may not be lost from the surface soil due to vertical movement through the soil profile. Uranium attached to particulate matter may reduce its potential for

  4. Minimal Invasive Urologic Surgery and Postoperative Ileus

    Directory of Open Access Journals (Sweden)

    Fouad Aoun

    2015-07-01

    Full Text Available Postoperative ileus (POI is the most common cause of prolonged length of hospital stays (LOS and associated healthcare costs. The advent of minimal invasive technique was a major breakthrough in the urologic landscape with great potential to progress in the future. In the field of gastrointestinal surgery, several studies had reported lower incidence rates for POI following minimal invasive surgery compared to conventional open procedures. In contrast, little is known about the effect of minimal invasive approach on the recovery of bowel motility after urologic surgery. We performed an overview of the potential benefit of minimal invasive approach on POI for urologic procedures. The mechanisms and risk factors responsible for the onset of POI are discussed with emphasis on the advantages of minimal invasive approach. In the urologic field, POI is the main complication following radical cystectomy but it is rarely of clinical significance for other minimal invasive interventions. Laparoscopy or robotic assisted laparoscopic techniques when studied individually may reduce to their own the duration and prevent the onset of POI in a subset of procedures. The potential influence of age and urinary diversion type on postoperative ileus is contradictory in the literature. There is some evidence suggesting that BMI, blood loss, urinary extravasation, existence of a major complication, bowel resection, operative time and transperitoneal approach are independent risk factors for POI. Treatment of POI remains elusive. One of the most important and effective management strategies for patients undergoing radical cystectomy has been the development and use of enhanced recovery programs. An optimal rational strategy to shorten the duration of POI should incorporate minimal invasive approach when appropriate into multimodal fast track programs designed to reduce POI and shorten LOS.

  5. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  6. Effects of replacing diet beverages with water on weight loss and weight maintenance: 18-month follow-up, randomized clinical trial.

    Science.gov (United States)

    Madjd, A; Taylor, M A; Delavari, A; Malekzadeh, R; Macdonald, I A; Farshchi, H R

    2018-04-01

    Beneficial effects of replacing diet beverages (DBs) with water on weight loss, during a 24-week hypoenergetic diet were previously observed. However, it is not known whether this difference is sustained during a subsequent 12-month weight maintenance period. To evaluate effects of replacing DBs with water on body weight maintenance over a 12-month period in participants who undertook a 6-month weight loss plan. Seventy-one obese and overweight adult women (body mass index (BMI): 27-40 kg m -2 ; age: 18-50 years) who usually consumed DBs in their diet were randomly assigned to either substitute water for DBs (water group: 35) or continue drinking DBs five times per week (DBs group: 36) after their lunch for the 6-month weight loss intervention and subsequent 12-month weight maintenance program. A total of 71 participants who were randomly assigned were included in the study by using an intention-to-treat analysis. Greater additional weight loss (mean±s.d.) in the water group was observed compared with the DBs group after the 12-month follow-up period (-1.7±2.8 vs -0.1±2.7 kg, P=0.001). BMI decreased more in the water group than in the DBs group (-0.7±1 vs -0.05±1.1 kg m - 2 , P=0.003). There was also a greater reduction in fasting insulin levels (-0.5±1.4 vs -0.02±1.5 mmol l -1 , P=0.023), better improvement in homeostasis model assessment of insulin resistance (-0.2±0.4 vs -0.1±0.3, P=0.013) and a greater decrease in 2-h postprandial plasma glucose (-0.2±0.3 vs -0.1±0.3 mmol l -1 , Pwater group compared with the DBs over the 12-month weight maintenance period. Replacement of DBs with water after the main meal in women who were regular users of DBs may cause further weight reduction during a 12-month weight maintenance program. It may also offer benefits in carbohydrate metabolism including improvement of insulin resistance over the long-term weight maintenance period.

  7. Continuous recording of excretory water loss from Musca domestica using a flow-through humidity meter: hormonal control of diuresis.

    Science.gov (United States)

    Coast, Geoffrey M

    2004-05-01

    Water loss from adult male houseflies was continuously recorded using a flow-through humidity meter, which enabled losses to be apportioned between the sum of cuticular and respiratory transpiration, salivation and excretion. Transpiration accounted for >95% of water lost from sham-injected flies, compared with excretion (3.0%) and salivation (2.4%). In contrast, excretion accounted for 40% of water lost from flies injected with > or =3 microl of saline, whereas salivary losses were unchanged. Saline injections (1-5 microl) expanded the abdomen in the dorsal-ventral plane, and this expansion was positively correlated with the magnitude of the ensuing diuresis, suggesting the signal for diuretic hormone release originates from stretch receptors in abdominal tergal-sternal muscles. The effects of decapitation, severing the ventral nerve cord within the neck or ligaturing the neck, showed the head was needed to initiate and maintain diuresis, but was neither the source of diuretic hormone nor did it control the discharge of urine from the anus. These findings indicate the head is part of the neural-endocrine pathway between abdominal stretch receptors and sites for diuretic hormone release from the thoracic-abdominal ganglion mass. Evidence is presented for Musdo-K having a hormonal role in the control of diuresis, although other neuropeptides may also be implicated.

  8. The energy cost of quantum information losses

    Science.gov (United States)

    Romanelli, Alejandro; de Lima Marquezino, Franklin; Portugal, Renato; Donangelo, Raul

    2018-05-01

    We explore the energy cost of the information loss resulting from the passage of an initial density operator to a reduced one. We use the concept of entanglement temperature in order to obtain a lower bound for the energy change associated with this operation. We determine the minimal energy required for the case of the information losses associated with the trace over the space coordinates of a two-dimensional quantum walk.

  9. The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation

    NARCIS (Netherlands)

    Schröder, J.J.; Scholefield, D.; Cabral, F.; Hofmans, G.

    2004-01-01

    The magnitude of current nutrient losses from agriculture to ground and surface water calls for effective environmental policy, including the use of regulation. Nutrient loss is experienced in many countries despite differences in the organisation and intensity of agricultural production. However,

  10. Minimalism

    CERN Document Server

    Obendorf, Hartmut

    2009-01-01

    The notion of Minimalism is proposed as a theoretical tool supporting a more differentiated understanding of reduction and thus forms a standpoint that allows definition of aspects of simplicity. This book traces the development of minimalism, defines the four types of minimalism in interaction design, and looks at how to apply it.

  11. Domestic hot water. Measurements of consumption and heat loss from circulation pipes; Varmt brugsvand. Maaling af forbrug og varmetab fra cirkulationsledninger

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B.; Schroeder, F.; Bergsoee, N.C.

    2009-07-01

    It is likely that the production and distribution of domestic hot water (DHW) in buildings will constitute a dominant share of both the present and in particular future energy design requirements. The goal of this project has been to propose more energy efficient and environmentally friendly solutions for DHW systems based on analyses of existing conditions. The possibilities include new types of circulation pipes, which have the potential of a 40 per cent reduction of heat losses. In addition to the reduction of heat losses inside the building, a low return temperature from the hot water system will have a large impact on the heat losses from the district heating network when the building is being heated by district heating. The results of this project could influence not only future buildings but also existing buildings in case of renovation of the installations. In this project measurements of water and energy consumptions have been carried out in a number of buildings, and heat losses from the production of domestic hot water and the distribution lines have been measured. In addition to the measurements, analyses and simulations have been carried out. Two models have been developed: One of an apartment room with vertical pipes passing through the room, and one of a room above a basement with horizontal heating pipes. The models make it possible to assess how much of the heat loss from the heating pipes is utilised for space heating. The following recommendations are pointed out: 1) In large buildings e.g. apartment buildings and office buildings the technical installations should be provided with meters so that it is possible to separate the energy consumption for DHW, space heating and ventilation, respectively. 2) In new buildings and in case of retrofitting existing buildings, careful planning of the placement and disposition of hot water taps compared with the location of the hot water tank or heat exchanger is recommended. Also, the necessity of a

  12. Parallel Low-Loss Measurement of Multiple Atomic Qubits.

    Science.gov (United States)

    Kwon, Minho; Ebert, Matthew F; Walker, Thad G; Saffman, M

    2017-11-03

    We demonstrate low-loss measurement of the hyperfine ground state of rubidium atoms by state dependent fluorescence detection in a dipole trap array of five sites. The presence of atoms and their internal states are minimally altered by utilizing circularly polarized probe light and a strictly controlled quantization axis. We achieve mean state detection fidelity of 97% without correcting for imperfect state preparation or background losses, and 98.7% when corrected. After state detection and correction for background losses, the probability of atom loss due to the state measurement is state is preserved with >98% probability.

  13. Land application of mine water causes minimal uranium loss offsite in the wet-dry tropics: Ranger Uranium Mine, Northern Territory, Australia.

    Science.gov (United States)

    Mumtaz, Saqib; Streten, Claire; Parry, David L; McGuinness, Keith A; Lu, Ping; Gibb, Karen S

    2015-11-01

    Ranger Uranium Mine (RUM) is situated in the wet-dry tropics of Northern Australia. Land application (irrigation) of stockpile (ore and waste) runoff water to natural woodland on the mine lease is a key part of water management at the mine. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium (U) and other metals concentrations. Knowledge of seasonal and temporal changes in soil U and physicochemical parameters at RUM LAAs is important to develop suitable management and rehabilitation strategies. Therefore, soil samples were collected from low, medium, high and very high U sites at RUM LAAs for two consecutive years and the effect of time and season on soil physicochemical parameters particularly U and other major solutes applied in irrigation water was measured. Concentrations of some of the solutes applied in the irrigation water such as sulphur (S), iron (Fe) and calcium (Ca) showed significant seasonal and temporal changes. Soil S, Fe and Ca concentration decreased from year 1 to year 2 and from dry to wet seasons during both years. Soil U followed the same pattern except that we recorded an increase in soil U concentrations at most of the RUM LAAs after year 2 wet season compared to year 2 dry season. Thus, these sites did not show a considerable decrease in soil U concentration from year 1 to year 2. Sites which contained elevated U after wet season 2 also had higher moisture content which suggests that pooling of U containing rainwater at these sites may be responsible for elevated U. Thus, U may be redistributed within RUM LAAs due to surface water movement. The study also suggested that a decrease in U concentrations in LAA soils at very high U (>900 mg kg(-1)) sites is most likely due to transport of particulate matter bound U by surface runoff and U may not be lost from the surface soil due to vertical movement through the soil profile. Uranium attached to particulate matter may reduce its potential for environmental

  14. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    Directory of Open Access Journals (Sweden)

    Christopher Hepworth

    Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.

  15. Effect of sugarcane cropping systems on herbicide losses in surface runoff.

    Science.gov (United States)

    Nachimuthu, Gunasekhar; Halpin, Neil V; Bell, Michael J

    2016-07-01

    Herbicide runoff from cropping fields has been identified as a threat to the Great Barrier Reef ecosystem. A field investigation was carried out to monitor the changes in runoff water quality resulting from four different sugarcane cropping systems that included different herbicides and contrasting tillage and trash management practices. These include (i) Conventional - Tillage (beds and inter-rows) with residual herbicides used; (ii) Improved - only the beds were tilled (zonal) with reduced residual herbicides used; (iii) Aspirational - minimum tillage (one pass of a single tine ripper before planting) with trash mulch, no residual herbicides and a legume intercrop after cane establishment; and (iv) New Farming System (NFS) - minimum tillage as in Aspirational practice with a grain legume rotation and a combination of residual and knockdown herbicides. Results suggest soil and trash management had a larger effect on the herbicide losses in runoff than the physico-chemical properties of herbicides. Improved practices with 30% lower atrazine application rates than used in conventional systems produced reduced runoff volumes by 40% and atrazine loss by 62%. There were a 2-fold variation in atrazine and >10-fold variation in metribuzin loads in runoff water between reduced tillage systems differing in soil disturbance and surface residue cover from the previous rotation crops, despite the same herbicide application rates. The elevated risk of offsite losses from herbicides was illustrated by the high concentrations of diuron (14μgL(-1)) recorded in runoff that occurred >2.5months after herbicide application in a 1(st) ratoon crop. A cropping system employing less persistent non-selective herbicides and an inter-row soybean mulch resulted in no residual herbicide contamination in runoff water, but recorded 12.3% lower yield compared to Conventional practice. These findings reveal a trade-off between achieving good water quality with minimal herbicide contamination and

  16. Water vapor concentration dependence and temperature dependence of Li mass loss from Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shimozori, Motoki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Kazunari, E-mail: kadzu@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Ushida, Hiroki; Yamamoto, Ryotaro; Fukada, Satoshi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-10-15

    Highlights: • Li mass loss from Li{sub 2.11}TiO{sub 3} increased proportionally to water vapor pressure. • Li mass loss from Li{sub 2.11}TiO{sub 3} at 600 °C was significantly smaller than expected. • Differences of Li mass loss behavior from Li{sub 2.11}TiO{sub 3} and Li{sub 4}SiO{sub 4} were shown. - Abstract: In this study, weight reduction of Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4} at elevated temperatures under hydrogen atmosphere or water vapor atmosphere was investigated. The Li mass loss for the Li{sub 2}TiO{sub 3} at 900 °C was 0.4 wt% under 1000 Pa H{sub 2} atmosphere and 1.5 wt% under 50 Pa H{sub 2}O atmosphere. The Li mass loss for the Li{sub 2}TiO{sub 3} increased proportionally to the water vapor pressure in the range from 50 to 200 Pa at 900 °C and increased with increasing temperature from 700 to 900 °C although Li mass loss at 600 °C was significantly smaller than expected. It was found that water vapor concentration dependence and temperature dependence of Li mass loss for the Li{sub 2}TiO{sub 3} and the Li{sub 4}SiO{sub 4} used in this work were quite different. Water vapor is released from the ceramic breeder materials into the purge gas due to desorption of adsorbed water and water formation reaction. The released water vapor possibly promotes Li mass loss with the formation of LiOH on the surface.

  17. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Saha, Bidyut Baran; Ng, K. C.

    2012-01-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  18. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung

    2012-10-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  19. Agricultural Water Conservation in the Colorado River Basin: Alternatives to Permanent Fallowing Research Synthesis and Outreach Workshops

    Science.gov (United States)

    Udall, B. H.; Peterson, G.

    2017-12-01

    As increasing water scarcity occurs in the Colorado River Basin, water users have been looking for new sources of supply. The default solution is to transfer water from the cheapest and most plentiful source — agriculture — to supply new water demands in the region. However, if pursued in haste, and without sufficient information, the likely outcome may be permanent fallowing, along with serious economic disruption to agricultural communities, loss of valuable farmland, loss of important amenity values, and a loss of a sense of place in many rural communities within the basin. This project was undertaken to explore ways to minimize harm to agriculture if transfers out of agriculture were to occur. Four detailed synthesis reports of the four common methods used to temporarily transfer water from agriculture were produced by the project. The water saving methods covered by the reports are: (1) Deficit Irrigation of Alfalfa and other Forages; (2) Rotational Fallowing; (3) Crop Switching; and (4) Irrigation Efficiency and Water Conservation After the reports were drafted, three workshops were held, one in the Upper Basin in Grand Junction on November 4, 2016, one in the Lower Basin in Tucson on March 29, 2017, and one in Washington, DC on May 16, 2017 to disseminate the findings. Over 100 people attended these workshops.

  20. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change

    Directory of Open Access Journals (Sweden)

    Knol Dirk L

    2006-08-01

    Full Text Available Abstract Changes in scores on health status questionnaires are difficult to interpret. Several methods to determine minimally important changes (MICs have been proposed which can broadly be divided in distribution-based and anchor-based methods. Comparisons of these methods have led to insight into essential differences between these approaches. Some authors have tried to come to a uniform measure for the MIC, such as 0.5 standard deviation and the value of one standard error of measurement (SEM. Others have emphasized the diversity of MIC values, depending on the type of anchor, the definition of minimal importance on the anchor, and characteristics of the disease under study. A closer look makes clear that some distribution-based methods have been merely focused on minimally detectable changes. For assessing minimally important changes, anchor-based methods are preferred, as they include a definition of what is minimally important. Acknowledging the distinction between minimally detectable and minimally important changes is useful, not only to avoid confusion among MIC methods, but also to gain information on two important benchmarks on the scale of a health status measurement instrument. Appreciating the distinction, it becomes possible to judge whether the minimally detectable change of a measurement instrument is sufficiently small to detect minimally important changes.

  1. SCDAP/RELAP5 modeling of fluid heat transfer and flow losses through porous debris in a light water reactor

    International Nuclear Information System (INIS)

    Harvego, E. A.; Siefken, L. J.

    2000-01-01

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident

  2. [Coordination effect between vapor water loss through plant stomata and liquid water supply in soil-plant-atmosphere continuum (SPAC): a review].

    Science.gov (United States)

    Liu, Li-Min; Qi, Hua; Luo, Xin-Lan; Zhang, Xuan

    2008-09-01

    Some important phenomena and behaviors concerned with the coordination effect between vapor water loss through plant stomata and liquid water supply in SPAC were discussed in this paper. A large amount of research results showed that plants show isohydric behavior when the plant hydraulic and chemical signals cooperate to promote the stomatal regulation of leaf water potential. The feedback response of stomata to the change of environmental humidity could be used to explain the midday depression of stomatal conductance and photosynthesis under drought condition, and also, to interpret the correlation between stomatal conductance and hydraulic conductance. The feed-forward response of stomata to the change of environmental humidity could be used to explain the hysteresis response of stomatal conductance to leaf-atmosphere vapor pressure deficit. The strategy for getting the most of xylem transport requires the rapid stomatal responses to avoid excess cavitation and the corresponding mechanisms for reversal of cavitation in short time.

