WorldWideScience

Sample records for minimization sequence generation

  1. Abelian groups with a minimal generating set | Ruzicka ...

    African Journals Online (AJOL)

    We study the existence of minimal generating sets in Abelian groups. We prove that Abelian groups with minimal generating sets are not closed under quotients, nor under subgroups, nor under infinite products. We give necessary and sufficient conditions for existence of a minimal generating set providing that the Abelian ...

  2. A P-N Sequence Generator Using LFSR with Dual Edge Trigger Technique

    Directory of Open Access Journals (Sweden)

    Naghwal Nitin Kumar

    2016-01-01

    Full Text Available This paper represents the design and implementation of a low power 4-bit LFSR using Dual edge triggered flip flop. A linear feedback shift register (LFSR is assembled by N number of flip flops connected in series and a combinational logic generally xor gate. An LFSR can generate random number sequence which acts as cipher in cryptography. A known text encrypted over long PN sequence, in order to improve security sequence made longer ie 128 bit; require long chain of flip flop leads to more power consumption. In this paper a novel circuit of random sequence generator using dual edge triggered flip flop has been proposed. Data has been generated on every edge of flip flop instead of single edge. A DETFF-LFSR can generate random number require with less number of clock cycle, it minimizes the number of flip flop result in power saving. In this paper we concentrates on the designing of power competent Test Pattern Generator (TPG using four dual edge triggered flip-flops as the basic building block, overall there is reduction of power around 25% by using these techniques.

  3. Minimizing the number of segments in a delivery sequence for intensity-modulated radiation therapy with a multileaf collimator

    International Nuclear Information System (INIS)

    Dai Jianrong; Zhu Yunping

    2001-01-01

    This paper proposes a sequencing algorithm for intensity-modulated radiation therapy with a multileaf collimator in the static mode. The algorithm aims to minimize the number of segments in a delivery sequence. For a machine with a long verification and recording overhead time (e.g., 15 s per segment), minimizing the number of segments is equivalent to minimizing the delivery time. The proposed new algorithm is based on checking numerous candidates for a segment and selecting the candidate that results in a residual intensity matrix with the least complexity. When there is more than one candidate resulting in the same complexity, the candidate with the largest size is selected. The complexity of an intensity matrix is measured in the new algorithm in terms of the number of segments in the delivery sequence obtained by using a published algorithm. The beam delivery efficiency of the proposed algorithm and the influence of different published algorithms used to calculate the complexity of an intensity matrix were tested with clinical intensity-modulated beams. The results show that no matter which published algorithm is used to calculate the complexity of an intensity matrix, the sequence generated by the algorithm proposed here is always more efficient than that generated by the published algorithm itself. The results also show that the algorithm used to calculate the complexity of an intensity matrix affects the efficiency of beam delivery. The delivery sequences are frequently most efficient when the algorithm of Bortfeld et al. is used to calculate the complexity of an intensity matrix. Because no single variation is most efficient for all beams tested, we suggest implementing multiple variations of our algorithm

  4. Next-Generation Sequencing Platforms

    Science.gov (United States)

    Mardis, Elaine R.

    2013-06-01

    Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.

  5. Minimal generating sets of groups, rings, and fields | Halbeisen ...

    African Journals Online (AJOL)

    A subset X of a group (or a ring, or a field) is called generating, if the smallest subgroup (or subring, or subfield) containing X is the group (ring, field) itself. A generating set X is called minimal generating, if X does not properly contain any generating set. The existence and cardinalities of minimal generating sets of various ...

  6. Finding minimal action sequences with a simple evaluation of actions

    Science.gov (United States)

    Shah, Ashvin; Gurney, Kevin N.

    2014-01-01

    Animals are able to discover the minimal number of actions that achieves an outcome (the minimal action sequence). In most accounts of this, actions are associated with a measure of behavior that is higher for actions that lead to the outcome with a shorter action sequence, and learning mechanisms find the actions associated with the highest measure. In this sense, previous accounts focus on more than the simple binary signal of “was the outcome achieved?”; they focus on “how well was the outcome achieved?” However, such mechanisms may not govern all types of behavioral development. In particular, in the process of action discovery (Redgrave and Gurney, 2006), actions are reinforced if they simply lead to a salient outcome because biological reinforcement signals occur too quickly to evaluate the consequences of an action beyond an indication of the outcome's occurrence. Thus, action discovery mechanisms focus on the simple evaluation of “was the outcome achieved?” and not “how well was the outcome achieved?” Notwithstanding this impoverishment of information, can the process of action discovery find the minimal action sequence? We address this question by implementing computational mechanisms, referred to in this paper as no-cost learning rules, in which each action that leads to the outcome is associated with the same measure of behavior. No-cost rules focus on “was the outcome achieved?” and are consistent with action discovery. No-cost rules discover the minimal action sequence in simulated tasks and execute it for a substantial amount of time. Extensive training, however, results in extraneous actions, suggesting that a separate process (which has been proposed in action discovery) must attenuate learning if no-cost rules participate in behavioral development. We describe how no-cost rules develop behavior, what happens when attenuation is disrupted, and relate the new mechanisms to wider computational and biological context. PMID:25506326

  7. LPTAU, Quasi Random Sequence Generator

    International Nuclear Information System (INIS)

    Sobol, Ilya M.

    1993-01-01

    1 - Description of program or function: LPTAU generates quasi random sequences. These are uniformly distributed sets of L=M N points in the N-dimensional unit cube: I N =[0,1]x...x[0,1]. These sequences are used as nodes for multidimensional integration; as searching points in global optimization; as trial points in multi-criteria decision making; as quasi-random points for quasi Monte Carlo algorithms. 2 - Method of solution: Uses LP-TAU sequence generation (see references). 3 - Restrictions on the complexity of the problem: The number of points that can be generated is L 30 . The dimension of the space cannot exceed 51

  8. RANDNA: a random DNA sequence generator.

    Science.gov (United States)

    Piva, Francesco; Principato, Giovanni

    2006-01-01

    Monte Carlo simulations are useful to verify the significance of data. Genomic regularities, such as the nucleotide correlations or the not uniform distribution of the motifs throughout genomic or mature mRNA sequences, exist and their significance can be checked by means of the Monte Carlo test. The test needs good quality random sequences in order to work, moreover they should have the same nucleotide distribution as the sequences in which the regularities have been found. Random DNA sequences are also useful to estimate the background score of an alignment, that is a threshold below which the resulting score is merely due to chance. We have developed RANDNA, a free software which allows to produce random DNA or RNA sequences setting both their length and the percentage of nucleotide composition. Sequences having the same nucleotide distribution of exonic, intronic or intergenic sequences can be generated. Its graphic interface makes it possible to easily set the parameters that characterize the sequences being produced and saved in a text format file. The pseudo-random number generator function of Borland Delphi 6 is used, since it guarantees a good randomness, a long cycle length and a high speed. We have checked the quality of sequences generated by the software, by means of well-known tests, both by themselves and versus genuine random sequences. We show the good quality of the generated sequences. The software, complete with examples and documentation, is freely available to users from: http://www.introni.it/en/software.

  9. Minimization of transmission loss using distributed generation approach

    Directory of Open Access Journals (Sweden)

    Lamin Chaantrea Miky

    2018-01-01

    Full Text Available The goal of this work is to calculate the total loss in the system and minimize this loss by implementation of distributed generation (DG technology. In this paper, load flow analysis method is followed to calculate the loss in the system in conjunction with the line flows. A simple 5 bus system with the main bus of the substation as the slack bus, three Plant generators at the generator bus and three load buses are taken for analysis. For loss minimization two distributed generators at two load buses are connected. One generator is a synchronous type model and the other is asynchronous type model. We searched for the most economical penetration level and the ratings of the distributed generators are decided by the magnitude of penetration power at each load bus. Using software, power system simulation for electrical (PSSE, the system with and without DG technology is modeled and the output from the PSSE is observed.

  10. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Saha, Bidyut Baran; Ng, K. C.

    2012-01-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  11. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung

    2012-10-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  12. Polynomial sequences generated by infinite Hessenberg matrices

    Directory of Open Access Journals (Sweden)

    Verde-Star Luis

    2017-01-01

    Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.

  13. Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.

    Directory of Open Access Journals (Sweden)

    Jonathan Cannon

    2015-11-01

    Full Text Available Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.

  14. Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.

    Science.gov (United States)

    Cannon, Jonathan; Kopell, Nancy; Gardner, Timothy; Markowitz, Jeffrey

    2015-11-01

    Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.

  15. "First generation" automated DNA sequencing technology.

    Science.gov (United States)

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  16. Special Issue: Next Generation DNA Sequencing

    Directory of Open Access Journals (Sweden)

    Paul Richardson

    2010-10-01

    Full Text Available Next Generation Sequencing (NGS refers to technologies that do not rely on traditional dideoxy-nucleotide (Sanger sequencing where labeled DNA fragments are physically resolved by electrophoresis. These new technologies rely on different strategies, but essentially all of them make use of real-time data collection of a base level incorporation event across a massive number of reactions (on the order of millions versus 96 for capillary electrophoresis for instance. The major commercial NGS platforms available to researchers are the 454 Genome Sequencer (Roche, Illumina (formerly Solexa Genome analyzer, the SOLiD system (Applied Biosystems/Life Technologies and the Heliscope (Helicos Corporation. The techniques and different strategies utilized by these platforms are reviewed in a number of the papers in this special issue. These technologies are enabling new applications that take advantage of the massive data produced by this next generation of sequencing instruments. [...

  17. KCUT, code to generate minimal cut sets for fault trees

    International Nuclear Information System (INIS)

    Han, Sang Hoon

    2008-01-01

    1 - Description of program or function: KCUT is a software to generate minimal cut sets for fault trees. 2 - Methods: Expand a fault tree into cut sets and delete non minimal cut sets. 3 - Restrictions on the complexity of the problem: Size and complexity of the fault tree

  18. Targeted next generation sequencing for molecular diagnosis of Usher syndrome.

    Science.gov (United States)

    Aparisi, María J; Aller, Elena; Fuster-García, Carla; García-García, Gema; Rodrigo, Regina; Vázquez-Manrique, Rafael P; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Françoise; Jaijo, Teresa; Millán, José M

    2014-11-18

    Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing. A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations. Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements. Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.

  19. High-Throughput Next-Generation Sequencing of Polioviruses

    Science.gov (United States)

    Montmayeur, Anna M.; Schmidt, Alexander; Zhao, Kun; Magaña, Laura; Iber, Jane; Castro, Christina J.; Chen, Qi; Henderson, Elizabeth; Ramos, Edward; Shaw, Jing; Tatusov, Roman L.; Dybdahl-Sissoko, Naomi; Endegue-Zanga, Marie Claire; Adeniji, Johnson A.; Oberste, M. Steven; Burns, Cara C.

    2016-01-01

    ABSTRACT The poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the viral protein 1 (VP1) capsid region is currently the standard method for PV surveillance. However, the whole-genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole-genome sequencing protocols for poliovirus isolates and FTA cards using next-generation sequencing (NGS), aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random reverse transcription (RT), amplification, and the use of the Nextera XT DNA library preparation kit produced significantly better results than other preparations. The average viral reads per total reads, a measurement of efficiency, was as high as 84.2% ± 15.6%. PV genomes covering >99 to 100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach facilitated the detection of a diverse range of PVs, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to results from previous studies on other viruses, our results showed that filtration and nuclease treatment did not discernibly increase the sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved the sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance. PMID:27927929

  20. An integrative variant analysis suite for whole exome next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Challis Danny

    2012-01-01

    Full Text Available Abstract Background Whole exome capture sequencing allows researchers to cost-effectively sequence the coding regions of the genome. Although the exome capture sequencing methods have become routine and well established, there is currently a lack of tools specialized for variant calling in this type of data. Results Using statistical models trained on validated whole-exome capture sequencing data, the Atlas2 Suite is an integrative variant analysis pipeline optimized for variant discovery on all three of the widely used next generation sequencing platforms (SOLiD, Illumina, and Roche 454. The suite employs logistic regression models in conjunction with user-adjustable cutoffs to accurately separate true SNPs and INDELs from sequencing and mapping errors with high sensitivity (96.7%. Conclusion We have implemented the Atlas2 Suite and applied it to 92 whole exome samples from the 1000 Genomes Project. The Atlas2 Suite is available for download at http://sourceforge.net/projects/atlas2/. In addition to a command line version, the suite has been integrated into the Genboree Workbench, allowing biomedical scientists with minimal informatics expertise to remotely call, view, and further analyze variants through a simple web interface. The existing genomic databases displayed via the Genboree browser also streamline the process from variant discovery to functional genomics analysis, resulting in an off-the-shelf toolkit for the broader community.

  1. Next-Generation Sequencing in the Mycology Lab.

    Science.gov (United States)

    Zoll, Jan; Snelders, Eveline; Verweij, Paul E; Melchers, Willem J G

    New state-of-the-art techniques in sequencing offer valuable tools in both detection of mycobiota and in understanding of the molecular mechanisms of resistance against antifungal compounds and virulence. Introduction of new sequencing platform with enhanced capacity and a reduction in costs for sequence analysis provides a potential powerful tool in mycological diagnosis and research. In this review, we summarize the applications of next-generation sequencing techniques in mycology.

  2. Image encryption using random sequence generated from generalized information domain

    International Nuclear Information System (INIS)

    Zhang Xia-Yan; Wu Jie-Hua; Zhang Guo-Ji; Li Xuan; Ren Ya-Zhou

    2016-01-01

    A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security. (paper)

  3. Interpretation of custom designed Illumina genotype cluster plots for targeted association studies and next-generation sequence validation

    Directory of Open Access Journals (Sweden)

    Tindall Elizabeth A

    2010-02-01

    Full Text Available Abstract Background High-throughput custom designed genotyping arrays are a valuable resource for biologically focused research studies and increasingly for validation of variation predicted by next-generation sequencing (NGS technologies. We investigate the Illumina GoldenGate chemistry using custom designed VeraCode and sentrix array matrix (SAM assays for each of these applications, respectively. We highlight applications for interpretation of Illumina generated genotype cluster plots to maximise data inclusion and reduce genotyping errors. Findings We illustrate the dramatic effect of outliers in genotype calling and data interpretation, as well as suggest simple means to avoid genotyping errors. Furthermore we present this platform as a successful method for two-cluster rare or non-autosomal variant calling. The success of high-throughput technologies to accurately call rare variants will become an essential feature for future association studies. Finally, we highlight additional advantages of the Illumina GoldenGate chemistry in generating unusually segregated cluster plots that identify potential NGS generated sequencing error resulting from minimal coverage. Conclusions We demonstrate the importance of visually inspecting genotype cluster plots generated by the Illumina software and issue warnings regarding commonly accepted quality control parameters. In addition to suggesting applications to minimise data exclusion, we propose that the Illumina cluster plots may be helpful in identifying potential in-put sequence errors, particularly important for studies to validate NGS generated variation.

  4. HLA typing: Conventional techniques v.next-generation sequencing

    African Journals Online (AJOL)

    The existing techniques have contributed significantly to our current knowledge of allelic diversity. At present, sequence-based typing (SBT) methods, in particular next-generation sequencing. (NGS), provide the highest possible resolution. NGS platforms were initially only used for genomic sequencing, but also showed.

  5. Neural mechanisms of sequence generation in songbirds

    Science.gov (United States)

    Langford, Bruce

    Animal models in research are useful for studying more complex behavior. For example, motor sequence generation of actions requiring good muscle coordination such as writing with a pen, playing an instrument, or speaking, may involve the interaction of many areas in the brain, each a complex system in itself; thus it can be difficult to determine causal relationships between neural behavior and the behavior being studied. Birdsong, however, provides an excellent model behavior for motor sequence learning, memory, and generation. The song consists of learned sequences of notes that are spectrographically stereotyped over multiple renditions of the song, similar to syllables in human speech. The main areas of the songbird brain involve in singing are known, however, the mechanisms by which these systems store and produce song are not well understood. We used a custom built, head-mounted, miniature motorized microdrive to chronically record the neural firing patterns of identified neurons in HVC, a pre-motor cortical nucleus which has been shown to be important in song timing. These were done in Bengalese finch which generate a song made up of stereotyped notes but variable note sequences. We observed song related bursting in neurons projecting to Area X, a homologue to basal ganglia, and tonic firing in HVC interneurons. Interneuron had firing rate patterns that were consistent over multiple renditions of the same note sequence. We also designed and built a light-weight, low-powered wireless programmable neural stimulator using Bluetooth Low Energy Protocol. It was able to generate perturbations in the song when current pulses were administered to RA, which projects to the brainstem nucleus responsible for syringeal muscle control.

  6. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame...

  7. Double quantum dot as a minimal thermoelectric generator

    OpenAIRE

    Donsa, S.; Andergassen, S.; Held, K.

    2014-01-01

    Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected the double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.

  8. What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research

    OpenAIRE

    Bräutigam, Andrea; Gowik, Udo

    2010-01-01

    Next generation sequencing (NGS) technologies have opened fascinating opportunities for the analysis of plants with and without a sequenced genome on a genomic scale. During the last few years, NGS methods have become widely available and cost effective. They can be applied to a wide variety of biological questions, from the sequencing of complete eukaryotic genomes and transcriptomes, to the genome-scale analysis of DNA-protein interactions. In this review, we focus on the use of NGS for pla...

  9. Arbitrary digital pulse sequence generator with delay-loop timing

    Science.gov (United States)

    Hošák, Radim; Ježek, Miroslav

    2018-04-01

    We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.

  10. Definable Group Extensions and o-Minimal Group Cohomology via Spectral Sequences

    OpenAIRE

    BARRIGA, ELIANA

    2013-01-01

    We provide the theoretical foundation for the Lyndon-Hochschild-Serre spectral sequence as a tool to study the group cohomology and with this the group extensions in the category of definable groups. We also present various results on definable modules and actions, definable extensions and group cohomology of definable groups. These have applications to the study of non-definably compact groups definable in o-minimal theories (see [1]). Se presenta el fundamento teórico para las sucesiones...

  11. Bioinformatics for Next Generation Sequencing Data

    Directory of Open Access Journals (Sweden)

    Alberto Magi

    2010-09-01

    Full Text Available The emergence of next-generation sequencing (NGS platforms imposes increasing demands on statistical methods and bioinformatic tools for the analysis and the management of the huge amounts of data generated by these technologies. Even at the early stages of their commercial availability, a large number of softwares already exist for analyzing NGS data. These tools can be fit into many general categories including alignment of sequence reads to a reference, base-calling and/or polymorphism detection, de novo assembly from paired or unpaired reads, structural variant detection and genome browsing. This manuscript aims to guide readers in the choice of the available computational tools that can be used to face the several steps of the data analysis workflow.

  12. JVM: Java Visual Mapping tool for next generation sequencing read.

    Science.gov (United States)

    Yang, Ye; Liu, Juan

    2015-01-01

    We developed a program JVM (Java Visual Mapping) for mapping next generation sequencing read to reference sequence. The program is implemented in Java and is designed to deal with millions of short read generated by sequence alignment using the Illumina sequencing technology. It employs seed index strategy and octal encoding operations for sequence alignments. JVM is useful for DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a desktop application, which supports reads capacity from 1 MB to 10 GB.

  13. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  14. Diagnostics of Primary Immunodeficiencies through Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Vera Gallo

    2016-11-01

    Full Text Available Background: Recently, a growing number of novel genetic defects underlying primary immunodeficiencies (PID have been identified, increasing the number of PID up to more than 250 well-defined forms. Next-generation sequencing (NGS technologies and proper filtering strategies greatly contributed to this rapid evolution, providing the possibility to rapidly and simultaneously analyze large numbers of genes or the whole exome. Objective: To evaluate the role of targeted next-generation sequencing and whole exome sequencing in the diagnosis of a case series, characterized by complex or atypical clinical features suggesting a PID, difficult to diagnose using the current diagnostic procedures.Methods: We retrospectively analyzed genetic variants identified through targeted next-generation sequencing or whole exome sequencing in 45 patients with complex PID of unknown etiology. Results: 40 variants were identified using targeted next-generation sequencing, while 5 were identified using whole exome sequencing. Newly identified genetic variants were classified into 4 groups: I variations associated with a well-defined PID; II variations associated with atypical features of a well-defined PID; III functionally relevant variations potentially involved in the immunological features; IV non-diagnostic genotype, in whom the link with phenotype is missing. We reached a conclusive genetic diagnosis in 7/45 patients (~16%. Among them, 4 patients presented with a typical well-defined PID. In the remaining 3 cases, mutations were associated with unexpected clinical features, expanding the phenotypic spectrum of typical PIDs. In addition, we identified 31 variants in 10 patients with complex phenotype, individually not causative per se of the disorder.Conclusion: NGS technologies represent a cost-effective and rapid first-line genetic approaches for the evaluation of complex PIDs. Whole exome sequencing, despite a moderate higher cost compared to targeted, is

  15. Minimize corrosion degradation of steam generator tube materials

    International Nuclear Information System (INIS)

    Lu, Y.

    2006-01-01

    As part of a coordinated program, AECL is developing a set of tools to aid with the prediction and management of steam generator performance. Although stress corrosion cracking (of Alloy 800) has not been detected in any operating steam generator, for life management it is necessary to develop mechanistic models to predict the conditions under which stress corrosion cracking is plausible. Experimental data suggest that all steam generator tube materials are susceptible to corrosion degradation under some specific off-specification conditions. The tolerance to the chemistry upset for each steam generator tube alloy is different. Electrochemical corrosion behaviors of major steam generator tube alloys were studied under the plausible aggressive crevice chemistry conditions. The potential hazardous conditions leading to steam generator tube degradation and the conditions, which can minimize steam generator tube degradation have been determined. Recommended electrochemical corrosion potential/pH zones were defined for all major steam generator tube materials, including Alloys 600, 800, 690 and 400, under CANDU steam generator operating and startup conditions. Stress corrosion cracking tests and accelerated corrosion tests were carried out to verify and revise the recommended electrochemical corrosion potential/pH zones. Based on this information, utilities can prevent steam generator material degradation surprises by appropriate steam generator water chemistry management and increase the reliability of nuclear power generating stations. (author)

  16. Analyses of an air conditioning system with entropy generation minimization and entransy theory

    International Nuclear Information System (INIS)

    Wu Yan-Qiu; Cai Li; Wu Hong-Juan

    2016-01-01

    In this paper, based on the generalized heat transfer law, an air conditioning system is analyzed with the entropy generation minimization and the entransy theory. Taking the coefficient of performance (denoted as COP ) and heat flow rate Q out which is released into the room as the optimization objectives, we discuss the applicabilities of the entropy generation minimization and entransy theory to the optimizations. Five numerical cases are presented. Combining the numerical results and theoretical analyses, we can conclude that the optimization applicabilities of the two theories are conditional. If Q out is the optimization objective, larger entransy increase rate always leads to larger Q out , while smaller entropy generation rate does not. If we take COP as the optimization objective, neither the entropy generation minimization nor the concept of entransy increase is always applicable. Furthermore, we find that the concept of entransy dissipation is not applicable for the discussed cases. (paper)

  17. Programmable pulse sequence generator with multiple output lines

    Science.gov (United States)

    Drabczyk, Hubert

    2006-10-01

    This paper presents a novel concept of pulse sequence generator and its prototype as an electronic circuit testing laboratory tool. The generator has multiple output lines and is capable of using control data defining different pulse sequences to be given to the outputs. It is also possible to use different voltage levels in output signal and switch output lines for reading data from driven system. The pulse sequence generator can be used for runtime environment simulation, as hardware tester or auxiliary tool in new designs. Important design factors were to keep cost of the tool low and allow integration with other projects by using flexible architecture. The prototype was based on universal programmer with adjustable power supply, '51 microcontroller and Altera Cyclone chip. The generator communicates witch PC computer via RS232 port. Dedicated software was developed in the course of this project, to control the tool and data transmission. The prototype confirmed the possibility to create an inexpensive multipurpose laboratory tool for programming, testing and simulation of digital devices.

  18. Digital chaotic sequence generator based on coupled chaotic systems

    International Nuclear Information System (INIS)

    Shu-Bo, Liu; Jing, Sun; Jin-Shuo, Liu; Zheng-Quan, Xu

    2009-01-01

    Chaotic systems perform well as a new rich source of cryptography and pseudo-random coding. Unfortunately their digital dynamical properties would degrade due to the finite computing precision. Proposed in this paper is a modified digital chaotic sequence generator based on chaotic logistic systems with a coupling structure where one chaotic subsystem generates perturbation signals to disturb the control parameter of the other one. The numerical simulations show that the length of chaotic orbits, the output distribution of chaotic system, and the security of chaotic sequences have been greatly improved. Moreover the chaotic sequence period can be extended at least by one order of magnitude longer than that of the uncoupled logistic system and the difficulty in decrypting increases 2 128 *2 128 times indicating that the dynamical degradation of digital chaos is effectively improved. A field programmable gate array (FPGA) implementation of an algorithm is given and the corresponding experiment shows that the output speed of the generated chaotic sequences can reach 571.4 Mbps indicating that the designed generator can be applied to the real-time video image encryption. (general)

  19. Next-Generation Sequencing: From Understanding Biology to Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Benjamin Meder

    2013-03-01

    Full Text Available Within just a few years, the new methods for high-throughput next-generation sequencing have generated completely novel insights into the heritability and pathophysiology of human disease. In this review, we wish to highlight the benefits of the current state-of-the-art sequencing technologies for genetic and epigenetic research. We illustrate how these technologies help to constantly improve our understanding of genetic mechanisms in biological systems and summarize the progress made so far. This can be exemplified by the case of heritable heart muscle diseases, so-called cardiomyopathies. Here, next-generation sequencing is able to identify novel disease genes, and first clinical applications demonstrate the successful translation of this technology into personalized patient care.

  20. Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Shunichi Kosugi

    Full Text Available Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in 'targeted' alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/.

  1. MiSeq: A Next Generation Sequencing Platform for Genomic Analysis.

    Science.gov (United States)

    Ravi, Rupesh Kanchi; Walton, Kendra; Khosroheidari, Mahdieh

    2018-01-01

    MiSeq, Illumina's integrated next generation sequencing instrument, uses reversible-terminator sequencing-by-synthesis technology to provide end-to-end sequencing solutions. The MiSeq instrument is one of the smallest benchtop sequencers that can perform onboard cluster generation, amplification, genomic DNA sequencing, and data analysis, including base calling, alignment and variant calling, in a single run. It performs both single- and paired-end runs with adjustable read lengths from 1 × 36 base pairs to 2 × 300 base pairs. A single run can produce output data of up to 15 Gb in as little as 4 h of runtime and can output up to 25 M single reads and 50 M paired-end reads. Thus, MiSeq provides an ideal platform for rapid turnaround time. MiSeq is also a cost-effective tool for various analyses focused on targeted gene sequencing (amplicon sequencing and target enrichment), metagenomics, and gene expression studies. For these reasons, MiSeq has become one of the most widely used next generation sequencing platforms. Here, we provide a protocol to prepare libraries for sequencing using the MiSeq instrument and basic guidelines for analysis of output data from the MiSeq sequencing run.

  2. Chaotic generation of PN sequences : a VLSI implementation

    NARCIS (Netherlands)

    Dornbusch, A.; Pineda de Gyvez, J.

    1999-01-01

    Generation of repeatable pseudo-random sequences with chaotic analog electronics is not feasible using standard circuit topologies. Component variation caused by imperfect fabrication causes the same divergence of output sequences as does varying initial conditions. By quantizing the output of a

  3. Entropy Generation Minimization in Dimethyl Ether Synthesis: A Case Study

    Science.gov (United States)

    Kingston, Diego; Razzitte, Adrián César

    2018-04-01

    Entropy generation minimization is a method that helps improve the efficiency of real processes and devices. In this article, we study the entropy production (due to chemical reactions, heat exchange and friction) in a conventional reactor that synthesizes dimethyl ether and minimize it by modifying different operating variables of the reactor, such as composition, temperature and pressure, while aiming at a fixed production of dimethyl ether. Our results indicate that it is possible to reduce the entropy production rate by nearly 70 % and that, by changing only the inlet composition, it is possible to cut it by nearly 40 %, though this comes at the expense of greater dissipation due to heat transfer. We also study the alternative of coupling the reactor with another, where dehydrogenation of methylcyclohexane takes place. In that case, entropy generation can be reduced by 54 %, when pressure, temperature and inlet molar flows are varied. These examples show that entropy generation analysis can be a valuable tool in engineering design and applications aiming at process intensification and efficient operation of plant equipment.

  4. The contribution of next generation sequencing to epilepsy genetics

    DEFF Research Database (Denmark)

    Møller, Rikke S.; Dahl, Hans A.; Helbig, Ingo

    2015-01-01

    During the last decade, next generation sequencing technologies such as targeted gene panels, whole exome sequencing and whole genome sequencing have led to an explosion of gene identifications in monogenic epilepsies including both familial epilepsies and severe epilepsies, often referred to as ...

  5. Galaxy LIMS for next-generation sequencing

    NARCIS (Netherlands)

    Scholtalbers, J.; Rossler, J.; Sorn, P.; Graaf, J. de; Boisguerin, V.; Castle, J.; Sahin, U.

    2013-01-01

    SUMMARY: We have developed a laboratory information management system (LIMS) for a next-generation sequencing (NGS) laboratory within the existing Galaxy platform. The system provides lab technicians standard and customizable sample information forms, barcoded submission forms, tracking of input

  6. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  7. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  8. From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes.

    Science.gov (United States)

    Kwok, Hin; Chiang, Alan Kwok Shing

    2016-02-24

    Genomic sequences of Epstein-Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases.

  9. From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes

    Directory of Open Access Journals (Sweden)

    Hin Kwok

    2016-02-01

    Full Text Available Genomic sequences of Epstein–Barr virus (EBV have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases.

  10. A Window Into Clinical Next-Generation Sequencing-Based Oncology Testing Practices.

    Science.gov (United States)

    Nagarajan, Rakesh; Bartley, Angela N; Bridge, Julia A; Jennings, Lawrence J; Kamel-Reid, Suzanne; Kim, Annette; Lazar, Alexander J; Lindeman, Neal I; Moncur, Joel; Rai, Alex J; Routbort, Mark J; Vasalos, Patricia; Merker, Jason D

    2017-12-01

    - Detection of acquired variants in cancer is a paradigm of precision medicine, yet little has been reported about clinical laboratory practices across a broad range of laboratories. - To use College of American Pathologists proficiency testing survey results to report on the results from surveys on next-generation sequencing-based oncology testing practices. - College of American Pathologists proficiency testing survey results from more than 250 laboratories currently performing molecular oncology testing were used to determine laboratory trends in next-generation sequencing-based oncology testing. - These presented data provide key information about the number of laboratories that currently offer or are planning to offer next-generation sequencing-based oncology testing. Furthermore, we present data from 60 laboratories performing next-generation sequencing-based oncology testing regarding specimen requirements and assay characteristics. The findings indicate that most laboratories are performing tumor-only targeted sequencing to detect single-nucleotide variants and small insertions and deletions, using desktop sequencers and predesigned commercial kits. Despite these trends, a diversity of approaches to testing exists. - This information should be useful to further inform a variety of topics, including national discussions involving clinical laboratory quality systems, regulation and oversight of next-generation sequencing-based oncology testing, and precision oncology efforts in a data-driven manner.

  11. Next Generation Sequencing of Ancient DNA: Requirements, Strategies and Perspectives

    Directory of Open Access Journals (Sweden)

    Michael Knapp

    2010-07-01

    Full Text Available The invention of next-generation-sequencing has revolutionized almost all fields of genetics, but few have profited from it as much as the field of ancient DNA research. From its beginnings as an interesting but rather marginal discipline, ancient DNA research is now on its way into the centre of evolutionary biology. In less than a year from its invention next-generation-sequencing had increased the amount of DNA sequence data available from extinct organisms by several orders of magnitude. Ancient DNA  research is now not only adding a temporal aspect to evolutionary studies and allowing for the observation of evolution in real time, it also provides important data to help understand the origins of our own species. Here we review progress that has been made in next-generation-sequencing of ancient DNA over the past five years and evaluate sequencing strategies and future directions.

  12. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    Science.gov (United States)

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  13. Next-Generation Sequencing of Tubal Intraepithelial Carcinomas.

    Science.gov (United States)

    McDaniel, Andrew S; Stall, Jennifer N; Hovelson, Daniel H; Cani, Andi K; Liu, Chia-Jen; Tomlins, Scott A; Cho, Kathleen R

    2015-11-01

    High-grade serous carcinoma (HGSC) is the most prevalent and lethal form of ovarian cancer. HGSCs frequently arise in the distal fallopian tubes rather than the ovary, developing from small precursor lesions called serous tubal intraepithelial carcinomas (TICs, or more specifically, STICs). While STICs have been reported to harbor TP53 mutations, detailed molecular characterizations of these lesions are lacking. We performed targeted next-generation sequencing (NGS) on formalin-fixed, paraffin-embedded tissue from 4 women, 2 with HGSC and 2 with uterine endometrioid carcinoma (UEC) who were diagnosed as having synchronous STICs. We detected concordant mutations in both HGSCs with synchronous STICs, including TP53 mutations as well as assumed germline BRCA1/2 alterations, confirming a clonal association between these lesions. Next-generation sequencing confirmed the presence of a STIC clonally unrelated to 1 case of UEC, and NGS of the other tubal lesion diagnosed as a STIC unexpectedly supported the lesion as a micrometastasis from the associated UEC. We demonstrate that targeted NGS can identify genetic alterations in minute lesions, such as TICs, and confirm TP53 mutations as early driving events for HGSC. Next-generation sequencing also demonstrated unexpected associations between presumed STICs and synchronous carcinomas, providing evidence that some TICs are actually metastases rather than HGSC precursors.

  14. Formal definition of coherency and computation of minimal cut sequences for binary dynamic and repairable systems

    International Nuclear Information System (INIS)

    Chaux, Pierre-Yves

    2013-01-01

    Preventive risk assessment of a complex system rely on a dynamic models which describe the link between the system failure and the scenarios of failure and repair events from its components. The qualitative analyses of a binary dynamic and repairable system is aiming at computing and analyse the scenarios that lead to the system failure. Since such systems describe a large set of those, only the most representative ones, called Minimal Cut Sequences (MCS), are of interest for the safety engineer. The lack of a formal definition for the MCS has generated multiple definitions either specific to a given model (and thus not generic) or informal. This work proposes i) a formal framework and definition for the MCS while staying independent of the reliability model used, ii) the methodology to compute them using property extracted from their formal definition, iii) an extension of the formal framework for multi-states components in order to perform the qualitative analyses of Boolean logic Driven Markov Processes (BDMP) models. Under the hypothesis that the scenarios implicitly described by any reliability model can always be represented by a finite automaton, this work is defining the coherency for dynamic and repairable systems as the way to give a minimal representation of all scenarios that are leading to the system failure. (author)

  15. Standardization and quality management in next-generation sequencing.

    Science.gov (United States)

    Endrullat, Christoph; Glökler, Jörn; Franke, Philipp; Frohme, Marcus

    2016-09-01

    DNA sequencing continues to evolve quickly even after > 30 years. Many new platforms suddenly appeared and former established systems have vanished in almost the same manner. Since establishment of next-generation sequencing devices, this progress gains momentum due to the continually growing demand for higher throughput, lower costs and better quality of data. In consequence of this rapid development, standardized procedures and data formats as well as comprehensive quality management considerations are still scarce. Here, we listed and summarized current standardization efforts and quality management initiatives from companies, organizations and societies in form of published studies and ongoing projects. These comprise on the one hand quality documentation issues like technical notes, accreditation checklists and guidelines for validation of sequencing workflows. On the other hand, general standard proposals and quality metrics are developed and applied to the sequencing workflow steps with the main focus on upstream processes. Finally, certain standard developments for downstream pipeline data handling, processing and storage are discussed in brief. These standardization approaches represent a first basis for continuing work in order to prospectively implement next-generation sequencing in important areas such as clinical diagnostics, where reliable results and fast processing is crucial. Additionally, these efforts will exert a decisive influence on traceability and reproducibility of sequence data.

  16. Zseq: An Approach for Preprocessing Next-Generation Sequencing Data.

    Science.gov (United States)

    Alkhateeb, Abedalrhman; Rueda, Luis

    2017-08-01

    Next-generation sequencing technology generates a huge number of reads (short sequences), which contain a vast amount of genomic data. The sequencing process, however, comes with artifacts. Preprocessing of sequences is mandatory for further downstream analysis. We present Zseq, a linear method that identifies the most informative genomic sequences and reduces the number of biased sequences, sequence duplications, and ambiguous nucleotides. Zseq finds the complexity of the sequences by counting the number of unique k-mers in each sequence as its corresponding score and also takes into the account other factors such as ambiguous nucleotides or high GC-content percentage in k-mers. Based on a z-score threshold, Zseq sweeps through the sequences again and filters those with a z-score less than the user-defined threshold. Zseq algorithm is able to provide a better mapping rate; it reduces the number of ambiguous bases significantly in comparison with other methods. Evaluation of the filtered reads has been conducted by aligning the reads and assembling the transcripts using the reference genome as well as de novo assembly. The assembled transcripts show a better discriminative ability to separate cancer and normal samples in comparison with another state-of-the-art method. Moreover, de novo assembled transcripts from the reads filtered by Zseq have longer genomic sequences than other tested methods. Estimating the threshold of the cutoff point is introduced using labeling rules with optimistic results.

  17. Optimum distributed generation placement with voltage sag effect minimization

    International Nuclear Information System (INIS)

    Biswas, Soma; Goswami, Swapan Kumar; Chatterjee, Amitava

    2012-01-01

    Highlights: ► A new optimal distributed generation placement algorithm is proposed. ► Optimal number, sizes and locations of the DGs are determined. ► Technical factors like loss, voltage sag problem are minimized. ► The percentage savings are optimized. - Abstract: The present paper proposes a new formulation for the optimum distributed generator (DG) placement problem which considers a hybrid combination of technical factors, like minimization of the line loss, reduction in the voltage sag problem, etc., and economical factors, like installation and maintenance cost of the DGs. The new formulation proposed is inspired by the idea that the optimum placement of the DGs can help in reducing and mitigating voltage dips in low voltage distribution networks. The problem is configured as a multi-objective, constrained optimization problem, where the optimal number of DGs, along with their sizes and bus locations, are simultaneously obtained. This problem has been solved using genetic algorithm, a traditionally popular stochastic optimization algorithm. A few benchmark systems radial and networked (like 34-bus radial distribution system, 30 bus loop distribution system and IEEE 14 bus system) are considered as the case study where the effectiveness of the proposed algorithm is aptly demonstrated.

  18. Sequencing of BAC pools by different next generation sequencing platforms and strategies

    Directory of Open Access Journals (Sweden)

    Scholz Uwe

    2011-10-01

    Full Text Available Abstract Background Next generation sequencing of BACs is a viable option for deciphering the sequence of even large and highly repetitive genomes. In order to optimize this strategy, we examined the influence of read length on the quality of Roche/454 sequence assemblies, to what extent Illumina/Solexa mate pairs (MPs improve the assemblies by scaffolding and whether barcoding of BACs is dispensable. Results Sequencing four BACs with both FLX and Titanium technologies revealed similar sequencing accuracy, but showed that the longer Titanium reads produce considerably less misassemblies and gaps. The 454 assemblies of 96 barcoded BACs were improved by scaffolding 79% of the total contig length with MPs from a non-barcoded library. Assembly of the unmasked 454 sequences without separation by barcodes revealed chimeric contig formation to be a major problem, encompassing 47% of the total contig length. Masking the sequences reduced this fraction to 24%. Conclusion Optimal BAC pool sequencing should be based on the longest available reads, with barcoding essential for a comprehensive assessment of both repetitive and non-repetitive sequence information. When interest is restricted to non-repetitive regions and repeats are masked prior to assembly, barcoding is non-essential. In any case, the assemblies can be improved considerably by scaffolding with non-barcoded BAC pool MPs.

  19. NGSCheckMate: software for validating sample identity in next-generation sequencing studies within and across data types.

    Science.gov (United States)

    Lee, Sejoon; Lee, Soohyun; Ouellette, Scott; Park, Woong-Yang; Lee, Eunjung A; Park, Peter J

    2017-06-20

    In many next-generation sequencing (NGS) studies, multiple samples or data types are profiled for each individual. An important quality control (QC) step in these studies is to ensure that datasets from the same subject are properly paired. Given the heterogeneity of data types, file types and sequencing depths in a multi-dimensional study, a robust program that provides a standardized metric for genotype comparisons would be useful. Here, we describe NGSCheckMate, a user-friendly software package for verifying sample identities from FASTQ, BAM or VCF files. This tool uses a model-based method to compare allele read fractions at known single-nucleotide polymorphisms, considering depth-dependent behavior of similarity metrics for identical and unrelated samples. Our evaluation shows that NGSCheckMate is effective for a variety of data types, including exome sequencing, whole-genome sequencing, RNA-seq, ChIP-seq, targeted sequencing and single-cell whole-genome sequencing, with a minimal requirement for sequencing depth (>0.5X). An alignment-free module can be run directly on FASTQ files for a quick initial check. We recommend using this software as a QC step in NGS studies. https://github.com/parklab/NGSCheckMate. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes

    Science.gov (United States)

    Atalar, Ergin; McVeigh, Elliot R.

    2007-01-01

    With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900

  1. Biomolecule Sequencer: Next-Generation DNA Sequencing Technology for In-Flight Environmental Monitoring, Research, and Beyond

    Science.gov (United States)

    Smith, David J.; Burton, Aaron; Castro-Wallace, Sarah; John, Kristen; Stahl, Sarah E.; Dworkin, Jason Peter; Lupisella, Mark L.

    2016-01-01

    On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human

  2. Next-generation sequencing offers new insights into DNA degradation

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Orlando, Ludovic Antoine Alexandre; Willerslev, Eske

    2012-01-01

    The processes underlying DNA degradation are central to various disciplines, including cancer research, forensics and archaeology. The sequencing of ancient DNA molecules on next-generation sequencing platforms provides direct measurements of cytosine deamination, depurination and fragmentation...... rates that previously were obtained only from extrapolations of results from in vitro kinetic experiments performed over short timescales. For example, recent next-generation sequencing of ancient DNA reveals purine bases as one of the main targets of postmortem hydrolytic damage, through base...... elimination and strand breakage. It also shows substantially increased rates of DNA base-loss at guanosine. In this review, we argue that the latter results from an electron resonance structure unique to guanosine rather than adenosine having an extra resonance structure over guanosine as previously suggested....

  3. Droplet Digital™ PCR Next-Generation Sequencing Library QC Assay.

    Science.gov (United States)

    Heredia, Nicholas J

    2018-01-01

    Digital PCR is a valuable tool to quantify next-generation sequencing (NGS) libraries precisely and accurately. Accurately quantifying NGS libraries enable accurate loading of the libraries on to the sequencer and thus improve sequencing performance by reducing under and overloading error. Accurate quantification also benefits users by enabling uniform loading of indexed/barcoded libraries which in turn greatly improves sequencing uniformity of the indexed/barcoded samples. The advantages gained by employing the Droplet Digital PCR (ddPCR™) library QC assay includes the precise and accurate quantification in addition to size quality assessment, enabling users to QC their sequencing libraries with confidence.

  4. Generation of artificial FASTQ files to evaluate the performance of next-generation sequencing pipelines.

    Directory of Open Access Journals (Sweden)

    Matthew Frampton

    Full Text Available Pipelines for the analysis of Next-Generation Sequencing (NGS data are generally composed of a set of different publicly available software, configured together in order to map short reads of a genome and call variants. The fidelity of pipelines is variable. We have developed ArtificialFastqGenerator, which takes a reference genome sequence as input and outputs artificial paired-end FASTQ files containing Phred quality scores. Since these artificial FASTQs are derived from the reference genome, it provides a gold-standard for read-alignment and variant-calling, thereby enabling the performance of any NGS pipeline to be evaluated. The user can customise DNA template/read length, the modelling of coverage based on GC content, whether to use real Phred base quality scores taken from existing FASTQ files, and whether to simulate sequencing errors. Detailed coverage and error summary statistics are outputted. Here we describe ArtificialFastqGenerator and illustrate its implementation in evaluating a typical bespoke NGS analysis pipeline under different experimental conditions. ArtificialFastqGenerator was released in January 2012. Source code, example files and binaries are freely available under the terms of the GNU General Public License v3.0. from https://sourceforge.net/projects/artfastqgen/.

  5. SMITH: a LIMS for handling next-generation sequencing workflows

    OpenAIRE

    Venco, Francesco; Vaskin, Yuriy; Ceol, Arnaud; Muller, Heiko

    2014-01-01

    Background Life-science laboratories make increasing use of Next Generation Sequencing (NGS) for studying bio-macromolecules and their interactions. Array-based methods for measuring gene expression or protein-DNA interactions are being replaced by RNA-Seq and ChIP-Seq. Sequencing is generally performed by specialized facilities that have to keep track of sequencing requests, trace samples, ensure quality and make data available according to predefined privileges. An integrated tool helps to ...

  6. Comparison of next generation sequencing technologies for transcriptome characterization

    Directory of Open Access Journals (Sweden)

    Soltis Douglas E

    2009-08-01

    Full Text Available Abstract Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19. We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica and the magnoliid avocado (Persea americana using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB, 119,518 (88.7% mapped exactly to known exons, while 1,117 (0.8% mapped to introns, 11,524 (8.6% spanned annotated intron/exon boundaries, and 3,066 (2.3% extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance

  7. Generation of novel motor sequences: the neural correlates of musical improvisation.

    Science.gov (United States)

    Berkowitz, Aaron L; Ansari, Daniel

    2008-06-01

    While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.

  8. Applying Next Generation Sequencing to Skeletal Development and Disease

    OpenAIRE

    Bowen, Margot Elizabeth

    2013-01-01

    Next Generation Sequencing (NGS) technologies have dramatically increased the throughput and lowered the cost of DNA sequencing. In this thesis, I apply these technologies to unresolved questions in skeletal development and disease. Firstly, I use targeted re-sequencing of genomic DNA to identify the genetic cause of the cartilage tumor syndrome, metachondromatosis (MC). I show that the majority of MC patients carry heterozygous loss-of-function mutations in the PTPN11 gene, which encodes a p...

  9. Application of next generation sequencing in clinical microbiology and infection prevention

    NARCIS (Netherlands)

    Deurenberg, Ruud H.; Bathoorn, Erik; Chlebowicz, Monika A.; Couto, Natacha; Ferdous, Mithila; Garcia-Cobos, Silvia; Kooistra-Smid, Anna M. D.; Raangs, Erwin C.; Rosema, Sigrid; Veloo, Alida C. M.; Zhou, Kai; Friedrich, Alexander W.; Rossen, John W. A.

    2017-01-01

    Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data,

  10. Transmission cost minimization strategies for wind-electric generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R. [Northern States Power Company, Minneapolis, MN (United States)

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  11. Comparison of two Next Generation sequencing platforms for full genome sequencing of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Höper, Dirk

    2013-01-01

    to the consensus sequence. Additionally, we got an average sequence depth for the genome of 4000 for the Iontorrent PGM and 400 for the FLX platform making the mapping suitable for single nucleotide variant (SNV) detection. The analysis revealed a single non-silent SNV A10665G leading to the amino acid change D......Next Generation Sequencing (NGS) is becoming more adopted into viral research and will be the preferred technology in the years to come. We have recently sequenced several strains of Classical Swine Fever Virus (CSFV) by NGS on both Genome Sequencer FLX (GS FLX) and Iontorrent PGM platforms...

  12. Tool Sequence Trends in Minimally Invasive Surgery: Statistical Analysis and Implications for Predictive Control of Multifunction Instruments

    Directory of Open Access Journals (Sweden)

    Carl A. Nelson

    2012-01-01

    Full Text Available This paper presents an analysis of 67 minimally invasive surgical procedures covering 11 different procedure types to determine patterns of tool use. A new graph-theoretic approach was taken to organize and analyze the data. Through grouping surgeries by type, trends of common tool changes were identified. Using the concept of signal/noise ratio, these trends were found to be statistically strong. The tool-use trends were used to generate tool placement patterns for modular (multi-tool, cartridge-type surgical tool systems, and the same 67 surgeries were numerically simulated to determine the optimality of these tool arrangements. The results indicate that aggregated tool-use data (by procedure type can be employed to predict tool-use sequences with good accuracy, and also indicate the potential for artificial intelligence as a means of preoperative and/or intraoperative planning. Furthermore, this suggests that the use of multifunction surgical tools can be optimized to streamline surgical workflow.

  13. How Next-Generation Sequencing Has Aided Our Understanding of the Sequence Composition and Origin of B Chromosomes

    Directory of Open Access Journals (Sweden)

    Alevtina Ruban

    2017-10-01

    Full Text Available Accessory, supernumerary, or—most simply—B chromosomes, are found in many eukaryotic karyotypes. These small chromosomes do not follow the usual pattern of segregation, but rather are transmitted in a higher than expected frequency. As increasingly being demonstrated by next-generation sequencing (NGS, their structure comprises fragments of standard (A chromosomes, although in some plant species, their sequence also includes contributions from organellar genomes. Transcriptomic analyses of various animal and plant species have revealed that, contrary to what used to be the common belief, some of the B chromosome DNA is protein-encoding. This review summarizes the progress in understanding B chromosome biology enabled by the application of next-generation sequencing technology and state-of-the-art bioinformatics. In particular, a contrast is drawn between a direct sequencing approach and a strategy based on a comparative genomics as alternative routes that can be taken towards the identification of B chromosome sequences.

  14. Efficient error correction for next-generation sequencing of viral amplicons.

    Science.gov (United States)

    Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury

    2012-06-25

    Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.

  15. Automatic generation of randomized trial sequences for priming experiments.

    Science.gov (United States)

    Ihrke, Matthias; Behrendt, Jörg

    2011-01-01

    In most psychological experiments, a randomized presentation of successive displays is crucial for the validity of the results. For some paradigms, this is not a trivial issue because trials are interdependent, e.g., priming paradigms. We present a software that automatically generates optimized trial sequences for (negative-) priming experiments. Our implementation is based on an optimization heuristic known as genetic algorithms that allows for an intuitive interpretation due to its similarity to natural evolution. The program features a graphical user interface that allows the user to generate trial sequences and to interactively improve them. The software is based on freely available software and is released under the GNU General Public License.

  16. Automatic Generation of Minimal Cut Sets

    Directory of Open Access Journals (Sweden)

    Sentot Kromodimoeljo

    2015-06-01

    Full Text Available A cut set is a collection of component failure modes that could lead to a system failure. Cut Set Analysis (CSA is applied to critical systems to identify and rank system vulnerabilities at design time. Model checking tools have been used to automate the generation of minimal cut sets but are generally based on checking reachability of system failure states. This paper describes a new approach to CSA using a Linear Temporal Logic (LTL model checker called BT Analyser that supports the generation of multiple counterexamples. The approach enables a broader class of system failures to be analysed, by generalising from failure state formulae to failure behaviours expressed in LTL. The traditional approach to CSA using model checking requires the model or system failure to be modified, usually by hand, to eliminate already-discovered cut sets, and the model checker to be rerun, at each step. By contrast, the new approach works incrementally and fully automatically, thereby removing the tedious and error-prone manual process and resulting in significantly reduced computation time. This in turn enables larger models to be checked. Two different strategies for using BT Analyser for CSA are presented. There is generally no single best strategy for model checking: their relative efficiency depends on the model and property being analysed. Comparative results are given for the A320 hydraulics case study in the Behavior Tree modelling language.

  17. Second generation sequencing of the mesothelioma tumor genome.

    Directory of Open Access Journals (Sweden)

    Raphael Bueno

    2010-05-01

    Full Text Available The current paradigm for elucidating the molecular etiology of cancers relies on the interrogation of small numbers of genes, which limits the scope of investigation. Emerging second-generation massively parallel DNA sequencing technologies have enabled more precise definition of the cancer genome on a global scale. We examined the genome of a human primary malignant pleural mesothelioma (MPM tumor and matched normal tissue by using a combination of sequencing-by-synthesis and pyrosequencing methodologies to a 9.6X depth of coverage. Read density analysis uncovered significant aneuploidy and numerous rearrangements. Method-dependent informatics rules, which combined the results of different sequencing platforms, were developed to identify and validate candidate mutations of multiple types. Many more tumor-specific rearrangements than point mutations were uncovered at this depth of sequencing, resulting in novel, large-scale, inter- and intra-chromosomal deletions, inversions, and translocations. Nearly all candidate point mutations appeared to be previously unknown SNPs. Thirty tumor-specific fusions/translocations were independently validated with PCR and Sanger sequencing. Of these, 15 represented disrupted gene-encoding regions, including kinases, transcription factors, and growth factors. One large deletion in DPP10 resulted in altered transcription and expression of DPP10 transcripts in a set of 53 additional MPM tumors correlated with survival. Additionally, three point mutations were observed in the coding regions of NKX6-2, a transcription regulator, and NFRKB, a DNA-binding protein involved in modulating NFKB1. Several regions containing genes such as PCBD2 and DHFR, which are involved in growth factor signaling and nucleotide synthesis, respectively, were selectively amplified in the tumor. Second-generation sequencing uncovered all types of mutations in this MPM tumor, with DNA rearrangements representing the dominant type.

  18. Machine-Checked Sequencer for Critical Embedded Code Generator

    Science.gov (United States)

    Izerrouken, Nassima; Pantel, Marc; Thirioux, Xavier

    This paper presents the development of a correct-by-construction block sequencer for GeneAuto a qualifiable (according to DO178B/ED12B recommendation) automatic code generator. It transforms Simulink models to MISRA C code for safety critical systems. Our approach which combines classical development process and formal specification and verification using proof-assistants, led to preliminary fruitful exchanges with certification authorities. We present parts of the classical user and tools requirements and derived formal specifications, implementation and verification for the correctness and termination of the block sequencer. This sequencer has been successfully applied to real-size industrial use cases from various transportation domain partners and led to requirement errors detection and a correct-by-construction implementation.

  19. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma

    Science.gov (United States)

    Lahuerta, Juan J.; Pepin, François; González, Marcos; Barrio, Santiago; Ayala, Rosa; Puig, Noemí; Montalban, María A.; Paiva, Bruno; Weng, Li; Jiménez, Cristina; Sopena, María; Moorhead, Martin; Cedena, Teresa; Rapado, Immaculada; Mateos, María Victoria; Rosiñol, Laura; Oriol, Albert; Blanchard, María J.; Martínez, Rafael; Bladé, Joan; San Miguel, Jesús; Faham, Malek; García-Sanz, Ramón

    2014-01-01

    We assessed the prognostic value of minimal residual disease (MRD) detection in multiple myeloma (MM) patients using a sequencing-based platform in bone marrow samples from 133 MM patients in at least very good partial response (VGPR) after front-line therapy. Deep sequencing was carried out in patients in whom a high-frequency myeloma clone was identified and MRD was assessed using the IGH-VDJH, IGH-DJH, and IGK assays. The results were contrasted with those of multiparametric flow cytometry (MFC) and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR). The applicability of deep sequencing was 91%. Concordance between sequencing and MFC and ASO-PCR was 83% and 85%, respectively. Patients who were MRD– by sequencing had a significantly longer time to tumor progression (TTP) (median 80 vs 31 months; P < .0001) and overall survival (median not reached vs 81 months; P = .02), compared with patients who were MRD+. When stratifying patients by different levels of MRD, the respective TTP medians were: MRD ≥10−3 27 months, MRD 10−3 to 10−5 48 months, and MRD <10−5 80 months (P = .003 to .0001). Ninety-two percent of VGPR patients were MRD+. In complete response patients, the TTP remained significantly longer for MRD– compared with MRD+ patients (131 vs 35 months; P = .0009). PMID:24646471

  20. DNA Qualification Workflow for Next Generation Sequencing of Histopathological Samples

    Science.gov (United States)

    Simbolo, Michele; Gottardi, Marisa; Corbo, Vincenzo; Fassan, Matteo; Mafficini, Andrea; Malpeli, Giorgio; Lawlor, Rita T.; Scarpa, Aldo

    2013-01-01

    Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for

  1. DNA qualification workflow for next generation sequencing of histopathological samples.

    Directory of Open Access Journals (Sweden)

    Michele Simbolo

    Full Text Available Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF tissues, 6 formalin-fixed paraffin-embedded (FFPE tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard

  2. A non-unity torque sharing function for torque ripple minimization of switched reluctance generators

    DEFF Research Database (Denmark)

    Park, Kiwoo; Liu, Xiao; Chen, Zhe

    2013-01-01

    This paper presents a new torque ripple minimization technique for a Switched Reluctance Generator (SRG). Although the SRG has many advantageous characteristics as a generator, it has not been widely employed in the industry. One of the most notorious disadvantages of the SRG is its high torque...

  3. A genome-wide analysis of lentivector integration sites using targeted sequence capture and next generation sequencing technology.

    Science.gov (United States)

    Ustek, Duran; Sirma, Sema; Gumus, Ergun; Arikan, Muzaffer; Cakiris, Aris; Abaci, Neslihan; Mathew, Jaicy; Emrence, Zeliha; Azakli, Hulya; Cosan, Fulya; Cakar, Atilla; Parlak, Mahmut; Kursun, Olcay

    2012-10-01

    One application of next-generation sequencing (NGS) is the targeted resequencing of interested genes which has not been used in viral integration site analysis of gene therapy applications. Here, we combined targeted sequence capture array and next generation sequencing to address the whole genome profiling of viral integration sites. Human 293T and K562 cells were transduced with a HIV-1 derived vector. A custom made DNA probe sets targeted pLVTHM vector used to capture lentiviral vector/human genome junctions. The captured DNA was sequenced using GS FLX platform. Seven thousand four hundred and eighty four human genome sequences flanking the long terminal repeats (LTR) of pLVTHM fragment sequences matched with an identity of at least 98% and minimum 50 bp criteria in both cells. In total, 203 unique integration sites were identified. The integrations in both cell lines were totally distant from the CpG islands and from the transcription start sites and preferentially located in introns. A comparison between the two cell lines showed that the lentiviral-transduced DNA does not have the same preferred regions in the two different cell lines. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Transcriptome sequencing of the Microarray Quality Control (MAQC RNA reference samples using next generation sequencing

    Directory of Open Access Journals (Sweden)

    Thierry-Mieg Danielle

    2009-06-01

    Full Text Available Abstract Background Transcriptome sequencing using next-generation sequencing platforms will soon be competing with DNA microarray technologies for global gene expression analysis. As a preliminary evaluation of these promising technologies, we performed deep sequencing of cDNA synthesized from the Microarray Quality Control (MAQC reference RNA samples using Roche's 454 Genome Sequencer FLX. Results We generated more that 3.6 million sequence reads of average length 250 bp for the MAQC A and B samples and introduced a data analysis pipeline for translating cDNA read counts into gene expression levels. Using BLAST, 90% of the reads mapped to the human genome and 64% of the reads mapped to the RefSeq database of well annotated genes with e-values ≤ 10-20. We measured gene expression levels in the A and B samples by counting the numbers of reads that mapped to individual RefSeq genes in multiple sequencing runs to evaluate the MAQC quality metrics for reproducibility, sensitivity, specificity, and accuracy and compared the results with DNA microarrays and Quantitative RT-PCR (QRTPCR from the MAQC studies. In addition, 88% of the reads were successfully aligned directly to the human genome using the AceView alignment programs with an average 90% sequence similarity to identify 137,899 unique exon junctions, including 22,193 new exon junctions not yet contained in the RefSeq database. Conclusion Using the MAQC metrics for evaluating the performance of gene expression platforms, the ExpressSeq results for gene expression levels showed excellent reproducibility, sensitivity, and specificity that improved systematically with increasing shotgun sequencing depth, and quantitative accuracy that was comparable to DNA microarrays and QRTPCR. In addition, a careful mapping of the reads to the genome using the AceView alignment programs shed new light on the complexity of the human transcriptome including the discovery of thousands of new splice variants.

  5. Application of Next-generation Sequencing in Clinical Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Morteza Seifi

    2017-05-01

    Full Text Available ABSTRACT Next-generation sequencing (NGS is the catch all terms that used to explain several different modern sequencing technologies which let us to sequence nucleic acids much more rapidly and cheaply than the formerly used Sanger sequencing, and as such have revolutionized the study of molecular biology and genomics with excellent resolution and accuracy. Over the past years, many academic companies and institutions have continued technological advances to expand NGS applications from research to the clinic. In this review, the performance and technical features of current NGS platforms were described. Furthermore, advances in the applying of NGS technologies towards the progress of clinical molecular diagnostics were emphasized. General advantages and disadvantages of each sequencing system are summarized and compared to guide the selection of NGS platforms for specific research aims.

  6. Quantifying population genetic differentiation from next-generation sequencing data

    DEFF Research Database (Denmark)

    Fumagalli, Matteo; Garrett Vieira, Filipe Jorge; Korneliussen, Thorfinn Sand

    2013-01-01

    method for quantifying population genetic differentiation from next-generation sequencing data. In addition, we present a strategy to investigate population structure via Principal Components Analysis. Through extensive simulations, we compare the new method herein proposed to approaches based...... on genotype calling and demonstrate a marked improvement in estimation accuracy for a wide range of conditions. We apply the method to a large-scale genomic data set of domesticated and wild silkworms sequenced at low coverage. We find that we can infer the fine-scale genetic structure of the sampled......Over the last few years, new high-throughput DNA sequencing technologies have dramatically increased speed and reduced sequencing costs. However, the use of these sequencing technologies is often challenged by errors and biases associated with the bioinformatical methods used for analyzing the data...

  7. Optimization of Peripheral Finned-Tube Evaporators Using Entropy Generation Minimization

    OpenAIRE

    Pussoli, Bruno; Barbosa Jr., Jader; da Silva, Luciana; Kaviany, Massoud

    2012-01-01

    The peripheral finned-tube (PFT) is a new geometry for enhanced air-side heat transfer under moisture condensate blockage (evaporators). It consists of individual hexagonal (peripheral) fin arrangements with radial fins whose bases are attached to the tubes and tips are interconnected with the peripheral fins. In this paper, experimentally validated semi-empirical models for the air-side heat transfer and pressure drop are combined with the entropy generation minimization theory to determine ...

  8. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Ravi K Patel

    Full Text Available Next generation sequencing (NGS technologies provide a high-throughput means to generate large amount of sequence data. However, quality control (QC of sequence data generated from these technologies is extremely important for meaningful downstream analysis. Further, highly efficient and fast processing tools are required to handle the large volume of datasets. Here, we have developed an application, NGS QC Toolkit, for quality check and filtering of high-quality data. This toolkit is a standalone and open source application freely available at http://www.nipgr.res.in/ngsqctoolkit.html. All the tools in the application have been implemented in Perl programming language. The toolkit is comprised of user-friendly tools for QC of sequencing data generated using Roche 454 and Illumina platforms, and additional tools to aid QC (sequence format converter and trimming tools and analysis (statistics tools. A variety of options have been provided to facilitate the QC at user-defined parameters. The toolkit is expected to be very useful for the QC of NGS data to facilitate better downstream analysis.

  9. Next-generation sequencing for endocrine cancers: Recent advances and challenges.

    Science.gov (United States)

    Suresh, Padmanaban S; Venkatesh, Thejaswini; Tsutsumi, Rie; Shetty, Abhishek

    2017-05-01

    Contemporary molecular biology research tools have enriched numerous areas of biomedical research that address challenging diseases, including endocrine cancers (pituitary, thyroid, parathyroid, adrenal, testicular, ovarian, and neuroendocrine cancers). These tools have placed several intriguing clues before the scientific community. Endocrine cancers pose a major challenge in health care and research despite considerable attempts by researchers to understand their etiology. Microarray analyses have provided gene signatures from many cells, tissues, and organs that can differentiate healthy states from diseased ones, and even show patterns that correlate with stages of a disease. Microarray data can also elucidate the responses of endocrine tumors to therapeutic treatments. The rapid progress in next-generation sequencing methods has overcome many of the initial challenges of these technologies, and their advantages over microarray techniques have enabled them to emerge as valuable aids for clinical research applications (prognosis, identification of drug targets, etc.). A comprehensive review describing the recent advances in next-generation sequencing methods and their application in the evaluation of endocrine and endocrine-related cancers is lacking. The main purpose of this review is to illustrate the concepts that collectively constitute our current view of the possibilities offered by next-generation sequencing technological platforms, challenges to relevant applications, and perspectives on the future of clinical genetic testing of patients with endocrine tumors. We focus on recent discoveries in the use of next-generation sequencing methods for clinical diagnosis of endocrine tumors in patients and conclude with a discussion on persisting challenges and future objectives.

  10. GenRGenS: Software for Generating Random Genomic Sequences and Structures

    OpenAIRE

    Ponty , Yann; Termier , Michel; Denise , Alain

    2006-01-01

    International audience; GenRGenS is a software tool dedicated to randomly generating genomic sequences and structures. It handles several classes of models useful for sequence analysis, such as Markov chains, hidden Markov models, weighted context-free grammars, regular expressions and PROSITE expressions. GenRGenS is the only program that can handle weighted context-free grammars, thus allowing the user to model and to generate structured objects (such as RNA secondary structures) of any giv...

  11. VOX POPULI: Automatic Generation of Biased Video Sequences

    NARCIS (Netherlands)

    S. Bocconi; F.-M. Nack (Frank)

    2004-01-01

    textabstractWe describe our experimental rhetoric engine Vox Populi that generates biased video-sequences from a repository of video interviews and other related audio-visual web sources. Users are thus able to explore their own opinions on controversial topics covered by the repository. The

  12. VOX POPULI: automatic generation of biased video sequences

    NARCIS (Netherlands)

    S. Bocconi; F.-M. Nack (Frank)

    2004-01-01

    textabstractWe describe our experimental rhetoric engine Vox Populi that generates biased video-sequences from a repository of video interviews and other related audio-visual web sources. Users are thus able to explore their own opinions on controversial topics covered by the repository. The

  13. HLA typing: Conventional techniques v. next-generation sequencing ...

    African Journals Online (AJOL)

    Background. The large number of population-specific polymorphisms present in the HLA complex in the South African (SA) population reduces the probability of finding an adequate HLA-matched donor for individuals in need of an unrelated haematopoietic stem cell transplantation (HSCT). Next-generation sequencing ...

  14. Autonomously generating operations sequences for a Mars Rover using AI-based planning

    Science.gov (United States)

    Sherwood, Rob; Mishkin, Andrew; Estlin, Tara; Chien, Steve; Backes, Paul; Cooper, Brian; Maxwell, Scott; Rabideau, Gregg

    2001-01-01

    This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from highlevel science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules.

  15. Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Salomon, Jesper; Søkilde, Rolf

    2009-01-01

    Recently, next-generation sequencing has been introduced as a promising, new platform for assessing the copy number of transcripts, while the existing microarray technology is considered less reliable for absolute, quantitative expression measurements. Nonetheless, so far, results from the two...... technologies have only been compared based on biological data, leading to the conclusion that, although they are somewhat correlated, expression values differ significantly. Here, we use synthetic RNA samples, resembling human microRNA samples, to find that microarray expression measures actually correlate...... better with sample RNA content than expression measures obtained from sequencing data. In addition, microarrays appear highly sensitive and perform equivalently to next-generation sequencing in terms of reproducibility and relative ratio quantification....

  16. Next-generation sequencing of multiple individuals per barcoded library by deconvolution of sequenced amplicons using endonuclease fragment analysis

    DEFF Research Database (Denmark)

    Andersen, Jeppe D; Pereira, Vania; Pietroni, Carlotta

    2014-01-01

    The simultaneous sequencing of samples from multiple individuals increases the efficiency of next-generation sequencing (NGS) while also reducing costs. Here we describe a novel and simple approach for sequencing DNA from multiple individuals per barcode. Our strategy relies on the endonuclease...... digestion of PCR amplicons prior to library preparation, creating a specific fragment pattern for each individual that can be resolved after sequencing. By using both barcodes and restriction fragment patterns, we demonstrate the ability to sequence the human melanocortin 1 receptor (MC1R) genes from 72...... individuals using only 24 barcoded libraries....

  17. Exploring the potential of second-generation sequencing in diverse biological contexts

    DEFF Research Database (Denmark)

    Fordyce, Sarah Louise

    Second generation sequencing (SGS) has revolutionized the study of DNA, allowing massive parallel sequencing of nucleic acids with unprecedented depths of coverage. The research undertaken in this thesis occurred in parallel with the increased accessibility of SGS platforms for routine genetic...

  18. Entropy Generation Minimization for Reverse Water Gas Shift (RWGS Reactors

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-05-01

    Full Text Available Thermal design and optimization for reverse water gas shift (RWGS reactors is particularly important to fuel synthesis in naval or commercial scenarios. The RWGS reactor with irreversibilities of heat transfer, chemical reaction and viscous flow is studied based on finite time thermodynamics or entropy generation minimization theory in this paper. The total entropy generation rate (EGR in the RWGS reactor with different boundary conditions is minimized subject to specific feed compositions and chemical conversion using optimal control theory, and the optimal configurations obtained are compared with three reference reactors with linear, constant reservoir temperature and constant heat flux operations, which are commonly used in engineering. The results show that a drastic EGR reduction of up to 23% can be achieved by optimizing the reservoir temperature profile, the inlet temperature of feed gas and the reactor length simultaneously, compared to that of the reference reactor with the linear reservoir temperature. These optimization efforts are mainly achieved by reducing the irreversibility of heat transfer. Optimal paths have subsections of relatively constant thermal force, chemical force and local EGR. A conceptual optimal design of sandwich structure for the compact modular reactor is proposed, without elaborate control tools or excessive interstage equipment. The results can provide guidelines for designing industrial RWGS reactors in naval or commercial scenarios.

  19. Study and realisation of a programmable generator of pulse sequences, for nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Lambert, Daniel

    1974-01-01

    After having recalled the operation of pulse-based nuclear magnetic resonance and the use of pulse sequences in NMR-based measurements, and outlined the need for a pulse sequence generator, the author reports the design and realisation of such a device. He describes its general organisation with its base sequence, base clock, sequence start, duration, displays, data transfers, data processing, and signal distribution. He presents the chosen technology (ECL logics), the sequence base set, time bases, multiplexers, comparison sets, the distribution set, the sequence programming, the sampling and output set. He reports tests and the use of the so-designed generator [fr

  20. Random Sequence for Optimal Low-Power Laser Generated Ultrasound

    Science.gov (United States)

    Vangi, D.; Virga, A.; Gulino, M. S.

    2017-08-01

    Low-power laser generated ultrasounds are lately gaining importance in the research world, thanks to the possibility of investigating a mechanical component structural integrity through a non-contact and Non-Destructive Testing (NDT) procedure. The ultrasounds are, however, very low in amplitude, making it necessary to use pre-processing and post-processing operations on the signals to detect them. The cross-correlation technique is used in this work, meaning that a random signal must be used as laser input. For this purpose, a highly random and simple-to-create code called T sequence, capable of enhancing the ultrasound detectability, is introduced (not previously available at the state of the art). Several important parameters which characterize the T sequence can influence the process: the number of pulses Npulses , the pulse duration δ and the distance between pulses dpulses . A Finite Element FE model of a 3 mm steel disk has been initially developed to analytically study the longitudinal ultrasound generation mechanism and the obtainable outputs. Later, experimental tests have shown that the T sequence is highly flexible for ultrasound detection purposes, making it optimal to use high Npulses and δ but low dpulses . In the end, apart from describing all phenomena that arise in the low-power laser generation process, the results of this study are also important for setting up an effective NDT procedure using this technology.

  1. Generation of synthetic sequences of electricity demand: Application in South Australia

    International Nuclear Information System (INIS)

    Magnano, L.; Boland, J.W.

    2007-01-01

    We have developed a model to generate synthetic sequences of half-hourly electricity demand. The generated sequences represent possible realisations of electricity load that could have occurred. Each of the components included in the model has a physical interpretation. These components are yearly and daily seasonality which were modelled using Fourier series, weekly seasonality modelled with dummy variables, and the relationship with current temperature described by polynomial functions of temperature. Finally the stochastic component was modelled with autoregressive moving average (ARMA) processes. These synthetic sequences were developed for two purposes. The first one is to use them as input data in market simulation software. The second one is to build probability distributions of the outputs to calculate probabilistic forecasts. As an application several summers of half-hourly electricity demand were generated and from them the value of demand that is not expected to be exceeded more than once in 10 years was calculated

  2. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Neumann, Pavel; Macas, Jiří

    2010-01-01

    Roč. 11, č. 1 (2010), s. 378-389 ISSN 1471-2105 R&D Projects: GA MŠk(CZ) OC10037; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50510513 Keywords : repetitive DNA * plant genome * next generation sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.028, year: 2010

  3. Identifying Corneal Infections in Formalin-Fixed Specimens Using Next Generation Sequencing.

    Science.gov (United States)

    Li, Zhigang; Breitwieser, Florian P; Lu, Jennifer; Jun, Albert S; Asnaghi, Laura; Salzberg, Steven L; Eberhart, Charles G

    2018-01-01

    We test the ability of next-generation sequencing, combined with computational analysis, to identify a range of organisms causing infectious keratitis. This retrospective study evaluated 16 cases of infectious keratitis and four control corneas in formalin-fixed tissues from the pathology laboratory. Infectious cases also were analyzed in the microbiology laboratory using culture, polymerase chain reaction, and direct staining. Classified sequence reads were analyzed with two different metagenomics classification engines, Kraken and Centrifuge, and visualized using the Pavian software tool. Sequencing generated 20 to 46 million reads per sample. On average, 96% of the reads were classified as human, 0.3% corresponded to known vectors or contaminant sequences, 1.7% represented microbial sequences, and 2.4% could not be classified. The two computational strategies successfully identified the fungal, bacterial, and amoebal pathogens in most patients, including all four bacterial and mycobacterial cases, five of six fungal cases, three of three Acanthamoeba cases, and one of three herpetic keratitis cases. In several cases, additional potential pathogens also were identified. In one case with cytomegalovirus identified by Kraken and Centrifuge, the virus was confirmed by direct testing, while two where Staphylococcus aureus or cytomegalovirus were identified by Centrifuge but not Kraken could not be confirmed. Confirmation was not attempted for an additional three potential pathogens identified by Kraken and 11 identified by Centrifuge. Next generation sequencing combined with computational analysis can identify a wide range of pathogens in formalin-fixed corneal specimens, with potential applications in clinical diagnostics and research.

  4. Next-generation Sequencing-based genomic profiling: Fostering innovation in cancer care?

    Directory of Open Access Journals (Sweden)

    Gustavo S. Fernandes

    Full Text Available OBJECTIVES: With the development of next-generation sequencing (NGS technologies, DNA sequencing has been increasingly utilized in clinical practice. Our goal was to investigate the impact of genomic evaluation on treatment decisions for heavily pretreated patients with metastatic cancer. METHODS: We analyzed metastatic cancer patients from a single institution whose cancers had progressed after all available standard-of-care therapies and whose tumors underwent next-generation sequencing analysis. We determined the percentage of patients who received any therapy directed by the test, and its efficacy. RESULTS: From July 2013 to December 2015, 185 consecutive patients were tested using a commercially available next-generation sequencing-based test, and 157 patients were eligible. Sixty-six patients (42.0% were female, and 91 (58.0% were male. The mean age at diagnosis was 52.2 years, and the mean number of pre-test lines of systemic treatment was 2.7. One hundred and seventy-seven patients (95.6% had at least one identified gene alteration. Twenty-four patients (15.2% underwent systemic treatment directed by the test result. Of these, one patient had a complete response, four (16.7% had partial responses, two (8.3% had stable disease, and 17 (70.8% had disease progression as the best result. The median progression-free survival time with matched therapy was 1.6 months, and the median overall survival was 10 months. CONCLUSION: We identified a high prevalence of gene alterations using an next-generation sequencing test. Although some benefit was associated with the matched therapy, most of the patients had disease progression as the best response, indicating the limited biological potential and unclear clinical relevance of this practice.

  5. A second law analysis and entropy generation minimization of an absorption chiller

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Chakraborty, Anutosh; Chun, Wongee; Ng, K. C.

    2011-01-01

    This paper presents performance analysis of absorption refrigeration system (ARS) using an entropy generation analysis. A numerical model predicts the performance of absorption cycle operating under transient conditions along with the entropy generation computation at assorted heat source temperatures, and it captures also the dynamic changes of lithium bromide solution properties such as concentration, density, vapor pressure and overall heat transfer coefficients. An optimization tool, namely the genetic algorithm (GA), is used as to locate the system minima for all defined domain of heat source and cooling water temperatures. The analysis shows that minimization of entropy generation the in absorption cycle leads to the maximization of the COP. © 2011 Elsevier Ltd. All rights reserved.

  6. A second law analysis and entropy generation minimization of an absorption chiller

    KAUST Repository

    Myat, Aung

    2011-10-01

    This paper presents performance analysis of absorption refrigeration system (ARS) using an entropy generation analysis. A numerical model predicts the performance of absorption cycle operating under transient conditions along with the entropy generation computation at assorted heat source temperatures, and it captures also the dynamic changes of lithium bromide solution properties such as concentration, density, vapor pressure and overall heat transfer coefficients. An optimization tool, namely the genetic algorithm (GA), is used as to locate the system minima for all defined domain of heat source and cooling water temperatures. The analysis shows that minimization of entropy generation the in absorption cycle leads to the maximization of the COP. © 2011 Elsevier Ltd. All rights reserved.

  7. Analysis of using interpulse intervals to generate 128-bit biometric random binary sequences for securing wireless body sensor networks.

    Science.gov (United States)

    Zhang, Guang-He; Poon, Carmen C Y; Zhang, Yuan-Ting

    2012-01-01

    Wireless body sensor network (WBSN), a key building block for m-Health, demands extremely stringent resource constraints and thus lightweight security methods are preferred. To minimize resource consumption, utilizing information already available to a WBSN, particularly common to different sensor nodes of a WBSN, for security purposes becomes an attractive solution. In this paper, we tested the randomness and distinctiveness of the 128-bit biometric binary sequences (BSs) generated from interpulse intervals (IPIs) of 20 healthy subjects as well as 30 patients suffered from myocardial infarction and 34 subjects with other cardiovascular diseases. The encoding time of a biometric BS on a WBSN node is on average 23 ms and memory occupation is 204 bytes for any given IPI sequence. The results from five U.S. National Institute of Standards and Technology statistical tests suggest that random biometric BSs can be generated from both healthy subjects and cardiovascular patients and can potentially be used as authentication identifiers for securing WBSNs. Ultimately, it is preferred that these biometric BSs can be used as encryption keys such that key distribution over the WBSN can be avoided.

  8. Next-Generation Sequencing and Genome Editing in Plant Virology

    Directory of Open Access Journals (Sweden)

    Ahmed Hadidi

    2016-08-01

    Full Text Available Next-generation sequencing (NGS has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus; beet curly top virus and beet severe curly top virus (curtovirus; and bean yellow dwarf virus (mastrevirus. The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus and cucumber vein yellowing virus (ipomovirus, family, Potyviridae by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.Keywords: Next-generation sequencing, NGS, plant virology, plant viruses, viroids, resistance to plant viruses by CRISPR-Cas9

  9. Next-generation phylogeography: a targeted approach for multilocus sequencing of non-model organisms.

    Directory of Open Access Journals (Sweden)

    Jonathan B Puritz

    Full Text Available The field of phylogeography has long since realized the need and utility of incorporating nuclear DNA (nDNA sequences into analyses. However, the use of nDNA sequence data, at the population level, has been hindered by technical laboratory difficulty, sequencing costs, and problematic analytical methods dealing with genotypic sequence data, especially in non-model organisms. Here, we present a method utilizing the 454 GS-FLX Titanium pyrosequencing platform with the capacity to simultaneously sequence two species of sea star (Meridiastra calcar and Parvulastra exigua at five different nDNA loci across 16 different populations of 20 individuals each per species. We compare results from 3 populations with traditional Sanger sequencing based methods, and demonstrate that this next-generation sequencing platform is more time and cost effective and more sensitive to rare variants than Sanger based sequencing. A crucial advantage is that the high coverage of clonally amplified sequences simplifies haplotype determination, even in highly polymorphic species. This targeted next-generation approach can greatly increase the use of nDNA sequence loci in phylogeographic and population genetic studies by mitigating many of the time, cost, and analytical issues associated with highly polymorphic, diploid sequence markers.

  10. SIS: a program to generate draft genome sequence scaffolds for prokaryotes

    Directory of Open Access Journals (Sweden)

    Dias Zanoni

    2012-05-01

    Full Text Available Abstract Background Decreasing costs of DNA sequencing have made prokaryotic draft genome sequences increasingly common. A contig scaffold is an ordering of contigs in the correct orientation. A scaffold can help genome comparisons and guide gap closure efforts. One popular technique for obtaining contig scaffolds is to map contigs onto a reference genome. However, rearrangements that may exist between the query and reference genomes may result in incorrect scaffolds, if these rearrangements are not taken into account. Large-scale inversions are common rearrangement events in prokaryotic genomes. Even in draft genomes it is possible to detect the presence of inversions given sufficient sequencing coverage and a sufficiently close reference genome. Results We present a linear-time algorithm that can generate a set of contig scaffolds for a draft genome sequence represented in contigs given a reference genome. The algorithm is aimed at prokaryotic genomes and relies on the presence of matching sequence patterns between the query and reference genomes that can be interpreted as the result of large-scale inversions; we call these patterns inversion signatures. Our algorithm is capable of correctly generating a scaffold if at least one member of every inversion signature pair is present in contigs and no inversion signatures have been overwritten in evolution. The algorithm is also capable of generating scaffolds in the presence of any kind of inversion, even though in this general case there is no guarantee that all scaffolds in the scaffold set will be correct. We compare the performance of sis, the program that implements the algorithm, to seven other scaffold-generating programs. The results of our tests show that sis has overall better performance. Conclusions sis is a new easy-to-use tool to generate contig scaffolds, available both as stand-alone and as a web server. The good performance of sis in our tests adds evidence that large

  11. Generation of control sequences for a pilot-disassembly system

    Science.gov (United States)

    Seliger, Guenther; Kim, Hyung-Ju; Keil, Thomas

    2002-02-01

    Closing the product and material cycles has emerged as a paradigm for industry in the 21st century. Disassembly plays a key role in a life cycle economy since it enables the recovery of resources. A partly automated disassembly system should adapt to a large variety of products and different degrees of devaluation. Also the amounts of products to be disassembled can vary strongly. To cope with these demands an approach to generate on-line disassembly control sequences will be presented. In order to react on these demands the technological feasibility is considered within a procedure for the generation of disassembly control sequences. Procedures are designed to find available and technologically feasible disassembly processes. The control system is formed by modularised and parameterised control units in the cell level within the entire control architecture. In the first development stage product and process analyses at the sample product washing machine were executed. Furthermore a generalized disassembly process was defined. Afterwards these processes were structured in primary and secondary functions. In the second stage the disassembly control at the technological level was investigated. Factors were the availability of the disassembly tools and the technological feasibility of the disassembly processes within the disassembly system. Technical alternative disassembly processes are determined as a result of availability of the tools and technological feasibility of processes. The fourth phase was the concept for the generation of the disassembly control sequences. The approach will be proved in a prototypical disassembly system.

  12. Next generation sequencing reveals the hidden diversity of zooplankton assemblages.

    Directory of Open Access Journals (Sweden)

    Penelope K Lindeque

    Full Text Available BACKGROUND: Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. METHODOLOGY/PRINCIPLE FINDINGS: Plankton net hauls (200 µm were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. CONCLUSIONS: Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may

  13. Robust Sub-nanomolar Library Preparation for High Throughput Next Generation Sequencing.

    Science.gov (United States)

    Wu, Wells W; Phue, Je-Nie; Lee, Chun-Ting; Lin, Changyi; Xu, Lai; Wang, Rong; Zhang, Yaqin; Shen, Rong-Fong

    2018-05-04

    Current library preparation protocols for Illumina HiSeq and MiSeq DNA sequencers require ≥2 nM initial library for subsequent loading of denatured cDNA onto flow cells. Such amounts are not always attainable from samples having a relatively low DNA or RNA input; or those for which a limited number of PCR amplification cycles is preferred (less PCR bias and/or more even coverage). A well-tested sub-nanomolar library preparation protocol for Illumina sequencers has however not been reported. The aim of this study is to provide a much needed working protocol for sub-nanomolar libraries to achieve outcomes as informative as those obtained with the higher library input (≥ 2 nM) recommended by Illumina's protocols. Extensive studies were conducted to validate a robust sub-nanomolar (initial library of 100 pM) protocol using PhiX DNA (as a control), genomic DNA (Bordetella bronchiseptica and microbial mock community B for 16S rRNA gene sequencing), messenger RNA, microRNA, and other small noncoding RNA samples. The utility of our protocol was further explored for PhiX library concentrations as low as 25 pM, which generated only slightly fewer than 50% of the reads achieved under the standard Illumina protocol starting with > 2 nM. A sub-nanomolar library preparation protocol (100 pM) could generate next generation sequencing (NGS) results as robust as the standard Illumina protocol. Following the sub-nanomolar protocol, libraries with initial concentrations as low as 25 pM could also be sequenced to yield satisfactory and reproducible sequencing results.

  14. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers

    Directory of Open Access Journals (Sweden)

    Quail Michael A

    2012-07-01

    Full Text Available Abstract Background Next generation sequencing (NGS technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent’s PGM, Pacific Biosciences’ RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. Results Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. Conclusions All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.

  15. Reprint of "Application of next generation sequencing in clinical microbiology and infection prevention"

    NARCIS (Netherlands)

    Deurenberg, Ruud H.; Bathoorn, Erik; Chlebowicz, Monika A.; Monge Gomes do Couto, Natacha; Ferdous, Mithila; Garcia-Cobos, Silvia; Kooistra-Smid, Anna M. D.; Raangs, Erwin C.; Rosema, Sigrid; Veloo, Alida C. M.; Zhou, Kai; Friedrich, Alexander W.; Rossen, John W. A.

    2017-01-01

    Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data,

  16. NeSSM: a Next-generation Sequencing Simulator for Metagenomics.

    Directory of Open Access Journals (Sweden)

    Ben Jia

    Full Text Available BACKGROUND: Metagenomics can reveal the vast majority of microbes that have been missed by traditional cultivation-based methods. Due to its extremely wide range of application areas, fast metagenome sequencing simulation systems with high fidelity are in great demand to facilitate the development and comparison of metagenomics analysis tools. RESULTS: We present here a customizable metagenome simulation system: NeSSM (Next-generation Sequencing Simulator for Metagenomics. Combining complete genomes currently available, a community composition table, and sequencing parameters, it can simulate metagenome sequencing better than existing systems. Sequencing error models based on the explicit distribution of errors at each base and sequencing coverage bias are incorporated in the simulation. In order to improve the fidelity of simulation, tools are provided by NeSSM to estimate the sequencing error models, sequencing coverage bias and the community composition directly from existing metagenome sequencing data. Currently, NeSSM supports single-end and pair-end sequencing for both 454 and Illumina platforms. In addition, a GPU (graphics processing units version of NeSSM is also developed to accelerate the simulation. By comparing the simulated sequencing data from NeSSM with experimental metagenome sequencing data, we have demonstrated that NeSSM performs better in many aspects than existing popular metagenome simulators, such as MetaSim, GemSIM and Grinder. The GPU version of NeSSM is more than one-order of magnitude faster than MetaSim. CONCLUSIONS: NeSSM is a fast simulation system for high-throughput metagenome sequencing. It can be helpful to develop tools and evaluate strategies for metagenomics analysis and it's freely available for academic users at http://cbb.sjtu.edu.cn/~ccwei/pub/software/NeSSM.php.

  17. Sequence trajectory generation for garment handling systems

    OpenAIRE

    Liu, Honghai; Lin, Hua

    2008-01-01

    This paper presents a novel generic approach to the planning strategy of garment handling systems. An assumption is proposed to separate the components of such systems into a component for intelligent gripper techniques and a component for handling planning strategies. Researchers can concentrate on one of the two components first, then merge the two problems together. An algorithm is addressed to generate the trajectory position and a clothes handling sequence of clothes partitions, which ar...

  18. Statistical Approaches for Next-Generation Sequencing Data

    OpenAIRE

    Qiao, Dandi

    2012-01-01

    During the last two decades, genotyping technology has advanced rapidly, which enabled the tremendous success of genome-wide association studies (GWAS) in the search of disease susceptibility loci (DSLs). However, only a small fraction of the overall predicted heritability can be explained by the DSLs discovered. One possible explanation for this ”missing heritability” phenomenon is that many causal variants are rare. The recent development of high-throughput next-generation sequencing (NGS) ...

  19. Combining next-generation sequencing and online databases for microsatellite development in non-model organisms.

    Science.gov (United States)

    Rico, Ciro; Normandeau, Eric; Dion-Côté, Anne-Marie; Rico, María Inés; Côté, Guillaume; Bernatchez, Louis

    2013-12-03

    Next-generation sequencing (NGS) is revolutionising marker development and the rapidly increasing amount of transcriptomes published across a wide variety of taxa is providing valuable sequence databases for the identification of genetic markers without the need to generate new sequences. Microsatellites are still the most important source of polymorphic markers in ecology and evolution. Motivated by our long-term interest in the adaptive radiation of a non-model species complex of whitefishes (Coregonus spp.), in this study, we focus on microsatellite characterisation and multiplex optimisation using transcriptome sequences generated by Illumina® and Roche-454, as well as online databases of Expressed Sequence Tags (EST) for the study of whitefish evolution and demographic history. We identified and optimised 40 polymorphic loci in multiplex PCR reactions and validated the robustness of our analyses by testing several population genetics and phylogeographic predictions using 494 fish from five lakes and 2 distinct ecotypes.

  20. Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology.

    Science.gov (United States)

    Tanase, Koji; Nishitani, Chikako; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Ohmiya, Akemi; Onozaki, Takashi

    2012-07-02

    Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. We constructed a normalized cDNA library and a 3'-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.

  1. Transcriptome analysis of carnation (Dianthus caryophyllus L. based on next-generation sequencing technology

    Directory of Open Access Journals (Sweden)

    Tanase Koji

    2012-07-01

    Full Text Available Abstract Background Carnation (Dianthus caryophyllus L., in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. Results We constructed a normalized cDNA library and a 3’-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380 of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. Conclusions We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.

  2. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    Science.gov (United States)

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  3. Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method

    International Nuclear Information System (INIS)

    Li Min; Lai, Alvin C.K.

    2013-01-01

    Highlights: ► A second-law-based analysis is performed for single U-tube ground heat exchangers. ► Two expressions for the optimal length and flow velocity are developed for GHEs. ► Empirical velocities of GHEs are large compared to thermodynamic optimum values. - Abstract: This paper investigates thermodynamic performance of borehole ground heat exchangers with a single U-tube by the entropy generation minimization method which requires information of heat transfer and fluid mechanics, in addition to thermodynamics analysis. This study first derives an expression for dimensionless entropy generation number, a function that consists of five dimensionless variables, including Reynolds number, dimensionless borehole length, scale factor of pressures, and two duty parameters of ground heat exchangers. The derivation combines a heat transfer model and a hydraulics model for borehole ground heat exchangers with the first law and the second law of thermodynamics. Next, the entropy generation number is minimized to produce two analytical expressions for the optimal length and the optimal flow velocity of ground heat exchangers. Then, this paper discusses and analyzes implications and applications of these optimization formulas with two case studies. An important finding from the case studies is that widely used empirical velocities of circulating fluid are too large to operate ground-coupled heat pump systems in a thermodynamic optimization way. This paper demonstrates that thermodynamic optimal parameters of ground heat exchangers can probably be determined by using the entropy generation minimization method.

  4. Humans can consciously generate random number sequences: a possible test for artificial intelligence.

    Science.gov (United States)

    Persaud, Navindra

    2005-01-01

    Computer algorithms can only produce seemingly random or pseudorandom numbers whereas certain natural phenomena, such as the decay of radioactive particles, can be utilized to produce truly random numbers. In this study, the ability of humans to generate random numbers was tested in healthy adults. Subjects were simply asked to generate and dictate random numbers. Generated numbers were tested for uniformity, independence and information density. The results suggest that humans can generate random numbers that are uniformly distributed, independent of one another and unpredictable. If humans can generate sequences of random numbers then neural networks or forms of artificial intelligence, which are purported to function in ways essentially the same as the human brain, should also be able to generate sequences of random numbers. Elucidating the precise mechanism by which humans generate random number sequences and the underlying neural substrates may have implications in the cognitive science of decision-making. It is possible that humans use their random-generating neural machinery to make difficult decisions in which all expected outcomes are similar. It is also possible that certain people, perhaps those with neurological or psychiatric impairments, are less able or unable to generate random numbers. If the random-generating neural machinery is employed in decision making its impairment would have profound implications in matters of agency and free will.

  5. Statistical inference of the generation probability of T-cell receptors from sequence repertoires.

    Science.gov (United States)

    Murugan, Anand; Mora, Thierry; Walczak, Aleksandra M; Callan, Curtis G

    2012-10-02

    Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.

  6. Analysis of quality raw data of second generation sequencers with Quality Assessment Software.

    Science.gov (United States)

    Ramos, Rommel Tj; Carneiro, Adriana R; Baumbach, Jan; Azevedo, Vasco; Schneider, Maria Pc; Silva, Artur

    2011-04-18

    Second generation technologies have advantages over Sanger; however, they have resulted in new challenges for the genome construction process, especially because of the small size of the reads, despite the high degree of coverage. Independent of the program chosen for the construction process, DNA sequences are superimposed, based on identity, to extend the reads, generating contigs; mismatches indicate a lack of homology and are not included. This process improves our confidence in the sequences that are generated. We developed Quality Assessment Software, with which one can review graphs showing the distribution of quality values from the sequencing reads. This software allow us to adopt more stringent quality standards for sequence data, based on quality-graph analysis and estimated coverage after applying the quality filter, providing acceptable sequence coverage for genome construction from short reads. Quality filtering is a fundamental step in the process of constructing genomes, as it reduces the frequency of incorrect alignments that are caused by measuring errors, which can occur during the construction process due to the size of the reads, provoking misassemblies. Application of quality filters to sequence data, using the software Quality Assessment, along with graphing analyses, provided greater precision in the definition of cutoff parameters, which increased the accuracy of genome construction.

  7. Improving the performance of minimizers and winnowing schemes.

    Science.gov (United States)

    Marçais, Guillaume; Pellow, David; Bork, Daniel; Orenstein, Yaron; Shamir, Ron; Kingsford, Carl

    2017-07-15

    The minimizers scheme is a method for selecting k -mers from sequences. It is used in many bioinformatics software tools to bin comparable sequences or to sample a sequence in a deterministic fashion at approximately regular intervals, in order to reduce memory consumption and processing time. Although very useful, the minimizers selection procedure has undesirable behaviors (e.g. too many k -mers are selected when processing certain sequences). Some of these problems were already known to the authors of the minimizers technique, and the natural lexicographic ordering of k -mers used by minimizers was recognized as their origin. Many software tools using minimizers employ ad hoc variations of the lexicographic order to alleviate those issues. We provide an in-depth analysis of the effect of k -mer ordering on the performance of the minimizers technique. By using small universal hitting sets (a recently defined concept), we show how to significantly improve the performance of minimizers and avoid some of its worse behaviors. Based on these results, we encourage bioinformatics software developers to use an ordering based on a universal hitting set or, if not possible, a randomized ordering, rather than the lexicographic order. This analysis also settles negatively a conjecture (by Schleimer et al. ) on the expected density of minimizers in a random sequence. The software used for this analysis is available on GitHub: https://github.com/gmarcais/minimizers.git . gmarcais@cs.cmu.edu or carlk@cs.cmu.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. Modeling the Process of Event Sequence Data Generated for Working Condition Diagnosis

    Directory of Open Access Journals (Sweden)

    Jianwei Ding

    2015-01-01

    Full Text Available Condition monitoring systems are widely used to monitor the working condition of equipment, generating a vast amount and variety of telemetry data in the process. The main task of surveillance focuses on analyzing these routinely collected telemetry data to help analyze the working condition in the equipment. However, with the rapid increase in the volume of telemetry data, it is a nontrivial task to analyze all the telemetry data to understand the working condition of the equipment without any a priori knowledge. In this paper, we proposed a probabilistic generative model called working condition model (WCM, which is capable of simulating the process of event sequence data generated and depicting the working condition of equipment at runtime. With the help of WCM, we are able to analyze how the event sequence data behave in different working modes and meanwhile to detect the working mode of an event sequence (working condition diagnosis. Furthermore, we have applied WCM to illustrative applications like automated detection of an anomalous event sequence for the runtime of equipment. Our experimental results on the real data sets demonstrate the effectiveness of the model.

  9. Next-Generation Sequencing of Antibody Display Repertoires

    Directory of Open Access Journals (Sweden)

    Romain Rouet

    2018-02-01

    Full Text Available In vitro selection technology has transformed the development of therapeutic monoclonal antibodies. Using methods such as phage, ribosome, and yeast display, high affinity binders can be selected from diverse repertoires. Here, we review strategies for the next-generation sequencing (NGS of phage- and other antibody-display libraries, as well as NGS platforms and analysis tools. Moreover, we discuss recent examples relating to the use of NGS to assess library diversity, clonal enrichment, and affinity maturation.

  10. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange.

    Directory of Open Access Journals (Sweden)

    Hoorig Nassanian

    2007-08-01

    Full Text Available RNA interference (RNAi, mediated by small interfering RNA (siRNA, is an effective method used to silence gene expression at the post-transcriptional level. Upon introduction into target cells, siRNAs incorporate into the RNA-induced silencing complex (RISC. The antisense strand of the siRNA duplex then "guides" the RISC to the homologous mRNA, leading to target degradation and gene silencing. In recent years, various vector-based siRNA expression systems have been developed which utilize opposing polymerase III promoters to independently drive expression of the sense and antisense strands of the siRNA duplex from the same template.We show here the use of a ligase chain reaction (LCR to develop a new vector system called pInv-H1 in which a DNA sequence encoding a specific siRNA is placed between two inverted minimal human H1 promoters (approximately 100 bp each. Expression of functional siRNAs from this construct has led to efficient silencing of both reporter and endogenous genes. Furthermore, the inverted H1 promoter-siRNA expression cassette was used to generate a retrovirus vector capable of transducing and silencing expression of the targeted protein by>80% in target cells.The unique design of this construct allows for the efficient exchange of siRNA sequences by the directional cloning of short oligonucleotides via asymmetric restriction sites. This provides a convenient way to test the functionality of different siRNA sequences. Delivery of the siRNA cassette by retroviral transduction suggests that a single copy of the siRNA expression cassette efficiently knocks down gene expression at the protein level. We note that this vector system can potentially be used to generate a random siRNA library. The flexibility of the ligase chain reaction suggests that additional control elements can easily be introduced into this siRNA expression cassette.

  11. Detection of a divergent variant of grapevine virus F by next-generation sequencing.

    Science.gov (United States)

    Molenaar, Nicholas; Burger, Johan T; Maree, Hans J

    2015-08-01

    The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).

  12. Security problems for a pseudorandom sequence generator based on the Chen chaotic system

    Science.gov (United States)

    Özkaynak, Fatih; Yavuz, Sırma

    2013-09-01

    Recently, a novel pseudorandom number generator scheme based on the Chen chaotic system was proposed. In this study, we analyze the security weaknesses of the proposed generator. By applying a brute force attack on a reduced key space, we show that 66% of the generated pseudorandom number sequences can be revealed. Executable C# code is given for the proposed attack. The computational complexity of this attack is O(n), where n is the sequence length. Both mathematical proofs and experimental results are presented to support the proposed attack.

  13. Fault Sample Generation for Virtual Testability Demonstration Test Subject to Minimal Maintenance and Scheduled Replacement

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2015-01-01

    Full Text Available Virtual testability demonstration test brings new requirements to the fault sample generation. First, fault occurrence process is described by stochastic process theory. It is discussed that fault occurrence process subject to minimal repair is nonhomogeneous Poisson process (NHPP. Second, the interarrival time distribution function of the next fault event is proposed and three typical kinds of parameterized NHPP are discussed. Third, the procedure of fault sample generation is put forward with the assumptions of minimal maintenance and scheduled replacement. The fault modes and their occurrence time subject to specified conditions and time period can be obtained. Finally, an antenna driving subsystem in automatic pointing and tracking platform is taken as a case to illustrate the proposed method. Results indicate that both the size and structure of the fault samples generated by the proposed method are reasonable and effective. The proposed method can be applied to virtual testability demonstration test well.

  14. Sterile neutrino in a minimal three-generation see-saw model

    Indian Academy of Sciences (India)

    Sterile neutrino in a minimal three-generation see-saw model. Table 1. Relevant right-handed fermion and scalar fields and their transformation properties. Here we have defined Y. I3R· (B–L)/2. SU´2µL ¢U´1µI3R ¢U´1µB L. SU´2µL ¢UY ´1µ. Le ·Lµ Lτ. Seµ. 2R ν R. (1,1/2, 1). (1,0). 1. 1 ν·R. (1,1/2, 1). (1,0). 1. 1. ντR. (1, 1/2, 1).

  15. A Systematic Procedure for the Generation of Cost-Minimized Designs

    DEFF Research Database (Denmark)

    Becker, Peter W.; Jarkler, Bjorn

    1972-01-01

    We present a procedure for the generation of cost-minimized designs of circuits and systems. Suppose a designer has decided upon the topology of his product. Also suppose he knows the cost and quality of the different grades of the N components required to implement the product. The designer...... then faces the following problem: How should he proceed to find the combination of grades that will give him the desired manufacturing yield at minimum product cost? We discuss the problem and suggest a policy by which the designer, with a reasonable computational effort, can find a set of ``good...

  16. Pitfalls of improperly procured adjacent non-neoplastic tissue for somatic mutation analysis using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Lei Wei

    2016-10-01

    Full Text Available Abstract Background The rapid adoption of next-generation sequencing provides an efficient system for detecting somatic alterations in neoplasms. The detection of such alterations requires a matched non-neoplastic sample for adequate filtering of non-somatic events such as germline polymorphisms. Non-neoplastic tissue adjacent to the excised neoplasm is often used for this purpose as it is simultaneously collected and generally contains the same tissue type as the neoplasm. Following NGS analysis, we and others have frequently observed low-level somatic mutations in these non-neoplastic tissues, which may impose additional challenges to somatic mutation detection as it complicates germline variant filtering. Methods We hypothesized that the low-level somatic mutation observed in non-neoplastic tissues may be entirely or partially caused by inadvertent contamination by neoplastic cells during the surgical pathology gross assessment or tissue procurement process. To test this hypothesis, we applied a systematic protocol designed to collect multiple grossly non-neoplastic tissues using different methods surrounding each single neoplasm. The procedure was applied in two breast cancer lumpectomy specimens. In each case, all samples were first sequenced by whole-exome sequencing to identify somatic mutations in the neoplasm and determine their presence in the adjacent non-neoplastic tissues. We then generated ultra-deep coverage using targeted sequencing to assess the levels of contamination in non-neoplastic tissue samples collected under different conditions. Results Contamination levels in non-neoplastic tissues ranged up to 3.5 and 20.9 % respectively in the two cases tested, with consistent pattern correlated with the manner of grossing and procurement. By carefully controlling the conditions of various steps during this process, we were able to eliminate any detectable contamination in both patients. Conclusion The results demonstrated that the

  17. The Quest for Rare Variants: Pooled Multiplexed Next Generation Sequencing in Plants

    Directory of Open Access Journals (Sweden)

    Fabio eMarroni

    2012-06-01

    Full Text Available Next generation sequencing (NGS instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, only three research groups working in plant sciences have exploited this potentiality. They showed that pooled NGS can provide results in excellent agreement with those obtained by individual Sanger sequencing. Aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method we will explain in detail the variations in study design and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled next generation sequencing can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity and Tajima’s D. Finally we will discuss applications and future perspectives of the multiplexed NGS approach.

  18. Implementation of Targeted Next Generation Sequencing in Clinical Diagnostics

    DEFF Research Database (Denmark)

    Larsen, Martin Jakob; Burton, Mark; Thomassen, Mads

    Accurate mutation detection is essential in clinical genetic diagnostics of monogenic hereditary diseases. Targeted next generation sequencing (NGS) provides a promising and cost-effective alternative to Sanger sequencing and MLPA analysis currently used in most diagnostic laboratories. One...... of mutation positive controls previously characterized by Sanger/MLPA analysis. Agilent SureSelect Target-Enrichment kits were used for capturing a set of genes associated with hereditary breast and ovarian cancer syndrome and a compilation of genes involved in multiple rare single gene disorders......, respectively. For diagnostics, the sequencing coverage is essential, wherefore a minimum coverage of 30x per nucleotide in the coding regions was used as our primary quality criterion. For the majority of the included genes, we obtained adequate gene coverage, in which we were able to detect 100% of the known...