  3. Diffuse nitrogen loss simulation and impact assessment of stereoscopic agriculture pattern by integrated water system model and consideration of multiple existence forms

    Science.gov (United States)

    Zhang, Yongyong; Gao, Yang; Yu, Qiang

    2017-09-01

    Agricultural nitrogen loss becomes an increasingly important source of water quality deterioration and eutrophication, even threatens water safety for humanity. Nitrogen dynamic mechanism is still too complicated to be well captured at watershed scale due to its multiple existence forms and instability, disturbance of agricultural management practices. Stereoscopic agriculture is a novel agricultural planting pattern to efficiently use local natural resources (e.g., water, land, sunshine, heat and fertilizer). It is widely promoted as a high yield system and can obtain considerable economic benefits, particularly in China. However, its environmental quality implication is not clear. In our study, Qianyanzhou station is famous for its stereoscopic agriculture pattern of Southern China, and an experimental watershed was selected as our study area. Regional characteristics of runoff and nitrogen losses were simulated by an integrated water system model (HEQM) with multi-objective calibration, and multiple agriculture practices were assessed to find the effective approach for the reduction of diffuse nitrogen losses. Results showed that daily variations of runoff and nitrogen forms were well reproduced throughout watershed, i.e., satisfactory performances for ammonium and nitrate nitrogen (NH4-N and NO3-N) loads, good performances for runoff and organic nitrogen (ON) load, and very good performance for total nitrogen (TN) load. The average loss coefficient was 62.74 kg/ha for NH4-N, 0.98 kg/ha for NO3-N, 0.0004 kg/ha for ON and 63.80 kg/ha for TN. The dominating form of nitrogen losses was NH4-N due to the applied fertilizers, and the most dramatic zones aggregated in the middle and downstream regions covered by paddy and orange orchard. In order to control diffuse nitrogen losses, the most effective practices for Qianyanzhou stereoscopic agriculture pattern were to reduce farmland planting scale in the valley by afforestation, particularly for orchard in the

  4. Minimization of sucrose losses in sugar industry by pH and temperature optimization

    International Nuclear Information System (INIS)

    Panpae, Kornvalai; Jaturonrusmee, Wasna; Mingvanish, Withawat; Santudrob, Kittisak; Triphanpitak, Siriphan

    2008-01-01

    Invert sugar has several disadvantage properties that play an important role in many food applications. It has a high affinity for water and is the cause of making products retain moisture. Invert sugar also affects the carmelization process, producing a browning effect. In this study, the possibility of minimization of sucrose inversion during the industrial production of sugar cane was investigated by the variation of the important parameters, i.e. temperature and pH of sugar cane juice for each of samples. The amounts of sucrose and reducing sugar alerting during the sucrose inversion process were determined by the values of % Pol and % reducing sugar (% RS), respectively. Starting with the study of temperature and pH effects of the sucrose solution with the concentration of 16 Brix, used as a sample model, it was found that no change in amounts of reducing sugar and sucrose was observed at room temperature (34 degree Celsius) in the pH range of 5-11. At pH 3, the amounts of reducing sugar increased and the amount of sucrose decreased as the time increased. These indicated that the process of sucrose inversion should better occur in more acidic solutions. Compared to the room temperature, it was found that the increment of temperature led to enhance the process of sucrose inversion. This was depicted by higher values of % RS and lower value of % Pol as the temperatures were elevated. The experiments were also done with real sugar cane juice, i.e. first, last, and mixed juice. The tendency of changes of the amounts of reducing sugar and sucrose in sugar cane samples by varying temperature and pH were found to resemble to those for the sample model. The increment of temperatures have also affected on a reduction of amounts of sucrose in each sugar cane juice. In addition, it could be concluded that the acidity of the solution affects sucrose easier to be broken down to glucose and fructose molecules. (author)

  5. Optimum distributed generation placement with voltage sag effect minimization

    International Nuclear Information System (INIS)

    Biswas, Soma; Goswami, Swapan Kumar; Chatterjee, Amitava

    2012-01-01

    Highlights: ► A new optimal distributed generation placement algorithm is proposed. ► Optimal number, sizes and locations of the DGs are determined. ► Technical factors like loss, voltage sag problem are minimized. ► The percentage savings are optimized. - Abstract: The present paper proposes a new formulation for the optimum distributed generator (DG) placement problem which considers a hybrid combination of technical factors, like minimization of the line loss, reduction in the voltage sag problem, etc., and economical factors, like installation and maintenance cost of the DGs. The new formulation proposed is inspired by the idea that the optimum placement of the DGs can help in reducing and mitigating voltage dips in low voltage distribution networks. The problem is configured as a multi-objective, constrained optimization problem, where the optimal number of DGs, along with their sizes and bus locations, are simultaneously obtained. This problem has been solved using genetic algorithm, a traditionally popular stochastic optimization algorithm. A few benchmark systems radial and networked (like 34-bus radial distribution system, 30 bus loop distribution system and IEEE 14 bus system) are considered as the case study where the effectiveness of the proposed algorithm is aptly demonstrated.

  6. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    Science.gov (United States)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  7. Real-time monitoring and operational control of drinking-water systems

    CERN Document Server

    Ocampo-Martínez, Carlos; Pérez, Ramon; Cembrano, Gabriela; Quevedo, Joseba; Escobet, Teresa

    2017-01-01

    This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;...

  8. Reformulating sunscreen cosmetics with better water resistance and efficacy to inhibit trans-epidermal water loss in response to global warming and climate change

    International Nuclear Information System (INIS)

    Sucgang, Raymond J.; Manalili, Jenalyn; Mañago, Sarah; Janio, Jonick; Ching, Maricar; Moya, Esperanza; Cruz, Luzviminda

    2015-01-01

    Three inhouse developed skin care formulations and four commercial formulations were tried out on dermatomed porcine skins for wettability and emoliency. Surface applied skin care formulations are alleged to reduce transepidermal water loss (TEWL). Sunscreens/sunblocks absorb or reflect the sun’s ultraviolet (UV) radiation on skin exposed to sunlight and thus helps protect against sunburn. Measurements of water resistance of topical application are normally done using contact angle measurements and swimming pool immersion approaches. TEWL is measured using vapometers. None of the conventional methods directly measure TEWL and water wash out rates. In this study, the effectiveness of skin moisturizers to inhibit TEWL was tested using tritiated water as radioactive tracer on degreased porcine skins. Topical emollients were applied on the epidermises of the skins and the skins were mounted epidermis facing down. Tritiated water was dropped on the top side of the skins and tritium activity concentrations of the moisture that passed through were measured. A modified immersion method was also developed as a screening tool to identify water resistant formulations. Sunscreens labelled with tritiated water were applied on the skin surfaces. The skins were immersed in water (distilled and sea water were compared) and aliquots of the water were counted for tritium every hour for 3 hours. Hydrophobicities of the formulations were predicted by the amounts of tritium that leached out from the skins. (author)

  9. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    Science.gov (United States)

    Malerød-Fjeld, Harald; Clark, Daniel; Yuste-Tirados, Irene; Zanón, Raquel; Catalán-Martinez, David; Beeaff, Dustin; Morejudo, Selene H.; Vestre, Per K.; Norby, Truls; Haugsrud, Reidar; Serra, José M.; Kjølseth, Christian

    2017-11-01

    Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 °C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.

  10. Numerical quantification and minimization of perimeter losses in high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Heiser, Gernot; Green, M.A. [New South Wales Univ., Kensington, NSW (Australia)

    1996-09-01

    This paper presents a quantitative analysis of perimeter losses in high-efficiency silicon solar cells. A new method of numerical modelling is used, which provides the means to simulate a full-sized solar cell, including its perimeter region. We analyse the reduction in efficiency due to perimeter losses as a function of the distance between the active cell area and the cut edge. It is shown how the optimum distance depends on whether the cells in the panel are shingled or not. The simulations also indicate that passivating the cut-face with a thermal oxide does not increase cell efficiency substantially. Therefore, doping schemes for the perimeter domain are suggested in order to increase efficiency levels above present standards. Finally, perimeter effects in cells that remain embedded in the wafer during the efficiency measurement are outlined. (author)

  11. Adoption of waste minimization technology to benefit electroplaters

    Energy Technology Data Exchange (ETDEWEB)

    Ching, E.M.K.; Li, C.P.H.; Yu, C.M.K. [Hong Kong Productivity Council, Kowloon (Hong Kong)

    1996-12-31

    Because of increasingly stringent environmental legislation and enhanced environmental awareness, electroplaters in Hong Kong are paying more heed to protect the environment. To comply with the array of environmental controls, electroplaters can no longer rely solely on the end-of-pipe approach as a means for abating their pollution problems under the particular local industrial environment. The preferred approach is to adopt waste minimization measures that yield both economic and environmental benefits. This paper gives an overview of electroplating activities in Hong Kong, highlights their characteristics, and describes the pollution problems associated with conventional electroplating operations. The constraints of using pollution control measures to achieve regulatory compliance are also discussed. Examples and case studies are given on some low-cost waste minimization techniques readily available to electroplaters, including dragout minimization and water conservation techniques. Recommendations are given as to how electroplaters can adopt and exercise waste minimization techniques in their operations. 1 tab.

  12. Global-scale hydrological response to future glacier mass loss

    Science.gov (United States)

    Huss, Matthias; Hock, Regine

    2018-01-01

    Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources1-4, but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce5,6. Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum (`peak water') is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.

  13. Loss mechanisms in superconducting thin film microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan, E-mail: jan.goetz@wmi.badw.de; Haeberlein, Max; Wulschner, Friedrich; Zollitsch, Christoph W.; Meier, Sebastian; Fischer, Michael; Fedorov, Kirill G.; Menzel, Edwin P. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Deppe, Frank; Eder, Peter; Xie, Edwar; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Marx, Achim [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-01-07

    We present a systematic analysis of the internal losses of superconducting coplanar waveguide microwave resonators based on niobium thin films on silicon substrates. In particular, we investigate losses introduced by Nb/Al interfaces in the center conductor, which is important for experiments where Al based Josephson junctions are integrated into Nb based circuits. We find that these interfaces can be a strong source for two-level state (TLS) losses, when the interfaces are not positioned at current nodes of the resonator. In addition to TLS losses, for resonators including Al, quasiparticle losses become relevant above 200 mK. Finally, we investigate how losses generated by eddy currents in conductive material on the backside of the substrate can be minimized by using thick enough substrates or metals with high conductivity on the substrate backside.

  14. Error minimizing algorithms for nearest eighbor classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory; Zimmer, G. Beate [TEXAS A& M

    2011-01-03

    Stack Filters define a large class of discrete nonlinear filter first introd uced in image and signal processing for noise removal. In recent years we have suggested their application to classification problems, and investigated their relationship to other types of discrete classifiers such as Decision Trees. In this paper we focus on a continuous domain version of Stack Filter Classifiers which we call Ordered Hypothesis Machines (OHM), and investigate their relationship to Nearest Neighbor classifiers. We show that OHM classifiers provide a novel framework in which to train Nearest Neighbor type classifiers by minimizing empirical error based loss functions. We use the framework to investigate a new cost sensitive loss function that allows us to train a Nearest Neighbor type classifier for low false alarm rate applications. We report results on both synthetic data and real-world image data.

  15. Hygroscopicity and ammonia volatilization losses from nitrogen sources in coated urea

    Directory of Open Access Journals (Sweden)

    Letícia de Abreu Faria

    2014-06-01

    Full Text Available Hygroscopic fertilizers tend to absorb moisture from the air and may have undesirable characteristics such as moistness, clumping and lower fluidity, hampering the application. The increasing use of urea is due to its numerous advantages, although this nitrogen (N source is highly susceptible to volatilization losses, particularly when applied to the soil surface of management systems with conservation of crop residues. The volatilization losses can be minimized by slow or controlled-release fertilizers, with controlled water solubility of the urea-coating materials; and by stabilized fertilizers, which prolong the period during which N remains in the amide or ammonia forms by urease inhibitors. This study evaluated the hygroscopicity of and ammonia volatilization from urea coated with boric acid and copper sulfate or with sulfur. The hygroscopicity of the sources was evaluated over time after exposure to five levels of relative humidity (RH and volatilization evaluated after application to the soil surface covered with sugarcane trash. Ammonium nitrate has a low potential for volatilization losses, but is highly hygroscopic. Although coating with boric acid and copper sulfate or elemental sulfur reduced the critical humidity level of urea, the delay in the volatilization process is a potential positive factor.

  16. Noise-induced hearing loss: an occupational medicine perspective.

    Science.gov (United States)

    Stucken, Emily Z; Hong, Robert S

    2014-10-01

    Up to 30 million workers in the United States are exposed to potentially detrimental levels of noise. Although reliable medications for minimizing or reversing noise-induced hearing loss (NIHL) are not currently available, NIHL is entirely preventable. The purpose of this article is to review the epidemiology and pathophysiology of occupational NIHL. We will focus on at-risk populations and discuss prevention programs. Current prevention programs focus on reducing inner ear damage by minimizing environmental noise production and through the use of personal hearing protective devices. NIHL is the result of a complex interaction between environmental factors and patient factors, both genetic and acquired. The effects of noise exposure are specific to an individual. Trials are currently underway evaluating the role of antioxidants in protection from, and even reversal of, NIHL. Occupational NIHL is the most prevalent occupational disease in the United States. Occupational noise exposures may contribute to temporary or permanent threshold shifts, although even temporary threshold shifts may predispose an individual to eventual permanent hearing loss. Noise prevention programs are paramount in reducing hearing loss as a result of occupational exposures.

  17. Assessing the effect of sodium dichloroisocyanurate concentration on transfer of Salmonella enterica serotype Typhimurium in wash water for production of minimally processed iceberg lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Maffei, D F; Sant'Ana, A S; Monteiro, G; Schaffner, D W; Franco, B D G M

    2016-06-01

    This study evaluated the impact of sodium dichloroisocyanurate (5, 10, 20, 30, 40, 50 and 250 mg l(-1) ) in wash water on transfer of Salmonella Typhimurium from contaminated lettuce to wash water and then to other noncontaminated lettuces washed sequentially in the same water. Experiments were designed mimicking the conditions commonly seen in minimally processed vegetable (MPV) processing plants in Brazil. The scenarios were as follows: (1) Washing one inoculated lettuce portion in nonchlorinated water, followed by washing 10 noninoculated portions sequentially. (2) Washing one inoculated lettuce portion in chlorinated water followed by washing five noninoculated portions sequentially. (3) Washing five inoculated lettuce portions in chlorinated water sequentially, followed by washing five noninoculated portions sequentially. (4) Washing five noninoculated lettuce portions in chlorinated water sequentially, followed by washing five inoculated portions sequentially and then by washing five noninoculated portions sequentially in the same water. Salm. Typhimurium transfer from inoculated lettuce to wash water and further dissemination to noninoculated lettuces occurred when nonchlorinated water was used (scenario 1). When chlorinated water was used (scenarios 2, 3 and 4), no measurable Salm. Typhimurium transfer occurred if the sanitizer was ≥10 mg l(-1) . Use of sanitizers in correct concentrations is important to minimize the risk of microbial transfer during MPV washing. In this study, the impact of sodium dichloroisocyanurate in the wash water on transfer of Salmonella Typhimurium from inoculated lettuce to wash water and then to other noninoculated lettuces washed sequentially in the same water was evaluated. The use of chlorinated water, at concentration above 10 mg l(-1) , effectively prevented Salm. Typhimurium transfer under several different washing scenarios. Conversely, when nonchlorinated water was used, Salm. Typhimurium transfer occurred in

  18. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  19. Effects of diet and water supply on energy intake and water loss in a mygalomorph spider in a fluctuating environment of the central Andes.

    Science.gov (United States)

    Canals, M; Figueroa, D; Alfaro, C; Kawamoto, T; Torres-Contreras, H; Sabat, P; Veloso, C

    2011-11-01

    The metabolic and water evaporation strategies in spiders may be part of a set of physiological adaptations to tolerate low or unpredictable food availability, buffering spiders against environmental fluctuations such as those of the high mountains of the central Andes. The aim of this study is to analyze experimentally the variations in metabolic rate and the rate of evaporative water with food and/or water restriction in a high mountain mygalomorph spider population (Paraphysa sp.). We found that the low metabolism of this spider was not affected by water restriction, but its metabolism was depressed after 3 weeks of food deprivation. The spider did not show seasonal metabolic changes but it presented seasonal changes in the rate of evaporative water loss at high temperatures. Females with egg sacs reduced their metabolic rate and evaporative water at high temperatures. These findings constitute a set of possible adaptations to a highly fluctuating Mediterranean environment, which is completely covered with snow for many months and then progresses rapidly to a very dry climate with high temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Temperatures in a runaway greenhouse on the evolving Venus Implications for water loss

    Science.gov (United States)

    Watson, A. J.; Donahue, T. M.; Kuhn, W. R.

    1984-01-01

    Some aspects of the temperature structure of a runaway greenhouse on Venus are examined using one-dimensional radiative transfer techniques. It is found that there generally is a region high in the atmosphere where condensation and cloud formation can occur, while deep in the atmosphere the gas is strongly unsaturated with respect to water vapor. The necessity of including clouds introduces considerably uncertainty into the calculation of surface temperatures. Under reasonable assumptions concerning the clouds, temperatures deep in the atmosphere are high enough to produce a plastic or even molten surface, which may significantly ease the problem of explaining the loss of oxygen.

  1. Minimizing blood loss in liver transplantation : Progress through research and evolution of techniques

    NARCIS (Netherlands)

    de Boer, MT; Molenaar, IQ; Hendriks, HGD; Slooff, MJH; Porte, RJ

    2005-01-01

    Blood loss during liver transplantation has long been recognized as an important cause of morbidity and, especially in the early days, also mortality. It is well known that blood transfusions are associated with an increased risk of postoperative complications, such as infections, pulmonary

  2. Effects of a hypothetical loss-of-coolant accident on a Mark I Boiling Water Reactor pressure-suppression system

    International Nuclear Information System (INIS)

    Pitts, J.H.; McCauley, E.W.

    1977-01-01

    A loss-of-coolant accident (LOCA) in a boiling-water-reactor (BWR) power plant has never occurred. However, because this type of accident could be particularly severe, it is used as a principal theoretical basis for design. A series of consistent, versatile, and accurate air-water tests that simulate LOCA conditions has been completed on a 1 / 5 -scale Mark I BWR pressure-suppression system. Results from these tests are used to quantify the vertical-loading function and to study the associated fluid dynamics phenomena. Detailed histories of vertical loads on the wetwell are shown. In particular, variation of hydrodynamic-generated vertical loads with changes in drywell-pressurization rate, downcomer submergence, and the vent-line loss coefficient are established. Initial drywell overpressure, which partially preclears the downcomers of water, substantially reduces the peak vertical loads. Scaling relationships, developed from dimensional analysis and verified by bench-top experiments, allow the 1 / 5 -scale results to be applied to a full-scale BWR power plant. This analysis leads to dimensionless groupings that are invariant. These groupings show that, if water is used as the working fluid, the magnitude of the forces in a scaled facility is reduced by the cube of the scale factor and occurs in a time reduced by the square root of the scale factor

  3. Measuring surface-water loss in Honouliuli Stream near the ‘Ewa Shaft, O‘ahu, Hawai‘i

    Science.gov (United States)

    Rosa, Sarah N.

    2017-05-30

    The Honolulu Board of Water Supply is currently concerned with the possibility of bacteria in the pumped water of the ‘Ewa Shaft (State well 3-2202-21). Groundwater from the ‘Ewa Shaft could potentially be used to meet future potable water needs in the ‘Ewa area on the island of O‘ahu. The source of the bacteria in the pumped water is unknown, although previous studies indicate that surface water may be lost to the subsurface near the site. The ‘Ewa Shaft consists of a vertical shaft, started near the south bank of Honouliuli Stream at an altitude of about 161 feet, and two horizontal infiltration tunnels near sea level. The shaft extracts groundwater from near the top of the freshwater lens in the Waipahu-Waiawa aquifer system within the greater Pearl Harbor Aquifer Sector, a designated Water Management Area.The surface-water losses were evaluated with continuous groundwater-level data from the ‘Ewa Shaft and a nearby monitoring well, continuous stream-discharge data from U.S. Geological Survey streamflow-gaging station 16212490 (Honouliuli Stream at H-1 Freeway near Waipahu), and seepage-run measurements in Honouliuli Stream and its tributary. During storms, discharge at the Honouliuli Stream gaging station increases and groundwater levels at ‘Ewa Shaft and a nearby monitoring well also increase. The concurrent increase in water levels at ‘Ewa Shaft and the nearby monitoring well during storms indicates that regional groundwater-level changes related to increased recharge, reduced withdrawals (due to a decrease in demand during periods of rainfall), or both may be occurring; although these data do not preclude the possibility of local recharge from Honouliuli Stream. Discharge measurements from two seepage runs indicate that surface water in the immediate area adjacent to ‘Ewa Shaft infiltrates into the streambed and may later reach the groundwater system developed by the ‘Ewa Shaft. The estimated seepage loss rates in the vicinity of

  4. Optimal Siting and Sizing of Multiple DG Units for the Enhancement of Voltage Profile and Loss Minimization in Transmission Systems Using Nature Inspired Algorithms

    Directory of Open Access Journals (Sweden)

    Ambika Ramamoorthy

    2016-01-01

    Full Text Available Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF and weak (WK bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5 and PQ capacities of DGs (P alone, Q alone, and  P and Q both are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology.

  5. Optimal Siting and Sizing of Multiple DG Units for the Enhancement of Voltage Profile and Loss Minimization in Transmission Systems Using Nature Inspired Algorithms.

    Science.gov (United States)

    Ramamoorthy, Ambika; Ramachandran, Rajeswari

    2016-01-01

    Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF) and weak (WK) bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5) and PQ capacities of DGs (P alone, Q alone, and P and Q both) are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology.

  6. Urban Water Innovation Network (UWIN): Transitioning Toward Sustainbale Urban Water Systems

    Science.gov (United States)

    Arabi, M.

    2015-12-01

    City water systems are at risk of disruption from global social and environmental hazards, which could have deleterious effects on human health, property, and loss of critical infrastructure. The Urban Water Innovation Network (UWIN), a consortium of 14 academic institutions and other key partners across the U.S., is working to address challenges that threaten urban water systems across the nation. UWIN's mission is to create technological, institutional and management solutions to help communities increase the resilience of their water systems and enhance their preparedness for responding to water crisis. The network seeks solutions that achieve widespread adoption consistent with inclusive, equitable and sustainable urban development. The integrative and adaptive analysis framework of UWIN is presented. The framework identifies a toolbox of sustainable solutions by simultaneously minimizing pressures, enhancing resilience to extreme events, and maximizing cobenefits. The benefits of sustainable urban water solutions for linked urban ecosystems, economies, and arrangements for environmental justice and social equity, will be discussed. The network encompasses six U.S. regions with varying ecohydrologic and climatic regimes ranging from the coastal moist mid-latitude climates of the Mid-Atlantic to the subtropical semi-arid deserts of the Southwest. These regions also represent a wide spectrum of demographic, cultural, and policy settings. The opportunities for cross-site assessments that facilitate the exploration of locally appropriate solutions across regions undergoing various development trajectories will be discussed.

  7. Outcome of minimally invasive surgery in the management of tuberculous spondylitis

    Directory of Open Access Journals (Sweden)

    Pankaj Kandwal

    2012-01-01

    Full Text Available Introduction: With the advancement of instrumentation and minimally access techniques in the field of spine surgery, good surgical decompression and instrumentation can be done for tuberculous spondylitis with known advantage of MIS (minimally invasive surgery. The aim of this study was to assess the outcome of the minimally invasive techniques in the surgical treatment of patients with tuberculous spondylodiscitis. Materials and Methods: 23 patients (Group A with a mean age 38.2 years with single-level spondylodiscitis between T4-T11 treated with video-assisted thoracoscopic surgery (VATS involving anterior debridement and fusion and 15 patients (Group B with a mean age of 32.5 years who underwent minimally invasive posterior pedicle screw instrumentation and mini open posterolateral debridement and fusion were included in study. The study was conducted from Mar 2003 to Dec 2009 duration. The indication of surgery was progressive neurological deficit and/or instability. The patients were evaluated for blood loss, duration of surgery, VAS scores, improvement in kyphosis, and fusion status. Improvement in neurology was documented and functional outcome was judged by oswestry disability index (ODI. Results: The mean blood loss in Group A (VATS category was 780 ml (330-1180 ml and the operative time averaged was 228 min (102-330 min. The average preoperative kyphosis in Group A was 38° which was corrected to 30°. Twenty-two patients who underwent VATS had good fusion (Grade I and Grade II with failure of fusion in one. Complications occurred in seven patients who underwent VATS. The mean blood loss was 625 ml (350-800 ml with an average duration of surgery of 255 min (180-345 min in the percutaneous posterior instrumentation group (Group B. The average preoperative segmental (kyphosis Cobb′s angle of three patients with thoracic TB in Group B was 41.25° (28-48°, improved to 14.5°(11°- 21° in the immediate postoperative period (71

  8. A Simple Methodology for Targeting of Water Minimization

    International Nuclear Information System (INIS)

    Aly, S.

    2004-01-01

    This paper presents the load problem table (LPT) a numerical technique to establish the minimum water, wastewater targets and the pinch locations for continuous water using processes. The LPT has been adapted from the numerical technique problem table analysis (PT A) in heat integration and composition interval table (CIT) in mass integration . The LPT which is tabulated in nature, has overcome the tedious graphical drawing exercise and inaccuracy problem associated with graphical technique. The broad applicability and ease of implementation of LPT are shown and verified through the solution of several previous case studies published in earlier literature includes mass transfer based as well as the non mass transfer based water using operation and problems with multiple pinch points. In addition, the LPT procedure is characterized by its simplicity and can be implemented by hand calculations

  9. Soil and water losses in eucalyptus plantation and natural forest and determination of the USLE factors at a pilot sub-basin in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Bárbara Pereira Christofaro Silva

    Full Text Available ABSTRACT Monitoring water erosion and the factors that control soil and water loss are essential for soil conservation planning. The objective of this study was to evaluate soil and water losses by water erosion under natural rainfall in eucalyptus plantations established in 2001 (EF2, and 2004 (EF1, native forest (NF and bare soil (BS, during the period of 2007 to 2012; and to determine the USLE factors: rain erosivity (R, erodibility (K of a Red Argisol and the cover-management factor (C for EF1, EF2 and NF at a pilot sub-basin, in Eldorado do Sul, RS, Brazil. The R factor was estimated by the EI30 index, using rainfall data from a gauging station located at the sub-basin. The soil and water losses were monitored in erosion plots, providing consistent data for the estimation of the K and C factors. The sub-basin presented an average erosivity of 4,228.52 MJ mm ha-1 h-1 yr-1. The average annual soil losses em EF1 and EF2 (0.81 e 0.12 Mg ha-1 year-1, respectively were below of the limit of tolerance, 12.9 Mg ha-1 year-1. The percentage values of water loss relating to the total rainfall decreased annually, approaching the values observed at the NF. From the 5th year on after the implantation of the eucalyptus systems, soil losses values were similar to the ones from NF. The erodibility of the Red Argisol was of 0.0026 Mg ha h ha-1 MJ-1mm-1 and the C factor presented values of 0.121, 0.016 and 0.015 for EF1, EF2 and NF, respectively.

  10. Optimizing real power loss and voltage stability limit of a large transmission network using firefly algorithm

    Directory of Open Access Journals (Sweden)

    P. Balachennaiah

    2016-06-01

    Full Text Available This paper proposes a Firefly algorithm based technique to optimize the control variables for simultaneous optimization of real power loss and voltage stability limit of the transmission system. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained optimization problem with an objective function integrating both real power loss and voltage stability limit. Transformers taps, unified power flow controller and its parameters have been included as control variables in the problem formulation. The effectiveness of the proposed algorithm has been tested on New England 39-bus system. Simulation results obtained with the proposed algorithm are compared with the real coded genetic algorithm for single objective of real power loss minimization and multi-objective of real power loss minimization and voltage stability limit maximization. Also, a classical optimization method known as interior point successive linear programming technique is considered here to compare the results of firefly algorithm for single objective of real power loss minimization. Simulation results confirm the potentiality of the proposed algorithm in solving optimization problems.

  11. Ammonia volatilization losses from paddy fields under controlled irrigation with different drainage treatments.

    Science.gov (United States)

    He, Yupu; Yang, Shihong; Xu, Junzeng; Wang, Yijiang; Peng, Shizhang

    2014-01-01

    The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha(-1), respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields.

  12. Control and modulation for loss minimization for dc/dc converters in wind farm

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne

    2016-01-01

    For a DC wind turbine, a single phase series-resonant converter for unidirectional power is studied. This paper aims to identify and compare impact on electrical losses and component ratings from the choice of three candidate control strategies. The evaluation is purely based on circuit simulatio...

  13. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  14. Combined modified atmosphere packaging and low temperature storage delay lignification and improve the defense response of minimally processed water bamboo shoot.

    Science.gov (United States)

    Song, Lili; Chen, Hangjun; Gao, Haiyan; Fang, Xiangjun; Mu, Honglei; Yuan, Ya; Yang, Qian; Jiang, Yueming

    2013-09-04

    Minimally processed water bamboo shoot (WBS) lignifies and deteriorates rapidly at room temperature, which limits greatly its marketability. This study was to investigate the effect of modified atmosphere packaging (MAP) on the sensory quality index, lignin formation, production of radical oxygen species (ROS) and activities of scavenging enzymes, membrane integrity and energy status of minimally processed WBS when packaged with or without the sealed low-density polyethylene (LDPE) bags, and then stored at 20°C for 9 days or 2°C for 60 days. The sensory quality of minimally processed WBS decreased quickly after 6 days of storage at 20°C. Low temperature storage maintained a higher sensory quality index within the first 30 days, but exhibited higher contents of lignin and hydrogen peroxide (H2O2) as compared with non-MAP shoots at 20°C. Combined MAP and low temperature storage not only maintained good sensory quality after 30 days, but also reduced significantly the increases in lignin content, superoxide anion (O2.-) production rate, H2O2 content and membrane permeability, maintained high activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), and reduced the increase in activities of lipase, phospholipase D (PLD) and lipoxygenase (LOX). Furthermore, the minimally processed WBS under MAP condition exhibited higher energy charge (EC) and lower adenosine monophosphate (AMP) content by the end of storage (60 days) at 2°C than those without MAP or stored for 9 days at 20°C. These results indicated that MAP in combination with low temperature storage reduced lignification of minimally processed WBS, which was closely associated with maintenance of energy status and enhanced activities of antioxidant enzymes, as well as reduced alleviation of membrane damage caused by ROS.

  15. Analysis of factors causing signal loss in the measurement of lung tissue water by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Fukuzaki, Minoru; Shioya, Sumie; Haida, Munetaka

    1997-01-01

    The water content of lung, brain, and muscle tissue was measured by nuclear magnetic resonance (NMR) and compared with gravimetric determinations. The NMR signal intensity of water was measured by a single 90 degree pulse and by a spin-echo sequence. The absolute water content was determined by the difference in the sample's weight before and after desiccation. The NMR detectable water in each tissue was expressed as a percentage of the signal intensity for an equal weight of distilled water. Using the single pulse measurement, 67% of the gravimetrically-measured water was detected in collapsed lung samples (consisting of about 47% retained air), in contrast to 96% for brain and 98% for muscle. For degassed lung samples, the NMR detectability of water increased to 87% with the single pulse measurement and to 90% with the spin-echo measurement, but the values remained significantly less than those of brain or muscle. Factors that caused the NMR signal loss of 33% in collapsed lung samples were: air-tissue interfaces (20%), microscopic field inhomogeneity (3%), and a water component with an extremely short magnetization decay time constant (10%). (author)

  16. Minimally invasive surgical treatment of valvular heart disease.

    Science.gov (United States)

    Goldstone, Andrew B; Joseph Woo, Y

    2014-01-01

    Cardiac surgery is in the midst of a practice revolution. Traditionally, surgery for valvular heart disease consisted of valve replacement via conventional sternotomy using cardiopulmonary bypass. However, over the past 20 years, the increasing popularity of less-invasive procedures, accompanied by advancements in imaging, surgical instrumentation, and robotic technology, has motivated and enabled surgeons to develop and perform complex cardiac surgical procedures through small incisions, often eliminating the need for sternotomy or cardiopulmonary bypass. In addition to the benefits of improved cosmesis, minimally invasive mitral valve surgery was pioneered with the intent of reducing morbidity, postoperative pain, blood loss, hospital length of stay, and time to return to normal activity. This article reviews the current state-of-the-art of minimally invasive approaches to the surgical treatment of valvular heart disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Assessment of the effectiveness of soil and water conservation measures in reducing runoff and soil loss: establishment of a European database

    International Nuclear Information System (INIS)

    Maetens, W.; Vanmaercke, M.; Poesen, J.

    2009-01-01

    Soil erosion by water is recognised as a major soil degradation process that requires a global approach. Large regions all over the world are in need of integrated conservation strategies that sustainable prevent and remediate soil erosion. therefore, quantitative and globally interpretable data are needed in support of models and decision making. the effects of various soil and water conservation techniques (SWCT) on runoff and soil loss in Europe have been extensively studied over the last 60 years. Runoff plots are the most widely used measurement technique to study the effects of SWCT on runoff and soil loss by water erosion. Hence, many data are available. However, the insights gained hereby remain mostly local and often qualitative whereas the full potential of the available data is not exploited yet. This is mainly due to the fragmentation of knowledge and extrapolation difficulties inherently linked with this type of data. (Author) 8 refs.

  18. Estimating conditional quantiles with the help of the pinball loss

    International Nuclear Information System (INIS)

    Steinwart, Ingo

    2008-01-01

    Using the so-called pinball loss for estimating conditional quantiles is a well-known tool in both statistics and machine learning. So far, however, only little work has been done to quantify the efficiency of this tool for non-parametric (modified) empirical risk minimization approaches. The goal of this work is to fill this gap by establishing inequalities that describe how close approximate pinball risk minimizers are to the corresponding conditional quantile. These inequalities, which hold under mild assumptions on the data-generating distribution, are then used to establish so-called variance bounds which recently turned out to play an important role in the statistical analysis of (modified) empirical risk minimization approaches. To illustrate the use of the established inequalities, we then use them to establish an oracle inequality for support vector machines that use the pinball loss. Here, it turns out that we obtain learning rates which are optimal in a min-max sense under some standard assumptions on the regularity of the conditional quantile function

  19. Fuzzy Adaptive Particle Swarm Optimization for Power Loss Minimisation in Distribution Systems Using Optimal Load Response

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2014-01-01

    Consumers may decide to modify the profile of their demand from high price periods to low price periods in order to reduce their electricity costs. This optimal load response to electricity prices for demand side management generates different load profiles and provides an opportunity to achieve...... power loss minimization in distribution systems. In this paper, a new method to achieve power loss minimization in distribution systems by using a price signal to guide the demand side management is proposed. A fuzzy adaptive particle swarm optimization (FAPSO) is used as a tool for the power loss...

  20. Minimal string theories and integrable hierarchies

    Science.gov (United States)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non

  1. Alternative sanitization methods for minimally processed lettuce in comparison to sodium hypochlorite.

    Science.gov (United States)

    Bachelli, Mara Lígia Biazotto; Amaral, Rívia Darla Álvares; Benedetti, Benedito Carlos

    2013-01-01

    Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L(-1)/10 min), peracetic acid (100 mg L(-1)/15 min) and ozonated water (1.2 mg L(-1)/1 min) as alternative sanitizers to sodium hypochlorite (150 mg L(-1) free chlorine/15 min) were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 °C with the product packaged on LDPE bags of 60 μm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days.

  2. Compensatory vapor loss and biogeochemical attenuation along flowpaths mute the water resources impacts of insect-induced forest mortality

    Science.gov (United States)

    Biederman, J. A.; Brooks, P. D.; Harpold, A. A.; Gochis, D. J.; Ewers, B. E.; Reed, D. E.; Gutmann, E. D.

    2013-12-01

    Forested montane catchments are critical to the amount and quality of downstream water resources. In western North America more than 60 million people rely on mountain precipitation, and water managers face uncertain response to an unprecedented forest die-off from mountain pine beetle (MPB) infestation. Reduced snow interception and transpiration are expected to increase streamflow, while increased organic matter decay is expected to increase biogeochemical stream fluxes. Tree- to plot-scale observations have documented some of the expected changes, but there has been little significant change to streamflow or water quality at the larger scales relevant to water resources. A critical gap exists in our understanding of why tree-scale process changes have not led to the expected, large-scale increases in streamflow and biogeochemical fluxes. We address this knowledge gap with observations of water and biogeochemical fluxes at nested spatial scales including tree, hillslope, and catchments from 3 to 700 ha with more than 75% mortality. Catchment discharge showed reduced water yield consistent with co-located eddy covariance observations showing increased vapor losses following MPB. Stable water isotopes showed progressive kinetic fractionation (i.e. unsaturated transition layer above the evaporating surface) in snowpack, soil water and streams indicating greater abiotic evaporation from multiple water sources offsetting decreased interception and transpiration. In the 3rd to 5th years following MPB forest mortality, soil water DOC and DON were similar beneath killed and healthy trees, but concentrations were elevated 2-10 times in groundwater of MPB-impacted sites as compared to unimpacted. Stream water DOC and DON were about 3 times as large during snowmelt runoff in ephemeral zero-order channels of MPB-impacted sites compared to unimpacted. Processing in the headwater streams of MPB-impacted forests rapidly attenuated dissolved organic matter. From the MPB

  3. Fractured Epikarst Bedrock as Water Source for Woody Plants in Savanna

    Science.gov (United States)

    Schwinning, S.; Goodsheller, K. R.; Schwartz, B. F.

    2010-12-01

    Study of the soil-vegetation-atmosphere system has been overwhelmingly dominated by systems with deep soils, yet large portions of the world are characterized by shallow soils underlain by fractured bedrock. In these systems, fractured bedrock may provide significant water storage, but we know little about the function of fractured bedrock as a water source for plants. In this study we examined the water use of three co-dominant tree species on the eastern rim of the karstic Edwards Plateau where the soil is extremely rocky, only 20 -30 cm thick, and overlies a well-developed epikarst. We used Granier sap flow sensors to estimate changes in sapflow velocity with the onset of summer drought. Simultaneously, we measured precipitation inputs and drip rates in a shallow cave below the field site. Precipitation, stem and drip water were also periodically sampled for stable isotope analysis to match stem water with potential source waters. The year of the study, 2009, was characterized by extreme drought conditions developing during summer. Sap flow rates began to decline in mid-May for all three species, but there were distinct species differences in the development of water stress: live oak (Quercus fusiformis) was the first to show significant loss of transpiration, reaching minimal sap flow values by early June. Cedar elm (Ulmus crassifolia) reached minimal sap flow values by early July, while Ashe juniper’s (Juniperus ashei) loss of transpiration was very gradual, continuing to decline until early August. The isotope ratios of hydrogen and oxygen in water were not significantly different between species, suggesting that root development and water uptake was similarly constrained for the three species. In summer, all stem water isotope ratios were enriched relative to precipitation, while all drip waters coincided with the local meteoric water line. This suggests that tree water sources were relatively shallow and water draining out of the root zone did not have a

  4. Minimization of radioactive material deposition in water-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Ruiz, C.P.; Blaies, D.M.

    1988-01-01

    This patent describes the method for inhibiting the deposition of radioactive cobalt in a water-bearing vessel of a water-cooled nuclear reactor which comprises adding zinc ion to water entering the water-bearing vessel. The improvement contains a substantially lower proportion of the /sup 64/Zn isotope than naturally occurring zinc

  5. Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods.