  19. Next-generation sequencing approaches to understanding the oral microbiome

    NARCIS (Netherlands)

    Zaura, E.

    2012-01-01

    Until recently, the focus in dental research has been on studying a small fraction of the oral microbiome—so-called opportunistic pathogens. With the advent of next-generation sequencing (NGS) technologies, researchers now have the tools that allow for profiling of the microbiomes and metagenomes at

  20. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region.

    Science.gov (United States)

    Ducote, M J; Prakash, S; Pettis, G S

    2000-12-01

    Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3' end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer.

  1. Next-generation sequencing in schizophrenia and other neuropsychiatric disorders.

    Science.gov (United States)

    Schreiber, Matthew; Dorschner, Michael; Tsuang, Debby

    2013-10-01

    Schizophrenia is a debilitating lifelong illness that lacks a cure and poses a worldwide public health burden. The disease is characterized by a heterogeneous clinical and genetic presentation that complicates research efforts to identify causative genetic variations. This review examines the potential of current findings in schizophrenia and in other related neuropsychiatric disorders for application in next-generation technologies, particularly whole-exome sequencing (WES) and whole-genome sequencing (WGS). These approaches may lead to the discovery of underlying genetic factors for schizophrenia and may thereby identify and target novel therapeutic targets for this devastating disorder. © 2013 Wiley Periodicals, Inc.

  2. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  3. "Shovel-ready" Sequences as a Stimulus for the Next Generation of Life Scientists.

    Science.gov (United States)

    Boyle, Michael D

    2010-01-01

    Genomics and bioinformatics are dynamic fields well-suited for capturing the imagination of undergraduates in both research laboratories and classrooms. Currently, raw nucleotide sequence is being provided, as part of several genomics research initiatives, for undergraduate research and teaching. These initiatives could be easily extended and much more effective if the source of the sequenced material and the subsequent focus of the data analysis were aligned with the research interests of individual faculty at undergraduate institutions. By judicious use of surplus capacity in existing nucleotide sequencing cores, raw sequence data could be generated to support ongoing research efforts involving undergraduates. This would allow these students to participate actively in discovery research, with a goal of making novel contributions to their field through original research while nurturing the next generation of talented research scientists.

  4. Next-generation sequencing can reveal in vitro-generated PCR crossover products: some artifactual sequences correspond to HLA alleles in the IMGT/HLA database.

    Science.gov (United States)

    Holcomb, C L; Rastrou, M; Williams, T C; Goodridge, D; Lazaro, A M; Tilanus, M; Erlich, H A

    2014-01-01

    The high-resolution human leukocyte antigen (HLA) genotyping assay that we developed using 454 sequencing and Conexio software uses generic polymerase chain reaction (PCR) primers for DRB exon 2. Occasionally, we observed low abundance DRB amplicon sequences that resulted from in vitro PCR 'crossing over' between DRB1 and DRB3/4/5. These hybrid sequences, revealed by the clonal sequencing property of the 454 system, were generally observed at a read depth of 5%-10% of the true alleles. They usually contained at least one mismatch with the IMGT/HLA database, and consequently, were easily recognizable and did not cause a problem for HLA genotyping. Sometimes, however, these artifactual sequences matched a rare allele and the automatic genotype assignment was incorrect. These observations raised two issues: (1) could PCR conditions be modified to reduce such artifacts? and (2) could some of the rare alleles listed in the IMGT/HLA database be artifacts rather than true alleles? Because PCR crossing over occurs during late cycles of PCR, we compared DRB genotypes resulting from 28 and (our standard) 35 cycles of PCR. For all 21 cell line DNAs amplified for 35 cycles, crossover products were detected. In 33% of the cases, these hybrid sequences corresponded to named alleles. With amplification for only 28 cycles, these artifactual sequences were not detectable. To investigate whether some rare alleles in the IMGT/HLA database might be due to PCR artifacts, we analyzed four samples obtained from the investigators who submitted the sequences. In three cases, the sequences were generated from true alleles. In one case, our 454 sequencing revealed an error in the previously submitted sequence. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology.

    Science.gov (United States)

    Sasaki, Katsutomo; Mitsuda, Nobutaka; Nashima, Kenji; Kishimoto, Kyutaro; Katayose, Yuichi; Kanamori, Hiroyuki; Ohmiya, Akemi

    2017-09-04

    Chrysanthemum morifolium is one of the most economically valuable ornamental plants worldwide. Chrysanthemum is an allohexaploid plant with a large genome that is commercially propagated by vegetative reproduction. New cultivars with different floral traits, such as color, morphology, and scent, have been generated mainly by classical cross-breeding and mutation breeding. However, only limited genetic resources and their genome information are available for the generation of new floral traits. To obtain useful information about molecular bases for floral traits of chrysanthemums, we read expressed sequence tags (ESTs) of chrysanthemums by high-throughput sequencing using the 454 pyrosequencing technology. We constructed normalized cDNA libraries, consisting of full-length, 3'-UTR, and 5'-UTR cDNAs derived from various tissues of chrysanthemums. These libraries produced a total number of 3,772,677 high-quality reads, which were assembled into 213,204 contigs. By comparing the data obtained with those of full genome-sequenced species, we confirmed that our chrysanthemum contig set contained the majority of all expressed genes, which was sufficient for further molecular analysis in chrysanthemums. We confirmed that our chrysanthemum EST set (contigs) contained a number of contigs that encoded transcription factors and enzymes involved in pigment and aroma compound metabolism that was comparable to that of other species. This information can serve as an informative resource for identifying genes involved in various biological processes in chrysanthemums. Moreover, the findings of our study will contribute to a better understanding of the floral characteristics of chrysanthemums including the myriad cultivars at the molecular level.

  6. Next-generation sequencing library preparation method for identification of RNA viruses on the Ion Torrent Sequencing Platform.

    Science.gov (United States)

    Chen, Guiqian; Qiu, Yuan; Zhuang, Qingye; Wang, Suchun; Wang, Tong; Chen, Jiming; Wang, Kaicheng

    2018-05-09

    Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.

  7. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    Science.gov (United States)

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  8. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Rama R Gullapalli

    2012-01-01

    Full Text Available The Human Genome Project (HGP provided the initial draft of mankind′s DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized. [7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it′s hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future.

  9. Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries

    Directory of Open Access Journals (Sweden)

    Kumar Santosh

    2012-12-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. is a significant fibre and oilseed crop. Current flax molecular markers, including isozymes, RAPDs, AFLPs and SSRs are of limited use in the construction of high density linkage maps and for association mapping applications due to factors such as low reproducibility, intense labour requirements and/or limited numbers. We report here on the use of a reduced representation library strategy combined with next generation Illumina sequencing for rapid and large scale discovery of SNPs in eight flax genotypes. SNP discovery was performed through in silico analysis of the sequencing data against the whole genome shotgun sequence assembly of flax genotype CDC Bethune. Genotyping-by-sequencing of an F6-derived recombinant inbred line population provided validation of the SNPs. Results Reduced representation libraries of eight flax genotypes were sequenced on the Illumina sequencing platform resulting in sequence coverage ranging from 4.33 to 15.64X (genome equivalents. Depending on the relatedness of the genotypes and the number and length of the reads, between 78% and 93% of the reads mapped onto the CDC Bethune whole genome shotgun sequence assembly. A total of 55,465 SNPs were discovered with the largest number of SNPs belonging to the genotypes with the highest mapping coverage percentage. Approximately 84% of the SNPs discovered were identified in a single genotype, 13% were shared between any two genotypes and the remaining 3% in three or more. Nearly a quarter of the SNPs were found in genic regions. A total of 4,706 out of 4,863 SNPs discovered in Macbeth were validated using genotyping-by-sequencing of 96 F6 individuals from a recombinant inbred line population derived from a cross between CDC Bethune and Macbeth, corresponding to a validation rate of 96.8%. Conclusions Next generation sequencing of reduced representation libraries was successfully implemented for genome-wide SNP discovery from

  10. The Quest for Rare Variants: Pooled Multiplexed Next Generation Sequencing in Plants

    OpenAIRE

    Fabio eMarroni; Sara ePinosio; Sara ePinosio; Michele eMorgante

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, only three research groups working in plant sciences have exploited this potentiality. They showed that pooled NGS can provide results in excellent agreement with those obt...

  11. The Quest for Rare Variants: Pooled Multiplexed Next Generation Sequencing in Plants

    OpenAIRE

    Marroni, Fabio; Pinosio, Sara; Morgante, Michele

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, few research groups working in plant sciences have exploited this potentiality, showing that pooled NGS provides results in excellent agreement with those obtained by indiv...

  12. Clinical utility of a 377 gene custom next-generation sequencing ...

    Indian Academy of Sciences (India)

    JEN BEVILACQUA

    2017-07-26

    Jul 26, 2017 ... Clinical utility of a 377 gene custom next-generation sequencing epilepsy panel ... number of genes, making it a very attractive option for a condition as .... clinical value of various test offerings to guide decision making.

  13. Third-Generation Sequencing and Analysis of Four Complete Pig Liver Esterase Gene Sequences in Clones Identified by Screening BAC Library.

    Science.gov (United States)

    Zhou, Qiongqiong; Sun, Wenjuan; Liu, Xiyan; Wang, Xiliang; Xiao, Yuncai; Bi, Dingren; Yin, Jingdong; Shi, Deshi

    2016-01-01

    Pig liver carboxylesterase (PLE) gene sequences in GenBank are incomplete, which has led to difficulties in studying the genetic structure and regulation mechanisms of gene expression of PLE family genes. The aim of this study was to obtain and analysis of complete gene sequences of PLE family by screening from a Rongchang pig BAC library and third-generation PacBio gene sequencing. After a number of existing incomplete PLE isoform gene sequences were analysed, primers were designed based on conserved regions in PLE exons, and the whole pig genome used as a template for Polymerase chain reaction (PCR) amplification. Specific primers were then selected based on the PCR amplification results. A three-step PCR screening method was used to identify PLE-positive clones by screening a Rongchang pig BAC library and PacBio third-generation sequencing was performed. BLAST comparisons and other bioinformatics methods were applied for sequence analysis. Five PLE-positive BAC clones, designated BAC-10, BAC-70, BAC-75, BAC-119 and BAC-206, were identified. Sequence analysis yielded the complete sequences of four PLE genes, PLE1, PLE-B9, PLE-C4, and PLE-G2. Complete PLE gene sequences were defined as those containing regulatory sequences, exons, and introns. It was found that, not only did the PLE exon sequences of the four genes show a high degree of homology, but also that the intron sequences were highly similar. Additionally, the regulatory region of the genes contained two 720bps reverse complement sequences that may have an important function in the regulation of PLE gene expression. This is the first report to confirm the complete sequences of four PLE genes. In addition, the study demonstrates that each PLE isoform is encoded by a single gene and that the various genes exhibit a high degree of sequence homology, suggesting that the PLE family evolved from a single ancestral gene. Obtaining the complete sequences of these PLE genes provides the necessary foundation for

  14. Discussion on the applicability of entropy generation minimization to the analyses and optimizations of thermodynamic processes

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    Highlights: • The applicability of entropy generation minimization is conditional. • The concept of exergy-work conversion efficiency is defined. • The concept of exergy destruction number is introduced. • Smaller exergy destruction number leads to larger exergy-work conversion efficiency. - Abstract: This work reports the analyses of some thermodynamic systems with the concepts of entropy generation, entropy generation numbers and revised entropy generation number, as well as exergy destruction number and exergy-work conversion efficiency that are proposed in this paper. The applicability of entropy generation minimization (EGM) is conditional if the optimization objective is the output power. The EGM leads to the maximum output power when the net exergy flow rate into the system is fixed, but it may not be appropriate if the net exergy flow rate into the system is not fixed. On the other hand, smaller exergy destruction number always corresponds to larger exergy-work conversion efficiency. The refrigeration cycle with the reverse Carnot engine is also analyzed in which mechanical work is input. The result shows that the EGM leads to the largest COP if the temperature of the high temperature heat source is fixed

  15. PRIMITIVE MATRICES AND GENERATORS OF PSEUDO RANDOM SEQUENCES OF GALOIS

    Directory of Open Access Journals (Sweden)

    A. Beletsky

    2014-04-01

    Full Text Available In theory and practice of information cryptographic protection one of the key problems is the forming a binary pseudo-random sequences (PRS with a maximum length with acceptable statistical characteristics. PRS generators are usually implemented by linear shift register (LSR of maximum period with linear feedback [1]. In this paper we extend the concept of LSR, assuming that each of its rank (memory cell can be in one of the following condition. Let’s call such registers “generalized linear shift register.” The research goal is to develop algorithms for constructing Galois and Fibonacci generalized matrix of n-order over the field , which uniquely determined both the structure of corresponding generalized of n-order LSR maximal period, and formed on their basis Galois PRS generators of maximum length. Thus the article presents the questions of formation the primitive generalized Fibonacci and Galois arbitrary order matrix over the prime field . The synthesis of matrices is based on the use of irreducible polynomials of degree and primitive elements of the extended field generated by polynomial. The constructing methods of Galois and Fibonacci conjugated primitive matrices are suggested. The using possibilities of such matrices in solving the problem of constructing generalized generators of Galois pseudo-random sequences are discussed.

  16. Next-generation sequencing

    DEFF Research Database (Denmark)

    Rieneck, Klaus; Bak, Mads; Jønson, Lars

    2013-01-01

    , Illumina); several millions of PCR sequences were analyzed. RESULTS: The results demonstrated the feasibility of diagnosing the fetal KEL1 or KEL2 blood group from cell-free DNA purified from maternal plasma. CONCLUSION: This method requires only one primer pair, and the large amount of sequence...... information obtained allows well for statistical analysis of the data. This general approach can be integrated into current laboratory practice and has numerous applications. Besides DNA-based predictions of blood group phenotypes, platelet phenotypes, or sickle cell anemia, and the determination of zygosity...

  17. TH-C-BRD-07: Minimizing Dose Uncertainty for Spot Scanning Beam Proton Therapy of Moving Tumor with Optimization of Delivery Sequence

    International Nuclear Information System (INIS)

    Li, H; Zhang, X; Zhu, X; Li, Y

    2014-01-01

    Purpose: Intensity modulated proton therapy (IMPT) has been shown to be able to reduce dose to normal tissue compared to intensity modulated photon radio-therapy (IMRT), and has been implemented for selected lung cancer patients. However, respiratory motion-induced dose uncertainty remain one of the major concerns for the radiotherapy of lung cancer, and the utility of IMPT for lung patients was limited because of the proton dose uncertainty induced by motion. Strategies such as repainting and tumor tracking have been proposed and studied but repainting could result in unacceptable long delivery time and tracking is not yet clinically available. We propose a novel delivery strategy for spot scanning proton beam therapy. Method: The effective number of delivery (END) for each spot position in a treatment plan was calculated based on the parameters of the delivery system, including time required for each spot, spot size and energy. The dose uncertainty was then calculated with an analytical formula. The spot delivery sequence was optimized to maximize END and minimize the dose uncertainty. 2D Measurements with a detector array on a 1D moving platform were performed to validate the calculated results. Results: 143 2D measurements on a moving platform were performed for different delivery sequences of a single layer uniform pattern. The measured dose uncertainty is a strong function of the delivery sequence, the worst delivery sequence results in dose error up to 70% while the optimized delivery sequence results in dose error of <5%. END vs. measured dose uncertainty follows the analytical formula. Conclusion: With optimized delivery sequence, it is feasible to minimize the dose uncertainty due to motion in spot scanning proton therapy

  18. Tablet—next generation sequence assembly visualization

    Science.gov (United States)

    Milne, Iain; Bayer, Micha; Cardle, Linda; Shaw, Paul; Stephen, Gordon; Wright, Frank; Marshall, David

    2010-01-01

    Summary: Tablet is a lightweight, high-performance graphical viewer for next-generation sequence assemblies and alignments. Supporting a range of input assembly formats, Tablet provides high-quality visualizations showing data in packed or stacked views, allowing instant access and navigation to any region of interest, and whole contig overviews and data summaries. Tablet is both multi-core aware and memory efficient, allowing it to handle assemblies containing millions of reads, even on a 32-bit desktop machine. Availability: Tablet is freely available for Microsoft Windows, Apple Mac OS X, Linux and Solaris. Fully bundled installers can be downloaded from http://bioinf.scri.ac.uk/tablet in 32- and 64-bit versions. Contact: tablet@scri.ac.uk PMID:19965881

  19. Counting of oligomers in sequences generated by markov chains for DNA motif discovery.

    Science.gov (United States)

    Shan, Gao; Zheng, Wei-Mou

    2009-02-01

    By means of the technique of the imbedded Markov chain, an efficient algorithm is proposed to exactly calculate first, second moments of word counts and the probability for a word to occur at least once in random texts generated by a Markov chain. A generating function is introduced directly from the imbedded Markov chain to derive asymptotic approximations for the problem. Two Z-scores, one based on the number of sequences with hits and the other on the total number of word hits in a set of sequences, are examined for discovery of motifs on a set of promoter sequences extracted from A. thaliana genome. Source code is available at http://www.itp.ac.cn/zheng/oligo.c.

  20. Variational method for the minimization of entropy generation in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Sjoerd; Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2015-04-07

    In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the same scale. The framework of non-equilibrium thermodynamics can therefore be combined with the calculus of variations and existing solar cell models to minimize the total entropy generation rate in the cell to find the most optimal design. The variational method is illustrated by applying it to a homojunction solar cell. The optimization results in a set of differential algebraic equations, which determine the optimal shape of the doping profile for given recombination and transport models.

  1. Human Inferences about Sequences: A Minimal Transition Probability Model.

    Directory of Open Access Journals (Sweden)

    Florent Meyniel

    2016-12-01

    Full Text Available The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge.

  2. Quantitation of next generation sequencing library preparation protocol efficiencies using droplet digital PCR assays - a systematic comparison of DNA library preparation kits for Illumina sequencing.

    Science.gov (United States)

    Aigrain, Louise; Gu, Yong; Quail, Michael A

    2016-06-13

    The emergence of next-generation sequencing (NGS) technologies in the past decade has allowed the democratization of DNA sequencing both in terms of price per sequenced bases and ease to produce DNA libraries. When it comes to preparing DNA sequencing libraries for Illumina, the current market leader, a plethora of kits are available and it can be difficult for the users to determine which kit is the most appropriate and efficient for their applications; the main concerns being not only cost but also minimal bias, yield and time efficiency. We compared 9 commercially available library preparation kits in a systematic manner using the same DNA sample by probing the amount of DNA remaining after each protocol steps using a new droplet digital PCR (ddPCR) assay. This method allows the precise quantification of fragments bearing either adaptors or P5/P7 sequences on both ends just after ligation or PCR enrichment. We also investigated the potential influence of DNA input and DNA fragment size on the final library preparation efficiency. The overall library preparations efficiencies of the libraries show important variations between the different kits with the ones combining several steps into a single one exhibiting some final yields 4 to 7 times higher than the other kits. Detailed ddPCR data also reveal that the adaptor ligation yield itself varies by more than a factor of 10 between kits, certain ligation efficiencies being so low that it could impair the original library complexity and impoverish the sequencing results. When a PCR enrichment step is necessary, lower adaptor-ligated DNA inputs leads to greater amplification yields, hiding the latent disparity between kits. We describe a ddPCR assay that allows us to probe the efficiency of the most critical step in the library preparation, ligation, and to draw conclusion on which kits is more likely to preserve the sample heterogeneity and reduce the need of amplification.

  3. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Niko eBeerenwinkel

    2012-09-01

    Full Text Available Many viruses, including the clinically relevant RNA viruses HIV and HCV, exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different next-generation sequencing platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of next-generation sequencing to estimate viral diversity.

  4. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    Science.gov (United States)

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  5. New tool to assemble repetitive regions using next-generation sequencing data

    Science.gov (United States)

    Kuśmirek, Wiktor; Nowak, Robert M.; Neumann, Łukasz

    2017-08-01

    The next generation sequencing techniques produce a large amount of sequencing data. Some part of the genome are composed of repetitive DNA sequences, which are very problematic for the existing genome assemblers. We propose a modification of the algorithm for a DNA assembly, which uses the relative frequency of reads to properly reconstruct repetitive sequences. The new approach was implemented and tested, as a demonstration of the capability of our software we present some results for model organisms. The new implementation, using a three-layer software architecture was selected, where the presentation layer, data processing layer, and data storage layer were kept separate. Source code as well as demo application with web interface and the additional data are available at project web-page: http://dnaasm.sourceforge.net.

  6. Statistical analysis of next generation sequencing data

    CERN Document Server

    Nettleton, Dan

    2014-01-01

    Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized med...

  7. A high-speed on-chip pseudo-random binary sequence generator for multi-tone phase calibration

    Science.gov (United States)

    Gommé, Liesbeth; Vandersteen, Gerd; Rolain, Yves

    2011-07-01

    An on-chip reference generator is conceived by adopting the technique of decimating a pseudo-random binary sequence (PRBS) signal in parallel sequences. This is of great benefit when high-speed generation of PRBS and PRBS-derived signals is the objective. The design implemented standard CMOS logic is available in commercial libraries to provide the logic functions for the generator. The design allows the user to select the periodicity of the PRBS and the PRBS-derived signals. The characterization of the on-chip generator marks its performance and reveals promising specifications.

  8. A high-speed on-chip pseudo-random binary sequence generator for multi-tone phase calibration

    International Nuclear Information System (INIS)

    Gommé, Liesbeth; Vandersteen, Gerd; Rolain, Yves

    2011-01-01

    An on-chip reference generator is conceived by adopting the technique of decimating a pseudo-random binary sequence (PRBS) signal in parallel sequences. This is of great benefit when high-speed generation of PRBS and PRBS-derived signals is the objective. The design implemented standard CMOS logic is available in commercial libraries to provide the logic functions for the generator. The design allows the user to select the periodicity of the PRBS and the PRBS-derived signals. The characterization of the on-chip generator marks its performance and reveals promising specifications

  9. Next-Generation Sequencing in Neuropathologic Diagnosis of Infections of the Nervous System (Open Access)

    Science.gov (United States)

    2016-06-13

    nervous system ABSTRACT Objective: To determine the feasibility of next-generation sequencing (NGS) microbiome ap- proaches in the diagnosis of infectious...V, van Doorn HR, Nghia HD, et al. Identification of a new cyclovirus in cerebrospinal fluid of patients with acute central nervous system infections...Kumar, et al. system Next-generation sequencing in neuropathologic diagnosis of infections of the nervous This information is current as of June 13

  10. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases.

    Science.gov (United States)

    Shen, Li; Shao, Ningyi; Liu, Xiaochuan; Nestler, Eric

    2014-04-15

    Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge. We have developed ngs.plot - a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready. We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data.

  11. Minimal Gromov-Witten rings

    International Nuclear Information System (INIS)

    Przyjalkowski, V V

    2008-01-01

    We construct an abstract theory of Gromov-Witten invariants of genus 0 for quantum minimal Fano varieties (a minimal class of varieties which is natural from the quantum cohomological viewpoint). Namely, we consider the minimal Gromov-Witten ring: a commutative algebra whose generators and relations are of the form used in the Gromov-Witten theory of Fano varieties (of unspecified dimension). The Gromov-Witten theory of any quantum minimal variety is a homomorphism from this ring to C. We prove an abstract reconstruction theorem which says that this ring is isomorphic to the free commutative ring generated by 'prime two-pointed invariants'. We also find solutions of the differential equation of type DN for a Fano variety of dimension N in terms of the generating series of one-pointed Gromov-Witten invariants

  12. Model-based quality assessment and base-calling for second-generation sequencing data.

    Science.gov (United States)

    Bravo, Héctor Corrada; Irizarry, Rafael A

    2010-09-01

    Second-generation sequencing (sec-gen) technology can sequence millions of short fragments of DNA in parallel, making it capable of assembling complex genomes for a small fraction of the price and time of previous technologies. In fact, a recently formed international consortium, the 1000 Genomes Project, plans to fully sequence the genomes of approximately 1200 people. The prospect of comparative analysis at the sequence level of a large number of samples across multiple populations may be achieved within the next five years. These data present unprecedented challenges in statistical analysis. For instance, analysis operates on millions of short nucleotide sequences, or reads-strings of A,C,G, or T's, between 30 and 100 characters long-which are the result of complex processing of noisy continuous fluorescence intensity measurements known as base-calling. The complexity of the base-calling discretization process results in reads of widely varying quality within and across sequence samples. This variation in processing quality results in infrequent but systematic errors that we have found to mislead downstream analysis of the discretized sequence read data. For instance, a central goal of the 1000 Genomes Project is to quantify across-sample variation at the single nucleotide level. At this resolution, small error rates in sequencing prove significant, especially for rare variants. Sec-gen sequencing is a relatively new technology for which potential biases and sources of obscuring variation are not yet fully understood. Therefore, modeling and quantifying the uncertainty inherent in the generation of sequence reads is of utmost importance. In this article, we present a simple model to capture uncertainty arising in the base-calling procedure of the Illumina/Solexa GA platform. Model parameters have a straightforward interpretation in terms of the chemistry of base-calling allowing for informative and easily interpretable metrics that capture the variability in

  13. Next-Generation Sequencing for Binary Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Bernhard eSuter

    2015-12-01

    Full Text Available The yeast two-hybrid (Y2H system exploits host cell genetics in order to display binary protein-protein interactions (PPIs via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS, and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  14. Next Generation Sequencing Methods for Diagnosis of Epilepsy Syndromes

    Directory of Open Access Journals (Sweden)

    Paul Dunn

    2018-02-01

    Full Text Available Epilepsy is a neurological disorder characterized by an increased predisposition for seizures. Although this definition suggests that it is a single disorder, epilepsy encompasses a group of disorders with diverse aetiologies and outcomes. A genetic basis for epilepsy syndromes has been postulated for several decades, with several mutations in specific genes identified that have increased our understanding of the genetic influence on epilepsies. With 70-80% of epilepsy cases identified to have a genetic cause, there are now hundreds of genes identified to be associated with epilepsy syndromes which can be analyzed using next generation sequencing (NGS techniques such as targeted gene panels, whole exome sequencing (WES and whole genome sequencing (WGS. For effective use of these methodologies, diagnostic laboratories and clinicians require information on the relevant workflows including analysis and sequencing depth to understand the specific clinical application and diagnostic capabilities of these gene sequencing techniques. As epilepsy is a complex disorder, the differences associated with each technique influence the ability to form a diagnosis along with an accurate detection of the genetic etiology of the disorder. In addition, for diagnostic testing, an important parameter is the cost-effectiveness and the specific diagnostic outcome of each technique. Here, we review these commonly used NGS techniques to determine their suitability for application to epilepsy genetic diagnostic testing.

  15. Association testing for next-generation sequencing data using score statistics

    DEFF Research Database (Denmark)

    Skotte, Line; Korneliussen, Thorfinn Sand; Albrechtsen, Anders

    2012-01-01

    computationally feasible due to the use of score statistics. As part of the joint likelihood, we model the distribution of the phenotypes using a generalized linear model framework, which works for both quantitative and discrete phenotypes. Thus, the method presented here is applicable to case-control studies...... of genotype calls into account have been proposed; most require numerical optimization which for large-scale data is not always computationally feasible. We show that using a score statistic for the joint likelihood of observed phenotypes and observed sequencing data provides an attractive approach...... to association testing for next-generation sequencing data. The joint model accounts for the genotype classification uncertainty via the posterior probabilities of the genotypes given the observed sequencing data, which gives the approach higher power than methods based on called genotypes. This strategy remains...

  16. Real-time UAV trajectory generation using feature points matching between video image sequences

    Science.gov (United States)

    Byun, Younggi; Song, Jeongheon; Han, Dongyeob

    2017-09-01

    Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system

  17. “Shovel-ready” Sequences as a Stimulus for the Next Generation of Life Scientists

    Science.gov (United States)

    Boyle, Michael D.

    2010-01-01

    Genomics and bioinformatics are dynamic fields well-suited for capturing the imagination of undergraduates in both research laboratories and classrooms. Currently, raw nucleotide sequence is being provided, as part of several genomics research initiatives, for undergraduate research and teaching. These initiatives could be easily extended and much more effective if the source of the sequenced material and the subsequent focus of the data analysis were aligned with the research interests of individual faculty at undergraduate institutions. By judicious use of surplus capacity in existing nucleotide sequencing cores, raw sequence data could be generated to support ongoing research efforts involving undergraduates. This would allow these students to participate actively in discovery research, with a goal of making novel contributions to their field through original research while nurturing the next generation of talented research scientists. PMID:23653696

  18. Exome-wide DNA capture and next generation sequencing in domestic and wild species

    Directory of Open Access Journals (Sweden)

    Ng Sarah B

    2011-07-01

    Full Text Available Abstract Background Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses. We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus to capture (enrich for, and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison. Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. Results We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. Conclusions This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.

  19. Exome-wide DNA capture and next generation sequencing in domestic and wild species.

    Science.gov (United States)

    Cosart, Ted; Beja-Pereira, Albano; Chen, Shanyuan; Ng, Sarah B; Shendure, Jay; Luikart, Gordon

    2011-07-05

    Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.

  20. Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning

    Science.gov (United States)

    Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.

    2001-07-01

    This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.

  1. [Molecular and prenatal diagnosis of a family with Fanconi anemia by next generation sequencing].

    Science.gov (United States)

    Gong, Zhuwen; Yu, Yongguo; Zhang, Qigang; Gu, Xuefan

    2015-04-01

    To provide prenatal diagnosis for a pregnant woman who had given birth to a child with Fanconi anemia with combined next-generation sequencing (NGS) and Sanger sequencing. For the affected child, potential mutations of the FANCA gene were analyzed with NGS. Suspected mutation was verified with Sanger sequencing. For prenatal diagnosis, genomic DNA was extracted from cultured fetal amniotic fluid cells and subjected to analysis of the same mutations. A low-frequency frameshifting mutation c.989_995del7 (p.H330LfsX2, inherited from his father) and a truncating mutation c.3971C>T (p.P1324L, inherited from his mother) have been identified in the affected child and considered to be pathogenic. The two mutations were subsequently verified by Sanger sequencing. Upon prenatal diagnosis, the fetus was found to carry two mutations. The combined next-generation sequencing and Sanger sequencing can reduce the time for diagnosis and identify subtypes of Fanconi anemia and the mutational sites, which has enabled reliable prenatal diagnosis of this disease.

  2. Iterative normalization technique for reference sequence generation for zero-tail discrete fourier transform spread orthogonal frequency division multiplexing

    DEFF Research Database (Denmark)

    2017-01-01

    Systems, methods, apparatuses, and computer program products for generating sequences for zero-tail discrete fourier transform (DFT)-spread-orthogonal frequency division multiplexing (OFDM) (ZT DFT-s-OFDM) reference signals. One method includes adding a zero vector to an input sequence...... of each of the elements, converting the sequence to time domain, generating a zero-padded sequence by forcing a zero head and tail of the sequence, and repeating the steps until a final sequence with zero-tail and flat frequency response is obtained....

  3. Applications and Case Studies of the Next-Generation Sequencing Technologies in Food, Nutrition and Agriculture.

    Science.gov (United States)

    Next-generation sequencing technologies are able to produce high-throughput short sequence reads in a cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also changed the landscape of life sciences. Here I survey their major applications ranging...

  4. HPV-QUEST: A highly customized system for automated HPV sequence analysis capable of processing Next Generation sequencing data set.

    Science.gov (United States)

    Yin, Li; Yao, Jiqiang; Gardner, Brent P; Chang, Kaifen; Yu, Fahong; Goodenow, Maureen M

    2012-01-01

    Next Generation sequencing (NGS) applied to human papilloma viruses (HPV) can provide sensitive methods to investigate the molecular epidemiology of multiple type HPV infection. Currently a genotyping system with a comprehensive collection of updated HPV reference sequences and a capacity to handle NGS data sets is lacking. HPV-QUEST was developed as an automated and rapid HPV genotyping system. The web-based HPV-QUEST subtyping algorithm was developed using HTML, PHP, Perl scripting language, and MYSQL as the database backend. HPV-QUEST includes a database of annotated HPV reference sequences with updated nomenclature covering 5 genuses, 14 species and 150 mucosal and cutaneous types to genotype blasted query sequences. HPV-QUEST processes up to 10 megabases of sequences within 1 to 2 minutes. Results are reported in html, text and excel formats and display e-value, blast score, and local and coverage identities; provide genus, species, type, infection site and risk for the best matched reference HPV sequence; and produce results ready for additional analyses.

  5. “Shovel-ready” Sequences as a Stimulus for the Next Generation of Life Scientists

    Directory of Open Access Journals (Sweden)

    Michael D. Boyle

    2010-04-01

    Full Text Available Genomics and bioinformatics are dynamic fields well-suited for capturing the imagination of undergraduates in both research laboratories and classrooms. Currently, raw nucleotide sequence is being provided, as part of several genomics research initiatives, for undergraduate research and teaching. These initiatives could be easily extended and much more effective if the source of the sequenced material and the subsequent focus of the data analysis were aligned with the research interests of individual faculty at undergraduate institutions. By judicious use of surplus capacity in existing nucleotide sequencing cores, raw sequence data could be generated to support ongoing research efforts involving undergraduates. This would allow these students to participate actively in discovery research, with a goal of making novel contributions to their field through original research while nurturing the next generation of talented research scientists.

  6. Long period pseudo random number sequence generator

    Science.gov (United States)

    Wang, Charles C. (Inventor)

    1989-01-01

    A circuit for generating a sequence of pseudo random numbers, (A sub K). There is an exponentiator in GF(2 sup m) for the normal basis representation of elements in a finite field GF(2 sup m) each represented by m binary digits and having two inputs and an output from which the sequence (A sub K). Of pseudo random numbers is taken. One of the two inputs is connected to receive the outputs (E sub K) of maximal length shift register of n stages. There is a switch having a pair of inputs and an output. The switch outputs is connected to the other of the two inputs of the exponentiator. One of the switch inputs is connected for initially receiving a primitive element (A sub O) in GF(2 sup m). Finally, there is a delay circuit having an input and an output. The delay circuit output is connected to the other of the switch inputs and the delay circuit input is connected to the output of the exponentiator. Whereby after the exponentiator initially receives the primitive element (A sub O) in GF(2 sup m) through the switch, the switch can be switched to cause the exponentiator to receive as its input a delayed output A(K-1) from the exponentiator thereby generating (A sub K) continuously at the output of the exponentiator. The exponentiator in GF(2 sup m) is novel and comprises a cyclic-shift circuit; a Massey-Omura multiplier; and, a control logic circuit all operably connected together to perform the function U(sub i) = 92(sup i) (for n(sub i) = 1 or 1 (for n(subi) = 0).

  7. Method for Generating Pseudorandom Sequences with the Assured Period Based on R-blocks

    Directory of Open Access Journals (Sweden)

    M. A. Ivanov

    2011-03-01

    Full Text Available The article describes the characteristics of a new class of fast-acting pseudorandom number generators, based on the use of stochastic adders or R-blocks. A new method for generating pseudorandom sequences with the assured length of period is offered.

  8. Fetal Kidney Anomalies: Next Generation Sequencing

    DEFF Research Database (Denmark)

    Rasmussen, Maria; Sunde, Lone; Nielsen, Marlene Louise

    Aim and Introduction Identification of abnormal kidneys in the fetus may lead to termination of the pregnancy and raises questions about the underlying cause and recurrence risk in future pregnancies. In this study, we investigate the effectiveness of targeted next generation sequencing in fetuses...... with prenatally detected kidney anomalies in order to uncover genetic explanations and assess recurrence risk. Also, we aim to study the relation between genetic findings and post mortem kidney histology. Methods The study comprises fetuses diagnosed prenatally with bilateral kidney anomalies that have undergone...... postmortem examination. The approximately 110 genes included in the targeted panel were chosen on the basis of their potential involvement in embryonic kidney development, cystic kidney disease, or the renin-angiotensin system. DNA was extracted from fetal tissue samples or cultured chorion villus cells...

  9. Waste minimization handbook, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  10. Waste minimization handbook, Volume 1

    International Nuclear Information System (INIS)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility's life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996

  11. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples.

    Science.gov (United States)

    Keller, A; Danner, N; Grimmer, G; Ankenbrand, M; von der Ohe, K; von der Ohe, W; Rost, S; Härtel, S; Steffan-Dewenter, I

    2015-03-01

    The identification of pollen plays an important role in ecology, palaeo-climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error-prone task. Next-generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next-generation sequencing of amplicons from the highly variable, species-specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high-throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next-generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Evaluating next-generation sequencing for direct clinical diagnostics in diarrhoeal disease

    DEFF Research Database (Denmark)

    Joensen, Katrine Grimstrup; Engsbro, A L Ø; Lukjancenko, Oksana

    2017-01-01

    The accurate microbiological diagnosis of diarrhoea involves numerous laboratory tests and, often, the pathogen is not identified in time to guide clinical management. With next-generation sequencing (NGS) becoming cheaper, it has huge potential in routine diagnostics. The aim of this study...... was to evaluate the potential of NGS-based diagnostics through direct sequencing of faecal samples. Fifty-eight clinical faecal samples were obtained from patients with diarrhoea as part of the routine diagnostics at Hvidovre University Hospital, Denmark. Ten samples from healthy individuals were also included...

  13. ReQON: a Bioconductor package for recalibrating quality scores from next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Cabanski Christopher R

    2012-09-01

    Full Text Available Abstract Background Next-generation sequencing technologies have become important tools for genome-wide studies. However, the quality scores that are assigned to each base have been shown to be inaccurate. If the quality scores are used in downstream analyses, these inaccuracies can have a significant impact on the results. Results Here we present ReQON, a tool that recalibrates the base quality scores from an input BAM file of aligned sequencing data using logistic regression. ReQON also generates diagnostic plots showing the effectiveness of the recalibration. We show that ReQON produces quality scores that are both more accurate, in the sense that they more closely correspond to the probability of a sequencing error, and do a better job of discriminating between sequencing errors and non-errors than the original quality scores. We also compare ReQON to other available recalibration tools and show that ReQON is less biased and performs favorably in terms of quality score accuracy. Conclusion ReQON is an open source software package, written in R and available through Bioconductor, for recalibrating base quality scores for next-generation sequencing data. ReQON produces a new BAM file with more accurate quality scores, which can improve the results of downstream analysis, and produces several diagnostic plots showing the effectiveness of the recalibration.

  14. Unifying and generating of space vector modulation sequences for multilevel converter

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2014-01-01

    Space Vector Modulation (SVM) is a powerful method which enables some freedom to generate the modulation sequences and modify the performances of converter. However, in the multi-level converter structures, the number of switching state redundancies significantly increases, and the determination...

  15. Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome

    Directory of Open Access Journals (Sweden)

    Cseke Leland J

    2011-05-01

    Full Text Available Abstract Background Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. Results We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. Conclusions The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.

  16. RAMBO-K: Rapid and Sensitive Removal of Background Sequences from Next Generation Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Simon H Tausch

    Full Text Available The assembly of viral or endosymbiont genomes from Next Generation Sequencing (NGS data is often hampered by the predominant abundance of reads originating from the host organism. These reads increase the memory and CPU time usage of the assembler and can lead to misassemblies.We developed RAMBO-K (Read Assignment Method Based On K-mers, a tool which allows rapid and sensitive removal of unwanted host sequences from NGS datasets. Reaching a speed of 10 Megabases/s on 4 CPU cores and a standard hard drive, RAMBO-K is faster than any tool we tested, while showing a consistently high sensitivity and specificity across different datasets.RAMBO-K rapidly and reliably separates reads from different species without data preprocessing. It is suitable as a straightforward standard solution for workflows dealing with mixed datasets. Binaries and source code (java and python are available from http://sourceforge.net/projects/rambok/.

  17. Targeted next-generation sequencing in monogenic dyslipidemias.

    Science.gov (United States)

    Hegele, Robert A; Ban, Matthew R; Cao, Henian; McIntyre, Adam D; Robinson, John F; Wang, Jian

    2015-04-01

    To evaluate the potential clinical translation of high-throughput next-generation sequencing (NGS) methods in diagnosis and management of dyslipidemia. Recent NGS experiments indicate that most causative genes for monogenic dyslipidemias are already known. Thus, monogenic dyslipidemias can now be diagnosed using targeted NGS. Targeting of dyslipidemia genes can be achieved by either: designing custom reagents for a dyslipidemia-specific NGS panel; or performing genome-wide NGS and focusing on genes of interest. Advantages of the former approach are lower cost and limited potential to detect incidental pathogenic variants unrelated to dyslipidemia. However, the latter approach is more flexible because masking criteria can be altered as knowledge advances, with no need for re-design of reagents or follow-up sequencing runs. Also, the cost of genome-wide analysis is decreasing and ethical concerns can likely be mitigated. DNA-based diagnosis is already part of the clinical diagnostic algorithms for familial hypercholesterolemia. Furthermore, DNA-based diagnosis is supplanting traditional biochemical methods to diagnose chylomicronemia caused by deficiency of lipoprotein lipase or its co-factors. The increasing availability and decreasing cost of clinical NGS for dyslipidemia means that its potential benefits can now be evaluated on a larger scale.

  18. Adiabatic density perturbations and matter generation from the minimal supersymmetric standard model.

    Science.gov (United States)

    Enqvist, Kari; Kasuya, Shinta; Mazumdar, Anupam

    2003-03-07

    We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small.

  19. Real-time stereo generation for surgical vision during minimal invasive robotic surgery

    Science.gov (United States)

    Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod

    2016-03-01

    This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.

  20. Analysis of selected genes associated with cardiomyopathy by next-generation sequencing.

    Science.gov (United States)

    Szabadosova, Viktoria; Boronova, Iveta; Ferenc, Peter; Tothova, Iveta; Bernasovska, Jarmila; Zigova, Michaela; Kmec, Jan; Bernasovsky, Ivan

    2018-02-01

    As the leading cause of congestive heart failure, cardiomyopathy represents a heterogenous group of heart muscle disorders. Despite considerable progress being made in the genetic diagnosis of cardiomyopathy by detection of the mutations in the most prevalent cardiomyopathy genes, the cause remains unsolved in many patients. High-throughput mutation screening in the disease genes for cardiomyopathy is now possible because of using target enrichment followed by next-generation sequencing. The aim of the study was to analyze a panel of genes associated with dilated or hypertrophic cardiomyopathy based on previously published results in order to identify the subjects at risk. The method of next-generation sequencing by IlluminaHiSeq 2500 platform was used to detect sequence variants in 16 individuals diagnosed with dilated or hypertrophic cardiomyopathy. Detected variants were filtered and the functional impact of amino acid changes was predicted by computational programs. DNA samples of the 16 patients were analyzed by whole exome sequencing. We identified six nonsynonymous variants that were shown to be pathogenic in all used prediction softwares: rs3744998 (EPG5), rs11551768 (MGME1), rs148374985 (MURC), rs78461695 (PLEC), rs17158558 (RET) and rs2295190 (SYNE1). Two of the analyzed sequence variants had minor allele frequency (MAF)MURC), rs34580776 (MYBPC3). Our data support the potential role of the detected variants in pathogenesis of dilated or hypertrophic cardiomyopathy; however, the possibility that these variants might not be true disease-causing variants but are susceptibility alleles that require additional mutations or injury to cause the clinical phenotype of disease must be considered. © 2017 Wiley Periodicals, Inc.

  1. Efficiency to Discovery Transgenic Loci in GM Rice Using Next Generation Sequencing Whole Genome Re-sequencing

    Directory of Open Access Journals (Sweden)

    Doori Park

    2015-09-01

    Full Text Available Molecular characterization technology in genetically modified organisms, in addition to how transgenic biotechnologies are developed now require full transparency to assess the risk to living modified and non-modified organisms. Next generation sequencing (NGS methodology is suggested as an effective means in genome characterization and detection of transgenic insertion locations. In the present study, we applied NGS to insert transgenic loci, specifically the epidermal growth factor (EGF in genetically modified rice cells. A total of 29.3 Gb (~72× coverage was sequenced with a 2 × 150 bp paired end method by Illumina HiSeq2500, which was consecutively mapped to the rice genome and T-vector sequence. The compatible pairs of reads were successfully mapped to 10 loci on the rice chromosome and vector sequences were validated to the insertion location by polymerase chain reaction (PCR amplification. The EGF transgenic site was confirmed only on chromosome 4 by PCR. Results of this study demonstrated the success of NGS data to characterize the rice genome. Bioinformatics analyses must be developed in association with NGS data to identify highly accurate transgenic sites.

  2. Uncovering of Classical Swine Fever Virus adaptive response to vaccination by Next Generation Sequencing

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Orton, Richard; Höper, Dirk

    Next Generation Sequencing (NGS) has rapidly become the preferred technology in nucleotide sequencing, and can be applied to unravel molecular adaptation of RNA viruses such as Classical Swine Fever Virus (CSFV). However, the detection of low frequency variants within viral populations by NGS...... is affected by errors introduced during sample preparation and sequencing, and so far no definitive solution to this problem has been presented....

  3. A microfluidic DNA library preparation platform for next-generation sequencing.

    Science.gov (United States)

    Kim, Hanyoup; Jebrail, Mais J; Sinha, Anupama; Bent, Zachary W; Solberg, Owen D; Williams, Kelly P; Langevin, Stanley A; Renzi, Ronald F; Van De Vreugde, James L; Meagher, Robert J; Schoeniger, Joseph S; Lane, Todd W; Branda, Steven S; Bartsch, Michael S; Patel, Kamlesh D

    2013-01-01

    Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  4. A microfluidic DNA library preparation platform for next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Hanyoup Kim

    Full Text Available Next-generation sequencing (NGS is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM. The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  5. Application of the entropy generation minimization method to a solar heat exchanger: A pseudo-optimization design process based on the analysis of the local entropy generation maps

    International Nuclear Information System (INIS)

    Giangaspero, Giorgio; Sciubba, Enrico

    2013-01-01

    This paper presents an application of the entropy generation minimization method to the pseudo-optimization of the configuration of the heat exchange surfaces in a Solar Rooftile. An initial “standard” commercial configuration is gradually improved by introducing design changes aimed at the reduction of the thermodynamic losses due to heat transfer and fluid friction. Different geometries (pins, fins and others) are analysed with a commercial CFD (Computational Fluid Dynamics) code that also computes the local entropy generation rate. The design improvement process is carried out on the basis of a careful analysis of the local entropy generation maps and the rationale behind each step of the process is discussed in this perspective. The results are compared with other entropy generation minimization techniques available in the recent technical literature. It is found that the geometry with pin-fins has the best performance among the tested ones, and that the optimal pin array shape parameters (pitch and span) can be determined by a critical analysis of the integrated and local entropy maps and of the temperature contours. - Highlights: ► An entropy generation minimization method is applied to a solar heat exchanger. ► The approach is heuristic and leads to a pseudo-optimization process with CFD as main tool. ► The process is based on the evaluation of the local entropy generation maps. ► The geometry with pin-fins in general outperforms all other configurations. ► The entropy maps and temperature contours can be used to determine the optimal pin array design parameters

  6. The Use of Next Generation Sequencing and Junction Sequence Analysis Bioinformatics to Achieve Molecular Characterization of Crops Improved Through Modern Biotechnology

    Directory of Open Access Journals (Sweden)

    David Kovalic

    2012-11-01

    Full Text Available The assessment of genetically modified (GM crops for regulatory approval currently requires a detailed molecular characterization of the DNA sequence and integrity of the transgene locus. In addition, molecular characterization is a critical component of event selection and advancement during product development. Typically, molecular characterization has relied on Southern blot analysis to establish locus and copy number along with targeted sequencing of polymerase chain reaction products spanning any inserted DNA to complete the characterization process. Here we describe the use of next generation (NexGen sequencing and junction sequence analysis bioinformatics in a new method for achieving full molecular characterization of a GM event without the need for Southern blot analysis. In this study, we examine a typical GM soybean [ (L. Merr.] line and demonstrate that this new method provides molecular characterization equivalent to the current Southern blot-based method. We also examine an event containing in vivo DNA rearrangement of multiple transfer DNA inserts to demonstrate that the new method is effective at identifying complex cases. Next generation sequencing and bioinformatics offers certain advantages over current approaches, most notably the simplicity, efficiency, and consistency of the method, and provides a viable alternative for efficiently and robustly achieving molecular characterization of GM crops.

  7. Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition.

    Science.gov (United States)

    Pezzulo, Giovanni; Kemere, Caleb; van der Meer, Matthijs A A

    2017-05-01

    Information processing in the rodent hippocampus is fundamentally shaped by internally generated sequences (IGSs), expressed during two different network states: theta sequences, which repeat and reset at the ∼8 Hz theta rhythm associated with active behavior, and punctate sharp wave-ripple (SWR) sequences associated with wakeful rest or slow-wave sleep. A potpourri of diverse functional roles has been proposed for these IGSs, resulting in a fragmented conceptual landscape. Here, we advance a unitary view of IGSs, proposing that they reflect an inferential process that samples a policy from the animal's generative model, supported by hippocampus-specific priors. The same inference affords different cognitive functions when the animal is in distinct dynamical modes, associated with specific functional networks. Theta sequences arise when inference is coupled to the animal's action-perception cycle, supporting online spatial decisions, predictive processing, and episode encoding. SWR sequences arise when the animal is decoupled from the action-perception cycle and may support offline cognitive processing, such as memory consolidation, the prospective simulation of spatial trajectories, and imagination. We discuss the empirical bases of this proposal in relation to rodent studies and highlight how the proposed computational principles can shed light on the mechanisms of future-oriented cognition in humans. © 2017 New York Academy of Sciences.

  8. Next generation sequencing and its applications in forensic genetics.

    Science.gov (United States)

    Børsting, Claus; Morling, Niels

    2015-09-01

    It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs, insertion/deletions, mRNA) that cannot be analyzed simultaneously with the standard PCR-CE methods used today. The true variation in core forensic STR loci has been uncovered, and previously unknown STR alleles have been discovered. The detailed sequence information may aid mixture interpretation and will increase the statistical weight of the evidence. In this review, we will give an introduction to NGS and single-molecule sequencing, and we will discuss the possible applications of NGS in forensic genetics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Network Biomarkers of Bladder Cancer Based on a Genome-Wide Genetic and Epigenetic Network Derived from Next-Generation Sequencing Data.

    Science.gov (United States)

    Li, Cheng-Wei; Chen, Bor-Sen

    2016-01-01

    Epigenetic and microRNA (miRNA) regulation are associated with carcinogenesis and the development of cancer. By using the available omics data, including those from next-generation sequencing (NGS), genome-wide methylation profiling, candidate integrated genetic and epigenetic network (IGEN) analysis, and drug response genome-wide microarray analysis, we constructed an IGEN system based on three coupling regression models that characterize protein-protein interaction networks (PPINs), gene regulatory networks (GRNs), miRNA regulatory networks (MRNs), and epigenetic regulatory networks (ERNs). By applying system identification method and principal genome-wide network projection (PGNP) to IGEN analysis, we identified the core network biomarkers to investigate bladder carcinogenic mechanisms and design multiple drug combinations for treating bladder cancer with minimal side-effects. The progression of DNA repair and cell proliferation in stage 1 bladder cancer ultimately results not only in the derepression of miR-200a and miR-200b but also in the regulation of the TNF pathway to metastasis-related genes or proteins, cell proliferation, and DNA repair in stage 4 bladder cancer. We designed a multiple drug combination comprising gefitinib, estradiol, yohimbine, and fulvestrant for treating stage 1 bladder cancer with minimal side-effects, and another multiple drug combination comprising gefitinib, estradiol, chlorpromazine, and LY294002 for treating stage 4 bladder cancer with minimal side-effects.

  10. miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments.