    Science.gov (United States)

    Jokela, William; Sherman, Jessica; Cavadini, Jason

    2016-09-01

    Manure applied to cropland is a source of phosphorus (P) and nitrogen (N) in surface runoff and can contribute to impairment of surface waters. Tillage immediately after application incorporates manure into the soil, which may reduce nutrient loss in runoff as well as N loss via NH volatilization. However, tillage also incorporates crop residue, which reduces surface cover and may increase erosion potential. We applied liquid dairy manure in a silage corn ( L.)-cereal rye ( L.) cover crop system in late October using methods designed to incorporate manure with minimal soil and residue disturbance. These include strip-till injection and tine aerator-band manure application, which were compared with standard broadcast application, either incorporated with a disk or left on the surface. Runoff was generated with a portable rainfall simulator (42 mm h for 30 min) three separate times: (i) 2 to 5 d after the October manure application, (ii) in early spring, and (iii) after tillage and planting. In the postmanure application runoff, the highest losses of total P and dissolved reactive P were from surface-applied manure. Dissolved P loss was reduced 98% by strip-till injection; this result was not statistically different from the no-manure control. Reductions from the aerator band method and disk incorporation were 53 and 80%, respectively. Total P losses followed a similar pattern, with 87% reduction from injected manure. Runoff losses of N had generally similar patterns to those of P. Losses of P and N were, in most cases, lower in the spring rain simulations with fewer significant treatment effects. Overall, results show that low-disturbance manure application methods can significantly reduce nutrient runoff losses compared with surface application while maintaining residue cover better than incorporation by tillage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Effect of in situ water harvesting techniques on soil and nutriënt losses in semi-arid Northern Ethiopia

    NARCIS (Netherlands)

    Grum, Berhane; Assefae, Dereje; Hessel, R.; Woldearegay, Kifle; Kessler, C.A.; Ritsema, C.J.; Geissen, V.

    2017-01-01

    Land degradation, mainly due to soil erosion and nutrient losses, is a global problem for sustainable agriculture. Farmlands in the Ethiopian
    highlands are susceptible to water erosion because of steep slopes and extensive cultivation. A field experiment was conducted in the

  7. The effect of pricing level to the loss of welfare costs (case study: Indonesia region II water company)

    Science.gov (United States)

    K, B. Rosalina E. W.; Gravitiani, E.; Raharjo, M.; Mulyaningsih, T.

    2018-03-01

    Climate change makes the water balance composition being unstable, both quality and quantity. As a company which responsible for water management, Regional Drinking Water Company (abbreviated as PDAM) is often unable to solve the problem. Welfare costs are indicators to evaluate the economic efficiency. This study aims to calculate the welfare cost of the people lost due to the price determination of PDAM Indonesia in region II with deadweight loss (DWL) approach, so it can provide information to pricing regulator, pricing decision makers and for coIDRorate management. DWL is a loss of economic efficiency that can occur when equilibrium for a good or a service is not achieved, caused by monopoly pricing of artificial scarcity, an externality, a tax or subsidy, or a binding price ceiling or price floor such as a minimum wage. Results showed that the pricing rules set by PDAM yielded different DWL, depending on margin set by the company DWL PDAM ranges between IDR 260,485.66/M3 to IDR 127,486,709.86/M3 which is actually shared to improve the welfare of customers, other communities, and PDAM itself. Data analysis used PDAM performance in 2015 that have not Good CoIDRorate Governance Management and Efficiency.

  8. Perioperative outcomes of minimally invasive versus open radical cystectomy: A single-center experience

    Directory of Open Access Journals (Sweden)

    Pankaj Panwar

    2018-01-01

    Conclusions: MIS is associated with significantly longer operative time than open RC. Robotic RC has significantly higher lymph node yield than open or laparoscopic RC. Minimally invasive RC is equivalent to open surgery in terms of perioperative morbidity, mortality, and blood loss.

  9. Minimizing coupling loss by selection of twist pitch lengths in multi-stage cable-in-conduit conductors

    International Nuclear Information System (INIS)

    Rolando, G; Nijhuis, A; Devred, A

    2014-01-01

    The numerical code JackPot-ACDC (van Lanen et al 2010 Cryogenics 50 139–48, van Lanen et al 2011 IEEE Trans. Appl. Supercond. 21 1926–9, van Lanen et al 2012 Supercond. Sci. Technol. 25 025012) allows fast parametric studies of the electro-magnetic performance of cable-in-conduit conductors (CICCs). In this paper the code is applied to the analysis of the relation between twist pitch length sequence and coupling loss in multi-stage ITER-type CICCs. The code shows that in the analysed conductors the coupling loss is at its minimum when the twist pitches of the successive cabling stages have a length ratio close to one. It is also predicted that by careful selection of the stage-to-stage twist pitch ratio, CICCs cabled according to long twist schemes in the initial stages can achieve lower coupling loss than conductors with shorter pitches. The result is validated by AC loss measurements performed on prototype conductors for the ITER Central Solenoid featuring different twist pitch sequences. (paper)

  10. The hygric hypothesis does not hold water: abolition of discontinuous gas exchange cycles does not affect water loss in the ant Camponotus vicinus.

    Science.gov (United States)

    Lighton, John R B; Turner, Robbin J

    2008-02-01

    The discontinuous gas exchange cycle (DGC) of insects and other tracheate arthropods temporally decouples oxygen uptake and carbon dioxide emission and generates powerful concentration gradients for both gas species between the outside world and the tracheal system. Although the DGC is considered an adaptation to reduce respiratory water loss (RWL) - the "hygric hypothesis" - it is absent from many taxa, including xeric ones. The "chthonic hypothesis" states that the DGC originated as an adaptation to gas exchange in hypoxic and hypercapnic, i.e. underground, environments. If that is the case then the DGC is not the ancestral condition, and its expression is not necessarily a requirement for reducing RWL. Here we report a study of water loss rate in the ant Camponotus vicinus, measured while its DGC was slowly eliminated by gradual hypoxia (hypoxic ramp de-DGCing). Metabolic rate remained constant. The DGC ceased at a mean P(O2) of 8.4 kPa. RWL in the absence of DGCs was not affected until P(O2) declined below 3.9 kPa. Below that value, non-DGC spiracular regulation failed, accompanied by a large increase in RWL. Thus, the spiracular control strategy of the DGC is not required for low RWL, even in animals that normally express the DGC.

  11. Benthic nitrogen loss in the Arabian Sea off Pakistan

    Directory of Open Access Journals (Sweden)

    Sarah eSokoll

    2012-11-01

    Full Text Available A pronounced deficit of nitrogen (N in the oxygen minimum zone (OMZ of theArabian Sea suggests the occurrence of heavy N-loss that is commonly attributed to pelagicprocesses. However, the OMZ water is in direct contact with sediments on three sides of thebasin. Contribution from benthic N-loss to the total N-loss in the Arabian Sea remains largelyunassessed. In October 2007, we sampled the water column and surface sediments along atransect cross-cutting the Arabian Sea OMZ at the Pakistan continental margin, covering arange of station depths from 360 to 1430 m. Benthic denitrification and anammox rates weredetermined by using 15N-stable isotope pairing experiments. Intact core incubations showeddeclining rates of total benthic N-loss with water depth from 0.55 to 0.18 mmol N m-2 d-1.While denitrification rates measured in slurry incubations decreased from 2.73 to 1.46 mmolN m-2 d-1 with water depth, anammox rates increased from 0.21 to 0.89 mmol N m-2 d-1.Hence, the contribution from anammox to total benthic N-loss increased from 7% at 360 m to40% at 1430 m. This trend is further supported by the quantification of nirS, the biomarkerfunctional gene encoding for cytochrome cd1-nitrite reductases of microorganisms involved inboth N-loss processes. Anammox-like nirS genes within the sediments increased in proportionto total nirS gene copies with water depth. Moreover, phylogenetic analyses of nirS revealeddifferent communities of both denitrifying and anammox bacteria between shallow and deepstations. Together, rate measurement and nirS analyses showed that anammox, determined forthe first time in the Arabian Sea sediments, is an important benthic N-loss process at thecontinental margin off Pakistan, especially in the sediments at deeper water depths.Extrapolation from the measured benthic N-loss to all shelf sediments within the basinsuggests that benthic N-loss may be responsible for about half of the overall N-loss in theArabian Sea.

  12. Analysis of water hammer in a penstock in the case of valve closure. Part 1: Without pressure losses

    Directory of Open Access Journals (Sweden)

    Hocine HAMMOUM

    2016-04-01

    Full Text Available We develop, in this paper, a method of calculating the water hammer inspired by the graphic construction of Bergeron, which we qualify as analytical method. In helping us of these graphs, we get the relationships that allow calculating the flow rates and pressures along a penstock. The flow of water is carried out by gravity adduction connecting at upstream a storage tank and at downstream a valve. In this first part, we neglect the pressure losses. The study will focus on water hammer-induced by a slow closing of the valve. A practical example will be presented at the end of this work in order to illustrate the exposed method.

  13. Extreme Water Loss and Abiotic O2 Buildup on Planets Throughout the Habitable Zones of M Dwarfs

    Science.gov (United States)

    Barnes, R.

    2015-01-01

    Abstract We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars. Key Words: Astrobiology—Biosignatures—Extrasolar terrestrial planets—Habitability—Planetary atmospheres. Astrobiology 15, 119–143. PMID:25629240

  14. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs.

    Science.gov (United States)

    Luger, R; Barnes, R

    2015-02-01

    We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars.

  15. Effects of modified atmosphere packing and honey dip treatments on quality maintenance of minimally processed grape cv. Razaki (V. vinifera L.) during cold storage.

    Science.gov (United States)

    Sabır, Ali; Sabır, Ferhan K; Kara, Zeki

    2011-06-01

    Increasing pressure in food conservation sector to replace chemical applications has urged researchers to focus on studying new strategies of extending the postharvest life of produces. In such efforts, numerous materials have been tested for their effectiveness as well as suitability in organic consumption. In this study, effects of modified atmosphere packing (MAP) and honey solution dip on maintenance of quality of minimally processed table grape cv. Razaki were investigated. During the storage at 0 °C with relative humidity of 90%, MAP, honey dip, and their combined applications significantly retarded the weight loss of berries that retained about 2 mm of cap stem. Soluble solid contents of all berries slightly increased, while their acid amounts decreased, resulting in consecutive rises of maturity index. With respect to the sensory score, calculated as mean of ten panelists, honey treatment alone was ranked the highest while control berries had significantly lower value. Overall, MAP, honey solution dip or their combination significantly maintained the general quality of minimally processed grape by delaying quality loss and berry decay. Therefore, honey solution dip yielded promising results to use as an edible organic coating barrier to moisture and resist to water vapor diffusion during the cold storage, offering a good adherence to berry surface.

  16. Loss of deuterium in faecal solids and by sequestration in reindeer: effect on doubly labelled water studies

    Directory of Open Access Journals (Sweden)

    Geir Gotaas

    2000-03-01

    Full Text Available An underlying assumption when estimating total energy expenditure (TEE using doubly labelled water (DLW is that the injected isotopes (lsO and 2H leave the body only in the form of CO, and H20. However, both isotopes have additional routes of loss. We quantified the loss of 2H (i attached to faecal solids and (ii by sequestration into newly synthesised fat in reindeer (Rangifer tarandus tarandus. Estimates of the errors caused by these processes were applied to data from DLW studies with reindeer in summer and in winter. Given the net rate of faecal dry matter output and lipid synthesis in the present study, ignoring both sources of error caused the TEE of reindeer to be underestimated by approximately 5% in winter and approximately 9% in summer. The separate effect of each source of error was evaluated in summer. If ignored, loss of 2H through sequestration alone caused TEE to be underestimated by approximately 3.7%. Similarly, if ignored, loss of 2H attached to faecal solids alone caused TEE to be underestimated by approximately 5.9%.

  17. A Precision Nitrogen Management Approach to Minimize Impacts

    Science.gov (United States)

    Nitrogen fertilizer is a crucial input for crop production but contributes to agriculture’s environmental footprint via CO2 emissions, N2O emissions, and eutrophication of coastal waters. The low-cost way to minimize this impact is to eliminate over-application of N. This is more difficult than it s...

  18. Oracle Inequalities for Convex Loss Functions with Non-Linear Targets

    DEFF Research Database (Denmark)

    Caner, Mehmet; Kock, Anders Bredahl

    This paper consider penalized empirical loss minimization of convex loss functions with unknown non-linear target functions. Using the elastic net penalty we establish a finite sample oracle inequality which bounds the loss of our estimator from above with high probability. If the unknown target...... of the same order as that of the oracle. If the target is linear we give sufficient conditions for consistency of the estimated parameter vector. Next, we briefly discuss how a thresholded version of our estimator can be used to perform consistent variable selection. We give two examples of loss functions...

  19. Minimally invasive plating osteosynthesis for mid-distal third humeral shaft fractures.

    Science.gov (United States)

    Lian, Kejian; Wang, Lei; Lin, Dasheng; Chen, Zhiwen

    2013-08-01

    Mid-distal third humeral shaft fractures can be effectively treated with minimally invasive plating osteosynthesis and intramedullary nailing (IMN). However, these 2 treatments have not been adequately compared. Forty-seven patients (47 fractures) with mid-distal third humeral shaft fractures were randomly allocated to undergo either minimally invasive plating osteosynthesis (n=24) or IMN (n=23). The 2 groups were similar in terms of fracture patterns, fracture location, age, and associated injuries. Intraoperative measurements included blood loss and operative time. Clinical outcome measurements included fracture healing, radial nerve recovery, and elbow and shoulder discomfort. Radiographic measurements included fracture alignment, time to healing, delayed union, and nonunion. Functional outcome was satisfactory in both groups. Mean American Shoulder and Elbow Surgeons score and Mayo score were both better for the minimally invasive plating osteosynthesis group than for the IMN group (98.2 vs 97.6, respectively, and 93.5 vs 94.1, respectively; Pshaft fractures. Minimally invasive plating osteosynthesis is more suitable for complex fractures, especially for radial protection and motion recovery of adjacent joints, compared with IMN for simple fractures. Copyright 2013, SLACK Incorporated.

  20. Minimally invasive mini open split-muscular percutaneous pedicle screw fixation of the thoracolumbar spine

    Directory of Open Access Journals (Sweden)

    Murat Ulutaş

    2015-03-01

    Full Text Available We prospectively assessed the feasibility and safety of a new percutaneous pedicle screw (PPS fixation technique for instrumentation of the thoracic and lumbar spine in this study. All patients were operated in the prone position under general anesthesia. A 6 to 8 cm midline skin incision was made and wide sub-cutaneous dissection was performed. The paravertebral muscles were first dissected subperiosteally into the midline incision of the fascia for lumbar microdiscectomy with transforaminal lumbar interbody fusion cage implantation. After the secondary paramedian incisions on the fascia, the PPSs were inserted via cleavage of the multifidus muscles directly into the pedicles under fluoroscopy visualization. A total of 35 patients underwent surgery with this new surgical technique. The control group for operative time, blood loss and analgesic usage consisted of 35 randomly selected cases from our department. The control group underwent surgery via conventional pedicle screw instrumentation with paramedian fusion. All patients in the minimal invasive surgery series were ambulatory with minimal pain on the first postoperative day. The operation time and blood loss and the postoperative analgesic consumption were significantly less with this new technique. In conclusion, the minimal invasive mini open split-muscular percutaneous pedicle screw fixation technique is safe and feasible. It can be performed via a short midline skin incision and can also be combined with interbody fusion, causing minimal pain without severe muscle damage.

  1. Cost-effectiveness analysis in minimally invasive spine surgery.

    Science.gov (United States)

    Al-Khouja, Lutfi T; Baron, Eli M; Johnson, J Patrick; Kim, Terrence T; Drazin, Doniel

    2014-06-01

    Medical care has been evolving with the increased influence of a value-based health care system. As a result, more emphasis is being placed on ensuring cost-effectiveness and utility in the services provided to patients. This study looks at this development in respect to minimally invasive spine surgery (MISS) costs. A literature review using PubMed, the Cost-Effectiveness Analysis (CEA) Registry, and the National Health Service Economic Evaluation Database (NHS EED) was performed. Papers were included in the study if they reported costs associated with minimally invasive spine surgery (MISS). If there was no mention of cost, CEA, cost-utility analysis (CUA), quality-adjusted life year (QALY), quality, or outcomes mentioned, then the article was excluded. Fourteen studies reporting costs associated with MISS in 12,425 patients (3675 undergoing minimally invasive procedures and 8750 undergoing open procedures) were identified through PubMed, the CEA Registry, and NHS EED. The percent cost difference between minimally invasive and open approaches ranged from 2.54% to 33.68%-all indicating cost saving with a minimally invasive surgical approach. Average length of stay (LOS) for minimally invasive surgery ranged from 0.93 days to 5.1 days compared with 1.53 days to 12 days for an open approach. All studies reporting EBL reported lower volume loss in an MISS approach (range 10-392.5 ml) than in an open approach (range 55-535.5 ml). There are currently an insufficient number of studies published reporting the costs of MISS. Of the studies published, none have followed a standardized method of reporting and analyzing cost data. Preliminary findings analyzing the 14 studies showed both cost saving and better outcomes in MISS compared with an open approach. However, more Level I CEA/CUA studies including cost/QALY evaluations with specifics of the techniques utilized need to be reported in a standardized manner to make more accurate conclusions on the cost effectiveness of

  2. Early benefits of minimally invasive transforaminal lumbar interbody fusion in comparison with the traditional open procedure

    Directory of Open Access Journals (Sweden)

    Gregor Rečnik

    2015-06-01

    Full Text Available AbstractBackgroundLumbar interbody fusion is a standard operative procedure in orthopedic spine surgery. Morphological and functional changes in the multifidus muscle after an open procedure have led to the development of a minimally invasive technique, after which no such muscle changes were observed. MethodsSixty-four patients, with clinical and radiological criteria for one-level transforaminal lumbar interbody fusion were enrolled in our prospective randomized study between December 2011 and March 2014. They were randomized into two groups: open approach (33 patients vs. minimally invasive approach (31 patients; one patient was excluded from each group due to postoperative complications. Independent samples T-test was used to compare average values of increase in creatin kinase (CK, which is an enzymatic marker of muscle injury, average surgical time, loss of blood during and after surgery, back pain according to the Visual Analogue Scale (VAS and day of discharge from the hospital. ResultsStatistically important (P< 0.001 lower blood loss (188 ml vs. 527 ml total, less CK increase (15 ukat/L vs. 29 ukat/L, lower VAS score after surgery (7.3 vs. 8.7 and earlier discharge from the hospital (3.5 days vs. 5.2 days were observed in the minimally invasive transforaminal lumbar interbody fusion group. No significant difference in average surgical time was recorded. Conclusions Our results suggest, that minimally invasive transforaminal lumbar interbody fusion causes is associated with less muscle damage, lower blood loss, less post surgical pain and faster early rehabilitation, which is in accordance with previous studies.

  3. Alternative sanitization methods for minimally processed lettuce in comparison to sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Mara Lígia Biazotto Bachelli

    2013-09-01

    Full Text Available Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L-1/10 min, peracetic acid (100 mg L-1/15 min and ozonated water (1.2 mg L-1 /1 min as alternative sanitizers to sodium hypochlorite (150 mg L-1 free chlorine/15 min were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 ºC with the product packaged on LDPE bags of 60 µm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days.

  4. Monitoring water loss form fresh concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2006-01-01

    Desiccation of concrete before or during setting may lead to detrimental plastic shrinkage cracking in the concrete surface zone. Cracking due to plastic shrinkage is a major technological problem for any concrete, however, modern high-performance concretes are especially susceptible to this...... determination of the evaporation loss from hardening concrete and thus better possibility for preventing curing problems, including detrimental crack damage due to plastic shrinkage....

  5. Minimally invasive versus open distal pancreatectomy (LEOPARD) : Study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    de Rooij, Thijs; van Hilst, Jony; Vogel, Jantien A.; van Santvoort, Hjalmar C.; de Boer, Marieke T.; Boerma, Djamila; van den Boezem, Peter B.; Bonsing, Bert A.; Bosscha, Koop; Coene, Peter-Paul; Daams, Freek; van Dam, Ronald M.; Dijkgraaf, Marcel G.; van Eijck, Casper H.; Festen, Sebastiaan; Gerhards, Michael F.; Koerkamp, Bas Groot; Hagendoorn, Jeroen; van der Harst, Erwin; de Hingh, Ignace H.; Dejong, Cees H.; Kazemier, Geert; Klaase, Joost; de Kleine, Ruben H.; van Laarhoven, Cornelis J.; Lips, Daan J.; Luyer, Misha D.; Molenaar, I. Quintus; Nieuwenhuijs, Vincent B.; Patijn, Gijs A.; Roos, Daphne; Scheepers, Joris J.; van der Schelling, George P.; Steenvoorde, Pascal; Swijnenburg, Rutger-Jan; Wijsman, Jan H.; Abu Hilal, Moh'd; Busch, Olivier R.; Besselink, Marc G.

    2017-01-01

    Background: Observational cohort studies have suggested that minimally invasive distal pancreatectomy (MIDP) is associated with better short-term outcomes compared with open distal pancreatectomy (ODP), such as less intraoperative blood loss, lower morbidity, shorter length of hospital stay, and

  6. Beam loss control in the LINAC4 design

    CERN Document Server

    Stovall, J; Crandall, K

    2010-01-01

    The Linac4 DTL reference design has been modified to reduce the power consumption in tank 1 by modifying the accelerating field and phase law. In addition we have adopted an FFDD focusing lattice throughout to minimize expected losses resulting from alignment errors. We have observed, however, that this design suffers from decreasing transverse acceptance and a sensitivity to misalignments that causes any expected beam loss to occcur at the high energy end of the DTL. In this note we investigate two solutions to increase the acceptance, decrease its sensitivity to misalignments and eliminate the potential for a beam-loss “bottleneck” at 50 MeV.

  7. Empirical Study of the Serverity of Loss and Expense Claims on ...

    African Journals Online (AJOL)

    Claims for loss and /or expense is characteristic of most building contracts in Nigeria irrespective of their size and scope; and often defeats project objectives of time, cost and functionality by leading to their time and cost overrun. This study aims at minimizing the negative effect of loss and /or expense claims by providing an ...

  8. Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim

    Directory of Open Access Journals (Sweden)

    Holly J. Niner

    2018-03-01

    Full Text Available Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. “Out of kind” biodiversity offsets substituting one ecosystem type (e.g., coral reefs for another (e.g., abyssal nodule fields have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate. We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. “Out of kind” measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics, play an essential role in regulatory services (e.g., carbon sequestration and are important culturally. The level of “acceptable” biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement

  9. Managing agricultural phosphorus to minimize water quality impacts

    Directory of Open Access Journals (Sweden)

    Andrew Sharpley

    2016-02-01

    Full Text Available ABSTRACT Eutrophication of surface waters remains a major use-impairment in many countries, which, in fresh waters, is accelerated by phosphorus (P inputs from both point (e.g., municipal waste water treatment plants and nonpoint sources (e.g., urban and agricultural runoff. As point sources tend to be easier to identify and control, greater attention has recently focused on reducing nonpoint sources of P. In Brazil, agricultural productivity has increased tremendously over the last decade as a consequence, to a large extent, of increases in the use of fertilizer and improved land management. For instance, adoption of the “4R” approach (i.e., right rate, right time, right source, and right placement of P to fertilizer management can decrease P runoff. Additionally, practices that lessen the risk of runoff and erosion, such as reduced tillage and cover crops will also lessen P runoff. Despite these measures P can still be released from soil and fluvial sediment stores as a result of the prior 10 to 20 years’ management. These legacy sources can mask the water quality benefits of present-day conservation efforts. Future remedial efforts should focus on developing risk assessment indices and nonpoint source models to identify and target conservation measures and to estimate their relative effectiveness. New fertilizer formulations may more closely tailor the timing of nutrient release to plant needs and potentially decrease P runoff. Even so, it must be remembered that appropriate and timely inputs of fertilizers are needed to maintain agricultural productivity and in some cases, financial support might also be required to help offset the costs of expensive conservation measures.

  10. Retention and loss of water extractable carbon in soils: effect of clay properties.

    Science.gov (United States)

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  11. Effect of temperature on incubation period, embryonic mortality, hatch rate, egg water loss and partridge chick weight (Rhynchotus rufescens

    Directory of Open Access Journals (Sweden)

    Nakage ES

    2003-01-01

    Full Text Available The aim of this study was to determine the effects of incubation temperature (34.5; 35.5; 36.5; 37.5 and 38.5ºC, on incubation period, embryonic mortality, hatching rate, water loss and chick weight at hatch, using daily incubation of partridge (Rhynchotus rufescens eggs. The highest hatching percentage was obtained between 35.5 and 36.5ºC. Incubation length and temperature were inversely proportional. Water loss was lower in eggs incubated at low temperatures as compared to high temperatures. There was no difference among incubation temperatures in absolute and relative hatchling weights. Early embryonic mortality increased at low temperatures (36.5ºC. Our results show that, under conditions of daily incubation of eggs in the same incubator, higher hatching rate can be obtained using temperatures between 35.5ºC and 36.5ºC; incubation temperature is inversely proportional to incubation length, and absolute and relative weights of partridge chicks are not affected by incubation temperature.

  12. Minimally Invasive Spine Metastatic Tumor Resection and Stabilization: New Technology Yield Improved Outcome

    Directory of Open Access Journals (Sweden)

    Ran Harel

    2015-01-01

    Full Text Available Spinal metastases compressing the spinal cord are a medical emergency and should be operated on if possible; however, patients’ medical condition is often poor and surgical complications are common. Minimizing surgical extant, operative time, and blood loss can potentially reduce postoperative complications. This is a retrospective study describing the patients operated on in our department utilizing a minimally invasive surgery (MIS approach to decompress and instrument the spine from November 2013 to November 2014. Five patients were operated on for thoracic or lumbar metastases. In all cases a unilateral decompression with expandable tubular retractor was followed by instrumentation of one level above and below the index level and additional screw at the index level contralateral to the decompression side. Cannulated fenestrated screws were used (Longitude FNS and cement was injected to increase pullout resistance. Mean operative time was 134 minutes and estimated blood loss was minimal in all cases. Improvement was noticeable in neurological status, function, and pain scores. No complications were observed. Technological improvements in spinal instruments facilitate shorter and safer surgeries in oncologic patient population and thus reduce the complication rate. These technologies improve patients’ quality of life and enable the treatment of patients with comorbidities.

  13. Thermal-hydraulic analysis of total loss of steam generator feed water in WWER-440

    International Nuclear Information System (INIS)

    Sabotinov, L.; Cadet-Mercier, S.

    2001-01-01

    The analysis is carried out for a WWER-440/V270 with upgraded primary safety valves (replacement of the existing PRZ safety valves with Pilot Operated Relief Valves (PORV) of the type SEBIM (France)) The current analysis is focused on the scenario 'Total Loss of SGs Feed Water' with application of the operator action of primary system 'Feed and Bleed' in order to check the effectiveness of the installed pressurizer SEBIM valves and to verify that the operator can cool down the reactor system and cope with this accident. The calculations have been performed at the Institute of Protection and Nuclear Safety (IPSN) in Fontenay-aux-Roses with the computer code CATHARE 2 Version 1.3L1. CATHARE is a French best estimate thermal-hydraulic program for accident analysis in the light water nuclear reactors, developed with the participation of the IPSN (Institut de Protection et Surete Nucleaire), CEA (Commissariat a l'Energie Atomique), Framatome and EdF (Electricite de France). (author)

  14. Effect of minimal/mild hearing loss on children's speech understanding in a simulated classroom.

    Science.gov (United States)

    Lewis, Dawna E; Valente, Daniel L; Spalding, Jody L

    2015-01-01

    While classroom acoustics can affect educational performance for all students, the impact for children with minimal/mild hearing loss (MMHL) may be greater than for children with normal hearing (NH). The purpose of this study was to examine the effect of MMHL on children's speech recognition comprehension and looking behavior in a simulated classroom environment. It was hypothesized that children with MMHL would perform similarly to their peers with NH on the speech recognition task but would perform more poorly on the comprehension task. Children with MMHL also were expected to look toward talkers more often than children with NH. Eighteen children with MMHL and 18 age-matched children with NH participated. In a simulated classroom environment, children listened to lines from an elementary-age-appropriate play read by a teacher and four students reproduced over LCD monitors and loudspeakers located around the listener. A gyroscopic headtracking device was used to monitor looking behavior during the task. At the end of the play, comprehension was assessed by asking a series of 18 factual questions. Children also were asked to repeat 50 meaningful sentences with three key words each presented audio-only by a single talker either from the loudspeaker at 0 degree azimuth or randomly from the five loudspeakers. Both children with NH and those with MMHL performed at or near ceiling on the sentence recognition task. For the comprehension task, children with MMHL performed more poorly than those with NH. Assessment of looking behavior indicated that both groups of children looked at talkers while they were speaking less than 50% of the time. In addition, the pattern of overall looking behaviors suggested that, compared with older children with NH, a larger portion of older children with MMHL may demonstrate looking behaviors similar to younger children with or without MMHL. The results of this study demonstrate that, under realistic acoustic conditions, it is difficult to

  15. Measurement of transepidermal water loss in localized scleroderma.

    Science.gov (United States)

    Ďurčanská, Veronika; Jedličková, Hana; Vašků, Vladimír

    2016-05-01

    Localized scleroderma (LS) is a disease characterized by fibrotic changes in the dermis. Connective tissue growth factor and transforming growth factor β2 are the main mediators of fibrogenesis; this, along with excessive connective tissue production, affects epidermal keratinocytes, and thereby contributes to the changed quality of skin barrier. The objective of this article was to study the objective measurement of the skin barrier quality in LS with transepidermal water loss (TEWL) meter. The measurements of TEWL were performed on LS plaques in all three stages of various body locations. Control measurements were made on the contralateral side of healthy skin. The difference between TEWL in LS area and the contralateral side of the healthy skin was evaluated. A higher average TEWL 7.86 g/m(2) /h (SD 5.29) was observed on LS plaques compared with the control measurements on healthy skin 6.39 g/m(2) /h (SD 2.77). TEWL average values decreased from the inflammatory stage, through the sclerotic and to the atrophic stage. The mean difference 1.301 g/m(2) /h (SD 5.16) was found between TEWL on LS plaques and on the contralateral healthy skin in 82 measurements, i.e., a higher TEWL was observed in LS. The difference was statistically significant with p = 0.0250. Although fibrogenesis in scleroderma is localized in dermis, the skin barrier changes can be detected. © 2016 Wiley Periodicals, Inc.

  16. Exposure to low-dose barium by drinking water causes hearing loss in mice.

    Science.gov (United States)

    Ohgami, Nobutaka; Hori, Sohjiro; Ohgami, Kyoko; Tamura, Haruka; Tsuzuki, Toyonori; Ohnuma, Shoko; Kato, Masashi

    2012-10-01

    We continuously ingest barium as a general element by drinking water and foods in our daily life. Exposure to high-dose barium (>100mg/kg/day) has been shown to cause physiological impairments. Direct administration of barium to inner ears by vascular perfusion has been shown to cause physiological impairments in inner ears. However, the toxic influence of oral exposure to low-dose barium on hearing levels has not been clarified in vivo. We analyzed the toxic influence of oral exposure to low-dose barium on hearing levels and inner ears in mice. We orally administered barium at low doses of 0.14 and 1.4 mg/kg/day to wild-type ICR mice by drinking water. The doses are equivalent to and 10-fold higher than the limit level (0.7 mg/l) of WHO health-based guidelines for drinking water, respectively. After 2-week exposure, hearing levels were measured by auditory brain stem responses and inner ears were morphologically analyzed. After 2-month exposure, tissue distribution of barium was measured by inductively coupled plasma mass spectrometry. Low-dose barium in drinking water caused severe hearing loss in mice. Inner ears including inner and outer hair cells, stria vascularis and spiral ganglion neurons showed severe degeneration. The Barium-administered group showed significantly higher levels of barium in inner ears than those in the control group, while barium levels in bone did not show a significant difference between the two groups. Barium levels in other tissues including the cerebrum, cerebellum, heart, liver and kidney were undetectably low in both groups. Our results demonstrate for the first time that low-dose barium administered by drinking water specifically distributes to inner ears resulting in severe ototoxicity with degeneration of inner ears in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Overnight weight loss: relationship with sleep structure and heart rate variability

    OpenAIRE

    Walter Moraes; Dalva Poyares; Christian Guilleminault; Agostinho Rosa; Marco Tulio Mello; Adriana Rueda; Sergio Tufik

    2008-01-01

    Background: Weight loss can be caused by a loss of body mass due to metabolism and by water loss as unsensible water loss, sweating, or excretion in feces and urine. Although weight loss during sleep is a well-known phenomenon, it has not yet been studied in relation to sleep structure or autonomic tonus during sleep. Our study is proposed to be a first step in assessing the relationship between overnight weight loss, sleep structure, and HRV (heart rate variability) parameters.Methods: Twent...

  18. Water in the Early Solar System: Infrared Studies of Aqueously Altered and Minimally Processed Asteroids

    Science.gov (United States)

    McAdam, Margaret M.

    This thesis investigates connections between low albedo asteroids and carbonaceous chondrite meteorites using spectroscopy. Meteorites and asteroids preserve information about the early solar system including accretion processes and parent body processes active on asteroids at these early times. One process of interest is aqueous alteration. This is the chemical reaction between coaccreted water and silicates producing hydrated minerals. Some carbonaceous chondrites have experienced extensive interactions with water through this process. Since these meteorites and their parent bodies formed close to the beginning of the Solar System, these asteroids and meteorites may provide clues to the distribution, abundance and timing of water in the Solar nebula at these times. Chapter 2 of this thesis investigates the relationships between extensively aqueously altered meteorites and their visible, near and mid-infrared spectral features in a coordinated spectral-mineralogical study. Aqueous alteration is a parent body process where initially accreted anhydrous minerals are converted into hydrated minerals in the presence of coaccreted water. Using samples of meteorites with known bulk properties, it is possible to directly connect changes in mineralogy caused by aqueous alteration with spectral features. Spectral features in the mid-infrared are found to change continuously with increasing amount of hydrated minerals or degree of alteration. Building on this result, the degrees of alteration of asteroids are estimated in a survey of new asteroid data obtained from SOFIA and IRTF as well as archived the Spitzer Space Telescope data. 75 observations of 73 asteroids are analyzed and presented in Chapter 4. Asteroids with hydrated minerals are found throughout the main belt indicating that significant ice must have been present in the disk at the time of carbonaceous asteroid accretion. Finally, some carbonaceous chondrite meteorites preserve amorphous iron-bearing materials

  19. Influence of unit operations on the levels of polyacetylenes in minimally processed carrots and parsnips: An industrial trial.

    Science.gov (United States)

    Koidis, Anastasios; Rawson, Ashish; Tuohy, Maria; Brunton, Nigel

    2012-06-01

    Carrots and parsnips are often consumed as minimally processed ready-to-eat convenient foods and contain in minor quantities, bioactive aliphatic C17-polyacetylenes (falcarinol, falcarindiol, falcarindiol-3-acetate). Their retention during minimal processing in an industrial trial was evaluated. Carrot and parsnips were prepared in four different forms (disc cutting, baton cutting, cubing and shredding) and samples were taken in every point of their processing line. The unit operations were: peeling, cutting and washing with chlorinated water and also retention during 7days storage was evaluated. The results showed that the initial unit operations (mainly peeling) influence the polyacetylene retention. This was attributed to the high polyacetylene content of their peels. In most cases, when washing was performed after cutting, less retention was observed possibly due to leakage during tissue damage occurred in the cutting step. The relatively high retention during storage indicates high plant matrix stability. Comparing the behaviour of polyacetylenes in the two vegetables during storage, the results showed that they were slightly more retained in parsnips than in carrots. Unit operations and especially abrasive peeling might need further optimisation to make them gentler and minimise bioactive losses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Soil Water Balance and Irrigation Strategies in an Agricultural District of Southern Italy

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2010-06-01

    Full Text Available An efficient management of water resources is considered very important for Mediterranean regions of Italy in order to improve the economical and environmental sustainability of the agricultural activity. The purpose of this study is to analyze the components of soil water balance in an important district included in the regions of Basilicata and Puglia and situated in the Jonical coastal area of Southern Italy and mainly cropped with horticultural crops. The study was performed by using the spatially distributed and physically based model SIMODIS in order to individuate the best irrigation management maximizing the water use efficiency and minimizing water losses by deep percolation and soil evaporation. SIMODIS was applied taking in to account the soil spatial variability and localization of cadastral units for two crops, durum wheat and water melon. For water melon recognition in 2007 a remote sensed image, from SPOT5 satellite, at the spatial resolution of 10 m, has been used. In 2008, a multi-temporal data set was available, from SPOT5 satellite to produce a land cover map for the classes water melon and durum wheat. Water melon cultivation was simulated adopting different water supply managements: rainfed and four irrigation strategies based on (i soil water availability and (ii plant water status adopting a threshold daily stress value. For each management, several water management indicators were calculated and mapped in GIS environment. For seasonal irrigation depth, actual evapotranspiration and irrigation efficiency were also determined. The analysis allowed to individuate the areas particularly sensitive to water losses by deep percolation because of their hydraulic functions characterized by low water retention and large values of saturated hydraulic conductivity. For these areas, the irrigation based on plant water status caused very high water losses by drainage. On the contrary, the irrigation scheduled on soil base allowed to

  1. Analysis of water hammer in a penstock in the case of valve closure. Part 2: Pressure losses concentrated downstream

    Directory of Open Access Journals (Sweden)

    Hocine HAMMOUM

    2017-06-01

    Full Text Available In our previous study (Part 1; by using the graphic of Bergeron, we have drawn the relationships which allow calculating flows and pressures at the valve and the reservoir, considering that pressure losses are negligible. Now, we assume in this second contribution that these pressure losses are concentrated downstream of the pipe, just at the entry of the valve. The study will focus on water hammer-induced by a slow closing of the valve. A practical example will be presented at the end of this work in order to illustrate the exposed method.

  2. Simulation of the Gamma Dose Rate in Loss of Pool Water Accident of the Second Egyptian Research Reactor ETRR-2

    International Nuclear Information System (INIS)

    Amin, E.; Saleh, H.; Ashoub, N.

    2000-01-01

    The Second Egyptian Research Reactor ETRR-2, is a pool type reactor, a sudden loss of pool water resulting of leaving the core region un-covered. The reactor core is surrounded by chimney chambers whose water is isolated from pool water. This accident would lead to significant external dose. A model is developed and is used to calculate the dose rates for key access and traffic plans from indirect line of sight of the core have a maximum dose rate. The model developed uses the discrete ordinate method as implemented in the code DOT 3.5

  3. Genetic and biochemical analysis reveals linked QTLs determining natural variation for fruit post-harvest water loss in pepper (Capsicum).