    Science.gov (United States)

    Hackenberg, Michael; Sturm, Martin; Langenberger, David; Falcón-Pérez, Juan Manuel; Aransay, Ana M

    2009-07-01

    Next-generation sequencing allows now the sequencing of small RNA molecules and the estimation of their expression levels. Consequently, there will be a high demand of bioinformatics tools to cope with the several gigabytes of sequence data generated in each single deep-sequencing experiment. Given this scene, we developed miRanalyzer, a web server tool for the analysis of deep-sequencing experiments for small RNAs. The web server tool requires a simple input file containing a list of unique reads and its copy numbers (expression levels). Using these data, miRanalyzer (i) detects all known microRNA sequences annotated in miRBase, (ii) finds all perfect matches against other libraries of transcribed sequences and (iii) predicts new microRNAs. The prediction of new microRNAs is an especially important point as there are many species with very few known microRNAs. Therefore, we implemented a highly accurate machine learning algorithm for the prediction of new microRNAs that reaches AUC values of 97.9% and recall values of up to 75% on unseen data. The web tool summarizes all the described steps in a single output page, which provides a comprehensive overview of the analysis, adding links to more detailed output pages for each analysis module. miRanalyzer is available at http://web.bioinformatics.cicbiogune.es/microRNA/.

  11. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.

    Science.gov (United States)

    Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P

    2016-01-01

    Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.

  12. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.

    Directory of Open Access Journals (Sweden)

    Satish K Guttikonda

    Full Text Available Demand for the commercial use of genetically modified (GM crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.

  13. Next generation sequencing and its applications in forensic genetics

    DEFF Research Database (Denmark)

    Børsting, Claus; Morling, Niels

    2015-01-01

    articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs......It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have...... matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific...

  14. Comparison of DNA Quantification Methods for Next Generation Sequencing.

    Science.gov (United States)

    Robin, Jérôme D; Ludlow, Andrew T; LaRanger, Ryan; Wright, Woodring E; Shay, Jerry W

    2016-04-06

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library's heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality.

  15. Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.

    Science.gov (United States)

    Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2014-05-23

    The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.

  16. Exome sequencing generates high quality data in non-target regions

    Directory of Open Access Journals (Sweden)

    Guo Yan

    2012-05-01

    Full Text Available Abstract Background Exome sequencing using next-generation sequencing technologies is a cost efficient approach to selectively sequencing coding regions of human genome for detection of disease variants. A significant amount of DNA fragments from the capture process fall outside target regions, and sequence data for positions outside target regions have been mostly ignored after alignment. Result We performed whole exome sequencing on 22 subjects using Agilent SureSelect capture reagent and 6 subjects using Illumina TrueSeq capture reagent. We also downloaded sequencing data for 6 subjects from the 1000 Genomes Project Pilot 3 study. Using these data, we examined the quality of SNPs detected outside target regions by computing consistency rate with genotypes obtained from SNP chips or the Hapmap database, transition-transversion (Ti/Tv ratio, and percentage of SNPs inside dbSNP. For all three platforms, we obtained high-quality SNPs outside target regions, and some far from target regions. In our Agilent SureSelect data, we obtained 84,049 high-quality SNPs outside target regions compared to 65,231 SNPs inside target regions (a 129% increase. For our Illumina TrueSeq data, we obtained 222,171 high-quality SNPs outside target regions compared to 95,818 SNPs inside target regions (a 232% increase. For the data from the 1000 Genomes Project, we obtained 7,139 high-quality SNPs outside target regions compared to 1,548 SNPs inside target regions (a 461% increase. Conclusions These results demonstrate that a significant amount of high quality genotypes outside target regions can be obtained from exome sequencing data. These data should not be ignored in genetic epidemiology studies.

  17. Analysis of optimal Reynolds number for developing laminar forced convection in double sine ducts based on entropy generation minimization principle

    International Nuclear Information System (INIS)

    Ko, T.H.

    2006-01-01

    In the present paper, the entropy generation and optimal Reynolds number for developing forced convection in a double sine duct with various wall heat fluxes, which frequently occurs in plate heat exchangers, are studied based on the entropy generation minimization principle by analytical thermodynamic analysis as well as numerical investigation. According to the thermodynamic analysis, a very simple expression for the optimal Reynolds number for the double sine duct as a function of mass flow rate, wall heat flux, working fluid and geometric dimensions is proposed. In the numerical simulations, the investigated Reynolds number (Re) covers the range from 86 to 2000 and the wall heat flux (q'') varies as 160, 320 and 640 W/m 2 . From the numerical simulation of the developing laminar forced convection in the double sine duct, the effect of Reynolds number on entropy generation in the duct has been examined, through which the optimal Reynolds number with minimal entropy generation is detected. The optimal Reynolds number obtained from the analytical thermodynamic analysis is compared with the one from the numerical solutions and is verified to have a similar magnitude of entropy generation as the minimal entropy generation predicted by the numerical simulations. The optimal analysis provided in the present paper gives worthy information for heat exchanger design, since the thermal system could have the least irreversibility and best exergy utilization if the optimal Re can be used according to practical design conditions

  18. Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on next-generation sequencing.

    Science.gov (United States)

    Zhou, Wei; Hu, Yiyi; Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon.

  19. Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing

    Science.gov (United States)

    Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon. PMID:23875008

  20. Masking as an effective quality control method for next-generation sequencing data analysis.

    Science.gov (United States)

    Yun, Sajung; Yun, Sijung

    2014-12-13

    Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).

  1. Clinical Use of Next-Generation Sequencing in the Diagnosis of Wilson’s Disease

    Directory of Open Access Journals (Sweden)

    Dániel Németh

    2016-01-01

    Full Text Available Objective. Wilson’s disease is a disorder of copper metabolism which is fatal without treatment. The great number of disease-causing ATP7B gene mutations and the variable clinical presentation of WD may cause a real diagnostic challenge. The emergence of next-generation sequencing provides a time-saving, cost-effective method for full sequencing of the whole ATP7B gene compared to the traditional Sanger sequencing. This is the first report on the clinical use of NGS to examine ATP7B gene. Materials and Methods. We used Ion Torrent Personal Genome Machine in four heterozygous patients for the identification of the other mutations and also in two patients with no known mutation. One patient with acute on chronic liver failure was a candidate for acute liver transplantation. The results were validated by Sanger sequencing. Results. In each case, the diagnosis of Wilson’s disease was confirmed by identifying the mutations in both alleles within 48 hours. One novel mutation (p.Ala1270Ile was found beyond the eight other known ones. The rapid detection of the mutations made possible the prompt diagnosis of WD in a patient with acute liver failure. Conclusions. According to our results we found next-generation sequencing a very useful, reliable, time-saving, and cost-effective method for diagnosing Wilson’s disease in selected cases.

  2. Am I my Family's Keeper? : Disclosure Dilemmas in Next Generation Sequencing

    NARCIS (Netherlands)

    Wouters, Roel H P; Bijlsma, Rhodé M; Ausems, Margreet G E M; van Delden, Johannes J M; Voest, Emile E; Bredenoord, Annelien L

    2016-01-01

    Ever since genetic testing is possible for specific mutations, ethical debate has sparked on the question of whether professionals have a duty to warn not only patients but also their relatives that might be at risk for hereditary diseases. As next generation sequencing swiftly finds its way into

  3. Westinghouse Hanford Company waste minimization actions

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1988-09-01

    Companies that generate hazardous waste materials are now required by national regulations to establish a waste minimization program. Accordingly, in FY88 the Westinghouse Hanford Company formed a waste minimization team organization. The purpose of the team is to assist the company in its efforts to minimize the generation of waste, train personnel on waste minimization techniques, document successful waste minimization effects, track dollar savings realized, and to publicize and administer an employee incentive program. A number of significant actions have been successful, resulting in the savings of materials and dollars. The team itself has been successful in establishing some worthwhile minimization projects. This document briefly describes the waste minimization actions that have been successful to date. 2 refs., 26 figs., 3 tabs

  4. Application of Portfolio Theory to Minimization of Generation Variability in a System with Wind plants

    International Nuclear Information System (INIS)

    Sabolic, D.

    2016-01-01

    This paper evaluates validity of modern portfolio theory (MPT) for planning of installation of new wind plants with the lowest possible generation variability for given expected yearly generation. Suppose a Planner had historic meteorological data on wind speeds at a finite number of locations over longer time periods, and that they were technically convertible to time series of forecasted generation powers per megawatt of installed capacity. Suppose further that she intended to upgrade existing system with certain fixed amount of new wind plant capacity. Then she would be able to allocate shares in that total capacity to the available locations in a way that suits her policy goals regarding relation between total expected annual generation and total variability of generation best. Minimization of variability is a legitimate policy goal because it increases total costs of energy supply, so that leaving generation to vary more than technically necessary is economically inefficient. This article focuses on applicability of portfolio theory to such a problem. In the presented research, measured 15-minute data of wind generation in existing Croatian wind plants were used.(author).

  5. Analysis of Litopenaeus vannamei transcriptome using the next-generation DNA sequencing technique.

    Directory of Open Access Journals (Sweden)

    Chaozheng Li

    Full Text Available BACKGROUND: Pacific white shrimp (Litopenaeus vannamei, the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. METHODOLOGY/PRINCIPAL FINDINGS: This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG categories, 8171 unigenes were assigned into 51 Gene ontology (GO functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. CONCLUSIONS/SIGNIFICANCE: The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei.

  6. Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis

    Directory of Open Access Journals (Sweden)

    Arias Covadonga

    2007-06-01

    Full Text Available Abstract Background The ciliate protozoan Ichthyophthirius multifiliis (Ich is an important parasite of freshwater fish that causes 'white spot disease' leading to significant losses. A genomic resource for large-scale studies of this parasite has been lacking. To study gene expression involved in Ich pathogenesis and virulence, our goal was to generate expressed sequence tags (ESTs for the development of a powerful microarray platform for the analysis of global gene expression in this species. Here, we initiated a project to sequence and analyze over 10,000 ESTs. Results We sequenced 10,368 EST clones using a normalized cDNA library made from pooled samples of the trophont, tomont, and theront life-cycle stages, and generated 9,769 sequences (94.2% success rate. Post-sequencing processing led to 8,432 high quality sequences. Clustering analysis of these ESTs allowed identification of 4,706 unique sequences containing 976 contigs and 3,730 singletons. These unique sequences represent over two million base pairs (~10% of Plasmodium falciparum genome, a phylogenetically related protozoan. BLASTX searches produced 2,518 significant (E-value -5 hits and further Gene Ontology (GO analysis annotated 1,008 of these genes. The ESTs were analyzed comparatively against the genomes of the related protozoa Tetrahymena thermophila and P. falciparum, allowing putative identification of additional genes. All the EST sequences were deposited by dbEST in GenBank (GenBank: EG957858–EG966289. Gene discovery and annotations are presented and discussed. Conclusion This set of ESTs represents a significant proportion of the Ich transcriptome, and provides a material basis for the development of microarrays useful for gene expression studies concerning Ich development, pathogenesis, and virulence.

  7. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.

    Science.gov (United States)

    Wang, Anbang; Wang, Longsheng; Li, Pu; Wang, Yuncai

    2017-02-20

    Chaotic external-cavity semiconductor laser (ECL) is a promising entropy source for generation of high-speed physical random bits or digital keys. The rate and randomness is unfortunately limited by laser relaxation oscillation and external-cavity resonance, and is usually improved by complicated post processing. Here, we propose using a physical broadband white chaos generated by optical heterodyning of two ECLs as entropy source to construct high-speed random bit generation (RBG) with minimal post processing. The optical heterodyne chaos not only has a white spectrum without signature of relaxation oscillation and external-cavity resonance but also has a symmetric amplitude distribution. Thus, after quantization with a multi-bit analog-digital-convertor (ADC), random bits can be obtained by extracting several least significant bits (LSBs) without any other processing. In experiments, a white chaos with a 3-dB bandwidth of 16.7 GHz is generated. Its entropy rate is estimated as 16 Gbps by single-bit quantization which means a spectrum efficiency of 96%. With quantization using an 8-bit ADC, 320-Gbps physical RBG is achieved by directly extracting 4 LSBs at 80-GHz sampling rate.

  8. NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets

    OpenAIRE

    Breese, Marcus R.; Liu, Yunlong

    2013-01-01

    Summary: NGSUtils is a suite of software tools for manipulating data common to next-generation sequencing experiments, such as FASTQ, BED and BAM format files. These tools provide a stable and modular platform for data management and analysis.

  9. Discussion on the applicability of entropy generation minimization and entransy theory to the evaluation of thermodynamic performance for heat pump systems

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2014-01-01

    Highlights: • Seven parameters are applied to the analyses of heat pump systems. • Applicability of entropy generation minimization and entransy theory is discussed. • All concepts except for entransy increase rate (EI) decreases with increasing COP. • Only EI increases with increasing heat flow into the high temperature heat sink. • Applicability of both theories is conditional, depending on the objectives. - Abstract: Based on the entropy generation minimization and entransy theory, we discuss the applicability of the concepts of entropy generation rate, entropy generation number, revised entropy generation number, exergy efficiency, entransy increase rate, entransy increase coefficient and entransy efficiency to the analyses of heat pump systems in this paper. The theoretical analyses show that all the concepts except for the entransy increase rate decrease monotonically with increasing COP, while only the entransy increase rate increases monotonically with increasing heat flow pumped into the high temperature heat sink. It is shown that the entransy increase rate is not as convenient as the other concepts for the COP analyses, while it is suitable for the analyses of the heat flow into the high temperature heat sources. Some numerical examples are also presented, and the results have verified the theoretical analyses. Therefore, the applicability of entropy generation minimization and entransy theory to the analyses of heat pump systems is conditional, depending on the design objectives

  10. Rapid and Easy Protocol for Quantification of Next-Generation Sequencing Libraries.

    Science.gov (United States)

    Hawkins, Steve F C; Guest, Paul C

    2018-01-01

    The emergence of next-generation sequencing (NGS) over the last 10 years has increased the efficiency of DNA sequencing in terms of speed, ease, and price. However, the exact quantification of a NGS library is crucial in order to obtain good data on sequencing platforms developed by the current market leader Illumina. Different approaches for DNA quantification are available currently and the most commonly used are based on analysis of the physical properties of the DNA through spectrophotometric or fluorometric methods. Although these methods are technically simple, they do not allow exact quantification as can be achieved using a real-time quantitative PCR (qPCR) approach. A qPCR protocol for DNA quantification with applications in NGS library preparation studies is presented here. This can be applied in various fields of study such as medical disorders resulting from nutritional programming disturbances.

  11. Attentional load and implicit sequence learning.

    Science.gov (United States)

    Shanks, David R; Rowland, Lee A; Ranger, Mandeep S

    2005-06-01

    A widely employed conceptualization of implicit learning hypothesizes that it makes minimal demands on attentional resources. This conjecture was investigated by comparing learning under single-task and dual-task conditions in the sequential reaction time (SRT) task. Participants learned probabilistic sequences, with dual-task participants additionally having to perform a counting task using stimuli that were targets in the SRT display. Both groups were then tested for sequence knowledge under single-task (Experiments 1 and 2) or dual-task (Experiment 3) conditions. Participants also completed a free generation task (Experiments 2 and 3) under inclusion or exclusion conditions to determine if sequence knowledge was conscious or unconscious in terms of its access to intentional control. The experiments revealed that the secondary task impaired sequence learning and that sequence knowledge was consciously accessible. These findings disconfirm both the notion that implicit learning is able to proceed normally under conditions of divided attention, and that the acquired knowledge is inaccessible to consciousness. A unitary framework for conceptualizing implicit and explicit learning is proposed.

  12. Estimation of allele frequency and association mapping using next-generation sequencing data

    DEFF Research Database (Denmark)

    Kim, Su Yeon; Lohmueller, Kirk E; Albrechtsen, Anders

    2011-01-01

    Estimation of allele frequency is of fundamental importance in population genetic analyses and in association mapping. In most studies using next-generation sequencing, a cost effective approach is to use medium or low-coverage data (e.g., frequency estimation...

  13. Applications and challenges of next-generation sequencing in Brassica species.

    Science.gov (United States)

    Wei, Lijuan; Xiao, Meili; Hayward, Alice; Fu, Donghui

    2013-12-01

    Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.

  14. Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing

    DEFF Research Database (Denmark)

    Weisschuh, Nicole; Mayer, Anja K; Strom, Tim M

    2016-01-01

    Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing...

  15. A Next-Generation Sequencing Strategy for Evaluating the Most Common Genetic Abnormalities in Multiple Myeloma.

    Science.gov (United States)

    Jiménez, Cristina; Jara-Acevedo, María; Corchete, Luis A; Castillo, David; Ordóñez, Gonzalo R; Sarasquete, María E; Puig, Noemí; Martínez-López, Joaquín; Prieto-Conde, María I; García-Álvarez, María; Chillón, María C; Balanzategui, Ana; Alcoceba, Miguel; Oriol, Albert; Rosiñol, Laura; Palomera, Luis; Teruel, Ana I; Lahuerta, Juan J; Bladé, Joan; Mateos, María V; Orfão, Alberto; San Miguel, Jesús F; González, Marcos; Gutiérrez, Norma C; García-Sanz, Ramón

    2017-01-01

    Identification and characterization of genetic alterations are essential for diagnosis of multiple myeloma and may guide therapeutic decisions. Currently, genomic analysis of myeloma to cover the diverse range of alterations with prognostic impact requires fluorescence in situ hybridization (FISH), single nucleotide polymorphism arrays, and sequencing techniques, which are costly and labor intensive and require large numbers of plasma cells. To overcome these limitations, we designed a targeted-capture next-generation sequencing approach for one-step identification of IGH translocations, V(D)J clonal rearrangements, the IgH isotype, and somatic mutations to rapidly identify risk groups and specific targetable molecular lesions. Forty-eight newly diagnosed myeloma patients were tested with the panel, which included IGH and six genes that are recurrently mutated in myeloma: NRAS, KRAS, HRAS, TP53, MYC, and BRAF. We identified 14 of 17 IGH translocations previously detected by FISH and three confirmed translocations not detected by FISH, with the additional advantage of breakpoint identification, which can be used as a target for evaluating minimal residual disease. IgH subclass and V(D)J rearrangements were identified in 77% and 65% of patients, respectively. Mutation analysis revealed the presence of missense protein-coding alterations in at least one of the evaluating genes in 16 of 48 patients (33%). This method may represent a time- and cost-effective diagnostic method for the molecular characterization of multiple myeloma. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  16. Very high resolution single pass HLA genotyping using amplicon sequencing on the 454 next generation DNA sequencers: Comparison with Sanger sequencing.

    Science.gov (United States)

    Yamamoto, F; Höglund, B; Fernandez-Vina, M; Tyan, D; Rastrou, M; Williams, T; Moonsamy, P; Goodridge, D; Anderson, M; Erlich, H A; Holcomb, C L

    2015-12-01

    Compared to Sanger sequencing, next-generation sequencing offers advantages for high resolution HLA genotyping including increased throughput, lower cost, and reduced genotype ambiguity. Here we describe an enhancement of the Roche 454 GS GType HLA genotyping assay to provide very high resolution (VHR) typing, by the addition of 8 primer pairs to the original 14, to genotype 11 HLA loci. These additional amplicons help resolve common and well-documented alleles and exclude commonly found null alleles in genotype ambiguity strings. Simplification of workflow to reduce the initial preparation effort using early pooling of amplicons or the Fluidigm Access Array™ is also described. Performance of the VHR assay was evaluated on 28 well characterized cell lines using Conexio Assign MPS software which uses genomic, rather than cDNA, reference sequence. Concordance was 98.4%; 1.6% had no genotype assignment. Of concordant calls, 53% were unambiguous. To further assess the assay, 59 clinical samples were genotyped and results compared to unambiguous allele assignments obtained by prior sequence-based typing supplemented with SSO and/or SSP. Concordance was 98.7% with 58.2% as unambiguous calls; 1.3% could not be assigned. Our results show that the amplicon-based VHR assay is robust and can replace current Sanger methodology. Together with software enhancements, it has the potential to provide even higher resolution HLA typing. Copyright © 2015. Published by Elsevier Inc.

  17. Next-Generation Sequencing Workflow for NSCLC Critical Samples Using a Targeted Sequencing Approach by Ion Torrent PGM™ Platform.

    Science.gov (United States)

    Vanni, Irene; Coco, Simona; Truini, Anna; Rusmini, Marta; Dal Bello, Maria Giovanna; Alama, Angela; Banelli, Barbara; Mora, Marco; Rijavec, Erika; Barletta, Giulia; Genova, Carlo; Biello, Federica; Maggioni, Claudia; Grossi, Francesco

    2015-12-03

    Next-generation sequencing (NGS) is a cost-effective technology capable of screening several genes simultaneously; however, its application in a clinical context requires an established workflow to acquire reliable sequencing results. Here, we report an optimized NGS workflow analyzing 22 lung cancer-related genes to sequence critical samples such as DNA from formalin-fixed paraffin-embedded (FFPE) blocks and circulating free DNA (cfDNA). Snap frozen and matched FFPE gDNA from 12 non-small cell lung cancer (NSCLC) patients, whose gDNA fragmentation status was previously evaluated using a multiplex PCR-based quality control, were successfully sequenced with Ion Torrent PGM™. The robust bioinformatic pipeline allowed us to correctly call both Single Nucleotide Variants (SNVs) and indels with a detection limit of 5%, achieving 100% specificity and 96% sensitivity. This workflow was also validated in 13 FFPE NSCLC biopsies. Furthermore, a specific protocol for low input gDNA capable of producing good sequencing data with high coverage, high uniformity, and a low error rate was also optimized. In conclusion, we demonstrate the feasibility of obtaining gDNA from FFPE samples suitable for NGS by performing appropriate quality controls. The optimized workflow, capable of screening low input gDNA, highlights NGS as a potential tool in the detection, disease monitoring, and treatment of NSCLC.

  18. Screening for SNPs with Allele-Specific Methylation based on Next-Generation Sequencing Data

    OpenAIRE

    Hu, Bo; Ji, Yuan; Xu, Yaomin; Ting, Angela H

    2013-01-01

    Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multip...

  19. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Mower, Jeffrey P; Jansen, Robert K

    2013-12-29

    Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition

  20. Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit

    Science.gov (United States)

    Daoud, Hussein; Luco, Stephanie M.; Li, Rui; Bareke, Eric; Beaulieu, Chandree; Jarinova, Olga; Carson, Nancy; Nikkel, Sarah M.; Graham, Gail E.; Richer, Julie; Armour, Christine; Bulman, Dennis E.; Chakraborty, Pranesh; Geraghty, Michael; Lines, Matthew A.; Lacaze-Masmonteil, Thierry; Majewski, Jacek; Boycott, Kym M.; Dyment, David A.

    2016-01-01

    Background: Rare diseases often present in the first days and weeks of life and may require complex management in the setting of a neonatal intensive care unit (NICU). Exhaustive consultations and traditional genetic or metabolic investigations are costly and often fail to arrive at a final diagnosis when no recognizable syndrome is suspected. For this pilot project, we assessed the feasibility of next-generation sequencing as a tool to improve the diagnosis of rare diseases in newborns in the NICU. Methods: We retrospectively identified and prospectively recruited newborns and infants admitted to the NICU of the Children’s Hospital of Eastern Ontario and the Ottawa Hospital, General Campus, who had been referred to the medical genetics or metabolics inpatient consult service and had features suggesting an underlying genetic or metabolic condition. DNA from the newborns and parents was enriched for a panel of clinically relevant genes and sequenced on a MiSeq sequencing platform (Illumina Inc.). The data were interpreted with a standard informatics pipeline and reported to care providers, who assessed the importance of genotype–phenotype correlations. Results: Of 20 newborns studied, 8 received a diagnosis on the basis of next-generation sequencing (diagnostic rate 40%). The diagnoses were renal tubular dysgenesis, SCN1A-related encephalopathy syndrome, myotubular myopathy, FTO deficiency syndrome, cranioectodermal dysplasia, congenital myasthenic syndrome, autosomal dominant intellectual disability syndrome type 7 and Denys–Drash syndrome. Interpretation: This pilot study highlighted the potential of next-generation sequencing to deliver molecular diagnoses rapidly with a high success rate. With broader use, this approach has the potential to alter health care delivery in the NICU. PMID:27241786

  1. Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit.

    Science.gov (United States)

    Daoud, Hussein; Luco, Stephanie M; Li, Rui; Bareke, Eric; Beaulieu, Chandree; Jarinova, Olga; Carson, Nancy; Nikkel, Sarah M; Graham, Gail E; Richer, Julie; Armour, Christine; Bulman, Dennis E; Chakraborty, Pranesh; Geraghty, Michael; Lines, Matthew A; Lacaze-Masmonteil, Thierry; Majewski, Jacek; Boycott, Kym M; Dyment, David A

    2016-08-09

    Rare diseases often present in the first days and weeks of life and may require complex management in the setting of a neonatal intensive care unit (NICU). Exhaustive consultations and traditional genetic or metabolic investigations are costly and often fail to arrive at a final diagnosis when no recognizable syndrome is suspected. For this pilot project, we assessed the feasibility of next-generation sequencing as a tool to improve the diagnosis of rare diseases in newborns in the NICU. We retrospectively identified and prospectively recruited newborns and infants admitted to the NICU of the Children's Hospital of Eastern Ontario and the Ottawa Hospital, General Campus, who had been referred to the medical genetics or metabolics inpatient consult service and had features suggesting an underlying genetic or metabolic condition. DNA from the newborns and parents was enriched for a panel of clinically relevant genes and sequenced on a MiSeq sequencing platform (Illumina Inc.). The data were interpreted with a standard informatics pipeline and reported to care providers, who assessed the importance of genotype-phenotype correlations. Of 20 newborns studied, 8 received a diagnosis on the basis of next-generation sequencing (diagnostic rate 40%). The diagnoses were renal tubular dysgenesis, SCN1A-related encephalopathy syndrome, myotubular myopathy, FTO deficiency syndrome, cranioectodermal dysplasia, congenital myasthenic syndrome, autosomal dominant intellectual disability syndrome type 7 and Denys-Drash syndrome. This pilot study highlighted the potential of next-generation sequencing to deliver molecular diagnoses rapidly with a high success rate. With broader use, this approach has the potential to alter health care delivery in the NICU. © 2016 Canadian Medical Association or its licensors.

  2. Y-12 Plant waste minimization strategy

    International Nuclear Information System (INIS)

    Kane, M.A.

    1987-01-01

    The 1984 Amendments to the Resource Conservation and Recovery Act (RCRA) mandate that waste minimization be a major element of hazardous waste management. In response to this mandate and the increasing costs for waste treatment, storage, and disposal, the Oak Ridge Y-12 Plant developed a waste minimization program to encompass all types of wastes. Thus, waste minimization has become an integral part of the overall waste management program. Unlike traditional approaches, waste minimization focuses on controlling waste at the beginning of production instead of the end. This approach includes: (1) substituting nonhazardous process materials for hazardous ones, (2) recycling or reusing waste effluents, (3) segregating nonhazardous waste from hazardous and radioactive waste, and (4) modifying processes to generate less waste or less toxic waste. An effective waste minimization program must provide the appropriate incentives for generators to reduce their waste and provide the necessary support mechanisms to identify opportunities for waste minimization. This presentation focuses on the Y-12 Plant's strategy to implement a comprehensive waste minimization program. This approach consists of four major program elements: (1) promotional campaign, (2) process evaluation for waste minimization opportunities, (3) waste generation tracking system, and (4) information exchange network. The presentation also examines some of the accomplishments of the program and issues which need to be resolved

  3. Understanding Cancer Genome and Its Evolution by Next Generation Sequencing

    DEFF Research Database (Denmark)

    Hou, Yong

    Cancer will cause 13 million deaths by the year of 2030, ranking the second leading cause of death worldwide. Previous studies indicate that most of the cancers originate from cells that acquired somatic mutations and evolved as Darwin Theory. Ten biological insights of cancer have been summarized...... recently. Cutting-age technologies like next generation sequencing (NGS) enable exploring cancer genome and evolution much more efficiently. However, integrated cancer genome sequencing studies showed great inter-/intra-tumoral heterogeneity (ITH) and complex evolution patterns beyond the cancer biological...... knowledge we previously know. There is very limited knowledge of East Asia lung cancer genome except enrichment of EGFR mutations and lack of KRAS mutations. We carried out integrated genomic, transcriptomic and methylomic analysis of 335 primary Chinese lung adenocarcinomas (LUAD) and 35 corresponding...

  4. Multiple ECG Fiducial Points-Based Random Binary Sequence Generation for Securing Wireless Body Area Networks.

    Science.gov (United States)

    Zheng, Guanglou; Fang, Gengfa; Shankaran, Rajan; Orgun, Mehmet A; Zhou, Jie; Qiao, Li; Saleem, Kashif

    2017-05-01

    Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, and are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.

  5. Regenerator optimization of a Closed Brayton Cycle via entropy generation minimization

    International Nuclear Information System (INIS)

    Araújo, Élvis Falcão de; Ribeiro, Guilherme Borges; Guimarães, Lamartine N. F.

    2017-01-01

    This paper aims the numerical study of the heat transfer and fluid flow of a Closed Brayton Cycle (CBC) regenerator that is part of TERRA microreactor. This regenerator consists in a cross flow heat exchanger, where heat transfer occurs between internal fluid flow in radial tubes and external fluid flow passing perpendicularly to the tubes, which are disposed in a symmetrical cylindrical set where the number of tubes in the axial and radial directions can vary. In the simulations, mass flow inlet is varied for a fixed geometry. The fluid flow solution is provided by a commercial CFD solver and the entropy generation number calculation is later computed for optimization purposes. As a result, the entropy minimization method provides the regenerator configuration that enables the highest energy conversion efficiency. (author)

  6. Regenerator optimization of a Closed Brayton Cycle via entropy generation minimization

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, Élvis Falcão de; Ribeiro, Guilherme Borges; Guimarães, Lamartine N. F., E-mail: falcao@ieav.cta.br, E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avançacados (IEAv), São José dos Campos, SP (Brazil). Div. de Energia Nuclear

    2017-07-01

    This paper aims the numerical study of the heat transfer and fluid flow of a Closed Brayton Cycle (CBC) regenerator that is part of TERRA microreactor. This regenerator consists in a cross flow heat exchanger, where heat transfer occurs between internal fluid flow in radial tubes and external fluid flow passing perpendicularly to the tubes, which are disposed in a symmetrical cylindrical set where the number of tubes in the axial and radial directions can vary. In the simulations, mass flow inlet is varied for a fixed geometry. The fluid flow solution is provided by a commercial CFD solver and the entropy generation number calculation is later computed for optimization purposes. As a result, the entropy minimization method provides the regenerator configuration that enables the highest energy conversion efficiency. (author)

  7. Use of next-generation sequencing in oral cavity cancer

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Kruse, Torben A; Thomassen, Mads

    Background: Oral cavity cancer is a subgroup of head and neck cancer which is the world’s 6th most common cancer form. Oral squamous cell carcinomas (OSCC) constitute almost all oral cavity cancers, and OSCC are primarily attributed by excessive alcohol consumption and tobacco exposure...... of tumour cells exists. Conclusions: Use of next generation sequencing in oral cavity cancer can give valuable insight into the biology of the disease. By investigating intra tumour heterogeneity we see that the different tumour specimens in each patient are quite homogenous, but evidence of heterogeneous...

  8. Sequential unconstrained minimization algorithms for constrained optimization

    International Nuclear Information System (INIS)

    Byrne, Charles

    2008-01-01

    The problem of minimizing a function f(x):R J → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G k (x)=f(x)+g k (x), to obtain x k . The auxiliary functions g k (x):D subset of R J → R + are nonnegative on the set D, each x k is assumed to lie within D, and the objective is to minimize the continuous function f:R J → R over x in the set C = D-bar, the closure of D. We assume that such minimizers exist, and denote one such by x-circumflex. We assume that the functions g k (x) satisfy the inequalities 0≤g k (x)≤G k-1 (x)-G k-1 (x k-1 ), for k = 2, 3, .... Using this assumption, we show that the sequence {(x k )} is decreasing and converges to f(x-circumflex). If the restriction of f(x) to D has bounded level sets, which happens if x-circumflex is unique and f(x) is closed, proper and convex, then the sequence {x k } is bounded, and f(x*)=f(x-circumflex), for any cluster point x*. Therefore, if x-circumflex is unique, x* = x-circumflex and {x k } → x-circumflex. When x-circumflex is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton–Raphson method. The proof techniques used for SUMMA can be extended to obtain related results

  9. Combining information from linkage and association mapping for next-generation sequencing longitudinal family data.

    Science.gov (United States)

    Balliu, Brunilda; Uh, Hae-Won; Tsonaka, Roula; Boehringer, Stefan; Helmer, Quinta; Houwing-Duistermaat, Jeanine J

    2014-01-01

    In this analysis, we investigate the contributions that linkage-based methods, such as identical-by-descent mapping, can make to association mapping to identify rare variants in next-generation sequencing data. First, we identify regions in which cases share more segments identical-by-descent around a putative causal variant than do controls. Second, we use a two-stage mixed-effect model approach to summarize the single-nucleotide polymorphism data within each region and include them as covariates in the model for the phenotype. We assess the impact of linkage disequilibrium in determining identical-by-descent states between individuals by using markers with and without linkage disequilibrium for the first part and the impact of imputation in testing for association by using imputed genome-wide association studies or raw sequence markers for the second part. We apply the method to next-generation sequencing longitudinal family data from Genetic Association Workshop 18 and identify a significant region at chromosome 3: 40249244-41025167 (p-value = 2.3 × 10(-3)).

  10. Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data

    KAUST Repository

    Allam, Amin

    2015-07-14

    Motivation: Next-generation sequencing generates large amounts of data affected by errors in the form of substitutions, insertions or deletions of bases. Error correction based on the high-coverage information, typically improves de novo assembly. Most existing tools can correct substitution errors only; some support insertions and deletions, but accuracy in many cases is low. Results: We present Karect, a novel error correction technique based on multiple alignment. Our approach supports substitution, insertion and deletion errors. It can handle non-uniform coverage as well as moderately covered areas of the sequenced genome. Experiments with data from Illumina, 454 FLX and Ion Torrent sequencing machines demonstrate that Karect is more accurate than previous methods, both in terms of correcting individual-bases errors (up to 10% increase in accuracy gain) and post de novo assembly quality (up to 10% increase in NGA50). We also introduce an improved framework for evaluating the quality of error correction.

  11. Is the $1000 Genome as Near as We Think? A Cost Analysis of Next-Generation Sequencing

    NARCIS (Netherlands)

    Nimwegen, K.J.M. van; Soest, R.A.; Veltman, J.A.; Nelen, M.R.; Wilt, G.J. van der; Peart-Vissers, L.E.L.M.; Grutters, J.P.C.

    2016-01-01

    BACKGROUND: The substantial technological advancements in next-generation sequencing (NGS), combined with dropping costs, have allowed for a swift diffusion of NGS applications in clinical settings. Although several commercial parties report to have broken the $1000 barrier for sequencing an entire

  12. Assessing the 5S ribosomal RNA heterogeneity in Arabidopsis thaliana using short RNA next generation sequencing data.

    Science.gov (United States)

    Szymanski, Maciej; Karlowski, Wojciech M

    2016-01-01

    In eukaryotes, ribosomal 5S rRNAs are products of multigene families organized within clusters of tandemly repeated units. Accumulation of genomic data obtained from a variety of organisms demonstrated that the potential 5S rRNA coding sequences show a large number of variants, often incompatible with folding into a correct secondary structure. Here, we present results of an analysis of a large set of short RNA sequences generated by the next generation sequencing techniques, to address the problem of heterogeneity of the 5S rRNA transcripts in Arabidopsis and identification of potentially functional rRNA-derived fragments.

  13. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection.

    Science.gov (United States)

    Schlaberg, Robert; Chiu, Charles Y; Miller, Steve; Procop, Gary W; Weinstock, George

    2017-06-01

    - Metagenomic sequencing can be used for detection of any pathogens using unbiased, shotgun next-generation sequencing (NGS), without the need for sequence-specific amplification. Proof-of-concept has been demonstrated in infectious disease outbreaks of unknown causes and in patients with suspected infections but negative results for conventional tests. Metagenomic NGS tests hold great promise to improve infectious disease diagnostics, especially in immunocompromised and critically ill patients. - To discuss challenges and provide example solutions for validating metagenomic pathogen detection tests in clinical laboratories. A summary of current regulatory requirements, largely based on prior guidance for NGS testing in constitutional genetics and oncology, is provided. - Examples from 2 separate validation studies are provided for steps from assay design, and validation of wet bench and bioinformatics protocols, to quality control and assurance. - Although laboratory and data analysis workflows are still complex, metagenomic NGS tests for infectious diseases are increasingly being validated in clinical laboratories. Many parallels exist to NGS tests in other fields. Nevertheless, specimen preparation, rapidly evolving data analysis algorithms, and incomplete reference sequence databases are idiosyncratic to the field of microbiology and often overlooked.

  14. Calculation of Tajima's D and other neutrality test statistics from low depth next-generation sequencing data

    DEFF Research Database (Denmark)

    Korneliussen, Thorfinn Sand; Moltke, Ida; Albrechtsen, Anders

    2013-01-01

    A number of different statistics are used for detecting natural selection using DNA sequencing data, including statistics that are summaries of the frequency spectrum, such as Tajima's D. These statistics are now often being applied in the analysis of Next Generation Sequencing (NGS) data. Howeve......, estimates of frequency spectra from NGS data are strongly affected by low sequencing coverage; the inherent technology dependent variation in sequencing depth causes systematic differences in the value of the statistic among genomic regions....

  15. Investigation of next-generation sequencing data of Klebsiella pneumoniae using web-based tools.

    Science.gov (United States)

    Brhelova, Eva; Antonova, Mariya; Pardy, Filip; Kocmanova, Iva; Mayer, Jiri; Racil, Zdenek; Lengerova, Martina

    2017-11-01

    Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is necessary due to the increasing frequency of severe infections in patients. The decreasing cost of next-generation sequencing enables us to obtain a comprehensive overview of genetic information in one step. The aim of this study is to demonstrate and evaluate the utility and scope of the application of web-based databases to next-generation sequenced (NGS) data. The whole genomes of 11 clinical Klebsiella pneumoniae isolates were sequenced using Illumina MiSeq. Selected web-based tools were used to identify a variety of genetic characteristics, such as acquired antimicrobial resistance genes, multilocus sequence types, plasmid replicons, and identify virulence factors, such as virulence genes, cps clusters, urease-nickel clusters and efflux systems. Using web-based tools hosted by the Center for Genomic Epidemiology, we detected resistance to 8 main antimicrobial groups with at least 11 acquired resistance genes. The isolates were divided into eight sequence types (ST11, 23, 37, 323, 433, 495 and 562, and a new one, ST1646). All of the isolates carried replicons of large plasmids. Capsular types, virulence factors and genes coding AcrAB and OqxAB efflux pumps were detected using BIGSdb-Kp, whereas the selected virulence genes, identified in almost all of the isolates, were detected using CLC Genomic Workbench software. Applying appropriate web-based online tools to NGS data enables the rapid extraction of comprehensive information that can be used for more efficient diagnosis and treatment of patients, while data processing is free of charge, easy and time-efficient.

  16. Waste Minimization Measurement and Progress Reporting

    International Nuclear Information System (INIS)

    Stone, K.A.

    1995-01-01

    Westinghouse Savannah River Company is implementing productivity improvement concepts into the Waste Minimization Program by focusing on the positive initiatives taken to reduce waste generation at the Savannah River Site. Previous performance measures, based only on waste generation rates, proved to be an ineffective metric for measuring performance and promoting continuous improvements within the Program. Impacts of mission changes and non-routine operations impeded development of baseline waste generation rates and often negated waste generation trending reports. A system was developed to quantify, document and track innovative activities that impact waste volume and radioactivity/toxicity reductions. This system coupled with Management-driven waste disposal avoidance goals is proving to be a powerful tool to promote waste minimization awareness and the implementation of waste reduction initiatives. Measurement of waste not generated, in addition to waste generated, increases the credibility of the Waste Minimization Program, improves sharing of success stories, and supports development of regulatory and management reports

  17. Next-Generation Sequencing in Clinical Molecular Diagnostics of Cancer: Advantages and Challenges

    Directory of Open Access Journals (Sweden)

    Rajyalakshmi Luthra

    2015-10-01

    Full Text Available The application of next-generation sequencing (NGS to characterize cancer genomes has resulted in the discovery of numerous genetic markers. Consequently, the number of markers that warrant routine screening in molecular diagnostic laboratories, often from limited tumor material, has increased. This increased demand has been difficult to manage by traditional low- and/or medium-throughput sequencing platforms. Massively parallel sequencing capabilities of NGS provide a much-needed alternative for mutation screening in multiple genes with a single low investment of DNA. However, implementation of NGS technologies, most of which are for research use only (RUO, in a diagnostic laboratory, needs extensive validation in order to establish Clinical Laboratory Improvement Amendments (CLIA and College of American Pathologists (CAP-compliant performance characteristics. Here, we have reviewed approaches for validation of NGS technology for routine screening of tumors. We discuss the criteria for selecting gene markers to include in the NGS panel and the deciding factors for selecting target capture approaches and sequencing platforms. We also discuss challenges in result reporting, storage and retrieval of the voluminous sequencing data and the future potential of clinical NGS.

  18. Targeted Next-generation Sequencing and Bioinformatics Pipeline to Evaluate Genetic Determinants of Constitutional Disease.

    Science.gov (United States)

    Dilliott, Allison A; Farhan, Sali M K; Ghani, Mahdi; Sato, Christine; Liang, Eric; Zhang, Ming; McIntyre, Adam D; Cao, Henian; Racacho, Lemuel; Robinson, John F; Strong, Michael J; Masellis, Mario; Bulman, Dennis E; Rogaeva, Ekaterina; Lang, Anthony; Tartaglia, Carmela; Finger, Elizabeth; Zinman, Lorne; Turnbull, John; Freedman, Morris; Swartz, Rick; Black, Sandra E; Hegele, Robert A

    2018-04-04

    Next-generation sequencing (NGS) is quickly revolutionizing how research into the genetic determinants of constitutional disease is performed. The technique is highly efficient with millions of sequencing reads being produced in a short time span and at relatively low cost. Specifically, targeted NGS is able to focus investigations to genomic regions of particular interest based on the disease of study. Not only does this further reduce costs and increase the speed of the process, but it lessens the computational burden that often accompanies NGS. Although targeted NGS is restricted to certain regions of the genome, preventing identification of potential novel loci of interest, it can be an excellent technique when faced with a phenotypically and genetically heterogeneous disease, for which there are previously known genetic associations. Because of the complex nature of the sequencing technique, it is important to closely adhere to protocols and methodologies in order to achieve sequencing reads of high coverage and quality. Further, once sequencing reads are obtained, a sophisticated bioinformatics workflow is utilized to accurately map reads to a reference genome, to call variants, and to ensure the variants pass quality metrics. Variants must also be annotated and curated based on their clinical significance, which can be standardized by applying the American College of Medical Genetics and Genomics Pathogenicity Guidelines. The methods presented herein will display the steps involved in generating and analyzing NGS data from a targeted sequencing panel, using the ONDRISeq neurodegenerative disease panel as a model, to identify variants that may be of clinical significance.

  19. SMITH: a LIMS for handling next-generation sequencing workflows.

    Science.gov (United States)

    Venco, Francesco; Vaskin, Yuriy; Ceol, Arnaud; Muller, Heiko

    2014-01-01

    Life-science laboratories make increasing use of Next Generation Sequencing (NGS) for studying bio-macromolecules and their interactions. Array-based methods for measuring gene expression or protein-DNA interactions are being replaced by RNA-Seq and ChIP-Seq. Sequencing is generally performed by specialized facilities that have to keep track of sequencing requests, trace samples, ensure quality and make data available according to predefined privileges. An integrated tool helps to troubleshoot problems, to maintain a high quality standard, to reduce time and costs. Commercial and non-commercial tools called LIMS (Laboratory Information Management Systems) are available for this purpose. However, they often come at prohibitive cost and/or lack the flexibility and scalability needed to adjust seamlessly to the frequently changing protocols employed. In order to manage the flow of sequencing data produced at the Genomic Unit of the Italian Institute of Technology (IIT), we developed SMITH (Sequencing Machine Information Tracking and Handling). SMITH is a web application with a MySQL server at the backend. Wet-lab scientists of the Centre for Genomic Science and database experts from the Politecnico of Milan in the context of a Genomic Data Model Project developed SMITH. The data base schema stores all the information of an NGS experiment, including the descriptions of all protocols and algorithms used in the process. Notably, an attribute-value table allows associating an unconstrained textual description to each sample and all the data produced afterwards. This method permits the creation of metadata that can be used to search the database for specific files as well as for statistical analyses. SMITH runs automatically and limits direct human interaction mainly to administrative tasks. SMITH data-delivery procedures were standardized making it easier for biologists and analysts to navigate the data. Automation also helps saving time. The workflows are available

  20. SMITH: a LIMS for handling next-generation sequencing workflows

    Science.gov (United States)

    2014-01-01

    Background Life-science laboratories make increasing use of Next Generation Sequencing (NGS) for studying bio-macromolecules and their interactions. Array-based methods for measuring gene expression or protein-DNA interactions are being replaced by RNA-Seq and ChIP-Seq. Sequencing is generally performed by specialized facilities that have to keep track of sequencing requests, trace samples, ensure quality and make data available according to predefined privileges. An integrated tool helps to troubleshoot problems, to maintain a high quality standard, to reduce time and costs. Commercial and non-commercial tools called LIMS (Laboratory Information Management Systems) are available for this purpose. However, they often come at prohibitive cost and/or lack the flexibility and scalability needed to adjust seamlessly to the frequently changing protocols employed. In order to manage the flow of sequencing data produced at the Genomic Unit of the Italian Institute of Technology (IIT), we developed SMITH (Sequencing Machine Information Tracking and Handling). Methods SMITH is a web application with a MySQL server at the backend. Wet-lab scientists of the Centre for Genomic Science and database experts from the Politecnico of Milan in the context of a Genomic Data Model Project developed SMITH. The data base schema stores all the information of an NGS experiment, including the descriptions of all protocols and algorithms used in the process. Notably, an attribute-value table allows associating an unconstrained textual description to each sample and all the data produced afterwards. This method permits the creation of metadata that can be used to search the database for specific files as well as for statistical analyses. Results SMITH runs automatically and limits direct human interaction mainly to administrative tasks. SMITH data-delivery procedures were standardized making it easier for biologists and analysts to navigate the data. Automation also helps saving time. The

  1. Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Guillermo [Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutierrez, Chiapas 29000 (Mexico); Cuevas, Sergio [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico A.P. 34, Temixco, Mor. 62580 (Mexico)

    2010-10-15

    The dissipative processes that arise in a microchannel flow subjected to electromagnetic interactions, as occurs in a MHD (magnetohydrodynamic) micropump, are analyzed. The entropy generation rate is used as a tool for the assessment of the intrinsic irreversibilities present in the microchannel owing to viscous friction, heat flow and electric conduction. The flow in a parallel plate microchannel produced by a Lorentz force created by a transverse magnetic field and an injected electric current is considered assuming a thermally fully developed flow and conducting walls of finite thickness. The conjugate heat transfer problem in the fluid and solid walls is solved analytically using thermal boundary conditions of the third kind at the outer surfaces of the walls and continuity of temperature and heat flux across the fluid-wall interfaces. Velocity, temperature and current density fields in the fluid and walls are used to calculate the global entropy generation rate. Conditions under which this quantity is minimized are determined for specific values of the geometrical and physical parameters of the system. The Nusselt number is also calculated and explored for different conditions. Results can be used to determine optimized conditions that lead to a minimum dissipation consistent with the physical constraints demanded by the microdevice. (author)

  2. Generation and Analysis of Full-length cDNA Sequences from Elephant Shark (Callorhinchus milii)

    KAUST Repository

    Kodzius, Rimantas

    2009-03-17

    Cartilaginous fishes are the oldest living group of jawed vertebrates and therefore is an important group for understanding the evolution of vertebrate genomes including the human genome. Our laboratory has proposed elephant shark (C. milii) as a model cartilaginous fish genome because of its relatively small genome size (910 Mb). The whole genome of C. milii is being sequenced (first cartilaginous fish genome to be sequenced completely). To characterize the transcriptome of C. milii and to assist in annotating exon-intron boundaries, transcriptional start sites and alternatively spliced transcripts, we are generating full-length cDNA sequences from C. milii.

  3. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression.

    Science.gov (United States)

    Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker

    2016-09-01

    Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.

  4. Next-generation sequencing-based detection of circulating tumour DNA After allogeneic stem cell transplantation for lymphoma.

    Science.gov (United States)

    Herrera, Alex F; Kim, Haesook T; Kong, Katherine A; Faham, Malek; Sun, Heather; Sohani, Aliyah R; Alyea, Edwin P; Carlton, Victoria E; Chen, Yi-Bin; Cutler, Corey S; Ho, Vincent T; Koreth, John; Kotwaliwale, Chitra; Nikiforow, Sarah; Ritz, Jerome; Rodig, Scott J; Soiffer, Robert J; Antin, Joseph H; Armand, Philippe

    2016-12-01

    Next-generation sequencing (NGS)-based circulating tumour DNA (ctDNA) detection is a promising monitoring tool for lymphoid malignancies. We evaluated whether the presence of ctDNA was associated with outcome after allogeneic haematopoietic stem cell transplantation (HSCT) in lymphoma patients. We studied 88 patients drawn from a phase 3 clinical trial of reduced-intensity conditioning HSCT in lymphoma. Conventional restaging and collection of peripheral blood samples occurred at pre-specified time points before and after HSCT and were assayed for ctDNA by sequencing of the immunoglobulin or T-cell receptor genes. Tumour clonotypes were identified in 87% of patients with adequate tumour samples. Sixteen of 19 (84%) patients with disease progression after HSCT had detectable ctDNA prior to progression at a median of 3·7 months prior to relapse/progression. Patients with detectable ctDNA 3 months after HSCT had inferior progression-free survival (PFS) (2-year PFS 58% vs. 84% in ctDNA-negative patients, P = 0·033). In multivariate models, detectable ctDNA was associated with increased risk of progression/death (Hazard ratio 3·9, P = 0·003) and increased risk of relapse/progression (Hazard ratio 10·8, P = 0·0006). Detectable ctDNA is associated with an increased risk of relapse/progression, but further validation studies are necessary to confirm these findings and determine the clinical utility of NGS-based minimal residual disease monitoring in lymphoma patients after HSCT. © 2016 John Wiley & Sons Ltd.

  5. Next-generation sequence analysis of cancer xenograft models.

    Directory of Open Access Journals (Sweden)

    Fernando J Rossello

    Full Text Available Next-generation sequencing (NGS studies in cancer are limited by the amount, quality and purity of tissue samples. In this situation, primary xenografts have proven useful preclinical models. However, the presence of mouse-derived stromal cells represents a technical challenge to their use in NGS studies. We examined this problem in an established primary xenograft model of small cell lung cancer (SCLC, a malignancy often diagnosed from small biopsy or needle aspirate samples. Using an in silico strategy that assign reads according to species-of-origin, we prospectively compared NGS data from primary xenograft models with matched cell lines and with published datasets. We show here that low-coverage whole-genome analysis demonstrated remarkable concordance between published genome data and internal controls, despite the presence of mouse genomic DNA. Exome capture sequencing revealed that this enrichment procedure was highly species-specific, with less than 4% of reads aligning to the mouse genome. Human-specific expression profiling with RNA-Seq replicated array-based gene expression experiments, whereas mouse-specific transcript profiles correlated with published datasets from human cancer stroma. We conclude that primary xenografts represent a useful platform for complex NGS analysis in cancer research for tumours with limited sample resources, or those with prominent stromal cell populations.

  6. Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.

    Science.gov (United States)

    Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto

    2015-10-01

    CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  7. SeqReporter: automating next-generation sequencing result interpretation and reporting workflow in a clinical laboratory.

    Science.gov (United States)

    Roy, Somak; Durso, Mary Beth; Wald, Abigail; Nikiforov, Yuri E; Nikiforova, Marina N

    2014-01-01

    A wide repertoire of bioinformatics applications exist for next-generation sequencing data analysis; however, certain requirements of the clinical molecular laboratory limit their use: i) comprehensive report generation, ii) compatibility with existing laboratory information systems and computer operating system, iii) knowledgebase development, iv) quality management, and v) data security. SeqReporter is a web-based application developed using ASP.NET framework version 4.0. The client-side was designed using HTML5, CSS3, and Javascript. The server-side processing (VB.NET) relied on interaction with a customized SQL server 2008 R2 database. Overall, 104 cases (1062 variant calls) were analyzed by SeqReporter. Each variant call was classified into one of five report levels: i) known clinical significance, ii) uncertain clinical significance, iii) pending pathologists' review, iv) synonymous and deep intronic, and v) platform and panel-specific sequence errors. SeqReporter correctly annotated and classified 99.9% (859 of 860) of sequence variants, including 68.7% synonymous single-nucleotide variants, 28.3% nonsynonymous single-nucleotide variants, 1.7% insertions, and 1.3% deletions. One variant of potential clinical significance was re-classified after pathologist review. Laboratory information system-compatible clinical reports were generated automatically. SeqReporter also facilitated quality management activities. SeqReporter is an example of a customized and well-designed informatics solution to optimize and automate the downstream analysis of clinical next-generation sequencing data. We propose it as a model that may envisage the development of a comprehensive clinical informatics solution. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  8. A generative Bezier curve model for surf-zone tracking in coastal image sequences

    CSIR Research Space (South Africa)

    Burke, Michael G

    2017-09-01

    Full Text Available This work introduces a generative Bezier curve model suitable for surf-zone curve tracking in coastal image sequences. The model combines an adaptive curve parametrised by control points governed by local random walks with a global sinusoidal motion...

  9. Clinical validation of targeted next-generation sequencing for inherited disorders.

    Science.gov (United States)

    Yohe, Sophia; Hauge, Adam; Bunjer, Kari; Kemmer, Teresa; Bower, Matthew; Schomaker, Matthew; Onsongo, Getiria; Wilson, Jon; Erdmann, Jesse; Zhou, Yi; Deshpande, Archana; Spears, Michael D; Beckman, Kenneth; Silverstein, Kevin A T; Thyagarajan, Bharat

    2015-02-01

    Although next-generation sequencing (NGS) can revolutionize molecular diagnostics, several hurdles remain in the implementation of this technology in clinical laboratories. To validate and implement an NGS panel for genetic diagnosis of more than 100 inherited diseases, such as neurologic conditions, congenital hearing loss and eye disorders, developmental disorders, nonmalignant diseases treated by hematopoietic cell transplantation, familial cancers, connective tissue disorders, metabolic disorders, disorders of sexual development, and cardiac disorders. The diagnostic gene panels ranged from 1 to 54 genes with most of panels containing 10 genes or fewer. We used a liquid hybridization-based, target-enrichment strategy to enrich 10 067 exons in 568 genes, followed by NGS with a HiSeq 2000 sequencing system (Illumina, San Diego, California). We successfully sequenced 97.6% (9825 of 10 067) of the targeted exons to obtain a minimum coverage of 20× at all bases. We demonstrated 100% concordance in detecting 19 pathogenic single-nucleotide variations and 11 pathogenic insertion-deletion mutations ranging in size from 1 to 18 base pairs across 18 samples that were previously characterized by Sanger sequencing. Using 4 pairs of blinded, duplicate samples, we demonstrated a high degree of concordance (>99%) among the blinded, duplicate pairs. We have successfully demonstrated the feasibility of using the NGS platform to multiplex genetic tests for several rare diseases and the use of cloud computing for bioinformatics analysis as a relatively low-cost solution for implementing NGS in clinical laboratories.

  10. The quest for rare variants: pooled multiplexed next generation sequencing in plants.

    Science.gov (United States)

    Marroni, Fabio; Pinosio, Sara; Morgante, Michele

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, few research groups working in plant sciences have exploited this potentiality, showing that pooled NGS provides results in excellent agreement with those obtained by individual Sanger sequencing. The aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method, we will explain in detail the possible experimental and analytical approaches and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled NGS can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity, and Tajima's D. Finally, we will discuss applications and future perspectives of the multiplexed NGS approach.

  11. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa

    Directory of Open Access Journals (Sweden)

    Shahin Arwa

    2012-11-01

    Full Text Available Abstract Background Bulbous flowers such as lily and tulip (Liliaceae family are monocot perennial herbs that are economically very important ornamental plants worldwide. However, there are hardly any genetic studies performed and genomic resources are lacking. To build genomic resources and develop tools to speed up the breeding in both crops, next generation sequencing was implemented. We sequenced and assembled transcriptomes of four lily and five tulip genotypes using 454 pyro-sequencing technology. Results Successfully, we developed the first set of 81,791 contigs with an average length of 514 bp for tulip, and enriched the very limited number of 3,329 available ESTs (Expressed Sequence Tags for lily with 52,172 contigs with an average length of 555 bp. The contigs together with singletons covered on average 37% of lily and 39% of tulip estimated transcriptome. Mining lily and tulip sequence data for SSRs (Simple Sequence Repeats showed that di-nucleotide repeats were twice more abundant in UTRs (UnTranslated Regions compared to coding regions, while tri-nucleotide repeats were equally spread over coding and UTR regions. Two sets of single nucleotide polymorphism (SNP markers suitable for high throughput genotyping were developed. In the first set, no SNPs flanking the target SNP (50 bp on either side were allowed. In the second set, one SNP in the flanking regions was allowed, which resulted in a 2 to 3 fold increase in SNP marker numbers compared with the first set. Orthologous groups between the two flower bulbs: lily and tulip (12,017 groups and among the three monocot species: lily, tulip, and rice (6,900 groups were determined using OrthoMCL. Orthologous groups were screened for common SNP markers and EST-SSRs to study synteny between lily and tulip, which resulted in 113 common SNP markers and 292 common EST-SSR. Lily and tulip contigs generated were annotated and described according to Gene Ontology terminology. Conclusions

  12. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa.

    Science.gov (United States)

    Shahin, Arwa; van Kaauwen, Martijn; Esselink, Danny; Bargsten, Joachim W; van Tuyl, Jaap M; Visser, Richard G F; Arens, Paul

    2012-11-20

    Bulbous flowers such as lily and tulip (Liliaceae family) are monocot perennial herbs that are economically very important ornamental plants worldwide. However, there are hardly any genetic studies performed and genomic resources are lacking. To build genomic resources and develop tools to speed up the breeding in both crops, next generation sequencing was implemented. We sequenced and assembled transcriptomes of four lily and five tulip genotypes using 454 pyro-sequencing technology. Successfully, we developed the first set of 81,791 contigs with an average length of 514 bp for tulip, and enriched the very limited number of 3,329 available ESTs (Expressed Sequence Tags) for lily with 52,172 contigs with an average length of 555 bp. The contigs together with singletons covered on average 37% of lily and 39% of tulip estimated transcriptome. Mining lily and tulip sequence data for SSRs (Simple Sequence Repeats) showed that di-nucleotide repeats were twice more abundant in UTRs (UnTranslated Regions) compared to coding regions, while tri-nucleotide repeats were equally spread over coding and UTR regions. Two sets of single nucleotide polymorphism (SNP) markers suitable for high throughput genotyping were developed. In the first set, no SNPs flanking the target SNP (50 bp on either side) were allowed. In the second set, one SNP in the flanking regions was allowed, which resulted in a 2 to 3 fold increase in SNP marker numbers compared with the first set. Orthologous groups between the two flower bulbs: lily and tulip (12,017 groups) and among the three monocot species: lily, tulip, and rice (6,900 groups) were determined using OrthoMCL. Orthologous groups were screened for common SNP markers and EST-SSRs to study synteny between lily and tulip, which resulted in 113 common SNP markers and 292 common EST-SSR. Lily and tulip contigs generated were annotated and described according to Gene Ontology terminology. Two transcriptome sets were built that are valuable

  13. PheoSeq : A Targeted Next-Generation Sequencing Assay for Pheochromocytoma and Paraganglioma Diagnostics

    NARCIS (Netherlands)

    Currás-Freixes, Maria; Piñeiro-Yañez, Elena; Montero-Conde, Cristina; Apellániz-Ruiz, María; Calsina, Bruna; Mancikova, Veronika; Remacha, Laura; Richter, Susan; Ercolino, Tonino; Rogowski-Lehmann, Natalie; Deutschbein, Timo; Calatayud, María; Guadalix, Sonsoles; Álvarez-Escolá, Cristina; Lamas, Cristina; Aller, Javier; Sastre-Marcos, Julia; Lázaro, Conxi; Galofré, Juan C.; Patiño-García, Ana; Meoro-Avilés, Amparo; Balmaña-Gelpi, Judith; De Miguel-Novoa, Paz; Balbín, Milagros; Matías-Guiu, Xavier; Letón, Rocío; Inglada-Pérez, Lucía; Torres-Pérez, Rafael; Roldán-Romero, Juan M.; Rodríguez-Antona, Cristina; Fliedner, Stephanie M J; Opocher, Giuseppe; Pacak, Karel; Korpershoek, Esther; de Krijger, Ronald R.; Vroonen, Laurent; Mannelli, Massimo; Fassnacht, Martin; Beuschlein, Felix; Eisenhofer, Graeme; Cascón, Alberto; Al-Shahrour, Fátima; Robledo, Mercedes

    2017-01-01

    Genetic diagnosis is recommended for all pheochromocytoma and paraganglioma (PPGL) cases, as driver mutations are identified in approximately 80% of the cases. As the list of related genes expands, genetic diagnosis becomes more time-consuming, and targeted next-generation sequencing (NGS) has

  14. Free energy minimization to predict RNA secondary structures and computational RNA design.

    Science.gov (United States)

    Churkin, Alexander; Weinbrand, Lina; Barash, Danny

    2015-01-01

    Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

  15. Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing

    Science.gov (United States)

    O’Donovan, Brian D.; Gelfand, Jeffrey M.; Sample, Hannah A.; Chow, Felicia C.; Betjemann, John P.; Shah, Maulik P.; Richie, Megan B.; Gorman, Mark P.; Hajj-Ali, Rula A.; Calabrese, Leonard H.; Zorn, Kelsey C.; Chow, Eric D.; Greenlee, John E.; Blum, Jonathan H.; Green, Gary; Khan, Lillian M.; Banerji, Debarko; Langelier, Charles; Bryson-Cahn, Chloe; Harrington, Whitney; Lingappa, Jairam R.; Shanbhag, Niraj M.; Green, Ari J.; Brew, Bruce J.; Soldatos, Ariane; Strnad, Luke; Doernberg, Sarah B.; Jay, Cheryl A.; Douglas, Vanja; Josephson, S. Andrew; DeRisi, Joseph L.

    2018-01-01

    Importance Identifying infectious causes of subacute or chronic meningitis can be challenging. Enhanced, unbiased diagnostic approaches are needed. Objective To present a case series of patients with diagnostically challenging subacute or chronic meningitis using metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) supported by a statistical framework generated from mNGS of control samples from the environment and from patients who were noninfectious. Design, Setting, and Participants In this case series, mNGS data obtained from the CSF of 94 patients with noninfectious neuroinflammatory disorders and from 24 water and reagent control samples were used to develop and implement a weighted scoring metric based on z scores at the species and genus levels for both nucleotide and protein alignments to prioritize and rank the mNGS results. Total RNA was extracted for mNGS from the CSF of 7 participants with subacute or chronic meningitis who were recruited between September 2013 and March 2017 as part of a multicenter study of mNGS pathogen discovery among patients with suspected neuroinflammatory conditions. The neurologic infections identified by mNGS in these 7 participants represented a diverse array of pathogens. The patients were referred from the University of California, San Francisco Medical Center (n = 2), Zuckerberg San Francisco General Hospital and Trauma Center (n = 2), Cleveland Clinic (n = 1), University of Washington (n = 1), and Kaiser Permanente (n = 1). A weighted z score was used to filter out environmental contaminants and facilitate efficient data triage and analysis. Main Outcomes and Measures Pathogens identified by mNGS and the ability of a statistical model to prioritize, rank, and simplify mNGS results. Results The 7 participants ranged in age from 10 to 55 years, and 3 (43%) were female. A parasitic worm (Taenia solium, in 2 participants), a virus (HIV-1), and 4 fungi (Cryptococcus neoformans

  16. Next generation sequencing and molecular analysis of artichoke Italian latent virus.

    Science.gov (United States)

    Elbeaino, Toufic; Belghacem, Imen; Mascia, Tiziana; Gallitelli, Donato; Digiaro, Michele

    2017-06-01

    Next-generation sequencing (NGS) allowed the assembly of the complete RNA-1 and RNA-2 sequences of a grapevine isolate of artichoke Italian latent virus (AILV). RNA-1 and RNA-2 are 7,338 and 4,630 nucleotides in length excluding the 3' terminal poly(A) tail, and encode two putative polyproteins of 255.8 kDa (p1) and 149.6 kDa (p2), respectively. All conserved motifs and predicted cleavage sites, typical for nepovirus polyproteins, were found in p1 and p2. AILV p1 and p2 share high amino acid identity with their homologues in beet ringspot virus (p1, 81% and p2, 71%), tomato black ring virus (p1, 79% and p2, 63%), grapevine Anatolian ringspot virus (p1, 65% and p2, 63%), and grapevine chrome mosaic virus (p1, 60% and p2, 54%), and to a lesser extent with other grapevine nepoviruses of subgroup A and C. Phylogenetic and sequence analyses, all confirmed the strict relationship of AILV with members classified in subgroup B of genus Nepovirus.

  17. Identification of parasitic communities within European ticks using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sarah Bonnet

    2014-03-01

    Full Text Available Risk assessment of tick-borne and zoonotic disease emergence necessitates sound knowledge of the particular microorganisms circulating within the communities of these major vectors. Assessment of pathogens carried by wild ticks must be performed without a priori, to allow for the detection of new or unexpected agents.We evaluated the potential of Next-Generation Sequencing techniques (NGS to produce an inventory of parasites carried by questing ticks. Sequences corresponding to parasites from two distinct genera were recovered in Ixodes ricinus ticks collected in Eastern France: Babesia spp. and Theileria spp. Four Babesia species were identified, three of which were zoonotic: B. divergens, Babesia sp. EU1 and B. microti; and one which infects cattle, B. major. This is the first time that these last two species have been identified in France. This approach also identified new sequences corresponding to as-yet unknown organisms similar to tropical Theileria species.Our findings demonstrate the capability of NGS to produce an inventory of live tick-borne parasites, which could potentially be transmitted by the ticks, and uncovers unexpected parasites in Western Europe.

  18. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS Data in Plants

    Directory of Open Access Journals (Sweden)

    Sima Taheri

    2018-02-01

    Full Text Available Microsatellites, or simple sequence repeats (SSRs, are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq and related tools for mining and development of microsatellites in plants.

  19. Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products

    Science.gov (United States)

    Gomez-Escribano, Juan Pablo; Alt, Silke; Bibb, Mervyn J.

    2016-01-01

    Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects. PMID:27089350

  20. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.

    Science.gov (United States)

    Straub, Shannon C K; Parks, Matthew; Weitemier, Kevin; Fishbein, Mark; Cronn, Richard C; Liston, Aaron

    2012-02-01

    Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.

  1. ASAP: an environment for automated preprocessing of sequencing data

    Directory of Open Access Journals (Sweden)

    Torstenson Eric S

    2013-01-01

    Full Text Available Abstract Background Next-generation sequencing (NGS has yielded an unprecedented amount of data for genetics research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing this data can significantly delay downstream analysis and increase the possibility for human error. The research community has produced tools to properly prepare sequence data for analysis and established guidelines on how to apply those tools to achieve the best results, however, existing pipeline programs to automate the process through its entirety are either inaccessible to investigators, or web-based and require a certain amount of administrative expertise to set up. Findings Advanced Sequence Automated Pipeline (ASAP was developed to provide a framework for automating the translation of sequencing data into annotated variant calls with the goal of minimizing user involvement without the need for dedicated hardware or administrative rights. ASAP works both on computer clusters and on standalone machines with minimal human involvement and maintains high data integrity, while allowing complete control over the configuration of its component programs. It offers an easy-to-use interface for submitting and tracking jobs as well as resuming failed jobs. It also provides tools for quality checking and for dividing jobs into pieces for maximum throughput. Conclusions ASAP provides an environment for building an automated pipeline for NGS data preprocessing. This environment is flexible for use and future development. It is freely available at http://biostat.mc.vanderbilt.edu/ASAP.

  2. ASAP: an environment for automated preprocessing of sequencing data.

    Science.gov (United States)

    Torstenson, Eric S; Li, Bingshan; Li, Chun

    2013-01-04

    Next-generation sequencing (NGS) has yielded an unprecedented amount of data for genetics research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing this data can significantly delay downstream analysis and increase the possibility for human error. The research community has produced tools to properly prepare sequence data for analysis and established guidelines on how to apply those tools to achieve the best results, however, existing pipeline programs to automate the process through its entirety are either inaccessible to investigators, or web-based and require a certain amount of administrative expertise to set up. Advanced Sequence Automated Pipeline (ASAP) was developed to provide a framework for automating the translation of sequencing data into annotated variant calls with the goal of minimizing user involvement without the need for dedicated hardware or administrative rights. ASAP works both on computer clusters and on standalone machines with minimal human involvement and maintains high data integrity, while allowing complete control over the configuration of its component programs. It offers an easy-to-use interface for submitting and tracking jobs as well as resuming failed jobs. It also provides tools for quality checking and for dividing jobs into pieces for maximum throughput. ASAP provides an environment for building an automated pipeline for NGS data preprocessing. This environment is flexible for use and future development. It is freely available at http://biostat.mc.vanderbilt.edu/ASAP.

  3. ASAP: an environment for automated preprocessing of sequencing data

    Science.gov (United States)

    2013-01-01

    Background Next-generation sequencing (NGS) has yielded an unprecedented amount of data for genetics research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing this data can significantly delay downstream analysis and increase the possibility for human error. The research community has produced tools to properly prepare sequence data for analysis and established guidelines on how to apply those tools to achieve the best results, however, existing pipeline programs to automate the process through its entirety are either inaccessible to investigators, or web-based and require a certain amount of administrative expertise to set up. Findings Advanced Sequence Automated Pipeline (ASAP) was developed to provide a framework for automating the translation of sequencing data into annotated variant calls with the goal of minimizing user involvement without the need for dedicated hardware or administrative rights. ASAP works both on computer clusters and on standalone machines with minimal human involvement and maintains high data integrity, while allowing complete control over the configuration of its component programs. It offers an easy-to-use interface for submitting and tracking jobs as well as resuming failed jobs. It also provides tools for quality checking and for dividing jobs into pieces for maximum throughput. Conclusions ASAP provides an environment for building an automated pipeline for NGS data preprocessing. This environment is flexible for use and future development. It is freely available at http://biostat.mc.vanderbilt.edu/ASAP. PMID:23289815

  4. The history and advances of reversible terminators used in new generations of sequencing technology.

    Science.gov (United States)

    Chen, Fei; Dong, Mengxing; Ge, Meng; Zhu, Lingxiang; Ren, Lufeng; Liu, Guocheng; Mu, Rong

    2013-02-01

    DNA sequencing using reversible terminators, as one sequencing by synthesis strategy, has garnered a great deal of interest due to its popular application in the second-generation high-throughput DNA sequencing technology. In this review, we provided its history of development, classification, and working mechanism of this technology. We also outlined the screening strategies for DNA polymerases to accommodate the reversible terminators as substrates during polymerization; particularly, we introduced the "REAP" method developed by us. At the end of this review, we discussed current limitations of this approach and provided potential solutions to extend its application. Copyright © 2013. Production and hosting by Elsevier Ltd.

  5. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Panda, Priyadarshini; Roy, Kaushik

    2017-01-01

    Synaptic Plasticity, the foundation for learning and memory formation in the human brain, manifests in various forms. Here, we combine the standard spike timing correlation based Hebbian plasticity with a non-Hebbian synaptic decay mechanism for training a recurrent spiking neural model to generate sequences. We show that inclusion of the adaptive decay of synaptic weights with standard STDP helps learn stable contextual dependencies between temporal sequences, while reducing the strong attractor states that emerge in recurrent models due to feedback loops. Furthermore, we show that the combined learning scheme suppresses the chaotic activity in the recurrent model substantially, thereby enhancing its' ability to generate sequences consistently even in the presence of perturbations.

  6. Illuminating the evolution of equids and rodents with next-generation sequencing of ancient specimens

    DEFF Research Database (Denmark)

    Mouatt, Julia Thidamarth Vilstrup

    enrichment methods and the massive throughput and latest advances within DNA sequencing, the field of ancient DNA has flourished in later years. Those advances have even enabled the sequencing of complete genomes from the past, moving the field into genomic sciences. In this thesis we have used these latest......The sequencing of ancient DNA provides perspectives on the genetic history of past populations and extinct species. However, ancient DNA research presents specific limitations mostly due to DNA survival, damage and contamination. Yet with stringent laboratory procedures, the sensitivity of target...... developments within ancient DNA research, including target enrichment capture and Next-Generation Sequencing, to address a range of evolutionary questions related to two major mammalian groups, equids and rodents. In particular we have resolved phylogenetic relationships within equids using complete mitochond...

  7. Highly conserved intragenic HSV-2 sequences: Results from next-generation sequencing of HSV-2 UL and US regions from genital swabs collected from 3 continents.

    Science.gov (United States)

    Johnston, Christine; Magaret, Amalia; Roychoudhury, Pavitra; Greninger, Alexander L; Cheng, Anqi; Diem, Kurt; Fitzgibbon, Matthew P; Huang, Meei-Li; Selke, Stacy; Lingappa, Jairam R; Celum, Connie; Jerome, Keith R; Wald, Anna; Koelle, David M

    2017-10-01

    Understanding the variability in circulating herpes simplex virus type 2 (HSV-2) genomic sequences is critical to the development of HSV-2 vaccines. Genital lesion swabs containing ≥ 10 7 log 10 copies HSV DNA collected from Africa, the USA, and South America underwent next-generation sequencing, followed by K-mer based filtering and de novo genomic assembly. Sites of heterogeneity within coding regions in unique long and unique short (U L _U S ) regions were identified. Phylogenetic trees were created using maximum likelihood reconstruction. Among 46 samples from 38 persons, 1468 intragenic base-pair substitutions were identified. The maximum nucleotide distance between strains for concatenated U L_ U S segments was 0.4%. Phylogeny did not reveal geographic clustering. The most variable proteins had non-synonymous mutations in < 3% of amino acids. Unenriched HSV-2 DNA can undergo next-generation sequencing to identify intragenic variability. The use of clinical swabs for sequencing expands the information that can be gathered directly from these specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Impairment in explicit visuomotor sequence learning is related to loss of microstructural integrity of the corpus callosum in multiple sclerosis patients with minimal disability.

    Science.gov (United States)

    Bonzano, L; Tacchino, A; Roccatagliata, L; Sormani, M P; Mancardi, G L; Bove, M

    2011-07-15

    Sequence learning can be investigated by serial reaction-time (SRT) paradigms. Explicit learning occurs when subjects have to recognize a test sequence and has been shown to activate the frontoparietal network in both contralateral and ipsilateral hemispheres. Thus, the left and right superior longitudinal fasciculi (SLF), connecting the intra-hemispheric frontoparietal circuits, could have a role in explicit unimanual visuomotor learning. Also, as both hemispheres are involved, we could hypothesize that the corpus callosum (CC) has a role in this process. Pathological damage in both SLF and CC has been detected in patients with Multiple Sclerosis (PwMS), and microstructural alterations can be quantified by Diffusion Tensor Imaging (DTI). In light of these findings, we inquired whether PwMS with minimal disability showed impairments in explicit visuomotor sequence learning and whether this could be due to loss of white matter integrity in these intra- and inter-hemispheric white matter pathways. Thus, we combined DTI analysis with a modified version of SRT task based on finger opposition movements in a group of PwMS with minimal disability. We found that the performance in explicit sequence learning was significantly reduced in these patients with respect to healthy subjects; the amount of sequence-specific learning was found to be more strongly correlated with fractional anisotropy (FA) in the CC (r=0.93) than in the left (r=0.28) and right SLF (r=0.27) (p for interaction=0.005 and 0.04 respectively). This finding suggests that an inter-hemispheric information exchange between the homologous areas is required to successfully accomplish the task and indirectly supports the role of the right (ipsilateral) hemisphere in explicit visuomotor learning. On the other hand, we found no significant correlation of the FA in the CC and in the SLFs with nonspecific learning (assessed when stimuli are randomly presented), supporting the hypothesis that inter

  9. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach

    Czech Academy of Sciences Publication Activity Database

    Eiler, A.; Drakare, S.; Bertilsson, S.; Pernthaler, J.; Peura, S.; Rofner, C.; Šimek, Karel; Yang, Y.; Znachor, Petr; Lindström, E.S.

    2013-01-01

    Roč. 8, č. 1 (2013), e53516 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional support: RVO:60077344 Keywords : phytoplankton * next generation sequencing * diversity Subject RIV: EE - Microbiology, Virology Impact factor: 3.534, year: 2013

  10. Using next-generation sequencing to develop molecular diagnostics for Pseudoperonospora cubensis, the cucurbit downy mildew pathogen

    Science.gov (United States)

    Advances in Next Generation Sequencing (NGS) allow for rapid development of genomics resources needed to generate molecular diagnostics assays for infectious agents. NGS approaches are particularly helpful for organisms that cannot be cultured, such as the downy mildew pathogens, a group of biotrop...

  11. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Perspectives of Integrative Cancer Genomics in Next Generation Sequencing Era

    Directory of Open Access Journals (Sweden)

    So Mee Kwon

    2012-06-01

    Full Text Available The explosive development of genomics technologies including microarrays and next generation sequencing (NGS has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called "integromics", have extended our understanding on the cancer genome, showing its daunting complexity and heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies of the rapidly evolving cancer genomics research.

  13. Spreading Sequences Generated Using Asymmetrical Integer-Number Maps

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    2007-09-01

    Full Text Available Chaotic sequences produced by piecewise linear maps can be transformed to binary sequences. The binary sequences are optimal for the asynchronous DS/CDMA systems in case of certain shapes of the maps. This paper is devoted to the one-to-one integer-number maps derived from the suitable asymmetrical piecewise linear maps. Such maps give periodic integer-number sequences, which can be transformed to the binary sequences. The binary sequences produced via proposed modified integer-number maps are perfectly balanced and embody good autocorrelation and crosscorrelation properties. The number of different binary sequences is sizable. The sequences are suitable as spreading sequences in DS/CDMA systems.

  14. Peaks, plateaus, numerical instabilities, and achievable accuracy in Galerkin and norm minimizing procedures for solving Ax=b

    Energy Technology Data Exchange (ETDEWEB)

    Cullum, J. [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States)

    1994-12-31

    Plots of the residual norms generated by Galerkin procedures for solving Ax = b often exhibit strings of irregular peaks. At seemingly erratic stages in the iterations, peaks appear in the residual norm plot, intervals of iterations over which the norms initially increase and then decrease. Plots of the residual norms generated by related norm minimizing procedures often exhibit long plateaus, sequences of iterations over which reductions in the size of the residual norm are unacceptably small. In an earlier paper the author discussed and derived relationships between such peaks and plateaus within corresponding Galerkin/Norm Minimizing pairs of such methods. In this paper, through a set of numerical experiments, the author examines connections between peaks, plateaus, numerical instabilities, and the achievable accuracy for such pairs of iterative methods. Three pairs of methods, GMRES/Arnoldi, QMR/BCG, and two bidiagonalization methods are studied.

  15. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae.

    Directory of Open Access Journals (Sweden)

    Isabel A S Bonatelli

    Full Text Available Microsatellite markers (also known as SSRs, Simple Sequence Repeats are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.

  16. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae).

    Science.gov (United States)

    Bonatelli, Isabel A S; Carstens, Bryan C; Moraes, Evandro M

    2015-01-01

    Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.

  17. Next-generation sequencing for genetic testing of familial colorectal cancer syndromes.

    Science.gov (United States)

    Simbolo, Michele; Mafficini, Andrea; Agostini, Marco; Pedrazzani, Corrado; Bedin, Chiara; Urso, Emanuele D; Nitti, Donato; Turri, Giona; Scardoni, Maria; Fassan, Matteo; Scarpa, Aldo

    2015-01-01

    Genetic screening in families with high risk to develop colorectal cancer (CRC) prevents incurable disease and permits personalized therapeutic and follow-up strategies. The advancement of next-generation sequencing (NGS) technologies has revolutionized the throughput of DNA sequencing. A series of 16 probands for either familial adenomatous polyposis (FAP; 8 cases) or hereditary nonpolyposis colorectal cancer (HNPCC; 8 cases) were investigated for intragenic mutations in five CRC familial syndromes-associated genes (APC, MUTYH, MLH1, MSH2, MSH6) applying both a custom multigene Ion AmpliSeq NGS panel and conventional Sanger sequencing. Fourteen pathogenic variants were detected in 13/16 FAP/HNPCC probands (81.3 %); one FAP proband presented two co-existing pathogenic variants, one in APC and one in MUTYH. Thirteen of these 14 pathogenic variants were detected by both NGS and Sanger, while one MSH2 mutation (L280FfsX3) was identified only by Sanger sequencing. This is due to a limitation of the NGS approach in resolving sequences close or within homopolymeric stretches of DNA. To evaluate the performance of our NGS custom panel we assessed its capability to resolve the DNA sequences corresponding to 2225 pathogenic variants reported in the COSMIC database for APC, MUTYH, MLH1, MSH2, MSH6. Our NGS custom panel resolves the sequences where 2108 (94.7 %) of these variants occur. The remaining 117 mutations reside inside or in close proximity to homopolymer stretches; of these 27 (1.2 %) are imprecisely identified by the software but can be resolved by visual inspection of the region, while the remaining 90 variants (4.0 %) are blind spots. In summary, our custom panel would miss 4 % (90/2225) of pathogenic variants that would need a small set of Sanger sequencing reactions to be solved. The multiplex NGS approach has the advantage of analyzing multiple genes in multiple samples simultaneously, requiring only a reduced number of Sanger sequences to resolve

  18. Rapid evaluation and quality control of next generation sequencing data with FaQCs.

    Science.gov (United States)

    Lo, Chien-Chi; Chain, Patrick S G

    2014-11-19

    Next generation sequencing (NGS) technologies that parallelize the sequencing process and produce thousands to millions, or even hundreds of millions of sequences in a single sequencing run, have revolutionized genomic and genetic research. Because of the vagaries of any platform's sequencing chemistry, the experimental processing, machine failure, and so on, the quality of sequencing reads is never perfect, and often declines as the read is extended. These errors invariably affect downstream analysis/application and should therefore be identified early on to mitigate any unforeseen effects. Here we present a novel FastQ Quality Control Software (FaQCs) that can rapidly process large volumes of data, and which improves upon previous solutions to monitor the quality and remove poor quality data from sequencing runs. Both the speed of processing and the memory footprint of storing all required information have been optimized via algorithmic and parallel processing solutions. The trimmed output compared side-by-side with the original data is part of the automated PDF output. We show how this tool can help data analysis by providing a few examples, including an increased percentage of reads recruited to references, improved single nucleotide polymorphism identification as well as de novo sequence assembly metrics. FaQCs combines several features of currently available applications into a single, user-friendly process, and includes additional unique capabilities such as filtering the PhiX control sequences, conversion of FASTQ formats, and multi-threading. The original data and trimmed summaries are reported within a variety of graphics and reports, providing a simple way to do data quality control and assurance.

  19. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing

    Directory of Open Access Journals (Sweden)

    Wang Nian

    2012-08-01

    Full Text Available Abstract Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison.

  20. Evaluation of second-generation sequencing of 19 dilated cardiomyopathy genes for clinical applications.

    Science.gov (United States)

    Gowrisankar, Sivakumar; Lerner-Ellis, Jordan P; Cox, Stephanie; White, Emily T; Manion, Megan; LeVan, Kevin; Liu, Jonathan; Farwell, Lisa M; Iartchouk, Oleg; Rehm, Heidi L; Funke, Birgit H

    2010-11-01

    Medical sequencing for diseases with locus and allelic heterogeneities has been limited by the high cost and low throughput of traditional sequencing technologies. "Second-generation" sequencing (SGS) technologies allow the parallel processing of a large number of genes and, therefore, offer great promise for medical sequencing; however, their use in clinical laboratories is still in its infancy. Our laboratory offers clinical resequencing for dilated cardiomyopathy (DCM) using an array-based platform that interrogates 19 of more than 30 genes known to cause DCM. We explored both the feasibility and cost effectiveness of using PCR amplification followed by SGS technology for sequencing these 19 genes in a set of five samples enriched for known sequence alterations (109 unique substitutions and 27 insertions and deletions). While the analytical sensitivity for substitutions was comparable to that of the DCM array (98%), SGS technology performed better than the DCM array for insertions and deletions (90.6% versus 58%). Overall, SGS performed substantially better than did the current array-based testing platform; however, the operational cost and projected turnaround time do not meet our current standards. Therefore, efficient capture methods and/or sample pooling strategies that shorten the turnaround time and decrease reagent and labor costs are needed before implementing this platform into routine clinical applications.

  1. Next-generation sequencing: hype and hope for development of personalized radiation therapy?

    International Nuclear Information System (INIS)

    Tinhofer, Ingeborg; Niehr, Franziska; Konschak, Robert; Liebs, Sandra; Munz, Matthias; Stenzinger, Albrecht; Weichert, Wilko; Keilholz, Ulrich; Budach, Volker

    2015-01-01

    The introduction of next-generation sequencing (NGS) in the field of cancer research has boosted worldwide efforts of genome-wide personalized oncology aiming at identifying predictive biomarkers and novel actionable targets. Despite considerable progress in understanding the molecular biology of distinct cancer entities by the use of this revolutionary technology and despite contemporaneous innovations in drug development, translation of NGS findings into improved concepts for cancer treatment remains a challenge. The aim of this article is to describe shortly the NGS platforms for DNA sequencing and in more detail key achievements and unresolved hurdles. A special focus will be given on potential clinical applications of this innovative technique in the field of radiation oncology

  2. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Jackson Stuart

    2010-04-01

    Full Text Available Abstract Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value, and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.

  3. The utility of Next Generation Sequencing for molecular diagnostics in Rett syndrome.

    Science.gov (United States)

    Vidal, Silvia; Brandi, Núria; Pacheco, Paola; Gerotina, Edgar; Blasco, Laura; Trotta, Jean-Rémi; Derdak, Sophia; Del Mar O'Callaghan, Maria; Garcia-Cazorla, Àngels; Pineda, Mercè; Armstrong, Judith

    2017-09-25

    Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that almost exclusively affects girls and is totally disabling. Three genes have been identified that cause RTT: MECP2, CDKL5 and FOXG1. However, the etiology of some of RTT patients still remains unknown. Recently, next generation sequencing (NGS) has promoted genetic diagnoses because of the quickness and affordability of the method. To evaluate the usefulness of NGS in genetic diagnosis, we present the genetic study of RTT-like patients using different techniques based on this technology. We studied 1577 patients with RTT-like clinical diagnoses and reviewed patients who were previously studied and thought to have RTT genes by Sanger sequencing. Genetically, 477 of 1577 patients with a RTT-like suspicion have been diagnosed. Positive results were found in 30% by Sanger sequencing, 23% with a custom panel, 24% with a commercial panel and 32% with whole exome sequencing. A genetic study using NGS allows the study of a larger number of genes associated with RTT-like symptoms simultaneously, providing genetic study of a wider group of patients as well as significantly reducing the response time and cost of the study.

  4. Using next generation sequencing to tackle non-typhoidal Salmonella infections

    DEFF Research Database (Denmark)

    Wain, John; Keddy, Karen H.; Hendriksen, Rene S.

    2013-01-01

    The publication of studies using next generation sequencing to analyse large numbers of bacterial isolates from global epidemics is transforming microbiology, epidemiology and public health. The emergence of multidrug resistant Salmonella Typhimurium ST313 is one example. While the epidemiology...... in Africa appears to be human-to-human spread and the association with invasive disease almost absolute, more needs to be done to exclude the possibility of animal reservoirs and to transfer the ability to track all Salmonella infections to the laboratories in the front line. In this mini-review we...

  5. Next-generation sequencing reveals phylogeographic structure and a species tree for recent bird divergences

    DEFF Research Database (Denmark)

    McCormack, John E.; Maley, James M.; Hird, Sarah M.

    2012-01-01

    divergence in four phylogenetically diverse avian systems using a method for quick and cost-effective generation of primary DNA sequence data using pyrosequencing. NGS data were processed using an analytical pipeline that reduces many reads into two called alleles per locus per individual. Using single...... throughout the genome. Using eight loci found in Zonotrichia and Junco lineages, we were also able to generate a species tree of these sparrow sister genera, demonstrating the potential of this method for generating data amenable to coalescent-based analysis. We discuss improvements that should enhance...

  6. Targeted 'next-generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations.

    Science.gov (United States)

    Jimenez, Nelson Lopez; Flannick, Jason; Yahyavi, Mani; Li, Jiang; Bardakjian, Tanya; Tonkin, Leath; Schneider, Adele; Sherr, Elliott H; Slavotinek, Anne M

    2011-12-28

    Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.

  7. Enhancing Next-Generation Sequencing-Guided Cancer Care Through Cognitive Computing.

    Science.gov (United States)

    Patel, Nirali M; Michelini, Vanessa V; Snell, Jeff M; Balu, Saianand; Hoyle, Alan P; Parker, Joel S; Hayward, Michele C; Eberhard, David A; Salazar, Ashley H; McNeillie, Patrick; Xu, Jia; Huettner, Claudia S; Koyama, Takahiko; Utro, Filippo; Rhrissorrakrai, Kahn; Norel, Raquel; Bilal, Erhan; Royyuru, Ajay; Parida, Laxmi; Earp, H Shelton; Grilley-Olson, Juneko E; Hayes, D Neil; Harvey, Stephen J; Sharpless, Norman E; Kim, William Y

    2018-02-01

    Using next-generation sequencing (NGS) to guide cancer therapy has created challenges in analyzing and reporting large volumes of genomic data to patients and caregivers. Specifically, providing current, accurate information on newly approved therapies and open clinical trials requires considerable manual curation performed mainly by human "molecular tumor boards" (MTBs). The purpose of this study was to determine the utility of cognitive computing as performed by Watson for Genomics (WfG) compared with a human MTB. One thousand eighteen patient cases that previously underwent targeted exon sequencing at the University of North Carolina (UNC) and subsequent analysis by the UNCseq informatics pipeline and the UNC MTB between November 7, 2011, and May 12, 2015, were analyzed with WfG, a cognitive computing technology for genomic analysis. Using a WfG-curated actionable gene list, we identified additional genomic events of potential significance (not discovered by traditional MTB curation) in 323 (32%) patients. The majority of these additional genomic events were considered actionable based upon their ability to qualify patients for biomarker-selected clinical trials. Indeed, the opening of a relevant clinical trial within 1 month prior to WfG analysis provided the rationale for identification of a new actionable event in nearly a quarter of the 323 patients. This automated analysis took potentially improve patient care by providing a rapid, comprehensive approach for data analysis and consideration of up-to-date availability of clinical trials. The results of this study demonstrate that the interpretation and actionability of somatic next-generation sequencing results are evolving too rapidly to rely solely on human curation. Molecular tumor boards empowered by cognitive computing can significantly improve patient care by providing a fast, cost-effective, and comprehensive approach for data analysis in the delivery of precision medicine. Patients and physicians who

  8. Estimation of a tube diameter in a ‘church window’ condenser based on entropy generation minimization

    Directory of Open Access Journals (Sweden)

    Laskowski Rafał

    2015-09-01

    Full Text Available The internal diameter of a tube in a ‘church window’ condenser was estimated using an entropy generation minimization approach. The adopted model took into account the entropy generation due to heat transfer and flow resistance from the cooling-water side. Calculations were performed considering two equations for the flow resistance coefficient for four different roughness values of a condenser tube. Following the analysis, the internal diameter of the tube was obtained in the range of 17.5 mm to 20 mm (the current internal diameter of the condenser tube is 22 mm. The calculated diameter depends on and is positively related to the roughness assumed in the model.

  9. Cloning and Identification of Recombinant Argonaute-Bound Small RNAs Using Next-Generation Sequencing.

    Science.gov (United States)

    Gangras, Pooja; Dayeh, Daniel M; Mabin, Justin W; Nakanishi, Kotaro; Singh, Guramrit

    2018-01-01

    Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.

  10. Spatio-temporal alignment of pedobarographic image sequences.

    Science.gov (United States)

    Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S

    2011-07-01

    This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P alignment of pedobarographic image data, since previous methods can only be applied on static images.

  11. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.

    Science.gov (United States)

    Dunn, Joshua G; Weissman, Jonathan S

    2016-11-22

    Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily

  12. Minimal free resolutions over complete intersections

    CERN Document Server

    Eisenbud, David

    2016-01-01

    This book introduces a theory of higher matrix factorizations for regular sequences and uses it to describe the minimal free resolutions of high syzygy modules over complete intersections. Such resolutions have attracted attention ever since the elegant construction of the minimal free resolution of the residue field by Tate in 1957. The theory extends the theory of matrix factorizations of a non-zero divisor, initiated by Eisenbud in 1980, which yields a description of the eventual structure of minimal free resolutions over a hypersurface ring. Matrix factorizations have had many other uses in a wide range of mathematical fields, from singularity theory to mathematical physics.

  13. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    Science.gov (United States)

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal

  14. Visual programming for next-generation sequencing data analytics.

    Science.gov (United States)

    Milicchio, Franco; Rose, Rebecca; Bian, Jiang; Min, Jae; Prosperi, Mattia

    2016-01-01

    High-throughput or next-generation sequencing (NGS) technologies have become an established and affordable experimental framework in biological and medical sciences for all basic and translational research. Processing and analyzing NGS data is challenging. NGS data are big, heterogeneous, sparse, and error prone. Although a plethora of tools for NGS data analysis has emerged in the past decade, (i) software development is still lagging behind data generation capabilities, and (ii) there is a 'cultural' gap between the end user and the developer. Generic software template libraries specifically developed for NGS can help in dealing with the former problem, whilst coupling template libraries with visual programming may help with the latter. Here we scrutinize the state-of-the-art low-level software libraries implemented specifically for NGS and graphical tools for NGS analytics. An ideal developing environment for NGS should be modular (with a native library interface), scalable in computational methods (i.e. serial, multithread, distributed), transparent (platform-independent), interoperable (with external software interface), and usable (via an intuitive graphical user interface). These characteristics should facilitate both the run of standardized NGS pipelines and the development of new workflows based on technological advancements or users' needs. We discuss in detail the potential of a computational framework blending generic template programming and visual programming that addresses all of the current limitations. In the long term, a proper, well-developed (although not necessarily unique) software framework will bridge the current gap between data generation and hypothesis testing. This will eventually facilitate the development of novel diagnostic tools embedded in routine healthcare.

  15. A majorization-minimization approach to design of power distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jason K [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

    2010-01-01

    We consider optimization approaches to design cost-effective electrical networks for power distribution. This involves a trade-off between minimizing the power loss due to resistive heating of the lines and minimizing the construction cost (modeled by a linear cost in the number of lines plus a linear cost on the conductance of each line). We begin with a convex optimization method based on the paper 'Minimizing Effective Resistance of a Graph' [Ghosh, Boyd & Saberi]. However, this does not address the Alternating Current (AC) realm and the combinatorial aspect of adding/removing lines of the network. Hence, we consider a non-convex continuation method that imposes a concave cost of the conductance of each line thereby favoring sparser solutions. By varying a parameter of this penalty we extrapolate from the convex problem (with non-sparse solutions) to the combinatorial problem (with sparse solutions). This is used as a heuristic to find good solutions (local minima) of the non-convex problem. To perform the necessary non-convex optimization steps, we use the majorization-minimization algorithm that performs a sequence of convex optimizations obtained by iteratively linearizing the concave part of the objective. A number of examples are presented which suggest that the overall method is a good heuristic for network design. We also consider how to obtain sparse networks that are still robust against failures of lines and/or generators.

  16. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method

    Directory of Open Access Journals (Sweden)

    Sette Alessandro

    2005-05-01

    Full Text Available Abstract Background Many processes in molecular biology involve the recognition of short sequences of nucleic-or amino acids, such as the binding of immunogenic peptides to major histocompatibility complex (MHC molecules. From experimental data, a model of the sequence specificity of these processes can be constructed, such as a sequence motif, a scoring matrix or an artificial neural network. The purpose of these models is two-fold. First, they can provide a summary of experimental results, allowing for a deeper understanding of the mechanisms involved in sequence recognition. Second, such models can be used to predict the experimental outcome for yet untested sequences. In the past we reported the development of a method to generate such models called the Stabilized Matrix Method (SMM. This method has been successfully applied to predicting peptide binding to MHC molecules, peptide transport by the transporter associated with antigen presentation (TAP and proteasomal cleavage of protein sequences. Results Herein we report the implementation of the SMM algorithm as a publicly available software package. Specific features determining the type of problems the method is most appropriate for are discussed. Advantageous features of the package are: (1 the output generated is easy to interpret, (2 input and output are both quantitative, (3 specific computational strategies to handle experimental noise are built in, (4 the algorithm is designed to effectively handle bounded experimental data, (5 experimental data from randomized peptide libraries and conventional peptides can easily be combined, and (6 it is possible to incorporate pair interactions between positions of a sequence. Conclusion Making the SMM method publicly available enables bioinformaticians and experimental biologists to easily access it, to compare its performance to other prediction methods, and to extend it to other applications.

  17. Translational Bioinformatics for Diagnostic and Prognostic Prediction of Prostate Cancer in the Next-Generation Sequencing Era

    Directory of Open Access Journals (Sweden)

    Jiajia Chen

    2013-01-01

    Full Text Available The discovery of prostate cancer biomarkers has been boosted by the advent of next-generation sequencing (NGS technologies. Nevertheless, many challenges still exist in exploiting the flood of sequence data and translating them into routine diagnostics and prognosis of prostate cancer. Here we review the recent developments in prostate cancer biomarkers by high throughput sequencing technologies. We highlight some fundamental issues of translational bioinformatics and the potential use of cloud computing in NGS data processing for the improvement of prostate cancer treatment.

  18. Investigation of a steam generator tube rupture sequence using VICTORIA

    International Nuclear Information System (INIS)

    Bixler, N.E.; Erickson, C.M.; Schaperow, J.H.

    1995-01-01

    VICTORIA-92 is a mechanistic computer code for analyzing fission product behavior within the reactor coolant system (RCS) during a severe reactor accident. It provides detailed predictions of the release of radionuclides and nonradioactive materials from the core and transport of these materials within the RCS. The modeling accounts for the chemical and aerosol processes that affect radionuclide behavior. Coupling of detailed chemistry and aerosol packages is a unique feature of VICTORIA; it allows exploration of phenomena involving deposition, revaporization, and re-entrainment that cannot be resolved with other codes. The purpose of this work is to determine the attenuation of fission products in the RCS and on the secondary side of the steam generator in an accident initiated by a steam generator tube rupture (SGTR). As a class, bypass sequences have been identified in NUREG-1150 as being risk dominant for the Surry and Sequoyah pressurized water reactor (PWR) plants

  19. High-resolution analysis of the 5'-end transcriptome using a next generation DNA sequencer.

    Directory of Open Access Journals (Sweden)

    Shin-ichi Hashimoto

    Full Text Available Massively parallel, tag-based sequencing systems, such as the SOLiD system, hold the promise of revolutionizing the study of whole genome gene expression due to the number of data points that can be generated in a simple and cost-effective manner. We describe the development of a 5'-end transcriptome workflow for the SOLiD system and demonstrate the advantages in sensitivity and dynamic range offered by this tag-based application over traditional approaches for the study of whole genome gene expression. 5'-end transcriptome analysis was used to study whole genome gene expression within a colon cancer cell line, HT-29, treated with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5Aza. More than 20 million 25-base 5'-end tags were obtained from untreated and 5Aza-treated cells and matched to sequences within the human genome. Seventy three percent of the mapped unique tags were associated with RefSeq cDNA sequences, corresponding to approximately 14,000 different protein-coding genes in this single cell type. The level of expression of these genes ranged from 0.02 to 4,704 transcripts per cell. The sensitivity of a single sequence run of the SOLiD platform was 100-1,000 fold greater than that observed from 5'end SAGE data generated from the analysis of 70,000 tags obtained by Sanger sequencing. The high-resolution 5'end gene expression profiling presented in this study will not only provide novel insight into the transcriptional machinery but should also serve as a basis for a better understanding of cell biology.

  20. A Hybrid Metaheuristic Approach for Minimizing the Total Flow Time in A Flow Shop Sequence Dependent Group Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Antonio Costa

    2014-07-01

    Full Text Available Production processes in Cellular Manufacturing Systems (CMS often involve groups of parts sharing the same technological requirements in terms of tooling and setup. The issue of scheduling such parts through a flow-shop production layout is known as the Flow-Shop Group Scheduling (FSGS problem or, whether setup times are sequence-dependent, the Flow-Shop Sequence-Dependent Group Scheduling (FSDGS problem. This paper addresses the FSDGS issue, proposing a hybrid metaheuristic procedure integrating features from Genetic Algorithms (GAs and Biased Random Sampling (BRS search techniques with the aim of minimizing the total flow time, i.e., the sum of completion times of all jobs. A well-known benchmark of test cases, entailing problems with two, three, and six machines, is employed for both tuning the relevant parameters of the developed procedure and assessing its performances against two metaheuristic algorithms recently presented by literature. The obtained results and a properly arranged ANOVA analysis highlight the superiority of the proposed approach in tackling the scheduling problem under investigation.

  1. Next generation sequencing (NGS)technologies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vuyisich, Momchilo [Los Alamos National Laboratory

    2012-09-11

    NGS technology overview: (1) NGS library preparation - Nucleic acids extraction, Sample quality control, RNA conversion to cDNA, Addition of sequencing adapters, Quality control of library; (2) Sequencing - Clonal amplification of library fragments, (except PacBio), Sequencing by synthesis, Data output (reads and quality); and (3) Data analysis - Read mapping, Genome assembly, Gene expression, Operon structure, sRNA discovery, and Epigenetic analyses.

  2. Transcriptional profiling of endocrine cerebro-osteodysplasia using microarray and next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Piya Lahiry

    Full Text Available BACKGROUND: Transcriptome profiling of patterns of RNA expression is a powerful approach to identify networks of genes that play a role in disease. To date, most mRNA profiling of tissues has been accomplished using microarrays, but next-generation sequencing can offer a richer and more comprehensive picture. METHODOLOGY/PRINCIPAL FINDINGS: ECO is a rare multi-system developmental disorder caused by a homozygous mutation in ICK encoding intestinal cell kinase. We performed gene expression profiling using both cDNA microarrays and next-generation mRNA sequencing (mRNA-seq of skin fibroblasts from ECO-affected subjects. We then validated a subset of differentially expressed transcripts identified by each method using quantitative reverse transcription-polymerase chain reaction (qRT-PCR. Finally, we used gene ontology (GO to identify critical pathways and processes that were abnormal according to each technical platform. Methodologically, mRNA-seq identifies a much larger number of differentially expressed genes with much better correlation to qRT-PCR results than the microarray (r² = 0.794 and 0.137, respectively. Biologically, cDNA microarray identified functional pathways focused on anatomical structure and development, while the mRNA-seq platform identified a higher proportion of genes involved in cell division and DNA replication pathways. CONCLUSIONS/SIGNIFICANCE: Transcriptome profiling with mRNA-seq had greater sensitivity, range and accuracy than the microarray. The two platforms generated different but complementary hypotheses for further evaluation.

  3. Next-Generation Sequencing Analysis and Algorithms for PDX and CDX Models.

    Science.gov (United States)

    Khandelwal, Garima; Girotti, María Romina; Smowton, Christopher; Taylor, Sam; Wirth, Christopher; Dynowski, Marek; Frese, Kristopher K; Brady, Ged; Dive, Caroline; Marais, Richard; Miller, Crispin

    2017-08-01

    Patient-derived xenograft (PDX) and circulating tumor cell-derived explant (CDX) models are powerful methods for the study of human disease. In cancer research, these methods have been applied to multiple questions, including the study of metastatic progression, genetic evolution, and therapeutic drug responses. As PDX and CDX models can recapitulate the highly heterogeneous characteristics of a patient tumor, as well as their response to chemotherapy, there is considerable interest in combining them with next-generation sequencing to monitor the genomic, transcriptional, and epigenetic changes that accompany oncogenesis. When used for this purpose, their reliability is highly dependent on being able to accurately distinguish between sequencing reads that originate from the host, and those that arise from the xenograft itself. Here, we demonstrate that failure to correctly identify contaminating host reads when analyzing DNA- and RNA-sequencing (DNA-Seq and RNA-Seq) data from PDX and CDX models is a major confounding factor that can lead to incorrect mutation calls and a failure to identify canonical mutation signatures associated with tumorigenicity. In addition, a highly sensitive algorithm and open source software tool for identifying and removing contaminating host sequences is described. Importantly, when applied to PDX and CDX models of melanoma, these data demonstrate its utility as a sensitive and selective tool for the correction of PDX- and CDX-derived whole-exome and RNA-Seq data. Implications: This study describes a sensitive method to identify contaminating host reads in xenograft and explant DNA- and RNA-Seq data and is applicable to other forms of deep sequencing. Mol Cancer Res; 15(8); 1012-6. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Targeted 'Next-Generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations

    Directory of Open Access Journals (Sweden)

    Lopez Jimenez Nelson

    2011-12-01

    Full Text Available Abstract Background Anophthalmia/microphthalmia (A/M is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. Methods We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP calling software. We verified predicted sequence alterations using Sanger sequencing. Results We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15 that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp deletion and one 3 bp duplication in SOX2. Conclusions Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.