    Science.gov (United States)

    Popovsky-Sarid, Sigal; Borovsky, Yelena; Faigenboim, Adi; Parsons, Eugene P; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Fallik, Elazar; Jenks, Matthew A; Paran, Ilan

    2017-02-01

    Molecular markers linked to QTLs controlling post-harvest fruit water loss in pepper may be utilized to accelerate breeding for improved shelf life and inhibit over-ripening before harvest. Bell pepper (Capsicum annuum L.) is an important vegetable crop world-wide. However, marketing is limited by the relatively short shelf life of the fruit due to water loss and decay that occur during prolonged storage. Towards breeding pepper with reduced fruit post-harvest water loss (PWL), we studied the genetic, physiological and biochemical basis for natural variation of PWL. We performed quantitative trait locus (QTL) mapping of fruit PWL in multiple generations of an interspecific cross of pepper, which resulted in the identification of two linked QTLs on chromosome 10 that control the trait. We further developed near-isogenic lines (NILs) for characterization of the QTL effects. Transcriptome analysis of the NILs allowed the identification of candidate genes associated with fruit PWL-associated traits such as cuticle biosynthesis, cell wall metabolism and fruit ripening. Significant differences in PWL between the NILs in the immature fruit stage, differentially expressed cuticle-associated genes and differences in the content of specific chemical constituents of the fruit cuticle, indicated a likely influence of cuticle composition on the trait. Reduced PWL in the NILs was associated with delayed over-ripening before harvest, low total soluble solids before storage, and reduced fruit softening after storage. Our study enabled a better understanding of the genetic and biological processes controlling natural variation in fruit PWL in pepper. Furthermore, the genetic materials and molecular markers developed in this study may be utilized to breed peppers with improved shelf life and inhibited over-ripening before harvest.

  4. Minimizing the water and air impacts of unconventional energy extraction

    Science.gov (United States)

    Jackson, R. B.

    2014-12-01

    Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.

  5. Vent clearing during a simulated loss-of-coolant accident in Mark I boiling-water-reactor pressure-suppression system

    International Nuclear Information System (INIS)

    Pitts, J.H.; McCauley, E.W.

    1978-01-01

    The response of the pressure-suspension containment system of Mark I boiling-water reactors to a loss-of-coolant accident (LOCA) is being studied. This response is a design basis for light-water nuclear reactors. Part of the study is being carried out on a 1 / 5 -scale experimental facility that models the pressure-suppression containment system of the Peach Bottom 2 nuclear power plant. The test series reported here focused on the initial or air-clearing phase of a hypothetical LOCA. Measured forces, measured pressures, and the hydrodynamic phenomena (observed with high-speed cameras) show a logical interrelationship

  6. MANAGEMENT OF CREDIT LOSSES

    Directory of Open Access Journals (Sweden)

    Natalya P. Anoshkina

    2018-06-01

    Full Text Available The paper is devoted to the problem of credit loss management topical for modern Russian science and banking practice. The bank’s lending activity is an integral and the most profitable sphere of banking activity. Banks need to take credit risks inherent in their core business and minimize their impact through the establishment of advanced risk management systems. The study, reflected in the present paper, has been conducted in order to determine approaches to the organization of credit loss management in banking. Analysis of the system of management of credit risks and credit losses has shown that they have different scope, object and purpose. In this connection, there is an objective necessity to create a special subsystem for the management of credit losses in banks. On the basis of common bank approaches to credit risk management, the paper develops models of credit loss management: a multi-level management model in the area of ‘operational-tactical-strategic management’ and a functional management model in the area of ‘technology-execution-control’. These models are important for the modern theory and practice of banking, as they allow the bank to manage credit losses on the entire time horizon of the management process, thus opening a wide range of opportunities for the creation and implementation of large-scale programs, as well as specific techniques. This study allows drawing a conclusion about the need to consider control credit losses as a strictly regulated multi-level process, in which each division is assigned with specific objectives, tasks, functions, formally enshrined in the relevant lists, job descriptions and other legal documents.

  7. Summary of Research on Light Water Reactor Improvement Concepts

    International Nuclear Information System (INIS)

    Mowery, Alfred L.

    2002-01-01

    The Arms Control and Disarmament Agency of the U.S. Department of State instituted a study aimed at improving the light water reactor (LWR) fuel consumption efficiency as an alternative to fuel recycle in the late 1970s. Comparison of the neutron balance tables of an LWR (1982 design) and an 'advanced' Canada deuterium uranium (CANDU) reactor explained that the relatively low fuel efficiency of the LWR was not primarily a consequence of water moderator absorptions. Rather, the comparatively low LWR fuel efficiency resulted from its use of poison to hold down startup reactivity together with other neutron losses. The research showed that each neutron saved could reduce fuel consumption by about 5%. In a typical LWR some 5 neutrons (out of 100) were absorbed in control poisons over a cycle. There are even more parasitic and leakage neutron absorptions. The objective of the research was to find ways to minimize control, parasitic, and other neutron losses aimed at improved LWR fuel consumption. Further research developed the concept of 'putting neutrons in the bank' in 238 U early in life and 'drawing them out of the bank' late in life by burning the 239 Pu produced. Conceptual designs were explored that could both control the reactor and substantially improve fuel efficiency and minimize separative work requirements.The U.S. Department of Energy augmented its high burnup fuel program based on the research in the late 1970s. As a result of the success of this program, fuel burnup in U.S. LWRs has almost doubled in the intervening two decades

  8. Recommendations to designers aimed at minimizing radiation dose incurred in operation, maintenance, inspection and repair of light-water reactors

    International Nuclear Information System (INIS)

    1978-01-01

    In the framework of the exchange of experience between nuclear power plant operators organized by the services of the Commission of the European Communities an ad-hoc working party elaborated recommendations particularly directed to those concerned with design of light water reactor plants. The necessary design measures which should be followed to minimize radiation dose incurred in operation, maintenance, inspection and repair of such reactors are listed. The recommendations are based on recent views expressed by operating utilities within the Community. It is intended to revise these recommendations at suitable intervals in order to make use of the most recent experience and to keep the report up to date with the actual state of art in nuclear technology

  9. Effect of multiple freeze-thaw cycles on the quality of instant sea cucumber: Emphatically on water status of by LF-NMR and MRI.

    Science.gov (United States)

    Tan, Mingqian; Lin, Zhuyi; Zu, Yinxue; Zhu, Beiwei; Cheng, Shasha

    2018-07-01

    Instant sea cucumber has become one popular product due to its convenience to eat, favourable taste and minimal loss of nutrients and bioactive components. However, there was rare information about the water dynamic of instant sea cucumber subjected to multiple freeze-thaw cycles. In this study, low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance image (MRI) were employed to investigate the effect of freeze-thaw cycles on water status of instant sea cucumber. Four water populations corresponding to strongly bound water, weakly bound water, immobile water and free water were observed in instant sea cucumber. With the increase of freeze-thaw cycles, the transverse relaxation time of immobile and free water increased, while the peak area of free water decreased significantly. MRI enabled the visualization of water migration of instant sea cucumber during multiple freeze-thaw cycles. Multiple freeze-thaw cycles also led to significant changes of other quality properties including thawing loss, WHC, color parameters, texture and protein content, and enlarge the interspace between fiber network in microstructure. Good correlations between T 22 , A 22 , A 23 and thaw loss, WHC, L*, hardness and collagen content (0.873 ≤ r ≤ 0.958) revealed LF-NMR may be an effective real-time monitoring method of these physicochemical parameters as a non-destructive technique. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Analysis of the internal heat losses in a thermoelectric generator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Christensen, Dennis Valbjørn; Eriksen, Dan

    2014-01-01

    and radiative heat losses, including surface to surface radiation. For radiative heat losses it is shown that for the temperatures considered here, surface to ambient radiation is a good approximation of the heat loss. For conductive heat transfer the module efficiency is shown to be comparable to the case...... of radiative losses. Finally, heat losses due to internal natural convection in the module is shown to be negligible for the millimetre sized modules considered here. The combined case of radiative and conductive heat transfer resulted in the lowest efficiency. The optimized load resistance is found...... to decrease for increased heat loss. The leg dimensions are varied for all heat losses cases and it is shown that the ideal way to construct a TEG module with minimal heat losses and maximum efficiency is to either use a good insulating material between the legs or evacuate the module completely, and use...

  11. Minimization of Antinutrients in Idli by Using Response Surface Process Optimization

    NARCIS (Netherlands)

    Sharma, Anand; Kumari, Sarita; Nout, Martinus J.R.; Sarkar, Prabir K.

    2017-01-01

    Deploying response surface methodology, the stages of idli preparation were optimized for minimizing the level of antinutrients. Under optimum conditions of soaking blackgram dal (1:5 of dal and water at 16C, and pH 4.0 for 18 h) and rice (1:5 of rice and water at 16C, and pH 5.6 for 18 h), the

  12. A two reservoir model to predict Escherichia coli losses to water from pastures grazed by dairy cows.

    Science.gov (United States)

    Muirhead, R W; Monaghan, R M

    2012-04-01

    Animal agriculture has been identified as an important source of diffuse faecal microbial pollution of water. Our current understanding of the losses of faecal microbes from grazed pasture systems is however poor. To help synthesise our current knowledge, a simple two reservoir model was constructed to represent the faecal and environmental sources of Escherichia coli found in a grazed pastoral system. The size of the faecal reservoir was modelled on a daily basis with inputs from grazing animals, and losses due to die-off of E. coli and decomposition of the faecal material. Estimates were made of transport coefficients of E. coli losses from the two reservoirs. The concentration of E. coli measured in overland flow and artificial drainage from grazed plots, used for calibration of the model, showed a significant (Ppasture systems. Research is needed to understand the behaviour and impact of this environmental reservoir. Scenario analysis using the model indicated that rather than manipulating the faecal material itself post defecation, mitigation options should focus on manipulating grazing management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. SUNLIT AND SHADED MAIZE CANOPY WATER LOSS UNDER VARIED WATER STRESS

    Directory of Open Access Journals (Sweden)

    Antonio Odair Santos

    1999-12-01

    Full Text Available ABSTRACT The precise estimation of transpiration from plant canopies is important for the monitoring of crop water use and management of many agricultural operations related to water use planning. The aim of this study was to estimate transpiration from sunlit and shaded fractions of a maize ( Zea mays L. canopy, using the Penman-Monteith energy balance equation with modifications introduced by Fuchs et al. (1987 and Fuchs & Cohen (1989. Estimated values were validated by a heat pulse system, which was used to measure stem sap flow and by a weighing lysimeter. A relationship between incident radiation and leaf stomatal conductance for critical levels of leaf water potential was used to estimate transpiration. Results showed that computed transpiration of the shaded canopy ranged from 27 to 45% of the total transpiration when fluctuations in atmospheric demand and the level of water stress were taken in account. Hourly and daily estimates of transpiration showed agreement with lysimeter and heat pulse measurements on the well-watered plots. For the water-limited plots the precision of the estimate decreased due to difficulties in simulating the canopy stomatal conductance.

  14. A Hybrid Optimization Method for Reactive Power and Voltage Control Considering Power Loss Minimization

    DEFF Research Database (Denmark)

    Liu, Chengxi; Qin, Nan; Bak, Claus Leth

    2015-01-01

    This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...

  15. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses.

    Science.gov (United States)

    Kovar, J L; Moorman, T B; Singer, J W; Cambardella, C A; Tomer, M D

    2011-01-01

    Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.

  16. A Variance Minimization Criterion to Feature Selection Using Laplacian Regularization.

    Science.gov (United States)

    He, Xiaofei; Ji, Ming; Zhang, Chiyuan; Bao, Hujun

    2011-10-01

    In many information processing tasks, one is often confronted with very high-dimensional data. Feature selection techniques are designed to find the meaningful feature subset of the original features which can facilitate clustering, classification, and retrieval. In this paper, we consider the feature selection problem in unsupervised learning scenarios, which is particularly difficult due to the absence of class labels that would guide the search for relevant information. Based on Laplacian regularized least squares, which finds a smooth function on the data manifold and minimizes the empirical loss, we propose two novel feature selection algorithms which aim to minimize the expected prediction error of the regularized regression model. Specifically, we select those features such that the size of the parameter covariance matrix of the regularized regression model is minimized. Motivated from experimental design, we use trace and determinant operators to measure the size of the covariance matrix. Efficient computational schemes are also introduced to solve the corresponding optimization problems. Extensive experimental results over various real-life data sets have demonstrated the superiority of the proposed algorithms.

  17. Biodegradable films of starch/PVOH/alginate in packaging systems for minimally processed lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Renata Paula Herrera Brandelero

    Full Text Available ABSTRACT Biodegradable packaging may replace non-biodegradable materials when the shelf life of the packaged product is relatively short, as in minimally processed foods. The objective of this work was to evaluate the efficiency of biodegradable films comprising starch/polyvinyl alcohol (PVOH/alginate with the addition of 0 or 0.5% of essential oil of copaiba (EOCP or lemongrass (EOLM compared to poly-vinyl chloride (PVC films in the storage of minimally processed lettuce. Lettuce samples cut into 1-cm strips were placed in polypropylene trays wrapped with biodegradable films and stored at 6 ± 2 °C for 8 days. PVC films were used as controls. The biofilms presented 11.43-8.11 MPa resistance and 11.3-13.22% elongation, with water vapor permeability (WVP of 0.5-4.04 x 10-12 g. s-1.Pa-1.m-1; thus, the films' properties were considered suitable for the application. The lettuce stored in PVC presented minor total soluble solids (TSS, less luminosity (L, higher intensity of yellow color (b, and eight times less mass loss than that stored in biodegradable films. Multivariate analysis showed that the lettuce lost quality after 2 days of storage in PVC films, representing a different result from the other treatments. Lettuce stored in biodegradable films for 2 and 4 days showed a greater similarity with newly harvested lettuce (time zero. The films with or without the addition of essential oil showed similar characteristics. Biodegradable films were considered viable for the storage of minimally processed lettuce.

  18. Small break loss of coolant accident analysis of advanced PWR plant designs utilizing DVI line venturis

    International Nuclear Information System (INIS)

    Kemper, Robert M.; Gagnon, Andre F.; McNamee, Kevin; Cheung, Augustine C.

    1995-01-01

    The Westinghouse Advanced Passive and evolutionary Pressurizer Water Reactors (i.e. AP600 and APWR) incorporate direct vessel injection (DVI) of emergency core coolant as a means of minimizing the potential spilling of emergency core cooling water during a loss of coolant accident (LOCA). As a result, the most limiting small break LOCA (SBLOCA) event for these designs, with respect core inventory makeup capability, is a postulated double ended rupture of one of the DVI lines. This paper presents the results of a design optimization study that examines the installation of a venturi in the DVI line as a means of limiting the reactor coolant lost from the reactor vessel. The comparison results demonstrate that by incorporating a properly sized venturi in the DVI line, core uncovery concerns as a result of a DVI line break can be eliminated for both the AP600 and APWR plants. (author)

  19. Measuring scarce water saving from interregional virtual water flows in China

    Science.gov (United States)

    Zhao, X.; Li, Y. P.; Yang, H.; Liu, W. F.; Tillotson, M. R.; Guan, D.; Yi, Y.; Wang, H.

    2018-05-01

    Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index (WSI). We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower WSI to that with higher WSI. Conversely, 175 connections contributed to 20.6 km3 of scarce water loss. The virtual water flow connections between Xinjiang and other provinces stood out as the biggest contributors, accounting for 66% of total scarce water loss. The results show the importance of assessing water savings generated from trade with consideration of both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy.

  20. Magnitude of Annual Soil Loss from a Hilly Cultivated Slope in Northern Vietnam and Evaluation of Factors Controlling Water Erosion

    International Nuclear Information System (INIS)

    Kurosawa, K.; Hai Do, N.; Nguyen, T.C.; Egashira, K.

    2010-01-01

    A soil erosion experiment was conducted in northern Vietnam over three rainy seasons to clarify the magnitude of soil loss and factors controlling water erosion. The plot had a low (8%) or medium (14.5%) slope with land-cover of cassava or morning glory or being bare. Annual soil loss (177 to 2,361 g/m 2 ) was a tolerable level in all low-slope plots but was not in some medium-slope plots. The effects of slope gradient and seasonal rainfall on the mean daily soil loss of the season were confirmed, but the effect of land-cover was not, owing to the small canopy cover ratio or leaf area index during the season. The very high annual soil loss (>2,200 g/m 2 ) observed in the first year of some medium-slope plots was the site-specific effect from initial land preparation. Since the site-specific effect was large, the preparation must be done carefully on the slope

  1. International guidelines for the in vivo assessment of skin properties in non-clinical settings: Part 2. transepidermal water loss and skin hydration

    Science.gov (United States)

    du Plessis, Johan; Stefaniak, Aleksandr; Eloff, Fritz; John, Swen; Agner, Tove; Chou, Tzu-Chieh; Nixon, Rosemary; Steiner, Markus; Franken, Anja; Kudla, Irena; Holness, Linn

    2015-01-01

    Background There is an emerging perspective that it is not sufficient to just assess skin exposure to physical and chemical stressors in workplaces, but that it is also important to assess the condition, i.e. skin barrier function of the exposed skin at the time of exposure. The workplace environment, representing a non-clinical environment, can be highly variable and difficult to control, thereby presenting unique measurement challenges not typically encountered in clinical settings. Methods An expert working group convened a workshop as part of the 5th International Conference on Occupational and Environmental Exposure of Skin to Chemicals (OEESC) to develop basic guidelines and best practices (based on existing clinical guidelines, published data, and own experiences) for the in vivo measurement of transepidermal water loss (TEWL) and skin hydration in non-clinical settings with specific reference to the workplace as a worst-case scenario. Results Key elements of these guidelines are: (i) to minimize or recognize, to the extent feasible, the influences of relevant endogenous-, exogenous-, environmental- and measurement/instrumentation-related factors; (ii) to measure TEWL with a closed-chamber type instrument; (iii) report results as a difference or percent change (rather than absolute values); and (iv) accurately report any notable deviations from this guidelines. Conclusion It is anticipated that these guidelines will promote consistent data reporting, which will facilitate inter-comparison of study results. PMID:23331328

  2. Minimal Evidence for a Secondary Loss of Strength After an Acute Muscle Injury: A Systematic Review and Meta-Analysis

    OpenAIRE

    Warren, Gordon L.; Call, Jarrod A.; Farthing, Amy K.; Baadom-Piaro, Bemene

    2016-01-01

    Background An immediate loss of strength follows virtually all types of muscle injury but there is debate whether the initial strength loss is maximal or if a secondary loss of strength occurs during the first 3?days post-injury. Objective The objective of this analysis was to conduct a systematic review and meta-analysis of the research literature to determine if a secondary loss of strength occurs after an injurious initiating event. Methods Literature searches were performed using eight el...

  3. Optimal placement of biomass fuelled gas turbines for reduced losses

    International Nuclear Information System (INIS)

    Jurado, Francisco; Cano, Antonio

    2006-01-01

    This paper presents a method for the optimal location and sizing of biomass fuelled gas turbine power plants. Both profitability in using biomass and power loss are considered in the cost function. The first step is to assess the plant size that maximizes the profitability of the project. The second step is to determine the optimal location of the gas turbines in the electric system to minimize the power loss of the system

  4. The environmental cost of subsistence: Optimizing diets to minimize footprints

    International Nuclear Information System (INIS)

    Gephart, Jessica A.; Davis, Kyle F.; Emery, Kyle A.; Leach, Allison M.; Galloway, James N.; Pace, Michael L.

    2016-01-01

    The question of how to minimize monetary cost while meeting basic nutrient requirements (a subsistence diet) was posed by George Stigler in 1945. The problem, known as Stigler's diet problem, was famously solved using the simplex algorithm. Today, we are not only concerned with the monetary cost of food, but also the environmental cost. Efforts to quantify environmental impacts led to the development of footprint (FP) indicators. The environmental footprints of food production span multiple dimensions, including greenhouse gas emissions (carbon footprint), nitrogen release (nitrogen footprint), water use (blue and green water footprint) and land use (land footprint), and a diet minimizing one of these impacts could result in higher impacts in another dimension. In this study based on nutritional and population data for the United States, we identify diets that minimize each of these four footprints subject to nutrient constraints. We then calculate tradeoffs by taking the composition of each footprint's minimum diet and calculating the other three footprints. We find that diets for the minimized footprints tend to be similar for the four footprints, suggesting there are generally synergies, rather than tradeoffs, among low footprint diets. Plant-based food and seafood (fish and other aquatic foods) commonly appear in minimized diets and tend to most efficiently supply macronutrients and micronutrients, respectively. Livestock products rarely appear in minimized diets, suggesting these foods tend to be less efficient from an environmental perspective, even when nutrient content is considered. The results' emphasis on seafood is complicated by the environmental impacts of aquaculture versus capture fisheries, increasing in aquaculture, and shifting compositions of aquaculture feeds. While this analysis does not make specific diet recommendations, our approach demonstrates potential environmental synergies of plant- and seafood-based diets. As a result, this study

  5. The environmental cost of subsistence: Optimizing diets to minimize footprints

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, Jessica A.; Davis, Kyle F. [University of Virginia, Department of Environmental Sciences, 291 McCormick Road, Charlottesville, VA 22904 (United States); Emery, Kyle A. [University of Virginia, Department of Environmental Sciences, 291 McCormick Road, Charlottesville, VA 22904 (United States); University of California, Santa Barbara. Marine Science Institute, Santa Barbara, CA 93106 (United States); Leach, Allison M. [University of New Hampshire, 107 Nesmith Hall, 131 Main Street, Durham, NH, 03824 (United States); Galloway, James N.; Pace, Michael L. [University of Virginia, Department of Environmental Sciences, 291 McCormick Road, Charlottesville, VA 22904 (United States)

    2016-05-15

    The question of how to minimize monetary cost while meeting basic nutrient requirements (a subsistence diet) was posed by George Stigler in 1945. The problem, known as Stigler's diet problem, was famously solved using the simplex algorithm. Today, we are not only concerned with the monetary cost of food, but also the environmental cost. Efforts to quantify environmental impacts led to the development of footprint (FP) indicators. The environmental footprints of food production span multiple dimensions, including greenhouse gas emissions (carbon footprint), nitrogen release (nitrogen footprint), water use (blue and green water footprint) and land use (land footprint), and a diet minimizing one of these impacts could result in higher impacts in another dimension. In this study based on nutritional and population data for the United States, we identify diets that minimize each of these four footprints subject to nutrient constraints. We then calculate tradeoffs by taking the composition of each footprint's minimum diet and calculating the other three footprints. We find that diets for the minimized footprints tend to be similar for the four footprints, suggesting there are generally synergies, rather than tradeoffs, among low footprint diets. Plant-based food and seafood (fish and other aquatic foods) commonly appear in minimized diets and tend to most efficiently supply macronutrients and micronutrients, respectively. Livestock products rarely appear in minimized diets, suggesting these foods tend to be less efficient from an environmental perspective, even when nutrient content is considered. The results' emphasis on seafood is complicated by the environmental impacts of aquaculture versus capture fisheries, increasing in aquaculture, and shifting compositions of aquaculture feeds. While this analysis does not make specific diet recommendations, our approach demonstrates potential environmental synergies of plant- and seafood-based diets. As a result

  6. [Effects of different soil and water loss control measures on the dung beetle assemblages in Huangfuchuan watershed, Inner Mongolia of North China].

    Science.gov (United States)

    Liu, Wei; Wang, Run-Run; Liu, Xin-Min

    2013-03-01

    By using pitfall trap method, and taking the croplands and natural grasslands under different soil and water loss control measures as sampling plots, an investigation was conducted on the dung beetle assemblages in the Huangfuchuan watershed of Inner Mongolia from September 2007 to September 2008, aimed to understand the effects of different soil and water loss control measures on the dung beetle assemblages in the watershed. A total of 6169 dung beetles were captured, belonging to 15 species, 5 genus, and 2 families. The dominant species were Aphodius rectus and Onthophagus gibbulus, accounting for 66. 54% and 13. 26% of the total captured beetles, respectively. A lack of the species suitable for living in woodland habitats was the basic feature of the dung beetle assemblages. As compared with the control, all test soil and water loss control measures did not cause an obvious increase of species richness, biomass, and abundance of the dung beetle assemblages. The biomass and species richness of the assemblages as well as the abundance of the functional groups II and III had a significant negative correlation with the average tree (grass) height. Under the effects of long-term agricultural cultivation and the lack of large herbivores, the species richness and abundance of the functional group I (larger paracoprids and telocoprids) were lower than those of the functional groups II (relatively smaller paracoprids) and II (endocoprids), the main components of the dung beetle assemblages in the watershed. The faeces of the residents and livestock in the study region provided abundant foods for the dung beetle assemblages, inducing the relatively high abundance and spices richness of the assemblages occurred in the croplands nearby the villages. Our results suggested that natural grasslands were the suitable habitats for the dung beetles in Huangfuchuan watershed. At regional scale, to popularize the successful experiences of comprehensive soil and water loss control

  7. Water leakage management by district metered areas at water distribution networks.

    Science.gov (United States)

    Özdemir, Özgür

    2018-03-01

    The aim of this study is to design a district metered area (DMA) at water distribution network (WDN) for determination and reduction of water losses in the city of Malatya, Turkey. In the application area, a pilot DMA zone was built by analyzing the existing WDN, topographic map, length of pipes, number of customers, service connections, and valves. In the DMA, International Water Association standard water balance was calculated considering inflow rates and billing records. The ratio of water losses in DMAs was determined as 82%. Moreover, 3124 water meters of 2805 customers were examined while 50% of water meters were detected as faulty. This study revealed that DMA application is useful for the determination of water loss rate in WDNs and identify a cost-effective leakage reduction program.

  8. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Science.gov (United States)

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  9. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Directory of Open Access Journals (Sweden)

    Xue-Dong Lou

    Full Text Available A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm, SUVA(254 nm, Abs(400 nm, and SUVA(400 nm were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  10. Rain-induced spring wheat harvest losses

    Science.gov (United States)

    Bauer, A.; Black, A. L. (Principal Investigator)

    1983-01-01

    When rain or a combination of rain and high humidity delay wheat harvest, losses can occur in grain yield and/or grain quality. Yield losses can result from shattering, from reduction in test weight, and in the case of windrowed grain, from rooting of sprouting grain at the soil: windrow contact. Losses in grain quality can result from reduction in test weight and from sprouting. Sprouting causes a degradation of grain proteins and starches, hence flour quality is reduced, and the grain price deteriorates to the value of feed grain. Although losses in grain yield and quality are rain-induced, these losses do not necessarily occur because a standing or windrowed crop is wetted by rain. Spike water concentration in hard red spring wheat must be increased to about 45-49% before sprouting is initiated in grain that has overcome dormancy. The time required to overcome this dormancy after the cultivar has dried to 12 to 14% water concentration differs with hard red spring cultivars. The effect of rain on threshing-ready standing and windrowed hard red spring wheat grain yeild and quality was evaluated. A goal was to develop the capability to forecast the extent of expected loss of grain yield and quality from specific climatic events that delay threshing.

  11. Loss-resistant unambiguous phase measurement

    Science.gov (United States)

    Dinani, Hossein T.; Berry, Dominic W.

    2014-08-01

    Entangled multiphoton states have the potential to provide improved measurement accuracy, but are sensitive to photon loss. It is possible to calculate ideal loss-resistant states that maximize the Fisher information, but it is unclear how these could be experimentally generated. Here we propose a set of states that can be obtained by processing the output from parametric down-conversion. Although these states are not optimal, they provide performance very close to that of optimal states for a range of parameters. Moreover, we show how to use sequences of such states in order to obtain an unambiguous phase measurement that beats the standard quantum limit. We consider the optimization of parameters in order to minimize the final phase variance, and find that the optimum parameters are different from those that maximize the Fisher information.

  12. Management of Children with Mild, Moderate, and Moderately Severe Sensorineural Hearing Loss.

    Science.gov (United States)

    Tharpe, Anne Marie; Gustafson, Samantha

    2015-12-01

    Any degree of hearing loss can have a negative impact on child development. The amount of impact is largely determined by the type, quality, and timeliness of intervention. Early identification and management of hearing loss is essential for minimizing the impact of hearing loss and ensuring that children can reach their cognitive, linguistic, educational, and social potential. Advances in hearing technology and broadening of candidacy for same, have resulted in improved outcomes for many children with hearing loss. Through ongoing hearing monitoring throughout childhood, children with congenital, late-onset, or progressive losses can receive timely management from interprofessional, collaborative teams. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A phylogenetic analysis of basal metabolism, total evaporative water loss, and life-history among foxes from desert and mesic regions

    NARCIS (Netherlands)

    Williams, JB; Munoz-Garcia, A; Ostrowski, S; Tieleman, BI

    We measured basal metabolic rate (BMR) and total evaporative water loss (TEWL) of species of foxes that exist on the Arabian Peninsula, Blanford's fox (Vulpes cana) and two subspecies of Red fox (Vulpes vulpes). Combining these data with that on other canids from the literature, we searched for

  14. Losses of Sacramento River Chinook Salmon and Delta Smelt to Entrainment in Water Diversions in the Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-06-01

    Full Text Available Pumping at the water export facilities in the southern Sacramento-San Joaquin Delta kills fish at and near the associated fish-salvage facilities. Correlative analyses of salvage counts with population indices have failed to provide quantitative estimates of the magnitude of this mortality. I estimated the proportional losses of Sacramento River Chinook salmon (Oncorhynchus tshawytscha and delta smelt (Hypomesus transpacificus to place these losses in a population context. The estimate for salmon was based on recoveries of tagged smolts released in the upper Sacramento River basin, and recovered at the fish-salvage facilities in the south Delta and in a trawling program in the western Delta. The proportion of fish salvaged increased with export flow, with a mean value around 10% at the highest export flows recorded. Mortality was around 10% if pre-salvage losses were about 80%, but this value is nearly unconstrained. Losses of adult delta smelt in winter and young delta smelt in spring were estimated from salvage data (adults corrected for estimated pre-salvage survival, or from trawl data in the southern Delta (young. These losses were divided by population size and accumulated over the respective seasons. Losses of adult delta smelt were 1–50% (median 15% although the highest value may have been biased upward. Daily losses of larvae and juveniles were 0–8%, and seasonal losses accumulated were 0–25% (median 13%. The effect of these losses on population abundance was obscured by subsequent 50-fold variability in survival from summer to fall.

  15. Hydrological Components of a Young Loblolly Pine Plantation on a Sandy Soil with Estimates of Water Use and Loss

    Science.gov (United States)

    Deborah A. Abrahamson; Phillip M. Dougherty; Stanley J. Zarnoch

    1998-01-01

    Fertilizer and irrigation treatments were applied in a 7- to l0-year-old loblolly pine (Pinus taeda L.) plantation on a sandy soil near Laurinburg, North Carolina. Rainfall, throughfall, stemflow, and soil water content were measured throughout the study period. Monthly interception losses ranged from 4 to 15% of rainfall. Stemflow ranged from 0.2...

  16. Losses on Dutch residential mortgage insurances

    NARCIS (Netherlands)

    Francke, M.K.; Schilder, F.P.W.

    2014-01-01

    Purpose - This paper aims to study the data on losses on mortgage insurance in the Dutch housing market to find the key drivers of the probability of loss. In 2013, 25 per cent of all Dutch homeowners were "under water": selling the property will not cover the outstanding mortgage debt. The

  17. A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity

    NARCIS (Netherlands)

    Fanourakis, D.; Heuvelink, E.; Pinto De Carvalho, S.M.

    2013-01-01

    To better understand the poor regulation of water loss after leaf development at high relative air humidity (RH), the relative importance of the physiological and anatomical components was analyzed focusing on cultivars with a contrasting sensitivity to elevated RH. The stomatal responsiveness to

  18. Identification of some additional loss components in high-power low-voltage permanent magnet generators

    Energy Technology Data Exchange (ETDEWEB)

    Hamalainen, H.

    2013-11-01

    Permanent magnet generators (PMG) represent the cutting edge technology in modern wind mills. The efficiency remains high (over 90%) at partial loads. To improve the machine efficiency even further, every aspect of machine losses has to be analyzed. Additional losses are often given as a certain percentage without providing any detailed information about the actual calculation process; meanwhile, there are many design-dependent losses that have an effect on the total amount of additional losses and that have to be taken into consideration. Additional losses are most often eddy current losses in different parts of the machine. These losses are usually difficult to calculate in the design process. In this doctoral thesis, some additional losses are identified and modeled. Further, suggestions on how to minimize the losses are given. Iron losses can differ significantly between the measured no-load values and the loss values under load. In addition, with embedded magnet rotors, the quadrature-axis armature reaction adds losses to the stator iron by manipulating the harmonic content of the flux. It was, therefore, re-evaluated that in salient pole machines, to minimize the losses and the loss difference between the no-load and load operation, the flux density has to be kept below 1.5 T in the stator yoke, which is the traditional guideline for machine designers. Eddy current losses may occur in the end-winding area and in the support structure of the machine, that is, in the finger plate and the clamping ring. With construction steel, these losses account for 0.08% of the input power of the machine. These losses can be reduced almost to zero by using nonmagnetic stainless steel. In addition, the machine housing may be subjected to eddy current losses if the flux density exceeds 1.5 T in the stator yoke. Winding losses can rise rapidly when high frequencies and 10-15 mm high conductors are used. In general, minimizing the winding losses is simple. For example, it can be

  19. Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss

    International Nuclear Information System (INIS)

    Maskin, Laura; Frankel, Nicolas; Gudesblat, Gustavo; Demergasso, Maria J.; Pietrasanta, Lia I.; Iusem, Norberto D.

    2007-01-01

    The Asr gene family is present in Spermatophyta. Its members are generally activated under water stress. We present evidence that tomato ASR1, one of the proteins of the family, accumulates in seed during late stages of embryogenesis, a physiological process characterized by water loss. In vitro, electrophoretic assays show a homo-dimeric structure for ASR1 and highlight strong non-covalent interactions between monomers prone to self-assemble. Direct visualization of single molecules by atomic force microscopy (AFM) confirms that ASR1 forms homodimers and that uncovers both monomers and dimers bind double stranded DNA

  20. Water conservation in agriculture -a step in combating the water crisis

    International Nuclear Information System (INIS)

    Prinz, D.; Malik, A.H.

    2005-01-01

    In Pakistan, the agricultural sector is the largest water user with 95%, leaving only marginal quantities for households and industry. On one hand, agriculture is a very important sector in Pakistan's economic development, contributing about 23 % to the national GDP -but industry contributes slightly more using only about 2 % of the available water resources. As Pakistan faces a growing problem of water shortage, significant achievements in water conservation have to be materialized, predominantly on the agricultural sector. There is scope for a higher degree of efficiency in water use, as water losses, namely in irrigation, are still rather high. There is another good reason for water conservation in agriculture: Over-irrigation results in rising water tables and increased soil salinity, which has reduced Pakistan's agricultural output during the last 2 decades by nearly 25%. Water conservation measures can be divided into (1) measures which are only applicable under rain-fed agricultural conditions, (2) measures which are relevant to save water in rain-fed agriculture as well as in irrigated agriculture and (3) measures, which are relevant in irrigated agriculture only. The first group centres around efficient rainwater management, which can be either 'in-situ moisture conservation' or 'rainwater harvesting'. The second group includes (1) improving crop selection, (2) improving crop husbandry, (3) combining cropping with animal husbandry, (4) reduction of transpiration losses, (5) reduction of evaporation losses and (6) reduction of percolation losses. Efficient irrigation can be accomplished by (1) reduction of conveying and distribution losses, (2) reduction of application losses, (3) use of efficient irrigation methods, (4) use of efficient application techniques, (5) application of supplemental and deficit irrigation and (6) improving water availability. The awareness of the problem, the knowledge of adapted and affordable techniques, the creation of suitable

  1. Torque Ripple Minimization and Performance Investigation of an In-Wheel Permanent Magnet Motor

    Directory of Open Access Journals (Sweden)

    A. Mansouri

    2016-06-01

    Full Text Available Recently, electric vehicle motoring has become a topic of interest, due to the several problems caused by thermal engines such as pollution and high oil prices. Thus, electric motors are increasingly applied in vehicle’ applications and relevant research about these motors and their applications has been performed. Of particular interest are the improvements regarding torque production capability, the minimization of torque ripple and iron losses. The present work deals with the optimum design and the performance investigation of an outer rotor permanent magnet motor for in-wheel electric vehicle application. At first, and in order to find the optimum motor design, a new based particle-swarm multi-objective optimization procedure is applied. Three objective functions are used: efficiency maximization, weight and ripple torque minimization. Secondly, the effects of the permanent magnets segmentation, the stator slots opening, and the separation of adjacent magnets by air are outlined. The aim of the paper is the design of a topology with smooth output torque, low ripple torque, low iron losses and mechanical robustness.

  2. Nutritional recommendations for water polo.

    Science.gov (United States)

    Cox, Gregory R; Mujika, Iñigo; van den Hoogenband, Cees Rein

    2014-08-01

    Water polo is an aquatic team sport that requires endurance, strength, power, swimming speed, agility, tactical awareness, and specific technical skills, including ball control. Unlike other team sports, few researchers have examined the nutritional habits of water polo athletes or potential dietary strategies that improve performance in water polo match play. Water polo players are typically well muscled, taller athletes; female players display higher levels of adiposity compared with their male counterparts. Positional differences exist: Center players are heavier and have higher body fat levels compared with perimeter players. Knowledge of the physical differences that exist among water polo players offers the advantage of player identification as well as individualizing nutrition strategies to optimize desired physique goals. Individual dietary counseling is warranted to ensure dietary adequacy, and in cases of physique manipulation. Performance in games and during quality workouts is likely to improve by adopting strategies that promote high carbohydrate availability, although research specific to water polo is lacking. A planned approach incorporating strategies to facilitate muscle glycogen refueling and muscle protein synthesis should be implemented following intensified training sessions and matches, particularly when short recovery times are scheduled. Although sweat losses of water polo players are less than what is reported for land-based athletes, specific knowledge allows for appropriate planning of carbohydrate intake strategies for match play and training. Postgame strategies to manage alcohol intake should be developed with input from the senior player group to minimize the negative consequences on recovery and player welfare.

  3. Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Drury, C F

    2015-03-01

    Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. An estimation of core damage frequency of a pressurized water reactor during midloop operation due to loss of residual heat removal

    International Nuclear Information System (INIS)

    Chao, C.C.; Chen, C.T.; Lee, M.

    1995-01-01

    The core damage frequency caused by loss of residual heat removal (RHR) events was assessed during midloop operation of a Westinghouse-designed three-loop pressurized water reactor. The assessment considers two types of outages (refueling and drained maintenance) and uses failure data collected specifically for shutdown condition. Event trees were developed for five categories of loss of RHR events. Human actions to mitigate the loss of RHR events were identified and human error probabilities were quantified using the human cognitive reliability (HCR) and the technique for human error rate prediction (THERP) models. The results showed that the core damage frequency caused by loss of RHR events during midloop operation was 3.4 x 10 -5 per year. The results also showed that the core damage frequency can be reduced significantly by removing a pressurizer safety valve before entering midloop operation. The establishment of reflux cooling, i.e., decay heat removal through the steam generator secondary side, also plays an important role in mitigating the loss of RHR events during midloop operation

  5. Minimally invasive brow suspension for facial paralysis.

    Science.gov (United States)

    Costantino, Peter D; Hiltzik, David H; Moche, Jason; Preminger, Aviva

    2003-01-01

    To report a new technique for unilateral brow suspension for facial paralysis that is minimally invasive, limits supraciliary scar formation, does not require specialized endoscopic equipment or expertise, and has proved to be equal to direct brow suspension in durability and symmetry. Retrospective survey of a case series of 23 patients between January 1997 and December 2000. Metropolitan tertiary care center. Patients with head and neck tumors and brow ptosis caused by facial nerve paralysis. The results of the procedure were determined using the following 3-tier rating system: outstanding (excellent elevation and symmetry); acceptable (good elevation and fair symmetry); and unacceptable (loss of elevation). The results were considered outstanding in 12 patients, acceptable in 9 patients, and unacceptable in only 1 patient. One patient developed a hematoma, and 1 patient required a secondary adjustment. The technique has proved to be superior to standard brow suspension procedures with regard to scar formation and equal with respect to facial symmetry and suspension. These results have caused us to abandon direct brow suspension and to use this minimally invasive method in all cases of brow ptosis due to facial paralysis.

  6. A majorization-minimization approach to design of power distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jason K [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

    2010-01-01

    We consider optimization approaches to design cost-effective electrical networks for power distribution. This involves a trade-off between minimizing the power loss due to resistive heating of the lines and minimizing the construction cost (modeled by a linear cost in the number of lines plus a linear cost on the conductance of each line). We begin with a convex optimization method based on the paper 'Minimizing Effective Resistance of a Graph' [Ghosh, Boyd & Saberi]. However, this does not address the Alternating Current (AC) realm and the combinatorial aspect of adding/removing lines of the network. Hence, we consider a non-convex continuation method that imposes a concave cost of the conductance of each line thereby favoring sparser solutions. By varying a parameter of this penalty we extrapolate from the convex problem (with non-sparse solutions) to the combinatorial problem (with sparse solutions). This is used as a heuristic to find good solutions (local minima) of the non-convex problem. To perform the necessary non-convex optimization steps, we use the majorization-minimization algorithm that performs a sequence of convex optimizations obtained by iteratively linearizing the concave part of the objective. A number of examples are presented which suggest that the overall method is a good heuristic for network design. We also consider how to obtain sparse networks that are still robust against failures of lines and/or generators.

  7. Pain Now or Later: An Outgrowth Account of Pain-Minimization

    Science.gov (United States)

    Chen, Shuai; Zhao, Dan; Rao, Li-Lin; Liang, Zhu-Yuan; Li, Shu

    2015-01-01

    The preference for immediate negative events contradicts the minimizing loss principle given that the value of a delayed negative event is discounted by the amount of time it is delayed. However, this preference is understandable if we assume that the value of a future outcome is not restricted to the discounted utility of the outcome per se but is complemented by an anticipated negative utility assigned to an unoffered dimension, which we termed the “outgrowth.” We conducted three studies to establish the existence of the outgrowth and empirically investigated the mechanism underlying the preference for immediate negative outcomes. Study 1 used a content analysis method to examine whether the outgrowth was generated in accompaniment with the delayed negative events. The results revealed that the investigated outgrowth was composed of two elements. The first component is the anticipated negative emotions elicited by the delayed negative event, and the other is the anticipated rumination during the waiting process, in which one cannot stop thinking about the negative event. Study 2 used a follow-up investigation to examine whether people actually experienced the negative emotions they anticipated in a real situation of waiting for a delayed negative event. The results showed that the participants actually experienced a number of negative emotions when waiting for a negative event. Study 3 examined whether the existence of the outgrowth could make the minimizing loss principle work. The results showed that the difference in pain anticipation between the immediate event and the delayed event could significantly predict the timing preference of the negative event. Our findings suggest that people’s preference for experiencing negative events sooner serves to minimize the overall negative utility, which is divided into two parts: the discounted utility of the outcome itself and an anticipated negative utility assigned to the outgrowth. PMID:25747461

  8. Interfacing systems LOCAs [Loss of Coolant Accidents] at boiling water reactors

    International Nuclear Information System (INIS)

    Chu, Tsong-Lun; Fitzpatrick, R.; Stoyanov, S.

    1987-01-01

    The work presented in this paper was performed by Brookhaven National Laboratory (BNL) in support of Nuclear Regulatory Commission's (NRC) effort towards the resolution of Generic Issue 105 ''Interfacing System Loss of Coolant Accidents (LOCAs) at Boiling Water Reactors (BWRs).'' For BWRs, intersystem LOCA have typically either not been considered in probabilistic risk analyses, or if considered, were judged to contribute little to the risk estimates because of their perceived low frequency of occurrence. However, recent operating experience indicates that the pressure isolation valves (PIVs) in BWRs may not adequately protect against overpressurization of low pressure systems. The objective of this paper is to present the results of a study which analyzed interfacing system LOCA at several BWRs. The BWRs were selected to best represent a spectrum of BWRs in service using industry operating event experience and plant-specific information/configurations. The results presented here include some possible changes in test requirements/practices as well as an evaluation of their reduction potential in terms of core damage frequency

  9. Repeatability and individual correlates of basal metabolic rate and total evaporative water loss in birds : A case study in European stonechats

    NARCIS (Netherlands)

    Versteegh, Maaike A.; Heim, Barbara; Dingemanse, Niels J.; Tieleman, B. Irene

    Basal metabolic rate (BMR) and total evaporative water loss (TEWL) are thought to have evolved in conjunction with life history traits and are often assumed to be characteristic features of an animal. Physiological traits can show large intraindividual variation at short and long timescales, yet

  10. Accidental beam loss in superconducting accelerators: Simulations, consequences of accidents and protective measures

    International Nuclear Information System (INIS)

    Drozhdin, A.; Mokhov, N.; Parker, B.

    1994-02-01

    The consequences of an accidental beam loss in superconducting accelerators and colliders of the next generation range from the mundane to rather dramatic, i.e., from superconducting magnet quench, to overheating of critical components, to a total destruction of some units via explosion. Specific measures are required to minimize and eliminate such events as much as practical. In this paper we study such accidents taking the Superconducting Supercollider complex as an example. Particle tracking, beam loss and energy deposition calculations were done using the realistic machine simulation with the Monte-Carlo codes MARS 12 and STRUCT. Protective measures for minimizing the damaging effects of prefire and misfire of injection and extraction kicker magnets are proposed here

  11. Loss pathways of N-nitrosodimethylamine (NDMA) in turfgrass soils.

    Science.gov (United States)

    Arienzo, M; Gan, J; Ernst, F; Qin, S; Bondarenko, S; Sedlak, D L

    2006-01-01

    N-nitrosodimethylamine (NDMA) is a potent carcinogen that is often present in municipal wastewater effluents. In a previous field study, it was observed that NDMA did not leach through turfgrass soils following 4 mo of intensive irrigation with NDMA-containing wastewater effluent. To better understand the loss pathways for NDMA in landscape irrigation systems, a mass balance approach was employed using in situ lysimeters treated with 14C-NDMA. When the lysimeters were subjected to irrigation and field conditions after NDMA application, very rapid dissipation of NDMA was observed for both types of soil used in the field plots. After only 4 h, total 14C activity in the lysimeters decreased to 19.1 to 26.1% of the applied amount, and less than 1% of the activity was detected below the 20-cm depth. Analysis of plant materials showed that less than 3% of the applied 14C was incorporated into the plants, suggesting only a minor role for plant uptake in removing NDMA from the vegetated soils. The rapid dissipation and limited downward movement of NDMA in the in situ lysimeters was consistent with the negligible leaching observed in the field study, and suggests volatilization as the only significant loss pathway. This conclusion was further corroborated by rapid NDMA volatilization found from water or a thin layer of soil under laboratory conditions. In a laboratory incubation experiment, prolonged wastewater irrigation did not result in enhanced NDMA degradation in the soil. Therefore, although NDMA may be present at relatively high levels in treated wastewater, gaseous diffusion and volatilization in unsaturated soils may effectively impede significant leaching of NDMA, minimizing the potential for ground water contamination from irrigation with treated wastewater.

  12. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path.

    Science.gov (United States)

    Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia

    2016-12-06

    Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber-bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution.

  13. Heat loss may explain bill size differences between birds occupying different habitats.

    Directory of Open Access Journals (Sweden)

    Russell Greenberg

    Full Text Available Research on variation in bill morphology has focused on the role of diet. Bills have other functions, however, including a role in heat and water balance. The role of the bill in heat loss may be particularly important in birds where water is limiting. Song sparrows localized in coastal dunes and salt marsh edge (Melospiza melodia atlantica are similar in size to, but have bills with a 17% greater surface area than, those that live in mesic habitats (M. m. melodia, a pattern shared with other coastal sparrows. We tested the hypotheses that sparrows can use their bills to dissipate "dry" heat, and that heat loss from the bill is higher in M. m. atlantica than M. m. melodia, which would indicate a role of heat loss and water conservation in selection for bill size.Bill, tarsus, and body surface temperatures were measured using thermal imaging of sparrows exposed to temperatures from 15-37°C and combined with surface area and physical modeling to estimate the contribution of each body part to total heat loss. Song sparrow bills averaged 5-10°C hotter than ambient. The bill of M. m atlantica dissipated up to 33% more heat and 38% greater proportion of total heat than that of M. m. melodia. This could potentially reduce water loss requirements by approximately 7.7%.This >30% higher heat loss in the bill of M. m. atlantica is independent of evaporative water loss and thus could play an important role in the water balance of sparrows occupying the hot and exposed dune/salt marsh environments during the summer. Heat loss capacity and water conservation could play an important role in the selection for bill size differences between bird populations and should be considered along with trophic adaptations when studying variation in bill size.

  14. Skin barrier response to occlusion of healthy and irritated skin: Differences in trans-epidermal water loss, erythema and stratum corneum lipids

    DEFF Research Database (Denmark)

    Jungersted, J.M.; Høgh, Julie Kaae; Hellgren, Lars

    2010-01-01

    been damaged by either sodium lauryl sulfate (SLS) or tape stripping, respectively, was determined and compared with that of to non-occluded pre-damaged skin. Skin barrier function was assessed by measurements of trans-epidermal water loss (TEWL) and erythema. In study A, stratum corneum lipids were...

  15. The effect of cathodic water on performance of a polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Kulikovsky, A.A.

    2004-01-01

    A simple analytical model of water transport in the polymer electrolyte fuel cell is developed. Nonlinear membrane resistance and voltage loss due to incomplete membrane humidification are calculated. Both values depend on parameter r, the ratio of mass transport coefficients of water in the membrane and in the backing layer. Simple equation for cell performance curve, which incorporates the effect of cathodic water is constructed. Depending of the value of r, the cell may operate in one of the two regimes. When r ≥ 1, incomplete membrane humidification simply reduces cell voltage; the limiting current density is determined by oxygen transport in the backing layer (oxygen-limiting regime). If r < 1, limiting current density is determined by membrane drying (water-limiting regime). In that case there exists optimal current density, which provides minimal membrane resistance. It is shown that membrane drying may lead to parasitic 'in-plane' proton current

  16. Characteristic of Soil Nutrients Loss in Beiyunhe Reservoir Under the Simulated Rainfall

    Directory of Open Access Journals (Sweden)

    LIU Cao

    2016-05-01

    Full Text Available Field nutrient loss from soil became the major factor of the water pollution control in countryside in China. Beiyunhe reservoir is located in semiarid zone, where field nutrient loss distributed in summer. To assess the flied nutrient loss in Beiyunhe reservoir, we conducted experiments to study the characteristic of soil nutrients loss by analysis of the content of runoff water, soil nutrients and runoff water sediment under simulated rainfall. The results showed that the runoff happened in the rainstorm. In runoff water, the content of TN was 4.7~11.3 mg·L-1, ammonia nitrogen and nitrate nitrogen accounted for 44.51% of TN; the content of P was 0.66~1.35 mg·L-1, water soluble phosphorus accounted for 54.08% of TP. And the main loss of nutrients was in the surface soil, the loss of TN, NH4+-N, NO3--N, TP and DP were 29.79%, 52.09%, 10.21%, 16.48% and 5.27%, respectively. However, the most of field nutrient loss were in runoff sediment, the content of TN and TP were 0.66~1.27 mg·g-1 and 14.73~20 mg·g-1 in sediment, and TN and TP account for 82.28% and 99.89% of total loss of nutrient. After the rainstorm, the macro-aggregates were reduced 8.8%, and the micro-aggregates increased 9.5%.

  17. Water Pricing as an Economic Justification for Reducing Non-Revenue Water (NRW Projects

    Directory of Open Access Journals (Sweden)

    Massoud Tabesh

    2017-03-01

    Full Text Available Management of water demand and modification of consumption patterns are becoming increasingly essential due to the increasingly limited precipitation and the growing population which have led to both severe restrictions on renewable water resources and increasing demands for water in Iran. The most important consumption management measures involve reducing Non-Revenue Water (NRW and decreasing water losses in the water supply system. Non-revenue water is defined as the difference between the total inflow and the metered consumption in the supply system. The losses may be divided into the two components of apparent and real losses. Achieving reductions in non-revenue water calls for the careful study and evaluation of the operational procedures proposed in each case since reductions will be economical only when accurate and realistic values are considered in water pricing. The present study draws upon the data obtained from non-revenue water projects implemented in District 4 of Tehran Water and Wastewater Company, the measures proposed by the project consultant, and the economic justifications claimed for all the costs associated with the measures to eliminate water losses. The cost of the proposed measures are calculated for two different economic values of water proposed to ensure benefits, and under four different interest rates. Results confirm the profitability of the non-revenue water solutions based on the finished cost of water even at subsidized rates of public funds. However, project profitability will be in question if the economic price of water is assumed to be equivalent to the total trade price of water and if both real and apparent losses are to be reduced.

  18. Water absorption and mechanical properties of water-swellable natural rubber

    Directory of Open Access Journals (Sweden)

    Diew Saijun

    2009-11-01

    Full Text Available Water-swellable rubber (WSR was prepared by blending superabsorbent polymer (SAP of crosslinked poly(acrylamide-co-sodium acrylate with natural rubber in latex condition. The crosslinked poly(acrylamide-co-sodium acrylate was first prepared by inverse suspension polymerization from acrylamide and sodium acrylate monomers with potassiumpersulfate initiator and N,N-methylenebisacrylamide crosslinker. The reaction was carried out at 60oC for 40 mins. Water absorption properties, such as the degree of water absorption, water absorption rate, degree of weight loss, and mechanicalproperties of WSR were then investigated. It was found that the degree of water absorption, water absorption rate, and thedegree of weight loss increased, while tensile strength and elongation at break decreased with increasing quantity of SAP inthe blends. However, the degree of water absorption, degree of weight loss, and elongation at break decreased, but tensilestrength increased with increasing quantity of the N-tert-butyl-2-benzothiazyl sulphenamide (TBBS accelerator used in thecompounds formulation.

  19. Evaluation of Open and Minimally Invasive Adrenalectomy: A Systematic Review and Network Meta-analysis.

    Science.gov (United States)

    Heger, Patrick; Probst, Pascal; Hüttner, Felix J; Gooßen, Käthe; Proctor, Tanja; Müller-Stich, Beat P; Strobel, Oliver; Büchler, Markus W; Diener, Markus K

    2017-11-01

    Adrenalectomy can be performed via open and various minimally invasive approaches. The aim of this systematic review was to summarize the current evidence on surgical techniques of adrenalectomy. Systematic literature searches (MEDLINE, EMBASE, Web of Science, Cochrane Library) were conducted to identify randomized controlled trials (RCTs) and controlled clinical trials (CCTs) comparing at least two surgical procedures for adrenalectomy. Statistical analyses were performed, and meta-analyses were conducted. Furthermore, an indirect comparison of RCTs and a network meta-analysis of CCTs were carried out for each outcome. Twenty-six trials (1710 patients) were included. Postoperative complication rates did not show differences for open and minimally invasive techniques. Operation time was significantly shorter for open adrenalectomy than for the robotic approach (p meta-analysis showed open adrenalectomy to be the fastest technique. Blood loss was significantly reduced in the robotic arm compared with open and laparoscopic adrenalectomy (p = 0.01). Length of hospital stay (LOS) was significantly lower after conventional laparoscopy than open adrenalectomy in CCTs (p meta-analysis revealed the lowest LOS after retroperitoneoscopic adrenalectomy. Minimally invasive adrenalectomy is safe and should be preferred over open adrenalectomy due to shorter LOS, lower blood loss, and equivalent complication rates. The retroperitoneoscopic access features the shortest LOS and operating time. Further high-quality RCTs are warranted, especially to compare the posterior retroperitoneoscopic and the transperitoneal robotic approach.

  20. The feasibilities to use circulation water as feed water of the paper chemicals; Kiertovesien kaeyttoemahdollisuudet kemikaalien syoettoevesinae - MPKT 07

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H.; Ryoesoe, K.; Harju, E.; Viik, H.; Toeyry, M. [Lappeenranta Univ. of Technology (Finland). Dept. of Chemical Technology

    1998-12-31

    A lot of water is needed for dilution and feed of the paper chemicals. Usually only fresh water is used for this purpose. In this project the use of fresh water was investigated at seven paper machines. The amount of fresh water used for the dilution of chemicals was 0,45-2,6 m{sup 3}/t paper. Most of this part of the fresh water is needed for dilution and feed of the retention aid and the starch. Neutral size and fixing agents need a lot of water, as well. Different kinds of dissolved and colloidal substances in dilution water can interfere the function of paper chemicals. It could be clearly seen that anionic substances in feed water of the cationic polyelectrolytes are very detrimental. Also some salts can be detrimental for instance in dilution water of polyelectrolytes or AKD-size. These contaminants can also lead to depositions in supply equipments. For this reason it is very important to remove or at least minimize the amount of anionic polyelectrolytes and for instance Ca{sup 2+} and SO{sub 4}{sup 2-} ions from the feed water of the paper chemicals. This can be done by using membrane filtration. The fresh water can be replaced by membrane filtered circulation water but some loss of efficiency of polyelectrolytes or AKD-size can, however, be seen. As the feed water of the bentonite circulation water can instead be used without any harmful effect. The nanofiltered circulation water seem to be fairly as useful as fresh water for dilution of paper chemicals. (orig.)