  5. National Institutes of Health: Mixed waste minimization and treatment

    International Nuclear Information System (INIS)

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy's National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified

  6. National Institutes of Health: Mixed waste minimization and treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  7. Yleaf: Software for Human Y-Chromosomal Haplogroup Inference from Next-Generation Sequencing Data.

    Science.gov (United States)

    Ralf, Arwin; Montiel González, Diego; Zhong, Kaiyin; Kayser, Manfred

    2018-05-01

    Next-generation sequencing (NGS) technologies offer immense possibilities given the large genomic data they simultaneously deliver. The human Y-chromosome serves as good example how NGS benefits various applications in evolution, anthropology, genealogy, and forensics. Prior to NGS, the Y-chromosome phylogenetic tree consisted of a few hundred branches, based on NGS data, it now contains many thousands. The complexity of both, Y tree and NGS data provide challenges for haplogroup assignment. For effective analysis and interpretation of Y-chromosome NGS data, we present Yleaf, a publically available, automated, user-friendly software for high-resolution Y-chromosome haplogroup inference independently of library and sequencing methods.

  8. Next generation sequencing of pancreatic ductal adenocarcinoma: right or wrong?

    Science.gov (United States)

    Connor, Ashton A; Gallinger, Steven

    2017-07-01

    Pancreatic ductal adenocarcinoma (PDAC) has the highest mortality rate of all epithelial malignancies and a paradoxically rising incidence rate. Clinical translation of next generation sequencing (NGS) of tumour and germline samples may ameliorate outcomes by identifying prognostic and predictive genomic and transcriptomic features in appreciable fractions of patients, facilitating enrolment in biomarker-matched trials. Areas covered: The literature on precision oncology is reviewed. It is found that outcomes may be improved across various malignancies, and it is suggested that current issues of adequate tissue acquisition, turnaround times, analytic expertise and clinical trial accessibility may lessen as experience accrues. Also reviewed are PDAC genomic and transcriptomic NGS studies, emphasizing discoveries of promising biomarkers, though these require validation, and the fraction of patients that will benefit from these outside of the research setting is currently unknown. Expert commentary: Clinical use of NGS with PDAC should be used in investigational contexts in centers with multidisciplinary expertise in cancer sequencing and pancreatic cancer management. Biomarker directed studies will improve our understanding of actionable genomic variation in PDAC, and improve outcomes for this challenging disease.

  9. Waste minimization at Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, P.; Wong, P.C.F. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    Waste minimization supports Atomic Energy of Canada Limited (AECL) Environment Policy with regard to pollution prevention and has positive impacts on the environment, human health and safety, and economy. In accordance with the principle of pollution prevention, the quantities and degree of hazard of wastes requiring storage or disposition at facilities within or external to AECL sites shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle, to the extent practical. Waste minimization is an important element in the Waste Management Program. The Waste Management Program has implemented various initiatives for waste minimization since 2007. The key initiatives have focused on waste reduction, segregation and recycling, and included: 1) developed waste minimization requirements and recycling procedure to establish the framework for applying the Waste Minimization Hierarchy; 2) performed waste minimization assessments for the facilities, which generate significant amounts of waste, to identify the opportunities for waste reduction and assist the waste generators to develop waste reduction targets and action plans to achieve the targets; 3) implemented the colour-coded, standardized waste and recycling containers to enhance waste segregation; 4) established partnership with external agents for recycling; 5) extended the likely clean waste and recyclables collection to selected active areas; 6) provided on-going communications to promote waste reduction and increase awareness for recycling; and 7) continually monitored performance, with respect to waste minimization, to identify opportunities for improvement and to communicate these improvements. After implementation of waste minimization initiatives at CRL, the solid waste volume generated from routine operations at CRL has significantly decreased, while the amount of recyclables diverted from the onsite landfill has significantly increased since 2007. The overall refuse volume generated at

  10. Waste minimization at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Kranz, P.; Wong, P.C.F.

    2011-01-01

    Waste minimization supports Atomic Energy of Canada Limited (AECL) Environment Policy with regard to pollution prevention and has positive impacts on the environment, human health and safety, and economy. In accordance with the principle of pollution prevention, the quantities and degree of hazard of wastes requiring storage or disposition at facilities within or external to AECL sites shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle, to the extent practical. Waste minimization is an important element in the Waste Management Program. The Waste Management Program has implemented various initiatives for waste minimization since 2007. The key initiatives have focused on waste reduction, segregation and recycling, and included: 1) developed waste minimization requirements and recycling procedure to establish the framework for applying the Waste Minimization Hierarchy; 2) performed waste minimization assessments for the facilities, which generate significant amounts of waste, to identify the opportunities for waste reduction and assist the waste generators to develop waste reduction targets and action plans to achieve the targets; 3) implemented the colour-coded, standardized waste and recycling containers to enhance waste segregation; 4) established partnership with external agents for recycling; 5) extended the likely clean waste and recyclables collection to selected active areas; 6) provided on-going communications to promote waste reduction and increase awareness for recycling; and 7) continually monitored performance, with respect to waste minimization, to identify opportunities for improvement and to communicate these improvements. After implementation of waste minimization initiatives at CRL, the solid waste volume generated from routine operations at CRL has significantly decreased, while the amount of recyclables diverted from the onsite landfill has significantly increased since 2007. The overall refuse volume generated at

  11. Guidelines for mixed waste minimization

    International Nuclear Information System (INIS)

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization

  12. Next-Generation Sequencing-Based Detection of Germline Copy Number Variations in BRCA1/BRCA2

    DEFF Research Database (Denmark)

    Schmidt, Ane Y; Hansen, Thomas V O; Ahlborn, Lise B

    2017-01-01

    Genetic testing of BRCA1/2 includes screening for single nucleotide variants and small insertions/deletions and for larger copy number variations (CNVs), primarily by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). With the advent of next-generation sequencing (NGS)...

  13. Several Families of Sequences with Low Correlation and Large Linear Span

    Science.gov (United States)

    Zeng, Fanxin; Zhang, Zhenyu

    In DS-CDMA systems and DS-UWB radios, low correlation of spreading sequences can greatly help to minimize multiple access interference (MAI) and large linear span of spreading sequences can reduce their predictability. In this letter, new sequence sets with low correlation and large linear span are proposed. Based on the construction Trm1[Trnm(αbt+γiαdt)]r for generating p-ary sequences of period pn-1, where n=2m, d=upm±v, b=u±v, γi∈GF(pn), and p is an arbitrary prime number, several methods to choose the parameter d are provided. The obtained sequences with family size pn are of four-valued, five-valued, six-valued or seven-valued correlation and the maximum nontrivial correlation value is (u+v-1)pm-1. The simulation by a computer shows that the linear span of the new sequences is larger than that of the sequences with Niho-type and Welch-type decimations, and similar to that of [10].

  14. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research.

    Science.gov (United States)

    Xu, Jiajia; Li, Yuanyuan; Ma, Xiuling; Ding, Jianfeng; Wang, Kai; Wang, Sisi; Tian, Ye; Zhang, Hui; Zhu, Xin-Guang

    2013-09-01

    Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.

  15. GenNon-h: Generating multiple sequence alignments on nonhomogeneous phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Kedzierska Anna M

    2012-08-01

    Full Text Available Abstract Background A number of software packages are available to generate DNA multiple sequence alignments (MSAs evolved under continuous-time Markov processes on phylogenetic trees. On the other hand, methods of simulating the DNA MSA directly from the transition matrices do not exist. Moreover, existing software restricts to the time-reversible models and it is not optimized to generate nonhomogeneous data (i.e. placing distinct substitution rates at different lineages. Results We present the first package designed to generate MSAs evolving under discrete-time Markov processes on phylogenetic trees, directly from probability substitution matrices. Based on the input model and a phylogenetic tree in the Newick format (with branch lengths measured as the expected number of substitutions per site, the algorithm produces DNA alignments of desired length. GenNon-h is publicly available for download. Conclusion The software presented here is an efficient tool to generate DNA MSAs on a given phylogenetic tree. GenNon-h provides the user with the nonstationary or nonhomogeneous phylogenetic data that is well suited for testing complex biological hypotheses, exploring the limits of the reconstruction algorithms and their robustness to such models.

  16. Next-Generation Sequencing for Typing and Detection of ESBL and MBL E. coli causing UTI

    OpenAIRE

    Nabakishore Nayak; Mahesh Chanda Sahu

    2017-01-01

    Next-generation sequencing (NGS) has the potential to provide typing results and detect resistance genes in a single assay, thus guiding timely treatment decisions and allowing rapid tracking of transmission of resistant clones. We can be evaluated the performance of a new NGS assay during an outbreak of sequence type 131 (ST131) Escherichia coli infections in a teaching hospital. The assay will be performed on 100 extended-spectrum- beta-lactamase (ESBL) E. coli isolates collected from UTI d...

  17. Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Nicole Weisschuh

    Full Text Available Retinal dystrophies (RD constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.

  18. Application of dynamic probabilistic safety assessment approach for accident sequence precursor analysis: Case study for steam generator tube rupture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sul; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Kim, Tae Wan [Incheon National University, Incheon (Korea, Republic of)

    2017-03-15

    The purpose of this research is to introduce the technical standard of accident sequence precursor (ASP) analysis, and to propose a case study using the dynamic-probabilistic safety assessment (D-PSA) approach. The D-PSA approach can aid in the determination of high-risk/low-frequency accident scenarios from all potential scenarios. It can also be used to investigate the dynamic interaction between the physical state and the actions of the operator in an accident situation for risk quantification. This approach lends significant potential for safety analysis. Furthermore, the D-PSA approach provides a more realistic risk assessment by minimizing assumptions used in the conventional PSA model so-called the static-PSA model, which are relatively static in comparison. We performed risk quantification of a steam generator tube rupture (SGTR) accident using the dynamic event tree (DET) methodology, which is the most widely used methodology in D-PSA. The risk quantification results of D-PSA and S-PSA are compared and evaluated. Suggestions and recommendations for using D-PSA are described in order to provide a technical perspective.

  19. Application of dynamic probabilistic safety assessment approach for accident sequence precursor analysis: Case study for steam generator tube rupture

    International Nuclear Information System (INIS)

    Lee, Han Sul; Heo, Gyun Young; Kim, Tae Wan

    2017-01-01

    The purpose of this research is to introduce the technical standard of accident sequence precursor (ASP) analysis, and to propose a case study using the dynamic-probabilistic safety assessment (D-PSA) approach. The D-PSA approach can aid in the determination of high-risk/low-frequency accident scenarios from all potential scenarios. It can also be used to investigate the dynamic interaction between the physical state and the actions of the operator in an accident situation for risk quantification. This approach lends significant potential for safety analysis. Furthermore, the D-PSA approach provides a more realistic risk assessment by minimizing assumptions used in the conventional PSA model so-called the static-PSA model, which are relatively static in comparison. We performed risk quantification of a steam generator tube rupture (SGTR) accident using the dynamic event tree (DET) methodology, which is the most widely used methodology in D-PSA. The risk quantification results of D-PSA and S-PSA are compared and evaluated. Suggestions and recommendations for using D-PSA are described in order to provide a technical perspective

  20. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities

    OpenAIRE

    BoonFei eTan; Charmaine Marie Ng; Jean Pierre Nshimyimana; Jean Pierre Nshimyimana; Lay-Leng eLoh; Lay-Leng eLoh; Karina Yew-Hoong Gin; Janelle Renee Thompson; Janelle Renee Thompson

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable reg...

  1. Next-generation sequencing in NSCLC and melanoma patients : A cost and budget impact analysis

    NARCIS (Netherlands)

    Van Amerongen, Rosa A.; Retèl, Valesca P.; Coupé, Veerle M.H.; Nederlof, Petra M.; Vogel, Maartje J.; Van Harten, Wim H.

    2016-01-01

    Next-generation sequencing (NGS) has reached the molecular diagnostic laboratories. Although the NGS technology aims to improve the effectiveness of therapies by selecting the most promising therapy, concerns are that NGS testing is expensive and that the 'benefits' are not yet in relation to these

  2. The role of next generation sequencing for the development and testing of veterinary biologics

    Science.gov (United States)

    Next generation sequencing technology has become widely available and it offers many new opportunities in vaccine technology. Both human and veterinary medicine has numerous examples of adventitious agents being found in live vaccines. In veterinary medicine a continuing trend is the use of viral ...

  3. Next Generation Sequencing As an Aid to Diagnosis and Treatment of an Unusual Pediatric Brain Cancer

    Directory of Open Access Journals (Sweden)

    John Glod

    2014-07-01

    Full Text Available Classification of pediatric brain tumors with unusual histologic and clinical features may be a diagnostic challenge to the pathologist. We present a case of a 12-year-old girl with a primary intracranial tumor. The tumor classification was not certain initially, and the site of origin and clinical behavior were unusual. Genomic characterization of the tumor using a Clinical Laboratory Improvement Amendment (CLIA-certified next-generation sequencing assay assisted in the diagnosis and translated into patient benefit, albeit transient. Our case argues that next generation sequencing may play a role in the pathological classification of pediatric brain cancers and guiding targeted therapy, supporting additional studies of genetically targeted therapeutics.

  4. Life on arginine for Mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas.

    Directory of Open Access Journals (Sweden)

    Sabine Pereyre

    2009-10-01

    Full Text Available Mycoplasma hominis is an opportunistic human mycoplasma. Two other pathogenic human species, M. genitalium and Ureaplasma parvum, reside within the same natural niche as M. hominis: the urogenital tract. These three species have overlapping, but distinct, pathogenic roles. They have minimal genomes and, thus, reduced metabolic capabilities characterized by distinct energy-generating pathways. Analysis of the M. hominis PG21 genome sequence revealed that it is the second smallest genome among self-replicating free living organisms (665,445 bp, 537 coding sequences (CDSs. Five clusters of genes were predicted to have undergone horizontal gene transfer (HGT between M. hominis and the phylogenetically distant U. parvum species. We reconstructed M. hominis metabolic pathways from the predicted genes, with particular emphasis on energy-generating pathways. The Embden-Meyerhoff-Parnas pathway was incomplete, with a single enzyme absent. We identified the three proteins constituting the arginine dihydrolase pathway. This pathway was found essential to promote growth in vivo. The predicted presence of dimethylarginine dimethylaminohydrolase suggested that arginine catabolism is more complex than initially described. This enzyme may have been acquired by HGT from non-mollicute bacteria. Comparison of the three minimal mollicute genomes showed that 247 CDSs were common to all three genomes, whereas 220 CDSs were specific to M. hominis, 172 CDSs were specific to M. genitalium, and 280 CDSs were specific to U. parvum. Within these species-specific genes, two major sets of genes could be identified: one including genes involved in various energy-generating pathways, depending on the energy source used (glucose, urea, or arginine and another involved in cytadherence and virulence. Therefore, a minimal mycoplasma cell, not including cytadherence and virulence-related genes, could be envisaged containing a core genome (247 genes, plus a set of genes required for

  5. WiseScaffolder: an algorithm for the semi-automatic scaffolding of Next Generation Sequencing data.

    Science.gov (United States)

    Farrant, Gregory K; Hoebeke, Mark; Partensky, Frédéric; Andres, Gwendoline; Corre, Erwan; Garczarek, Laurence

    2015-09-03

    The sequencing depth provided by high-throughput sequencing technologies has allowed a rise in the number of de novo sequenced genomes that could potentially be closed without further sequencing. However, genome scaffolding and closure require costly human supervision that often results in genomes being published as drafts. A number of automatic scaffolders were recently released, which improved the global quality of genomes published in the last few years. Yet, none of them reach the efficiency of manual scaffolding. Here, we present an innovative semi-automatic scaffolder that additionally helps with chimerae resolution and generates valuable contig maps and outputs for manual improvement of the automatic scaffolding. This software was tested on the newly sequenced marine cyanobacterium Synechococcus sp. WH8103 as well as two reference datasets used in previous studies, Rhodobacter sphaeroides and Homo sapiens chromosome 14 (http://gage.cbcb.umd.edu/). The quality of resulting scaffolds was compared to that of three other stand-alone scaffolders: SSPACE, SOPRA and SCARPA. For all three model organisms, WiseScaffolder produced better results than other scaffolders in terms of contiguity statistics (number of genome fragments, N50, LG50, etc.) and, in the case of WH8103, the reliability of the scaffolds was confirmed by whole genome alignment against a closely related reference genome. We also propose an efficient computer-assisted strategy for manual improvement of the scaffolding, using outputs generated by WiseScaffolder, as well as for genome finishing that in our hands led to the circularization of the WH8103 genome. Altogether, WiseScaffolder proved more efficient than three other scaffolders for both prokaryotic and eukaryotic genomes and is thus likely applicable to most genome projects. The scaffolding pipeline described here should be of particular interest to biologists wishing to take advantage of the high added value of complete genomes.

  6. SNP discovery in the transcriptome of white Pacific shrimp Litopenaeus vannamei by next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available The application of next generation sequencing technology has greatly facilitated high throughput single nucleotide polymorphism (SNP discovery and genotyping in genetic research. In the present study, SNPs were discovered based on two transcriptomes of Litopenaeus vannamei (L. vannamei generated from Illumina sequencing platform HiSeq 2000. One transcriptome of L. vannamei was obtained through sequencing on the RNA from larvae at mysis stage and its reference sequence was de novo assembled. The data from another transcriptome were downloaded from NCBI and the reads of the two transcriptomes were mapped separately to the assembled reference by BWA. SNP calling was performed using SAMtools. A total of 58,717 and 36,277 SNPs with high quality were predicted from the two transcriptomes, respectively. SNP calling was also performed using the reads of two transcriptomes together, and a total of 96,040 SNPs with high quality were predicted. Among these 96,040 SNPs, 5,242 and 29,129 were predicted as non-synonymous and synonymous SNPs respectively. Characterization analysis of the predicted SNPs in L. vannamei showed that the estimated SNP frequency was 0.21% (one SNP per 476 bp and the estimated ratio for transition to transversion was 2.0. Fifty SNPs were randomly selected for validation by Sanger sequencing after PCR amplification and 76% of SNPs were confirmed, which indicated that the SNPs predicted in this study were reliable. These SNPs will be very useful for genetic study in L. vannamei, especially for the high density linkage map construction and genome-wide association studies.

  7. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies

    International Nuclear Information System (INIS)

    Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S.; Singh, Rajesh R.; Roy-Chowdhuri, Sinchita

    2015-01-01

    Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects

  8. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui [Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Luthra, Rajyalakshmi, E-mail: rluthra@mdanderson.org; Goswami, Rashmi S.; Singh, Rajesh R. [Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Roy-Chowdhuri, Sinchita [Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States)

    2015-08-28

    Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.

  9. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2015-08-01

    Full Text Available Application of next-generation sequencing (NGS technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM (Life Technologies, a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.

  10. The experimental investigation on the performance of a low temperature waste heat-driven multi-bed desiccant dehumidifier (MBDD) and minimization of entropy generation

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Ng, K. C.

    2012-01-01

    We present the experimental investigation on the performance of multi-bed desiccant dehumidification system (MBDD) using a thermodynamic framework with an entropy generation analysis. The cyclic steady state performance of adsorption-desorption processes at the assorted heat source temperatures, and typical ambient humidity conditions was carried out. MBDD unit uses type-RD silica gel pore surface area with of 720 m 2/g. It has a nominal diameter range of 0.4 to 0. 7 mm. The key advantages of MBDD are: (i) it has no moving parts rendering less maintenance, (ii) energy-efficient means of dehumidification by adsorption process with low temperature heat source as compared to the conventional methods, (iii) although it is a pecked bed desiccant, a laminar chamber is employed by arranging the V-shaped configuration of heat exchangers and (iv) it is environmental friendly with the low-carbon footprint. Entropy generation analysis was performed at the assorted heat source temperatures to investigate the performance of MBDD. By conducting the entropy minimization, it is now able to locate the optimal operating conditions of the system while the specific entropy generation is found to be minimal. This analysis shows that the minimization of entropy generation in the dehumidification cycle leads to the maximization of COP in the MBDD and thus, higher delivery of useful effects at the same input resources. © 2011 Elsevier Ltd. All rights reserved.

  11. The experimental investigation on the performance of a low temperature waste heat-driven multi-bed desiccant dehumidifier (MBDD) and minimization of entropy generation

    KAUST Repository

    Myat, Aung

    2012-06-01

    We present the experimental investigation on the performance of multi-bed desiccant dehumidification system (MBDD) using a thermodynamic framework with an entropy generation analysis. The cyclic steady state performance of adsorption-desorption processes at the assorted heat source temperatures, and typical ambient humidity conditions was carried out. MBDD unit uses type-RD silica gel pore surface area with of 720 m 2/g. It has a nominal diameter range of 0.4 to 0. 7 mm. The key advantages of MBDD are: (i) it has no moving parts rendering less maintenance, (ii) energy-efficient means of dehumidification by adsorption process with low temperature heat source as compared to the conventional methods, (iii) although it is a pecked bed desiccant, a laminar chamber is employed by arranging the V-shaped configuration of heat exchangers and (iv) it is environmental friendly with the low-carbon footprint. Entropy generation analysis was performed at the assorted heat source temperatures to investigate the performance of MBDD. By conducting the entropy minimization, it is now able to locate the optimal operating conditions of the system while the specific entropy generation is found to be minimal. This analysis shows that the minimization of entropy generation in the dehumidification cycle leads to the maximization of COP in the MBDD and thus, higher delivery of useful effects at the same input resources. © 2011 Elsevier Ltd. All rights reserved.

  12. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    Science.gov (United States)

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  13. Bringing Next-Generation Sequencing into the Classroom through a Comparison of Molecular Biology Techniques

    Science.gov (United States)

    Bowling, Bethany; Zimmer, Erin; Pyatt, Robert E.

    2014-01-01

    Although the development of next-generation (NextGen) sequencing technologies has revolutionized genomic research and medicine, the incorporation of these topics into the classroom is challenging, given an implied high degree of technical complexity. We developed an easy-to-implement, interactive classroom activity investigating the similarities…

  14. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  15. Histoimmunogenetics Markup Language 1.0: Reporting next generation sequencing-based HLA and KIR genotyping.

    Science.gov (United States)

    Milius, Robert P; Heuer, Michael; Valiga, Daniel; Doroschak, Kathryn J; Kennedy, Caleb J; Bolon, Yung-Tsi; Schneider, Joel; Pollack, Jane; Kim, Hwa Ran; Cereb, Nezih; Hollenbach, Jill A; Mack, Steven J; Maiers, Martin

    2015-12-01

    We present an electronic format for exchanging data for HLA and KIR genotyping with extensions for next-generation sequencing (NGS). This format addresses NGS data exchange by refining the Histoimmunogenetics Markup Language (HML) to conform to the proposed Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines (miring.immunogenomics.org). Our refinements of HML include two major additions. First, NGS is supported by new XML structures to capture additional NGS data and metadata required to produce a genotyping result, including analysis-dependent (dynamic) and method-dependent (static) components. A full genotype, consensus sequence, and the surrounding metadata are included directly, while the raw sequence reads and platform documentation are externally referenced. Second, genotype ambiguity is fully represented by integrating Genotype List Strings, which use a hierarchical set of delimiters to represent allele and genotype ambiguity in a complete and accurate fashion. HML also continues to enable the transmission of legacy methods (e.g. site-specific oligonucleotide, sequence-specific priming, and Sequence Based Typing (SBT)), adding features such as allowing multiple group-specific sequencing primers, and fully leveraging techniques that combine multiple methods to obtain a single result, such as SBT integrated with NGS. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Sequence Ready Characterization of the Pericentromeric Region of 19p12

    Energy Technology Data Exchange (ETDEWEB)

    Evan E. Eichler

    2006-08-31

    Current mapping and sequencing strategies have been inadequate within the proximal portion of 19p12 due, in part, to the presence of a recently expanded ZNF (zinc-finger) gene family and the presence of large (25-50 kb) inverted beta-satellite repeat structures which bracket this tandemly duplicated gene family. The virtual of absence of classically defined “unique” sequence within the region has hampered efforts to identify and characterize a suitable minimal tiling path of clones which can be used as templates required for finished sequencing of the region. The goal of this proposal is to develop and implement a novel sequence-anchor strategy to generate a contiguous BAC map of the most proximal portion of chromosome 19p12 for the purpose of complete sequence characterization. The target region will be an estimated 4.5 Mb of DNA extending from STS marker D19S450 (the beginning of the ZNF gene cluster) to the centromeric (alpha-satellite) junction of 19p11. The approach will entail 1) pre-selection of 19p12 BAC and cosmid clones (NIH approved library) utilizing both 19p12 -unique and 19p12-SPECIFIC repeat probes (Eichler et al., 1998); 2) the generation of a BAC/cosmid end-sequence map across the region with a density of one marker every 8kb; 3) the development of a second-generation of STS (sequence tagged sites) which will be used to identify and verify clonal overlap at the level of the sequence; 4) incorporation of these sequence-anchored overlapping clones into existing cosmid/BAC restriction maps developed at Livermore National Laboratory; and 5) validation of the organization of this region utilizing high-resolution FISH techniques (extended chromatin analysis) on monochromosomal 19 somatic cell hybrids and parental cell lines of source material. The data generated will be used in the selection of the most parsimonious tiling path of BAC clones to be sequenced as part of the JGI effort on chromosome 19 and should serve as a model for the sequence

  17. Maturity onset diabetes of youth (MODY) in Turkish children: sequence analysis of 11 causative genes by next generation sequencing.

    Science.gov (United States)

    Ağladıoğlu, Sebahat Yılmaz; Aycan, Zehra; Çetinkaya, Semra; Baş, Veysel Nijat; Önder, Aşan; Peltek Kendirci, Havva Nur; Doğan, Haldun; Ceylaner, Serdar

    2016-04-01

    Maturity-onset diabetes of the youth (MODY), is a genetically and clinically heterogeneous group of diseasesand is often misdiagnosed as type 1 or type 2 diabetes. The aim of this study is to investigate both novel and proven mutations of 11 MODY genes in Turkish children by using targeted next generation sequencing. A panel of 11 MODY genes were screened in 43 children with MODY diagnosed by clinical criterias. Studies of index cases was done with MISEQ-ILLUMINA, and family screenings and confirmation studies of mutations was done by Sanger sequencing. We identified 28 (65%) point mutations among 43 patients. Eighteen patients have GCK mutations, four have HNF1A, one has HNF4A, one has HNF1B, two have NEUROD1, one has PDX1 gene variations and one patient has both HNF1A and HNF4A heterozygote mutations. This is the first study including molecular studies of 11 MODY genes in Turkish children. GCK is the most frequent type of MODY in our study population. Very high frequency of novel mutations (42%) in our study population, supports that in heterogenous disorders like MODY sequence analysis provides rapid, cost effective and accurate genetic diagnosis.

  18. Analyzing Plasmodium falciparum erythrocyte membrane protein 1 gene expression by a next generation sequencing based method

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Petersen, Bent; Seguin-Orlando, Andaine

    2013-01-01

    at identifying PfEMP1 features associated with high virulence. Here we present the first effective method for sequence analysis of var genes expressed in field samples: a sequential PCR and next generation sequencing based technique applied on expressed var sequence tags and subsequently on long range PCR......, encoded by ~60 highly variable 'var' genes per haploid genome. PfEMP1 is exported to the surface of infected erythrocytes and is thought to be fundamental to immune evasion by adhesion to host and parasite factors. The highly variable nature has constituted a roadblock in var expression studies aimed...

  19. Development and evaluation of a panel of filovirus sequence capture probes for pathogen detection by next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available A detailed understanding of the circulating pathogens in a particular geographic location aids in effectively utilizing targeted, rapid diagnostic assays, thus allowing for appropriate therapeutic and containment procedures. This is especially important in regions prevalent for highly pathogenic viruses co-circulating with other endemic pathogens such as the malaria parasite. The importance of biosurveillance is highlighted by the ongoing Ebola virus disease outbreak in West Africa. For example, a more comprehensive assessment of the regional pathogens could have identified the risk of a filovirus disease outbreak earlier and led to an improved diagnostic and response capacity in the region. In this context, being able to rapidly screen a single sample for multiple pathogens in a single tube reaction could improve both diagnostics as well as pathogen surveillance. Here, probes were designed to capture identifying filovirus sequence for the ebolaviruses Sudan, Ebola, Reston, Taï Forest, and Bundibugyo and the Marburg virus variants Musoke, Ci67, and Angola. These probes were combined into a single probe panel, and the captured filovirus sequence was successfully identified using the MiSeq next-generation sequencing platform. This panel was then used to identify the specific filovirus from nonhuman primates experimentally infected with Ebola virus as well as Bundibugyo virus in human sera samples from the Democratic Republic of the Congo, thus demonstrating the utility for pathogen detection using clinical samples. While not as sensitive and rapid as real-time PCR, this panel, along with incorporating additional sequence capture probe panels, could be used for broad pathogen screening and biosurveillance.

  20. Validation of a next-generation sequencing assay for clinical molecular oncology.

    Science.gov (United States)

    Cottrell, Catherine E; Al-Kateb, Hussam; Bredemeyer, Andrew J; Duncavage, Eric J; Spencer, David H; Abel, Haley J; Lockwood, Christina M; Hagemann, Ian S; O'Guin, Stephanie M; Burcea, Lauren C; Sawyer, Christopher S; Oschwald, Dayna M; Stratman, Jennifer L; Sher, Dorie A; Johnson, Mark R; Brown, Justin T; Cliften, Paul F; George, Bijoy; McIntosh, Leslie D; Shrivastava, Savita; Nguyen, Tudung T; Payton, Jacqueline E; Watson, Mark A; Crosby, Seth D; Head, Richard D; Mitra, Robi D; Nagarajan, Rakesh; Kulkarni, Shashikant; Seibert, Karen; Virgin, Herbert W; Milbrandt, Jeffrey; Pfeifer, John D

    2014-01-01

    Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations at actionable loci. We present clinical validation of the assay and a detailed framework for design and validation of similar clinical assays. Deep sequencing of 78 tumor specimens (≥ 1000× average unique coverage across the capture region) achieved high sensitivity for detecting somatic variants at low allele fraction (AF). Validation revealed sensitivities and specificities of 100% for detection of single-nucleotide variants (SNVs) within coding regions, compared with SNP array sequence data (95% CI = 83.4-100.0 for sensitivity and 94.2-100.0 for specificity) or whole-genome sequencing (95% CI = 89.1-100.0 for sensitivity and 99.9-100.0 for specificity) of HapMap samples. Sensitivity for detecting variants at an observed 10% AF was 100% (95% CI = 93.2-100.0) in HapMap mixes. Analysis of 15 masked specimens harboring clinically reported variants yielded concordant calls for 13/13 variants at AF of ≥ 15%. The WUCaMP assay is a robust and sensitive method to detect somatic variants of clinical significance in molecular oncology laboratories, with reduced time and cost of genetic analysis allowing for strategic patient management. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. TAPDANCE: An automated tool to identify and annotate transposon insertion CISs and associations between CISs from next generation sequence data

    Directory of Open Access Journals (Sweden)

    Sarver Aaron L

    2012-06-01

    Full Text Available Abstract Background Next generation sequencing approaches applied to the analyses of transposon insertion junction fragments generated in high throughput forward genetic screens has created the need for clear informatics and statistical approaches to deal with the massive amount of data currently being generated. Previous approaches utilized to 1 map junction fragments within the genome and 2 identify Common Insertion Sites (CISs within the genome are not practical due to the volume of data generated by current sequencing technologies. Previous approaches applied to this problem also required significant manual annotation. Results We describe Transposon Annotation Poisson Distribution Association Network Connectivity Environment (TAPDANCE software, which automates the identification of CISs within transposon junction fragment insertion data. Starting with barcoded sequence data, the software identifies and trims sequences and maps putative genomic sequence to a reference genome using the bowtie short read mapper. Poisson distribution statistics are then applied to assess and rank genomic regions showing significant enrichment for transposon insertion. Novel methods of counting insertions are used to ensure that the results presented have the expected characteristics of informative CISs. A persistent mySQL database is generated and utilized to keep track of sequences, mappings and common insertion sites. Additionally, associations between phenotypes and CISs are also identified using Fisher’s exact test with multiple testing correction. In a case study using previously published data we show that the TAPDANCE software identifies CISs as previously described, prioritizes them based on p-value, allows holistic visualization of the data within genome browser software and identifies relationships present in the structure of the data. Conclusions The TAPDANCE process is fully automated, performs similarly to previous labor intensive approaches

  2. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

    Directory of Open Access Journals (Sweden)

    Yu Cao

    2017-09-01

    Full Text Available The development of next generation sequencing (NGS techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents or a food manufacturing facility econiche (e.g., floor drain. To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods.

  3. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

    Science.gov (United States)

    Cao, Yu; Fanning, Séamus; Proos, Sinéad; Jordan, Kieran; Srikumar, Shabarinath

    2017-01-01

    The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods. PMID:29033905

  4. Improved water chemistry controls for minimizing degradation of materials

    International Nuclear Information System (INIS)

    Sawochka, S.G.

    1986-01-01

    The Electric Power Research Institute and the Steam Generator Owners Group have sponsored several efforts to develop secondary water chemistry guidelines to minimize pressurized water reactor (PWR) steam generator tubing degradation. To develop these guidelines, chemical species known to accelerate corrosion of Alloy 600 were identified, and values for normal and abnormal chemistry situations were established. For example, sodium hydroxide was known to accelerate Alloy 600 intergranular attack stress corrosion cracking; thus, guidelines were developed for blowdown sodium concentrations in recirculating steam generator systems. Similarly, formation of acidic solutions, particularly as a result of chloride ingress at seawater sites, was known to accelerate denting; thus, chloride guidelines were established. A blowdown cation conductivity limit was established to minimize concentrations of other anionic species. Guidelines also were developed for condensate and feedwater chemistry to minimize general corrosion of system materials, thereby minimizing sludge and deposit buildup in the steam generators

  5. Frontal dynamic aphasia in progressive supranuclear palsy: Distinguishing between generation and fluent sequencing of novel thoughts.

    Science.gov (United States)

    Robinson, Gail A; Spooner, Donna; Harrison, William J

    2015-10-01

    Frontal dynamic aphasia is characterised by a profound reduction in spontaneous speech despite well-preserved naming, repetition and comprehension. Since Luria (1966, 1970) designated this term, two main forms of dynamic aphasia have been identified: one, a language-specific selection deficit at the level of word/sentence generation, associated with left inferior frontal lesions; and two, a domain-general impairment in generating multiple responses or connected speech, associated with more extensive bilateral frontal and/or frontostriatal damage. Both forms of dynamic aphasia have been interpreted as arising due to disturbances in early prelinguistic conceptual preparation mechanisms that are critical for language production. We investigate language-specific and domain-general accounts of dynamic aphasia and address two issues: one, whether deficits in multiple conceptual preparation mechanisms can co-occur; and two, the contribution of broader cognitive processes such as energization, the ability to initiate and sustain response generation over time, to language generation failure. Thus, we report patient WAL who presented with frontal dynamic aphasia in the context of progressive supranuclear palsy (PSP). WAL was given a series of experimental tests that showed that his dynamic aphasia was not underpinned by a language-specific deficit in selection or in microplanning. By contrast, WAL presented with a domain-general deficit in fluent sequencing of novel thoughts. The latter replicated the pattern documented in a previous PSP patient (Robinson, et al., 2006); however, unique to WAL, generating novel thoughts was impaired but there was no evidence of a sequencing deficit because perseveration was absent. Thus, WAL is the first unequivocal case to show a distinction between novel thought generation and subsequent fluent sequencing. Moreover, WAL's generation deficit encompassed verbal and non-verbal responses, showing a similar (but more profoundly reduced) pattern

  6. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    Science.gov (United States)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  7. Enrichment of target sequences for next-generation sequencing applications in research and diagnostics.

    Science.gov (United States)

    Altmüller, Janine; Budde, Birgit S; Nürnberg, Peter

    2014-02-01

    Abstract Targeted re-sequencing such as gene panel sequencing (GPS) has become very popular in medical genetics, both for research projects and in diagnostic settings. The technical principles of the different enrichment methods have been reviewed several times before; however, new enrichment products are constantly entering the market, and researchers are often puzzled about the requirement to take decisions about long-term commitments, both for the enrichment product and the sequencing technology. This review summarizes important considerations for the experimental design and provides helpful recommendations in choosing the best sequencing strategy for various research projects and diagnostic applications.

  8. GROUPING WEB ACCESS SEQUENCES uSING SEQUENCE ALIGNMENT METHOD

    OpenAIRE

    BHUPENDRA S CHORDIA; KRISHNAKANT P ADHIYA

    2011-01-01

    In web usage mining grouping of web access sequences can be used to determine the behavior or intent of a set of users. Grouping websessions is how to measure the similarity between web sessions. There are many shortcomings in traditional measurement methods. The taskof grouping web sessions based on similarity and consists of maximizing the intra-group similarity while minimizing the inter-groupsimilarity is done using sequence alignment method. This paper introduces a new method to group we...

  9. Minimizing Molybdenum 99 contamination in Technetium 99m Pertechnetate from the elution of 99Mo/ 99m Tc Generator

    International Nuclear Information System (INIS)

    Zakaria Ibrahim; Zulkifli Hashim; Bohari Yaacob

    2011-01-01

    Radioisotope Tc-99m is widely used for variety of nuclear medicine diagnostic procedures. For many commercial applications, it is prepared in a portable type generator. Nuclear Malaysia has been producing a dry type alumina chromatographic column generator utilizing fission Mo-99. This injectable Tc-99m must meet the British Pharmacopeia [1] product specification prior to be apply on patient. This paper provides a method to minimize the up to acceptable level Mo-99 in the final product. Purposely made pertechnetate contaminated with Mo-99 and re-eluate by using old generator. Excellent removal of Mo-99 impurity was achieved and more than 80 % of Tc-99m total activity was recovered. (author)

  10. Predicting Consensus Structures for RNA Alignments Via Pseudo-Energy Minimization

    Directory of Open Access Journals (Sweden)

    Junilda Spirollari

    2009-01-01

    Full Text Available Thermodynamic processes with free energy parameters are often used in algorithms that solve the free energy minimization problem to predict secondary structures of single RNA sequences. While results from these algorithms are promising, an observation is that single sequence-based methods have moderate accuracy and more information is needed to improve on RNA secondary structure prediction, such as covariance scores obtained from multiple sequence alignments. We present in this paper a new approach to predicting the consensus secondary structure of a set of aligned RNA sequences via pseudo-energy minimization. Our tool, called RSpredict, takes into account sequence covariation and employs effective heuristics for accuracy improvement. RSpredict accepts, as input data, a multiple sequence alignment in FASTA or ClustalW format and outputs the consensus secondary structure of the input sequences in both the Vienna style Dot Bracket format and the Connectivity Table format. Our method was compared with some widely used tools including KNetFold, Pfold and RNAalifold. A comprehensive test on different datasets including Rfam sequence alignments and a multiple sequence alignment obtained from our study on the Drosophila X chromosome reveals that RSpredict is competitive with the existing tools on the tested datasets. RSpredict is freely available online as a web server and also as a jar file for download at http:// datalab.njit.edu/biology/RSpredict.

  11. Compression of computer generated phase-shifting hologram sequence using AVC and HEVC

    Science.gov (United States)

    Xing, Yafei; Pesquet-Popescu, Béatrice; Dufaux, Frederic

    2013-09-01

    With the capability of achieving twice the compression ratio of Advanced Video Coding (AVC) with similar reconstruction quality, High Efficiency Video Coding (HEVC) is expected to become the newleading technique of video coding. In order to reduce the storage and transmission burden of digital holograms, in this paper we propose to use HEVC for compressing the phase-shifting digital hologram sequences (PSDHS). By simulating phase-shifting digital holography (PSDH) interferometry, interference patterns between illuminated three dimensional( 3D) virtual objects and the stepwise phase changed reference wave are generated as digital holograms. The hologram sequences are obtained by the movement of the virtual objects and compressed by AVC and HEVC. The experimental results show that AVC and HEVC are efficient to compress PSDHS, with HEVC giving better performance. Good compression rate and reconstruction quality can be obtained with bitrate above 15000kbps.

  12. Next Generation Sequencing and ALS: known genes, different phenotyphes.

    Science.gov (United States)

    Campopiano, Rosa; Ryskalin, Larisa; Giardina, Emiliano; Zampatti, Stefania; Busceti, Carla L; Biagioni, Francesca; Ferese, Rosangela; Storto, Marianna; Gambardella, Stefano; Fornai, Francesco

    2017-12-01

    Amyotrophic lateral sclerosis (ALS) is fatal neurodegenerative disease clinically characterized by upper and lower motor neuron dysfunction resulting in rapidly progressive paralysis and death from respiratory failure. Most cases appear to be sporadic, but 5-10 % of cases have a family history of the disease, and over the last decade, identification of mutations in about 20 genes predisposing to these disorders has provided the means to better understand their pathogenesis. Next Generation sequencing (NGS) is an advanced high-throughput DNA sequencing technology which have rapidly contributed to an acceleration in the discovery of genetic risk factors for both familial and sporadic neurological and neurodegenerative diseases. These strategies allowed to rapidly identify disease-associated variants and genetic risk factors for both familial (fALS) and sporadic ALS (sALS), strongly contributing to the knowledge of the genetic architecture of ALS. Moreover, as the number of ALS genes grows, many of the proteins they encode are in intracellular processes shared with other known diseases, suggesting an overlapping of clinical and phatological features between different diseases. To emphasize this concept, the review focuses on genes coding for Valosin-containing protein (VPC) and two Heterogeneous nuclear RNA-binding proteins (HNRNPA1 and hnRNPA2B1), recently idefied through NGS, where different mutations have been associated in both ALS and other neurological and neurodegenerative diseases.

  13. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease.

    Science.gov (United States)

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-11-01

    Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.

  14. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease

    Directory of Open Access Journals (Sweden)

    Xiaoyan Huang

    2017-01-01

    Full Text Available Purpose: Norrie disease (ND is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. Results: We identified a novel missense variant (c.314C>A located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. Conclusion: c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.

  15. Mapping membrane activity in undiscovered peptide sequence space using machine learning.

    Science.gov (United States)

    Lee, Ernest Y; Fulan, Benjamin M; Wong, Gerard C L; Ferguson, Andrew L

    2016-11-29

    There are some ∼1,100 known antimicrobial peptides (AMPs), which permeabilize microbial membranes but have diverse sequences. Here, we develop a support vector machine (SVM)-based classifier to investigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology. SVM is used to search the undiscovered peptide sequence space and identify Pareto-optimal candidates that simultaneously maximize the distance σ from the SVM hyperplane (thus maximize its "antimicrobialness") and its ⍺-helicity, but minimize mutational distance to known AMPs. By calibrating SVM machine learning results with killing assays and small-angle X-ray scattering (SAXS), we find that the SVM metric σ correlates not with a peptide's minimum inhibitory concentration (MIC), but rather its ability to generate negative Gaussian membrane curvature. This surprising result provides a topological basis for membrane activity common to AMPs. Moreover, we highlight an important distinction between the maximal recognizability of a sequence to a trained AMP classifier (its ability to generate membrane curvature) and its maximal antimicrobial efficacy. As mutational distances are increased from known AMPs, we find AMP-like sequences that are increasingly difficult for nature to discover via simple mutation. Using the sequence map as a discovery tool, we find a unexpectedly diverse taxonomy of sequences that are just as membrane-active as known AMPs, but with a broad range of primary functions distinct from AMP functions, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and amyloids. The SVM classifier is useful as a general detector of membrane activity in peptide sequences.

  16. Minimizing waste in environmental restoration

    International Nuclear Information System (INIS)

    Thuot, J.R.; Moos, L.

    1996-01-01

    Environmental restoration, decontamination and decommissioning, and facility dismantlement projects are not typically known for their waste minimization and pollution prevention efforts. Typical projects are driven by schedules and milestones with little attention given to cost or waste minimization. Conventional wisdom in these projects is that the waste already exists and cannot be reduced or minimized; however, there are significant areas where waste and cost can be reduced by careful planning and execution. Waste reduction can occur in three ways: beneficial reuse or recycling, segregation of waste types, and reducing generation of secondary waste

  17. Viral Bacterial Artificial Chromosomes: Generation, Mutagenesis, and Removal of Mini-F Sequences

    Directory of Open Access Journals (Sweden)

    B. Karsten Tischer

    2012-01-01

    Full Text Available Maintenance and manipulation of large DNA and RNA virus genomes had presented an obstacle for virological research. BAC vectors provided a solution to both problems as they can harbor large DNA sequences and can efficiently be modified using well-established mutagenesis techniques in Escherichia coli. Numerous DNA virus genomes of herpesvirus and pox virus were cloned into mini-F vectors. In addition, several reverse genetic systems for RNA viruses such as members of Coronaviridae and Flaviviridae could be established based on BAC constructs. Transfection into susceptible eukaryotic cells of virus DNA cloned as a BAC allows reconstitution of recombinant viruses. In this paper, we provide an overview on the strategies that can be used for the generation of virus BAC vectors and also on systems that are currently available for various virus species. Furthermore, we address common mutagenesis techniques that allow modification of BACs from single-nucleotide substitutions to deletion of viral genes or insertion of foreign sequences. Finally, we review the reconstitution of viruses from BAC vectors and the removal of the bacterial sequences from the virus genome during this process.

  18. Identification of Five Novel Variants in Chinese Oculocutaneous Albinism by Targeted Next-Generation Sequencing.

    Science.gov (United States)

    Qiu, Biyuan; Ma, Tao; Peng, Chunyan; Zheng, Xiaoqin; Yang, Jiyun

    2018-04-01

    The diagnosis of oculocutaneous albinism (OCA) is established using clinical signs and symptoms. OCA is, however, a highly genetically heterogeneous disease with mutations identified in at least nineteen unique genes, many of which produce overlapping phenotypic traits. Thus, differentiating genetic OCA subtypes for diagnoses and genetic counseling is challenging, based on clinical presentation alone, and would benefit from a comprehensive molecular diagnostic. To develop and validate a more comprehensive, targeted, next-generation-sequencing-based diagnostic for the identification of OCA-causing variants. The genomic DNA samples from 28 OCA probands were analyzed by targeted next-generation sequencing (NGS), and the candidate variants were confirmed through Sanger sequencing. We observed mutations in the TYR, OCA2, and SLC45A2 genes in 25/28 (89%) patients with OCA. We identified 38 pathogenic variants among these three genes, including 5 novel variants: c.1970G>T (p.Gly657Val), c.1669A>C (p.Thr557Pro), c.2339-2A>C, and c.1349C>G (p.Thr450Arg) in OCA2; c.459_470delTTTTGCTGCCGA (p.Ala155_Phe158del) in SLC45A2. Our findings expand the mutational spectrum of OCA in the Chinese population, and the assay we developed should be broadly useful as a molecular diagnostic, and as an aid for genetic counseling for OCA patients.

  19. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data.

    Science.gov (United States)

    Seo, Dong-Won; Oh, Jae-Don; Jin, Shil; Song, Ki-Duk; Park, Hee-Bok; Heo, Kang-Nyeong; Shin, Younhee; Jung, Myunghee; Park, Junhyung; Jo, Cheorun; Lee, Hak-Kyo; Lee, Jun-Heon

    2015-02-01

    There are five native chicken lines in Korea, which are mainly classified by plumage colors (black, white, red, yellow, gray). These five lines are very important genetic resources in the Korean poultry industry. Based on a next generation sequencing technology, whole genome sequence and reference assemblies were performed using Gallus_gallus_4.0 (NCBI) with whole genome sequences from these lines to identify common and novel single nucleotide polymorphisms (SNPs). We obtained 36,660,731,136 ± 1,257,159,120 bp of raw sequence and average 26.6-fold of 25-29 billion reference assembly sequences representing 97.288 % coverage. Also, 4,006,068 ± 97,534 SNPs were observed from 29 autosomes and the Z chromosome and, of these, 752,309 SNPs are the common SNPs across lines. Among the identified SNPs, the number of novel- and known-location assigned SNPs was 1,047,951 ± 14,956 and 2,948,648 ± 81,414, respectively. The number of unassigned known SNPs was 1,181 ± 150 and unassigned novel SNPs was 8,238 ± 1,019. Synonymous SNPs, non-synonymous SNPs, and SNPs having character changes were 26,266 ± 1,456, 11,467 ± 604, 8,180 ± 458, respectively. Overall, 443,048 ± 26,389 SNPs in each bird were identified by comparing with dbSNP in NCBI. The presently obtained genome sequence and SNP information in Korean native chickens have wide applications for further genome studies such as genetic diversity studies to detect causative mutations for economic and disease related traits.

  20. Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D

    DEFF Research Database (Denmark)

    Jenjaroenpun, Piroon; Wongsurawat, Thidathip; Pereira, Rui

    2018-01-01

    Completion of eukaryal genomes can be difficult task with the highly repetitive sequences along the chromosomes and short read lengths of secondgeneration sequencing. Saccharomyces cerevisiae strain CEN. PK113-7D, widely used as a model organism and a cell factory, was selected for this study...... to demonstrate the superior capability of very long sequence reads for de novo genome assembly. We generated long reads using two common third-generation sequencing technologies (Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)) and used short reads obtained using Illumina sequencing for error...... correction. Assembly of the reads derived from all three technologies resulted in complete sequences for all 16 yeast chromosomes, as well as themitochondrial chromosome, in one step. Further, we identified three types of DNA methylation (5mC, 4mC and 6mA). Comparison between the reference strain S288C...

  1. [Diagnosis of a case with oculocutaneous albinism type Ⅲ with next generation exome capture sequencing].

    Science.gov (United States)

    Lyu, Yuqiang; Huang, Jing; Zhang, Kaihui; Liu, Guohua; Gao, Min; Gai, Zhongtao; Liu, Yi

    2017-02-10

    To explore the clinical and genetic features of a Chinese boy with oculocutaneous albinism. The clinical features of the patient were analyzed. The DNA of the patient and his parents was extracted and sequenced by next generation exome capture sequencing. The nature and impact of detected mutation were predicted and validated. The child has displayed strabismus, poor vision, nystagmus and brown hair. DNA sequencing showed that the patient has carried compound heterozygous mutations of the TYRP1 gene, namely c.1214C>A (p.T405N) and c.1333dupG, which were inherited from his mother and father, respectively. Neither mutation was reported previously. The child has suffered from oculocutaneous albinism type Ⅲ caused by mutations of the TYRP1 gene.

  2. INTEGRATED APPROACH TO GENERATION OF PRECEDENCE RELATIONS AND PRECEDENCE GRAPHS FOR ASSEMBLY SEQUENCE PLANNING

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An integrated approach to generation of precedence relations and precedence graphs for assembly sequence planning is presented, which contains more assembly flexibility. The approach involves two stages. Based on the assembly model, the components in the assembly can be divided into partially constrained components and completely constrained components in the first stage, and then geometric precedence relation for every component is generated automatically. According to the result of the first stage, the second stage determines and constructs all precedence graphs. The algorithms of these two stages proposed are verified by two assembly examples.

  3. Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and microsatellite primers.

    Science.gov (United States)

    Caetano-Anollés, G; Gresshoff, P M

    1996-06-01

    DNA amplification fingerprinting (DAF) with mini-hairpins harboring arbitrary "core" sequences at their 3' termini were used to fingerprint a variety of templates, including PCR products and whole genomes, to establish genetic relationships between plant tax at the interspecific and intraspecific level, and to identify closely related fungal isolates and plant accessions. No correlation was observed between the sequence of the arbitrary core, the stability of the mini-hairpin structure and DAF efficiency. Mini-hairpin primers with short arbitrary cores and primers complementary to simple sequence repeats present in microsatellites were also used to generate arbitrary signatures from amplification profiles (ASAP). The ASAP strategy is a dual-step amplification procedure that uses at least one primer in each fingerprinting stage. ASAP was able to reproducibly amplify DAF products (representing about 10-15 kb of sequence) following careful optimization of amplification parameters such as primer and template concentration. Avoidance of primer sequences partially complementary to DAF product termini was necessary in order to produce distinct fingerprints. This allowed the combinatorial use of oligomers in nucleic acid screening, with numerous ASAP fingerprinting reactions based on a limited number of primer sequences. Mini-hairpin primers and ASAP analysis significantly increased detection of polymorphic DNA, separating closely related bermudagrass (Cynodon) cultivars and detecting putatively linked markers in bulked segregant analysis of the soybean (Glycine max) supernodulation (nitrate-tolerant symbiosis) locus.

  4. Deep-sequencing protocols influence the results obtained in small-RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Joern Toedling

    Full Text Available Second-generation sequencing is a powerful method for identifying and quantifying small-RNA components of cells. However, little attention has been paid to the effects of the choice of sequencing platform and library preparation protocol on the results obtained. We present a thorough comparison of small-RNA sequencing libraries generated from the same embryonic stem cell lines, using different sequencing platforms, which represent the three major second-generation sequencing technologies, and protocols. We have analysed and compared the expression of microRNAs, as well as populations of small RNAs derived from repetitive elements. Despite the fact that different libraries display a good correlation between sequencing platforms, qualitative and quantitative variations in the results were found, depending on the protocol used. Thus, when comparing libraries from different biological samples, it is strongly recommended to use the same sequencing platform and protocol in order to ensure the biological relevance of the comparisons.

  5. Next-generation sequence detects ARAP3 as a novel oncogene in papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Wang QX

    2016-11-01

    Full Text Available Qing-Xuan Wang, En-Dong Chen, Ye-Feng Cai, Yi-Li Zhou, Zhou-Ci Zheng, Ying-Hao Wang, Yi-Xiang Jin, Wen-Xu Jin, Xiao-Hua Zhang, Ou-Chen Wang Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China Purpose: Thyroid cancer is the most frequent malignancies of the endocrine system, and it has became the fastest growing type of cancer worldwide. Much still remains unknown about the molecular mechanisms of thyroid cancer. Studies have found that some certain relationship between ARAP3 and human cancer. However, the role of ARAP3 in thyroid cancer has not been well explained. This study aimed to investigate the role of ARAP3 gene in papillary thyroid carcinoma. Methods: Whole exon sequence and whole genome sequence of primary papillary thyroid carcinoma (PTC samples and matched adjacent normal thyroid tissue samples were performed and then bioinformatics analysis was carried out. PTC cell lines (TPC1, BCPAP, and KTC-1 with transfection of small interfering RNA were used to investigate the functions of ARAP3 gene, including cell proliferation assay, colony formation assay, migration assay, and invasion assay. Results: Using next-generation sequence and bioinformatics analysis, we found ARAP3 genes may play an important role in thyroid cancer. Downregulation of ARAP3 significantly suppressed PTC cell lines (TPC1, BCPAP, and KTC-1, cell proliferation, colony formation, migration, and invasion. Conclusion: This study indicated that ARAP3 genes have important biological implications and may act as a potentially drugable target in PTC. Keywords: papillary thyroid carcinoma, next-generation sequence, ARAP3, oncogene

  6. High diagnostic yield of syndromic intellectual disability by targeted next-generation sequencing.

    Science.gov (United States)

    Martínez, Francisco; Caro-Llopis, Alfonso; Roselló, Mónica; Oltra, Silvestre; Mayo, Sonia; Monfort, Sandra; Orellana, Carmen

    2017-02-01

    Intellectual disability is a very complex condition where more than 600 genes have been reported. Due to this extraordinary heterogeneity, a large proportion of patients remain without a specific diagnosis and genetic counselling. The need for new methodological strategies in order to detect a greater number of mutations in multiple genes is therefore crucial. In this work, we screened a large panel of 1256 genes (646 pathogenic, 610 candidate) by next-generation sequencing to determine the molecular aetiology of syndromic intellectual disability. A total of 92 patients, negative for previous genetic analyses, were studied together with their parents. Clinically relevant variants were validated by conventional sequencing. A definitive diagnosis was achieved in 29 families by testing the 646 known pathogenic genes. Mutations were found in 25 different genes, where only the genes KMT2D, KMT2A and MED13L were found mutated in more than one patient. A preponderance of de novo mutations was noted even among the X linked conditions. Additionally, seven de novo probably pathogenic mutations were found in the candidate genes AGO1, JARID2, SIN3B, FBXO11, MAP3K7, HDAC2 and SMARCC2. Altogether, this means a diagnostic yield of 39% of the cases (95% CI 30% to 49%). The developed panel proved to be efficient and suitable for the genetic diagnosis of syndromic intellectual disability in a clinical setting. Next-generation sequencing has the potential for high-throughput identification of genetic variations, although the challenges of an adequate clinical interpretation of these variants and the knowledge on further unknown genes causing intellectual disability remain to be solved. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Accurate estimation of short read mapping quality for next-generation genome sequencing

    Science.gov (United States)

    Ruffalo, Matthew; Koyutürk, Mehmet; Ray, Soumya; LaFramboise, Thomas

    2012-01-01

    Motivation: Several software tools specialize in the alignment of short next-generation sequencing reads to a reference sequence. Some of these tools report a mapping quality score for each alignment—in principle, this quality score tells researchers the likelihood that the alignment is correct. However, the reported mapping quality often correlates weakly with actual accuracy and the qualities of many mappings are underestimated, encouraging the researchers to discard correct mappings. Further, these low-quality mappings tend to correlate with variations in the genome (both single nucleotide and structural), and such mappings are important in accurately identifying genomic variants. Approach: We develop a machine learning tool, LoQuM (LOgistic regression tool for calibrating the Quality of short read mappings, to assign reliable mapping quality scores to mappings of Illumina reads returned by any alignment tool. LoQuM uses statistics on the read (base quality scores reported by the sequencer) and the alignment (number of matches, mismatches and deletions, mapping quality score returned by the alignment tool, if available, and number of mappings) as features for classification and uses simulated reads to learn a logistic regression model that relates these features to actual mapping quality. Results: We test the predictions of LoQuM on an independent dataset generated by the ART short read simulation software and observe that LoQuM can ‘resurrect’ many mappings that are assigned zero quality scores by the alignment tools and are therefore likely to be discarded by researchers. We also observe that the recalibration of mapping quality scores greatly enhances the precision of called single nucleotide polymorphisms. Availability: LoQuM is available as open source at http://compbio.case.edu/loqum/. Contact: matthew.ruffalo@case.edu. PMID:22962451

  8. Application of next generation sequencing in clinical microbiology and infection prevention.

    Science.gov (United States)

    Deurenberg, Ruud H; Bathoorn, Erik; Chlebowicz, Monika A; Couto, Natacha; Ferdous, Mithila; García-Cobos, Silvia; Kooistra-Smid, Anna M D; Raangs, Erwin C; Rosema, Sigrid; Veloo, Alida C M; Zhou, Kai; Friedrich, Alexander W; Rossen, John W A

    2017-02-10

    Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data, information on resistance and virulence, as well as information for typing is obtained, useful for outbreak investigation. The obtained genome data can be further used for the development of an outbreak-specific screening test. In this review, a general introduction to NGS is presented, including the library preparation and the major characteristics of the most common NGS platforms, such as the MiSeq (Illumina) and the Ion PGM™ (ThermoFisher). An overview of the software used for NGS data analyses used at the medical microbiology diagnostic laboratory in the University Medical Center Groningen in The Netherlands is given. Furthermore, applications of NGS in the clinical setting are described, such as outbreak management, molecular case finding, characterization and surveillance of pathogens, rapid identification of bacteria using the 16S-23S rRNA region, taxonomy, metagenomics approaches on clinical samples, and the determination of the transmission of zoonotic micro-organisms from animals to humans. Finally, we share our vision on the use of NGS in personalised microbiology in the near future, pointing out specific requirements. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data.

    Science.gov (United States)

    Jayakumar, Vasanthan; Sakakibara, Yasubumi

    2017-11-03

    Long reads obtained from third-generation sequencing platforms can help overcome the long-standing challenge of the de novo assembly of sequences for the genomic analysis of non-model eukaryotic organisms. Numerous long-read-aided de novo assemblies have been published recently, which exhibited superior quality of the assembled genomes in comparison with those achieved using earlier second-generation sequencing technologies. Evaluating assemblies is important in guiding the appropriate choice for specific research needs. In this study, we evaluated 10 long-read assemblers using a variety of metrics on Pacific Biosciences (PacBio) data sets from different taxonomic categories with considerable differences in genome size. The results allowed us to narrow down the list to a few assemblers that can be effectively applied to eukaryotic assembly projects. Moreover, we highlight how best to use limited genomic resources for effectively evaluating the genome assemblies of non-model organisms. © The Author 2017. Published by Oxford University Press.

  10. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    Science.gov (United States)

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  11. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available Few studies investigated the donkey (Equus asinus at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca. The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing and Ion Torrent (RRL runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  12. Longitudinal effects of adaptive interventions with a speech-generating devicein minimally verbal children with ASD

    Science.gov (United States)

    Almirall, Daniel; DiStefano, Charlotte; Chang, Ya-Chih; Shire, Stephanie; Kaiser, Ann; Lu, Xi; Nahum-Shani, Inbal; Landa, Rebecca; Mathy, Pamela; Kasari, Connie

    2016-01-01

    Objective There are limited data on the effects of adaptive social communication interventions with a speech-generating device in autism. This study is the first to compare growth in communications outcomes among three adaptive interventions in school-aged children with autism spectrum disorder (ASD) who are minimally verbal. Methods Sixty-one children, aged 5–8 years participated in a sequential, multiple-assignment randomized trial (SMART). All children received a developmental communication intervention: joint attention, symbolic play, engagement and regulation (JASP) with enhanced milieu teaching (EMT). The SMART included three two-stage, 24-week adaptive interventions with different provisions of a speech-generating device (SGD) in the context of JASP+EMT. The first adaptive intervention, with no SGD, initially assigned JASP+EMT alone; then intensified JASP+EMT for slow responders. In the second adaptive intervention, slow responders to JASP+EMT were assigned JASP+EMT+SGD. The third adaptive intervention initially assigned JASP+EMT+SGD; then intensified JASP+EMT+SGD for slow responders. Analyses examined between-group differences in change in outcomes from baseline to week 36. Verbal outcomes included spontaneous communicative utterances and novel words. Non-linguistic communication outcomes included initiating joint attention and behavior regulation, and play. Results The adaptive intervention beginning with JASP+EMT+SGD was estimated as superior. There were significant (Pcommunicative utterances and initiating joint attention. Conclusions School-aged children with ASD who are minimally verbal make significant gains in communication outcomes with an adaptive intervention beginning with JASP+EMT+SGD. Future research should explore mediators and moderators of the adaptive intervention effects and second-stage intervention options that further capitalize on early gains in treatment. PMID:26954267

  13. Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data.

    Science.gov (United States)

    Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E

    2014-06-10

    Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.

  14. Detection of M-Sequences from Spike Sequence in Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Yoshi Nishitani

    2012-01-01

    Full Text Available In circuit theory, it is well known that a linear feedback shift register (LFSR circuit generates pseudorandom bit sequences (PRBS, including an M-sequence with the maximum period of length. In this study, we tried to detect M-sequences known as a pseudorandom sequence generated by the LFSR circuit from time series patterns of stimulated action potentials. Stimulated action potentials were recorded from dissociated cultures of hippocampal neurons grown on a multielectrode array. We could find several M-sequences from a 3-stage LFSR circuit (M3. These results show the possibility of assembling LFSR circuits or its equivalent ones in a neuronal network. However, since the M3 pattern was composed of only four spike intervals, the possibility of an accidental detection was not zero. Then, we detected M-sequences from random spike sequences which were not generated from an LFSR circuit and compare the result with the number of M-sequences from the originally observed raster data. As a result, a significant difference was confirmed: a greater number of “0–1” reversed the 3-stage M-sequences occurred than would have accidentally be detected. This result suggests that some LFSR equivalent circuits are assembled in neuronal networks.

  15. QED with minimal and nonminimal couplings: on the quantum generation of Lorentz violating terms in the pure photon sector

    Energy Technology Data Exchange (ETDEWEB)

    Gazzola, G.; Fargnoli, H.G.; Sampaio, Marcos; Nemes, M.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Scarpelli, A.P. Baeta [Departamento de Policia Federal (DPF), Sao Paulo, SP (Brazil). Setor Tecnico-Cientifico

    2011-07-01

    In this research we consider a modified version of quantum electrodynamics in four dimensions with the coupling between the photon and the fermion composed by two terms: a nonminimal and the minimal one. There are two interesting aspects in this model. First, gauge invariance is restored by the presence of the minimal coupling. Second, the quantum corrections will allow for the possibility of the generation of a Chern-Simons-like term. The fact that the model is gauge invariant allows for a more complete analysis on the value of both the coefficients of the hypothetical CPT odd and CPT even radiatively generated terms. A question that arises involves a possible violation of some Ward-Takahashi identity when radiative corrections are taken into account. In other words, is there an anomaly in the model? We show that, since conventional QED is gauge invariant, there is no room for a non transversal vacuum polarization tensor in the present model. This is study is to be presented in the following order: first we are to present the model; second we do an analysis on the generation of Lorentz violating terms in the pure gauge sector; third we carry out a calculation on gauge invariance grounds to fix the coefficients of the quantum corrections; and lastly the concluding comments. (author)

  16. QED with minimal and nonminimal couplings: on the quantum generation of Lorentz violating terms in the pure photon sector

    International Nuclear Information System (INIS)

    Gazzola, G.; Fargnoli, H.G.; Sampaio, Marcos; Nemes, M.C.; Scarpelli, A.P. Baeta

    2011-01-01

    In this research we consider a modified version of quantum electrodynamics in four dimensions with the coupling between the photon and the fermion composed by two terms: a nonminimal and the minimal one. There are two interesting aspects in this model. First, gauge invariance is restored by the presence of the minimal coupling. Second, the quantum corrections will allow for the possibility of the generation of a Chern-Simons-like term. The fact that the model is gauge invariant allows for a more complete analysis on the value of both the coefficients of the hypothetical CPT odd and CPT even radiatively generated terms. A question that arises involves a possible violation of some Ward-Takahashi identity when radiative corrections are taken into account. In other words, is there an anomaly in the model? We show that, since conventional QED is gauge invariant, there is no room for a non transversal vacuum polarization tensor in the present model. This is study is to be presented in the following order: first we are to present the model; second we do an analysis on the generation of Lorentz violating terms in the pure gauge sector; third we carry out a calculation on gauge invariance grounds to fix the coefficients of the quantum corrections; and lastly the concluding comments. (author)

  17. Case Report Identification of a novel SLC45A2 mutation in albinism by targeted next-generation sequencing.

    Science.gov (United States)

    Xue, J J; Xue, J F; Xue, H Q; Guo, Y Y; Liu, Y; Ouyang, N

    2016-09-19

    Albinism is a diverse group of hypopigmentary disorders caused by multiple-genetic defects. The genetic diagnosis of patients affected with albinism by Sanger sequencing is often complex, expensive, and time-consuming. In this study, we performed targeted next-generation sequencing to screen for 16 genes in a patient with albinism, and identified 21 genetic variants, including 19 known single nucleotide polymorphisms, one novel missense mutation (c.1456 G>A), and one disease-causing mutation (c.478 G>C). The novel mutation was not observed in 100 controls, and was predicted to be a damaging mutation by SIFT and Polyphen. Thus, we identified a novel mutation in SLC45A2 in a Chinese family, expanding the mutational spectrum of albinism. Our results also demonstrate that targeted next-generation sequencing is an effective genetic test for albinism.

  18. Propionibacterium acnes: disease-causing agent or common contaminant? Detection in diverse patient samples by next generation sequencing

    DEFF Research Database (Denmark)

    Mollerup, Sarah; Friis-Nielsen, Jens; Vinner, Lasse

    2016-01-01

    Propionibacterium acnes is the most abundant bacterium on human skin, particularly in sebaceous areas. P. acnes is suggested to be an opportunistic pathogen involved in the development of diverse medical conditions, but is also a proven contaminant of human samples and surgical wounds. Its...... significance as a pathogen is consequently a matter of debate.In the present study we investigated the presence of P. acnes DNA in 250 next generation sequencing datasets generated from 180 samples of 20 different sample types, mostly of cancerous origin. The samples were either subjected to microbial...... enrichment, involving nuclease treatment to reduce the amount of host nucleic acids, or shotgun-sequenced.We detected high proportions of P. acnes in enriched samples, particularly skin derived and other tissue samples, with levels being higher in enriched compared to shotgun-sequenced samples. P. acnes...

  19. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery

    Directory of Open Access Journals (Sweden)

    Materne Michael

    2011-05-01

    Full Text Available Abstract Background Lentil (Lens culinaris Medik. is a cool-season grain legume which provides a rich source of protein for human consumption. In terms of genomic resources, lentil is relatively underdeveloped, in comparison to other Fabaceae species, with limited available data. There is hence a significant need to enhance such resources in order to identify novel genes and alleles for molecular breeding to increase crop productivity and quality. Results Tissue-specific cDNA samples from six distinct lentil genotypes were sequenced using Roche 454 GS-FLX Titanium technology, generating c. 1.38 × 106 expressed sequence tags (ESTs. De novo assembly generated a total of 15,354 contigs and 68,715 singletons. The complete unigene set was sequence-analysed against genome drafts of the model legume species Medicago truncatula and Arabidopsis thaliana to identify 12,639, and 7,476 unique matches, respectively. When compared to the genome of Glycine max, a total of 20,419 unique hits were observed corresponding to c. 31% of the known gene space. A total of 25,592 lentil unigenes were subsequently annoated from GenBank. Simple sequence repeat (SSR-containing ESTs were identified from consensus sequences and a total of 2,393 primer pairs were designed. A subset of 192 EST-SSR markers was screened for validation across a panel 12 cultivated lentil genotypes and one wild relative species. A total of 166 primer pairs obtained successful amplification, of which 47.5% detected genetic polymorphism. Conclusions A substantial collection of ESTs has been developed from sequence analysis of lentil genotypes using second-generation technology, permitting unigene definition across a broad range of functional categories. As well as providing resources for functional genomics studies, the unigene set has permitted significant enhancement of the number of publicly-available molecular genetic markers as tools for improvement of this species.

  20. Low-coverage MiSeq next generation sequencing reveals the mitochondrial genome of the Eastern Rock Lobster, Sagmariasus verreauxi.

    Science.gov (United States)

    Doyle, Stephen R; Griffith, Ian S; Murphy, Nick P; Strugnell, Jan M

    2015-01-01

    The complete mitochondrial genome of the Eastern Rock lobster, Sagmariasus verreauxi, is reported for the first time. Using low-coverage, long read MiSeq next generation sequencing, we constructed and determined the mtDNA genome organization of the 15,470 bp sequence from two isolates from Eastern Tasmania, Australia and Northern New Zealand, and identified 46 polymorphic nucleotides between the two sequences. This genome sequence and its genetic polymorphisms will likely be useful in understanding the distribution and population connectivity of the Eastern Rock Lobster, and in the fisheries management of this commercially important species.

  1. Operational tank leak detection and minimization during retrieval

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    This report evaluates the activities associated with the retrieval of wastes from the single-shell tanks proposed under the initial Single-Shell Tank Retrieval System. This report focuses on minimizing leakage during retrieval by using effective leak detection and mitigating actions. After reviewing the historical data available on single-shell leakage, and evaluating current leak detection technology, this report concludes that the only currently available leak detection method which can function within the most probable leakage range is the mass balance system. If utilized after each sluicing campaign, this method should allow detection at a leakage value well below the leakage value where significant health effects occur which is calculated for each tank. Furthermore, this report concludes that the planned sequence or sluicing activities will serve to further minimize the probability and volume of leaks by keeping liquid away from areas with the greatest potential for leaking. Finally, this report identifies a series of operational responses which when used in conjunction with the recommended sluicing sequence and leak detection methods will minimize worker exposure and environmental safety health risks

  2. Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences (7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Catherine

    2012-06-01

    Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  3. Molecular diagnosis of Usher syndrome: application of two different next generation sequencing-based procedures.

    Directory of Open Access Journals (Sweden)

    Danilo Licastro

    Full Text Available Usher syndrome (USH is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II and Roche 454 (GS FLX for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified.

  4. Molecular Diagnosis of Usher Syndrome: Application of Two Different Next Generation Sequencing-Based Procedures

    Science.gov (United States)

    Licastro, Danilo; Mutarelli, Margherita; Peluso, Ivana; Neveling, Kornelia; Wieskamp, Nienke; Rispoli, Rossella; Vozzi, Diego; Athanasakis, Emmanouil; D'Eustacchio, Angela; Pizzo, Mariateresa; D'Amico, Francesca; Ziviello, Carmela; Simonelli, Francesca; Fabretto, Antonella; Scheffer, Hans; Gasparini, Paolo; Banfi, Sandro; Nigro, Vincenzo

    2012-01-01

    Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified. PMID:22952768

  5. Optimizing wind power generation while minimizing wildlife impacts in an urban area.

    Science.gov (United States)

    Bohrer, Gil; Zhu, Kunpeng; Jones, Robert L; Curtis, Peter S

    2013-01-01

    The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown.

  6. Development of Microsatellite Markers for the Korean Mussel, Mytilus coruscus (Mytilidae Using Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Hye Suck An

    2012-08-01

    Full Text Available Mytilus coruscus (family Mytilidae is one of the most important marine shellfish species in Korea. During the past few decades, this species has become endangered due to the loss of habitats and overfishing. Despite this species’ importance, information on its genetic background is scarce. In this study, we developed microsatellite markers for M. coruscus using next-generation sequencing. A total of 263,900 raw reads were obtained from a quarter-plate run on the 454 GS-FLX titanium platform, and 176,327 unique sequences were generated with an average length of 381 bp; 2569 (1.45% sequences contained a minimum of five di- to tetra-nucleotide repeat motifs. Of the 51 loci screened, 46 were amplified successfully, and 22 were polymorphic among 30 individuals, with seven of trinucleotide repeats and three of tetranucleotide repeats. All loci exhibited high genetic variability, with an average of 17.32 alleles per locus, and the mean observed and expected heterozygosities were 0.67 and 0.90, respectively. In addition, cross-amplification was tested for all 22 loci in another congener species, M. galloprovincialis. None of the primer pairs resulted in effective amplification, which might be due to their high mutation rates. Our work demonstrated the utility of next-generation 454 sequencing as a method for the rapid and cost-effective identification of microsatellites. The high degree of polymorphism exhibited by the 22 newly developed microsatellites will be useful in future conservation genetic studies of this species.

  7. Partial sequence homogenization in the 5S multigene families may generate sequence chimeras and spurious results in phylogenetic reconstructions.

    Science.gov (United States)

    Galián, José A; Rosato, Marcela; Rosselló, Josep A

    2014-03-01

    Multigene families have provided opportunities for evolutionary biologists to assess molecular evolution processes and phylogenetic reconstructions at deep and shallow systematic levels. However, the use of these markers is not free of technical and analytical challenges. Many evolutionary studies that used the nuclear 5S rDNA gene family rarely used contiguous 5S coding sequences due to the routine use of head-to-tail polymerase chain reaction primers that are anchored to the coding region. Moreover, the 5S coding sequences have been concatenated with independent, adjacent gene units in many studies, creating simulated chimeric genes as the raw data for evolutionary analysis. This practice is based on the tacitly assumed, but rarely tested, hypothesis that strict intra-locus concerted evolution processes are operating in 5S rDNA genes, without any empirical evidence as to whether it holds for the recovered data. The potential pitfalls of analysing the patterns of molecular evolution and reconstructing phylogenies based on these chimeric genes have not been assessed to date. Here, we compared the sequence integrity and phylogenetic behavior of entire versus concatenated 5S coding regions from a real data set obtained from closely related plant species (Medicago, Fabaceae). Our results suggest that within arrays sequence homogenization is partially operating in the 5S coding region, which is traditionally assumed to be highly conserved. Consequently, concatenating 5S genes increases haplotype diversity, generating novel chimeric genotypes that most likely do not exist within the genome. In addition, the patterns of gene evolution are distorted, leading to incorrect haplotype relationships in some evolutionary reconstructions.

  8. Generation of pseudo-random sequences for spread spectrum systems

    Science.gov (United States)

    Moser, R.; Stover, J.

    1985-05-01

    The characteristics of pseudo random radio signal sequences (PRS) are explored. The randomness of the PSR is a matter of artificially altering the sequence of binary digits broadcast. Autocorrelations of the two sequences shifted in time, if high, determine if the signals are the same and thus allow for position identification. Cross-correlation can also be calculated between sequences. Correlations closest to zero are obtained with large volume of prime numbers in the sequences. Techniques for selecting optimal and maximal lengths for the sequences are reviewed. If the correlations are near zero in the sequences, then signal channels can accommodate multiple users. Finally, Gold codes are discussed as a technique for maximizing the code lengths.

  9. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses

    Directory of Open Access Journals (Sweden)

    Hironobu Yanagisawa

    2016-03-01

    Full Text Available The presence of high molecular weight double-stranded RNA (dsRNA within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV, a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as “DECS-C,” is a powerful method for detecting novel plant viruses.

  10. Enrichment of megabase-sized DNA molecules for single-molecule optical mapping and next-generation sequencing

    DEFF Research Database (Denmark)

    Łopacińska-Jørgensen, Joanna M; Pedersen, Jonas Nyvold; Bak, Mads

    2017-01-01

    Next-generation sequencing (NGS) has caused a revolution, yet left a gap: long-range genetic information from native, non-amplified DNA fragments is unavailable. It might be obtained by optical mapping of megabase-sized DNA molecules. Frequently only a specific genomic region is of interest, so...

  11. The Impact of Collisions on the Ability to Detect Rare Mutant Alleles Using Barcode-Type Next-Generation Sequencing Techniques

    Directory of Open Access Journals (Sweden)

    Jenna VanLiere Canzoniero

    2017-07-01

    Full Text Available Barcoding techniques are used to reduce error from next-generation sequencing, with applications ranging from understanding tumor subclone populations to detecting circulating tumor DNA. Collisions occur when more than one sample molecule is tagged by the same unique identifier (UID and can result in failure to detect very-low-frequency mutations and error in estimating mutation frequency. Here, we created computer models of barcoding technique, with and without amplification bias introduced by the UID, and analyzed the effect of collisions for a range of mutant allele frequencies (1e−6 to 0.2, number of sample molecules (10 000 to 1e7, and number of UIDs (4 10 -4 14 . Inability to detect rare mutant alleles occurred in 0% to 100% of simulations, depending on collisions and number of mutant molecules. Collisions also introduced error in estimating mutant allele frequency resulting in underestimation of minor allele frequency. Incorporating an understanding of the effect of collisions into experimental design can allow for optimization of the number of sample molecules and number of UIDs to minimize the negative impact on rare mutant detection and mutant frequency estimation.

  12. Description and pilot results from a novel method for evaluating return of incidental findings from next-generation sequencing technologies.

    Science.gov (United States)

    Goddard, Katrina A B; Whitlock, Evelyn P; Berg, Jonathan S; Williams, Marc S; Webber, Elizabeth M; Webster, Jennifer A; Lin, Jennifer S; Schrader, Kasmintan A; Campos-Outcalt, Doug; Offit, Kenneth; Feigelson, Heather Spencer; Hollombe, Celine

    2013-09-01

    The aim of this study was to develop, operationalize, and pilot test a transparent, reproducible, and evidence-informed method to determine when to report incidental findings from next-generation sequencing technologies. Using evidence-based principles, we proposed a three-stage process. Stage I "rules out" incidental findings below a minimal threshold of evidence and is evaluated using inter-rater agreement and comparison with an expert-based approach. Stage II documents criteria for clinical actionability using a standardized approach to allow experts to consistently consider and recommend whether results should be routinely reported (stage III). We used expert opinion to determine the face validity of stages II and III using three case studies. We evaluated the time and effort for stages I and II. For stage I, we assessed 99 conditions and found high inter-rater agreement (89%), and strong agreement with a separate expert-based method. Case studies for familial adenomatous polyposis, hereditary hemochromatosis, and α1-antitrypsin deficiency were all recommended for routine reporting as incidental findings. The method requires definition of clinically actionable incidental findings and provide documentation and pilot testing of a feasible method that is scalable to the whole genome.

  13. Long-read sequencing data analysis for yeasts.

    Science.gov (United States)

    Yue, Jia-Xing; Liti, Gianni

    2018-06-01

    Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ∼41 h to generate a complete and well-annotated genome from ∼100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.

  14. Analysis Of Segmental Duplications In The Pig Genome Based On Next-Generation Sequencing

    DEFF Research Database (Denmark)

    Fadista, João; Bendixen, Christian

    Segmental duplications are >1kb segments of duplicated DNA present in a genome with high sequence identity (>90%). They are associated with genomic rearrangements and provide a significant source of gene and genome evolution within mammalian genomes. Although segmental duplications have been...... extensively studied in other organisms, its analysis in pig has been hampered by the lack of a complete pig genome assembly. By measuring the depth of coverage of Illumina whole-genome shotgun sequencing reads of the Tabasco animal aligned to the latest pig genome assembly (Sus scrofa 10 – based also...... and their associated copy number alterations, focusing on the global organization of these segments and their possible functional significance in porcine phenotypes. This work provides insights into mammalian genome evolution and generates a valuable resource for porcine genomics research...

  15. Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).

    Science.gov (United States)

    Watters, Kyle E; Lucks, Julius B

    2016-01-01

    Mapping RNA structure with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry has proven to be a versatile method for characterizing RNA structure in a variety of contexts. SHAPE reagents covalently modify RNAs in a structure-dependent manner to create adducts at the 2'-OH group of the ribose backbone at nucleotides that are structurally flexible. The positions of these adducts are detected using reverse transcriptase (RT) primer extension, which stops one nucleotide before the modification, to create a pool of cDNAs whose lengths reflect the location of SHAPE modification. Quantification of the cDNA pools is used to estimate the "reactivity" of each nucleotide in an RNA molecule to the SHAPE reagent. High reactivities indicate nucleotides that are structurally flexible, while low reactivities indicate nucleotides that are inflexible. These SHAPE reactivities can then be used to infer RNA structures by restraining RNA structure prediction algorithms. Here, we provide a state-of-the-art protocol describing how to perform in vitro RNA structure probing with SHAPE chemistry using next-generation sequencing to quantify cDNA pools and estimate reactivities (SHAPE-Seq). The use of next-generation sequencing allows for higher throughput, more consistent data analysis, and multiplexing capabilities. The technique described herein, SHAPE-Seq v2.0, uses a universal reverse transcription priming site that is ligated to the RNA after SHAPE modification. The introduced priming site allows for the structural analysis of an RNA independent of its sequence.

  16. Models of Prime-Like Sequences Generated by Least Element Sieve Operations Like the Sieve of Eratosthenes

    OpenAIRE

    Baum, Leonard E.

    2017-01-01

    We suggest other models of sieve generated sequences like the Sieve of Eratosthenes to explain randomness properties of the prime numbers, like the twin prime conjecture, the lim sup conjecture, the Riemann conjecture, and the prime number theorem.

  17. Analysis of high-depth sequence data for studying viral diversity: a comparison of next generation sequencing platforms using Segminator II

    Directory of Open Access Journals (Sweden)

    Archer John

    2012-03-01

    Full Text Available Abstract Background Next generation sequencing provides detailed insight into the variation present within viral populations, introducing the possibility of treatment strategies that are both reactive and predictive. Current software tools, however, need to be scaled up to accommodate for high-depth viral data sets, which are often temporally or spatially linked. In addition, due to the development of novel sequencing platforms and chemistries, each with implicit strengths and weaknesses, it will be helpful for researchers to be able to routinely compare and combine data sets from different platforms/chemistries. In particular, error associated with a specific sequencing process must be quantified so that true biological variation may be identified. Results Segminator II was developed to allow for the efficient comparison of data sets derived from different sources. We demonstrate its usage by comparing large data sets from 12 influenza H1N1 samples sequenced on both the 454 Life Sciences and Illumina platforms, permitting quantification of platform error. For mismatches median error rates at 0.10 and 0.12%, respectively, suggested that both platforms performed similarly. For insertions and deletions median error rates within the 454 data (at 0.3 and 0.2%, respectively were significantly higher than those within the Illumina data (0.004 and 0.006%, respectively. In agreement with previous observations these higher rates were strongly associated with homopolymeric stretches on the 454 platform. Outside of such regions both platforms had similar indel error profiles. Additionally, we apply our software to the identification of low frequency variants. Conclusion We have demonstrated, using Segminator II, that it is possible to distinguish platform specific error from biological variation using data derived from two different platforms. We have used this approach to quantify the amount of error present within the 454 and Illumina platforms in

  18. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    Science.gov (United States)

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Different Somatic Hypermutation Levels among Antibody Subclasses Disclosed by a New Next-Generation Sequencing-Based Antibody Repertoire Analysis

    Directory of Open Access Journals (Sweden)

    Kazutaka Kitaura

    2017-05-01

    Full Text Available A diverse antibody repertoire is primarily generated by the rearrangement of V, D, and J genes and subsequent somatic hypermutation (SHM. Class-switch recombination (CSR produces various isotypes and subclasses with different functional properties. Although antibody isotypes and subclasses are considered to be produced by both direct and sequential CSR, it is still not fully understood how SHMs accumulate during the process in which antibody subclasses are generated. Here, we developed a new next-generation sequencing (NGS-based antibody repertoire analysis capable of identifying all antibody isotype and subclass genes and used it to examine the peripheral blood mononuclear cells of 12 healthy individuals. Using a total of 5,480,040 sequences, we compared percentage frequency of variable (V, junctional (J sequence, and a combination of V and J, diversity, length, and amino acid compositions of CDR3, SHM, and shared clones in the IgM, IgD, IgG3, IgG1, IgG2, IgG4, IgA1, IgE, and IgA2 genes. The usage and diversity were similar among the immunoglobulin (Ig subclasses. Clonally related sequences sharing identical V, D, J, and CDR3 amino acid sequences were frequently found within multiple Ig subclasses, especially between IgG1 and IgG2 or IgA1 and IgA2. SHM occurred most frequently in IgG4, while IgG3 genes were the least mutated among all IgG subclasses. The shared clones had almost the same SHM levels among Ig subclasses, while subclass-specific clones had different levels of SHM dependent on the genomic location. Given the sequential CSR, these results suggest that CSR occurs sequentially over multiple subclasses in the order corresponding to the genomic location of IGHCs, but CSR is likely to occur more quickly than SHMs accumulate within Ig genes under physiological conditions. NGS-based antibody repertoire analysis should provide critical information on how various antibodies are generated in the immune system.

  20. Assessment of Epstein-Barr virus nucleic acids in gastric but not in breast cancer by next-generation sequencing of pooled Mexican samples

    Science.gov (United States)

    Fuentes-Pananá, Ezequiel M; Larios-Serrato, Violeta; Méndez-Tenorio, Alfonso; Morales-Sánchez, Abigail; Arias, Carlos F; Torres, Javier

    2016-01-01

    Gastric (GC) and breast (BrC) cancer are two of the most common and deadly tumours. Different lines of evidence suggest a possible causative role of viral infections for both GC and BrC. Wide genome sequencing (WGS) technologies allow searching for viral agents in tissues of patients with cancer. These technologies have already contributed to establish virus-cancer associations as well as to discovery new tumour viruses. The objective of this study was to document possible associations of viral infection with GC and BrC in Mexican patients. In order to gain idea about cost effective conditions of experimental sequencing, we first carried out an in silico simulation of WGS. The next-generation-platform IlluminaGallx was then used to sequence GC and BrC tumour samples. While we did not find viral sequences in tissues from BrC patients, multiple reads matching Epstein-Barr virus (EBV) sequences were found in GC tissues. An end-point polymerase chain reaction confirmed an enrichment of EBV sequences in one of the GC samples sequenced, validating the next-generation sequencing-bioinformatics pipeline. PMID:26910355

  1. Development of Genome-Wide SSR Markers from Angelica gigas Nakai Using Next Generation Sequencing.

    Science.gov (United States)

    Gil, Jinsu; Um, Yurry; Kim, Serim; Kim, Ok Tae; Koo, Sung Cheol; Reddy, Chinreddy Subramanyam; Kim, Seong-Cheol; Hong, Chang Pyo; Park, Sin-Gi; Kim, Ho Bang; Lee, Dong Hoon; Jeong, Byung-Hoon; Chung, Jong-Wook; Lee, Yi

    2017-09-21

    Angelica gigas Nakai is an important medicinal herb, widely utilized in Asian countries especially in Korea, Japan, and China. Although it is a vital medicinal herb, the lack of sequencing data and efficient molecular markers has limited the application of a genetic approach for horticultural improvements. Simple sequence repeats (SSRs) are universally accepted molecular markers for population structure study. In this study, we found over 130,000 SSRs, ranging from di- to deca-nucleotide motifs, using the genome sequence of Manchu variety (MV) of A. gigas, derived from next generation sequencing (NGS). From the putative SSR regions identified, a total of 16,496 primer sets were successfully designed. Among them, we selected 848 SSR markers that showed polymorphism from in silico analysis and contained tri- to hexa-nucleotide motifs. We tested 36 SSR primer sets for polymorphism in 16 A. gigas accessions. The average polymorphism information content (PIC) was 0.69; the average observed heterozygosity ( H O ) values, and the expected heterozygosity ( H E ) values were 0.53 and 0.73, respectively. These newly developed SSR markers would be useful tools for molecular genetics, genotype identification, genetic mapping, molecular breeding, and studying species relationships of the Angelica genus.

  2. Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives

    Directory of Open Access Journals (Sweden)

    Vincenza Precone

    2015-01-01

    Full Text Available Next-generation sequencing (NGS technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology’s flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.

  3. Assessment of genetic variation for the LINE-1 retrotransposon from next generation sequence data

    Directory of Open Access Journals (Sweden)

    Ramos Kenneth

    2010-10-01

    Full Text Available Abstract Background In humans, copies of the Long Interspersed Nuclear Element 1 (LINE-1 retrotransposon comprise 21% of the reference genome, and have been shown to modulate expression and produce novel splice isoforms of transcripts from genes that span or neighbor the LINE-1 insertion site. Results In this work, newly released pilot data from the 1000 Genomes Project is analyzed to detect previously unreported full length insertions of the retrotransposon LINE-1. By direct analysis of the sequence data, we have identified 22 previously unreported LINE-1 insertion sites within the sequence data reported for a mother/father/daughter trio. Conclusions It is demonstrated here that next generation sequencing data, as well as emerging high quality datasets from individual genome projects allow us to assess the amount of heterogeneity with respect to the LINE-1 retrotransposon amongst humans, and provide us with a wealth of testable hypotheses as to the impact that this diversity may have on the health of individuals and populations.

  4. Next Generation Sequencing of Tubal Intraepithelial Carcinomas

    Science.gov (United States)

    McDaniel, Andrew S.; Stall, Jennifer N.; Hovelson, Daniel H.; Cani, Andi K.; Liu, Chia-Jen; Tomlins, Scott A.; Cho, Kathleen R.

    2016-01-01

    Importance High-grade serous carcinoma (HGSC) is the most prevalent and lethal form of ovarian cancer. HGSCs frequently arise in the distal fallopian tubes rather than the ovary, developing from small precursor lesions called serous tubal intraepithelial carcinomas (TICs or more specifically STICs). While STICs have been reported to harbor TP53 mutations, detailed molecular characterizations of these lesions are lacking. Observations We performed targeted next generation sequencing (NGS) on formalin-fixed, paraffin- embedded tissue from four women, two with HGSC and two with uterine endometrioid carcinoma (UEC) who were diagnosed with synchronous STICs. We detected concordant mutations in both HGSCs with synchronous STICs, including TP53 mutations as well as assumed germline BRCA1/2 alterations, confirming a clonal relationship between these lesions. NGS confirmed the presence of a STIC clonally unrelated to one case of UEC. NGS of the other tubal lesion diagnosed as a STIC unexpectedly supported the lesion as a micrometastasis from the associated UEC. Conclusions and Relevance We demonstrate that targeted NGS can identify genetic lesions in minute lesions such as TICs, and confirm TP53 mutations as early driving events for HGSC. NGS also demonstrated unexpected relationships between presumed STICs and synchronous carcinomas, suggesting potential diagnostic and translational research applications. PMID:26181193

  5. Model-Based Generation of Synthetic 3D Time-Lapse Sequences of Motile Cells with Growing Filopodia

    OpenAIRE

    Sorokin , Dmitry ,; Peterlik , Igor; Ulman , Vladimír ,; Svoboda , David; Maška , Martin

    2017-01-01

    International audience; The existence of benchmark datasets is essential to objectively evaluate various image analysis methods. Nevertheless, manual annotations of fluorescence microscopy image data are very laborious and not often practicable, especially in the case of 3D+t experiments. In this work, we propose a simulation system capable of generating 3D time-lapse sequences of single motile cells with filopodial protrusions, accompanied by inherently generated ground truth. The system con...

  6. SSR_pipeline--computer software for the identification of microsatellite sequences from paired-end Illumina high-throughput DNA sequence data

    Science.gov (United States)

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (SSRs; for example, microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains three analysis modules along with a fourth control module that can be used to automate analyses of large volumes of data. The modules are used to (1) identify the subset of paired-end sequences that pass quality standards, (2) align paired-end reads into a single composite DNA sequence, and (3) identify sequences that possess microsatellites conforming to user specified parameters. Each of the three separate analysis modules also can be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc). All modules are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, Windows). The program suite relies on a compiled Python extension module to perform paired-end alignments. Instructions for compiling the extension from source code are provided in the documentation. Users who do not have Python installed on their computers or who do not have the ability to compile software also may choose to download packaged executable files. These files include all Python scripts, a copy of the compiled extension module, and a minimal installation of Python in a single binary executable. See program documentation for more information.

  7. Organism-specific rRNA capture system for application in next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sai-Kam Li

    Full Text Available RNA-sequencing is a powerful tool in studying RNomics. However, the highly abundance of ribosomal RNAs (rRNA and transfer RNA (tRNA have predominated in the sequencing reads, thereby hindering the study of lowly expressed genes. Therefore, rRNA depletion prior to sequencing is often performed in order to preserve the subtle alteration in gene expression especially those at relatively low expression levels. One of the commercially available methods is to use DNA or RNA probes to hybridize to the target RNAs. However, there is always a concern with the non-specific binding and unintended removal of messenger RNA (mRNA when the same set of probes is applied to different organisms. The degree of such unintended mRNA removal varies among organisms due to organism-specific genomic variation. We developed a computer-based method to design probes to deplete rRNA in an organism-specific manner. Based on the computation results, biotinylated-RNA-probes were produced by in vitro transcription and were used to perform rRNA depletion with subtractive hybridization. We demonstrated that the designed probes of 16S rRNAs and 23S rRNAs can efficiently remove rRNAs from Mycobacterium smegmatis. In comparison with a commercial subtractive hybridization-based rRNA removal kit, using organism-specific probes is better in preserving the RNA integrity and abundance. We believe the computer-based design approach can be used as a generic method in preparing RNA of any organisms for next-generation sequencing, particularly for the transcriptome analysis of microbes.

  8. Authentication of Herbal Supplements Using Next-Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Natalia V Ivanova

    Full Text Available DNA-based testing has been gaining acceptance as a tool for authentication of a wide range of food products; however, its applicability for testing of herbal supplements remains contentious.We utilized Sanger and Next-Generation Sequencing (NGS for taxonomic authentication of fifteen herbal supplements representing three different producers from five medicinal plants: Echinacea purpurea, Valeriana officinalis, Ginkgo biloba, Hypericum perforatum and Trigonella foenum-graecum. Experimental design included three modifications of DNA extraction, two lysate dilutions, Internal Amplification Control, and multiple negative controls to exclude background contamination. Ginkgo supplements were also analyzed using HPLC-MS for the presence of active medicinal components.All supplements yielded DNA from multiple species, rendering Sanger sequencing results for rbcL and ITS2 regions either uninterpretable or non-reproducible between the experimental replicates. Overall, DNA from the manufacturer-listed medicinal plants was successfully detected in seven out of eight dry herb form supplements; however, low or poor DNA recovery due to degradation was observed in most plant extracts (none detected by Sanger; three out of seven-by NGS. NGS also revealed a diverse community of fungi, known to be associated with live plant material and/or the fermentation process used in the production of plant extracts. HPLC-MS testing demonstrated that Ginkgo supplements with degraded DNA contained ten key medicinal components.Quality control of herbal supplements should utilize a synergetic approach targeting both DNA and bioactive components, especially for standardized extracts with degraded DNA. The NGS workflow developed in this study enables reliable detection of plant and fungal DNA and can be utilized by manufacturers for quality assurance of raw plant materials, contamination control during the production process, and the final product. Interpretation of results should

  9. Authentication of Herbal Supplements Using Next-Generation Sequencing.

    Science.gov (United States)

    Ivanova, Natalia V; Kuzmina, Maria L; Braukmann, Thomas W A; Borisenko, Alex V; Zakharov, Evgeny V

    2016-01-01

    DNA-based testing has been gaining acceptance as a tool for authentication of a wide range of food products; however, its applicability for testing of herbal supplements remains contentious. We utilized Sanger and Next-Generation Sequencing (NGS) for taxonomic authentication of fifteen herbal supplements representing three different producers from five medicinal plants: Echinacea purpurea, Valeriana officinalis, Ginkgo biloba, Hypericum perforatum and Trigonella foenum-graecum. Experimental design included three modifications of DNA extraction, two lysate dilutions, Internal Amplification Control, and multiple negative controls to exclude background contamination. Ginkgo supplements were also analyzed using HPLC-MS for the presence of active medicinal components. All supplements yielded DNA from multiple species, rendering Sanger sequencing results for rbcL and ITS2 regions either uninterpretable or non-reproducible between the experimental replicates. Overall, DNA from the manufacturer-listed medicinal plants was successfully detected in seven out of eight dry herb form supplements; however, low or poor DNA recovery due to degradation was observed in most plant extracts (none detected by Sanger; three out of seven-by NGS). NGS also revealed a diverse community of fungi, known to be associated with live plant material and/or the fermentation process used in the production of plant extracts. HPLC-MS testing demonstrated that Ginkgo supplements with degraded DNA contained ten key medicinal components. Quality control of herbal supplements should utilize a synergetic approach targeting both DNA and bioactive components, especially for standardized extracts with degraded DNA. The NGS workflow developed in this study enables reliable detection of plant and fungal DNA and can be utilized by manufacturers for quality assurance of raw plant materials, contamination control during the production process, and the final product. Interpretation of results should involve an

  10. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.

    2010-07-12

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  11. Read length and repeat resolution: exploring prokaryote genomes using next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Matt J Cahill

    Full Text Available BACKGROUND: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. METHODOLOGY/PRINCIPAL FINDINGS: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. CONCLUSIONS: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length.

  12. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.; Kö ser, Claudio U.; Ross, Nicholas E.; Archer, John A.C.

    2010-01-01

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  13. Body fluid identification of blood, saliva and semen using second generation sequencing of micro-RNA

    DEFF Research Database (Denmark)

    Petersen, Christel H.; Hjort, Benjamin Benn; Tvedebrink, Torben

    2013-01-01

    We report a new second generation sequencing method for identification micro-RNA (miRNA) that can be used to identify body fluids and tissues. Principal component analysis of 10 miRNAs with high expression in 16 samples of blood, saliva and semen showed clear differences in the expression of mi...

  14. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.

    Science.gov (United States)

    Archer, John; Weber, Jan; Henry, Kenneth; Winner, Dane; Gibson, Richard; Lee, Lawrence; Paxinos, Ellen; Arts, Eric J; Robertson, David L; Mimms, Larry; Quiñones-Mateu, Miguel E

    2012-01-01

    HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5) viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences) and genotypic (e.g., population sequencing linked to bioinformatic algorithms) assays are the most widely used. Although several next-generation sequencing (NGS) platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences), Illumina®, and Ion Torrent™ (Life Technologies). Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels) and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used), compared to Trofile (80%) and population sequencing (70%). In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.

  15. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.

    Directory of Open Access Journals (Sweden)

    John Archer

    Full Text Available HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5 viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences and genotypic (e.g., population sequencing linked to bioinformatic algorithms assays are the most widely used. Although several next-generation sequencing (NGS platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences, Illumina®, and Ion Torrent™ (Life Technologies. Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used, compared to Trofile (80% and population sequencing (70%. In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.

  16. Analytical Approach for Loss Minimization in Distribution Systems by Optimum Placement and Sizing of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Bakshi Surbhi

    2016-01-01

    Full Text Available Distributed Generation has drawn the attention of industrialists and researchers for quite a time now due to the advantages it brings loads. In addition to cost-effective and environmentally friendly, but also brings higher reliability coefficient power system. The DG unit is placed close to the load, rather than increasing the capacity of main generator. This methodology brings many benefits, but has to address some of the challenges. The main is to find the optimal location and size of DG units between them. The purpose of this paper is distributed generation by adding an additional means to reduce losses on the line. This paper attempts to optimize the technology to solve the problem of optimal location and size through the development of multi-objective particle swarm. The problem has been reduced to a mathematical optimization problem by developing a fitness function considering losses and voltage distribution line. Fitness function by using the optimal value of the size and location of this algorithm was found to be minimized. IEEE-14 bus system is being considered, in order to test the proposed algorithm and the results show improved performance in terms of accuracy and convergence rate.

  17. Minimization of mixed waste in explosive testing operations

    International Nuclear Information System (INIS)

    Gonzalez, M.A.; Sator, F.E.; Simmons, L.F.

    1993-02-01

    In the 1970s and 1980s, efforts to manage mixed waste and reduce pollution focused largely on post-process measures. In the late 1980s, the approach to waste management and pollution control changed, focusing on minimization and prevention rather than abatement, treatment, and disposal. The new approach, and the formulated guidance from the US Department of Energy, was to take all necessary measures to minimize waste and prevent the release of pollutants to the environment. Two measures emphasized in particular were source reduction (reducing the volume and toxicity of the waste source) and recycling. In 1988, a waste minimization and pollution prevention program was initiated at Site 300, where the Lawrence Livermore National Laboratory (LLNL) conducts explosives testing. LLNL's Defense Systems/Nuclear Design (DS/ND) Program has adopted a variety of conservation techniques to minimize waste generation and cut disposal costs associated with ongoing operations. The techniques include minimizing the generation of depleted uranium and lead mixed waste through inventory control and material substitution measures and through developing a management system to recycle surplus explosives. The changes implemented have reduced annual mixed waste volumes by more than 95% and reduced overall radioactive waste generation (low-level and mixed) by more than 75%. The measures employed were cost-effective and easily implemented

  18. Minimizing waste in environmental restoration

    International Nuclear Information System (INIS)

    Moos, L.; Thuot, J.R.

    1996-01-01

    Environmental restoration, decontamination and decommissioning and facility dismantelment projects are not typically known for their waste minimization and pollution prevention efforts. Typical projects are driven by schedules and milestones with little attention given to cost or waste minimization. Conventional wisdom in these projects is that the waste already exists and cannot be reduced or minimized. In fact, however, there are three significant areas where waste and cost can be reduced. Waste reduction can occur in three ways: beneficial reuse or recycling; segregation of waste types; and reducing generation of secondary waste. This paper will discuss several examples of reuse, recycle, segregation, and secondary waste reduction at ANL restoration programs

  19. Molecular typing of lung adenocarcinoma on cytological samples using a multigene next generation sequencing panel.

    Directory of Open Access Journals (Sweden)

    Aldo Scarpa

    Full Text Available Identification of driver mutations in lung adenocarcinoma has led to development of targeted agents that are already approved for clinical use or are in clinical trials. Therefore, the number of biomarkers that will be needed to assess is expected to rapidly increase. This calls for the implementation of methods probing the mutational status of multiple genes for inoperable cases, for which limited cytological or bioptic material is available. Cytology specimens from 38 lung adenocarcinomas were subjected to the simultaneous assessment of 504 mutational hotspots of 22 lung cancer-associated genes using 10 nanograms of DNA and Ion Torrent PGM next-generation sequencing. Thirty-six cases were successfully sequenced (95%. In 24/36 cases (67% at least one mutated gene was observed, including EGFR, KRAS, PIK3CA, BRAF, TP53, PTEN, MET, SMAD4, FGFR3, STK11, MAP2K1. EGFR and KRAS mutations, respectively found in 6/36 (16% and 10/36 (28% cases, were mutually exclusive. Nine samples (25% showed concurrent alterations in different genes. The next-generation sequencing test used is superior to current standard methodologies, as it interrogates multiple genes and requires limited amounts of DNA. Its applicability to routine cytology samples might allow a significant increase in the fraction of lung cancer patients eligible for personalized therapy.

  20. Sequence-based classification using discriminatory motif feature selection.

    Directory of Open Access Journals (Sweden)

    Hao Xiong

    Full Text Available Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated. We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is

  1. Optimizing wind power generation while minimizing wildlife impacts in an urban area.

    Directory of Open Access Journals (Sweden)

    Gil Bohrer

    Full Text Available The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown.

  2. Next generation sequencing yields the complete mitochondrial genome of the largescale mullet, Liza macrolepis (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Tsai, Shiou-Yi; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique

    2016-11-01

    In this study, the complete mitogenome sequence of largescale mullet (Teleostei: Mugilidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome, consisting of 16,832 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs genes, and a non-coding control region of D-loop. D-loop which has a length of 1094 bp is located between tRNA-Pro and tRNA-Phe. The overall base composition of largescale mullet is 27.8% for A, 30.1% for C, 16.2% for G, and 25.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for Mugilidae.

  3. Next generation sequencing yields the complete mitochondrial genome of the Hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,829 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop contains 1057 bp length is located between tRNA-Pro and tRNA-Phe. The overall base composition of P. labiosus is 28.0% for A, 29.3% for C, 15.5% for G and 27.2% for T. The complete mitogenome may provide essential and important DNA molecular data for further population, phylogenetic and evolutionary analysis for Mugilidae.

  4. Protein sequence annotation in the genome era: the annotation concept of SWISS-PROT+TREMBL.

    Science.gov (United States)

    Apweiler, R; Gateau, A; Contrino, S; Martin, M J; Junker, V; O'Donovan, C; Lang, F; Mitaritonna, N; Kappus, S; Bairoch, A

    1997-01-01

    SWISS-PROT is a curated protein sequence database which strives to provide a high level of annotation, a minimal level of redundancy and high level of integration with other databases. Ongoing genome sequencing projects have dramatically increased the number of protein sequences to be incorporated into SWISS-PROT. Since we do not want to dilute the quality standards of SWISS-PROT by incorporating sequences without proper sequence analysis and annotation, we cannot speed up the incorporation of new incoming data indefinitely. However, as we also want to make the sequences available as fast as possible, we introduced TREMBL (TRanslation of EMBL nucleotide sequence database), a supplement to SWISS-PROT. TREMBL consists of computer-annotated entries in SWISS-PROT format derived from the translation of all coding sequences (CDS) in the EMBL nucleotide sequence database, except for CDS already included in SWISS-PROT. While TREMBL is already of immense value, its computer-generated annotation does not match the quality of SWISS-PROTs. The main difference is in the protein functional information attached to sequences. With this in mind, we are dedicating substantial effort to develop and apply computer methods to enhance the functional information attached to TREMBL entries.

  5. Waste minimization in a petrochemical company

    Energy Technology Data Exchange (ETDEWEB)

    Anan, Marcelo [Oxiteno S.A., Industria e Comercio, Sao Paulo, SP (Brazil)

    1994-12-31

    A way to manage industrial effluents consists in reducing their generation or treating them when elimination or minimization is economically unachievable. This work aims to present the modifications adopted in a petrochemical plant to adequate and, or, reduce the generation of industrial effluent. 8 refs., 3 figs.

  6. Waste minimization in a petrochemical company

    Energy Technology Data Exchange (ETDEWEB)

    Anan, Marcelo [Oxiteno S.A., Industria e Comercio, Sao Paulo, SP (Brazil)

    1993-12-31

    A way to manage industrial effluents consists in reducing their generation or treating them when elimination or minimization is economically unachievable. This work aims to present the modifications adopted in a petrochemical plant to adequate and, or, reduce the generation of industrial effluent. 8 refs., 3 figs.

  7. Screening for SNPs with Allele-Specific Methylation based on Next-Generation Sequencing Data.

    Science.gov (United States)

    Hu, Bo; Ji, Yuan; Xu, Yaomin; Ting, Angela H

    2013-05-01

    Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multiple subjects, leading to a posterior probability of ASM. We flag SNPs with high posterior probabilities of ASM by accounting for multiple comparisons based on posterior false discovery rates. Applying the Bayesian approach to the in-house prostate cell line data, we identify 269 SNPs as candidates of ASM. A simulation study is carried out to demonstrate the quantitative performance of the proposed approach.

  8. Molecular diagnostics of a single drug-resistant multiple myeloma case using targeted next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Ikeda H

    2015-10-01

    Full Text Available Hiroshi Ikeda,1 Kazuya Ishiguro,1 Tetsuyuki Igarashi,1 Yuka Aoki,1 Toshiaki Hayashi,1 Tadao Ishida,1 Yasushi Sasaki,1,2 Takashi Tokino,2 Yasuhisa Shinomura1 1Department of Gastroenterology, Rheumatology and Clinical Immunology, 2Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan Abstract: A 69-year-old man was diagnosed with IgG λ-type multiple myeloma (MM, Stage II in October 2010. He was treated with one cycle of high-dose dexamethasone. After three cycles of bortezomib, the patient exhibited slow elevations in the free light-chain levels and developed a significant new increase of serum M protein. Bone marrow cytogenetic analysis revealed a complex karyotype characteristic of malignant plasma cells. To better understand the molecular pathogenesis of this patient, we sequenced for mutations in the entire coding regions of 409 cancer-related genes using a semiconductor-based sequencing platform. Sequencing analysis revealed eight nonsynonymous somatic mutations in addition to several copy number variants, including CCND1 and RB1. These alterations may play roles in the pathobiology of this disease. This targeted next-generation sequencing can allow for the prediction of drug resistance and facilitate improvements in the treatment of MM patients. Keywords: multiple myeloma, drug resistance, genome-wide sequencing, semiconductor sequencer, target therapy

  9. Making the Most of Minimalism in Music.

    Science.gov (United States)

    Geiersbach, Frederick J.

    1998-01-01

    Describes the minimalist movement in music. Discusses generations of minimalist musicians and, in general, the minimalist approach. Considers various ways that minimalist strategies can be integrated into the music classroom focusing on (1) minimalism and (2) student-centered composition and principles of minimalism for use with elementary band…

  10. Validation and Application of a Custom-Designed Targeted Next-Generation Sequencing Panel for the Diagnostic Mutational Profiling of Solid Tumors.

    Directory of Open Access Journals (Sweden)

    Guy Froyen

    Full Text Available The inevitable switch from standard molecular methods to next-generation sequencing for the molecular profiling of tumors is challenging for most diagnostic laboratories. However, fixed validation criteria for diagnostic accreditation are not in place because of the great variability in methods and aims. Here, we describe the validation of a custom panel of hotspots in 24 genes for the detection of somatic mutations in non-small cell lung carcinoma, colorectal carcinoma and malignant melanoma starting from FFPE sections, using 14, 36 and 5 cases, respectively. The targeted hotspots were selected for their present or future clinical relevance in solid tumor types. The target regions were enriched with the TruSeq approach starting from limited amounts of DNA. Cost effective sequencing of 12 pooled libraries was done using a micro flow cell on the MiSeq and subsequent data analysis with MiSeqReporter and VariantStudio. The entire workflow was diagnostically validated showing a robust performance with maximal sensitivity and specificity using as thresholds a variant allele frequency >5% and a minimal amplicon coverage of 300. We implemented this method through the analysis of 150 routine diagnostic samples and identified clinically relevant mutations in 16 genes including KRAS (32%, TP53 (32%, BRAF (12%, APC (11%, EGFR (8% and NRAS (5%. Importantly, the highest success rate was obtained when using also the low quality DNA samples. In conclusion, we provide a workflow for the validation of targeted NGS by a custom-designed pan-solid tumor panel in a molecular diagnostic lab and demonstrate its robustness in a clinical setting.

  11. Computational Approach to Annotating Variants of Unknown Significance in Clinical Next Generation Sequencing.

    Science.gov (United States)

    Schulz, Wade L; Tormey, Christopher A; Torres, Richard

    2015-01-01

    Next generation sequencing (NGS) has become a common technology in the clinical laboratory, particularly for the analysis of malignant neoplasms. However, most mutations identified by NGS are variants of unknown clinical significance (VOUS). Although the approach to define these variants differs by institution, software algorithms that predict variant effect on protein function may be used. However, these algorithms commonly generate conflicting results, potentially adding uncertainty to interpretation. In this review, we examine several computational tools used to predict whether a variant has clinical significance. In addition to describing the role of these tools in clinical diagnostics, we assess their efficacy in analyzing known pathogenic and benign variants in hematologic malignancies. Copyright© by the American Society for Clinical Pathology (ASCP).

  12. Recurrence Relations and Generating Functions of the Sequence of Sums of Corresponding Factorials and Triangular Numbers

    Directory of Open Access Journals (Sweden)

    Romer C. Castillo

    2015-11-01

    Full Text Available This study established some recurrence relations and exponential generating functions of the sequence of factoriangular numbers. A factoriangular number is defined as a sum of corresponding factorial and triangular number. The proofs utilize algebraic manipulations with some known results from calculus, particularly on power series and Maclaurin’s series. The recurrence relations were found by manipulating the formula defining a factoringular number while the ascertained exponential generating functions were in the closed form.

  13. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data.

    Science.gov (United States)

    Sturk-Andreaggi, Kimberly; Peck, Michelle A; Boysen, Cecilie; Dekker, Patrick; McMahon, Timothy P; Marshall, Charla K

    2017-11-01

    The feasibility of generating mitochondrial DNA (mtDNA) data has expanded considerably with the advent of next-generation sequencing (NGS), specifically in the generation of entire mtDNA genome (mitogenome) sequences. However, the analysis of these data has emerged as the greatest challenge to implementation in forensics. To address this need, a custom toolkit for use in the CLC Genomics Workbench (QIAGEN, Hilden, Germany) was developed through a collaborative effort between the Armed Forces Medical Examiner System - Armed Forces DNA Identification Laboratory (AFMES-AFDIL) and QIAGEN Bioinformatics. The AFDIL-QIAGEN mtDNA Expert, or AQME, generates an editable mtDNA profile that employs forensic conventions and includes the interpretation range required for mtDNA data reporting. AQME also integrates an mtDNA haplogroup estimate into the analysis workflow, which provides the analyst with phylogenetic nomenclature guidance and a profile quality check without the use of an external tool. Supplemental AQME outputs such as nucleotide-per-position metrics, configurable export files, and an audit trail are produced to assist the analyst during review. AQME is applied to standard CLC outputs and thus can be incorporated into any mtDNA bioinformatics pipeline within CLC regardless of sample type, library preparation or NGS platform. An evaluation of AQME was performed to demonstrate its functionality and reliability for the analysis of mitogenome NGS data. The study analyzed Illumina mitogenome data from 21 samples (including associated controls) of varying quality and sample preparations with the AQME toolkit. A total of 211 tool edits were automatically applied to 130 of the 698 total variants reported in an effort to adhere to forensic nomenclature. Although additional manual edits were required for three samples, supplemental tools such as mtDNA haplogroup estimation assisted in identifying and guiding these necessary modifications to the AQME-generated profile. Along

  14. Annual Waste Minimization Summary Report

    International Nuclear Information System (INIS)

    Haworth, D.M.

    2011-01-01

    This report summarizes the waste minimization efforts undertaken by National Security TechnoIogies, LLC, for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2010. The NNSA/NSO Pollution Prevention Program establishes a process to reduce the volume and toxicity of waste generated by NNSA/NSO activities and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment.

  15. Waste minimization assessment procedure

    International Nuclear Information System (INIS)

    Kellythorne, L.L.

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative

  16. Waste minimization applications at a remediation site

    International Nuclear Information System (INIS)

    Allmon, L.A.

    1995-01-01

    The Fernald Environmental Management Project (FEMP) owned by the Department of Energy was used for the processing of uranium. In 1989 Fernald suspended production of uranium metals and was placed on the National Priorities List (NPL). The site's mission has changed from one of production to environmental restoration. Many groups necessary for producing a product were deemed irrelevant for remediation work, including Waste Minimization. Waste Minimization does not readily appear to be applicable to remediation work. Environmental remediation is designed to correct adverse impacts to the environment from past operations and generates significant amounts of waste requiring management. The premise of pollution prevention is to avoid waste generation, thus remediation is in direct conflict with this premise. Although greater amounts of waste will be generated during environmental remediation, treatment capacities are not always available and disposal is becoming more difficult and costly. This creates the need for pollution prevention and waste minimization. Applying waste minimization principles at a remediation site is an enormous challenge. If the remediation site is also radiologically contaminated it is even a bigger challenge. Innovative techniques and ideas must be utilized to achieve reductions in the amount of waste that must be managed or dispositioned. At Fernald the waste minimization paradigm was shifted from focusing efforts on source reduction to focusing efforts on recycle/reuse by inverting the EPA waste management hierarchy. A fundamental difference at remediation sites is that source reduction has limited applicability to legacy wastes but can be applied successfully on secondary waste generation. The bulk of measurable waste reduction will be achieved by the recycle/reuse of primary wastes and by segregation and decontamination of secondary wastestreams. Each effort must be measured in terms of being economically and ecologically beneficial

  17. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo: genome assembly and analysis.

    Directory of Open Access Journals (Sweden)

    Rami A Dalloul

    2010-09-01

    Full Text Available A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo. Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest.

  18. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing.

    Science.gov (United States)

    Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z

    2018-02-01

    To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.

  19. The feasibility study of non-invasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform.

    Directory of Open Access Journals (Sweden)

    Young Joo Jeon

    Full Text Available OBJECTIVE: Recent non-invasive prenatal testing (NIPT technologies are based on next-generation sequencing (NGS. NGS allows rapid and effective clinical diagnoses to be determined with two common sequencing systems: Illumina and Ion Torrent platforms. The majority of NIPT technology is associated with Illumina platform. We investigated whether fetal trisomy 18 and 21 were sensitively and specifically detectable by semiconductor sequencer: Ion Proton. METHODS: From March 2012 to October 2013, we enrolled 155 pregnant women with fetuses who were diagnosed as high risk of fetal defects at Xiamen Maternal & Child Health Care Hospital (Xiamen, Fujian, China. Adapter-ligated DNA libraries were analyzed by the Ion Proton™ System (Life Technologies, Grand Island, NY, USA with an average 0.3× sequencing coverage per nucleotide. Average total raw reads per sample was 6.5 million and mean rate of uniquely mapped reads was 59.0%. The results of this study were derived from BWA mapping. Z-score was used for fetal trisomy 18 and 21 detection. RESULTS: Interactive dot diagrams showed the minimal z-score values to discriminate negative versus positive cases of fetal trisomy 18 and 21. For fetal trisomy 18, the minimal z-score value of 2.459 showed 100% positive predictive and negative predictive values. The minimal z-score of 2.566 was used to classify negative versus positive cases of fetal trisomy 21. CONCLUSION: These results provide the evidence that fetal trisomy 18 and 21 detection can be performed with semiconductor sequencer. Our data also suggest that a prospective study should be performed with a larger cohort of clinically diverse obstetrics patients.

  20. Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model

    OpenAIRE

    Lu, Jiasen; Kannan, Anitha; Yang, Jianwei; Parikh, Devi; Batra, Dhruv

    2017-01-01

    We present a novel training framework for neural sequence models, particularly for grounded dialog generation. The standard training paradigm for these models is maximum likelihood estimation (MLE), or minimizing the cross-entropy of the human responses. Across a variety of domains, a recurring problem with MLE trained generative neural dialog models (G) is that they tend to produce 'safe' and generic responses ("I don't know", "I can't tell"). In contrast, discriminative dialog models (D) th...

  1. 1994 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    1995-09-01

    Many Waste Minimization/Pollution Prevention successes at the Hanford Site occur every day without formal recognition. A few of the successful projects are: T-Plant helps facilities reuse equipment by offering decontamination services for items such as gas cylinders, trucks, and railcars, thus saving disposal and equipment replacement costs. Custodial Services reviewed its use of 168 hazardous cleaning products, and, through a variety of measures, replaced them with 38 safer substitutes, one for each task. Scrap steel contaminated with low level radioactivity from the interim stabilization of 107-K and 107-C was decontaminated and sold to a vendor for recycling. Site-wide programs include the following: the Pollution Prevention Opportunity Assessment (P2OA) program at the Hanford site was launched during 1994, including a training class, a guidance document, technical assistance, and goals; control over hazardous materials purchased was achieved by reviewing all purchase requisitions of a chemical nature; the Office Supply Reuse Program was established to redeploy unused or unwanted office supply items. In 1994, pollution prevention activities reduced approximately 274,000 kilograms of hazardous waste, 2,100 cubic meters of radioactive and mixed waste, 14,500,000 kilograms of sanitary waste, and 215,000 cubic meters off liquid waste and waste water. Pollution Prevention activities also saved almost $4.2 million in disposal, product, and labor costs. Overall waste generation increased in 1994 due to increased work and activity typical for a site with an environmental restoration mission. However, without any Waste Minimization/Pollution Prevention activities, solid radioactive waste generation at Hanford would have been 25% higher, solid hazardous waste generation would have been 30% higher, and solid sanitary waste generation would have been 60% higher

  2. LLNL Waste Minimization Program Plan

    International Nuclear Information System (INIS)

    1990-01-01

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs

  3. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease

    OpenAIRE

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-01-01

    Purpose: Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing bas...

  4. Evaluation of next generation sequencing for the analysis of Eimeria communities in wildlife.

    Science.gov (United States)

    Vermeulen, Elke T; Lott, Matthew J; Eldridge, Mark D B; Power, Michelle L

    2016-05-01

    Next-generation sequencing (NGS) techniques are well-established for studying bacterial communities but not yet for microbial eukaryotes. Parasite communities remain poorly studied, due in part to the lack of reliable and accessible molecular methods to analyse eukaryotic communities. We aimed to develop and evaluate a methodology to analyse communities of the protozoan parasite Eimeria from populations of the Australian marsupial Petrogale penicillata (brush-tailed rock-wallaby) using NGS. An oocyst purification method for small sample sizes and polymerase chain reaction (PCR) protocol for the 18S rRNA locus targeting Eimeria was developed and optimised prior to sequencing on the Illumina MiSeq platform. A data analysis approach was developed by modifying methods from bacterial metagenomics and utilising existing Eimeria sequences in GenBank. Operational taxonomic unit (OTU) assignment at a high similarity threshold (97%) was more accurate at assigning Eimeria contigs into Eimeria OTUs but at a lower threshold (95%) there was greater resolution between OTU consensus sequences. The assessment of two amplification PCR methods prior to Illumina MiSeq, single and nested PCR, determined that single PCR was more sensitive to Eimeria as more Eimeria OTUs were detected in single amplicons. We have developed a simple and cost-effective approach to a data analysis pipeline for community analysis of eukaryotic organisms using Eimeria communities as a model. The pipeline provides a basis for evaluation using other eukaryotic organisms and potential for diverse community analysis studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi.

    Science.gov (United States)

    Subramanian, Sankar; Huynen, Leon; Millar, Craig D; Lambert, David M

    2010-12-15

    Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli) and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.

  6. Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi

    Directory of Open Access Journals (Sweden)

    Huynen Leon

    2010-12-01

    Full Text Available Abstract Background Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. Results Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. Conclusions The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.

  7. Long-PCR based next generation sequencing of the whole mitochondrial genome of the peacock skate Pavoraja nitida (Elasmobranchii: Arhynchobatidae).

    Science.gov (United States)

    Yang, Lei; Naylor, Gavin J P

    2016-01-01

    We determined the complete mitochondrial genome sequence (16,760 bp) of the peacock skate Pavoraja nitida using a long-PCR based next generation sequencing method. It has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region in the typical vertebrate arrangement. Primers, protocols, and procedures used to obtain this mitogenome are provided. We anticipate that this approach will facilitate rapid collection of mitogenome sequences for studies on phylogenetic relationships, population genetics, and conservation of cartilaginous fishes.

  8. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries

    Directory of Open Access Journals (Sweden)

    Mari eNyyssönen

    2013-09-01

    Full Text Available Recent advances in sequencing technologies generate new predictions and hypotheses about the functional roles of environmental microorganisms. Yet, until we can test these predictions at a scale that matches our ability to generate them, most of them will remain as hypotheses. Function-based mining of metagenomic libraries can provide direct linkages between genes, metabolic traits and microbial taxa and thus bridge this gap between sequence data generation and functional predictions. Here we developed high-throughput screening assays for function-based characterization of activities involved in plant polymer decomposition from environmental metagenomic libraries. The multiplexed assays use fluorogenic and chromogenic substrates, combine automated liquid handling and use a genetically modified expression host to enable simultaneous screening of 12,160 clones for 14 activities in a total of 170,240 reactions. Using this platform we identified 374 (0.26 % cellulose, hemicellulose, chitin, starch, phosphate and protein hydrolyzing clones from fosmid libraries prepared from decomposing leaf litter. Sequencing on the Illumina MiSeq platform, followed by assembly and gene prediction of a subset of 95 fosmid clones, identified a broad range of bacterial phyla, including Actinobacteria, Bacteroidetes, multiple Proteobacteria sub-phyla in addition to some Fungi. Carbohydrate-active enzyme genes from 20 different glycoside hydrolase families were detected. Using tetranucleotide frequency binning of fosmid sequences, multiple enzyme activities from distinct fosmids were linked, demonstrating how biochemically-confirmed functional traits in environmental metagenomes may be attributed to groups of specific organisms. Overall, our results demonstrate how functional screening of metagenomic libraries can be used to connect microbial functionality to community composition and, as a result, complement large-scale metagenomic sequencing efforts.

  9. Generation, analysis and functional annotation of expressed sequence tags from the ectoparasitic mite Psoroptes ovis

    Directory of Open Access Journals (Sweden)

    Kenyon Fiona

    2011-07-01

    Full Text Available Abstract Background Sheep scab is caused by Psoroptes ovis and is arguably the most important ectoparasitic disease affecting sheep in the UK. The disease is highly contagious and causes and considerable pruritis and irritation and is therefore a major welfare concern. Current methods of treatment are unsustainable and in order to elucidate novel methods of disease control a more comprehensive understanding of the parasite is required. To date, no full genomic DNA sequence or large scale transcript datasets are available and prior to this study only 484 P. ovis expressed sequence tags (ESTs were accessible in public databases. Results In order to further expand upon the transcriptomic coverage of P. ovis thus facilitating novel insights into the mite biology we undertook a larger scale EST approach, incorporating newly generated and previously described P. ovis transcript data and representing the largest collection of P. ovis ESTs to date. We sequenced 1,574 ESTs and assembled these along with 484 previously generated P. ovis ESTs, which resulted in the identification of 1,545 unique P. ovis sequences. BLASTX searches identified 961 ESTs with significant hits (E-value P. ovis ESTs. Gene Ontology (GO analysis allowed the functional annotation of 880 ESTs and included predictions of signal peptide and transmembrane domains; allowing the identification of potential P. ovis excreted/secreted factors, and mapping of metabolic pathways. Conclusions This dataset currently represents the largest collection of P. ovis ESTs, all of which are publicly available in the GenBank EST database (dbEST (accession numbers FR748230 - FR749648. Functional analysis of this dataset identified important homologues, including house dust mite allergens and tick salivary factors. These findings offer new insights into the underlying biology of P. ovis, facilitating further investigations into mite biology and the identification of novel methods of intervention.

  10. Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map

    Science.gov (United States)

    Wang, Xing-Yuan; Qin, Xue; Xie, Yi-Xin

    2011-08-01

    We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number xi generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application.

  11. Next-Generation Sequencing Reveals the Impact of Repetitive DNA Across Phylogenetically Closely Related Genomes of Orobanchaceae

    Czech Academy of Sciences Publication Activity Database

    Piednoël, M.; Aberer, A.J.; Schneeweiss, G. M.; Macas, Jiří; Novák, Petr; Gundlach, H.; Temsch, E.M.; Renner, S.S.

    2012-01-01

    Roč. 29, č. 11 (2012), s. 3601-3611 ISSN 0737-4038 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : next-generation sequencing * polyploidy * genome size * Ty3/Gypsy * transposable elements Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.353, year: 2012

  12. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing.

    Science.gov (United States)

    Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian

    2011-08-30

    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.

  13. emMAW: computing minimal absent words in external memory.

    Science.gov (United States)

    Héliou, Alice; Pissis, Solon P; Puglisi, Simon J

    2017-09-01

    The biological significance of minimal absent words has been investigated in genomes of organisms from all domains of life. For instance, three minimal absent words of the human genome were found in Ebola virus genomes. There exists an O(n) -time and O(n) -space algorithm for computing all minimal absent words of a sequence of length n on a fixed-sized alphabet based on suffix arrays. A standard implementation of this algorithm, when applied to a large sequence of length n , requires more than 20 n  bytes of RAM. Such memory requirements are a significant hurdle to the computation of minimal absent words in large datasets. We present emMAW, the first external-memory algorithm for computing minimal absent words. A free open-source implementation of our algorithm is made available. This allows for computation of minimal absent words on far bigger data sets than was previously possible. Our implementation requires less than 3 h on a standard workstation to process the full human genome when as little as 1 GB of RAM is made available. We stress that our implementation, despite making use of external memory, is fast; indeed, even on relatively smaller datasets when enough RAM is available to hold all necessary data structures, it is less than two times slower than state-of-the-art internal-memory implementations. https://github.com/solonas13/maw (free software under the terms of the GNU GPL). alice.heliou@lix.polytechnique.fr or solon.pissis@kcl.ac.uk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Mixed low-level waste minimization at Los Alamos

    International Nuclear Information System (INIS)

    Starke, T.P.

    1998-01-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL

  15. Mixed low-level waste minimization at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Starke, T.P.

    1998-12-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

  16. DNA immunoprecipitation semiconductor sequencing (DIP-SC-seq) as a rapid method to generate genome wide epigenetic signatures

    OpenAIRE

    Thomson, John P.; Fawkes, Angie; Ottaviano, Raffaele; Hunter, Jennifer M.; Shukla, Ruchi; Mjoseng, Heidi K.; Clark, Richard; Coutts, Audrey; Murphy, Lee; Meehan, Richard R.

    2015-01-01

    Modification of DNA resulting in 5-methylcytosine (5 mC) or 5-hydroxymethylcytosine (5hmC) has been shown to influence the local chromatin environment and affect transcription. Although recent advances in next generation sequencing technology allow researchers to map epigenetic modifications across the genome, such experiments are often time-consuming and cost prohibitive. Here we present a rapid and cost effective method of generating genome wide DNA modification maps utilising commercially ...

  17. Next-generation sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL.

    Science.gov (United States)

    Kotrova, M; van der Velden, V H J; van Dongen, J J M; Formankova, R; Sedlacek, P; Brüggemann, M; Zuna, J; Stary, J; Trka, J; Fronkova, E

    2017-07-01

    Minimal residual disease (MRD) monitoring via quantitative PCR (qPCR) detection of Ag receptor gene rearrangements has been the most sensitive method for predicting prognosis and making post-transplant treatment decisions for patients with ALL. Despite the broad clinical usefulness and standardization of this method, we and others have repeatedly reported the possibility of false-positive MRD results caused by massive B-lymphocyte regeneration after stem cell transplantation (SCT). Next-generation sequencing (NGS) enables precise and sensitive detection of multiple Ag receptor rearrangements, thus providing a more specific readout compared to qPCR. We investigated two cohorts of children with ALL who underwent SCT (30 patients and 228 samples). The first cohort consisted of 17 patients who remained in long-term CR after SCT despite having low MRD positivity (SCT monitoring using qPCR. Only one of 27 qPCR-positive samples was confirmed to be positive by NGS. Conversely, 10 of 15 samples with low qPCR-detected MRD positivity from 13 patients who subsequently relapsed were also confirmed to be positive by NGS (P=0.002). These data show that NGS has a better specificity in post-SCT ALL management and indicate that treatment interventions aimed at reverting impending relapse should not be based on qPCR only.

  18. The de novo assembly of mitochondrial genomes of the extinct passenger pigeon (Ectopistes migratorius with next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Chih-Ming Hung

    Full Text Available The information from ancient DNA (aDNA provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome of two extinct passenger pigeons (Ectopistes migratorius using de novo assembly of massive short (90 bp, paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species.

  19. The De Novo Assembly of Mitochondrial Genomes of the Extinct Passenger Pigeon (Ectopistes migratorius) with Next Generation Sequencing

    Science.gov (United States)

    Hung, Chih-Ming; Lin, Rong-Chien; Chu, Jui-Hua; Yeh, Chia-Fen; Yao, Chiou-Ju; Li, Shou-Hsien

    2013-01-01

    The information from ancient DNA (aDNA) provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome) of two extinct passenger pigeons (Ectopistes migratorius) using de novo assembly of massive short (90 bp), paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species. PMID:23437111

  20. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology.

    Directory of Open Access Journals (Sweden)

    William E Stutz

    Full Text Available Genes of the vertebrate major histocompatibility complex (MHC are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms. Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1 a "gray zone" where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2 a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci--Stepwise Threshold Clustering (STC--that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.

  1. A next-generation sequencing method for overcoming the multiple gene copy problem in polyploid phylogenetics, applied to Poa grasses

    Directory of Open Access Journals (Sweden)

    Robin Charles

    2011-03-01

    Full Text Available Abstract Background Polyploidy is important from a phylogenetic perspective because of its immense past impact on evolution and its potential future impact on diversification, survival and adaptation, especially in plants. Molecular population genetics studies of polyploid organisms have been difficult because of problems in sequencing multiple-copy nuclear genes using Sanger sequencing. This paper describes a method for sequencing a barcoded mixture of targeted gene regions using next-generation sequencing methods to overcome these problems. Results Using 64 3-bp barcodes, we successfully sequenced three chloroplast and two nuclear gene regions (each of which contained two gene copies with up to two alleles per individual in a total of 60 individuals across 11 species of Australian Poa grasses. This method had high replicability, a low sequencing error rate (after appropriate quality control and a low rate of missing data. Eighty-eight percent of the 320 gene/individual combinations produced sequence reads, and >80% of individuals produced sufficient reads to detect all four possible nuclear alleles of the homeologous nuclear loci with 95% probability. We applied this method to a group of sympatric Australian alpine Poa species, which we discovered to share an allopolyploid ancestor with a group of American Poa species. All markers revealed extensive allele sharing among the Australian species and so we recommend that the current taxonomy be re-examined. We also detected hypermutation in the trnH-psbA marker, suggesting it should not be used as a land plant barcode region. Some markers indicated differentiation between Tasmanian and mainland samples. Significant positive spatial genetic structure was detected at Conclusions Our results demonstrate that 454 sequencing of barcoded amplicon mixtures can be used to reliably sample all alleles of homeologous loci in polyploid species and successfully investigate phylogenetic relationships among

  2. Quality control of next-generation sequencing library through an integrative digital microfluidic platform.

    Science.gov (United States)

    Thaitrong, Numrin; Kim, Hanyoup; Renzi, Ronald F; Bartsch, Michael S; Meagher, Robert J; Patel, Kamlesh D

    2012-12-01

    We have developed an automated quality control (QC) platform for next-generation sequencing (NGS) library characterization by integrating a droplet-based digital microfluidic (DMF) system with a capillary-based reagent delivery unit and a quantitative CE module. Using an in-plane capillary-DMF interface, a prepared sample droplet was actuated into position between the ground electrode and the inlet of the separation capillary to complete the circuit for an electrokinetic injection. Using a DNA ladder as an internal standard, the CE module with a compact LIF detector was capable of detecting dsDNA in the range of 5-100 pg/μL, suitable for the amount of DNA required by the Illumina Genome Analyzer sequencing platform. This DMF-CE platform consumes tenfold less sample volume than the current Agilent BioAnalyzer QC technique, preserving precious sample while providing necessary sensitivity and accuracy for optimal sequencing performance. The ability of this microfluidic system to validate NGS library preparation was demonstrated by examining the effects of limited-cycle PCR amplification on the size distribution and the yield of Illumina-compatible libraries, demonstrating that as few as ten cycles of PCR bias the size distribution of the library toward undesirable larger fragments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Generating minimal living systems from non-living materials and increasing their evolutionary abilities

    DEFF Research Database (Denmark)

    Rasmussen, Steen; Constantinescu, Adi; Svaneborg, Carsten

    2016-01-01

    We review lessons learned about evolutionary transitions from a bottom up construction of minimal life. We use a particular systemic protocell design process as a starting point for exploring two fundamental questions: (1) how may minimal living systems emerge from nonliving materials? - and (2......) how may minimal living systems support increasingly more evolutionary richness? Under (1) we present what has been accomplished so far and discuss the remaining open challenges and their possible solutions. Under (2) we present a design principle we have utilized successfully both for our...

  4. ChronQC: a quality control monitoring system for clinical next generation sequencing.

    Science.gov (United States)

    Tawari, Nilesh R; Seow, Justine Jia Wen; Perumal, Dharuman; Ow, Jack L; Ang, Shimin; Devasia, Arun George; Ng, Pauline C

    2018-05-15

    ChronQC is a quality control (QC) tracking system for clinical implementation of next-generation sequencing (NGS). ChronQC generates time series plots for various QC metrics to allow comparison of current runs to historical runs. ChronQC has multiple features for tracking QC data including Westgard rules for clinical validity, laboratory-defined thresholds and historical observations within a specified time period. Users can record their notes and corrective actions directly onto the plots for long-term recordkeeping. ChronQC facilitates regular monitoring of clinical NGS to enable adherence to high quality clinical standards. ChronQC is freely available on GitHub (https://github.com/nilesh-tawari/ChronQC), Docker (https://hub.docker.com/r/nileshtawari/chronqc/) and the Python Package Index. ChronQC is implemented in Python and runs on all common operating systems (Windows, Linux and Mac OS X). tawari.nilesh@gmail.com or pauline.c.ng@gmail.com. Supplementary data are available at Bioinformatics online.

  5. Hazardous waste minimization tracking system

    International Nuclear Information System (INIS)

    Railan, R.

    1994-01-01

    Under RCRA section 3002 9(b) and 3005f(h), hazardous waste generators and owners/operators of treatment, storage, and disposal facilities (TSDFs) are required to certify that they have a program in place to reduce the volume or quantity and toxicity of hazardous waste to the degree determined to be economically practicable. In many cases, there are environmental, as well as, economic benefits, for agencies that pursue pollution prevention options. Several state governments have already enacted waste minimization legislation (e.g., Massachusetts Toxic Use Reduction Act of 1989, and Oregon Toxic Use Reduction Act and Hazardous Waste Reduction Act, July 2, 1989). About twenty six other states have established legislation that will mandate some type of waste minimization program and/or facility planning. The need to address the HAZMIN (Hazardous Waste Minimization) Program at government agencies and private industries has prompted us to identify the importance of managing The HAZMIN Program, and tracking various aspects of the program, as well as the progress made in this area. The open-quotes WASTEclose quotes is a tracking system, which can be used and modified in maintaining the information related to Hazardous Waste Minimization Program, in a manageable fashion. This program maintains, modifies, and retrieves information related to hazardous waste minimization and recycling, and provides automated report generating capabilities. It has a built-in menu, which can be printed either in part or in full. There are instructions on preparing The Annual Waste Report, and The Annual Recycling Report. The program is very user friendly. This program is available in 3.5 inch or 5 1/4 inch floppy disks. A computer with 640K memory is required

  6. A safe an easy method for building consensus HIV sequences from 454 massively parallel sequencing data.

    Science.gov (United States)

    Fernández-Caballero Rico, Jose Ángel; Chueca Porcuna, Natalia; Álvarez Estévez, Marta; Mosquera Gutiérrez, María Del Mar; Marcos Maeso, María Ángeles; García, Federico

    2018-02-01

    To show how to generate a consensus sequence from the information of massive parallel sequences data obtained from routine HIV anti-retroviral resistance studies, and that may be suitable for molecular epidemiology studies. Paired Sanger (Trugene-Siemens) and next-generation sequencing (NGS) (454 GSJunior-Roche) HIV RT and protease sequences from 62 patients were studied. NGS consensus sequences were generated using Mesquite, using 10%, 15%, and 20% thresholds. Molecular evolutionary genetics analysis (MEGA) was used for phylogenetic studies. At a 10% threshold, NGS-Sanger sequences from 17/62 patients were phylogenetically related, with a median bootstrap-value of 88% (IQR83.5-95.5). Association increased to 36/62 sequences, median bootstrap 94% (IQR85.5-98)], using a 15% threshold. Maximum association was at the 20% threshold, with 61/62 sequences associated, and a median bootstrap value of 99% (IQR98-100). A safe method is presented to generate consensus sequences from HIV-NGS data at 20% threshold, which will prove useful for molecular epidemiological studies. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  7. Pediatric neuro MRI. Tricks to minimize sedation

    Energy Technology Data Exchange (ETDEWEB)

    Barkovich, Matthew J.; Desikan, Rahul S. [University of California, San Francisco, Department of Radiology and Diagnostic Imaging, San Francisco, CA (United States); Xu, Duan; Barkovich, A.J. [University of California, San Francisco, Department of Radiology and Diagnostic Imaging, San Francisco, CA (United States); UCSF-Benioff Children' s Hospital, Department of Radiology, San Francisco, CA (United States); Williams, Cassandra [UCSF-Benioff Children' s Hospital, Department of Radiology, San Francisco, CA (United States)

    2018-01-15

    Magnetic resonance imaging (MRI) is the workhorse modality in pediatric neuroimaging because it provides excellent soft-tissue contrast without ionizing radiation. Until recently, studies were uninterpretable without sedation; however, given development of shorter sequences, sequences that correct for motion, and studies showing the potentially deleterious effects of sedation on immature laboratory animals, it is prudent to minimize sedation when possible. This manuscript provides basic guidelines for performing pediatric neuro MRI without sedation by both modifying technical factors to reduce scan time and noise, and using a multi-disciplinary team to coordinate imaging with the patient's biorhythms. (orig.)

  8. Characterization of the cutaneous mycobiota in healthy and allergic cats using next generation sequencing.

    Science.gov (United States)

    Meason-Smith, Courtney; Diesel, Alison; Patterson, Adam P; Older, Caitlin E; Johnson, Timothy J; Mansell, Joanne M; Suchodolski, Jan S; Rodrigues Hoffmann, Aline

    2017-02-01

    Next generation sequencing (NGS) studies have demonstrated a diverse skin-associated microbiota and microbial dysbiosis associated with atopic dermatitis in people and in dogs. The skin of cats has yet to be investigated using NGS techniques. We hypothesized that the fungal microbiota of healthy feline skin would be similar to that of dogs, with a predominance of environmental fungi, and that fungal dysbiosis would be present on the skin of allergic cats. Eleven healthy cats and nine cats diagnosed with one or more cutaneous hypersensitivity disorders, including flea bite, food-induced and nonflea nonfood-induced hypersensitivity. Healthy cats were sampled at twelve body sites and allergic cats at six sites. DNA was isolated and Illumina sequencing was performed targeting the internal transcribed spacer region of fungi. Sequences were processed using the bioinformatics software QIIME. The most abundant fungal sequences from the skin of all cats were classified as Cladosporium and Alternaria. The mucosal sites, including nostril, conjunctiva and reproductive tracts, had the fewest number of fungi, whereas the pre-aural space had the most. Allergic feline skin had significantly greater amounts of Agaricomycetes and Sordariomycetes, and significantly less Epicoccum compared to healthy feline skin. The skin of healthy cats appears to have a more diverse fungal microbiota compared to previous studies, and a fungal dysbiosis is noted in the skin of allergic cats. Future studies assessing the temporal stability of the skin microbiota in cats will be useful in determining whether the microbiota sequenced using NGS are colonizers or transient microbes. © 2016 ESVD and ACVD.

  9. [Application of next-generation semiconductor sequencing technologies in genetic diagnosis of inherited cardiomyopathies].

    Science.gov (United States)

    Zhao, Yue; Zhang, Hong; Xia, Xue-shan

    2015-07-01

    Inherited cardiomyopathy is the most common hereditary cardiac disease. It also causes a significant proportion of sudden cardiac deaths in young adults and athletes. So far, approximately one hundred genes have been reported to be involved in cardiomyopathies through different mechanisms. Therefore, the identification of the genetic basis and disease mechanisms of cardiomyopathies are important for establishing a clinical diagnosis and genetic testing. Next-generation semiconductor sequencing (NGSS) technology platform is a high-throughput sequencer capable of analyzing clinically derived genomes with high productivity, sensitivity and specificity. It was launched in 2010 by Life Technologies of USA, and it is based on a high density semiconductor chip, which was covered with tens of thousands of wells. NGSS has been successfully used in candidate gene mutation screening to identify hereditary disease. In this review, we summarize these genetic variations, challenge and application of NGSS in inherited cardiomyopathy, and its value in disease diagnosis, prevention and treatment.

  10. Statistical framework for detection of genetically modified organisms based on Next Generation Sequencing.

    Science.gov (United States)

    Willems, Sander; Fraiture, Marie-Alice; Deforce, Dieter; De Keersmaecker, Sigrid C J; De Loose, Marc; Ruttink, Tom; Herman, Philippe; Van Nieuwerburgh, Filip; Roosens, Nancy

    2016-02-01

    Because the number and diversity of genetically modified (GM) crops has significantly increased, their analysis based on real-time PCR (qPCR) methods is becoming increasingly complex and laborious. While several pioneers already investigated Next Generation Sequencing (NGS) as an alternative to qPCR, its practical use has not been assessed for routine analysis. In this study a statistical framework was developed to predict the number of NGS reads needed to detect transgene sequences, to prove their integration into the host genome and to identify the specific transgene event in a sample with known composition. This framework was validated by applying it to experimental data from food matrices composed of pure GM rice, processed GM rice (noodles) or a 10% GM/non-GM rice mixture, revealing some influential factors. Finally, feasibility of NGS for routine analysis of GM crops was investigated by applying the framework to samples commonly encountered in routine analysis of GM crops. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Korneliussen, Thorfinn Sand; Albrechtsen, Anders

    2012-01-01

    We present a statistical framework for estimation and application of sample allele frequency spectra from New-Generation Sequencing (NGS) data. In this method, we first estimate the allele frequency spectrum using maximum likelihood. In contrast to previous methods, the likelihood function is cal...... be extended to various other cases including cases with deviations from Hardy-Weinberg equilibrium. We evaluate the statistical properties of the methods using simulations and by application to a real data set....

  12. EXONSAMPLER: a computer program for genome-wide and candidate gene exon sampling for targeted next-generation sequencing.

    Science.gov (United States)

    Cosart, Ted; Beja-Pereira, Albano; Luikart, Gordon

    2014-11-01

    The computer program EXONSAMPLER automates the sampling of thousands of exon sequences from publicly available reference genome sequences and gene annotation databases. It was designed to provide exon sequences for the efficient, next-generation gene sequencing method called exon capture. The exon sequences can be sampled by a list of gene name abbreviations (e.g. IFNG, TLR1), or by sampling exons from genes spaced evenly across chromosomes. It provides a list of genomic coordinates (a bed file), as well as a set of sequences in fasta format. User-adjustable parameters for collecting exon sequences include a minimum and maximum acceptable exon length, maximum number of exonic base pairs (bp) to sample per gene, and maximum total bp for the entire collection. It allows for partial sampling of very large exons. It can preferentially sample upstream (5 prime) exons, downstream (3 prime) exons, both external exons, or all internal exons. It is written in the Python programming language using its free libraries. We describe the use of EXONSAMPLER to collect exon sequences from the domestic cow (Bos taurus) genome for the design of an exon-capture microarray to sequence exons from related species, including the zebu cow and wild bison. We collected ~10% of the exome (~3 million bp), including 155 candidate genes, and ~16,000 exons evenly spaced genomewide. We prioritized the collection of 5 prime exons to facilitate discovery and genotyping of SNPs near upstream gene regulatory DNA sequences, which control gene expression and are often under natural selection. © 2014 John Wiley & Sons Ltd.

  13. Next Generation DNA Sequencing and the Future of Genomic Medicine

    OpenAIRE

    Anderson, Matthew W.; Schrijver, Iris

    2010-01-01

    In the years since the first complete human genome sequence was reported, there has been a rapid development of technologies to facilitate high-throughput sequence analysis of DNA (termed “next-generation” sequencing). These novel approaches to DNA sequencing offer the promise of complete genomic analysis at a cost feasible for routine clinical diagnostics. However, the ability to more thoroughly interrogate genomic sequence raises a number of important issues with regard to result interpreta...

  14. Next generation sequencing and comparative analyses of Xenopus mitogenomes

    Directory of Open Access Journals (Sweden)

    Lloyd Rhiannon E

    2012-09-01

    -coding genes were shown to be under strong negative (purifying selection, with genes under the strongest pressure (Complex 4 also being the most highly expressed, highlighting their potentially crucial functions in the mitochondrial respiratory chain. Conclusions Next generation sequencing of long-PCR amplicons using single taxon or multi-taxon approaches enabled two new species of Xenopus mtDNA to be fully characterized. We anticipate our complete mitochondrial genome amplification methods to be applicable to other amphibians, helpful for identifying the most appropriate markers for differentiating species, populations and resolving phylogenies, a pressing need since amphibians are undergoing drastic global decline. Our mtDNAs also provide templates for conserved primer design and the assembly of RNA and DNA reads following high throughput “omic” techniques such as RNA- and ChIP-seq. These could help us better understand how processes such mitochondrial replication and gene expression influence xenopus growth and development, as well as how they evolved and are regulated.

  15. Advanced pyrochemical technologies for minimizing nuclear waste

    International Nuclear Information System (INIS)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-01-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts

  16. Applications of Next-Generation Sequencing Technologies to Diagnostic Virology

    Directory of Open Access Journals (Sweden)

    Giorgio Palù

    2011-11-01

    Full Text Available Novel DNA sequencing techniques, referred to as “next-generation” sequencing (NGS, provide high speed and throughput that can produce an enormous volume of sequences with many possible applications in research and diagnostic settings. In this article, we provide an overview of the many applications of NGS in diagnostic virology. NGS techniques have been used for high-throughput whole viral genome sequencing, such as sequencing of new influenza viruses, for detection of viral genome variability and evolution within the host, such as investigation of human immunodeficiency virus and human hepatitis C virus quasispecies, and monitoring of low-abundance antiviral drug-resistance mutations. NGS techniques have been applied to metagenomics-based strategies for the detection of unexpected disease-associated viruses and for the discovery of novel human viruses, including cancer-related viruses. Finally, the human virome in healthy and disease conditions has been described by NGS-based metagenomics.

  17. Rapid Development of Microsatellite Markers for Plantago ovata Forsk.: Using Next Generation Sequencing and Their Cross-Species Transferability

    Directory of Open Access Journals (Sweden)

    Ranbir Singh Fougat

    2014-06-01

    Full Text Available Isabgol (Plantago ovata Forsk. is an important medicinal plant having high pharmacological activity in its seed husk, which is substantially used in the food, beverages and packaging industries. Nevertheless, isabgol lags behind in research, particularly for genomic resources, like molecular markers, genetic maps, etc. Presently, molecular markers can be easily developed through next generation sequencing technologies, more efficiently, cost effectively and in less time than ever before. This study was framed keeping in view the need to develop molecular markers for this economically important crop by employing a microsatellite enrichment protocol using a next generation sequencing platform (ion torrent PGM™ to obtain simple sequence repeats (SSRs for Plantago ovata for the very first time. A total of 3447 contigs were assembled, which contained 249 SSRs. Thirty seven loci were randomly selected for primer development; of which, 30 loci were successfully amplified. The developed microsatellite markers showed the amplification of the expected size and cross-amplification in another six species of Plantago. The SSR markers were unable to show polymorphism within P. ovata, suggesting that low variability exists within genotypes of P. ovata. This study suggests that PGM™ sequencing is a rapid and cost-effective tool for developing SSR markers for non-model species, and the markers so-observed could be useful in the molecular breeding of P. ovata.

  18. nQuire: a statistical framework for ploidy estimation using next generation sequencing.

    Science.gov (United States)

    Weiß, Clemens L; Pais, Marina; Cano, Liliana M; Kamoun, Sophien; Burbano, Hernán A

    2018-04-04

    Intraspecific variation in ploidy occurs in a wide range of species including pathogenic and nonpathogenic eukaryotes such as yeasts and oomycetes. Ploidy can be inferred indirectly - without measuring DNA content - from experiments using next-generation sequencing (NGS). We present nQuire, a statistical framework that distinguishes between diploids, triploids and tetraploids using NGS. The command-line tool models the distribution of base frequencies at variable sites using a Gaussian Mixture Model, and uses maximum likelihood to select the most plausible ploidy model. nQuire handles large genomes at high coverage efficiently and uses standard input file formats. We demonstrate the utility of nQuire analyzing individual samples of the pathogenic oomycete Phytophthora infestans and the Baker's yeast Saccharomyces cerevisiae. Using these organisms we show the dependence between reliability of the ploidy assignment and sequencing depth. Additionally, we employ normalized maximized log- likelihoods generated by nQuire to ascertain ploidy level in a population of samples with ploidy heterogeneity. Using these normalized values we cluster samples in three dimensions using multivariate Gaussian mixtures. The cluster assignments retrieved from a S. cerevisiae population recovered the true ploidy level in over 96% of samples. Finally, we show that nQuire can be used regionally to identify chromosomal aneuploidies. nQuire provides a statistical framework to study organisms with intraspecific variation in ploidy. nQuire is likely to be useful in epidemiological studies of pathogens, artificial selection experiments, and for historical or ancient samples where intact nuclei are not preserved. It is implemented as a stand-alone Linux command line tool in the C programming language and is available at https://github.com/clwgg/nQuire under the MIT license.

  19. Comparing microarrays and next-generation sequencing technologies for microbial ecology research.

    Science.gov (United States)

    Roh, Seong Woon; Abell, Guy C J; Kim, Kyoung-Ho; Nam, Young-Do; Bae, Jin-Woo

    2010-06-01

    Recent advances in molecular biology have resulted in the application of DNA microarrays and next-generation sequencing (NGS) technologies to the field of microbial ecology. This review aims to examine the strengths and weaknesses of each of the methodologies, including depth and ease of analysis, throughput and cost-effectiveness. It also intends to highlight the optimal application of each of the individual technologies toward the study of a particular environment and identify potential synergies between the two main technologies, whereby both sample number and coverage can be maximized. We suggest that the efficient use of microarray and NGS technologies will allow researchers to advance the field of microbial ecology, and importantly, improve our understanding of the role of microorganisms in their various environments.

  20. Phonon impedance matching: minimizing interfacial thermal resistance of thin films

    Science.gov (United States)

    Polanco, Carlos; Zhang, Jingjie; Ghosh, Avik

    2014-03-01

    The challenge to minimize interfacial thermal resistance is to allow a broad band spectrum of phonons, with non-linear dispersion and well defined translational and rotational symmetries, to cross the interface. We explain how to minimize this resistance using a frequency dependent broadening matrix that generalizes the notion of acoustic impedance to the whole phonon spectrum including symmetries. We show how to ``match'' two given materials by joining them with a single atomic layer, with a multilayer material and with a graded superlattice. Atomic layer ``matching'' requires a layer with a mass close to the arithmetic mean (or spring constant close to the harmonic mean) to favor high frequency phonon transmission. For multilayer ``matching,'' we want a material with a broadening close to the geometric mean to maximize transmission peaks. For graded superlattices, a continuous sequence of geometric means translates to an exponentially varying broadening that generates a wide-band antireflection coating for both the coherent and incoherent limits. Our results are supported by ``first principles'' calculations of thermal conductance for GaAs / Gax Al1 - x As / AlAs thin films using the Non-Equilibrium Greens Function formalism coupled with Density Functional Perturbation Theory. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE.