WorldWideScience

Sample records for minimise reef damage

  1. Shifting communities after­­ typhoon damage on an upper mesophotic reef in Okinawa, Japan

    Directory of Open Access Journals (Sweden)

    Kristine N. White

    2017-08-01

    Full Text Available Very few studies have been conducted on the long-term effects of typhoon damage on mesophotic coral reefs. This study investigates the long-term community dynamics of damage from Typhoon 17 (Jelawat in 2012 on the coral community of the upper mesophotic Ryugu Reef in Okinawa, Japan. A shift from foliose to bushy coral morphologies between December 2012 and August 2015 was documented, especially on the area of the reef that was previously recorded to be poor in scleractinian genera diversity and dominated by foliose corals. Comparatively, an area with higher diversity of scleractinian coral genera was observed to be less affected by typhoon damage with more stable community structure due to less change in dominant coral morphologies. Despite some changes in the composition of dominant genera, the generally high coverage of the mesophotic coral community is facilitating the recovery of Ryugu Reef after typhoon damage.

  2. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  3. Turf algae-mediated coral damage in coastal reefs of Belize, Central America.

    Science.gov (United States)

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  4. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian

    2014-09-16

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  5. Typhoon damage on a shallow mesophotic reef in Okinawa, Japan

    Directory of Open Access Journals (Sweden)

    Kristine N. White

    2013-09-01

    Full Text Available Little is known about effects of large storm systems on mesophotic reefs. This study reports on how Typhoon 17 (Jelawat affected Ryugu Reef on Okinawa-jima, Japan in September 2012. Benthic communities were surveyed before and after the typhoon using line intercept transect method. Comparison of the benthic assemblages showed highly significant differences in coral coverage at depths of 25–32 m before and after Typhoon 17. A large deep stand of Pachyseris foliosa was apparently less resistant to the storm than the shallower high diversity area of this reef. Contradictory to common perception, this research shows that large foliose corals at deeper depths are just as susceptible to typhoon damage as shallower branching corals. However, descriptive functional group analyses resulted in only minor changes after the disturbance, suggesting the high likelihood of recovery and the high resilience capacity of this mesophotic reef.

  6. A matter of scale: damage from Hurricane Hugo (1989) to U.S. Virgin Islands reefs at the colony, community and whole reef level

    Science.gov (United States)

    Rogers, Caroline S.

    1993-01-01

    Studies at Buck Island Reef National Monument (St. Croix) and Virgin Islands National Park (St. John) by scientists in the U.S. National Park Service Coral Reef Assessment Program re- vealed the effects of Humcane Hugo on individual coral species, community parameters, and overall reef structure. Effects of the storm varied with depth, coral species, location relative to the storm path, character of the pre-storm communities, and ecological history. Live coral cover, initially less than 30% at all sites, dropped by 40 to 73%. Cover by the dominant species Montastrea annularis de- clined about 35% on the St. John reefs. At Buck Island, Acropora palmata cover, already reduced from 85% to 5% by white band disease and storms, fell to 0.8% after Hugo. Some areas on the south side of Buck Island were reduced to rubble pave- ment while other areas escaped serious damage. Data from cores at Buck Island reveal the influence of wave energy and storm frequency on overall reef character. Patchiness and variation in the responses of different species, zones, and entire reefs to the storm suggest that assessment of long-term trends in reef structure and composition requires analysis of changes at permanent study sites distributed over large areas.

  7. Embracing a world of subtlety and nuance on coral reefs

    Science.gov (United States)

    Mumby, Peter J.

    2017-09-01

    Climate change will homogenise the environment and generate a preponderance of mediocre reefs. Managing seascapes of mediocrity will be challenging because our science is ill prepared to deal with the `shades of grey' of reef health; we tend to study natural processes in the healthiest reefs available. Yet much can be gained by examining the drivers and implications of even subtle changes in reef state. Where strong ecological interactions are discovered, even small changes in abundance can have profound impacts on coral resilience. Indeed, if we are to develop effective early warnings of critical losses of resilience, then monitoring must place greater emphasis on measuring and interpreting changes in reef recovery rates. In terms of mechanism, a more nuanced approach is needed to explore the generality of what might be considered `dogma'. A more nuanced approach to science will serve managers needs well and help minimise the rise of mediocrity in coral reef ecosystems.

  8. Pattern and intensity of human impact on coral reefs depend on depth along the reef profile and on the descriptor adopted

    Science.gov (United States)

    Nepote, Ettore; Bianchi, Carlo Nike; Chiantore, Mariachiara; Morri, Carla; Montefalcone, Monica

    2016-09-01

    Coral reefs are threatened by multiple global and local disturbances. The Maldives, already heavily hit by the 1998 mass bleaching event, are currently affected also by growing tourism and coastal development that may add to global impacts. Most of the studies investigating effects of local disturbances on coral reefs assessed the response of communities along a horizontal distance from the impact source. This study investigated the status of a Maldivian coral reef around an island where an international touristic airport has been recently (2009-2011) built, at different depths along the reef profile (5-20 m depth) and considering the change in the percentage of cover of five different non-taxonomic descriptors assessed through underwater visual surveys: hard corals, soft corals, other invertebrates, macroalgae and abiotic attributes. Eight reefs in areas not affected by any coastal development were used as controls and showed a reduction of hard coral cover and an increase of abiotic attributes (i.e. sand, rock, coral rubble) at the impacted reef. However, hard coral cover, the most widely used descriptor of coral reef health, was not sufficient on its own to detect subtle indirect effects that occurred down the reef profile. Selecting an array of descriptors and considering different depths, where corals may find a refuge from climate impacts, could guide the efforts of minimising local human pressures on coral reefs.

  9. Estimating the willingness to pay to protect coral reefs from potential damage caused by climate change--The evidence from Taiwan.

    Science.gov (United States)

    Tseng, William Wei-Chun; Hsu, Shu-Han; Chen, Chi-Chung

    2015-12-30

    Coral reefs constitute the most biologically productive and diverse ecosystem, and provide various goods and services including those related to fisheries, marine tourism, coastal protection, and medicine. However, they are sensitive to climate change and rising temperatures. Taiwan is located in the central part of the world's distribution of coral reefs and has about one third of the coral species in the world. This study estimates the welfare losses associated with the potential damage to coral reefs in Taiwan caused by climate change. The contingent valuation method adopted includes a pre-survey, a face-to-face formal survey, and photo illustrations used to obtain reliable data. Average annual personal willingness to pay is found to be around US$35.75 resulting in a total annual willingness to pay of around US$0.43 billion. These high values demonstrate that coral reefs in Taiwan deserve to be well preserved, which would require a dedicated agency and ocean reserves.

  10. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Ott, Jörg A.

    2008-01-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world’s most dived (>30,000dives y−1). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined...... to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance...... by the point intercept sampling method in the reef crest zone (3 m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject...

  11. Global and local threats to coral reef functioning and existence: review and predictions

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, C.R. [Australian Institute of Marine Sciences, Townsville, Qld. (Australia)

    1999-07-01

    Factors causing global degradation of coral reefs are examined briefly as a basis for predicting the likely consequences of increases in these factors. The earlier consensus was that widespread but localized damage from natural factors such as storms, and direct anthropogenic effects such as increased sedimentation, pollution and exploitation, posed the largest immediate threat to coral reefs. Now truly global factors associated with accelerating Global Climate Change are either damaging coral reefs or have the potential to inflict greater damage in the immediate future e.g. increases in coral bleaching and mortality, and reduction in coral calcification due to changes in sea-water chemistry with increasing carbon dioxide concentrations. Rises in sea level will probably disrupt human communities and their cultures by making coral cays uninhabitable, whereas coral reefs will sustain minimal damage from the rise in sea level. The short-term (decades) prognosis is that major reductions are almost certain in the extent and biodiversity of coral reefs, and severe disruptions to cultures and economies dependent on reef resources will occur. The long-term (centuries to millennia) prognosis is more encouraging because coral reefs have remarkable resilience to severe disruption and will probably show this resilience in the future when climate changes either stabilize or reverse.

  12. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael; Kosinka, Jin; Calo, Victor M.

    2015-01-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these 'stretch-free' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  13. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  14. Dredging in the Spratly Islands: Gaining Land but Losing Reefs.

    Science.gov (United States)

    Mora, Camilo; Caldwell, Iain R; Birkeland, Charles; McManus, John W

    2016-03-01

    Coral reefs on remote islands and atolls are less exposed to direct human stressors but are becoming increasingly vulnerable because of their development for geopolitical and military purposes. Here we document dredging and filling activities by countries in the South China Sea, where building new islands and channels on atolls is leading to considerable losses of, and perhaps irreversible damages to, unique coral reef ecosystems. Preventing similar damage across other reefs in the region necessitates the urgent development of cooperative management of disputed territories in the South China Sea. We suggest using the Antarctic Treaty as a positive precedent for such international cooperation.

  15. Projecting the risk of damage to reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    OpenAIRE

    Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang

    2017-01-01

    Tropical cyclones (TCs), sea level rise (SLR), and storm surges cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater able to reduce the risks of natural disasters to coastal communities. However, projections of change ...

  16. Multi-core symbolic bisimulation minimisation

    NARCIS (Netherlands)

    Dijk, Tom van; Pol, Jaco van de

    2017-01-01

    We introduce parallel symbolic algorithms for bisimulation minimisation, to combat the combinatorial state space explosion along three different paths. Bisimulation minimisation reduces a transition system to the smallest system with equivalent behaviour. We consider strong and branching

  17. U.S. coral reefs; imperiled national treasures

    Science.gov (United States)

    Field, M.E.; Cochran, S.A.; Evans, K.R.

    2002-01-01

    Coral reefs are home to 25% of all marine species. However, the tiny colonial animals that build these intricate limestone masses are dying at alarming rates. If this trend continues, in 20 years the living corals on many of the world's reefs will be dead and the ecosystems that depend on them severely damaged. As part of the effort to protect our Nation's extensive reefs, U.S. Geological Survey (USGS) scientists are working to better understand the processes that affect the health of these ecologically and economically important ecosystems.

  18. Status of coral reefs in South Asia: Bangladesh, India, Maldives, Sri Lanka

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasuriya, A.; Zahir, H.; Muley, E.V.; Subramanian, B.R.; Venkataraman, K.; Wafar, M.V.M.; Khan, S.M.M.H.; Whittingham, E.

    only around St. Martin's Island. Pakistan has poorly developed scattered reef communities. Natural disturbances and the lack of management of human activities continue to cause widespread damage to coral reefs in the region. In general, legal...

  19. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Manikandan, B.; Ravindran, J.; Shrinivaasu, S.; Marimuthu, N.; Paramasivam, K.

    to the reefs (McClanahan et al. 2006). However, majority of the MPAs lack effective enforcement of laws leading to reef damage and over exploitation (Mora et al. 2006). Climate change and Ocean acidification are chronic processes that exert their effects at a... availability for macroalgal attachment and nutrient enrichment will enhance the algal population in the coral ecosystems (McManus and Polsenberg 2004). Algal domination in a coral ecosystem has severe ecological implications including coral bleaching (Hughes...

  20. Multi-core symbolic bisimulation minimisation

    OpenAIRE

    Dijk, Tom van; Pol, Jaco van de

    2017-01-01

    We introduce parallel symbolic algorithms for bisimulation minimisation, to combat the combinatorial state space explosion along three different paths. Bisimulation minimisation reduces a transition system to the smallest system with equivalent behaviour. We consider strong and branching bisimilarity for interactive Markov chains, which combine labelled transition systems and continuous-time Markov chains. Large state spaces can be represented concisely by symbolic techniques, based on binary...

  1. Tsunami survey expedition: preliminary investigation of Maldivian coral reefs two weeks after the event.

    Science.gov (United States)

    Goffredo, Stefano; Piccinetti, Corrado; Zaccanti, Francesco

    2007-08-01

    On December 26th 2004, a earthquake west of Sumatra generated a devastating tsunami. Hundreds of thousands of people fell victim. Economic losses were greatest in those countries dependant on tourism. The impact in the Maldives on persons and things was modest. Immediately following the event and notwithstanding the lack of scientific data, the mass media gave catastrophic reports on the state of coral reefs in the area. This paper reports on the first survey on coral reefs in the Maldives after the Tsunami. Ocean walls, passes, inner reefs, and shoals in the North and South Malé atolls, were surveyed two weeks after the event. Significant damage was recorded in the passes in the South Malé atoll. Our observations showed that the damage was more or less extensive depending on latitude and topography. Sri Lanka may have broken the wave's rush, reducing the extent of the impact on northern atolls. The water's acceleration inside the passes was so intense as to cause reef collapses. The observed damage represents a minimum fraction of the entire coral reef system. Tourist perception of the area seems unchanged. These data may be used to disseminate correct information about the state of Maldives coral reefs, which would be useful in relaunching local economy.

  2. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef.

    Science.gov (United States)

    Beeden, R J; Turner, M A; Dryden, J; Merida, F; Goudkamp, K; Malone, C; Marshall, P A; Birtles, A; Maynard, J A

    2014-12-01

    Managing to support coral reef resilience as the climate changes requires strategic and responsive actions that reduce anthropogenic stress. Managers can only target and tailor these actions if they regularly receive information on system condition and impact severity. In large coral reef areas like the Great Barrier Reef Marine Park (GBRMP), acquiring condition and impact data with good spatial and temporal coverage requires using a large network of observers. Here, we describe the result of ~10 years of evolving and refining participatory monitoring programs used in the GBR that have rangers, tourism operators and members of the public as observers. Participants complete Reef Health and Impact Surveys (RHIS) using a protocol that meets coral reef managers' needs for up-to-date information on the following: benthic community composition, reef condition and impacts including coral diseases, damage, predation and the presence of rubbish. Training programs ensure that the information gathered is sufficiently precise to inform management decisions. Participants regularly report because the demands of the survey methodology have been matched to their time availability. Undertaking the RHIS protocol we describe involves three ~20 min surveys at each site. Participants enter data into an online data management system that can create reports for managers and participants within minutes of data being submitted. Since 2009, 211 participants have completed a total of more than 10,415 surveys at more than 625 different reefs. The two-way exchange of information between managers and participants increases the capacity to manage reefs adaptively, meets education and outreach objectives and can increase stewardship. The general approach used and the survey methodology are both sufficiently adaptable to be used in all reef regions.

  3. Exploration, Novelty, Surprise and Free Energy Minimisation

    Directory of Open Access Journals (Sweden)

    Philipp eSchwartenbeck

    2013-10-01

    Full Text Available This paper reviews recent developments under the free energy principle that introduce a normative perspective on classical economic (utilitarian decision-making based on (active Bayesian inference. It has been suggested that the free energy principle precludes novelty and complexity, because it assumes that biological systems – like ourselves - try to minimise the long-term average of surprise to maintain their homeostasis. However, recent formulations show that minimising surprise leads naturally to concepts such as exploration and novelty bonuses. In this approach, agents infer a policy that minimises surprise by minimising the difference (or relative entropy between likely and desired outcomes, which involves both pursuing the goal-state that has the highest expected utility (often termed ‘exploitation’ and visiting a number of different goal-states (‘exploration’. Crucially, the opportunity to visit new states increases the value of the current state. Casting decision-making problems within a variational framework, therefore, predicts that our behaviour is governed by both the entropy and expected utility of future states. This dissolves any dialectic between minimising surprise and exploration or novelty seeking.

  4. Coral health on reefs near mining sites in New Caledonia.

    Science.gov (United States)

    Heintz, T; Haapkylä, J; Gilbert, A

    2015-07-23

    Coral health data are poorly documented in New Caledonia, particularly from reefs chronically subject to anthropogenic and natural runoff. We investigated patterns of coral disease and non-disease conditions on reefs situated downstream of mining sites off the coast of New Caledonia. Surveys were conducted in March 2013 at 2 locations along the west coast and 2 locations along the east coast of the main island. Only 2 coral diseases were detected: growth anomalies and white syndrome. The most prevalent signs of compromised health at each location were sediment damage and algal overgrowth. These results support earlier findings that sedimentation and turbidity are major threats to in-shore reefs in New Caledonia. The Poritidae-dominated west coast locations were more subject to sediment damage, algal overgrowth and growth anomalies compared to the Acroporidae-dominated east coast locations. If growth form and resistance of coral hosts influence these results, differences in environmental conditions including hydro-dynamism between locations may also contribute to these outputs. Our results highlight the importance of combining coral health surveys with measurements of coral cover when assessing the health status of a reef, as reefs with high coral cover may have a high prevalence of corals demonstrating signs of compromised health.

  5. [Influence of sediments and tungsten traces on the skeletal structure of Pseudodiploria: a reef building scleractinian coral from the Veracruz Reef System National Park, Mexico].

    Science.gov (United States)

    Colín-García, Norberto A; Campos, Jorge E; Tello-Musi, Jose Luis; Arias-González, Jesús E

    2016-09-01

    Coral reefs are under intense conditions of stress caused by the anthropogenic activities in coastal areas and the increase of human population. Water effluents from urban and industrial areas carry large amounts of sediments and pollutants affecting corals populations, inducing bioerosion, increasing diseases and promoting the development of algae that compete for space with corals. In the Veracruz Reef System National Park (VRSNP) coral reefs are strongly affected by human activities carried out in the area. Gallega and Galleguilla reefs are among the most affected by wastewater discharges from the industrial (petrochemical and metallurgical) and urban areas in their vicinity. To assess the potential impact of this contamination on corals in the VRSNP, a chemical composition and morphology study of 76 Pseudodiploria colonies collected in reefs Gallega, Galleguilla, Isla Verde and Isla de Enmedio, was performed. Fragments of ~10 cm2 were collected and boric acid at 0.5 % was used to remove tissue from the skeleton; once clean, the morphology of each sample was determined with a scanning electron microscope (SEM). Subsequently, to test the chemical composition, an energy dispersion spectroscopy of X-ray chemical microanalysis (EDSX) was performed in the SEM. We found that corals from Gallega and Galleguilla reefs, located closer to human populations, presented high levels of tungsten and the skeleton exhibited multiple perforations. In contrast, corals from the farthest offshore reefs (Isla Verde and Isla de Enmedio) exhibited lower levels of tungsten and fewer perforations in their skeleton. These results demonstrated that anthropogenic activities in the NPVRS are affecting corals skeleton, highly damaging and promoting their bioerosion. The presence of traces of tungsten in the skeleton of corals is an evidence of the damage that waste discharges are causing to coral reefs. Discharges of large amounts of contaminants promoted the growth of harmful species that

  6. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages.

    Directory of Open Access Journals (Sweden)

    Zarinah Waheed

    Full Text Available The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39, Agariciidae (n = 30 and Euphylliidae (n = 15. The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51% and good (38%. Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.

  7. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages.

    Science.gov (United States)

    Waheed, Zarinah; van Mil, Harald G J; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.

  8. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages

    Science.gov (United States)

    Waheed, Zarinah; van Mil, Harald G. J.; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W.

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park. PMID:26719987

  9. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea.

    Science.gov (United States)

    Hasler, Harald; Ott, Jörg A

    2008-10-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world's most dived (>30,000 dives y(-1)). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.

  10. Habitat degradation negatively affects auditory settlement behavior of coral reef fishes.

    Science.gov (United States)

    Gordon, Timothy A C; Harding, Harry R; Wong, Kathryn E; Merchant, Nathan D; Meekan, Mark G; McCormick, Mark I; Radford, Andrew N; Simpson, Stephen D

    2018-05-15

    Coral reefs are increasingly degraded by climate-induced bleaching and storm damage. Reef recovery relies on recruitment of young fishes for the replenishment of functionally important taxa. Acoustic cues guide the orientation, habitat selection, and settlement of many fishes, but these processes may be impaired if degradation alters reef soundscapes. Here, we report spatiotemporally matched evidence of soundscapes altered by degradation from recordings taken before and after recent severe damage on Australia's Great Barrier Reef. Postdegradation soundscapes were an average of 15 dB re 1 µPa quieter and had significantly reduced acoustic complexity, richness, and rates of invertebrate snaps compared with their predegradation equivalents. We then used these matched recordings in complementary light-trap and patch-reef experiments to assess responses of wild fish larvae under natural conditions. We show that postdegradation soundscapes were 8% less attractive to presettlement larvae and resulted in 40% less settlement of juvenile fishes than predegradation soundscapes; postdegradation soundscapes were no more attractive than open-ocean sound. However, our experimental design does not allow an estimate of how much attraction and settlement to isolated postdegradation soundscapes might change compared with isolated predegradation soundscapes. Reductions in attraction and settlement were qualitatively similar across and within all trophic guilds and taxonomic groups analyzed. These patterns may lead to declines in fish populations, exacerbating degradation. Acoustic changes might therefore trigger a feedback loop that could impair reef resilience. To understand fully the recovery potential of coral reefs, we must learn to listen. Copyright © 2018 the Author(s). Published by PNAS.

  11. Coral bleaching, hurricane damage, and benthic cover on coral reefs in St. John, U.S. Virgin Islands: A comparison of surveys with the chain transect method and videography

    Science.gov (United States)

    Rogers, C.S.; Miller, J.

    2001-01-01

    The linear chain transect method and videography were used to quantify the percent cover by corals, macroalgae, gorgonians, other living organisms, and substrate along permanent transects on two fringing reefs off St. John. Both methods were used simultaneously on Lameshur reef in November 1998, and on Newfound reef in March and October 1998. Hurricane Georges passed over St. John in September 1998, and a severe coral bleaching episode began the same month. Both methods gave remarkably similar values for coral cover, while the video method gave consistently higher values for gorgonians and macroalgae. The most dramatic difference was in the quantification of bleaching. At Newfound, the chain method indicated 13.4% (SD = 14.1) of the coral tissues were bleached and the video method, 43.4% (SD = 13.0). Corresponding values at Lameshur were 18.1% (SD = 22.3) and 46.5% (SD = 13.3). Although hurricane damage was conspicuous at Newfound reef, neither method showed significant changes in coral cover or other categories as a result of the storm.

  12. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery.

    Directory of Open Access Journals (Sweden)

    Guillermo Diaz-Pulido

    Full Text Available Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance.In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata, colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated.These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.

  13. Benthic community structure on coral reefs exposed to intensive recreational snorkeling.

    Directory of Open Access Journals (Sweden)

    Bobbie Renfro

    Full Text Available Chronic anthropogenic disturbances on coral reefs in the form of overfishing and pollution can shift benthic community composition away from stony corals and toward macroalgae. The use of reefs for recreational snorkeling and diving potentially can lead to similar ecological impacts if not well-managed, but impacts of snorkeling on benthic organisms are not well understood. We quantified variation in benthic community structure along a gradient of snorkeling frequency in an intensively-visited portion of the Mesoamerican Barrier Reef. We determined rates of snorkeling in 6 water sections and rates of beach visitation in 4 adjacent land sections at Akumal Bay, Mexico. For each in-water section at 1-3 m depth, we also assessed the percent cover of benthic organisms including taxa of stony corals and macroalgae. Rates of recreational snorkeling varied from low in the southwestern to very high (>1000 snorkelers d-1 in the northeastern sections of the bay. Stony coral cover decreased and macroalgal cover increased significantly with levels of snorkeling, while trends varied among taxa for other organisms such as gorgonians, fire corals, and sea urchins. We conclude that benthic organisms appear to exhibit taxon-specific variation with levels of recreational snorkeling. To prevent further degradation, we recommend limitation of snorkeler visitation rates, coupled with visitor education and in-water guides to reduce reef-damaging behaviors by snorkelers in high-use areas. These types of management activities, integrated with reef monitoring and subsequent readjustment of management, have the potential to reverse the damage potentially inflicted on coral reefs by the expansion of reef-based recreational snorkeling.

  14. Water Quality Standards for Coral Reef Protection

    Science.gov (United States)

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  15. Snorkelling and trampling in shallow-water fringing reefs: Risk assessment and proposed management strategy

    Science.gov (United States)

    Hannak, Judith S.; Kompatscher, Sarah; Stachowitsch, Michael; Herler, Jürgen

    2011-01-01

    Shallow reefs (reef flats tourism that includes swimmers, snorkellers and reef walkers but have largely been neglected in past studies. We selected a fringing reef along the lagoon of Dahab (Sinai, Egypt) as a model for a management strategy. Point-intercept line transects were used to determine substrate composition, coral community and condition, and the coral damage index (CDI) was applied. Approximately 84% of the coral colonies showed signs of damage such as breakage, partial mortality or algal overgrowth, especially affecting the most frequent coral genus Acropora. Questionnaires were used to determine the visitors’ socio-economic background and personal attitudes regarding snorkelling, SCUBA-diving and interest in visiting a prospective snorkelling trail. Experiencing nature (97%) was by far the strongest motivation, and interest in further education about reef ecology and skill training was high. Less experienced snorkellers and divers – the target group for further education and skill training – were those most prepared to financially support such a trail. We therefore recommend a guided underwater snorkelling trail and restricting recreational use to a less sensitive ‘ecotourism zone’ while protecting the shallow reef flat. Artificial structures can complete the trail and offer the opportunity to snorkel over deeper areas at unfavourable tide or wind conditions. This approach provides a strategy for the management and conservation of shallow-water reefs, which are facing increasing human impact here and elsewhere. PMID:21708420

  16. New protection initiatives announced for coral reefs

    Science.gov (United States)

    Showstack, Randy

    Off the coasts of some of the South Pacific's most idyllic-sounding atolls, Austin Bowden-Kerby has seen first-hand the heavy damage to coral reefs from dynamite and cyanide fishing. For instance, while snorkeling near Chuuk, an island in Micronesia, he has observed craters and rubble beds of coral, which locals have told him date to World War II ordnance.A marine biologist and project scientist for the Coral Gardens Initiative of the Foundation for the Peoples of the South Pacific, Bowden-Kerby has also identified what he says are some public health effects related to destroyed coral reefs and their dying fisheries. These problems include protein and vitamin A deficiency and blindness, all of which may—in some instances—be linked to poor nutrition resulting from lower reef fish consumption by islanders, according to Bowden-Kerby.

  17. Using reefcheck monitoring database to develop the coral reef index of biological integrity

    DEFF Research Database (Denmark)

    Nguyen, Hai Yen T.; Pedersen, Ole; Ikejima, Kou

    2009-01-01

    The coral reef indices of biological integrity was constituted based on the reef check monitoring data. Seventy six minimally disturbed sites and 72 maximallv disturbed sites in shallow water and 39 minimally disturbed sites and 37 maximally disturbed sites in deep water were classified based...... on the high-end and low-end percentages and ratios of hard coral, dead coral and fieshy algae. A total of 52 candidate metrics was identified and compiled, Eight and four metrics were finally selected to constitute the shallow and deep water coral reef indices respectively. The rating curve was applied.......05) and coral damaged by other factors -0.283 (pcoral reef indices were sensitive responses to stressors and can be capable to use as the coral reef biological monitoring tool....

  18. Snorkelling and trampling in shallow-water fringing reefs: risk assessment and proposed management strategy.

    Science.gov (United States)

    Hannak, Judith S; Kompatscher, Sarah; Stachowitsch, Michael; Herler, Jürgen

    2011-10-01

    Shallow reefs (reef flats impacted by growing tourism that includes swimmers, snorkellers and reef walkers but have largely been neglected in past studies. We selected a fringing reef along the lagoon of Dahab (Sinai, Egypt) as a model for a management strategy. Point-intercept line transects were used to determine substrate composition, coral community and condition, and the coral damage index (CDI) was applied. Approximately 84% of the coral colonies showed signs of damage such as breakage, partial mortality or algal overgrowth, especially affecting the most frequent coral genus Acropora. Questionnaires were used to determine the visitors' socio-economic background and personal attitudes regarding snorkelling, SCUBA-diving and interest in visiting a prospective snorkelling trail. Experiencing nature (97%) was by far the strongest motivation, and interest in further education about reef ecology and skill training was high. Less experienced snorkellers and divers--the target group for further education and skill training--were those most prepared to financially support such a trail. We therefore recommend a guided underwater snorkelling trail and restricting recreational use to a less sensitive 'ecotourism zone' while protecting the shallow reef flat. Artificial structures can complete the trail and offer the opportunity to snorkel over deeper areas at unfavourable tide or wind conditions. This approach provides a strategy for the management and conservation of shallow-water reefs, which are facing increasing human impact here and elsewhere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Hurricanes, coral reefs and rainforests: resistance, ruin and recovery in the Caribbean

    Science.gov (United States)

    Lugo, Ariel E.; Rogers, Caroline S.; Nixon, Scott W.

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some reefs from fully developed hurricane waves. While storms may produce dramatic local reef damage, they appear to have little impact on the ability of coral reefs to provide food or habitat for fish and other animals. Rainforests experience an enormous increase in wind energy during hurricanes with dramatic structural changes in the vegetation. The resulting changes in forest microclimate are larger than those on reefs and the loss of fruit, leaves, cover, and microclimate has a great impact on animal populations. Recovery of many aspects of rainforest structure and function is rapid, though there may be long-term changes in species composition. While resistance and repair have maintained reefs and rainforests in the past, human impacts may threaten their ability to survive.

  20. Minimising losses to predation during microalgae cultivation

    OpenAIRE

    Flynn, Kevin J.; Kenny, Philip; Mitra, Aditee

    2017-01-01

    We explore approaches to minimise impacts of zooplanktonic pests upon commercial microalgal crops using system dynamics models to describe algal growth controlled by light and nutrient availability and zooplankton growth controlled by crop abundance and nutritional quality. Losses of microalgal crops are minimised when their growth is fastest and, in contrast, also when growing slowly under conditions of nutrient exhaustion. In many culture systems, however, dwindling light availability due t...

  1. Storm-generated coral fragments - A viable source of transplants for reef rehabilitation

    Science.gov (United States)

    Garrison, V.; Ward, G.

    2008-01-01

    Coral reefs throughout the world have been damaged by storms, diseases, coral predators, temperature anomalies, and human activities. During the past three decades, recovery has been limited and patchy. Although a damaged coral reef cannot be restored to its original condition, interest in reef restoration is increasing. In a pilot project in the Caribbean (US Virgin Islands), storm-produced fragments of Acropora palmata, A. cervicornis, and Porites porites were collected from donor reefs and transplanted to nearby degraded reefs. Sixty coral fragments were attached to dead-coral substrate (usually A. palmata skeletons), at similar depths from which they had been collected (1-3.5 m), using nylon cable ties. Seventy-five intact colonies were designated as controls. Study colonies were assessed at 6-month intervals for 2 years (1999-2001) and annually thereafter (through 2004). One-fourth of the 135 colonies and fragments monitored were alive at the conclusion of the 5-year study. Survival of control and transplanted A. cervicornis and P. porites was very low (median survival 2.4 and 1.8 years, respectively), with no significant differences between transplant and control colonies. Site and depth did not contribute significantly to A. palmata colony survival, but colony size and transplant/control status did. Probability of survival increased with colony size. Median survival for A. palmata was 1.3 years for transplant and 4.3 years for natural colonies when not controlled for size. A. palmata was the only viable candidate for reef rehabilitation. Storm swells were the primary cause of mortality.

  2. Handbook on Coral Reef Impacts: Avoidance, Minimization, Compensatory Mitigation, and Restoration

    Science.gov (United States)

    This Handbook provides a general summary of current avoidance, minimization, compensatory mitigation, and restoration strategies that may help address physical damage resulting from direct adverse impacts to coral reefs.

  3. Artificial reefs and reef restoration in the Laurentian Great Lakes

    Science.gov (United States)

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  4. Digital reef rugosity estimates coral reef habitat complexity.

    Science.gov (United States)

    Dustan, Phillip; Doherty, Orla; Pardede, Shinta

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity.

  5. Diseases of corals with particular reference to Indian reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Raghukumar, C.

    Diseases are one of the factors that change the structure and functioning of coral-reef communities as they cause irreversible damage to the corals Reports on coral diseases describe the etiological agents responsible for the disease and in a few...

  6. Projecting of wave height and water level on reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    Science.gov (United States)

    Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang

    2018-03-01

    Tropical cyclones (TCs) and sea level rise (SLR) cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7-11.0 m; significant wave period at the outer ocean: SWPo = 13-15 s) and SLR (0.24-0.98 m). To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr) will increase from 1.05-1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs) will increase from 0.86-2.10 m at present to 1.19-3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at ˜ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of costal damages. Our results showed that a healthy reef

  7. Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns.

    Science.gov (United States)

    Williams, Gareth J; Smith, Jennifer E; Conklin, Eric J; Gove, Jamison M; Sala, Enric; Sandin, Stuart A

    2013-01-01

    Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54-86% cover), namely hard corals (20-74%) and crustose coralline algae (CCA) (10-36%). While turf algae were relatively common at both locations (8-22%), larger fleshy macroalgae were virtually absent at Kingman (wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of coral in localized shelter. In contrast, the cover of turf algae at Kingman was positively related to wave energy, reflecting their ability to rapidly colonize newly available space. No significant patterns with wave energy were observed on Palmyra's forereef, suggesting that a more detailed model is required to study biophysical coupling there. Kingman, Palmyra, and other remote oceanic reefs provide interesting case studies to explore biophysical influences on benthic ecology and dynamics.

  8. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    Science.gov (United States)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  9. Linking Ecological and Perceptual Assessments for Environmental Management: a Coral Reef Case Study

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Dinsdale

    2009-12-01

    Full Text Available Integrating information from a range of community members in environmental management provides a more complete assessment of the problem and a diversification of management options, but is difficult to achieve. To investigate the relationship between different environmental interpretations, I compared three distinct measures of anchor damage on coral reefs: ecological measures, perceptual meanings, and subjective health judgments. The ecological measures identified an increase in the number of overturned corals and a reduction in coral cover, the perceptual meanings identified a loss of visual quality, and the health judgments identified a reduction in the health of the coral reef sites associated with high levels of anchoring. Combining the perceptual meanings and health judgments identified that the judgment of environmental health was a key feature that both scientific and lay participants used to describe the environment. Some participants in the survey were familiar with the coral reef environment, and others were not. However, they provided consistent judgment of a healthy coral reef, suggesting that these judgments were not linked to present-day experiences. By combining subjective judgments and ecological measures, the point at which the environment is deemed to lose visual quality was identified; for these coral reefs, if the level of damage rose above 10.3% and the cover of branching corals dropped below 17.1%, the reefs were described as unhealthy. Therefore, by combining the information, a management agency can involve the community in identifying when remedial action is required or when management policies are effectively maintaining a healthy ecosystem.

  10. EOWD-Eco Open Water Diver- New Divers License needed? Effect of Intensive SCUBA Diving on Fringing Reefs of the Northern Red Sea

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald

    2006-01-01

    Intensive recreational SCUBA diving threatens coral reef diversity and health [1]. Two anthropogenic factors contributing to coral reef decline are sedimentation [4] and damage from snorklers and SCUBA divers [1]. Physical contact of divers (fins, hands, equipment) and increased sedimentation...... are two major effects diredtly caused by SCUBA diving. Diver damage varies depending on the growth form of corals present. Branching corals appear to sustain most of the breaks although they are most affected [5]. As coral reef tourism continues to grow, the need to quantify, manage and mitigate...

  11. Generalised Multi-sequence Shift-Register Synthesis using Module Minimisation

    DEFF Research Database (Denmark)

    Nielsen, Johan Sebastian Rosenkilde

    2013-01-01

    We show how to solve a generalised version of the Multi-sequence Linear Feedback Shift-Register (MLFSR) problem using minimisation of free modules over F[x]. We show how two existing algorithms for minimising such modules run particularly fast on these instances. Furthermore, we show how one...

  12. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-01-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  13. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-02-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  14. Projecting of wave height and water level on reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    Directory of Open Access Journals (Sweden)

    C. Hongo

    2018-03-01

    Full Text Available Tropical cyclones (TCs and sea level rise (SLR cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7–11.0 m; significant wave period at the outer ocean: SWPo = 13–15 s and SLR (0.24–0.98 m. To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr will increase from 1.05–1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs will increase from 0.86–2.10 m at present to 1.19–3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at  ∼ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of

  15. Black reefs: iron-induced phase shifts on coral reefs.

    Science.gov (United States)

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-03-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km(2)). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions.

  16. Microbiological surveillance and antimicrobial stewardship minimise ...

    African Journals Online (AJOL)

    Microbiological surveillance and antimicrobial stewardship minimise the need for ultrabroad-spectrum combination therapy for treatment of nosocomial infections in a trauma intensive care unit: An audit of an evidence-based empiric antimicrobial policy.

  17. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Jennie Mallela

    Full Text Available Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs.

  18. Community Structure Of Coral Reefs In Saebus Island, Sumenep District, East Java

    Science.gov (United States)

    Rizmaadi, Mada; Riter, Johannes; Fatimah, Siti; Rifaldi, Riyan; Yoga, Arditho; Ramadhan, Fikri; Ambariyanto, Ambariyanto

    2018-02-01

    Increasing degradation coral reefs ecosystem has created many concerns. Reduction of this damage can only be done with good and proper management of coral reef ecosystem based on existing condition. The condition of coral reef ecosystem can be determined by assessing its community structure. This study investigates community structure of coral reef ecosystems around Saebus Island, Sumenep District, East Java, by using satellite imagery analysis and field observations. Satellite imagery analysis by Lyzenga methods was used to determine the observation stations and substrate distribution. Field observations were done by using Line Intercept Transect method at 4 stations, at the depth of 3 and 10 meters. The results showed that the percentage of coral reef coverage at the depth of 3 and 10 meters were 64.36% and 59.29%, respectively, and included in fine coverage category. This study found in total 25 genera from 13 families of corals at all stations. The most common species found were Acropora, Porites, and Pocillopora, while the least common species were Favites and Montastrea. Average value of Diversity, Uniformity and Dominancy indices were 2.94, 0.8 and 0.18 which include as medium, high, and low category, respectively. These results suggest that coral reef ecosystems around Saebus Island is in a good condition.

  19. Tropical storm off Myanmar coast sweeps reefs in Ritchie's Archipelago, Andaman

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnan, P.; Grinson-George, G.; Vikas, N.; Titus-Immanuel, T.; Goutham-Bharathi, M.P.; Anand, A; VinodKumar, K.; SenthilKumar, S.

    The reefs in some islands of Andaman and Nicobar suffered severe damage following a tropical storm in the Bay of Bengal off Myanmar coast during 13-17 March 2011. Surveys were conducted at eight sites in Andaman, of which five were located...

  20. Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa

    Science.gov (United States)

    McAdoo, Brian G.; Ah-Leong, Joyce Samuelu; Bell, Lui; Ifopo, Pulea; Ward, Juney; Lovell, Edward; Skelton, Posa

    2011-07-01

    The coral reef bordering the coastline of Samoa affected by the 29 September 2009 tsunami provides a variety of ecosystem services — from nurseries for fisheries and inshore source of food for local communities, to aesthetics for tourists, and the width of the lagoon may have been a factor in reducing the onshore wave height. To understand the complex interactions between the onshore human population and the offshore coral, we formed an interdisciplinary survey team to document the effects the tsunami had on the nearshore coral reef, and how these changes might affect local inhabitants. The scale of reef damage varied from severe, where piles of freshly-killed coral fragments and mortality were present, to areas that exhibited little impact, despite being overrun by the tsunami. We found that many coral colonies were impacted by tsunami-entrained coral debris, which had been ripped up and deposited on the fore reef by repeated cyclones and storm waves. In other places, large surface area tabular coral sustained damage as the tsunami velocity increased as it was funneled through channels. Areas that lacked debris entrained by the waves as well as areas in the lee of islands came through relatively unscathed, with the exception of the delicate corals that lived on a sandy substrate. In the lagoon on the south coast with its steep topography, coral colonies were damaged by tsunami-generated debris from onshore entrained in the backwash. Despite the potential for severe tsunami-related damage, there were no noticeable decreases in live coral cover between successive surveys at two locations, although algal cover was higher with the increased nutrients mobilized by the tsunami. While there was an immediate decrease in fish takes in the month following the tsunami, when supporting services were likely impacted, both volume and income have rapidly increased to pre-tsunami levels. Long-term monitoring should be implemented to determine if nursery services were affected.

  1. Project O.R.B (Operation Reef Ball): Creating Artificial Reefs, Educating the Community

    Science.gov (United States)

    Phipps, A.

    2012-04-01

    The Project O.R.B. (Operation Reef Ball) team at South Plantation High School's Everglades Restoration & Environmental Science Magnet Program is trying to help our ailing south Florida coral reefs by constructing, deploying, and monitoring designed artificial reefs. Students partnered with the Reef Ball Foundation, local concrete companies, state parks, Girl Scouts, Sea Scouts, local universities and environmental agencies to construct concrete reef balls, each weighing approximately 500 lbs (227 kg). Students then deployed two artificial reefs consisting of over 30 concrete reef balls in two sites previously permitted for artificial reef deployment. One artificial reef was placed approximately 1.5 miles (2.4 km) offshore of Golden Beach in Miami-Dade County with the assistance of Florida Atlantic University and their research vessel. A twin reef was deployed at the mouth of the river in Oleta River State Park in Miami. Monitoring and maintenance of the sites is ongoing with semi-annual reports due to the Reef Ball Foundation and DERM (Department of Environmental Resource Management) of Miami-Dade County. A second goal of Project O.R.B. is aligned with the Florida Local Action Strategy, the Southeast Florida Coral Reef Initiative, and the U.S. Coral Reef Task Force, all of which point out the importance of awareness and education as key components to the health of our coral reefs. Project O.R.B. team members developed and published an activity book targeting elementary school students. Outreach events incorporate cascade learning where high school students teach elementary and middle school students about various aspects of coral reefs through interactive "edu-tainment" modules. Attendees learn about water sampling, salinity, beach erosion, surface runoff, water cycle, ocean zones, anatomy of coral, human impact on corals, and characteristics of a well-designed artificial reef. Middle school students snorkel on the artificial reef to witness first-hand the success

  2. Effects of trap fishing on coral reefs and associated habitats in the Florida Keys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We conducted surveys of trap distributions, targeted habitats, trap damage to coral reefs and associated habitats, and spatial/temporal distribution of catches....

  3. Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef

    Science.gov (United States)

    Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.

    2014-10-01

    Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.

  4. Accretion history of mid-Holocene coral reefs from the southeast Florida continental reef tract, USA

    Science.gov (United States)

    Stathakopoulos, A.; Riegl, B. M.

    2015-03-01

    Sixteen new coral reef cores were collected to better understand the accretion history and composition of submerged relict reefs offshore of continental southeast (SE) Florida. Coral radiometric ages from three sites on the shallow inner reef indicate accretion initiated by 8,050 Cal BP and terminated by 5,640 Cal BP. The reef accreted up to 3.75 m of vertical framework with accretion rates that averaged 2.53 m kyr-1. The reef was composed of a nearly even mixture of Acropora palmata and massive corals. In many cases, cores show an upward transition from massives to A. palmata and may indicate local dominance by this species prior to reef demise. Quantitative macroscopic analyses of reef clasts for various taphonomic and diagenetic features did not correlate well with depth/environmental-related trends established in other studies. The mixed coral framestone reef lacks a classical Caribbean reef zonation and is best described as an immature reef and/or a series of fused patch reefs; a pattern that is evident in both cores and reef morphology. This is in stark contrast to the older and deeper outer reef of the SE Florida continental reef tract. Accretion of the outer reef lasted from 10,695-8,000 Cal BP and resulted in a larger and better developed structure that achieved a distinct reef zonation. The discrepancies in overall reef morphology and size as well as the causes of reef terminations remain elusive without further study, yet they likely point to different climatic/environmental conditions during their respective accretion histories.

  5. Effects of trap fishing on coral reefs and associated habitats in the US Caribbean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are conducting surveys of trap distributions, targeted habitats, trap damage to coral reefs and associated habitats, and spatial/temporal distribution of catches....

  6. The demise of a major Acropora palmata bank-barrier reef off the southeast coast of Barbados, West Indies

    Science.gov (United States)

    MacIntyre, I. G.; Glynn, P. W.; Toscano, M. A.

    2007-12-01

    Formerly attributed to human activity, the demise of a bank-barrier reef off southeastern Barbados known as Cobbler’s Reef is now thought to be largely the result of late Holocene, millennial-scale storm damage. Eleven surface samples of the reef crest coral Acropora palmata from nine sites along its 15-km length plot above the western Atlantic sea-level curve from 3,000 to 4,500 cal years ago (calibrated, calendar 14C years). These elevated clusters suggest that the reef complex suffered extensive storm damage during this period. The constant heavy wave action typical of this area and consequent low herbivory maintain conditions favoring algal growth, thereby limiting the reestablishment of post-storm reef framework. Site descriptions and detailed line surveys show a surface now composed mainly of reworked fragments of A. palmata covered with algal turf, macroalgae and crustose coralline algae. The reef contains no live A. palmata and only a few scattered coral colonies consisting primarily of Diploria spp . and Porites astreoides, along with the hydrocoral Millepora complanata. A few in situ framework dates plot at expected depths for normal coral growth below the sea-level curve during and after the period of intense storm activity. The most recent of these in situ samples are 320 and 400 cal years old. Corals of this late period likely succumbed to high turbidity associated with land clearance for sugarcane agriculture in the mid-1600s.

  7. Topographical features of physiographic unit borders on reef flat in fringing reefs

    OpenAIRE

    Nakai, Tatsuo

    2007-01-01

    In coral reef ecosystem spatial structure of 10^1-10^3m scale provide very important aspect in coral reef conservation. Nakai (2007) showed that physiographic unit (PGU) could be set as well as zonation on reef flat of fringing reef. The borders of PGUs delimiting it from the open sea or an adjacent PGU are constituted by landforms such as reef crest or channels. In this article the landforms becoming the borders of PGUs were discussed and the PGU property was clarified.

  8. Say what? Coral reef sounds as indicators of community assemblages and reef conditions

    Science.gov (United States)

    Mooney, T. A.; Kaplan, M. B.

    2016-02-01

    Coral reefs host some of the highest diversity of life on the planet. Unfortunately, reef health and biodiversity is declining or is threatened as a result of climate change and human influences. Tracking these changes is necessary for effective resource management, yet estimating marine biodiversity and tracking trends in ecosystem health is a challenging and expensive task, especially in many pristine reefs which are remote and difficult to access. Many fishes, mammals and invertebrates make sound. These sounds are reflective of a number of vital biological processes and are a cue for settling reef larvae. Biological sounds may be a means to quantify ecosystem health and biodiversity, however the relationship between coral reef soundscapes and the actual taxa present remains largely unknown. This study presents a comparative evaluation of the soundscape of multiple reefs, naturally differing in benthic cover and fish diversity, in the U.S. Virgin Islands National Park. Using multiple recorders per reef we characterized spacio-temporal variation in biological sound production within and among reefs. Analyses of sounds recorded over 4 summer months indicated diel trends in both fish and snapping shrimp acoustic frequency bands with crepuscular peaks at all reefs. There were small but statistically significant acoustic differences among sites on a given reef raising the possibility of potentially localized acoustic habitats. The strength of diel trends in lower, fish-frequency bands were correlated with coral cover and fish density, yet no such relationship was found with shrimp sounds suggesting that fish sounds may be of higher relevance to tracking certain coral reef conditions. These findings indicate that, in spite of considerable variability within reef soundscapes, diel trends in low-frequency sound production reflect reef community assemblages. Further, monitoring soundscapes may be an efficient means of establishing and monitoring reef conditions.

  9. Potential impact of a seawater flue gas desulfurisation (SWFGD) effluent on coral reef communities

    OpenAIRE

    Bakke, T.

    1999-01-01

    A basis of available literature information there is little reason to expect that effluent from an SWFGD planned at Yanby, Saudi Arabia, will cause any damage to local coral reef formations, the nearest being about 3.5 km away. The corals may over time accumulate nicel and vanadium from the effluent, but the predicted moderate metal levels in the outfall, and the mixing of the outfall water with seawater before the reef is reached, suggest that such accumulation will be modest. Comparison of ...

  10. Niche partitioning of feeding microhabitats produces a unique function for herbivorous rabbitfishes (Perciformes, Siganidae) on coral reefs

    Science.gov (United States)

    Fox, R. J.; Bellwood, D. R.

    2013-03-01

    Niche theory predicts that coexisting species minimise competition by evolving morphological or behavioural specialisations that allow them to spread out along resource axes such as space, diet and temporal activity. These specialisations define how a species interacts with its environment and, by extension, determine its functional role. Here, we examine the feeding niche of three species of coral reef-dwelling rabbitfishes (Siganidae, Siganus). By comparing aspects of their feeding behaviour (bite location, bite rate, foraging distance) with that of representative species from two other abundant herbivorous fish families, the parrotfishes (Labridae, Scarus) and surgeonfishes (Acanthuridae, Acanthurus), we examine whether rabbitfishes have a feeding niche distinct from other members of the herbivore guild. Measurements of the penetration of the fishes' snouts and bodies into reef concavities when feeding revealed that rabbitfish fed to a greater degree from reef crevices and interstices than other herbivores. There was just a 40 % overlap in the penetration-depth niche between rabbitfish and surgeonfish and a 45 % overlap between rabbitfish and parrotfish, compared with the almost complete niche overlap (95 %) recorded for parrotfish and surgeonfish along this spatial niche axis. Aspects of the morphology of rabbitfish which may contribute to this niche segregation include a comparatively longer, narrower snout and narrower head. Our results suggest that sympatric coexistence of rabbitfish and other reef herbivores is facilitated by segregation along a spatial (and potentially dietary) axis. This segregation results in a unique functional role for rabbitfishes among roving herbivores that of "crevice-browser": a group that specifically feeds on crevice-dwelling algal or benthic organisms. This functional trait may have implications for reef ecosystem processes in terms of controlling the successional development of crevice-based algal communities, reducing their

  11. Coral recovery may not herald the return of fishes on damaged coral reefs

    KAUST Repository

    Bellwood, David R.; Baird, Andrew Hamilton; Depczynski, Martial R.; Gonzá lez-Cabello, Alonso; Hoey, Andrew; Lefé vre, Carine D.; Tanner, Jennifer K.

    2012-01-01

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals. © 2012 Springer-Verlag.

  12. Coral recovery may not herald the return of fishes on damaged coral reefs

    KAUST Repository

    Bellwood, David R.

    2012-03-25

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals. © 2012 Springer-Verlag.

  13. Relay self interference minimisation using tapped filter

    KAUST Repository

    Jazzar, Saleh

    2013-05-01

    In this paper we introduce a self interference (SI) estimation and minimisation technique for amplify and forward relays. Relays are used to help forward signals between a transmitter and a receiver. This helps increase the signal coverage and reduce the required transmitted signal power. One problem that faces relays communications is the leaked signal from the relay\\'s output to its input. This will cause an SI problem where the new received signal at the relay\\'s input will be added with the unwanted leaked signal from the relay\\'s output. A Solution is proposed in this paper to estimate and minimise this SI which is based upon using a tapped filter at the destination. To get the optimum weights for this tapped filter, some channel parameters must be estimated first. This is performed blindly at the destination without the need of any training. This channel parameter estimation method is named the blind-self-interference-channel-estimation (BSICE) method. The next step in the proposed solution is to estimate the tapped filter\\'s weights. This is performed by minimising the mean squared error (MSE) at the destination. This proposed method is named the MSE-Optimum Weight (MSE-OW) method. Simulation results are provided in this paper to verify the performance of BSICE and MSE-OW methods. © 2013 IEEE.

  14. Reef Development on Artificial Patch Reefs in Shallow Water of Panjang Island, Central Java

    Science.gov (United States)

    Munasik; Sugiyanto; Sugianto, Denny N.; Sabdono, Agus

    2018-02-01

    Reef restoration methods are generally developed by propagation of coral fragments, coral recruits and provide substrate for coral attachment using artificial reefs (ARs). ARs have been widely applied as a tool for reef restoration in degraded natural reefs. Successful of coral restoration is determined by reef development such as increasing coral biomass, natural of coral recruits and fauna associated. Artificial Patch Reefs (APRs) is designed by combined of artificial reefs and coral transplantation and constructed by modular circular structures in shape, were deployed from small boats by scuba divers, and are suitable near natural reefs for shallow water with low visibility of Panjang Island, Central Java. Branching corals of Acropora aspera, Montipora digitata and Porites cylindrica fragments were transplanted on to each module of two units of artificial patch reefs in different periods. Coral fragments of Acropora evolved high survival and high growth, Porites fragments have moderate survival and low growth, while fragment of Montipora show in low survival and moderate growth. Within 19 to 22 months of APRs deployment, scleractinian corals were recruited on the surface of artificial patch reef substrates. The most recruits abundant was Montastrea, followed by Poritids, Pocilloporids, and Acroporids. We conclude that artificial patch reefs with developed by coral fragments and natural coral recruitment is one of an alternative rehabilitation method in shallow reef with low visibility.

  15. Coral reef soundscapes may not be detectable far from the reef

    Science.gov (United States)

    Kaplan, Maxwell B.; Mooney, T. Aran

    2016-08-01

    Biological sounds produced on coral reefs may provide settlement cues to marine larvae. Sound fields are composed of pressure and particle motion, which is the back and forth movement of acoustic particles. Particle motion (i.e., not pressure) is the relevant acoustic stimulus for many, if not most, marine animals. However, there have been no field measurements of reef particle motion. To address this deficiency, both pressure and particle motion were recorded at a range of distances from one Hawaiian coral reef at dawn and mid-morning on three separate days. Sound pressure attenuated with distance from the reef at dawn. Similar trends were apparent for particle velocity but with considerable variability. In general, average sound levels were low and perhaps too faint to be used as an orientation cue except very close to the reef. However, individual transient sounds that exceeded the mean values, sometimes by up to an order of magnitude, might be detectable far from the reef, depending on the hearing abilities of the larva. If sound is not being used as a long-range cue, it might still be useful for habitat selection or other biological activities within a reef.

  16. Reef odor: a wake up call for navigation in reef fish larvae.

    Directory of Open Access Journals (Sweden)

    Claire B Paris

    Full Text Available The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC, deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.

  17. Comparative Sediment Transport Between Exposed and Reef Protected Beaches Under Different Hurricane Conditions

    Science.gov (United States)

    Miret, D.; Enriquez, C.; Marino-Tapia, I.

    2016-12-01

    Many world coast regions are subjected to tropical cyclone activity, which can cause major damage to beaches and infrastructure on sediment dominated coasts. The Caribbean Sea has on average 4 hurricanes per year, some of them have caused major damage to coastal cities in the past 25 years. For example, Wilma, a major hurricane that hit SE Mexico in October 2005 generated strong erosion at an exposed beach (Cancun), while beach accretion was observed 28 km south at a fringing reef protected beach (Puerto Morelos). Hurricanes with similar intensity and trajectory but different moving speeds have been reported to cause a different morphological response. The present study analyses the morphodynamic response to the hydrodynamic conditions of exposed and reef protected beaches, generated by hurricanes with similar intensities but different trajectories and moving speeds. A non-stationary Delft3D Wave model is used to generate large scale wind swell conditions and local sea wind states and coupled with Delft3D Flow model to study the connection between the continental shelf and surf zones exchanges. The model is validated with hydrodynamic data gathered during Wilma, and morphological conditions measured before and after the event. Preliminary results show that erosion appears at the exposed beach and a predominant exchange between north and south dominates the shelf sediment transport (figure 1). Onshore driven flows over the reef crest input sediment in the reef protected beach. It is expected that for a same track but faster moving speed, southward sediment transport will have less time to develop and accretion at the reef protected site would be less evident or inexistent. The study can be used as a prediction tool for shelf scale sediment transport exchange driven by hurricanes.

  18. NOAA Coral Reef Watch Larval Connectivity, Florida Reef Tract

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate change threatens even the best-protected and most remote reefs. Reef recovery following catastrophic disturbance usually requires disturbed sites be reseeded...

  19. Predation by feeding aggregations of Drupella spp. inhibits the recovery of reefs damaged by a mass bleaching event

    Science.gov (United States)

    Bruckner, Andrew W.; Coward, Georgia; Bimson, Kathyrn; Rattanawongwan, Tipwimon

    2017-12-01

    High densities of two corallivorous gastropods, Drupella cornus and D. rugosa, may delay the recovery of coral reefs impacted by mass bleaching events by aggregating on the remaining corals. Following severe bleaching in April/May 2016 that resulted in the loss of up to 80% of the living coral cover from reefs in South Malé, Maldives, aggregations of up to 250 Drupella per coral were recorded on surviving colonies. The distribution of snails was not random; larger aggregations were seen on reefs with fewer remaining live corals and also on the largest corals. Branching, digitate and tabular corals, especially species of Acropora and Pocillopora, sustained the highest mortality from the bleaching. Remaining colonies of these taxa exhibited the highest occurrence of snails and the most extensive snail predation, although less-preferred taxa such as Montipora, Porites, Astreopora, Cyphastrea and Pachyseris were also targeted. Drupella also concentrated on broken Acropora branches and overturned colonies; on some reefs, these were the only surviving acroporids, and many of them did not bleach. Continued predation pressure from Drupella may eliminate formerly dominant corals, including genets that are resistant to higher sea water temperatures.

  20. Economic Justification of Minimisation of Immobilisation Funds Invested Into Engineering Enterprise Materials

    Directory of Open Access Journals (Sweden)

    Boyko Valentyna V.

    2014-03-01

    Full Text Available The article improves the mechanism of minimisation of immobilisation funds invested into enterprise materials. Optimisation of this mechanism is achieved through reduction of the difference between fixed (or advanced and actual funds, invested into materials, with consideration of their differentiation and integration in the course of the enterprise operation cycle. The article justifies the necessity of study of immobilisation funds, invested into materials, for their possible minimisation. It offers methods of calculation of ratios of influence of minimisation of funds, invested into materials, upon alteration of the level of their immobilisation and absolute disengagement. It assesses the possibility of use of the proposed ratios both in relative and absolute indicators of immobilisation funds, invested into materials. It shows calculation of the matrix of minimisation of immobilisation funds, invested into materials, and its practical application at engineering enterprises. It underlines that the proposed methodology of calculation of the above said ratios and matrix of minimisation of immobilisation funds, invested into materials, allows determination of possible disengagement of the engaged money funds by an engineering enterprise depending on specific technical and economic conditions.

  1. Effect of severe hurricanes on biorock coral reef restoration projects in Grand Turk, Turks and Caicos Islands.

    Science.gov (United States)

    Wells, Lucy; Perez, Fernando; Hibbert, Marlon; Clerveaux, Luc; Johnson, Jodi; Goreau, Thomas J

    2010-10-01

    Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5 m deep in Grand Turk, at Oasis (October 2006) and at Governor's Beach (November 2007). Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor's Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor's Beach. After hurricanes Hanna and Ike (September 2008) the Governor's Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure). Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas.

  2. Relay self interference minimisation using tapped filter

    KAUST Repository

    Jazzar, Saleh; Al-Naffouri, Tareq Y.

    2013-01-01

    In this paper we introduce a self interference (SI) estimation and minimisation technique for amplify and forward relays. Relays are used to help forward signals between a transmitter and a receiver. This helps increase the signal coverage

  3. Revised paleoenvironmental analysis of the Holocene portion of the Barbados sea-level record: Cobbler's Reef revisited

    Science.gov (United States)

    Toscano, Marguerite A.

    2016-06-01

    Sample elevations corrected for tectonic uplift and assessed relative to local modeled sea levels provide a new perspective on paleoenvironmental history at Cobbler's Reef, Barbados. Previously, 14C-dated surface samples of fragmented Acropora palmata plotted above paleo sea level based on their present (uplifted) elevations, suggesting supratidal rubble deposited during a period of extreme storms (4500-3000 cal BP), precipitating reef demise. At several sites, however, A. palmata persisted, existing until ~370 cal BP. Uplift-corrected A. palmata sample elevations lie below the western Atlantic sea-level curve, and ~2 m below ICE-6G-modeled paleo sea level, under slow rates of sea-level rise, negating the possibility that Cobbler's Reef is a supratidal storm ridge. Most sites show limited age ranges from corals likely damaged/killed on the reef crest, not the mixed ages of rubble ridges, strongly suggesting the reef framework died off in stages over 6500 yr. Reef crest death assemblages invoke multiple paleohistoric causes, from ubiquitous hurricanes to anthropogenic impacts. Comparison of death assemblage ages to dated regional paleotempestological sequences, proxy-based paleotemperatures, recorded hurricanes, tsunamis, European settlement, deforestation, and resulting turbidity, reveals many possible factors inimical to the survival of A. palmata along Cobbler's Reef.

  4. Reefs for the future: Resilience of coral reefs in the main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declining health of coral reef ecosystems led scientists to search for factors that support reef resilience: the ability of reefs to resist and recover from...

  5. The coral reef crisis: the critical importance of<350 ppm CO2.

    Science.gov (United States)

    Veron, J E N; Hoegh-Guldberg, O; Lenton, T M; Lough, J M; Obura, D O; Pearce-Kelly, P; Sheppard, C R C; Spalding, M; Stafford-Smith, M G; Rogers, A D

    2009-10-01

    Temperature-induced mass coral bleaching causing mortality on a wide geographic scale started when atmospheric CO(2) levels exceeded approximately 320 ppm. When CO(2) levels reached approximately 340 ppm, sporadic but highly destructive mass bleaching occurred in most reefs world-wide, often associated with El Niño events. Recovery was dependent on the vulnerability of individual reef areas and on the reef's previous history and resilience. At today's level of approximately 387 ppm, allowing a lag-time of 10 years for sea temperatures to respond, most reefs world-wide are committed to an irreversible decline. Mass bleaching will in future become annual, departing from the 4 to 7 years return-time of El Niño events. Bleaching will be exacerbated by the effects of degraded water-quality and increased severe weather events. In addition, the progressive onset of ocean acidification will cause reduction of coral growth and retardation of the growth of high magnesium calcite-secreting coralline algae. If CO(2) levels are allowed to reach 450 ppm (due to occur by 2030-2040 at the current rates), reefs will be in rapid and terminal decline world-wide from multiple synergies arising from mass bleaching, ocean acidification, and other environmental impacts. Damage to shallow reef communities will become extensive with consequent reduction of biodiversity followed by extinctions. Reefs will cease to be large-scale nursery grounds for fish and will cease to have most of their current value to humanity. There will be knock-on effects to ecosystems associated with reefs, and to other pelagic and benthic ecosystems. Should CO(2) levels reach 600 ppm reefs will be eroding geological structures with populations of surviving biota restricted to refuges. Domino effects will follow, affecting many other marine ecosystems. This is likely to have been the path of great mass extinctions of the past, adding to the case that anthropogenic CO(2) emissions could trigger the Earth's sixth

  6. Waste minimisation in a hard chromiun plating Small Medium Enterprise (SME).

    Science.gov (United States)

    Viguri, J R; Andrés, A; Irabien, A

    2002-01-01

    The high potential of waste stream minimisation in the metal finishing sector justifies specific studies of Small and Medium Enterprises (SME). In this work, the minimisation options of the wastes generated in a hard chromium plating activity have been analysed. The study has been performed in a small job shop company, which works in batch mode with big pieces. A process flowsheet after connecting the unit operations and determining the process inputs (raw and secondary materials) and outputs (waste streams) has been carried out. The main properties, quantity and current management of the waste streams have been shown. The obvious lack of information has been identified and finally the waste minimisation options that could be adopted by the company have been recorded.

  7. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    Science.gov (United States)

    Hochberg, E. J.

    2016-02-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  8. Coral reefs in the Anthropocene.

    Science.gov (United States)

    Hughes, Terry P; Barnes, Michele L; Bellwood, David R; Cinner, Joshua E; Cumming, Graeme S; Jackson, Jeremy B C; Kleypas, Joanie; van de Leemput, Ingrid A; Lough, Janice M; Morrison, Tiffany H; Palumbi, Stephen R; van Nes, Egbert H; Scheffer, Marten

    2017-05-31

    Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.

  9. Does reef architectural complexity influence resource availability for a large reef-dwelling invertebrate?

    Science.gov (United States)

    Lozano-Álvarez, Enrique; Luviano-Aparicio, Nelia; Negrete-Soto, Fernando; Barradas-Ortiz, Cecilia; Aguíñiga-García, Sergio; Morillo-Velarde, Piedad S.; Álvarez-Filip, Lorenzo; Briones-Fourzán, Patricia

    2017-10-01

    In coral reefs, loss of architectural complexity and its associated habitat degradation is expected to affect reef specialists in particular due to changes in resource availability. We explored whether these features could potentially affect populations of a large invertebrate, the spotted spiny lobster Panulirus guttatus, which is an obligate Caribbean coral reef-dweller with a limited home range. We selected two separate large coral reef patches in Puerto Morelos (Mexico) that differed significantly in structural complexity and level of degradation, as assessed via the rugosity index, habitat assessment score, and percent cover of various benthic components. On each reef, we estimated density of P. guttatus and sampled lobsters to analyze their stomach contents, three different condition indices, and stable isotopes (δ15N and δ13C) in muscle. Lobster density did not vary with reef, suggesting that available crevices in the less complex patch still provided adequate refuge to these lobsters. Lobsters consumed many food types, dominated by mollusks and crustaceans, but proportionally more crustaceans (herbivore crabs) in the less complex patch, which had more calcareous macroalgae and algal turf. Lobsters from both reefs had a similar condition (all three indices) and mean δ15N, suggesting a similar quality of diet between reefs related to their opportunistic feeding, but differed in mean δ13C values, reflecting the different carbon sources between reefs and providing indirect evidence of individuals of P. guttatus foraging exclusively over their home reef. Overall, we found no apparent effects of architectural complexity, at least to the degree observed in our less complex patch, on density, condition, or trophic level of P. guttatus.

  10. Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions

    International Nuclear Information System (INIS)

    Suzuki, Atsushi; Kawahata, Hodaka

    2003-01-01

    The seawater CO 2 system and carbon budget were examined in coral reefs of wide variety with respect to topographic types and oceanographic settings in the Indo-Pacific oceans. A system-level net organic-to-inorganic carbon production ratio (ROI) is a master parameter for controlling the carbon cycle in coral reef systems, including their sink/source behavior for atmospheric CO 2 . A reef system with ROI less than approximately 0.6 has a potential for releasing CO 2 . The production ratio, however, is not easy to estimate on a particular reef. Instead, observations planned to detect the offshore-lagoon difference in partial pressure of CO 2 (pCO 2 ) and a graphic approach based on a total alkalinity-dissolved inorganic carbon diagram can reveal system-level performance of the carbon cycle in coral reefs. Surface pCO 2 values in the lagoons of atolls and barrier reefs were consistently higher than those in their offshore waters, showing differences between 6 and 46 atm, together with a depletion in total alkalinity up to 100 mol/kg, indicating predominant carbonate production relative to net organic carbon production. Reef topography, especially residence time of lagoon water, has a secondary effect on the magnitude of the offshore-lagoon pCO 2 difference. Terrestrial influence was recognized in coastal reefs, including the GBR lagoon and a fringing reef of the Ryukyu Islands. High carbon input appears to enhance CO 2 efflux to the atmosphere because of their high dissolved C:P ratios. Coral reefs, in general, act as an alkalinity sink and a potentially CO 2 -releasing site due to carbonate precipitation and land-derived carbon

  11. Effect of severe hurricanes on Biorock Coral Reef Restoration Projects in Grand Turk, Turks and Caicos Islands

    Directory of Open Access Journals (Sweden)

    Lucy Wells

    2010-10-01

    Full Text Available Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5m deep in Grand Turk, at Oasis (October 2006 and at Governor’s Beach (November 2007. Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor’s Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor’s Beach. After hurricanes Hanna and Ike (September 2008 the Governor’s Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure. Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas. Rev. Biol. Trop. 58 (Suppl. 3: 141-149. Epub 2010 October 01.

  12. Book review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico

    Science.gov (United States)

    Zuschin, M.; Hohenegger, J.; Steininger, F.

    2001-09-01

    Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea- Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea- Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora- Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera- Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.

  13. The percentage of coral reef cover in Saonek Kecil Island, Raja Ampat, West Papua

    Science.gov (United States)

    Wiguna, D. A.; Masithah, E. D.; Manan, A.

    2018-04-01

    Raja Ampat archipelago is located in the heart of the world’s coral triangle which is the center of the richest tropical marine biodiversity in the world. The Saonek Kecil Island has a location close to the Waisai Harbour (±2 km of sea routes). The Island that has no inhabitants and has a location close to harbour activities potentially damage coral reefs. This research was conducted by Line Intercept Transect (LIT) method that calculate the length of each colony form of growth (life form) of coral reefs on the line transect which stretched along the 50 metres parallel to the coastline at each station to obtain the percentage cover data, diversity index, uniformity index, and dominance index. The results of research precentage cover of coral reeef in the waters of Small Saonek Island reach 68.80% – 79.30% by category according to the decision of the Minister of State for the Environment number 4 of 2001 about the damage the reefs criteria included in the category of good – very good. As for the value of diversity index (H’) of 0.487 – 0.675 (medium-high), uniformity index (J) 0.437 – 0.606 (medium-high), and dominance index (C) 0.338 – 0.502 (medium-high).

  14. Effects of Great Barrier Reef degradation on recreational reef-trip demand: a contingent behaviour approach

    NARCIS (Netherlands)

    Kragt, M.E.; Roebeling, P.C.; Ruijs, A.J.W.

    2009-01-01

    There is a growing concern that increased nutrient and sediment runoff from river catchments are a potential source of coral reef degradation. Degradation of reefs may affect the number of tourists visiting the reef and, consequently, the economic sectors that rely on healthy reefs for their income

  15. Waste minimisation. Home digestion trials of biodegradable waste

    Energy Technology Data Exchange (ETDEWEB)

    Bench, M.L.; Woodard, R.; Harder, M.K.; Stantzos, N. [Waste and Energy Research Group (WERG), Faculty of Science and Engineering, University of Brighton, East Sussex BN2 4GJ (United Kingdom)

    2005-09-01

    Minimisation of municipal solid waste and diversion from landfill are necessary for the UK to manage waste sustainably and achieve legislative compliance. A survey of householder attitudes and experiences of a trial for minimising household food waste from waste collection in the county of West Sussex, UK is described. The minimisation method used the Green Cone food digester, designed for garden installation. A postal questionnaire was distributed to 1000 householders who had bought a cone during the trial and a total of 433 responses were received. The main reason for people buying the Green Cone had been concerns about waste (88%), with 78% and 67% of respondents, respectively, claiming to have participated in recycling and home composting in the last 30 days. The waste material most frequently put in the digester was cooked food (91%), followed by fruit waste, vegetable matter and bones/meat. Some respondents were using it for garden and animal waste from pets. Most users found the Green Cone performed satisfactorily. Approximately, 60% of respondents had seen a reduction of 25-50% in the amount of waste they normally put out for collection, with analysis showing reported levels of reduction to be significant (p<0.05). Additional weight surveys by householders recorded an average of 2.7kg/(hweek) diverted to the food digester.

  16. Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Kawahata, Hodaka [National Inst. of Advanced Industrial Science and Technology, Ibaraki (Japan). Inst. for Marine Resources and Environment

    2003-04-01

    The seawater CO{sub 2} system and carbon budget were examined in coral reefs of wide variety with respect to topographic types and oceanographic settings in the Indo-Pacific oceans. A system-level net organic-to-inorganic carbon production ratio (ROI) is a master parameter for controlling the carbon cycle in coral reef systems, including their sink/source behavior for atmospheric CO{sub 2}. A reef system with ROI less than approximately 0.6 has a potential for releasing CO{sub 2}. The production ratio, however, is not easy to estimate on a particular reef. Instead, observations planned to detect the offshore-lagoon difference in partial pressure of CO{sub 2} (pCO{sub 2}) and a graphic approach based on a total alkalinity-dissolved inorganic carbon diagram can reveal system-level performance of the carbon cycle in coral reefs. Surface pCO{sub 2} values in the lagoons of atolls and barrier reefs were consistently higher than those in their offshore waters, showing differences between 6 and 46 atm, together with a depletion in total alkalinity up to 100 mol/kg, indicating predominant carbonate production relative to net organic carbon production. Reef topography, especially residence time of lagoon water, has a secondary effect on the magnitude of the offshore-lagoon pCO{sub 2} difference. Terrestrial influence was recognized in coastal reefs, including the GBR lagoon and a fringing reef of the Ryukyu Islands. High carbon input appears to enhance CO{sub 2} efflux to the atmosphere because of their high dissolved C:P ratios. Coral reefs, in general, act as an alkalinity sink and a potentially CO{sub 2}-releasing site due to carbonate precipitation and land-derived carbon.

  17. Minimising losses to predation during microalgae cultivation.

    Science.gov (United States)

    Flynn, Kevin J; Kenny, Philip; Mitra, Aditee

    2017-01-01

    We explore approaches to minimise impacts of zooplanktonic pests upon commercial microalgal crops using system dynamics models to describe algal growth controlled by light and nutrient availability and zooplankton growth controlled by crop abundance and nutritional quality. Losses of microalgal crops are minimised when their growth is fastest and, in contrast, also when growing slowly under conditions of nutrient exhaustion. In many culture systems, however, dwindling light availability due to self-shading in dense suspensions favours slow growth under nutrient sufficiency. Such a situation improves microalgal quality as prey, enhancing zooplankton growth, and leads to rapid crop collapse. Timing of pest entry is important; crop losses are least likely in established, nutrient-exhausted microalgal communities grown for high C-content (e.g. for biofuels). A potentially useful approach is to promote a low level of P-stress that does not adversely affect microalgal growth but which produces a crop that is suboptimal for zooplankton growth.

  18. Attitudes and behaviour towards construction waste minimisation: a comparative analysis between China and the USA.

    Science.gov (United States)

    Liu, Jingkuang; Gong, Enqin; Wang, Dong; Lai, XiaoHong; Zhu, Jian

    2018-05-21

    With the spread of the concept of sustainable development, people have gained awareness about the problem of massive illegal dumping of construction waste. In this research, a questionnaire survey was carried out in the USA and China. The results indicated the following. (1) Workers in both the countries had positive minimisation attitudes, and the attitude of Chinese construction workers was not significantly different from that of American construction workers. Furthermore, their average values were 3.9 and 4.07, respectively. (2) Business owners had a poor understanding of the obligations that should be fulfilled by contractors and construction workers, which greatly reduced (a) construction workers' and contractors' motivation to implement waste minimisation management and (b) the benefit-driven effect. (3) In terms of perceived behavioural control, Chinese construction workers had poorer minimisation technologies and knowledge than American construction workers, and it was very difficult for them to implement construction waste minimisation. The research conclusions and relevant suggestions may be used to improve the construction waste minimisation behaviour and awareness of Chinese people and promote China's construction waste minimisation management.

  19. Black reefs: iron-induced phase shifts on coral reefs

    NARCIS (Netherlands)

    Wegley Kelly, L.; Barott, K.L.; Dinsdale, E.; Friedlander, A.M.; Nosrat, B.; Obura, D.; Sala, E.; Sandin, S.A.; Smith, J.E.; Vermeij, M.J.A.; Williams, G.J.; Willner, D.; Rohwer, F.

    2012-01-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the

  20. Human activities threaten coral reefs

    International Nuclear Information System (INIS)

    Tveitdal, Svein; Bjoerke, Aake

    2002-01-01

    Research indicates that 58 per cent of the coral reefs of the world are threatened by human activities. Pollution and global heating represent some of the threats. Coral reefs just beneath the surface of the sea are very sensitive to temperature changes. Since 1979, mass death of coral reefs has been reported increasingly often. More than 1000 marine species live in the coral reefs, among these are one fourth of all marine species of fish. It is imperative that the coral reefs be preserved, as coastal communities all over the world depend on them as sources of food and as they are the raw materials for important medicines. The article discusses the threats to the coral reefs in general and does not single out any particular energy-related activity as the principal threat. For instance, the El-Nino phenomenon of the Pacific Ocean is probably involved in mass death of coral reefs and in the North Sea large parts of deep-water reefs have been crushed by heavy beam trawlers fishing for bottom fish

  1. A Citizen Science Approach: A Detailed Ecological Assessment of Subtropical Reefs at Point Lookout, Australia.

    Science.gov (United States)

    Roelfsema, Chris; Thurstan, Ruth; Beger, Maria; Dudgeon, Christine; Loder, Jennifer; Kovacs, Eva; Gallo, Michele; Flower, Jason; Gomez Cabrera, K-le; Ortiz, Juan; Lea, Alexandra; Kleine, Diana

    2016-01-01

    Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs.

  2. Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia

    Science.gov (United States)

    Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  3. A Decision Framework to Protect Coral Reefs in Guánica Bay, Puerto Rico

    Science.gov (United States)

    A Watershed Management Plan (WMP) for Guánica Bay, Puerto Rico, was introduced in 2008 by a nonprofit organization, the Center for Watershed Protection, with the intent of protecting coral reefs from damage related to watershed discharges. The plan was initially generated with th...

  4. Agents of coral mortality on reef formations of the Colombian Pacific.

    Science.gov (United States)

    Navas-Camacho, Raúl; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina

    2010-05-01

    The National Monitoring System for Coral Reefs of Colombia (SIMAC) monitors the impact of some of the most important agents of coral tissue loss (bleaching and/or disease) in the Colombian Pacific coral formations since 1998. Physiological bleaching is among the main results of stress in the area. Signs of coral diseases resembling bacterial bleaching such as White Plague and White Band, were observed in Malpelo and Gorgona islands. Damage to the Pacific gorgonian Pacifigorgia spp., similar to those produced by Aspergillosis in Caribbean corals, was detected in Utria Bay. The presence of tumors in colonies of massive corals was also recorded. Even though coral diseases are globally widespread, their occurrence in American Pacific reefs has been poorly documented to date.

  5. Benthic foraminifera baseline assemblages from a coastal nearshore reef complex on the central Great Barrier Reef

    Science.gov (United States)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle

    2016-04-01

    Declining water quality due to river catchment modification since European settlement (c. 1850 A.D.) represents a major threat to the health of coral reefs on Australia's Great Barrier Reef (GBR), particularly for those located in the coastal waters of the GBR's inner-shelf. These nearshore reefs are widely perceived to be most susceptible to declining water quality owing to their close proximity to river point sources. Despite this, nearshore reefs have been relatively poorly studied with the impacts and magnitudes of environmental degradation still remaining unclear. This is largely due to ongoing debates concerning the significance of increased sediment yields against naturally high background sedimentary regimes. Benthic foraminifera are increasingly used as tools for monitoring environmental and ecological change on coral reefs. On the GBR, the majority of studies have focussed on the spatial distributions of contemporary benthic foraminiferal assemblages. While baseline assemblages from other environments (e.g. inshore reefs and mangroves) have been described, very few records exist for nearshore reefs. Here, we present preliminary results from the first palaeoecological study of foraminiferal assemblages of nearshore reefs on the central GBR. Cores were recovered from the nearshore reef complex at Paluma Shoals using percussion techniques. Recovery was 100%, capturing the entire Holocene reef sequence of the selected reef structures. Radiocarbon dating and subsequent age-depth modelling techniques were used to identify reef sequences pre-dating European settlement. Benthic foraminifera assemblages were reconstructed from the identified sequences to establish pre-European ecological baselines with the aim of providing a record of foraminiferal distribution during vertical reef accretion and against which contemporary ecological change may be assessed.

  6. The coral reef of South Moloka'i, Hawai'i - Portrait of a sediment-threatened fringing reef

    Science.gov (United States)

    Field, Michael E.; Cochran, Susan A.; Logan, Joshua; Storlazzi, Curt D.

    2008-01-01

    Moloka‘i, with the most extensive coral reef in the main Hawaiian Islands, is especially sacred to Hina, the Goddess of the Moon. As Hinaalo, she is the Mother of the Hawaiian people; as Hinapuku‘a, she is the Goddess of Fishermen; and in the form Hina‘opuhalako‘a, she is the Goddess who gave birth to coral, coral reefs, and all spiny marine organisms. Interdependence between the reef’s living resources, the people, and their cosmology was the basis for management of Moloka‘i’s coastal waters for over a thousand years.The ancient residents of Moloka‘i built the greatest concentration of fishponds known anywhere, but their mastery of mariculture, something needed now more than ever, was lost after near genocide from exotic Western diseases. Subsequent destruction of the native vegetation for exotic cattle, goats, pigs, sugar cane, and pineapple caused soil erosion and sedimentation on the reef flat. This masterful volume clearly documents that soil washing into the sea is the major threat to the reef today. Abandoned fishponds, choked with sediment, now act as barriers and mud traps, making damage to corals less than it would otherwise would have been.The role of mud and freshwater from land in preventing coral reef growth, clearly articulated in Charles Darwin’s first book, The Structure and Distribution of Coral Reefs, is the major theme of this book. All around the tropics, coral reefs have died from huge increases in terrestrial sedimentation that resulted from destruction of hillside forests for cash-crop agriculture and pastures in the colonial era, especially in Latin America, Asia, and the islands of the Caribbean and Indo-Pacific. It is obvious that one cannot manage the coastal zone as a unit separate from the watersheds that drain into it. Yet there has been surprisingly little comprehensive scientific study of these impacts.In this landmark volume, U.S. Geological Survey researchers and their colleagues have developed and applied a

  7. ASSESSING UV IRRADIANCE IN CARIBBEAN REEF CORAL AND DNA DAMAGE IN THEIR CORAL AND ZOOXANTHELLAE

    Science.gov (United States)

    UV penetration into the water near coral reefs may be increasing as a consequence of global climate change. Calm waters associated with ENSO conditions can enhance stratification that increases the amount of photobleaching of chromophoric dissolved organic matter (CDOM) in surfa...

  8. Soundscapes from a Tropical Eastern Pacific reef and a Caribbean Sea reef

    Science.gov (United States)

    Staaterman, E.; Rice, A. N.; Mann, D. A.; Paris, C. B.

    2013-06-01

    Underwater soundscapes vary due to the abiotic and biological components of the habitat. We quantitatively characterized the acoustic environments of two coral reef habitats, one in the Tropical Eastern Pacific (Panama) and one in the Caribbean (Florida Keys), over 2-day recording durations in July 2011. We examined the frequency distribution, temporal variability, and biological patterns of sound production and found clear differences. The Pacific reef exhibited clear biological patterns and high temporal variability, such as the onset of snapping shrimp noise at night, as well as a 400-Hz daytime band likely produced by damselfish. In contrast, the Caribbean reef had high sound levels in the lowest frequencies, but lacked clear temporal patterns. We suggest that acoustic measures are an important element to include in reef monitoring programs, as the acoustic environment plays an important role in the ecology of reef organisms at multiple life-history stages.

  9. Anticipatory vigilance: A grounded theory study of minimising risk within the perioperative setting.

    Science.gov (United States)

    O'Brien, Brid; Andrews, Tom; Savage, Eileen

    2018-01-01

    To explore and explain how nurses minimise risk in the perioperative setting. Perioperative nurses care for patients who are having surgery or other invasive explorative procedures. Perioperative care is increasingly focused on how to improve patient safety. Safety and risk management is a global priority for health services in reducing risk. Many studies have explored safety within the healthcare settings. However, little is known about how nurses minimise risk in the perioperative setting. Classic grounded theory. Ethical approval was granted for all aspects of the study. Thirty-seven nurses working in 11 different perioperative settings in Ireland were interviewed and 33 hr of nonparticipant observation was undertaken. Concurrent data collection and analysis was undertaken using theoretical sampling. Constant comparative method, coding and memoing and were used to analyse the data. Participants' main concern was how to minimise risk. Participants resolved this through engaging in anticipatory vigilance (core category). This strategy consisted of orchestrating, routinising and momentary adapting. Understanding the strategies of anticipatory vigilance extends and provides an in-depth explanation of how nurses' behaviour ensures that risk is minimised in a complex high-risk perioperative setting. This is the first theory situated in the perioperative area for nurses. This theory provides a guide and understanding for nurses working in the perioperative setting on how to minimise risk. It makes perioperative nursing visible enabling positive patient outcomes. This research suggests the need for training and education in maintaining safety and minimising risk in the perioperative setting. © 2017 John Wiley & Sons Ltd.

  10. Anaesthesia for paediatric patients: Minimising the risk

    African Journals Online (AJOL)

    to paediatric patients need to be offset against the need for optimal utilisation of national ... Risk stratification of paediatric patients for specific procedures in ... support colleagues in smaller district hospitals by means of telephonic advice, the ... techniques that can minimise risk in the paediatric surgical population. S Afr Med ...

  11. Coral Reef Remote Sensing: Helping Managers Protect Reefs in a Changing Climate

    Science.gov (United States)

    Eakin, C.; Liu, G.; Li, J.; Muller-Karger, F. E.; Heron, S. F.; Gledhill, D. K.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Nim, C.; Burgess, T.; Strong, A. E.

    2010-12-01

    Climate change and ocean acidification are already having severe impacts on coral reef ecosystems. Warming oceans have caused corals to bleach, or expel their symbiotic algae (zooxanthellae) with alarming frequency and severity and have contributed to a rise in coral infectious diseases. Ocean acidification is reducing the availability of carbonate ions needed by corals and many other marine organisms to build structural components like skeletons and shells and may already be slowing the coral growth. These two impacts are already killing corals and slowing reef growth, reducing biodiversity and the structure needed to provide crucial ecosystem services. NOAA’s Coral Reef Watch (CRW) uses a combination of satellite data, in situ observations, and models to provide coral reef managers, scientists, and others with information needed to monitor threats to coral reefs. The advance notice provided by remote sensing and models allows resource managers to protect corals, coral reefs, and the services they provide, although managers often encounter barriers to implementation of adaptation strategies. This talk will focus on application of NOAA’s satellite and model-based tools that monitor the risk of mass coral bleaching on a global scale, ocean acidification in the Caribbean, and coral disease outbreaks in selected regions, as well as CRW work to train managers in their use, and barriers to taking action to adapt to climate change. As both anthropogenic CO2 and temperatures will continue to rise, local actions to protect reefs are becoming even more important.

  12. Risk-minimisation in electricity markets

    DEFF Research Database (Denmark)

    Tegner, Martin; Ernstsen, Rune Ramsdal; Skajaa, Anders

    2017-01-01

    This paper analyses risk management of fixed price, unspecified consumption contracts in energy markets. We model the joint dynamics of the spot-price and the consumption of electricity, study expected loss minimisation for different loss measures, and derive optimal static hedge strategies based...... on forward contracts. The strategies are implemented empirically and compared to a benchmark strategy widely used by the industry. On 2012–2014 Nordic market data, the suggested hedges significantly outperform the benchmark: The realised cumulative profit-and-losses are greater for almost every single one...

  13. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Science.gov (United States)

    Gurney, Georgina G; Melbourne-Thomas, Jessica; Geronimo, Rollan C; Aliño, Perry M; Johnson, Craig R

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  14. Modelling Coral Reef Futures to Inform Management: Can Reducing Local-Scale Stressors Conserve Reefs under Climate Change?

    Science.gov (United States)

    Gurney, Georgina G.; Melbourne-Thomas, Jessica; Geronimo, Rollan C.; Aliño, Perry M.; Johnson, Craig R.

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  15. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Directory of Open Access Journals (Sweden)

    Georgina G Gurney

    Full Text Available Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general

  16. Coal ash artificial reef demonstration

    International Nuclear Information System (INIS)

    Livingston, R.J.; Brendel, G.F.; Bruzek, D.A.

    1991-01-01

    This experimental project evaluated the use of coal ash to construct artificial reefs. An artificial reef consisting of approximately 33 tons of cement-stabilized coal ash blocks was constructed in approximately 20 feet of water in the Gulf of Mexico approximately 9.3 miles west of Cedar Key, Florida. The project objectives were: (1) demonstrate that a durable coal ash/cement block can be manufactured by commercial block-making machines for use in artificial reefs, and (2) evaluate the possibility that a physically stable and environmentally acceptable coal ash/cement block reef can be constructed as a means of expanding recreational and commercial fisheries. The reef was constructed in February 1988 and biological surveys were made at monthly intervals from May 1988 to April 1989. The project provided information regarding: Development of an optimum design mix, block production and reef construction, chemical composition of block leachate, biological colonization of the reef, potential concentration of metals in the food web associated with the reef, acute bioassays (96-hour LC 50 ). The Cedar Key reef was found to be a habitat that was associated with a relatively rich assemblage of plants and animals. The reef did not appear to be a major source of heavy metals to species at various levels of biological organization. GAI Consultants, Inc (GAI) of Monroeville, Pennsylvania was the prime consultant for the project. The biological monitoring surveys and evaluations were performed by Environmental Planning and Analysis, Inc. of Tallahassee, Florida. The chemical analyses of biological organisms and bioassay elutriates were performed by Savannah Laboratories of Tallahassee, Florida. Florida Power Corporation of St. Petersburg, Florida sponsored the project and supplied ash from their Crystal River Energy Complex

  17. Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia reveal new threats

    Directory of Open Access Journals (Sweden)

    Massimo Ponti

    2016-10-01

    Full Text Available Worldwide coral reef decline appears to be accompanied by an increase in the spread of hard coral diseases. However, whether this is the result of increased direct and indirect human disturbances and/or an increase in natural stresses remains poorly understood. The provision of baseline surveys for monitoring coral health status lays the foundations to assess the effects of any such anthropogenic and/or natural effects on reefs. Therefore, the objectives of this present study were to provide a coral health baseline in a poorly studied area, and to investigate possible correlations between coral health and the level of anthropogenic and natural disturbances. During the survey period, we recorded 20 different types of coral diseases and other compromised health statuses. The most abundant were cases of coral bleaching, followed by skeletal deformations caused by pyrgomatid barnacles, damage caused by fish bites, general pigmentation response and galls caused by cryptochirid crabs. Instances of colonies affected by skeletal eroding bands, and sedimentation damage increased in correlation to the level of bio-chemical disturbance and/or proximity to villages. Moreover, galls caused by cryptochirid crabs appeared more abundant at sites affected by blast fishing and close to a newly opened metal mine. Interestingly, in the investigated area the percentage of corals showing signs of ‘common’ diseases such as black band disease, brown band disease, white syndrome and skeletal eroding band disease were relatively low. Nevertheless, the relatively high occurrence of less common signs of compromised coral-related reef health, including the aggressive overgrowth by sponges, deserves further investigation. Although diseases appear relatively low at the current time, this area may be at the tipping point and an increase in activities such as mining may irredeemably compromise reef health.

  18. Oman's coral reefs: A unique ecosystem challenged by natural and man-related stresses and in need of conservation.

    Science.gov (United States)

    Burt, J A; Coles, S; van Lavieren, H; Taylor, O; Looker, E; Samimi-Namin, K

    2016-04-30

    Oman contains diverse and abundant reef coral communities that extend along a coast that borders three environmentally distinct water bodies, with corals existing under unique and often stressful environmental conditions. In recent years Oman's reefs have undergone considerable change due to recurrent predatory starfish outbreaks, cyclone damage, harmful algal blooms, and other stressors. In this review we summarize current knowledge of the biology and status of corals in Oman, particularly in light of recent stressors and projected future threats, and examine current reef management practices. Oman's coral communities occur in marginal environmental conditions for reefs, and hence are quite vulnerable to anthropogenic effects. We recommend a focus on developing conservation-oriented coral research to guide proactive management and expansion of the number and size of designated protected areas in Oman, particularly those associated with critical coral habitat. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada.

    Science.gov (United States)

    Reguero, Borja G; Beck, Michael W; Agostini, Vera N; Kramer, Philip; Hancock, Boze

    2018-03-15

    Coastal communities in tropical environments are at increasing risk from both environmental degradation and climate change and require urgent local adaptation action. Evidences show coral reefs play a critical role in wave attenuation but relatively little direct connection has been drawn between these effects and impacts on shorelines. Reefs are rarely assessed for their coastal protection service and thus not managed for their infrastructure benefits, while widespread damage and degradation continues. This paper presents a systematic approach to assess the protective role of coral reefs and to examine solutions based on the reef's influence on wave propagation patterns. Portions of the shoreline of Grenville Bay, Grenada, have seen acute shoreline erosion and coastal flooding. This paper (i) analyzes the historical changes in the shoreline and the local marine, (ii) assess the role of coral reefs in shoreline positioning through a shoreline equilibrium model first applied to coral reef environments, and (iii) design and begin implementation of a reef-based solution to reduce erosion and flooding. Coastline changes in the bay over the past 6 decades are analyzed from bathymetry and benthic surveys, historical imagery, historical wave and sea level data and modeling of wave dynamics. The analysis shows that, at present, the healthy and well-developed coral reefs system in the southern bay keeps the shoreline in equilibrium and stable, whereas reef degradation in the northern bay is linked with severe coastal erosion. A comparison of wave energy modeling for past bathymetry indicates that degradation of the coral reefs better explains erosion than changes in climate and historical sea level rise. Using this knowledge on how reefs affect the hydrodynamics, a reef restoration solution is designed and studied to ameliorate the coastal erosion and flooding. A characteristic design provides a modular design that can meet specific engineering, ecological and

  20. Mesopredator trophodynamics on thermally stressed coral reefs

    Science.gov (United States)

    Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.

    2018-03-01

    Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.

  1. Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns

    Directory of Open Access Journals (Sweden)

    Gareth J. Williams

    2013-05-01

    Full Text Available Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54–86% cover, namely hard corals (20–74% and crustose coralline algae (CCA (10–36%. While turf algae were relatively common at both locations (8–22%, larger fleshy macroalgae were virtually absent at Kingman (<1% and rare at Palmyra (0.7–9.3%. Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra’s backreef and Kingman’s patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman’s patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora, indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman’s forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to

  2. Notes on common macrobenthic reef invertebrates of Tubbataha Reefs Natural Park, Philippines

    Directory of Open Access Journals (Sweden)

    Jean Beth S. Jontila

    2012-12-01

    Full Text Available Macrobenthic reef invertebrates are important reef health indicators and fishery resources but are not very well documented in Tubbataha Reefs Natural Park. To provide notes on the species composition and the abundance and size of commonly encountered macrobenthic reef invertebrates, belt transects survey in intertidal, shallow, and deep subtidal reef habitats were conducted. In total, 18 species were recorded, six of which were echinoderms and 12 were mollusks, which include the rare giant clam Hippopusporcellanus. Only the giant clam Tridacna crocea and the top shell Trochus niloticus occurred in all seven permanent monitoring sites but the two species varied in densities across depths. There was also an outbreak of crown-of-thorns (COTs sea stars in some sites. The large variation in the density of each species across sites and depths suggests niche differences, overharvesting, or their recovery fromhaving been overly exploited. Separate monitoring areas for each commercially important species are suggested to determine how their populations respond to poaching and their implications on the park’s long term management.

  3. Reef Sharks Exhibit Site-Fidelity and Higher Relative Abundance in Marine Reserves on the Mesoamerican Barrier Reef

    Science.gov (United States)

    Bond, Mark E.; Babcock, Elizabeth A.; Pikitch, Ellen K.; Abercrombie, Debra L.; Lamb, Norlan F.; Chapman, Demian D.

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as “reef sharks”, are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor “marine reserve” had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability. PMID:22412965

  4. Artificial Reefs in Motion: Legacy of changes and degradation at the Redbird Reef Site

    Science.gov (United States)

    Trembanis, A. C.; DuVal, C.; Peter, B.

    2016-12-01

    Artificial reefs are used for a variety of purposes at sites throughout the U.S. and around the globe, yet little, if any, long-term monitoring has been conducted with the goal of understanding inter-annual changes to the emplaced structures. Throughout the U.S. Mid-Atlantic region, several programs utilized retired subway cars as disposal structures to form artificial reefs. One such site, known as site 11, or "Redbird Reef", is located off the coast of Delaware and was at one time home to 997 former NYC subway cars. Opportunistic sonar surveys at the site have been conducted between 2008 and 2016 providing one of the most extensive and repeated mapping studies for this type of reef. Previous studies conducted by our group at the site have focused on understanding wave orbital ripple dynamics and scour patterns. In this present study, we analyze the changes apparent at the site itself, focused on the storm-response dynamics of the subway cars. Results have shown that Superstorm Sandy in 2012 produced dramatic changes to the reef structures resulting in the total or partial destruction of eight subway cars within a small (.45 x .2km) portion of the reef site. Winter Storm Jonas in 2016 resulted in the destruction of fewer cars, but rotated a previously static 47m long Navy barge nearly 60 degrees. Once destroyed or collapsed by waves the subway cars go from providing positive structural relief and thus beneficial habitat above the surrounding seabed to being reduced to scattered low relief marine debris. A once popular consideration for reef material, the event and inter-annual decay of subway cars as observed at the Redbird reef provides both a stark indication of the power of storm dynamics on the inner-shelf and a cautionary tale with regards to the selection of seabed reef material.

  5. DIVERSITY OF REEF FISH FUNGSIONAL GROUPS IN TERMS OF CORAL REEF RESILIENCES

    Directory of Open Access Journals (Sweden)

    Isa Nagib edrus

    2017-01-01

    Full Text Available Infrastructure development in the particular sites of  Seribu Islands as well as those in main land of Jakarta City increased with coastal population this phenomenon is likely to increase the effects to the adjacent coral waters of Seribu Islands.  Chemical pollutants, sedimentation, and domestic wastes are the common impact and threatening, the survival of coral reef ecosystem. Coral reef resiliences naturaly remained on their processes under many influences of supporting factors. One of the major factor is the role of reef fish functional groups on controling algae growth to recolonize coral juveniles. The  aim of this study to obtain data of a herbivory and other fish functional groups of reef fishes in the Pari Islands that are resilience indicators, or that may indicate the effectiveness of management actions. A conventional scientific approach on fish diversity and abundance data gathering was conducted by the underwater visual cencus. Diversity values of the reef fish functional groups, such as the abundance of individual fish including species, were collected and tabulated by classes and weighted as a baseline to understand the resilience of coral reed based on Obura and Grimsditch (2009 techniques. The results succesfully identified several fish functional groups such as harbivores (21 species, carnivores (13 species and fish indicator (5 species occurred in the area. Regarding the aspects of fish density and its diversity, especially herbivorous fish functional group, were presumably in the state of rarely available to support the coral reef resiliences. Resilience indices ranged from 1 (low level to 3 (moderate level and averages of the quality levels ranged from 227 to 674. These levels were inadequate to support coral reef recolonization.

  6. Oceanic forcing of coral reefs.

    Science.gov (United States)

    Lowe, Ryan J; Falter, James L

    2015-01-01

    Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.

  7. 40 CFR 230.44 - Coral reefs.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged or...

  8. Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean

    Directory of Open Access Journals (Sweden)

    Phanor Hernando Montoya Maya

    2016-11-01

    the application of large-scale, science-based coral reef restoration projects with at least a 3-year time scale to assist the recovery of damaged reefs.

  9. Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs

    Directory of Open Access Journals (Sweden)

    Rafael A. Magris

    2018-04-01

    Full Text Available Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal development, mining, aquaculture, shipping, and global warming. We calculated an index of the risk to cumulative impacts: (i assuming uniform sensitivity of coral reefs to stressors; and (ii using impact weights to reflect varying tolerance levels of coral reefs to each stressor. We also predicted the index in both the presence and absence of global warming. We found that 16% and 37% of coral reefs had high to very high risk of cumulative impacts, without and with information on sensitivity respectively, and 42% of reefs had low risk to cumulative impacts from both local and global stressors. Our outputs are the first comprehensive spatial dataset of cumulative impact on coral reefs in Brazil, and show that areas requiring attention mostly corresponded to those closer to population centres. We demonstrate how the relationships between risks from local and global stressors can be used to derive strategic management actions.

  10. Minimising the harm from nicotine use: finding the right regulatory framework.

    Science.gov (United States)

    Borland, Ron

    2013-05-01

    The tobacco problem can be usefully conceptualised as two problems: eliminating the most harmful forms of nicotine use (certainly cigarettes, and probably all smoked tobacco), and minimising the use and/or harms from use of lower-harm, but addictive forms of nicotine. A possible target would be to effectively eliminate use of the most harmful forms of nicotine within the next decade and then turn our focus to a long-term strategy for the low-harm forms. This paper focuses on the administrative framework(s) needed to accomplish these twin tasks. For a phase-out taking a long time and/or for dealing with residually net harmful and addictive products, there are severe limitations to allowing for-profit marketing of tobacco because such an arrangement (the current one in most countries) can markedly slow down progress and because of the difficulty of constraining marketing in ways that minimise undesirable use. A harm reduction model where the marketing is under the control of a non-profit entity (a regulated market) is required to curtail the incredible power of for-profit marketing and to allow tobacco marketing to be done in ways that further the goal of minimising tobacco-related harm. Countries with a nationalised industry can move their industry onto a harm minimisation framework if they have the political will. Countries with a for-profit industry should consider whether the time and effort required to reconstruct the market may, in the longer term, facilitate achieving their policy goals.

  11. Correlation Between Existence of Reef Sharks with Abundance of Reef Fishes in South Waters of Morotai Island (North Moluccas)

    Science.gov (United States)

    Mukharror, Darmawan Ahmad; Tiara Baiti, Isnaini; Ichsan, Muhammad; Pridina, Niomi; Triutami, Sanny

    2017-10-01

    Despite increasing academic research citation on biology, abundance, and the behavior of the blacktip reef sharks, the influence of reef fish population on the density of reef sharks: Carcharhinus melanopterus and Triaenodon obesus population in its habitat were largely unassessed. This present study examined the correlation between abundance of reef fishes family/species with the population of reef sharks in Southern Waters of Morotai Island. The existence of reef sharks was measured with the Audible Stationary Count (ASC) methods and the abundance of reef fishes was surveyed using Underwater Visual Census (UVC) combined with Diver Operated Video (DOV) census. The coefficient of Determination (R2) was used to investigate the degree of relationships between sharks and the specific reef fishes species. The research from 8th April to 4th June 2015 showed the strong positive correlations between the existence of reef sharks with abundance of reef fishes. The correlation values between Carcharhinus melanopterus/Triaenodon obesus with Chaetodon auriga was 0.9405, blacktip/whitetip reef sharks versus Ctenochaetus striatus was 0.9146, and Carcharhinus melanopterus/Triaenodon obesus to Chaetodon kleinii was 0.8440. As the shark can be worth more alive for shark diving tourism than dead in a fish market, the abundance of these reef fishes was important as an early indication parameter of shark existence in South Water of Morotai Island. In the long term, this highlights the importance of reef fishes abundance management in Morotai Island’s Waters to enable the establishment of appropriate and effective reef sharks conservation.

  12. Permanent 'phase shifts' or reversible declines in coral cover? Lack of recovery of two coral reefs in St. John, US Virgin Islands

    Science.gov (United States)

    Rogers, C.S.; Miller, J.

    2006-01-01

    Caribbean coral reefs have changed dramatically in the last 3 to 4 decades, with significant loss of coral cover and increases in algae. Here we present trends in benthic cover from 1989 to 2003 at 2 reefs (Lameshur Reef and Newfound Reef) off St. John, US Virgin Islands (USVI). Coral cover has declined in the fore-reef zones at both sites, and no recovery is evident. At Lameshur Reef, Hurricane Hugo (1989) caused significant physical damage and loss of coral. We suggest that macroalgae rapidly colonized new substrate made available by this storm and have hindered or prevented growth of adult corals, as well as settlement and survival of new coral recruits. Overfishing of herbivorous fishes in the USVI and loss of shelter for these fishes because of major storms has presumably reduced the levels of herbivory that formerly controlled algal abundance. Coral cover declined at Newfound Reef from 1999 to 2000, most likely because of coral diseases. The trends that we have documented, loss of coral followed by no evidence of recovery, appear similar to findings from other studies in the Caribbean. We need to focus on functional shifts in the resilience of coral reefs that result in their inability to recover from natural and human-caused stressors. ?? Inter-Research 2006.

  13. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  14. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration.

    Science.gov (United States)

    Rinkevich, Baruch

    2015-10-01

    Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Agents of coral mortality on reef formations of the Colombian Pacific

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available The National Monitoring System for Coral Reefs of Colombia (SIMAC monitors the impact of some of the most important agents of coral tissue loss (bleaching and/or disease in the Colombian Pacific coral formations since 1998. Physiological bleaching is among the main results of stress in the area. Signs of coral diseases resembling bacterial bleaching such as White Plague and White Band, were observed in Malpelo and Gorgona islands. Damage to the Pacific gorgonian Pacifigorgia spp., similar to those produced by Aspergillosis in Caribbean corals, was detected in Utría Bay. The presence of tumors in colonies of massive corals was also recorded. Even though coral diseases are globally widespread, their occurrence in American Pacific reefs has been poorly documented to date. Rev. Biol. Trop. 58 (Suppl. 1: 133-138. Epub 2010 May 01.

  16. ReefLink Database: A decision support tool for Linking Coral Reefs and Society Through Systems Thinking

    Science.gov (United States)

    Coral reefs provide the ecological foundation for productive and diverse fish and invertebrate communities that support multibillion dollar reef fishing and tourism industries. Yet reefs are threatened by growing coastal development, climate change, and over-exploitation. A key i...

  17. Macroalgae in the coral reefs of Eilat (Gulf of Aqaba, Red Sea) as a possible indicator of reef degradation

    International Nuclear Information System (INIS)

    Bahartan, Karnit; Zibdah, Mohammad; Ahmed, Yousef; Israel, Alvaro; Brickner, Itzchak; Abelson, Avigdor

    2010-01-01

    The current state of health of the coral reefs in the northern Gulf of Aqaba (Red Sea), notably the Eilat reefs, is under debate regarding both their exact condition and the causes of degradation. A dearth of earlier data and unequivocal reliable indices are the major problems hinder a clear understanding of the reef state. Our research objective was to examine coral-algal dynamics as a potential cause and an indication of reef degradation. The community structure of stony corals and algae along the northern Gulf of Aqaba reveal non-seasonal turf algae dominancy in the shallow Eilat reefs (up to 72%), while the proximate Aqaba reefs present negligible turf cover (<6%). We believe that turf dominancy can indicate degradation in these reefs, based on the reduction in essential reef components followed by proliferation of perennial turf algae. Our findings provide further evidence for the severe state of the Eilat coral reefs.

  18. NMFS Reef Survey Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reef Environmental Survey Project (REEF) mission to educate and enlist divers in the conservation of marine habitats is accomplished primarily through its Fish...

  19. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  20. Analytical methods for waste minimisation in the convenience food industry.

    Science.gov (United States)

    Darlington, R; Staikos, T; Rahimifard, S

    2009-04-01

    Waste creation in some sectors of the food industry is substantial, and while much of the used material is non-hazardous and biodegradable, it is often poorly dealt with and simply sent to landfill mixed with other types of waste. In this context, overproduction wastes were found in a number of cases to account for 20-40% of the material wastes generated by convenience food manufacturers (such as ready-meals and sandwiches), often simply just to meet the challenging demands placed on the manufacturer due to the short order reaction time provided by the supermarkets. Identifying specific classes of waste helps to minimise their creation, through consideration of what the materials constitute and why they were generated. This paper aims to provide means by which food industry wastes can be identified, and demonstrate these mechanisms through a practical example. The research reported in this paper investigated the various categories of waste and generated three analytical methods for the support of waste minimisation activities by food manufacturers. The waste classifications and analyses are intended to complement existing waste minimisation approaches and are described through consideration of a case study convenience food manufacturer that realised significant financial savings through waste measurement, analysis and reduction.

  1. Molluscan assemblages on coral reefs and associated hard substrata in the northern Red Sea

    Science.gov (United States)

    Zuschin, M.; Hohenegger, J.; Steininger, F.

    2001-09-01

    Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea- Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea- Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora- Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera- Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.

  2. Coral reefs and eutrophication

    International Nuclear Information System (INIS)

    Stambler, N.

    1999-01-01

    Coral reefs are found in oligotrophic waters, which are poor in nutrients such as nitrogen, phosphate, and possibly iron. In spite of this, coral reefs exhibit high gross primary productivity rates. They thrive in oligotrophic conditions because of the symbiotic relationship between corals and dinoflagellate algae (zooxanthellae) embedded in the coral tissue. In their mutualistic symbiosis, the zooxanthellae contribute their photosynthetic capability as the basis for the metabolic energy of the whole association, and eventually of a great part of the entire reef ecosystem

  3. Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms.

    Science.gov (United States)

    Harte, Tiffany; Bruce, Graham D; Keeling, Jonathan; Cassettari, Donatella

    2014-11-03

    Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms.

  4. Co-existence of Coral Reef Conservation and Tourism at Pigeon Island National Park

    Directory of Open Access Journals (Sweden)

    Nishanthi Marian Perera

    2016-11-01

    Full Text Available AbstractPigeon islands National Park (PINP is one of the three Marine National Parks in Sri Lanka with coral reefs being the major habitat protected. A study was undertaken at PINP with the objective of understanding the challenges encountered and opportunities available for managing the park addressing both coral reef conservation and increasing tourism potential. Field visits, formal and informal group discussions, expert opinions, web based information and literature surveys were the methodology utilized.  Despise the impose of an entrance fee in May 2011,  146,375 tourists visited the 471 ha park within 40 month period indicating that one hectare of coral reefs can earn more revenue than larger terrestrial parks with charismatic species such as elephants.  Foreign tourist arrivals had increased from 11.9% in 2011 to 25.13% by 2014.  Visitor reviews indicates that their experience was either excellent (46% or very good (30% due to abundance of marine life, while12% had either a poor or a terrible visitor experience at the site owing to overcrowding, reef damage and high price. With only 21% of live coral cover in 2013, it is evident that the reef is being degraded, indicating that a Protected Area which emphasizes on collecting user-fee revenues can lose sight of its primary conservation objectives and is not undertaking sustainable tourism.  Park management effectiveness is not at desirable level (43%, mainly due to non- implementation of a scientifically based management plan. A continuous monitoring programme to check the health of the reef is need, while the introduction of a multi-tiered user fee structures can enhance the economic reruns.  Incorporating PINP into wider Seascape/landscape management through utilizing Special Area Management approach needed to be promoted. Key Words: Coral Reefs; Pigeon Island National Park; Management Effectiveness; Sustainable Tourism; Stakeholders     

  5. Eddy covariance measurement of the spatial heterogeneity of surface energy exchanges over Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, M.; McGowan, H. A.; Phinn, S. R.

    2011-12-01

    Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between

  6. Coral Reef and Hardbottom from Unified Florida Reef Tract Map (NODC Accession 0123059)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a subset of the Unified Map representing Coral reef and Hardbottom areas. Version 1.1 - December 2013. The Unified Florida Reef Tract Map (Unified...

  7. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagress-reef continuum: stable isotope and gut-content analysis

    NARCIS (Netherlands)

    Cocheret de la Morinière, E.; Pollux, B.J.A.; Nagelkerken, I.; Hemminga, M.A.; Huiskes, A.H.L.; Van der Velde, G.

    2003-01-01

    Juveniles of a number of reef fish species develop in shallow-water 'nursery' habitats such as mangroves and seagrass beds, and then migrate to the coral reef. This implies that some reef fish species are distributed over the mangrove-seagrass-reef continuum in subpopulations with different size

  8. Coral identity underpins architectural complexity on Caribbean reefs.

    Science.gov (United States)

    Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A

    2011-09-01

    The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.

  9. Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland)

    NARCIS (Netherlands)

    Duineveld, G.C.A.; Jeffreys, R.M.; Lavaleye, M.S.S.; Davies, A.J.; Bergman, M.J.N.; Watmough, T.; Witbaard, R.

    2012-01-01

    The finding of a previously undescribed cold-water coral reef (Banana Reef) in the Scottish Mingulay reef complex, with denser coverage of living Lophelia pertusa than the principal Mingulay 1 Reef, was the incentive for a comparative study of the food supply to the 2 reefs. Suspended particulate

  10. Mechanical processing of bast fibres: The occurrence of damage and its effect on fibre structure

    DEFF Research Database (Denmark)

    Hänninen, Tuomas; Thygesen, Anders; Mehmood, Shahid

    2012-01-01

    Currently, separation processes used for natural fibres for composite reinforcing textiles cause a significant amount of damage to the fibres. Microscopic analysis showed that industrially processed flax (Linum usitassimium L.) fibres contained significantly more defects than green or retted ones...... to heterogeneous reactivity. Analogous findings were observed in hemp (Cannabis sativa L.) fibre damaged in the laboratory under controlled conditions, emphasising the need to develop extraction and separation processes that minimise mechanical damage to the fibres....

  11. Cryptic Coral Reef Diversity Across the Pacific Assessed using Autonomous Reef Monitoring Structures and Multi-omic Methods

    Science.gov (United States)

    Ransome, E. J.; Timmers, M.; Hartmann, A.; Collins, A.; Meyer, C.

    2016-02-01

    Coral reefs harbor diverse and distinct eukaryotic, bacterial and viral communities, which are critically important for their success. The lack of standardized measures for comprehensively assessing reef diversity has been a major obstacle in understanding the complexity of eukaryotic and microbial associations, and the processes that drive ecosystem shifts on reefs. ARMS, which mimic the structural complexity of the reef using artificial settlement plates, were used to systematically measure reef biodiversity across the Indo-Pacific. This device allows for standardized sampling of reef microbes to metazoans, providing the opportunity to investigate the fundamental links between these groups at an ecosystem level. We integrate the use of traditional ecology methods with metagenomics and metabolomics (metabolic predictors) to quantify the taxonomic composition of one of the planet's most diverse ecosystems and to assess the fundamental links between these cryptic communities and ecosystem function along geographical and anthropogenic stress gradients.

  12. Coral reef fish predator maintains olfactory acuity in degraded coral habitats.

    Directory of Open Access Journals (Sweden)

    Michael Natt

    Full Text Available Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may

  13. Cyanobacteria in Coral Reef Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    L. Charpy

    2012-01-01

    Full Text Available Cyanobacteria have dominated marine environments and have been reef builders on Earth for more than three million years (myr. Cyanobacteria still play an essential role in modern coral reef ecosystems by forming a major component of epiphytic, epilithic, and endolithic communities as well as of microbial mats. Cyanobacteria are grazed by reef organisms and also provide nitrogen to the coral reef ecosystems through nitrogen fixation. Recently, new unicellular cyanobacteria that express nitrogenase were found in the open ocean and in coral reef lagoons. Furthermore, cyanobacteria are important in calcification and decalcification. All limestone surfaces have a layer of boring algae in which cyanobacteria often play a dominant role. Cyanobacterial symbioses are abundant in coral reefs; the most common hosts are sponges and ascidians. Cyanobacteria use tactics beyond space occupation to inhibit coral recruitment. Cyanobacteria can also form pathogenic microbial consortia in association with other microbes on living coral tissues, causing coral tissue lysis and death, and considerable declines in coral reefs. In deep lagoons, coccoid cyanobacteria are abundant and are grazed by ciliates, heteroflagellates, and the benthic coral reef community. Cyanobacteria produce metabolites that act as attractants for some species and deterrents for some grazers of the reef communities.

  14. Pleistocene reef development in Bulukumba, South Sulawesi

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Andi

    2017-01-01

    Full Text Available Quaternary reefs are commonly studied right now to explain climate change during that time. They act as a good archive of climate change, because their development is influenced by climate condition. The research area is located in the southern tip of Bulukumba Regency, South Sulawesi. The objective of this research is to define the development of the reef. Methods applied in this research are field survey of 4 line transects along reef cliff. Laboratory work is mostly on petrographic and biofacies analyses in order to reconstruct the reef development. Four reef biofacies have developed in this study namely 1 Coralgal framestone - wackestone, 2 Massive coral framestone facies, 3 Platylike coral Bindstone facies, and 4 Branching Coral Bafflestone facies. Based on the facies association and organism accumulation, the reefs are interpreted to be developed within a reef complex in a shallow marine environment.

  15. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across American Samoa from 2012 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  16. Photography of Coral Reefs from ISS

    Science.gov (United States)

    Robinson, Julie A.

    2009-01-01

    This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.

  17. Environmental quality and preservation; reefs, corals, and carbonate sands; guides to reef-ecosystem health and environment

    Science.gov (United States)

    Lidz, Barbara H.

    2001-01-01

    Introduction In recent years, the health of the entire coral reef ecosystem that lines the outer shelf off the Florida Keys has declined markedly. In particular, loss of those coral species that are the building blocks of solid reef framework has significant negative implications for economic vitality of the region. What are the reasons for this decline? Is it due to natural change, or are human activities (recreational diving, ship groundings, farmland runoff, nutrient influx, air-borne contaminants, groundwater pollutants) a contributing factor and if so, to what extent? At risk of loss are biologic resources of the reefs, including habitats for endangered species in shoreline mangroves, productive marine and wetland nurseries, and economic fisheries. A healthy reef ecosystem builds a protective offshore barrier to catastrophic wave action and storm surges generated by tropical storms and hurricanes. In turn, a healthy reef protects the homes, marinas, and infrastructure on the Florida Keys that have been designed to capture a lucrative tourism industry. A healthy reef ecosystem also protects inland agricultural and livestock areas of South Florida whose produce and meat feed much of the United States and other parts of the world. In cooperation with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, the U.S. Geological Survey (USGS) continues longterm investigations of factors that may affect Florida's reefs. One of the first steps in distinguishing between natural change and the effects of human activities, however, is to determine how coral reefs have responded to past environmental change, before the advent of man. By so doing, accurate scientific information becomes available for Marine Sanctuary management to understand natural change and thus to assess and regulate potential human impact better. The USGS studies described here evaluate the distribution (location) and historic vitality (thickness) of Holocene

  18. Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs

    OpenAIRE

    Rafael A. Magris; Alana Grech; Robert L. Pressey

    2018-01-01

    Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal de...

  19. Fishing down the largest coral reef fish species.

    Science.gov (United States)

    Fenner, Douglas

    2014-07-15

    Studies on remote, uninhabited, near-pristine reefs have revealed surprisingly large populations of large reef fish. Locations such as the northwestern Hawaiian Islands, northern Marianas Islands, Line Islands, U.S. remote Pacific Islands, Cocos-Keeling Atoll and Chagos archipelago have much higher reef fish biomass than islands and reefs near people. Much of the high biomass of most remote reef fish communities lies in the largest species, such as sharks, bumphead parrots, giant trevally, and humphead wrasse. Some, such as sharks and giant trevally, are apex predators, but others such as bumphead parrots and humphead wrasse, are not. At many locations, decreases in large reef fish species have been attributed to fishing. Fishing is well known to remove the largest fish first, and a quantitative measure of vulnerability to fishing indicates that large reef fish species are much more vulnerable to fishing than small fish. The removal of large reef fish by fishing parallels the extinction of terrestrial megafauna by early humans. However large reef fish have great value for various ecological roles and for reef tourism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Impacts of Artificial Reefs on Surrounding Ecosystems

    Science.gov (United States)

    Manoukian, Sarine

    Artificial reefs are becoming a popular biological and management component in shallow water environments characterized by soft seabed, representing both important marine habitats and tools to manage coastal fisheries and resources. An artificial reef in the marine environment acts as an open system with exchange of material and energy, altering the physical and biological characteristics of the surrounding area. Reef stability will depend on the balance of scour, settlement, and burial resulting from ocean conditions over time. Because of the unstable nature of sediments, they require a detailed and systematic investigation. Acoustic systems like high-frequency multibeam sonar are efficient tools in monitoring the environmental evolution around artificial reefs, whereas water turbidity can limit visual dive and ROV inspections. A high-frequency multibeam echo sounder offers the potential of detecting fine-scale distribution of reef units, providing an unprecedented level of resolution, coverage, and spatial definition. How do artificial reefs change over time in relation to the coastal processes? How accurately does multibeam technology map different typologies of artificial modules of known size and shape? How do artificial reefs affect fish school behavior? What are the limitations of multibeam technology for investigating fish school distribution as well as spatial and temporal changes? This study addresses the above questions and presents results of a new approach for artificial reef seafloor mapping over time, based upon an integrated analysis of multibeam swath bathymetry data and geoscientific information (backscatter data analysis, SCUBA observations, physical oceanographic data, and previous findings on the geology and sedimentation processes, integrated with unpublished data) from Senigallia artificial reef, northwestern Adriatic Sea (Italy) and St. Petersburg Beach Reef, west-central Florida continental shelf. A new approach for observation of fish

  1. COLLABORATIVE GUIDE: A REEF MANAGER'S GUIDE TO ...

    Science.gov (United States)

    Innovative strategies to conserve the world's coral reefs are included in a new guide released today by NOAA, and the Australian Great Barrier Reef Marine Park Authority, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. Referred to as A Reef Manager's Guide to Coral Bleaching, the guide will provide coral reef managers with the latest scientific information on the causes of coral bleaching and new management strategies for responding to this significant threat to coral reef ecosystems. Innovative strategies to conserve the world's coral reefs are included in a new guide released today by NOAA, and the Australian Great Barrier Reef Marine Park Authority, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. Dr. Jordan West, of the National Center for Environmental Assessment, was a major contributor to the guide. Referred to as

  2. High refuge availability on coral reefs increases the vulnerability of reef-associated predators to overexploitation.

    Science.gov (United States)

    Rogers, Alice; Blanchard, Julia L; Newman, Steven P; Dryden, Charlie S; Mumby, Peter J

    2018-02-01

    Refuge availability and fishing alter predator-prey interactions on coral reefs, but our understanding of how they interact to drive food web dynamics, community structure and vulnerability of different trophic groups is unclear. Here, we apply a size-based ecosystem model of coral reefs, parameterized with empirical measures of structural complexity, to predict fish biomass, productivity and community structure in reef ecosystems under a broad range of refuge availability and fishing regimes. In unfished ecosystems, the expected positive correlation between reef structural complexity and biomass emerges, but a non-linear effect of predation refuges is observed for the productivity of predatory fish. Reefs with intermediate complexity have the highest predator productivity, but when refuge availability is high and prey are less available, predator growth rates decrease, with significant implications for fisheries. Specifically, as fishing intensity increases, predators in habitats with high refuge availability exhibit vulnerability to over-exploitation, resulting in communities dominated by herbivores. Our study reveals mechanisms for threshold dynamics in predators living in complex habitats and elucidates how predators can be food-limited when most of their prey are able to hide. We also highlight the importance of nutrient recycling via the detrital pathway, to support high predator biomasses on coral reefs. © 2018 by the Ecological Society of America.

  3. Impacts of Artificial Reefs and Diving Tourism

    Directory of Open Access Journals (Sweden)

    Sandra Jakšić

    2013-10-01

    Full Text Available Coral reefs are currently endangered throughout the world. One of the main activities responsible for this is scuba-diving. Scuba-diving on coral reefs was not problematic in the begging, but due to popularization of the new sport, more and more tourists desired to participate in the activity. Mass tourism, direct contact of the tourists with the coral reefs and unprofessional behavior underwater has a negative effect on the coral reefs. The conflict between nature preservation and economy benefits related to scuba-diving tourism resulted in the creation of artificial reefs, used both to promote marine life and as tourists attractions, thereby taking the pressure off the natural coral reefs. Ships, vehicles and other large structures can be found on the coastal sea floor in North America, Australia, Japan and Europe. The concept of artificial reefs as a scuba-diving attraction was developed in Florida. The main goal was to promote aquaculture, with the popularization of scuba-diving attractions being a secondary effect. The aim of this paper is to determine the effects of artificial reefs on scuba-diving tourism, while taking into account the questionnaire carried out among 18 divers

  4. Reef Visual Census (RVC) data.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide data on frequency of occurrence , density abundance, and length frequency of reef fish throughout Florida reef tract from 1978 forward.

  5. Smart Meter Tariff Design to Minimise Wholesale Risk

    OpenAIRE

    Rogers, William; Carroll, Paula

    2016-01-01

    Smart metering in electricity markets offers an opportunity to explore more diversetariff structures. In this article a Genetic Algorithm (GA) is used to design Time ofUse tariffs that minimise the wholesale risk to the supplier in residential markets.Residential demand and the System Marginal Price of Ireland's Single ElectricityMarket are simulated to estimate the wholesale risk associated with each tariff.

  6. High Latitude Reefs: A Potential Refuge for Reef Builders

    Science.gov (United States)

    Amat, A.; Bates, N.

    2003-04-01

    Coral reefs globally show variable signs of deterioration or community structure changes due to a host of anthropogenic and natural factors. In these global scenarios, rates of calcification by reef builders such as Scleractinian corals are predicted to significantly decline in the future due to the increase in atmospheric CO_2. When considering the response of reefs to the present climate change, temperature effects should also be taken into account. Here, we investigate the simultaneous impact of temperature and CO_2 on the high-latitude Bermuda coral reef system (32^oN, 64^oE)through a series of in vitro experiments at different CO_2 levels and seasonally different summer (27^oC) and winter (20^oC) temperature conditions. Four species of Scleractinian corals (Porites astreoides, Diploria labyrinthiformis, Madracis mirabilis and decactis) were acclimated for three months at: 20^oC and 27^oC (both with CO_2 levels at 400 ppm (control) and 700 ppm). Growth was assessed by buoyant weight techniques during the acclimation period. Photosynthesis, respiration and calcification were measured at the end of this period using respirometric chambers. A reproduction experiment was also undertaken under 27^oC. Photosynthesis mainly remains constant or increases under high CO_2 conditions. The results of the integrated calcification measurements confirm the hypothesis that an increase in CO_2 induces a decrease in calcification. However an increase in photosynthesis can be observed when CO_2 is unfavorable for calcification suggesting that a biological control of calcification through photosynthesis could prevent a drop in the calcification potential. Buoyant weight results indicate that the CO_2 impact could be less detrimental under lower temperature. This result will be compared with the instantaneous calcification measurements in the chambers and some in situ coral growth assessments in winter and summer conditions. The consequences for the response of marginal reefs

  7. The Açu Reef morphology, distribution, and inter reef sedimentation on the outer shelf of the NE Brazil equatorial margin

    Science.gov (United States)

    do Nascimento Silva, Luzia Liniane; Gomes, Moab Praxedes; Vital, Helenice

    2018-05-01

    Submerged reefs, referred to as the Açu Reefs, have been newly observed on both sides of the Açu Incised Valley on the northeastern equatorial Brazilian outer shelf. This study aims to understand the roles of shelf physiography, its antecedent morphologies, and its inter reef sedimentation on the different development stages of the biogenic reef during last deglacial sea-level rise. The data sets consist of side-scan sonar imagery, one sparker seismic profile, 76 sediment samples, and underwater photography. Seven backscatter patterns (P1 to P7) were identified and associated with eleven sedimentary carbonate and siliciclastic facies. The inherited relief, the mouth of the paleo incised valley, and the interreef sediment distribution play major controls on the deglacial reef evolution. The reefs occur in a depth-limited 25-55 m water depth range and in a 6 km wide narrow zone of the outer shelf. The reefs crop out in a surface area over 100 km2 and occur as a series of NW-SE preferentially orientated ridges composed of three parallel ridge sets at 45, 35, and 25 m of water depth. The reefs form a series of individual, roughly linear ridges, tens of km in length, acting as barriers in addition to scattered reef mounds or knolls, averaging 4 m in height and grouped in small patches and aggregates. The reefs, currently limited at the transition between the photic and mesophotic zones, are thinly covered by red algae and scattered coral heads and sponges. Taking into account the established sea-level curves from the equatorial Brazilian northeastern shelf / Rochas Atoll and Barbados, the shelf physiography, and the shallow bedrock, the optimal conditions for reef development had to occur during a time interval (11-9 kyr BP) characterized by a slowdown of the outer shelf flooding, immediately following Meltwater Pulse-1B. This 2 kyr short interval provided unique conditions for remarkable reef backstepping into distinct parallel ridge sets. Furthermore, the Açu Reefs

  8. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across the Marianas Archipelago from 2011 to 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  9. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across the Hawaiian Archipelago from 2010 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  10. The Ecological Role of Sharks on Coral Reefs.

    Science.gov (United States)

    Roff, George; Doropoulos, Christopher; Rogers, Alice; Bozec, Yves-Marie; Krueck, Nils C; Aurellado, Eleanor; Priest, Mark; Birrell, Chico; Mumby, Peter J

    2016-05-01

    Sharks are considered the apex predator of coral reefs, but the consequences of their global depletion are uncertain. Here we explore the ecological roles of sharks on coral reefs and, conversely, the importance of reefs for sharks. We find that most reef-associated shark species do not act as apex predators but instead function as mesopredators along with a diverse group of reef fish. While sharks perform important direct and indirect ecological roles, the evidence to support hypothesised shark-driven trophic cascades that benefit corals is weak and equivocal. Coral reefs provide some functional benefits to sharks, but sharks do not appear to favour healthier reef environments. Restoring populations of sharks is important and can yet deliver ecological surprise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Investigating the relationship between predictability and imbalance in minimisation: a simulation study

    Science.gov (United States)

    2013-01-01

    Background The use of restricted randomisation methods such as minimisation is increasing. This paper investigates under what conditions it is preferable to use restricted randomisation in order to achieve balance between treatment groups at baseline with regard to important prognostic factors and whether trialists should be concerned that minimisation may be considered deterministic. Methods Using minimisation as the randomisation algorithm, treatment allocation was simulated for hypothetical patients entering a theoretical study having values for prognostic factors randomly assigned with a stipulated probability. The number of times the allocation could have been determined with certainty and the imbalances which might occur following randomisation using minimisation were examined. Results Overall treatment balance is relatively unaffected by reducing the probability of allocation to optimal treatment group (P) but within-variable balance can be affected by any P <1. This effect is magnified by increased numbers of prognostic variables, the number of categories within them and the prevalence of these categories within the study population. Conclusions In general, for smaller trials, probability of treatment allocation to the treatment group with fewer numbers requires a larger value P to keep treatment and variable groups balanced. For larger trials probability of allocation values from P = 0.5 to P = 0.8 can be used while still maintaining balance. For one prognostic variable there is no significant benefit in terms of predictability in reducing the value of P. However, for more than one prognostic variable, significant reduction in levels of predictability can be achieved with the appropriate choice of P for the given trial design. PMID:23537389

  12. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.

    2012-06-29

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  13. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.; Hoey, Andrew; Bellwood, David R.

    2012-01-01

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  14. The role of turtles as coral reef macroherbivores.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas and hawksbill turtles (Eretmochelys imbricata showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood.

  15. A Global Estimate of the Number of Coral Reef Fishers.

    Directory of Open Access Journals (Sweden)

    Louise S L Teh

    Full Text Available Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  16. A Global Estimate of the Number of Coral Reef Fishers.

    Science.gov (United States)

    Teh, Louise S L; Teh, Lydia C L; Sumaila, U Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  17. The wicked problem of China's disappearing coral reefs.

    Science.gov (United States)

    Hughes, Terry P; Huang, Hui; Young, Matthew A L

    2013-04-01

    We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10-15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef-management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. © 2012 Society for Conservation Biology.

  18. Coral reef bleaching: ecological perspectives

    Science.gov (United States)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  19. Artificial reefs: “Attraction versus Production”

    Directory of Open Access Journals (Sweden)

    Eduardo Barros Fagundes Netto

    2011-04-01

    Full Text Available The production of fish is the most common reason for the construction and installation of an artificial reef. More recently, environmental concerns and conservation of biological resources have been instrumental to the formulation of new goals of the research. One of the issues to be resolved is the biological function of “attraction vs. production” as a result of the use of artificial reefs. The uncertainty as to the answer to the question whether the artificial reefs will or not benefit the development of fish stocks could be solved if the artificial reefs would be managed as marine protected areas.

  20. Coral mortality in reefs: The cause and effect; A central concern for reef monitoring

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    stream_size 4 stream_content_type text/plain stream_name Region_Workshop_Conserv_Sustain_Mgmt_Coral_Reefs_1997_C83.pdf.txt stream_source_info Region_Workshop_Conserv_Sustain_Mgmt_Coral_Reefs_1997_C83.pdf.txt Content-Encoding ISO-8859...

  1. Wave Dissipation on Low- to Super-Energy Coral Reefs

    Science.gov (United States)

    Harris, D. L.

    2016-02-01

    Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.

  2. Warm-water coral reefs and climate change.

    Science.gov (United States)

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. Copyright © 2015, American Association for the Advancement of Science.

  3. Mapping Oyster Reef Habitats in Mobile Bay

    Science.gov (United States)

    Bolte, Danielle

    2011-01-01

    Oyster reefs around the world are declining rapidly, and although they haven t received as much attention as coral reefs, they are just as important to their local ecosystems and economies. Oyster reefs provide habitats for many species of fish, invertebrates, and crustaceans, as well as the next generations of oysters. Oysters are also harvested from many of these reefs and are an important segment of many local economies, including that of Mobile Bay, where oysters rank in the top five commercial marine species both by landed weight and by dollar value. Although the remaining Mobile Bay oyster reefs are some of the least degraded in the world, projected climate change could have dramatic effects on the health of these important ecosystems. The viability of oyster reefs depends on water depth and temperature, appropriate pH and salinity levels, and the amount of dissolved oxygen in the water. Projected increases in sea level, changes in precipitation and runoff patterns, and changes in pH resulting from increases in the amount of carbon dioxide dissolved in the oceans could all affect the viability of oyster reefs in the future. Human activities such as dredging and unsustainable harvesting practices are also adversely impacting the oyster reefs. Fortunately, several projects are already under way to help rebuild or support existing or previously existing oyster reefs. The success of these projects will depend on the local effects of climate change on the current and potential habitats and man s ability to recognize and halt unsustainable harvesting practices. As the extent and health of the reefs changes, it will have impacts on the Mobile Bay ecosystem and economy, changing the resources available to the people who live there and to the rest of the country, since Mobile Bay is an important national source of seafood. This project identified potential climate change impacts on the oyster reefs of Mobile Bay, including the possible addition of newly viable

  4. Hierarchical drivers of reef-fish metacommunity structure.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P

    2009-01-01

    Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at

  5. Coral reefs and the World Bank.

    Science.gov (United States)

    Hatziolos, M

    1997-01-01

    The World Bank¿s involvement in coral reef conservation is part of a larger effort to promote the sound management of coastal and marine resources. This involves three major thrusts: partnerships, investments, networks and knowledge. As an initial partner and early supporter of the International Coral Reef Initiative (ICRI), the Bank serves as the executive planning committee of ICRI. In partnership with the World Conservation Union and the Great Barrier Reef Marine Park Authority, the Bank promotes the efforts towards the establishment and maintenance of a globally representative system of marine protected areas. In addition, the Bank invested over $120 million in coral reef rehabilitation and protection programs in several countries. Furthermore, the Bank developed a ¿Knowledge Bank¿ that would market ideas and knowledge to its clients along with investment projects. This aimed to put the best global knowledge on environmentally sustainable development in the hands of its staff and clients. During the celebration of 1997, as the International Year of the Reef, the Bank planned to cosponsor an associated event that would highlight the significance of coral reefs and encourage immediate action to halt their degradation to conserve this unique ecosystem.

  6. Not finding Nemo: limited reef-scale retention in a coral reef fish

    KAUST Repository

    Nanninga, Gerrit B.

    2015-02-03

    The spatial scale of larval dispersal is a key predictor of marine metapopulation dynamics and an important factor in the design of reserve networks. Over the past 15 yr, studies of larval dispersal in coral reef fishes have generated accumulating evidence of consistently high levels of self-recruitment and local retention at various spatial scales. These findings have, to a certain degree, created a paradigm shift toward the perception that large fractions of locally produced recruitment may be the rule rather than the exception. Here we examined the degree of localized settlement in an anemonefish, Amphiprion bicinctus, at a solitary coral reef in the central Red Sea by integrating estimates of self-recruitment obtained from genetic parentage analysis with predictions of local retention derived from a biophysical dispersal model parameterized with real-time physical forcing. Self-recruitment at the reef scale (c. 0.7 km2) was virtually absent during two consecutive January spawning events (1.4 % in 2012 and 0 % in 2013). Predicted levels of local retention at the reef scale varied temporally, but were comparatively low for both simulations (7 % in 2012 and 0 % in 2013). At the same time, the spatial scale of simulated dispersal was restricted to approximately 20 km from the source. Model predictions of reef-scale larval retention were highly dependent on biological parameters, underlining the need for further empirical validations of larval traits over a range of species. Overall, our findings present an urgent caution when assuming the potential for self-replenishment in small marine reserves.

  7. Performance Evaluation of CRW Reef-Scale and Broad-Scale SST-Based Coral Monitoring Products in Fringing Reef Systems of Tobago

    Directory of Open Access Journals (Sweden)

    Shaazia S. Mohammed

    2015-12-01

    Full Text Available Satellite-derived sea surface temperature (SST is used to monitor coral bleaching through the National Oceanic and Atmospheric Administration’s Coral Reef Watch (CRW Decision Support System (DSS. Since 2000, a broad-scale 50 km SST was used to monitor thermal stress for coral reefs globally. However, some discrepancies were noted when applied to small-scale fringing coral reefs. To address this, CRW created a new DSS, specifically targeted at or near reef scales. Here, we evaluated the new reef-scale (5 km resolution products using in situ temperature data and coral bleaching surveys which were also compared with the heritage broad-scale (50 km for three reefs (Buccoo Reef, Culloden and Speyside of the southern Caribbean island of Tobago. Seasonal and annual biases indicated the new 5 km SST generally represents the conditions at these reefs more accurately and more consistently than the 50 km SST. Consistency between satellite and in situ temperature data influences the performance of anomaly-based predictions of bleaching: the 5 km DHW product showed better consistency with bleaching observations than the 50 km product. These results are the first to demonstrate the improvement of the 5 km products over the 50 km predecessors and support their use in monitoring thermal stress of reefs in the southern Caribbean.

  8. Pacific Reef Assessment and Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structures (ARMS) Deployed at Coral Reef Sites across the U.S. Pacific from 2008 to 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term program for sustainable management and conservation of coral reef ecosystems, from 2008, Autonomous Reef Monitoring Structures (ARMS) have...

  9. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across the Pacific Remote Island Areas from 2011 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  10. Transport of Calcareous Fragments by Reef Fishes.

    Science.gov (United States)

    Bardach, J E

    1961-01-13

    The weight of sand, coral scrapings, algal fragments, and other calcareous materials which pass through the intestines of reef fishes was calculated on a hectare-per-year basis. It was found that browsing omnivorous reef fishes which rely, in part, on a plant diet ingested and redeposited at least 2300 kg of such material on a 1-hectare study reef near Bermuda. Reasons are presented why this estimate, certainly in order of magnitude, should be applicable to coral reefs in general.

  11. Nursery function of tropical back-reef systems

    NARCIS (Netherlands)

    Adams, A.J.; Dahlgren, C.P.; Kellison, G.T.; Kendall, M.S.; Layman, C.A.; Ley, J.A.; Nagelkerken, I.; Serafy, J.E.

    2006-01-01

    Similar to nearshore systems in temperate latitudes, the nursery paradigm for tropical back-reef systems is that they provide a habitat for juveniles of species that subsequently make ontogenetic shifts to adult populations on coral reefs (we refer to this as the nursery function of back-reef

  12. Length-weight relationships of coral reef fishes from the Alacran Reef, Yucatan, Mexico

    OpenAIRE

    Gonzalez-Gandara, C.; Perez-Diaz, E.; Santos-Rodriguez, L.; Arias-Gonzalez, J.E.

    2003-01-01

    Length-weight relationships were computed for 42 species of coral reef fishes from 14 families from the Alacran Reef (Yucatan, Mexico). A total of 1 892 individuals was used for this purpose. The fish species were caught by different fishing techniques such as fishhooks, harpoons, gill and trawl nets. The sampling period was from March 1998 to January 2000.

  13. Minimisation of Generation Variability of a Group of Wind Plants

    Directory of Open Access Journals (Sweden)

    Dubravko Sabolić

    2017-09-01

    Full Text Available Minimisation of variability of energy delivered from a group of wind plants into the power system using portfolio theory approach was studied. One of the assumptions of that theory is Gaussian distribution of the sample, which is not satisfied in case of wind generation. Therefore, optimisation of a “portfolio” of plants with different goal functions was studied. It was supposed that a decision on distribution of a fixed amount of generation capacity to be installed among a set of geographical locations with known wind statistics is to be made with minimised variability of generation as a goal. In that way the statistical cancellation of variability would be used in the best possible manner. This article is a brief report on results of such an investigation. An example of nine locations in Croatia was used. These locations’ wind statistics are known from historic generation data.

  14. From ridge to reef—linking erosion and changing watersheds to impacts on the coral reef ecosystems of Hawai‘i and the Pacific Ocean

    Science.gov (United States)

    Stock, Jonathan D.; Cochran, Susan A.; Field, Michael E.; Jacobi, James D.; Tribble, Gordon

    2011-01-01

    Coral reef ecosystems are threatened by unprecedented watershed changes in the United States and worldwide. These ecosystems sustain fishing and tourism industries essential to the economic survival of many communities. Sediment, nutrients, and pollutants from watersheds are increasingly transported to coastal waters, where these contaminants damage corals. Although pollution from watersheds is one of many factors threatening coral survival, it is one that local people can have a profound influence on. U.S. Geological Survey scientists are using mapping, monitoring, and computer modeling to better forecast the effects of watershed changes on reef health. Working with communities in Hawai‘i and on other U.S. islands in the Pacific, they are helping to provide the science needed to make informed decisions on watershed and coral reef management.

  15. Role of coral reefs in global ocean production

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C J; Hatcher, B G; Smith, S V [CSIRO Institute of Natural Resources and Environment, Dickson, ACT (Australia)

    1991-01-01

    Coral reefs cover some 600 thousand square kilometres of the earth's surface (0.17% of the ocean surface). First order estimates show coral reefs to contribute about 0.05% of the estimated net CO{sub 2} fixation rate of the global oceans. Gross CO{sub 2} fixation is relatively high (of the order 700 x 10{sup 12}g C year{sup -1}), but most of this material is recycled within the reefs. Excess (net) production of organic material (E) is much smaller, of the order 20 x 10{sup 12}g C year{sup -1}. 75% of E is available for export from coral reefs to adjacent areas. Comparison of estimates for net production by reefs and their surrounding oceans indicates that the excess production by coral reefs is similar to new production in the photic zone of oligotrophic oceans. Consequently, estimates for global ocean production should as a first approximation include reefal areas with the surrounding ocean when assigning average net production rates. It can be concluded that organic production by reefs plays a relatively minor role in the global scale of fluxes and storage of elements. In comparison, the companion process of biologically-mediated inorganic carbon precipitation represents a major role for reefs. While reef production does respond on local scales to variation in ocean climate, neither the absolute rates nor the amount accumulated into organic pools appear to be either sensitive indicators or accurate recorders of climatic change in most reef systems. Similarly, the productivity of most reefs should be little affected by currently predicted environmental changes resulting from the greenhouse effect. 86 refs., 2 figs., 1 tab.

  16. Assessing cryptic reef diversity of colonizing marine invertebrates using Autonomous Reef Monitoring Structures (ARMS) deployed at coral reef sites in Batangas, Philippines from 2012-03-12 to 2015-05-31 (NCEI Accession 0162829)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used by the NOAA Coral Reef Ecosystem Program (CREP) to assess and monitor cryptic reef diversity across the...

  17. Making a model meaningful to coral reef managers in a developing nation: a case study of overfishing and rock anchoring in Indonesia.

    Science.gov (United States)

    Maynard, Jeffrey A; Anthony, Kenneth R N; Afatta, Siham; Dahl-Tacconi, Nancy; Hoegh-Guldberg, Ove

    2010-10-01

    Most of the world's coral reefs line the coasts of developing nations, where impacts from intense and destructive fishing practices form critical conservation issues for managers. Overfishing of herbivorous fishes can cause phase shifts to macroalgal dominance, and fishers' use of rocks as anchors lowers coral cover, giving further competitive advantage to macroalgae. Overfishing and anchoring have been studied extensively, but the role of their interaction in lowering coral reef resilience has not been quantified formally. We analyzed the combined effects of overfishing and rock anchoring on a range of reef habitat types--varying from high coral and low macroalgae cover to low coral and high macroalgae cover--in a marine park in Indonesia. We parameterized a model of coral and algal dynamics with three intensities of anchoring and fishing pressure. Results of the model indicated that damage caused by rock anchoring was equal to or possibly more devastating to coral reefs in the area than the impact of overfishing. This is an important outcome for local managers, who usually have the funds to distribute less-damaging anchors, but normally are unable to patrol regularly and effectively enough to reduce the impact of overfishing. We translated model results into an interactive visual tool that allows managers to explore the benefits of reducing anchoring frequency and fishing pressure. The potential consequences of inaction were made clear: the likelihood that any of the reef habitats will be dominated in the future by macroalgae rather than corals depends on reducing anchoring frequency, fishing pressure, or both. The tool provides a platform for strengthened relationships between managers and conservationists and can facilitate the uptake of recommendations regarding resource allocation and management actions. Conservation efforts for coral reefs in developing nations are likely to benefit from transforming model projections of habitat condition into tools local

  18. The continuing decline of coral reefs in Bahrain.

    Science.gov (United States)

    Burt, John A; Al-Khalifa, Khalifa; Khalaf, Ebtesam; Alshuwaikh, Bassem; Abdulwahab, Ahmed

    2013-07-30

    Historically coral reefs of Bahrain were among the most extensive in the southern basin of the Arabian Gulf. However, Bahrain's reefs have undergone significant decline in the last four decades as a result of large-scale coastal development and elevated sea surface temperature events. Here we quantitatively surveyed six sites including most major coral reef habitats around Bahrain and a reef located 72 km offshore. Fleshy and turf algae now dominate Bahrain's reefs (mean: 72% cover), and live coral cover is low (mean: 5.1%). Formerly dominant Acropora were not observed at any site. The offshore Bulthama reef had the highest coral cover (16.3%) and species richness (22 of the 23 species observed, 13 of which were exclusive to this site). All reefs for which recent and historical data are available show continued degradation, and it is unlikely that they will recover under continuing coastal development and projected climate change impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Status and review of health of Indian coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Rajan, R.; Satyanarayan, C.; Raghunathan, C.; Koya, S.S.; Ravindran, J.; Manikandan, B.; Venkataraman, K.

    Status of reef health incorporating species-wise cover of scleractinians has been reported covering 61 stations in 29 reef locations of the four major reef regions in India as of March 2011, alongside a review of available reef health data since...

  20. Dynamics of screw dislocations : a generalised minimising-movements scheme approach

    NARCIS (Netherlands)

    Bonaschi, G.A.; Meurs, van P.J.P.; Morandotti, M.

    2015-01-01

    The gradient flow structure of the model introduced in [CG99] for the dynamics of screw dislocations is investigated by means of a generalised minimising-movements scheme approach. The assumption of a finite number of available glide directions, together with the "maximal dissipation criterion" that

  1. Coral reefs of the turbid inner-shelf of the Great Barrier Reef, Australia: An environmental and geomorphic perspective on their occurrence, composition and growth

    Science.gov (United States)

    Browne, N. K.; Smithers, S. G.; Perry, C. T.

    2012-10-01

    Investigations of the geomorphic and sedimentary context in which turbid zone reefs exist, both in the modern and fossil reef record, can inform key ecological debates regarding species tolerances and adaptability to elevated turbidity and sedimentation. Furthermore, these investigations can address critical geological and palaeoecological questions surrounding longer-term coral-sediment interactions and reef growth histories. Here we review current knowledge about turbid zone reefs from the inner-shelf regions of the Great Barrier Reef (GBR) in Australia to consider these issues and to evaluate reef growth in the period prior to and post European settlement. We also consider the future prospects of these reefs under reported changing water quality regimes. Turbid zone reefs on the GBR are relatively well known compared to those in other reef regions. They occur within 20 km of the mainland coast where reef development may be influenced by continual or episodic terrigenous sediment inputs, fluctuating salinities (24-36 ppt), and reduced water quality through increased nutrient and pollutant delivery from urban and agricultural runoff. Individually, and in synergy, these environmental conditions are widely viewed as unfavourable for sustained and vigorous coral reef growth, and thus these reefs are widely perceived as marginal compared to clear water reef systems. However, recent research has revealed that this view is misleading, and that in fact many turbid zone reefs in this region are resilient, exhibit relatively high live coral cover (> 30%) and have distinctive community assemblages dominated by fast growing (Acropora, Montipora) and/or sediment tolerant species (Turbinaria, Goniopora, Galaxea, Porites). Palaeoecological reconstructions based on the analysis of reef cores show that community assemblages are relatively stable at millennial timescales, and that many reefs are actively accreting (average 2-7 mm/year) where accommodation space is available

  2. Deposition of calcium carbonate into postglacial reefs: a test on a 'coral reef hypothesis'. Kohyoki no sangosho eno tansan calcium taiseki sokudo

    Energy Technology Data Exchange (ETDEWEB)

    Kayanne, H [Geological Survey of Japan, Tsukuba (Japan)

    1993-06-15

    This paper describes the following matters on changes in rates of deposition of calcium carbonate into postglacial coral reefs: Estimation was made on change in CaCO3 deposition in four coral reefs the data of which relating to all cross sections down to reef base have been acquired by drilling; the main deposition periods in the coral reefs formed in the postglacial period were five to six thousand years ago; the maximum deposition rate is estimated to be 2.7 [times] 10[sup 14] gC per one thousand years under an assumption that the total deposition amount in postglacial coral reefs is 1.2 [times] 10[sup 18] gC (converted to carbon amount); the recent deposition rate is (1/7.5) that of the former rate; from information obtained on submerged coral reefs, deposition amounts in coral reefs before 10,000 years ago are judged to have been smaller than those thereafter; and the above knowledges do not support the 'coral reef hypothesis' by Berger et al. that deposition of calcium carbonate into postglacial coral reefs has occurred from 15,000 years ago to 10,000 years ago. 30 refs., 2 figs.

  3. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  4. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae

    NARCIS (Netherlands)

    Barott, K.L.; Rodriguez-Mueller, B; Youle, M.; Marhaver, K.L.; Vermeij, M.J.A.; Smith, J.E.; Rohwer, F.L.

    2012-01-01

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the

  5. Macroalgal herbivory on recovering versus degrading coral reefs

    Science.gov (United States)

    Chong-Seng, K. M.; Nash, K. L.; Bellwood, D. R.; Graham, N. A. J.

    2014-06-01

    Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20-46 %) and those degrading with high macroalgal cover (57-82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m-2 h-1 on coral-dominated and 5.3 ± 2.1 g m-2 h-1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser , Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change

  6. 75 FR 48934 - Coral Reef Conservation Program Implementation Guidelines

    Science.gov (United States)

    2010-08-12

    ...-01] RIN 0648-ZC19 Coral Reef Conservation Program Implementation Guidelines AGENCY: National Oceanic... Guidelines (Guidelines) for the Coral Reef Conservation Program (CRCP or Program) under the Coral Reef... assistance for coral reef conservation projects under the Act. NOAA revised the Implementation Guidelines for...

  7. Implementing Cleaner Technologies as a means of minimising waste production

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2002-01-01

    This article gives an overview of how Cleaner Production methods may contribute to minimising waste formation as well as showing energy and resource savings. It introduces the tools and procedures used when working in this field. It also illustrates the theoretical approach by using examples from...

  8. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  9. Re-creating missing population baselines for Pacific reef sharks.

    Science.gov (United States)

    Nadon, Marc O; Baum, Julia K; Williams, Ivor D; McPherson, Jana M; Zgliczynski, Brian J; Richards, Benjamin L; Schroeder, Robert E; Brainard, Russell E

    2012-06-01

    Sharks and other large predators are scarce on most coral reefs, but studies of their historical ecology provide qualitative evidence that predators were once numerous in these ecosystems. Quantifying density of sharks in the absence of humans (baseline) is, however, hindered by a paucity of pertinent time-series data. Recently researchers have used underwater visual surveys, primarily of limited spatial extent or nonstandard design, to infer negative associations between reef shark abundance and human populations. We analyzed data from 1607 towed-diver surveys (>1 ha transects surveyed by observers towed behind a boat) conducted at 46 reefs in the central-western Pacific Ocean, reefs that included some of the world's most pristine coral reefs. Estimates of shark density from towed-diver surveys were substantially lower (sharks observed in towed-diver surveys and human population in models that accounted for the influence of oceanic primary productivity, sea surface temperature, reef area, and reef physical complexity. We used these models to estimate the density of sharks in the absence of humans. Densities of gray reef sharks (Carcharhinus amblyrhynchos), whitetip reef sharks (Triaenodon obesus), and the group "all reef sharks" increased substantially as human population decreased and as primary productivity and minimum sea surface temperature (or reef area, which was highly correlated with temperature) increased. Simulated baseline densities of reef sharks under the absence of humans were 1.1-2.4/ha for the main Hawaiian Islands, 1.2-2.4/ha for inhabited islands of American Samoa, and 0.9-2.1/ha for inhabited islands in the Mariana Archipelago, which suggests that density of reef sharks has declined to 3-10% of baseline levels in these areas. ©2012 Society for Conservation Biology No claim to original US government works.

  10. Creating artificial reefs from decommissioned platforms in the North Sea: review of knowledge and proposed programme of research

    Energy Technology Data Exchange (ETDEWEB)

    Aabel, J.P.; Cripps, S.J.; Jensen, A.C.; Picken, G.

    1997-12-31

    This report relates to the case for research and development work on North Sea artificial reefs. There are potentially many benefits that can be derived from platform reefs, for example as an aid to increased fishing yield for commercial fishermen, a means of enhancing fish stocks and protecting habitat for physical damage. In addition there may be a reduction in decommissioning costs for the oil industry and in negative environmental impacts inherent with land-based decommissioning techniques. Negative impacts could be loss of fishing area and changes in the ecosystem. The report will be focused towards practically applicable results that will aid the decision making process. 129 refs., 13 figs., 18 tabs.

  11. Creating artificial reefs from decommissioned platforms in the North Sea: review of knowledge and proposed programme of research

    Energy Technology Data Exchange (ETDEWEB)

    Aabel, J P; Cripps, S J; Jensen, A C; Picken, G

    1998-12-31

    This report relates to the case for research and development work on North Sea artificial reefs. There are potentially many benefits that can be derived from platform reefs, for example as an aid to increased fishing yield for commercial fishermen, a means of enhancing fish stocks and protecting habitat for physical damage. In addition there may be a reduction in decommissioning costs for the oil industry and in negative environmental impacts inherent with land-based decommissioning techniques. Negative impacts could be loss of fishing area and changes in the ecosystem. The report will be focused towards practically applicable results that will aid the decision making process. 129 refs., 13 figs., 18 tabs.

  12. Reef sharks: recent advances in ecological understanding to inform conservation.

    Science.gov (United States)

    Osgood, G J; Baum, J K

    2015-12-01

    Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions. © 2015 The Fisheries Society of the British Isles.

  13. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.

    Science.gov (United States)

    Velásquez, Johanna; Sánchez, Juan A

    2015-01-01

    What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. There was strong octocoral community structure with opposite diversity

  14. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Johanna Velásquez

    Full Text Available What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs and oceanic (i.e., far off the continental shelf, usually on volcanic substratum; whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown.Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches.Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks. Additionally, atolls and barrier reefs had the highest species diversity (Shannon index whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape.There was strong octocoral community structure with opposite

  15. Minimising waste in the food and drink sector: using the business club approach to facilitate training and organisational development.

    Science.gov (United States)

    Hyde, Katherine; Miller, Linda; Smith, Ann; Tolliday, Jo

    2003-04-01

    The aim of the East Anglian Waste Minimisation in the Food And Drink Industry Project was to develop waste minimisation capability in food and drink sector companies by providing a structured training programme and consultancy support to participating members of a business club. The business club forum provided the structure within which interactive training and development sessions were delivered. Expertise and assistance in implementing waste minimisation and waste management programmes was given to member companies at their sites. The project resulted in pound 1,800,000 per annum of identified savings with pound 1,100,000 of verified savings already achieved. Training and development contributed fundamentally to these project outcomes and achievements. The structured training package used three different approaches or methods. Teaching and workshop sessions were used to present interactive training on waste minimisation practice. These were supplemented by interactive 'report-back' sessions where the 'project champions' presented progress reports to the club on waste minimisation at their sites. An overview of the business club approach is described, together with an account of the successes and challenges of applying a structured training and development programme and the barriers to waste minimisation that were overcome. Training effectiveness was measured according to reaction, learning, application and impact.

  16. Tourism, Reef Condition and Visitor Satisfaction in Watamu Marine ...

    African Journals Online (AJOL)

    Abstract—Reef-based tourism is known to put environmental pressure on reefs but its consequences on the ecological and economic sustainability of Marine. Protected Areas is unknown. Previous research suggests that, if reef conditions decline, then tourism on a reef will also suffer, but is this always the case? This.

  17. Unraveling the structure and composition of Varadero Reef, an improbable and imperiled coral reef in the Colombian Caribbean

    Directory of Open Access Journals (Sweden)

    Valeria Pizarro

    2017-12-01

    Full Text Available Coral reefs are commonly associated with oligotrophic, well-illuminated waters. In 2013, a healthy coral reef was discovered in one of the least expected places within the Colombian Caribbean: at the entrance of Cartagena Bay, a highly-polluted system that receives industrial and sewage waste, as well as high sediment and freshwater loads from an outlet of the Magdalena River (the longest and most populated river basin in Colombia. Here we provide the first characterization of Varadero Reef’s geomorphology and biological diversity. We also compare these characteristics with those of a nearby reference reef, Barú Reef, located in an area much less influenced by the described polluted system. Below the murky waters, we found high coral cover of 45.1% (±3.9; up to 80% in some sectors, high species diversity, including 42 species of scleractinian coral, 38 of sponge, three of lobster, and eight of sea urchin; a fish community composed of 61 species belonging to 24 families, and the typical zonation of a Caribbean fringing reef. All attributes found correspond to a reef that, according to current standards should be considered in “good condition”. Current plans to dredge part of Varadero threaten the survival of this reef. There is, therefore, an urgent need to describe the location and characteristics of Varadero as a first step towards gaining acknowledgement of its existence and garnering inherent legal and environmental protections.

  18. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN ...

    Science.gov (United States)

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re

  19. Social interactions among grazing reef fish drive material flux in a coral reef ecosystem.

    Science.gov (United States)

    Gil, Michael A; Hein, Andrew M

    2017-05-02

    In human financial and social systems, exchanges of information among individuals cause speculative bubbles, behavioral cascades, and other correlated actions that profoundly influence system-level function. Exchanges of information are also widespread in ecological systems, but their effects on ecosystem-level processes are largely unknown. Herbivory is a critical ecological process in coral reefs, where diverse assemblages of fish maintain reef health by controlling the abundance of algae. Here, we show that social interactions have a major effect on fish grazing rates in a reef ecosystem. We combined a system for observing and manipulating large foraging areas in a coral reef with a class of dynamical decision-making models to reveal that reef fish use information about the density and actions of nearby fish to decide when to feed on algae and when to flee foraging areas. This "behavioral coupling" causes bursts of feeding activity that account for up to 68% of the fish community's consumption of algae. Moreover, correlations in fish behavior induce a feedback, whereby each fish spends less time feeding when fewer fish are present, suggesting that reducing fish stocks may not only reduce total algal consumption but could decrease the amount of algae each remaining fish consumes. Our results demonstrate that social interactions among consumers can have a dominant effect on the flux of energy and materials through ecosystems, and our methodology paves the way for rigorous in situ measurements of the behavioral rules that underlie ecological rates in other natural systems.

  20. Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef?

    Science.gov (United States)

    Muir, Paul R; Marshall, Paul A; Abdulla, Ameer; Aguirre, J David

    2017-10-11

    Mass bleaching associated with unusually high sea temperatures represents one of the greatest threats to corals and coral reef ecosystems. Deeper reef areas are hypothesized as potential refugia, but the susceptibility of Scleractinian species over depth has not been quantified. During the most severe bleaching event on record, we found up to 83% of coral cover severely affected on Maldivian reefs at a depth of 3-5 m, but significantly reduced effects at 24-30 m. Analysis of 153 species' responses showed depth, shading and species identity had strong, significant effects on susceptibility. Overall, 73.3% of the shallow-reef assemblage had individuals at a depth of 24-30 m with reduced effects, potentially mitigating local extinction and providing a source of recruits for population recovery. Although susceptibility was phylogenetically constrained, species-level effects caused most lineages to contain some partially resistant species. Many genera showed wide variation between species, including Acropora, previously considered highly susceptible. Extinction risk estimates showed species and lineages of concern and those likely to dominate following repeated events. Our results show that deeper reef areas provide refuge for a large proportion of Scleractinian species during severe bleaching events and that the deepest occurring individuals of each population have the greatest potential to survive and drive reef recovery. © 2017 The Author(s).

  1. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium from Corals.

    Directory of Open Access Journals (Sweden)

    Lisa Fujise

    Full Text Available The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium. Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae in aquaria under non-thermal stress (27°C and moderate thermal stress conditions (30°C, and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.

  2. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals.

    Science.gov (United States)

    Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M; Koike, Kazuhiko

    2014-01-01

    The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.

  3. Mapping Mesophotic Reefs Along the Brazilian Continental Margin

    Science.gov (United States)

    Bastos, A.; Moura, R.; Amado Filho, G.; Ferreira, L.; Boni, G.; Vedoato, F.; D'Agostini, D.; Lavagnino, A. C.; Leite, M. D.; Quaresma, V.

    2017-12-01

    Submerged or drowned reefs constitute an important geological record of sea level variations, forming the substrate for the colonization of modern benthic mesophotic communities. Although mapping mesophotic reefs has increased in the last years, their spatial distribution is poorly known and the worldwide occurrence of this reef habitat maybe underestimated. The importance in recognizing the distribution of mesophotic reefs is that they can act as a refuge for corals during unsuitable environmental conditions and a repository for shallow water corals. Here we present the result of several acoustic surveys that mapped and discovered new mesophotic reefs along the Eastern and Equatorial Brazilian Continental Margin. Seabed mapping was carried out using multibeam and side scan sonars. Ground truthing was obtained using drop camera or scuba diving. Mesophotic reefs were mapped in water depths varying from 30 to 100m and under distinct oceanographic conditions, especially in terms of river load input and shelf width. Reefs showed distinct morphologies, from low relief banks and paleovalleys to shelf edge ridges. Extensive occurrence of low relief banks were mapped along the most important coralline complex province in the South Atlantic, the Abrolhos Shelf. These 30 to 40m deep banks, have no more than 3 meters in height and may represent fringing reefs formed during sea level stabilization. Paleovalleys mapped along the eastern margin showed the occurrence of coralgal ledges along the channel margins. Paleovalleys are usually deeper than 45m and are associated with outer shelf rhodolith beds. Shelf edge ridges (80 to 120m deep) were mapped along both margins and are related to red algal encrusting irregular surfaces that have more than 3m in height, forming a rigid substrate for coral growth. Along the Equatorial Margin, off the Amazon mouth, shelf edge patch reefs and rhodolith beds forming encrusting surfaces and shelf edge ridges were mapped in water depths greater

  4. Developing a multi-stressor gradient for coral reefs

    Science.gov (United States)

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be es...

  5. Modeling Reef Island Morphodynamics in Profile and Plan View

    Science.gov (United States)

    Ashton, A. D.; Ortiz, A. C.; Lorenzo-Trueba, J.

    2016-12-01

    Reef islands are carbonate detrital landforms perched atop shallow reef flats of atolls and barrier reef systems. Often comprising the only subaerial, inhabitable land of many island chains and island nations, these low-lying, geomorphically active landforms face considerable hazards from climate change. While there hazards include wave overtopping and groundwater salinization, sea-level rise and wave climate change will affect sediment transport and shoreline dynamics, including the possibility for wholesale reorganization of the islands themselves. Here we present a simplified morphodynamic model that can spatially quantify the potential impacts of climate change on reef islands. Using parameterizations of sediment transport pathways and feedbacks from previously presented XBeach modeling results, we investigate how sea-level rise, change in storminess, and different carbonate production rates can affect the profile evolution of reef islands, including feedbacks with the shallow reef flat that bounds the islands offshore (and lagoonward). Model results demonstrate that during rising sea levels, the reef flat can serve as a sediment trap, starving reef islands of detrital sediment that could otherwise fortify the shore against sea-level-rise-driven erosion. On the other hand, if reef flats are currently shallow (likely due to geologic inheritance or biologic cementation processes) such that sea-level rise does not result in sediment accumulation on the flat, reef island shorelines may be more resilient to rising seas. We extend the model in plan view to examine how long-term (decadal) changes in wave approach direction could affect reef island shoreline orientation. We compare model results to historical and geologic change for different case studies on the Marshall Islands. This simplified modeling approach, focusing on boundary dynamics and mass fluxes, provides a quantitative tool to predict the response of reef island environments to climate change.

  6. Copolymer-homopolymer blends : global energy minimisation and global energy bounds

    NARCIS (Netherlands)

    Gennip, van Y.; Peletier, M.A.

    2008-01-01

    Abstract We study a variational model for a diblock copolymer–homopolymer blend. The energy functional is a sharp-interface limit of a generalisation of the Ohta–Kawasaki energy. In one dimension, on the real line and on the torus, we prove existence of minimisers of this functional and we describe

  7. Biomimetric sentinel reef structures for optical sensing and communications

    Science.gov (United States)

    Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor

    2017-05-01

    Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.

  8. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Asia O Armstrong

    Full Text Available Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass.

  9. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    Science.gov (United States)

    Schill, Steven R; Raber, George T; Roberts, Jason J; Treml, Eric A; Brenner, Jorge; Halpin, Patrick N

    2015-01-01

    We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  10. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    Directory of Open Access Journals (Sweden)

    Steven R Schill

    Full Text Available We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  11. Cognitive challenges to minimising low value care.

    Science.gov (United States)

    Scott, Ian A

    2017-09-01

    Clinical decisions often rely on pattern recognition, simple rules of thumb, tacit knowledge and habit. In many instances, such intuitive decisions are fast and accurate, but they can be subject to cognitive biases leading to delivery of care of low value at odds with scientific evidence of best practice. If programmes, such as EVOLVE (Evaluating Evidence, Enhancing Efficiencies) and Choosing Wisely are to have maximal impact in minimising low value care, such biases, and the factors that hide and accentuate them, need to be exposed and addressed in a collegiate and non-judgemental manner. © 2017 Royal Australasian College of Physicians.

  12. 78 FR 67128 - Coral Reef Conservation Program; Meeting

    Science.gov (United States)

    2013-11-08

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Coral Reef Conservation Program; Meeting AGENCY: Coral Reef Conservation Program, Office of Ocean and Coastal Resource Management... meeting of the U.S. Coral Reef Task Force (USCRTF). The meeting will be held in Christiansted, U.S. Virgin...

  13. Recommendations for international gambling harm-minimisation guidelines: comparison with effective public health policy.

    Science.gov (United States)

    Gainsbury, Sally M; Blankers, Matthijs; Wilkinson, Claire; Schelleman-Offermans, Karen; Cousijn, Janna

    2014-12-01

    Problem gambling represents a significant public health problem, however, research on effective gambling harm-minimisation measures lags behind other fields, including other addictive disorders. In recognition of the need for consistency between international jurisdictions and the importance of basing policy on empirical evidence, international conventions exist for policy on alcohol, tobacco, and illegal substances. This paper examines the evidence of best practice policies to provide recommendations for international guidelines for harm-minimisation policy for gambling, including specific consideration of the specific requirements for policies on Internet gambling. Evidence indicates that many of the public health policies implemented for addictive substances can be adapted to address gambling-related harms. Specifically, a minimum legal age of at least 18 for gambling participation, licensing of gambling venues and activities with responsible gambling and consumer protection strategies mandated, and brief interventions should be available for those at-risk for and experiencing gambling-related problems. However, there is mixed evidence on the effectiveness of limits on opening hours and gambling venue density and increased taxation to minimise harms. Given increases in trade globalisation and particularly the global nature of Internet gambling, it is recommended that jurisdictions take actions to harmonise gambling public health policies.

  14. Status of coral reefs of India

    Digital Repository Service at National Institute of Oceanography (India)

    Muley, E.V.; Venkataraman, K.; Alfred, J.R.B.; Wafar, M.V.M.

    and economic significance of coral reefs and the threat perceptions, Government of India has initiated measures for their intensive conservation and management. Present paper deals with ecological status of coral reefs in the country and various national...

  15. Biology of corals and coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Rajkumar, R.; Parulekar, A.H.

    on the systematic position is presented. The general structure is depicted with illustrations. Physiology part is updated to current knowledge on reproduction, nutrition and excretion of corals. The coral reefs section begins with status of world reefs...

  16. Contribution to origin of the reefs in northeastern

    International Nuclear Information System (INIS)

    Nobrega Coutinho, P. da; Farias, C.C.

    1979-01-01

    Several reef lines parallel to the seashore are encountered on the heaches of north east Brazil, composing one of the most characteristic morphological phenomena of the region. The textural and mineralogical composition of the reefs is very similar to the sediments met in the submarine beach. The initial comentation seems to take place beach. X-ray diffraction analyses showed that the cement of the first reef line of the intertidal zone is constituited of 60% aragonite and of 40% magnesium calcite with approximately 15-18 mol. %MgCO 3 in the calcite. The cement of the second reef line in the submarine beach is made up of solely calcite with only 3 mol. %MgCO 3 . This proportion becomes even smaller in the cement in the reefs beneath the sand bank. The cement of these reefs is a result of the dissolution and precipitation of organic fragments present in the submarine beach sediments, especial Halimeda. The composition of these fragments appeared to be identical to the reefs of the intertidal zone. The magnesium calcite is mainly a result to the alteration of the aragonite, being the marine inorganic precipitation as a secondary process. (author) [pt

  17. Watershed processes from ridge to reef: consequences of feral ungulates for coral reef and effects of watershed management

    Science.gov (United States)

    Gordon Tribble; Jonathan Stock; Jim Jacobi

    2016-01-01

    Molokai’s south shore has some of Hawaii’s most extensive and best-developed coral reefs. Historic terrigenous sedimentation appears to have impacted coral growth along several miles of fringing reef. The land upslope of the reef consists of small watersheds with streams that flow intermittently to the ocean. A USGS gage at the outlet of one of the most impacted...

  18. Coral reef ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.

    ), on submerged banks like Gave shani bank (13°24'N; 73°45'E) (Nair and Qasim 1978) andSidere~ko Bank (13°43.5' N; 73°42'E) (Rao 1972) and as stray individual units off Visakhapatnam (Bakus, G. personal communication) and Pondicherry (Ramesh, A. personal... communication). Fossil reefs, drowned as a result of the Holocene sea level rise, occur at 92, 85, 75 and 55 m depth along .. ~ !! ":2 0. ~ Figure 3.1 Graphical Representation of the SO-Box Model of a Caribbean Coral Reef Key: 1. Benthic producers. 2. Detritus...

  19. Identification of Coral Reefs in Mamburit Waters, Sumenep Regency

    OpenAIRE

    Sawiya, Sawiya; Mahmudi, Mohammad; Guntur, Guntur

    2014-01-01

    This research was conducted in September to October 2013 in Mamburit Waters, Sumenep Regency. This study was aimed to assess the percentage of coral reefs and acknowkedge the type of the coral reefs. Coral reefs was observed with the Line Intercept (LIT) method laid parallel to the coastline in the depth of 3 m and 10 m in windward and leeward area. Total of 59.88% coral reefs lived in leeward area in 3 m depth includes in good category and the percentage of dead coral reefs and other fauna f...

  20. Hypoxia tolerance in coral-reef triggerfishes (Balistidae)

    Science.gov (United States)

    Wong, Corrie C.; Drazen, Jeffrey C.; Callan, Chatham K.; Korsmeyer, Keith E.

    2018-03-01

    Despite high rates of photosynthetic oxygen production during the day, the warm waters of coral reefs are susceptible to hypoxia at night due to elevated respiration rates at higher temperatures that also reduce the solubility of oxygen. Hypoxia may be a challenge for coral-reef fish that hide in the reef to avoid predators at night. Triggerfishes (Balistidae) are found in a variety of reef habitats, but they also are known to find refuge in reef crevices and holes at night, which may expose them to hypoxic conditions. The critical oxygen tension ( P crit) was determined as the point below which oxygen uptake could not be maintained to support standard metabolic rate (SMR) for five species of triggerfish. The triggerfishes exhibited similar levels of hypoxia tolerance as other coral-reef and coastal marine fishes that encounter low oxygen levels in their environment. Two species, Rhinecanthus rectangulus and R. aculeatus, had the lowest P crit ( 3.0 kPa O2), comparable to the most hypoxia-tolerant obligate coral-dwelling gobies, while Odonus niger and Sufflamen bursa were moderately tolerant to hypoxia ( P crit 4.5 kPa), and Xanthichthys auromarginatus was intermediate ( P crit 3.7 kPa). These differences in P crit were not due to differences in oxygen demand, as all the species had a similar SMR once mass differences were taken into account. The results suggest that triggerfish species are adapted for different levels of hypoxia exposure during nocturnal sheltering within the reef.

  1. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across the Marianas Archipelago from 2011-04-07 to 2014-05-04 (NCEI Accession 0162461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  2. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across Wake Island from 2011-03-23 to 2014-03-19 (NCEI Accession 0162467)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  3. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across the Hawaiian Archipelago from 2013-08-03 to 2016-09-24 (NCEI Accession 0162465)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  4. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across the Hawaiian Archipelago from 2008-10-07 to 2013-09-13 (NCEI Accession 0162470)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  5. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across American Samoa from 2012-04-03 to 2015-03-26 (NCEI Accession 0162468)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  6. State of the coralline reefs

    International Nuclear Information System (INIS)

    Garzon Ferreira, Jaime; Rodriguez Ramirez, Alberto; Bejarano Chavarro, Sonia; Navas Camacho, Raul; Reyes Nivia, Catalina

    2002-01-01

    A diagnosis is made based primarily on the data obtained inside the national system of monitoring of coralline reefs in Colombia, under the coordination of the INVEMAR and with the support of several institutions. The paper does a diagnostic of the covering of the reef substrate, bleaching and coralline illnesses, wealth and abundance of fishes among other topics

  7. Directional loudspeaker arrays for acoustic warning systems with minimised noise pollution

    NARCIS (Netherlands)

    van der Rots, R.; Berkhoff, Arthur P.

    2015-01-01

    This paper describes numerical and experimental results of beamforming algorithms for generation of directional sound. The intended application is a sound source for cars with the objective to warn vulnerable road users while minimising noise pollution. Nowadays, sensors exist which are able to

  8. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.; Harrison, Hugo B.; Almany, Glenn R.; Berumen, Michael L.; Bode, Michael; Bonin, Mary C.; Choukroun, Severine; Doherty, Peter J.; Frisch, Ashley J.; Saenz-Agudelo, Pablo; Jones, Geoffrey P.

    2016-01-01

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  9. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.

    2016-11-15

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  10. Ecological Processes and Contemporary Coral Reef Management

    Directory of Open Access Journals (Sweden)

    Angela Dikou

    2010-05-01

    Full Text Available Top-down controls of complex foodwebs maintain the balance among the critical groups of corals, algae, and herbivores, thus allowing the persistence of corals reefs as three-dimensional, biogenic structures with high biodiversity, heterogeneity, resistance, resilience and connectivity, and the delivery of essential goods and services to societies. On contemporary reefs world-wide, however, top-down controls have been weakened due to reduction in herbivory levels (overfishing or disease outbreak while bottom-up controls have increased due to water quality degradation (increase in sediment and nutrient load and climate forcing (seawater warming and acidification leading to algal-dominated alternate benthic states of coral reefs, which are indicative of a trajectory towards ecological extinction. Management to reverse common trajectories of degradation for coral reefs necessitates a shift from optimization in marine resource use and conservation towards building socio-economic resilience into coral reef systems while attending to the most manageable human impacts (fishing and water quality and the global-scale causes (climate change.

  11. Pollution minimisation practices in the Australian mining and mineral processing industries

    Energy Technology Data Exchange (ETDEWEB)

    Catherine Driussi; Janis Jansz [Edith Cowan University, Joondalup, WA (Australia)

    2006-07-01

    Research was conducted to identify some of the current pollution minimisation practices adopted in Australia's mining and mineral processing industries. Initially, 84 mining and mineral processing companies were approached for inclusion in the study, with request only made for information that was available to the company stakeholders and the wider general community. Among the responses received, BHP Billiton, BlueScope Steel, Newmont Australia Limited and AngloGold Australia provided the information requested and/or a substantial quantity of information through reports on their company website. Analysis of the data collected for these companies indicated that improvements were made, and that policies had been implemented over the previous few years. The pollution minimisation and policy practices adopted at the operations of these companies include environmental management systems, advanced pollution control technologies, environmental awareness training for employees, and requirement - from company stakeholders - for increased accountability of environmental impacts.

  12. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  13. Influence of landscape structure on reef fish assemblages

    Science.gov (United States)

    Grober-Dunsmore, R.; Frazer, T.K.; Beets, J.P.; Lindberg, W.J.; Zwick, P.; Funicelli, N.A.

    2008-01-01

    Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape. ?? 2007 Springer Science+Business Media B.V.

  14. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots.

    Science.gov (United States)

    Cowman, P F; Bellwood, D R

    2011-12-01

    Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  15. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt.

    Science.gov (United States)

    Shlesinger, Tom; Grinblat, Mila; Rapuano, Hanna; Amit, Tal; Loya, Yossi

    2018-02-01

    Mesophotic coral ecosystems (i.e., deep coral reefs at 30-120 m depth) appear to be thriving while many shallow reefs in the world are declining. Amid efforts to understand and manage their decline, it was suggested that mesophotic reefs might serve as natural refuges and a possible source of propagules for the shallow reefs. However, our knowledge of how reproductive performance of corals alters with depth is sparse. Here, we present a comprehensive study of the reproductive phenology, fecundity, and abundance of seven reef-building conspecific corals in shallow and mesophotic habitats. Significant differences were found in the synchrony and timing of gametogenesis and spawning between shallow and mesophotic coral populations. Thus, mesophotic populations exhibited delayed or protracted spawning events, which led to spawning of the mesophotic colonies in large proportions at times where the shallow ones had long been depleted of reproductive material. All species investigated demonstrated a substantial reduction in fecundity and/or oocyte sizes at mesophotic depths (40-60 m). Two species (Seriatopora hystrix and Galaxea fascicularis) displayed a reduction in both fecundity and oocyte size at mesophotic depths. Turbinaria reniformis had only reduced fecundity and Acropora squarrosa and Acropora valida only reduced oocyte size. In Montipora verrucosa, reduced fecundity was found during one annual reproductive season while, in the following year, only reduced oocyte size was found. In contrast, reduced oocyte size in mesophotic populations of Acropora squarrosa was consistent along three studied years. One species, Acropora pharaonis, was found to be infertile at mesophotic depths along two studied years. This indicates that reproductive performance decreases with depth; and that although some species are capable of reproducing at mesophotic depths, their contribution to the replenishment of shallow reefs may be inconsequential. Reduced reproductive performance

  16. Linking social and ecological systems to sustain coral reef fisheries.

    Science.gov (United States)

    Cinner, Joshua E; McClanahan, Timothy R; Daw, Tim M; Graham, Nicholas A J; Maina, Joseph; Wilson, Shaun K; Hughes, Terence P

    2009-02-10

    The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.

  17. Oyster Reef Communities in the Chesapeake Bay: A Brief Primer. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experience supported by multimedia instruction. This document presents an overview on the biology of…

  18. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    Science.gov (United States)

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  19. Scientific Frontiers in the Management of Coral Reefs

    Directory of Open Access Journals (Sweden)

    Shankar eAswani

    2015-07-01

    Full Text Available Coral reefs are subjected globally to a variety of natural and anthropogenic stressors that often act synergistically. Today, reversing ongoing and future coral reef degradation presents significant challenges and countering this negative trend will take considerable efforts and investments. Scientific knowledge can inform and guide the requisite decision-making process and offer practical solutions to the problem of protection as the effects of climate change exacerbate. However, implementation of solutions presently lags far behind the pace required to reverse global declines, and there is a need for an urgent and significant step-up in the extent and range of strategies being implemented. In this paper, we consider scientific frontiers in natural and social science research that can help build stronger support for reef management and improve the efficacy of interventions. We cover various areas including: (1 enhancing the case for reef conservation and management, (2 dealing with local stressors on reefs, (3 addressing global climate change impacts, (4 and reviewing various approaches to the governance of coral reefs. In sum, we consider scientific frontiers in natural and social science that will require further attention in coming years as managers’ work towards building stronger support for reef management and improve the efficacy of local interventions.

  20. Coral Reefs: A Gallery Program, Grades 7-12.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    Gallery classes at the National Aquarium in Baltimore give the opportunity to study specific aquarium exhibits which demonstrate entire natural habitats. The coral reef gallery class features the gigantic western Atlantic coral reef (325,000 gallons) with over 1,000 fish. The exhibit simulates a typical Caribbean coral reef and nearby sandy…

  1. Recent and relict topography of Boo Bee patch reef, Belize

    Science.gov (United States)

    Halley, R.B.; Shinn, E.A.; Hudson, J.H.; Lidz, B.; Taylor, D.L.

    1977-01-01

    Five core borings were taken on and around Boo Bee Patch Reef to better understand the origin of such shelf lagoon reefs. The cores reveal 4 stages of development: (1) subaerial exposure of a Pleistocene "high" having about 8 meters of relief, possibly a Pleistocene patch reef; (2) deposition of peat and impermeable terrigenous clay 3 meters thick around the high; (3) initiation of carbonate sediment production by corals and algae on the remaining 5 meters of hard Pleistocene topography and carbonate mud on the surrounding terrigenous clay; and (4) accelerated organic accumulation on the patch reef. Estimates of patch reef sedimentation rates (1.6 m/1000 years) are 3 to 4 times greater than off-reef sedimentation rates (0.4-0.5 m/1000 years). During periods of Pleistocene sedimentation on the Belize shelf, lagoon patch reefs may have grown above one another, stacking up to form reef accumulation of considerable thickness.

  2. National Coral Reef Monitoring Program: Coral Reef Fish collected in Fl Keys Reef Tract (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Divers conducted reef visual census (RVC) fish surveys and habitat assessments at 433 sites in the Florida Keys, 436 sites in the Dry Tortugas and 320 sites in the...

  3. In situ coral reef oxygen metabolism: an eddy correlation study.

    Directory of Open Access Journals (Sweden)

    Matthew H Long

    Full Text Available Quantitative studies of coral reefs are challenged by the three-dimensional hard structure of reefs and the high spatial variability and temporal dynamics of their metabolism. We used the non-invasive eddy correlation technique to examine respiration and photosynthesis rates, through O2 fluxes, from reef crests and reef slopes in the Florida Keys, USA. We assessed how the photosynthesis and respiration of different reef habitats is controlled by light and hydrodynamics. Numerous fluxes (over a 0.25 h period were as high as 4500 mmol O2 m(-2 d(-1, which can only be explained by efficient light utilization by the phototrophic community and the complex canopy structure of the reef, having a many-fold larger surface area than its horizontal projection. Over diel cycles, the reef crest was net autotrophic, whereas on the reef slope oxygen production and respiration were balanced. The autotrophic nature of the shallow reef crests implies that the export of organics is an important source of primary production for the larger area. Net oxygen production on the reef crest was proportional to the light intensity, up to 1750 µmol photons m(-2 s(-1 and decreased thereafter as respiration was stimulated by high current velocities coincident with peak light levels. Nighttime respiration rates were also stimulated by the current velocity, through enhanced ventilation of the porous framework of the reef. Respiration rates were the highest directly after sunset, and then decreased during the night suggesting that highly labile photosynthates produced during the day fueled early-night respiration. The reef framework was also important to the acquisition of nutrients as the ambient nitrogen stock in the water had sufficient capacity to support these high production rates across the entire reef width. These direct measurements of complex reefs systems yielded high metabolic rates and dynamics that can only be determined through in situ, high temporal resolution

  4. Coralline reefs classification in Banco Chinchorro, Mexico

    Science.gov (United States)

    Contreras-Silva, Ameris I.; López-Caloca, Alejandra A.

    2009-09-01

    The coralline reefs in Banco Chinchorro, Mexico, are part of the great reef belt of the western Atlantic. This reef complex is formed by an extensive coralline structure with great biological richness and diversity of species. These colonies are considered highly valuable ecologically, economically, socially and culturally, and they also inherently provide biological services. Fishing and scuba diving have been the main economic activities in this area for decades. However, in recent years, there has been a bleaching process and a decrease of the coral colonies in Quintana Roo, Mexico. This drop is caused mainly by the production activities performed in the oil platforms and the presence of hurricanes among other climatic events. The deterioration of the reef system can be analyzed synoptically using remote sensing. Thanks to this type of analysis, it is possible to have updated information of the reef conditions. In this paper, satellite imagery in Landsat TM and SPOT 5 is applied in the coralline reefs classification in the 1980- 2006 time period. Thus, an integral analysis of the optical components of the water surrounding the coralline reefs, such as on phytoplankton, sediments, yellow substance and even on the same water adjacent to the coral colonies, is performed. The use of a texture algorithm (Markov Random Field) was a key tool for their identification. This algorithm, does not limit itself to image segmentation, but also works on edge detection. In future work the multitemporal analysis of the results will determine the deterioration degree of these habitats and the conservation status of the coralline areas.

  5. Nitrification in reef corals

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; David, J.J.

    . An estimate of the density of nitrifying bacteria on living corals can be made by comparing the nitrifying rates of bacterial cells and the rate of production of NO,-. Kaplan (1983) summarized the growth con- stants of marine nitrifying bacteria... Reef Con=. 3: 395-399. -, C. R. WILKINSON, V. p. VICENTE, J. M. MORELL, AND E. OTERO. 1988. Nitrate release by Carib- bean reef sponges. Limnol. Oceanogr. 33: 114- 120. CROSSLAND, C. J., AND D. J. BARNES. 1983. Dissolved nutrients and organic...

  6. Coral Reef Functioning Along a Cross‐shelf Environmental Gradient: Abiotic and Biotic Drivers of Coral Reef Growth in the Red Sea

    KAUST Repository

    Roik, Anna

    2016-06-01

    Despite high temperature and salinity conditions that challenge reef growth in other oceans, the Red Sea maintains amongst the most biodiverse and productive coral reefs worldwide. It is therefore an important region for the exploration of coral reef functioning, and expected to contribute valuable insights towards the understanding of coral reefs in challenging environments. This dissertation assessed the baseline variability of in situ abiotic conditions (temperature, dissolved oxygen, pH, and total alkalinity, among others) in the central Red Sea and highlights these environmental regimes in a global context. Further, focus was directed on biotic factors (biofilm community dynamics, calcification and bioerosion), which underlie reef growth processes and are crucial for maintaining coral reef functioning and ecosystem services. Using full‐year data from an environmental cross‐shelf gradient, the dynamic interplay of abiotic and biotic factors was investigated. In situ observations demonstrate that central Red Sea coral reefs were highly variable on spatial, seasonal, and diel scales, and exhibited comparably high temperature, high salinity, and low dissolved oxygen levels, which on the one hand reflect future ocean predictions. Under these conditions epilithic bacterial and algal assemblages were mainly driven by variables (i.e., temperature, salinity, dissolved oxygen) which are predicted to change strongly in the progression of global climate change, implying an influential bottom up effect on reef‐building communities. On the other hand, measured alkalinity and other carbonate chemistry value were close to the estimates of preindustrial global ocean surface water and thus in favor of reef growth processes. Despite this beneficial carbonate chemistry, calcification and carbonate budgets in the reefs were not higher than in other coral reef regions. In this regard, seasonal calcification patterns suggest that summer temperatures may be exceeding the optima

  7. Patterns of coral species richness and reef connectivity in Malaysia

    NARCIS (Netherlands)

    Waheed, Z.

    2016-01-01

    Much remains to be discovered about the biodiversity of coral reefs in Malaysia, making this area a priority for coral reef research. This thesis aims to provide insights into the patterns of reef coral species richness and the degree of reef connectivity across Malaysia. For the species richness

  8. Relationships between structural complexity, coral traits, and reef fish assemblages

    Science.gov (United States)

    Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.

    2017-06-01

    With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.

  9. Coral reef connectivity within the Western Gulf of Mexico

    Science.gov (United States)

    Salas-Monreal, David; Marin-Hernandez, Mark; Salas-Perez, Jose de Jesus; Salas-de-Leon, David Alberto; Monreal-Gomez, Maria Adela; Perez-España, Horacio

    2018-03-01

    The yearlong monthly mean satellite data of the geostrophic velocities, the sea surface temperature and the chlorophyll-a values were used to elucidate any possible pathway among the different coral reef systems of the Western Gulf of Mexico (WGM). The geostrophic current velocities suggested different pathways connecting the coral reef areas. The typical coastal alongshore pathway constricted to the continental shelf, and two open ocean pathway, the first connecting the Campeche Reef System (CRS) with the Veracruz (VRS) and Tuxpan-Lobos Reef Systems (TLRS), and the second pathway connecting the Tuxpan-Lobos Reef System with the Flower Garden Reef System (FGRS). According to the pathways there should be more larvae transport from the southern Gulf of Mexico reef systems toward the FGRS than the other way. The connection from the southern Gulf of Mexico toward the FGRS took place during January, May, July, August and September (2015), while the connection from the FGRS toward the southern Gulf of Mexico reef system took place during January and February (2015), this was also suggested via model outputs. The density radio (R) was used as a first approximation to elucidate the influence of the freshwater continental discharges within the continental shelf. All coral reef areas were located where the Chlorophyll-a monthly mean values had values bellow 1 mg m- 2 with a density radio between 0 and 1, i.e. under the influence of continental discharges.

  10. Connectivity and systemic resilience of the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Karlo Hock

    2017-11-01

    Full Text Available Australia's iconic Great Barrier Reef (GBR continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS, losing much of its coral cover in the process. This raises the question of the ecosystem's systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1 are highly connected by ocean currents to the wider reef network, (2 have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3 have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these 'robust source reefs', which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change.

  11. Status and conservation of coral reefs in Costa Rica.

    Science.gov (United States)

    Cortés, Jorge; Jiménez, Carlos E; Fonseca, Ana C; Alvarado, Juan José

    2010-05-01

    Costa Rica has coral communities and reefs on the Caribbean coast and on the Pacific along the coast and off-shore islands. The Southern section of the Caribbean coast has fringing and patch reefs, carbonate banks, and an incipient algal ridge. The Pacific coast has coral communities, reefs and isolated coral colonies. Coral reefs have been seriously impacted in the last 30 years, mainly by sediments (Caribbean coast and some Pacific reefs) and by El Niño warming events (both coasts). Monitoring is being carried out at three sites on each coast. Both coasts suffered significant reductions in live coral cover in the 1980's, but coral cover is now increasing in most sites. The government of Costa Rica is aware of the importance of coral reefs and marine environments in general, and in recent years decrees have been implemented (or are in the process of approval) to protect them, but limited resources endanger their proper management and conservation, including proper outreach to reef users and the general public.

  12. Coral Reefs Under Rapid Climate Change and Ocean Acidification

    Science.gov (United States)

    Hoegh-Guldberg, O.; Mumby, P. J.; Hooten, A. J.; Steneck, R. S.; Greenfield, P.; Gomez, E.; Harvell, C. D.; Sale, P. F.; Edwards, A. J.; Caldeira, K.; Knowlton, N.; Eakin, C. M.; Iglesias-Prieto, R.; Muthiga, N.; Bradbury, R. H.; Dubi, A.; Hatziolos, M. E.

    2007-12-01

    Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.

  13. Radiography of X-ray in coral reefs

    International Nuclear Information System (INIS)

    Djoli Soembogo

    2016-01-01

    The application of X-ray radiography has been developed and it is already widely used in metal materials such as metal steel and carbon steel. This radiography using a source of radiation from X-ray machines. This research attempts to use the application of digital radiography X-ray source and use scanner Epson V700 positive films media for digitization results of conventional radiographic films on coral reefs. It has been testing radiography using Fuji film 100 to get the contrast medium, the sensitivity of the medium and image quality is good, Single Wall Single Image method , and using the media scanner films positive and X-ray sources, observation parameter are density radiographic film and the defect shape. Radiography uses Fuji film 100 to obtain a good contrast medium, good medium sensitivity and good quality image. Radiography of X-ray on coral reefs aims to find defects or discontinuities coral reefs such as porosity which would interfere with the determination of the age of the coral reefs. X-ray exposure time is 1 seconds for a thickness of 5.45 mm and 5.60 mm coral reefs by using a high voltage X-ray machine Rigaku of 130 kV. The result of the positive film scanner in the form of digital radiography that allows for the transfer of digital data or digital computerized data storage. The test results of radiographic on coral reefs with Single Wall Single Image method obtained radiographic film density parameter for Fuji film 100 on coral reefs No. 2 are 2.55; 2.53; 2.59 and on coral reefs No. 4 are 2.62; 2.65; 2.66, unsharpness geometric of radiographic results obtained 0.022 mm and 0.023 mm, sensitivity radiography are 1.648% and 1.604%. No defect found of Porosity that is significant. Status is acceptable for Fuji film 100, because the density of the film is in conformity with the standards referred to. Status of coral reefs No. 2 and No. 4 can be accepted, because it has conformed with the standards referred. (author)

  14. Holocene coral patch reef ecology and sedimentary architecture, Northern Belize, Central America

    Energy Technology Data Exchange (ETDEWEB)

    Mazzullo, S.J.; Anderson-Underwood, K.E.; Burke, C.D.; Bischoff, W.D. (Wichita State Univ., KS (United States))

    1992-12-01

    Coral patch reefs are major components of Holocene platform carbonate facies systems in tropical and subtropical areas. The biotic composition, growth and relationship to sea level history, and diagenetic attributes of a representative Holocene patch reef ([open quotes]Elmer Reef[close quotes]) in the Mexico Rocks complex in northern Belize are described and compared to those of Holocene patch reefs in southern Belize. Elmer Reef has accumulated in shallow (2.5 m) water over the last 420 yr, under static sea level conditions. Rate of vertical construction is 0.3-0.5 m/100 yr, comparable to that of patch reefs in southern Belize. A pronounced coral zonation exists across Elmer Reef, with Monastrea annularis dominating on its crest and Acropora cervicornis occurring on its windward and leeward flanks. The dominance of Montastrea on Elmer Reef is unlike that of patch reefs in southern Belize, in which this coral assumes only a subordinate role in reef growth relative to that of Acropora palmata. Elmer Reef locally is extensively biodegraded and marine, fibrous aragonite and some bladed high-magnesium calcite cements occur throughout the reef section, partially occluding corallites and interparticle pores in associated sands. Patch reefs in southern Belize have developed as catch-up and keep-up reefs in a transgressive setting. In contrast, the dominant mode of growth of Elmer Reef, and perhaps other patch reefs in Mexico Rocks, appears to be one of lateral rather than vertical accretion. This style of growth occurs in a static sea level setting where there is only limited accommodation space because of the shallowness of the water, and such reefs are referred to as [open quotes]expansion reefs[close quotes]. 39 refs., 8 figs., 2 tabs.

  15. Accretion history and stratigraphy of mid-Holocene coral reefs from Southeast Florida, USA

    Science.gov (United States)

    Stathakopoulos, A.; Riegl, B. M.; Swart, P. K.

    2013-05-01

    The southeast Florida shelf is a well-studied coral reef region previously used in studies of late Quaternary sea-level, reef geomorphology, and paleoecology in the sub-tropical Atlantic. Situated on the shelf is the southeast Florida continental reef tract; a ~125 km long Holocene fringing/barrier coral reef complex, composed of three shore-parallel linear reefs ('outer', 'middle', and 'inner' reefs) of varying age. Since few detailed stratigraphic descriptions exist, drill cores were extracted to further understand the composition, character, and radiometric ages of reef material in order to reconstruct the accretion history. Sixteen reef cores from the shallow inner reef were collected along and across the reef axes and were combined with lidar bathymetric data for stratigraphic and geomorphologic analyses. Macroscopic and microscopic (petrographic thin sections) examinations of reef clasts were performed to identify coral and reef infauna species compositions, diagenetic facies, and taphonomic features for interpretation of former reef environments/zonation. The southeast Florida continental reef tract was characterized by dynamic reef terminations, backstepping, and re-initiation in response to post-glacial sea-level rise and flooding of topography suitable for reef initiation and growth. Results suggest that the outer reef accreted from ~10.6-8.0 ka cal BP, the middle reef from at least ~5.8-3.7 ka cal BP, and the inner reef from ~7.8-5.5 ka cal BP. The outer reef is the best-developed reef, followed by the inner reef, while the middle reef apparently has relatively little framework buildup. New data from this study and a lack of significant age overlaps confirm that reef backstepping from the outer to the inner reef occurred within a few hundred years after outer reef termination. This is consistent with temporal and spatial scales reported from backstepped reefs in St. Croix and Puerto Rico. The cause of the backstep is still unknown however some studies

  16. Coral Reefs: An English Compilation of Activities for Middle School Students.

    Science.gov (United States)

    Walker, Sharon H.; Newton, R. Amanda; Ortiz, Alida

    This activity book on coral reefs for middle school students is divided into 10 sections. Section 1 contains the introduction. Section 2 describes what coral reefs are while section 3 describes how coral reefs reproduce and grow. Section 4 discusses where coral reefs are found and section 5 describes life on a coral reef. Section 6 discusses the…

  17. Pacific Reef Assessment and Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structures (ARMS) Deployed at Coral Reef Sites across the U.S. Pacific from 2008-02-06 to 2012-05-18 (NCEI Accession 0162469)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term program for sustainable management and conservation of coral reef ecosystems, from 2008, Autonomous Reef Monitoring Structures (ARMS) have...

  18. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across the Pacific Remote Island Areas from 2012-05-03 to 2015-04-28 (NCEI Accession 0162464)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  19. The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages.

    Science.gov (United States)

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Treml, Eric A; Wren, Johanna L K; Donovan, Mary K; Toonen, Robert J

    2016-04-27

    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems. © 2016 The Authors.

  20. Extinction vulnerability of coral reef fishes.

    Science.gov (United States)

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron Macneil, M; McClanahan, Tim R; Ohman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-04-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. © 2011 Blackwell Publishing Ltd/CNRS.

  1. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef

    Science.gov (United States)

    Kramer, M. J.; Bellwood, D. R.; Bellwood, O.

    2012-12-01

    Composed of a collection of algae, detritus, sediment and invertebrates, the epilithic algal matrix (EAM) is an abundant and ubiquitous feature of coral reefs. Despite its prevalence, there is a paucity of information regarding its associated invertebrate fauna. The cryptofaunal invertebrate community of the EAM was quantitatively investigated in Pioneer Bay on Orpheus Island, Great Barrier Reef. Using a vacuum collection method, a diversity of organisms representing 10 different phyla were identified. Crustacea dominated the samples, with harpacticoid copepods being particularly abundant (2025 ± 132 100 cm-2; mean density ± SE). The volume of coarse particulate matter in the EAM was strongly correlated with the abundance of harpacticoid copepods. The estimated biomass of harpacticoid copepods (0.48 ± 0.05 g m-2; wet weight) suggests that this group is likely to be important for reef trophodynamics and nutrient cycling.

  2. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Science.gov (United States)

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  3. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    Science.gov (United States)

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  4. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Jamison M Gove

    Full Text Available Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km from 85% of our study locations

  5. Microbial contributions to the persistence of coral reefs.

    Science.gov (United States)

    Webster, Nicole S; Reusch, Thorsten B H

    2017-10-01

    On contemplating the adaptive capacity of reef organisms to a rapidly changing environment, the microbiome offers significant and greatly unrecognised potential. Microbial symbionts contribute to the physiology, development, immunity and behaviour of their hosts, and can respond very rapidly to changing environmental conditions, providing a powerful mechanism for acclimatisation and also possibly rapid evolution of coral reef holobionts. Environmentally acquired fluctuations in the microbiome can have significant functional consequences for the holobiont phenotype upon which selection can act. Environmentally induced changes in microbial abundance may be analogous to host gene duplication, symbiont switching / shuffling as a result of environmental change can either remove or introduce raw genetic material into the holobiont; and horizontal gene transfer can facilitate rapid evolution within microbial strains. Vertical transmission of symbionts is a key feature of many reef holobionts and this would enable environmentally acquired microbial traits to be faithfully passed to future generations, ultimately facilitating microbiome-mediated transgenerational acclimatisation (MMTA) and potentially even adaptation of reef species in a rapidly changing climate. In this commentary, we highlight the capacity and mechanisms for MMTA in reef species, propose a modified Price equation as a framework for assessing MMTA and recommend future areas of research to better understand how microorganisms contribute to the transgenerational acclimatisation of reef organisms, which is essential if we are to reliably predict the consequences of global change for reef ecosystems.

  6. The ugly face of tourism: Marine debris pollution linked to visitation in the southern Great Barrier Reef, Australia.

    Science.gov (United States)

    Wilson, Scott P; Verlis, Krista M

    2017-04-15

    Marine debris is one of the most significant issues facing oceans worldwide. The sources of this debris vary depending on proximity to urban centres and the nature of activities within an area. This paper examines the influence of tourism in the southern Great Barrier Reef (GBR), and its contribution to litter levels in the region. By conducting beach debris surveys on occupied and unoccupied islands, this study found that debris was prevalent throughout the region with significant differences in material types between locations. The greatest source of debris from publically accessible islands was tourist-related, with this source also influencing debris loads on nearby uninhabited islands. A focus on debris at Heron Island, showed that sites close to amenities had greater levels of tourist-sourced items like cigarette butts. These findings indicate the contribution of tourists to this problem and that working with operators and managers is needed to minimise visitor impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    Science.gov (United States)

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-05

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

  8. Conservation genetics and the resilience of reef-building corals.

    Science.gov (United States)

    van Oppen, Madeleine J H; Gates, Ruth D

    2006-11-01

    Coral reefs have suffered long-term decline due to a range of anthropogenic disturbances and are now also under threat from climate change. For appropriate management of these vulnerable and valuable ecosystems it is important to understand the factors and processes that determine their resilience and that of the organisms inhabiting them, as well as those that have led to existing patterns of coral reef biodiversity. The scleractinian (stony) corals deposit the structural framework that supports and promotes the maintenance of biological diversity and complexity of coral reefs, and as such, are major components of these ecosystems. The success of reef-building corals is related to their obligate symbiotic association with dinoflagellates of the genus Symbiodinium. These one-celled algal symbionts (zooxanthellae) live in the endodermal tissues of their coral host, provide most of the host's energy budget and promote rapid calcification. Furthermore, zooxanthellae are the main primary producers on coral reefs due to the oligotrophic nature of the surrounding waters. In this review paper, we summarize and critically evaluate studies that have employed genetics and/or molecular biology in examining questions relating to the evolution and ecology of reef-building corals and their algal endosymbionts, and that bear relevance to coral reef conservation. We discuss how these studies can focus future efforts, and examine how these approaches enhance our understanding of the resilience of reef-building corals.

  9. Shifting paradigms in restoration of the world's coral reefs.

    Science.gov (United States)

    van Oppen, Madeleine J H; Gates, Ruth D; Blackall, Linda L; Cantin, Neal; Chakravarti, Leela J; Chan, Wing Y; Cormick, Craig; Crean, Angela; Damjanovic, Katarina; Epstein, Hannah; Harrison, Peter L; Jones, Thomas A; Miller, Margaret; Pears, Rachel J; Peplow, Lesa M; Raftos, David A; Schaffelke, Britta; Stewart, Kristen; Torda, Gergely; Wachenfeld, David; Weeks, Andrew R; Putnam, Hollie M

    2017-09-01

    Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine-protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014-2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs. © 2017 John Wiley & Sons Ltd.

  10. Coral reefs as indicators of marine environmental health

    International Nuclear Information System (INIS)

    Kumaraguru, A.K.

    2007-01-01

    Coral reefs are one of the most productive and diverse of all ecosystems on the Earth. Although they occupy less than 0.25 percent of the marine environment, the reefs support more than a quarter of all known fish species. They serve as critical habitats for numerous tropical species including reef fishes of ornamental nature and edible fishes. They protect the shores from storms and wave actions

  11. Reef demise and back-stepping during the last interglacial, northeast Yucatan

    Science.gov (United States)

    Blanchon, Paul

    2010-06-01

    The elevation of reefs and coastal deposits during the last Interglaciation (MIS-5e) indicates that sea level reached a highstand of as much as 6 m above the present, but it is uncertain how rapidly this level was attained and how it impacted reef development. To investigate this problem, I made a detailed sedimentological analysis of a well-dated reef from the northeast coast of the stable Yucatan Peninsula. Two linear reef tracts were delineated which are offset and at different elevations. The lower reef tract crops out along northern shore for 575 m and extends from below present mean sea level to +3 m. The reef crest facies consists of large Acropora palmata colonies dispersed within a coral boulder-gravel and is flanked by an A. cervicornis-dominated reef-front and a large area of lagoonal framework formed by coalesced patches of A. cervicornis and Montastraea spp. Constituents in the upper centimetre of the lower tract are heavily encrusted by a cap of crustose corallines and, in places, are levelled by a discontinuous marine-erosion surface. The upper reef tract crops out ~150 m inland up to an elevation of +5.8 m and parallels the southern section of shore for ~400 m. It also consist of an A. palmata-dominated crest facies flanked by reef-front, back-reef and lagoonal frameworks. In this case, however, lagoonal frameworks are dominated by a sediment-tolerant assemblage of branching coralline algae. Also different is the lack of encrustation by corallines, and the infiltration of upper tract facies by beach-derived shell-gravels from regressive shoreface deposits above. These results indicate that the lower reef tract and lagoonal patch-reefs formed at a sea level of +3 m. Final capping by crustose corallines and discontinuous marine erosion indicates that the lower tract was terminated by the complete demise of corals on the crest but only patchy demise in the lagoon. Areas of continuous framework accretion between the lagoonal patch reefs and the upper

  12. Hyperspectral remote sensing of wild oyster reefs

    Science.gov (United States)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  13. Using virtual reality to estimate aesthetic values of coral reefs

    Science.gov (United States)

    Clifford, Sam; Caley, M. Julian; Pearse, Alan R.; Brown, Ross; James, Allan; Christensen, Bryce; Bednarz, Tomasz; Anthony, Ken; González-Rivero, Manuel; Mengersen, Kerrie; Peterson, Erin E.

    2018-01-01

    Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems. PMID:29765676

  14. Predicting dredging-associated effects to coral reefs in Apra Harbor, Guam - Part 2: Potential coral effects.

    Science.gov (United States)

    Nelson, Deborah Shafer; McManus, John; Richmond, Robert H; King, David B; Gailani, Joe Z; Lackey, Tahirih C; Bryant, Duncan

    2016-03-01

    Coral reefs are in decline worldwide due to anthropogenic stressors including reductions in water and substratum quality. Dredging results in the mobilization of sediments, which can stress and kill corals via increasing turbidity, tissue damage and burial. The Particle Tracking Model (PTM) was applied to predict the potential impacts of dredging-associated sediment exposure on the coral reef ecosystems of Apra Harbor, Guam. The data were interpreted using maps of bathymetry and coral abundance and distribution in conjunction with impact parameters of suspended sediment concentration (turbidity) and sedimentation using defined coral response thresholds. The results are presented using a "stoplight" model of negligible or limited impacts to coral reefs (green), moderate stress from which some corals would be expected to recover while others would not (yellow) and severe stress resulting in mortality (red). The red conditions for sediment deposition rate and suspended sediment concentration (SSC) were defined as values exceeding 25 mg cm(-2) d(-1) over any 30 day window and >20 mg/l for any 18 days in any 90 day period over a column of water greater than 2 m, respectively. The yellow conditions were defined as values >10 mg cm(-2) d(-1) and <25 mg cm(-2) d(-1) over any 30 day period, and as 20% of 3 months' concentration exceeding 10 mg/l for the deposition and SSC, respectively. The model also incorporates the potential for cumulative effects on the assumption that even sub-lethal stress levels can ultimately lead to mortality in a multi-stressor system. This modeling approach can be applied by resource managers and regulatory agencies to support management decisions related to planning, site selection, damage reduction, and compensatory mitigation. Published by Elsevier Ltd.

  15. A Multidisciplinary Investigation of Aquatic Pollution and How to Minimise It

    Science.gov (United States)

    Vergnoux, A.; Allari, E.; Sassi, M.; Thimonier, J.; Hammond, C.; Clouzot, L.

    2011-01-01

    The impact of humans on aquatic systems is covered in French high schools in the "Premiere" level (ages 16 to 17) by students studying economics and social sciences. We designed experiments to teach critical thinking about water pollution and how citizens can act to minimise it. The experimental session, which lasts three consecutive…

  16. Plastic waste associated with disease on coral reefs.

    Science.gov (United States)

    Lamb, Joleah B; Willis, Bette L; Fiorenza, Evan A; Couch, Courtney S; Howard, Robert; Rader, Douglas N; True, James D; Kelly, Lisa A; Ahmad, Awaludinnoer; Jompa, Jamaluddin; Harvell, C Drew

    2018-01-26

    Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Coastal nutrification and coral health at Porto Seguro reefs, Brazil

    Science.gov (United States)

    Costa, O.; Attrill, M.; Nimmo, M.

    2003-04-01

    Human activities have substantially increased the natural flux of nutrients to coastal systems worldwide. In Brazilian reefs, all major stresses (sedimentation, overfishing, tourism-related activities and nutrification) are human induced. To assess nutrification levels in Brazilian coastal reefs, measurements of the distribution patterns of nutrients and chlorophyll concentrations were conducted in three nearshore and offshore reefs with distinct nutrient inputs along the south coast of Bahia State. Seawater and porewater samples were analysed for soluble reactive phosphorus, total oxidised nitrogen and reactive silica. Benthic surveys were performed at all sites to investigate the relationships between benthic community composition and nutrient and chlorophyll concentrations. Sampling was undertaken in dry and rainy seasons. Results of both seawater and porewater nutrient measurements revealed the occurrence of consistent spatial and temporal patterns. An inshore-offshore gradient reflects the occurrence of land-based point sources, with significant amount of nutrients being delivered by human activities on the coast (untreated sewage and groundwater seepage). Another spatial gradient is related to distance from a localized source of pollution (an urban settlement without sewerage treatment) with two nearshore reefs presenting distinct nutrient and chlorophyll concentrations. Seasonal variations suggest that submarine groundwater discharge (SGD) is the primary source of nutrients for the coastal reefs during rainy season. The data also suggests that the SGD effect is not restricted to nearshore reefs, and may be an important factor controlling the differences between landward and seaward sides on the offshore reef. Benthic community assessment revealed that turf alga is the dominant group in all studied reefs and that zoanthids are the organisms most adapted to take advantage of nutrient increase in coastal areas. At nearshore reefs, there was a negative

  18. Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic reefs.

    Science.gov (United States)

    Kikuchi, Ruy K P; Leão, Zelinda M A N; Oliveira, Marília D M

    2010-05-01

    Coral reefs along the Eastern Brazilian coast extend for a distance of 800 km from 12 degrees to 18 degrees S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90's in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA) Regional Node of the Global Coral Reef Monitoring Network (GCRMN) by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts) and similarity percentages (SIMPER) tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonics > 20cm per reef site) and of the coral recruits (colonies coast, are in poorer condition than the reefs located more than 5 km off the coast. A higher density of coral colonies, lower macroalgal index, higher relative percent of turf algae and higher density of coral recruits in offshore reefs compared to the nearshore reefs are the conditions that contribute more than 80% to the dissimilarity between them. The offshore reefs are in better vital condition than the nearshore reefs and have a set of vitality indices more closely related to the Northwestern Atlantic reefs than the nearshore reef. These have been most severely impacted by the effects of direct

  19. Human disturbances on coral reefs in Sri Lanka: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, M C; Linden, O [Stockholm Univ. (Sweden). Dept. of Zoology; Rajasuriya, A [NARA, Crow Island, Colombo (Sri Lanka)

    1993-01-01

    The degradation of coral reefs in Sri Lanka has increased substantially over the last decades. Human activities causing this degradation include: mining for lime production, sewage discharges, discharges of oil and other pollutants in connection with shipping and port activities, destructive fishing practices, land and mangrove destruction, tourism and the collecting of fauna such as fish, shells and corals. In this study, three adjacent coral reefs; Bar Reef, Talawila Reef, and Kandakuliya Reef, which are widely scattered patch reefs off Kalpitiya Peninsula, northwestern Sri Lanka, were surveyed and compared in terms of their fish and coral diversity and abundance as well as human and natural disturbances. Information was gathered by snorkeling in visual overview surveys and by scuba diving in detailed transect surveys. When each reef was ranked according to the extent of live coral cover, and chaetodontid diversity, the results indicated that Bar Reef was in excellent condition, Talawila Reef was intermediate, and Kandakuliya Reef was in poor condition. The diversity of coral genera, the topographic relief and the proportion of coral rubble, did not follow the same pattern. The number of coral genera found was 49, while 283 fish species belonging to 51 families were recorded. Human disturbance factors on the reefs were found to be net fishing, boat anchoring and ornamental fish collection for the aquarium trade. Bottom.set nylon nets in particular were found to have a very destructive impact on the bottom fauna. 33 refs, 7 figs, 1 tab

  20. Coral Reef Ecosystems under Climate Change and Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Ove Hoegh-Guldberg

    2017-05-01

    Full Text Available Coral reefs are found in a wide range of environments, where they provide food and habitat to a large range of organisms as well as providing many other ecological goods and services. Warm-water coral reefs, for example, occupy shallow sunlit, warm, and alkaline waters in order to grow and calcify at the high rates necessary to build and maintain their calcium carbonate structures. At deeper locations (40–150 m, “mesophotic” (low light coral reefs accumulate calcium carbonate at much lower rates (if at all in some cases yet remain important as habitat for a wide range of organisms, including those important for fisheries. Finally, even deeper, down to 2,000 m or more, the so-called “cold-water” coral reefs are found in the dark depths. Despite their importance, coral reefs are facing significant challenges from human activities including pollution, over-harvesting, physical destruction, and climate change. In the latter case, even lower greenhouse gas emission scenarios (such as Representative Concentration Pathway RCP 4.5 are likely drive the elimination of most warm-water coral reefs by 2040–2050. Cold-water corals are also threatened by warming temperatures and ocean acidification although evidence of the direct effect of climate change is less clear. Evidence that coral reefs can adapt at rates which are sufficient for them to keep up with rapid ocean warming and acidification is minimal, especially given that corals are long-lived and hence have slow rates of evolution. Conclusions that coral reefs will migrate to higher latitudes as they warm are equally unfounded, with the observations of tropical species appearing at high latitudes “necessary but not sufficient” evidence that entire coral reef ecosystems are shifting. On the contrary, coral reefs are likely to degrade rapidly over the next 20 years, presenting fundamental challenges for the 500 million people who derive food, income, coastal protection, and a range of

  1. Deposition of organic material in a coral reef lagoon, One Tree Island, Great Barrier Reef

    Science.gov (United States)

    Koop, K.; Larkum, A. W. D.

    1987-07-01

    Deposition of organic material was measured at four sites on One Tree Island coral reef using fixed sediment traps. Although no reliable data were obtained for the reef crest area because of problems of resuspension, mean deposition in the backreef area amounted to some 4 g organic C m -2 day -1 whereas in the lagoon it was about 1·5 g C m -2 day -1. This amounted to mean nitrogen deposition rates of 160 and 95 mg N m -2 day -1, respectively. As primary production by turf algae, the principal producers at One Tree Island, has been estimated at about 2·3 g C m -2 day -1 for the whole reef system and the weighted mean carbon deposition is estimated at 2·2 g C m -2 day -1, it is clear that the carbon produced by plants is largely retained in the system. Nitrogen deposition, on the other hand, amounted to only about 60% of that produced by turf algae and it must be assumed that much of this leached into the water during sedimentation. Losses of nitrogen may be minimized by incorporation of dissolved nitrogen by pelagic microheterotrophs which may in turn be consumed by filter feeders before they leave the reef.

  2. Remote Sensing Tropical Coral Reefs: The View from Above

    Science.gov (United States)

    Purkis, Sam J.

    2018-01-01

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis—it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  3. Remote Sensing Tropical Coral Reefs: The View from Above.

    Science.gov (United States)

    Purkis, Sam J

    2018-01-03

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis-it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  4. A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia.

    Directory of Open Access Journals (Sweden)

    Zoe T Richards

    Full Text Available The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of climatic conditions with only a small number of species considered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the environmental conditions at our study site (tidal regime, SST and level of turbidity with those experienced at four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs, prolonged exposure to high SST and fluctuating turbidity levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and resilience in this community. This assemblage provides an indication of what corals may have existed in other nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for exploring how species resilience is conferred in the absence of confounding factors such as pollution.

  5. Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic Reefs

    Directory of Open Access Journals (Sweden)

    Ruy K.P Kikuchi

    2010-05-01

    Full Text Available Coral reefs along the Eastern Brazilian coast extend for a distance of 800km from 12° to 18°S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90’s in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA Regional Node of the Global Coral Reef Monitoring Network (GCRMN by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts and similarity percentages (SIMPER tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonies >20cm per reef site and of the coral recruits (colonies<2cm per square meter, and the percentage of macroalgae indicate that the nearshore reefs, which are located less than 5km from the coast, are in poorer condition than the reefs located more than 5km off the coast. A higher density of coral colonies, lower macroalgal index, higher relative percent of turf algae and higher density of coral recruits in offshore reefs compared to the nearshore reefs are the conditions that contribute more than 80% to the dissimilarity between them. The offshore reefs are in better vital condition than the nearhore reefs and have a set of vitality indices more closely

  6. Awareness and minimisation of systematic bias in research.

    LENUS (Irish Health Repository)

    Malone, Helen

    2014-03-01

    A major goal of nursing and midwifery is the delivery of evidence-based practice. Consequently, it is essential for the quality and safety of patient\\/client care that policy makers, educators and practitioners are aware of the presence of potential systematic bias in research practice and research publications so that only sound evidence translates into practice. The main aim of this paper is to highlight the need for ongoing awareness of the potential presence of systematic bias in research practice, to explore commonly reported types of systematic bias and to report some methods that can be applied to minimise systematic bias in research.

  7. The Impact of Marine Protected Areas on Reef-Wide Population Structure and Fishing-Induced Phenotypes in Coral-Reef Fishes

    Science.gov (United States)

    Fidler, Robert Young, III

    Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted

  8. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck

    Directory of Open Access Journals (Sweden)

    Allan Joseph Bright

    2016-05-01

    Full Text Available Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI. At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over one year following a series of large swells in March 2008 that fragmented 30 to 93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01 with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006.

  9. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck)

    Science.gov (United States)

    Bright, Allan J.; Rogers, Caroline S.; Brandt, Marilyn E.; Muller, Erinn; Smith, Tyler B.

    2016-01-01

    Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI). At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over 1 year following a series of large swells in March 2008 that fragmented 30–93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01) with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006).

  10. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    Science.gov (United States)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  11. The structure and composition of Holocene coral reefs in the Middle Florida Keys

    Science.gov (United States)

    Toth, Lauren T.; Stathakopoulos, Anastasios; Kuffner, Ilsa B.

    2016-07-21

    The Florida Keys reef tract (FKRT) is the largest coral-reef ecosystem in the continental United States. The modern FKRT extends for 362 kilometers along the coast of South Florida from Dry Tortugas National Park in the southwest, through the Florida Keys National Marine Sanctuary (FKNMS), to Fowey Rocks reef in Biscayne National Park in the northeast. Most reefs along the FKRT are sheltered by the exposed islands of the Florida Keys; however, large channels are located between the islands of the Middle Keys. These openings allow for tidal transport of water from Florida Bay onto reefs in the area. The characteristics of the water masses coming from Florida Bay, which can experience broad swings in temperature, salinity, nutrients, and turbidity over short periods of time, are generally unfavorable or “inimical” to coral growth and reef development.Although reef habitats are ubiquitous throughout most of the Upper and Lower Keys, relatively few modern reefs exist in the Middle Keys most likely because of the impacts of inimical waters from Florida Bay. The reefs that are present in the Middle Keys generally are poorly developed compared with reefs elsewhere in the region. For example, Acropora palmata has been the dominant coral on shallow-water reefs in the Caribbean over the last 1.5 million years until populations of the coral declined throughout the region in recent decades. Although A. palmata was historically abundant in the Florida Keys, it was conspicuously absent from reefs in the Middle Keys. Instead, contemporary reefs in the Middle Keys have been dominated by occasional massive (that is, boulder or head) corals and, more often, small, non-reef-building corals.Holocene reef cores have been collected from many locations along the FKRT; however, despite the potential importance of the history of reefs in the Middle Florida Keys to our understanding of the environmental controls on reef development throughout the FKRT, there are currently no published

  12. Vaal Reefs: 1700 t/a uranium by 1982

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    South Africa's 16th uranium plant - the South Plant of Anglo American's Vaal Reefs mine in the Western Transvaal - has been officially opened by Dr A.J.A. Roux. Vaal Reefs is South Africa's principal producer of uranium, and responsible for a quarter of the output - a proportion which will increase with the new South Plant coming fully on stream. Vaal Reefs is also the largest gold mining operation in the world

  13. Lower permian reef-bank bodies’ characterization in the pre-caspian basin

    Science.gov (United States)

    Wang, Zhen; Wang, Yankun; Yin, Jiquan; Luo, Man; Liang, Shuang

    2018-02-01

    Reef-bank reservoir is one of the targets for exploration of marine carbonate rocks in the Pre-Caspian Basin. Within this basin, the reef-bank bodies were primarily developed in the subsalt Devonian-Lower Permian formations, and are dominated by carbonate platform interior and margin reef-banks. The Lower Permian reef-bank present in the eastern part of the basin is considered prospective. This article provides a sequence and sedimentary facies study utilizing drilling and other data, as well as an analysis and identification of the Lower Permian reef-bank features along the eastern margin of the Pre-Caspian Basin using sub-volume coherence and seismic inversion techniques. The results indicate that the sub-volume coherence technique gives a better reflection of lateral distribution of reefs, and the seismic inversion impedance enables the identification of reef bodies’ development phases in the vertical direction, since AI (impedance) is petrophysically considered a tool for distinguishing the reef limestone and the clastic rocks within the formation (limestone exhibits a relatively high impedance than clastic rock). With this method, the existence of multiple phases of the Lower Permian reef-bank bodies along the eastern margin of the Pre-Caspian Basin has been confirmed. These reef-bank bodies are considered good subsalt exploration targets due to their lateral connectivity from south to north, large distribution range and large scale.

  14. Holocene reef development where wave energy reduces accommodation

    Science.gov (United States)

    Grossman, Eric E.; Fletcher, Charles H.

    2004-01-01

    Analyses of 32 drill cores obtained from the windward reef of Kailua Bay, Oahu, Hawaii, indicate that high wave energy significantly reduced accommodation space for reef development in the Holocene and produced variable architecture because of the combined influence of sea-level history and wave exposure over a complex antecedent topography. A paleostream valley within the late Pleistocene insular limestone shelf provided accommodation space for more than 11 m of vertical accretion since sea level flooded the bay 8000 yr BP. Virtually no net accretion (pile-up of fore-reef-derived rubble (rudstone) and sparse bindstone, and (3) a final stage of catch-up bindstone accretion in depths > 6 m. Coral framestone accreted at rates of 2.5-6.0 mm/yr in water depths > 11 m during the early Holocene; it abruptly terminated at ~4500 yr BP because of wave scour as sea level stabilized. More than 4 m of rudstone derived from the upper fore reef accreted at depths of 6 to 13 m below sea level between 4000 and 1500 yr BP coincident with late Holocene relative sea-level fall. Variations in the thickness, composition, and age of these reef facies across spatial scales of 10-1000 m within Kailua Bay illustrate the importance of antecedent topography and wave-related stress in reducing accommodation space for reef development set by sea level. Although accommodation space of 6 to 17 m has existed through most of the Holocene, the Kailua reef has been unable to catch up to sea level because of persistent high wave stress.

  15. The Status of Coral Reefs in the Remote Region of Andavadoaka ...

    African Journals Online (AJOL)

    compared to fringing reefs (~90 per 100 m2). These reefs are not directly threatened by terrigenous sedimentation, which is considered to be one of the principle causes of reef degradation elsewhere in southwest Madagascar's extensive reef system; instead, it is over-fishing that appears to be the main threat to their ...

  16. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    Science.gov (United States)

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.

  17. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    Science.gov (United States)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  18. Parameters Controlling Sediment Composition of Modern and Pleistocene Jamaican Reefs

    OpenAIRE

    Boss, Stephen K.

    1985-01-01

    Recent carbonate sediments from Jamaican north coast fringing reefs display variation in constituent composition, texture, and mineralogy related to their location on the reef. Samples were collected along lines which traversed the back reef and fore reef (0.5m to 70m). The sediment is dominated by highly comminuted coral fragments, plates of the calcareous green alga, Halimeda, coralline algae, and the encrusting Foraminifera, Homotrema rubrum, with lesser amounts of other taxonomic group...

  19. Topography and spatial arrangement of reef-building corals on the fringing reefs of North Jamaica may influence their response to disturbance from bleaching.

    Science.gov (United States)

    Crabbe, M J C

    2010-04-01

    Knowledge of factors that are important in reef resilience helps us understand how reefs react following major environmental disturbances such as hurricanes and bleaching. Here we test factors that might have influenced Jamaican reef resilience to, and subsequent recovery from, the 2005 bleaching event, and which might help inform management policy for reefs in the future: reef rugosity and contact of corals with macroalgae. In addition, we test in the field, on Dairy Bull reef, whether aggregated Porites astreoides colonies exhibit enhanced growth when exposed to superior competition from Acopora palmata, as has been found by experiment with the Indo-Pacific corals Porites lobata and the superior competitor Porites rus [Idjadi, J.A., Karlson, R.H., 2007. Spatial arrangement of competitors influences coexistence of reef-building corals. Ecology 88, 2449-2454]. There were significant linear relationships between rugosity and the increase in smallest size classes for Sidastrea siderea, Colpophyllia natans, P. astreoides and Agaricia species, and between rugosity and cover of the branching coral Acropora cervicornis. Linear extension rates of A. cervicornis and radial growth rates of P. astreoides were significantly lower (p6) when in contact with macroalgae. Aggregated colonies of P. astreoides in contact with one another, one of which was in contact with the faster growing competitor A. palmata showed significantly greater growth rates than with just two aggregated P. astreoides colonies alone. These findings suggest that three dimensional topography and complexity is important for reef resilience and viability in the face of environmental stressors such as bleaching. Our findings also support the idea that aggregated spatial arrangements of corals can influence the outcome of interspecific competition and promote species coexistence, important in times of reef recovery after disturbance. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Coral Reef Guidance

    Science.gov (United States)

    Guidance prepared by EPA and Army Corps of Engineers concerning coral reef protection under the Clean Water Act, Marine Protection, Research, and Sanctuaries Act, Rivers and Harbors Act, and Federal Project Authorities.

  1. Wave-driven Hydrodynamics for Different Reef Geometries and Roughness Scenarios

    Science.gov (United States)

    Franklin, G. L.; Marino-Tapia, I.; Torres-Freyermuth, A.

    2013-05-01

    In fringing reef systems where a shallow lagoon is present behind the reef crest, wave breaking appears to dominate circulation, controlling numerous key processes such as the transport and dispersion of larvae, nutrients and sediments. Despite their importance, there is a need for more detailed knowledge on the hydrodynamic processes that take place within the surf zone of these systems and the effects different combinations of geometries and roughness have on them. The present study focuses on the use of two-dimensional (2DV) numerical model simulations and data obtained during a field campaign in Puerto Morelos, Quintana Roo, Mexico to better understand the detailed surf zone processes that occur over a fringing reef. The model used is Cornell Breaking Wave and Structures (COBRAS), which solves Reynolds-Averaged Navier-Stokes (RANS) equations. Reef geometries implemented in the model include a reef flat and two different reef crests. The effect of roughness on wave setup, radiation stress, mean flows, and cross-shore spectral evolution for the model results was studied using different roughness coefficients (Nikuradse) and a bathymetric profile obtained in the field using the bottom track option of an Acoustic Doppler Current Profiler. Field data were also analysed for the configuration and roughness of Puerto Morelos. Model results reveal that for all profiles wave setup increased significantly (~22%) with increasing bed roughness, in agreement with previous findings for sandy beaches.For all wave heights and periods studied, increasing roughness also affected spectral wave evolution across the reef, with a significant reduction in energy, particularly at infragravity frequencies. The presence of a reef crest in the profile resulted in differences in behaviour at infragravity frequencies. For example, preliminary results suggest that there is a shift towards higher frequencies as waves progress into the lagoon when a crest is present, something that does not

  2. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Automated evolutionary restructuring of workflows to minimise errors via stochastic model checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    This paper presents a framework for the automated restructuring of workflows that allows one to minimise the impact of errors on a production workflow. The framework allows for the modelling of workflows by means of a formalised subset of the Business Process Modelling and Notation (BPMN) language...

  4. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka‘i, Hawai‘i

    Science.gov (United States)

    Jokiel, Paul L.; Rodgers, Ku'ulei S.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1(offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance.

  5. The diversity of coral reefs: what are we missing?

    Directory of Open Access Journals (Sweden)

    Laetitia Plaisance

    Full Text Available Tropical reefs shelter one quarter to one third of all marine species but one third of the coral species that construct reefs are now at risk of extinction. Because traditional methods for assessing reef diversity are extremely time consuming, taxonomic expertise for many groups is lacking, and marine organisms are thought to be less vulnerable to extinction, most discussions of reef conservation focus on maintenance of ecosystem services rather than biodiversity loss. In this study involving the three major oceans with reef growth, we provide new biodiversity estimates based on quantitative sampling and DNA barcoding. We focus on crustaceans, which are the second most diverse group of marine metazoans. We show exceptionally high numbers of crustacean species associated with coral reefs relative to sampling effort (525 species from a combined, globally distributed sample area of 6.3 m(2. The high prevalence of rare species (38% encountered only once, the low level of spatial overlap (81% found in only one locality and the biogeographic patterns of diversity detected (Indo-West Pacific>Central Pacific>Caribbean are consistent with results from traditional survey methods, making this approach a reliable and efficient method for assessing and monitoring biodiversity. The finding of such large numbers of species in a small total area suggests that coral reef diversity is seriously under-detected using traditional survey methods, and by implication, underestimated.

  6. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals.

    Science.gov (United States)

    Loh, Tse-Lynn; McMurray, Steven E; Henkel, Timothy P; Vicente, Jan; Pawlik, Joseph R

    2015-01-01

    Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

  7. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    Science.gov (United States)

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by

  8. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae.

    Science.gov (United States)

    Barott, Katie L; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L; Vermeij, Mark J A; Smith, Jennifer E; Rohwer, Forest L

    2012-04-22

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.

  9. Recommendations for international gambling harm-minimisation guidelines: comparison with effective public health policy

    NARCIS (Netherlands)

    Gainsbury, Sally M.; Blankers, Matthijs; Wilkinson, Claire; Schelleman-Offermans, Karen; Cousijn, Janna

    2014-01-01

    Problem gambling represents a significant public health problem, however, research on effective gambling harm-minimisation measures lags behind other fields, including other addictive disorders. In recognition of the need for consistency between international jurisdictions and the importance of

  10. Recommendations for international gambling harm-minimisation guidelines : comparison with effective public health policy

    NARCIS (Netherlands)

    Gainsbury, Sally M; Blankers, Matthijs; Wilkinson, Claire; Schelleman-Offermans, Karen; Cousijn, Janna

    2014-01-01

    Problem gambling represents a significant public health problem, however, research on effective gambling harm-minimisation measures lags behind other fields, including other addictive disorders. In recognition of the need for consistency between international jurisdictions and the importance of

  11. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    Directory of Open Access Journals (Sweden)

    Virginia H. Garrison

    2012-03-01

    Full Text Available In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands in 1999 and was followed for 12 years. The primary objectives were to (1 identify a source of coral colonies for transplantation that would not result in damage to reefs, (2 test the feasibility of transplanting storm-generated coral fragments, and (3 develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community. The ultimate goal was to enhance abundance of threatened reef-building species on local reefs. Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae] and another fast-growing species [Porites porites (Poritidae] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs. Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate. Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place. Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only. Location was a factor in survival only for A. palmata reference colonies and after year 10. Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and

  12. The growth of coral reef science in the Gulf: a historical perspective.

    Science.gov (United States)

    Burt, John A

    2013-07-30

    Coral reef science has grown exponentially in recent decades in the Gulf. Analysis of literature from 1950 to 2012 identified 270 publications on coral reefs in the Gulf, half of which were published in just the past decade. This paper summarizes the growth and evolution of coral reef science in the Gulf by examining when, where and how research has been conducted on Gulf reefs, who conducted that research, and what themes and taxa have dominated scientific interest. The results demonstrate that there has been significant growth in our understanding of the valuable coral reefs of the Gulf, but also highlight the fact that we are documenting an increasingly degraded ecosystem. Reef scientists must make a concerted effort to improve dialogue with regional reef management and decision-makers if we are to stem the tide of decline in coral reefs in the Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Global warming transforms coral reef assemblages.

    Science.gov (United States)

    Hughes, Terry P; Kerry, James T; Baird, Andrew H; Connolly, Sean R; Dietzel, Andreas; Eakin, C Mark; Heron, Scott F; Hoey, Andrew S; Hoogenboom, Mia O; Liu, Gang; McWilliam, Michael J; Pears, Rachel J; Pratchett, Morgan S; Skirving, William J; Stella, Jessica S; Torda, Gergely

    2018-04-01

    Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.

  14. Challenges for Managing Fisheries on Diverse Coral Reefs

    Directory of Open Access Journals (Sweden)

    Douglas Fenner

    2012-03-01

    Full Text Available Widespread coral reef decline has included the decline of reef fish populations, and the subsistence and artisanal fisheries that depend on them. Overfishing and destructive fishing have been identified as the greatest local threats to coral reefs, but the greatest future threats are acidification and increases in mass coral bleaching caused by global warming. Some reefs have shifted from dominance by corals to macroalgae, in what are called “phase shifts”. Depletion of herbivores including fishes has been identified as a contributor to such phase shifts, though nutrients are also involved in complex interactions with herbivory and competition. The depletion of herbivorous fishes implies a reduction of the resilience of coral reefs to the looming threat of mass coral mortality from bleaching, since mass coral deaths are likely to be followed by mass macroalgal blooms on the newly exposed dead substrates. Conventional stock assessment of each fish species would be the preferred option for understanding the status of the reef fishes, but this is far too expensive to be practical because of the high diversity of the fishery and poverty where most reefs are located. In addition, stock assessment models and fisheries in general assume density dependent populations, but a key prediction that stocks recover from fishing is not always confirmed. Catch Per Unit Effort (CPUE has far too many weaknesses to be a useful method. The ratio of catch to stock and the proportion of catch that is mature depend on fish catch data, and are heavily biased toward stocks that are in good condition and incapable of finding species that are in the worst condition. Near-pristine reefs give us a reality check about just how much we have lost. Common fisheries management tools that control effort or catch are often prohibitively difficult to enforce for most coral reefs except in developed countries. Ecosystem-based management requires management of impacts of fishing

  15. Remote sensing of coral reefs and their physical environment

    International Nuclear Information System (INIS)

    Mumby, Peter J.; Skirving, William; Strong, Alan E.; Hardy, John T.; LeDrew, Ellsworth F.; Hochberg, Eric J.; Stumpf, Rick P.; David, Laura T.

    2004-01-01

    There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas

  16. Low calcification in corals in the Great Barrier Reef

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-10-01

    Reef-building coral communities in the Great Barrier Reef—the world's largest coral reef—may now be calcifying at only about half the rate that they did during the 1970s, even though live coral cover may not have changed over the past 40 years, a new study finds. In recent decades, coral reefs around the world, home to large numbers of fish and other marine species, have been threatened by such human activities as pollution, overfishing, global warming, and ocean acidification; the latter affects ambient water chemistry and availability of calcium ions, which are critical for coral communities to calcify, build, and maintain reefs. Comparing data from reef surveys during the 1970s, 1980s, and 1990s with present-day (2009) measurements of calcification rates in One Tree Island, a coral reef covering 13 square kilometers in the southern part of the Great Barrier Reef, Silverman et al. show that the total calcification rates (the rate of calcification minus the rate of dissolution) in these coral communities have decreased by 44% over the past 40 years; the decrease appears to stem from a threefold reduction in calcification rates during nighttime.

  17. Modern coral reefs of western Atlantic: new geological perspective

    Energy Technology Data Exchange (ETDEWEB)

    MacIntyre, I.G.

    1988-11-01

    Contrary to popular belief of the late 1960s, western Atlantic Holocene reefs have a long history and are not feeble novice nearshore veneers that barely survived postglacial temperatures. Rather, the growth of these reefs kept pace with the rising seas of the Holocene transgression and their development was, for the most part, controlled by offshore wave-energy conditions and the relationship between changing sea levels and local shelf topography. Thus, the outer shelves of the eastern Caribbean in areas of high energy have relict reefs consisting predominantly of Acropora palmata, a robust shallow-water coral. The flooding of adjacent shelves during the postglacial transgression introduced stress conditions that terminated the growth of these reefs. When, about 7000 yr ago, shelf-water conditions improved, scattered deeper water coral communities reestablished themselves on these stranded shelf-edge reefs, and fringing and bank-barrier reefs began to flourish in shallow coastal areas. At the same time, the fragile and rapidly growing Acropora cervicornis and other corals flourished at greater depths on the more protected shelves of the western Caribbean and the Gulf of Mexico. As a result, late Holocene buildups more than 30 m thick developed in those areas. 7 figures.

  18. Remote sensing of coral reefs and their physical environment

    Energy Technology Data Exchange (ETDEWEB)

    Mumby, Peter J.; Skirving, William; Strong, Alan E.; Hardy, John T.; LeDrew, Ellsworth F.; Hochberg, Eric J.; Stumpf, Rick P.; David, Laura T

    2004-02-01

    There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas.

  19. Trophodynamics as a Tool for Understanding Coral Reef Ecosystems

    Directory of Open Access Journals (Sweden)

    Stacy L. Bierwagen

    2018-02-01

    Full Text Available The increased frequency of publications concerning trophic ecology of coral reefs suggests a degree of interest in the role species and functional groups play in energy flow within these systems. Coral reef ecosystems are particularly complex, however, and assignment of trophic positions requires precise knowledge of mechanisms driving food webs and population dynamics. Competent analytical tools and empirical analysis are integral to defining ecosystem processes and avoiding misinterpretation of results. Here we examine the contribution of trophodynamics to informing ecological roles and understanding of coral reef ecology. Applied trophic studies of coral reefs were used to identify recent trends in methodology and analysis. Although research is increasing, clear definitions and scaling of studies is lacking. Trophodynamic studies will require more precise spatial and temporal data collection and analysis using multiple methods to fully explore the complex interactions within coral reef ecosystems.

  20. Coral Reef Resilience, Tipping Points and the Strength of Herbivory.

    Science.gov (United States)

    Holbrook, Sally J; Schmitt, Russell J; Adam, Thomas C; Brooks, Andrew J

    2016-11-02

    Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.

  1. Joint estimation of crown of thorns (Acanthaster planci densities on the Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    M. Aaron MacNeil

    2016-08-01

    Full Text Available Crown-of-thorns starfish (CoTS; Acanthaster spp. are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1 estimating the detectability of adult CoTS on typical underwater visual count (UVC surveys using covariates and (2 inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR. We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD and [95% uncertainty intervals], with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014.

  2. Geophysical Features - SILURIAN_REEF_POLYGONS_MM54_IN: Silurian Reef Locations in Indiana (Indiana Geological Survey, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — SILURIAN_REEF_POLYGONS_MM54_IN is a polygon shapefile that shows the general locations of Silurian rock reef bank formations in Indiana. These data include two major...

  3. Conservation and management applications of the REEF volunteer fish monitoring program.

    Science.gov (United States)

    Pattengill-Semmens, Christy V; Semmens, Brice X

    2003-01-01

    The REEF Fish Survey Project is a volunteer fish monitoring program developed by the Reef Environmental Education Foundation (REEF). REEF volunteers collect fish distribution and abundance data using a standardized visual method during regular diving and snorkeling activities. Survey data are recorded on preprinted data sheets that are returned to REEF and optically digitized. Data are housed in a publicly accessible database on REEF's Web site (http://www.reef.org). Since the project's inception in 1993, over 40,000 surveys have been conducted in the coastal waters of North America, tropical western Atlantic, Gulf of California and Hawaii. The Fish Survey Project has been incorporated into existing monitoring programs through partnerships with government agencies, scientists, conservation organizations, and private institutions. REEF's partners benefit from the educational value and increased stewardship resulting from volunteer data collection. Applications of the data include an evaluation of fish/habitat interactions in the Florida Keys National Marine Sanctuary, the development of a multi-species trend analysis method to identify sites of management concern, assessment of the current distribution of species, status reports on fish assemblages of marine parks, and the evaluation of no-take zones in the Florida Keys. REEF's collaboration with a variety of partners, combined with the Fish Survey Project's standardized census method and database management system, has resulted in a successful citizen science monitoring program.

  4. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs

    International Nuclear Information System (INIS)

    Nugues, Maggy M.; Roberts, Callum M.

    2003-01-01

    Partial mortality and fission on colonies of four common massive coral species were examined at sites differing in their exposure to river sediments in St. Lucia, West Indies. Rates of partial mortality were higher close to the river mouths, where more sediments were deposited, than away from the rivers in two coral species. Frequency of fission showed no significant trend. The percent change in coral cover on reefs from 1995 to 1998 was negatively related to the rate of partial mortality estimated in 1998 in all species. This suggests that partial mortality rates could reflect longer-term temporal changes in coral communities. Similar conclusions could also be reached using a less precise measure and simply recording partial mortality on colonies as <50% and ≥50% dead tissue. We conclude that partial mortality in some species of massive reef corals, expressed as the amount of dead tissue per colony, could provide a rapid and effective means of detecting sediment stress on coral reefs

  5. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    Nugues, Maggy M.; Roberts, Callum M

    2003-03-01

    Partial mortality and fission on colonies of four common massive coral species were examined at sites differing in their exposure to river sediments in St. Lucia, West Indies. Rates of partial mortality were higher close to the river mouths, where more sediments were deposited, than away from the rivers in two coral species. Frequency of fission showed no significant trend. The percent change in coral cover on reefs from 1995 to 1998 was negatively related to the rate of partial mortality estimated in 1998 in all species. This suggests that partial mortality rates could reflect longer-term temporal changes in coral communities. Similar conclusions could also be reached using a less precise measure and simply recording partial mortality on colonies as <50% and {>=}50% dead tissue. We conclude that partial mortality in some species of massive reef corals, expressed as the amount of dead tissue per colony, could provide a rapid and effective means of detecting sediment stress on coral reefs.

  6. Balance of constructive and destructive carbonate processes on mesophotic coral reefs

    Science.gov (United States)

    Weinstein, D. K.; Klaus, J. S.; Smith, T. B.; Helmle, K. P.; Marshall, D.

    2013-12-01

    Net carbonate accumulation of coral reefs is the product of both constructive and destructive processes that can ultimately influence overall reef geomorphology. Differences in these processes with depth may in part explain why the coral growth-light intensity association does no result in the traditionally theorized reef accretion decrease with depth. Until recently, physical sampling limitations had prevented the acquisition of sedimentary data needed to assess in situ carbonate accumulation in mesophotic reefs (30-150 m). Coral framework production, secondary carbonate production (calcareous encrusters), and bioerosion, the three most critical components of net carbonate accumulation, were analyzed in mesophotic reefs more than 10 km south of St. Thomas, U.S. Virgin Islands along a very gradual slope that limits sediment transport and sedimentation. Recently dead samples of the massive coral, Orbicella annularis collected from three structurally different upper mesophotic coral reef habitats (30-45 m) were cut parallel to the primary growth axis to identify density banding through standard x-radiographic techniques. Assuming annual banding, mesophotic linear extension rates were calculated on the order of 0.7-1.5 mm/yr. Weight change of experimental coral substrates exposed for 3 years indicate differing rates (1.1-17.2 g/yr) of bioerosion and secondary accretion between mesophotic sites. When correcting bioerosion rates for high mesophotic skeletal density, carbonate accumulation rates were found to vary significantly between neighboring mesophotic reefs with distinctive structures. Results imply variable rates of mesophotic reef net carbonate accretion with the potential to influence overall reef/platform morphology, including localized mesophotic reef structure.

  7. LIDAR optical rugosity of coral reefs in Biscayne National Park, Florida

    Science.gov (United States)

    Brock, J.C.; Wright, C.W.; Clayton, T.D.; Nayegandhi, A.

    2004-01-01

    The NASA Experimental Advanced Airborne Research Lidar (EAARL), a temporal waveform-resolving, airborne, green wavelength LIDAR (light detection and ranging), is designed to measure the submeter-scale topography of shallow reef substrates. Topographic variability is a prime component of habitat complexity, an ecological factor that both expresses and controls the abundance and distribution of many reef organisms. Following the acquisition of EAARL coverage over both mid-platform patch reefs and shelf-margin bank reefs within Biscayne National Park in August 2002, EAARL-based optical indices of topographic variability were evaluated at 15 patch reef and bank reef sites. Several sites were selected to match reefs previously evaluated in situ along underwater video and belt transects. The analysis used large populations of submarine topographic transects derived from the examination of closely spaced laser spot reflections along LIDAR raster scans. At all 15 sites, each LIDAR transect was evaluated separately to determine optical rugosity (Rotran), and the average elevation difference between adjacent points (Av(??E ap)). Further, the whole-site mean and maximum values of Ro tran and Av(??Eap) for the entire population of transects at each analysis site, along with their standard deviations, were calculated. This study revealed that the greater habitat complexity of inshore patch reefs versus outer bank reefs results in relative differences in topographic complexity that can be discerned in the laser returns. Accordingly, LIDAR sensing of optical rugosity is proposed as a complementary new technique for the rapid assessment of shallow coral reefs. ?? Springer-Verlag 2004.

  8. Science and management of coral reefs: problems and prospects

    Science.gov (United States)

    Wells, S. M.

    1995-11-01

    It should be recognised that many principles of reef management do not need further research, as they involve changing human behaviour and activities in order to remove or reduce impacts on reefs. Much of the time of a reef manager is taken up with social, economic and political issues: the integration of reef management into broad coastal zone management objectives; the development of community participation and co-management; and the organisation of training and education pro-grammes so that people in countries where reefs are located are able to take responsibility for their sustainable management. Perhaps the main obstacle to be overcome is poor communication (Harmon 1994). Many reef scientists are already strongly convinced of the need to communicate their results and the implications of these for management and conservation policy (Hatcher et al. 1989), but they may however need to understand that reef managers are not always able or willing to act on their advice because of political, economic or social factors. Pure research is increasingly being conducted within a framework of goals identified as important to society. Funding is invariably easier to obtain if it can be demonstrated that the research will have some ultimate benefit in management terms, and much research is being commissioned because of the need for practical solutions. As the complexity of management becomes more apparent and managers themselves call for more scientific support and advice, the role that science has to play in perceiving and defining problems, understanding the mechanisms involved and strategically assessing potential solutions, becomes more central. Often, only a slight adjustment to a project is required in order for data to be collected that is of direct value to a reef manager.Partnerships built between scientists and managers engaged in adaptive management efforts may lead to more rapid progress in managing reefs and may banish the `science and management' dichotomy

  9. Operationalizing resilience for adaptive coral reef management under global environmental change.

    Science.gov (United States)

    Anthony, Kenneth R N; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas A J; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on

  10. A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure

    Science.gov (United States)

    Duvall, M. S.; Hench, J. L.

    2016-02-01

    The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.

  11. Coral zonation and diagenesis of an emergent Pleistocene patch reef, Belize, Central America

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, R.G.; Russell, K.L.

    1985-01-01

    Transect mapping and petrologic studies reveal a new depositional model and limited diagenesis of a well-exposed Pleistocene reef outcrop at Ambergris Cay, northern Belize. This emergent shelf-edge reef forms a rocky wave-washed headland at the northern terminus of the present-day 250 km long flourishing Belize Barrier Reef. Previously, the Belize reef outcrop was thought to extend southward in the subsurface beneath the modern barrier reef as a Pleistocene equivalent. The authors study indicate that this outcrop is a large, coral patch reef and not part of a barrier reef trend. Sixteen transects 12.5 m apart described in continuous cm increments from fore reef to back reef identified: extensive deposits of broken Acropora cervicornis; small thickets of A. palmata with small, oriented branches; and muddy skeletal sediments with few corals or reef rubble. Thin section and SEM studies show three phases of early submarine cementation: syntaxial and rosette aragonite; Mg-calcite rim cement and peloids; and colloidal Mg-calcite geopetal fill. Subaerial exposure in semi-arid northern Belize caused only minor skeletal dissolution, some precipitation of vadose whisker calcite, and no meteoric phreatic diagenesis. Facies geometry, coral assemblages, lack of rubble deposits, coralline algal encrustations and Millepora framework, and recognition of common but discrete submarine cements, all indicate that this Pleistocene reef was an isolated, coral-fringed sediment buildup similar to may large patch reefs existing today in moderate-energy shelf environments behind the modern barrier reef in central and southern Belize.

  12. Evidence of exceptional oyster-reef resilience to fluctuations in sea level.

    Science.gov (United States)

    Ridge, Justin T; Rodriguez, Antonio B; Fodrie, F Joel

    2017-12-01

    Ecosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef ( Crassostrea virginica ) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs ( n  = 3) constructed in 1997 and 2000, young reefs ( n  = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and

  13. Vaal Reefs

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Vaal Reefs Mine, the world's top gold producer with an output last quarter of 19,6 tons of gold, is to expand further with the building of an 120 000t/month run-of-mine mill at the new No 9 Shaft in the south area, linked with a carbon-in-pulp plant

  14. Global warming and coral reefs. Chikyu ondanka to sangosho

    Energy Technology Data Exchange (ETDEWEB)

    Kayane, H [Geological Survey of Japan, Tokyo (Japan)

    1991-09-01

    A summary is described with respect to the relation of the global warming with coral reefs on the environmental estimation based on the sea level rise, and the development of counter-technologies utilizing the CO{sub 2} fixing capability of coral reefs. if no measures are taken to reduce discharge of greenhouse effective gases, the air temperature will rise by 1{degree}C by the year 2025, and 3{degree}C by 2100. The thermal expansion of sea water and partial melting of land ice caused from the said temperature rise will cause the annual sea level rising speed to climb to 6 mm in the next century. It is estimated that the sea level will be elevated higher by 25 cm by the year 2025, 65 cm by 2100, and the maximum of 1 m than the present level. The upward growth rate of reef ridges is between 1m and 4m in 1000 years, and the growth of reef rides as the frameworks of coral reefs and lime alga ridges can not catch up the sea level rise of 6 mm/year. This may cause a possibility of sea water erosion or inundation. As a possible contermeasure, an expectation is placed on structuring coral reef eco-factories which may be possible as a result of elucidating the CO{sub 2} fixing mechanism in coral reefs and utilizing the capability to its maximum. 23 refs., 7 figs., 1 tab.

  15. Minimising Attrition: Strategies for Assisting Students Who Are at Risk of Withdrawal

    Science.gov (United States)

    Park, Caroline L.; Perry, Beth; Edwards, Margaret

    2011-01-01

    This paper explores strategies aimed at minimising attrition by encouraging persistence among online graduate students who are considering withdrawal. It builds upon earlier studies conducted by a team of researchers who teach online graduate students in health care at Athabasca University. First, in 2008-2009, Park, Boman, Care, Edwards, and…

  16. A geological perspective on the degradation and conservation of western Atlantic coral reefs

    Science.gov (United States)

    Kuffner, Ilsa B.; Toth, Lauren T.

    2016-01-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of

  17. Precise U-Pb dating of Cenozoic tropical reef carbonates: Linking the evolution of Cenozoic Caribbean reef carbonates to climatic and environmental changes.

    Science.gov (United States)

    Silva-Tamayo, J. C.; Ducea, M.; Cardona, A.; Montes, C.; Rincon, D.; Machado, A.; Flores, A.; Sial, A.; Pardo, A.; Niño, H.; Ramirez, V.; Jaramillo, C.; Zapata, P.; Barrios, L.; Rosero, S.; Bayona, G.; Zapata, V.

    2012-04-01

    Coral reefs are very diverse and productive ecosystems; and have long been the base of the economic activity of several countries along the tropics. Because coral reefs are very sensitive to environmental changes and their adaptation to changing stressing conditions is very slow, the combination of current rapid environmental changes and the additional stresses created by growing human populations (i.e. rapid anthropogenic CO2 additions to the atmosphere),plus the economic and coastal development may become a lethal synergy. The ongoing acidification of modern oceans is a major issue of concern because it may have serious consequences for the survival of shelly marine invertebrates as the 21st century progresses. Ocean Acidification (OA) is now being driven by rapid CO2 release to the atmosphere. Although evidences of the devastating effects of oceanic acidification in the marine biota are provided by the decreased rate of coral skeleton production and the reduced ability of algae and free-swimming zooplankton to maintain protective shells, among others, predicting the effects of oceanic acidification on the future oceans (2050-2100) has remained rather difficult because the atmospheric CO2 sequestration by the global oceans occurs in geologic time scales. Important changes in the atmospheric pCO2 and major climatic/environmental events seem to have controlled the evolution of the Cenozoic equatorial-tropical carbonates r1-10. Rapid additions of green house gases to the atmosphere occurred during the Paleocene-Eocene transition and would have promoted several other events of global warming until the early Oligocene (i.e. the Eocene thermal maximum). These periods of high greenhouse gases concentrations would have also resulted on OA, affecting the reef carbonate ecology and tropical carbonate budgets. Relating temporal variations in the Cenozoic reef carbonate structure, ecology and factory is vital to help understanding and predicting the future effects of the

  18. Large-scale bleaching of corals on the Great Barrier Reef.

    Science.gov (United States)

    Hughes, T P; Kerry, J T; Simpson, T

    2018-02-01

    In 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching. In the southern hemisphere summer of March-April 2016, we used aerial surveys to measure the level of bleaching on 1,156 individual reefs throughout the 2,300 km length of the Great Barrier Reef, the world's largest coral reef system. The accuracy of the aerial scores was ground-truthed with detailed underwater surveys of bleaching at 260 sites (104 reefs), allowing us to compare aerial and underwater bleaching data with satellite-derived temperatures and with associated model predictions of bleaching. The severity of bleaching on individual reefs in 2016 was tightly correlated with the level of local heat exposure: the southernmost region of the Great Barrier Reef escaped with only minor bleaching because summer temperatures there were close to average. Gradients in nutrients and turbidity from inshore to offshore across the Great Barrier Reef had minimal effect on the severity of bleaching. Similarly, bleaching was equally severe on reefs that are open or closed to fishing, once the level of satellite-derived heat exposure was accounted for. The level of post-bleaching mortality, measured underwater after 7-8 months, was tightly correlated with the aerial scores measured at the peak of bleaching. Similarly, reefs with a high aerial bleaching score also experienced major shifts in species composition due to extensive mortality of heat-sensitive species. Reefs with low bleaching scores did not change in composition, and some showed minor increases in coral cover. Two earlier mass bleaching events occurred on the Great Barrier Reef in 1998 and 2002, that were less severe than 2016. In 2016, bleaching, compared to 42% in 2002 and 44% in 1998. Conversely, the proportion of reefs that were severely bleached (>60% of corals affected) was four times higher in 2016. The geographic footprint of each of the three events is distinctive, and matches satellite-derived sea surface

  19. Sediments and herbivory as sensitive indicators of coral reef degradation

    Directory of Open Access Journals (Sweden)

    Christopher H. R. Goatley

    2016-03-01

    Full Text Available Around the world, the decreasing health of coral reef ecosystems has highlighted the need to better understand the processes of reef degradation. The development of more sensitive tools, which complement traditional methods of monitoring coral reefs, may reveal earlier signs of degradation and provide an opportunity for pre-emptive responses. We identify new, sensitive metrics of ecosystem processes and benthic composition that allow us to quantify subtle, yet destabilizing, changes in the ecosystem state of an inshore coral reef on the Great Barrier Reef. Following severe climatic disturbances over the period 2011-2012, the herbivorous reef fish community of the reef did not change in terms of biomass or functional groups present. However, fish-based ecosystem processes showed marked changes, with grazing by herbivorous fishes declining by over 90%. On the benthos, algal turf lengths in the epilithic algal matrix increased more than 50% while benthic sediment loads increased 37-fold. The profound changes in processes, despite no visible change in ecosystem state, i.e., no shift to macroalgal dominance, suggest that although the reef has not undergone a visible regime-shift, the ecosystem is highly unstable, and may sit on an ecological knife-edge. Sensitive, process-based metrics of ecosystem state, such as grazing or browsing rates thus appear to be effective in detecting subtle signs of degradation and may be critical in identifying ecosystems at risk for the future.

  20. A process evaluation of the 'Aware' and 'Supportive Communities' gambling harm-minimisation programmes in New Zealand.

    Science.gov (United States)

    Kolandai-Matchett, Komathi; Bellringer, Maria; Landon, Jason; Abbott, Max

    2018-04-01

    The Gambling Act 2003 mandated a public health strategy for preventing and minimising gambling harm in New Zealand. Aware Communities and Supportive Communities are two public health programmes subsequently implemented nationwide. These programmes differed from common health promotion initiatives such as media or education campaigns as they were community-action based (requiring community involvement in programme planning and delivery). We carried out a process evaluation to determine their implementation effectiveness and inform improvement and future programme planning. Our qualitative dominant mixed methods design comprised analysis of over a hundred implementer progress reports (submitted July 2010 - June 2013), a staff survey and a staff focus group interview. The programmes demonstrated capacity to not only achieve expected outcomes (e.g. enhanced community awareness about harmful gambling), but also to enhance social sustainability at the community level (e.g. established trustful relationships) and achieve some programme sustainability (e.g. community ownership over ongoing programme delivery). The evaluation noted the potential for a sustainable gambling harm-minimisation model. Community-action based harm-minimisation programmes offer programme sustainability potential which in turn offers funding cost-effectiveness when there are continual public health outcomes beyond initial funding. Although resource intensive, the community-action based approach enables culturally appropriate public health programmes suitable for societies where specific ethnic groups have higher gambling risk. Recognition of such harm-minimisation programmes' contribution to social sustainability is important considering the potential for broader public health outcomes (e.g. better life quality, lesser social problems) within socially sustainable societies.

  1. Human Dimensions of Coral Reef Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    John N. Kittinger

    2012-12-01

    Full Text Available Coral reefs are among the most diverse ecosystems on the planet but are declining because of human activities. Despite general recognition of the human role in the plight of coral reefs, the vast majority of research focuses on the ecological rather than the human dimensions of reef ecosystems, limiting our understanding of social relationships with these environments as well as potential solutions for reef recovery. General frameworks for social-ecological systems (SESs have been advanced, but system-specific approaches are needed to develop a more nuanced view of human-environmental interactions for specific contexts and resource systems, and at specific scales. We synthesize existing concepts related to SESs and present a human dimensions framework that explores the linkages between social system structural traits, human activities, ecosystem services, and human well-being in coral reef SESs. Key features of the framework include social-ecological reciprocity, proximate and underlying dimensions, and the directionality of key relationships and feedback loops. Such frameworks are needed if human dimensions research is to be more fully integrated into studies of ecosystem change and the sustainability of linked SESs.

  2. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia

    Science.gov (United States)

    Uthicke, S.; Thompson, A.; Schaffelke, B.

    2010-03-01

    Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.

  3. Multilayer shallow shelf approximation: Minimisation formulation, finite element solvers and applications

    Energy Technology Data Exchange (ETDEWEB)

    Jouvet, Guillaume, E-mail: jouvet@vaw.baug.ethz.ch [Institut für Mathematik, Freie Universität Berlin (Germany); Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich (Switzerland)

    2015-04-15

    In this paper, a multilayer generalisation of the Shallow Shelf Approximation (SSA) is considered. In this recent hybrid ice flow model, the ice thickness is divided into thin layers, which can spread out, contract and slide over each other in such a way that the velocity profile is layer-wise constant. Like the SSA (1-layer model), the multilayer model can be reformulated as a minimisation problem. However, unlike the SSA, the functional to be minimised involves a new penalisation term for the interlayer jumps of the velocity, which represents the vertical shear stresses induced by interlayer sliding. Taking advantage of this reformulation, numerical solvers developed for the SSA can be naturally extended layer-wise or column-wise. Numerical results show that the column-wise extension of a Newton multigrid solver proves to be robust in the sense that its convergence is barely influenced by the number of layers and the type of ice flow. In addition, the multilayer formulation appears to be naturally better conditioned than the one of the first-order approximation to face the anisotropic conditions of the sliding-dominant ice flow of ISMIP-HOM experiments.

  4. Invasive lionfish preying on critically endangered reef fish

    Science.gov (United States)

    Rocha, Luiz A.; Rocha, Claudia R.; Baldwin, Carole C.; Weigt, Lee A.; McField, Melanie

    2015-09-01

    Caribbean coral reef ecosystems are at the forefront of a global decline and are now facing a new threat: elimination of vulnerable species by the invasive lionfish ( Pterois spp.). In addition to being threatened by habitat destruction and pollution, the critically endangered social wrasse ( Halichoeres socialis), endemic to Belize's inner barrier reef, has a combination of biological traits (small size, schooling, and hovering behavior) that makes it a target for the invasive lionfish. Based on stomach content analyses, this small fish comprises almost half of the lionfish diet at the inner barrier reef in Belize. The combination of lionfish predation, limited range, and ongoing habitat destruction makes the social wrasse the most threatened coral reef fish in the world. Other species with small range and similar traits occur elsewhere in the Caribbean and face similar risks.

  5. Linking habitat mosaics and connectivity in a coral reef seascape

    KAUST Repository

    McMahon, Kelton

    2012-09-04

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape con figuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes.

  6. Linking habitat mosaics and connectivity in a coral reef seascape

    KAUST Repository

    McMahon, Kelton; Berumen, Michael L.; Thorrold, Simon R.

    2012-01-01

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape con figuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes.

  7. Linking habitat mosaics and connectivity in a coral reef seascape.

    Science.gov (United States)

    McMahon, Kelton W; Berumen, Michael L; Thorrold, Simon R

    2012-09-18

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape configuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes.

  8. Modern stromatolite reefs fringing a brackish coastline, Chetumal Bay, Belize

    Science.gov (United States)

    Rasmussen, Kenneth A.; MacIntyre, Ian G.; Prufert, Leslie

    1993-03-01

    Reef-forming stromatolites have been discovered along the windward shoreline of Chetumal Bay, Belize, just south of the mouth of the Rio Hondo. The reefs and surrounding sediment are formed by the precipitation of submicrocrystalline calcite upon the sheaths of filamentous cyanobacteria, principally Scytonema, under a seasonally fluctuating, generally brackish salinity regime (0‰10‰). Well-cemented, wave-resistant buttresses of coalesced stromatolite heads form arcuate or club-shaped reefs up to 42 m long and 1.5 m in relief that are partially emergent during low tide. Oncolitic rubble fields are present between well-developed reefs along the 1.5 km trend, which parallels the mangrove coastline 40-100 m offshore. The mode of reef growth, as illustrated by surface relief and internal structure, changes with increasing water depth and energy, proximity to bottom sediments, and dominant cyanobacterial taxa. Sediment trapping and binding by cyanobacteria are of limited importance to reef growth, and occur only where stromatolite heads or oncolites are in direct contact with the sandy sea floor. Radiocarbon-dated mangrove peat at the base of the reef suggests that it began to form about 2300 yr B.P., as shoreline encrustations that were stranded offshore following storm-induced retreat of the mangrove coast.

  9. ENERGETIC EXTREMES IN REEF FISH OCCUPYING HARSH HABITATS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2009-01-01

    document how relatively small changes in fin morphology has afforded some coral reef fish taxa with exceptional locomotor performance and energetic efficiency, and how this key attribute may have played a key role in the evolution and ecology of several diverse Indo-Pacific reef fish families. Using......-finned counterparts. We discuss how such differences in locomotor efficiency are pivotal to the habitat-use of these fishes, and how eco-energetic models may be used to provide new insights into spatial variations in fish demography and ecology among coral reef habitat zones....

  10. Reliability and utility of citizen science reef monitoring data collected by Reef Check Australia, 2002-2015.

    Science.gov (United States)

    Done, Terence; Roelfsema, Chris; Harvey, Andrew; Schuller, Laura; Hill, Jocelyn; Schläppy, Marie-Lise; Lea, Alexandra; Bauer-Civiello, Anne; Loder, Jennifer

    2017-04-15

    Reef Check Australia (RCA) has collected data on benthic composition and cover at >70 sites along >1000km of Australia's Queensland coast from 2002 to 2015. This paper quantifies the accuracy, precision and power of RCA benthic composition data, to guide its application and interpretation. A simulation study established that the inherent accuracy of the Reef Check point sampling protocol is high (<±7% error absolute), in the range of estimates of benthic cover from 1% to 50%. A field study at three reef sites indicated that, despite minor observer- and deployment-related biases, the protocol does reliably document moderate ecological changes in coral communities. The error analyses were then used to guide the interpretation of inter-annual variability and long term trends at three study sites in RCA's major 2002-2015 data series for the Queensland coast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Drivers of abundance and spatial distribution of reef-associated sharks in an isolated atoll reef system.

    Directory of Open Access Journals (Sweden)

    David M Tickler

    Full Text Available We investigated drivers of reef shark demography across a large and isolated marine protected area, the British Indian Ocean Territory Marine Reserve, using stereo baited remote underwater video systems. We modelled shark abundance against biotic and abiotic variables at 35 sites across the reserve and found that the biomass of low trophic order fish (specifically planktivores had the greatest effect on shark abundance, although models also included habitat variables (depth, coral cover and site type. There was significant variation in the composition of the shark assemblage at different atolls within the reserve. In particular, the deepest habitat sampled (a seamount at 70-80m visited for the first time in this study recorded large numbers of scalloped hammerhead sharks (Sphyrna lewini not observed elsewhere. Size structure of the most abundant and common species, grey reef sharks (Carcharhinus amblyrhynchos, varied with location. Individuals at an isolated bank were 30% smaller than those at the main atolls, with size structure significantly biased towards the size range for young of year (YOY. The 18 individuals judged to be YOY represented the offspring of between four and six females, so, whilst inconclusive, these data suggest the possible use of a common pupping site by grey reef sharks. The importance of low trophic order fish biomass (i.e. potential prey in predicting spatial variation in shark abundance is consistent with other studies both in marine and terrestrial systems which suggest that prey availability may be a more important predictor of predator distribution than habitat suitability. This result supports the need for ecosystem level rather than species-specific conservation measures to support shark recovery. The observed spatial partitioning amongst sites for species and life-stages also implies the need to include a diversity of habitats and reef types within a protected area for adequate protection of reef-associated shark

  12. The influence of coral reef benthic condition on associated fish assemblages.

    Directory of Open Access Journals (Sweden)

    Karen M Chong-Seng

    Full Text Available Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58% and high structural complexity to high macroalgae cover (up to 95% and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.

  13. Virus-host interactions and their roles in coral reef health and disease.

    Science.gov (United States)

    Thurber, Rebecca Vega; Payet, Jérôme P; Thurber, Andrew R; Correa, Adrienne M S

    2017-04-01

    Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.

  14. Monitoring of coastal coral reefs near Dahab (Gulf of Aqaba, Red Sea) indicates local eutrophication as potential cause for change in benthic communities.

    Science.gov (United States)

    Naumann, Malik S; Bednarz, Vanessa N; Ferse, Sebastian C A; Niggl, Wolfgang; Wild, Christian

    2015-02-01

    Coral reef ecosystems fringing the coastline of Dahab (South Sinai, Egypt) have experienced increasing anthropogenic disturbance as an emergent international tourism destination. Previous reports covering tourism-related impacts on coastal environments, particularly mechanical damage and destructive fishing, have highlighted the vital necessity for regular ecosystem monitoring of coral reefs near Dahab. However, a continuous scientific monitoring programme of permanent survey sites has not been established to date. Thus, this study conducted in situ monitoring surveys to investigate spatio-temporal variability of benthic reef communities and selected reef-associated herbivores along with reef health indicator organisms by revisiting three of the locally most frequented dive sites during expeditions in March 2010, September 2011 and February 2013. In addition, inorganic nutrient concentrations in reef-surrounding waters were determined to evaluate bottom-up effects of key environmental parameters on benthic reef community shifts in relation to grazer-induced top-down control. Findings revealed that from 2010 to 2013, live hard coral cover declined significantly by 12 % at the current-sheltered site Three Pools (TP), while showing negative trends for the Blue Hole (BH) and Lighthouse (LH) sites. Hard coral cover decline was significantly and highly correlated to a substantial increase in turf algae cover (up to 57 % at TP) at all sites, replacing hard corals as dominant benthic space occupiers in 2013. These changes were correlated to ambient phosphate and ammonium concentrations that exhibited highest values (0.64 ± 0.07 μmol PO4 (3-) l(-1), 1.05 ± 0.07 μmol NH4 (+) l(-1)) at the degraded site TP. While macroalgae appeared to respond to both bottom-up and top-down factors, change in turf algae was consistent with expected indications for bottom-up control. Temporal variability measured in herbivorous reef fish stocks reflected seasonal impacts by

  15. Simulated NASA Satellite Data Products for the NOAA Integrated Coral Reef Observation Network/Coral Reef Early Warning System

    Science.gov (United States)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.

  16. Developing a multi-stressor gradient for coral reefs | Science ...

    Science.gov (United States)

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be established. Developing stressor gradients presents challenges including: stressors which co-occur but operate at different or unknown spatial and temporal scales, inconsistent data availability measuring stressor levels, and unknown effects on exposed reef biota. We are developing a generalized stressor model using Puerto Rico as case study location, to represent the cumulative spatial/temporal co-occurrence of multiple anthropogenic stressors. Our approach builds on multi-stressor research in streams and rivers, and focuses on three high-priority stressors identified by coral reef experts: land-based sources of pollution (LBSP), global climate change (GCC) related temperature anomalies, and fishing pressure. Landscape development intensity index, based on land use/land cover data, estimates human impact in watersheds adjacent to coral reefs and is proxy for LBSP. NOAA’s retrospective daily thermal anomaly data is used to determine GCC thermal anomalies. Fishing pressure is modeled using gear-specific and fishery landings data. Stressor data was adjusted to a common scale or weighted for relative importance, buffered to account for diminished impact further from source, and compared wit

  17. Eco-geomorphological zonation of the Bangaram reef, Lakshadweep

    Digital Repository Service at National Institute of Oceanography (India)

    Deshmukh, B.; Bahuguna, A.; Nayak, S.; Dhargalkar, V.K.; Jagtap, T.G.

    -morphological and ecological zones of the Bangaram reef (of atoll type), Lakshadweep islands, using remotely sensed data and adequately supported by field data. Classification system has been evolved to zone the reefs. Comparative studies have also been carried out using image...

  18. Acoustic and biological trends on coral reefs off Maui, Hawaii

    Science.gov (United States)

    Kaplan, Maxwell B.; Lammers, Marc O.; Zang, Eden; Aran Mooney, T.

    2018-03-01

    Coral reefs are characterized by high biodiversity, and evidence suggests that reef soundscapes reflect local species assemblages. To investigate how sounds produced on a given reef relate to abiotic and biotic parameters and how that relationship may change over time, an observational study was conducted between September 2014 and January 2016 at seven Hawaiian reefs that varied in coral cover, rugosity, and fish assemblages. The reefs were equipped with temperature loggers and acoustic recording devices that recorded on a 10% duty cycle. Benthic and fish visual survey data were collected four times over the course of the study. On average, reefs ranged from 0 to 80% live coral cover, although changes between surveys were noted, in particular during the major El Niño-related bleaching event of October 2015. Acoustic analyses focused on two frequency bands (50-1200 and 1.8-20.5 kHz) that corresponded to the dominant spectral features of the major sound-producing taxa on these reefs, fish, and snapping shrimp, respectively. In the low-frequency band, the presence of humpback whales (December-May) was a major contributor to sound level, whereas in the high-frequency band sound level closely tracked water temperature. On shorter timescales, the magnitude of the diel trend in sound production was greater than that of the lunar trend, but both varied in strength among reefs, which may reflect differences in the species assemblages present. Results indicated that the magnitude of the diel trend was related to fish densities at low frequencies and coral cover at high frequencies; however, the strength of these relationships varied by season. Thus, long-term acoustic recordings capture the substantial acoustic variability present in coral-reef ecosystems and provide insight into the presence and relative abundance of sound-producing organisms.

  19. A benthic survey of the rocky reefs off Pondoland, South Africa ...

    African Journals Online (AJOL)

    30m) in the ... the capture and processing of 1 042 photographic images of the reef benthos. ... reefs and suspension-feeding communities dominating deeper reefs. ... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL ...

  20. Bomb-cratered coral reefs in Puerto Rico, the untold story about a novel habitat: from reef destruction to community-based ecological rehabilitation

    Directory of Open Access Journals (Sweden)

    Edwin A. Hernández-Delgado

    2014-09-01

    Full Text Available Ecological impacts of military bombing activities in Puerto Rico have often been described as minimal, with recurrent allegations of confounding effects by hurricanes, coral diseases and local anthropogenic stressors. Reef craters, though isolated, are associated with major colony fragmentation and framework pulverization, with a net permanent loss of reef bio-construction. In contrast, adjacent non-bombarded reef sections have significantly higher benthic spatial relief and biodiversity. We compared benthic communities on 35-50 year-old bomb-cratered coral reefs at Culebra and Vieques Islands, with adjacent non-impacted sites; 2 coral recruit density and fish community structure within and outside craters; and 3 early effects of a rehabilitation effort using low-tech Staghorn coral Acropora cervicornis farming. Reef craters ranged in size from approximately 50 to 400m² and were largely dominated by heavily fragmented, flattened benthos, with coral cover usually below 2% and dominance by non-reef building taxa (i.e., filamentous algal turfs, macroalgae. Benthic spatial heterogeneity was lower within craters which also resulted in a lowered functional value as fish nursery ground. Fish species richness, abundance and biomass, and coral recruit density were lower within craters. Low-tech, community-based approaches to culture, harvest and transplant A. cervicornis into formerly bombarded grounds have proved successful in increasing percent coral cover, benthic spatial heterogeneity, and helping rehabilitate nursery ground functions.

  1. The Decline of Coral Reefs: a Political Economy Approach

    OpenAIRE

    Samuel, Asumadu-Sarkodie

    2015-01-01

    Coral reefs provide economic services like job, food and tourism. Yet, within the past decades, there has been an overwhelming decline in the vitality of coral reefs and their ecosystem. Scientist have not be able to set the record straight regarding their scientific argument on biodiversity and ecological wealth of natural environment. Therefore, actions to recover coral reefs from destruction have proved futile. This paper will analyze the economical values, economic valuation, socioeconomi...

  2. The evolution of the Great Barrier Reef during the Last Interglacial Period

    Science.gov (United States)

    Dechnik, Belinda; Webster, Jody M.; Webb, Gregory E.; Nothdurft, Luke; Dutton, Andrea; Braga, Juan-Carlos; Zhao, Jian-xin; Duce, Stephanie; Sadler, James

    2017-02-01

    Reef response to Last Interglacial (LIG) sea level and palaeoenvironmental change has been well documented at a limited number of far-field sites remote from former ice sheets. However, the age and development of LIG reefs in the Great Barrier Reef (GBR) remain poorly understood due to their location beneath modern living reefs. Here we report thirty-nine new mass spectrometry U-Th ages from seven LIG platform reefs across the northern, central and southern GBR. Two distinct geochemical populations of corals were observed, displaying activity ratios consistent with either closed or open system evolution. Our closed-system ages ( 129-126 ka) provide the first reliable LIG ages for the entire GBR. Combined with our open-system model ages, we are able to constrain the interval of significant LIG reef growth in the southern GBR to between 129-121 ka. Using age-elevation data in conjunction with newly defined coralgal assemblages and sedimentary facies analysis we have defined three distinct phases of LIG reef development in response to major sea level and oceanographic changes. These phases include: Phase 1 (> 129 ka), a shallow-water coralgal colonisation phase following initial flooding of the older, likely Marine Isotope Stage 7 (MIS7) antecedent platform; Phase 2 ( 129 ka), a near drowning event in response to rapid sea level rise and greater nutrient-rich upwelling and; Phase 3 ( 128-121 ka), establishment of significant reef framework through catch-up reef growth, initially characterised by deeper, more turbid coralgal assemblages (Phase 3a) that transition to shallow-water assemblages following sea level stabilisation (Phase 3b). Coralgal assemblage analysis indicates that the palaeoenvironments during initial reef growth phases (1 and 2) of the LIG were significantly different than the initial reef growth phases in the Holocene. However, the similar composition of ultimate shallow-water coralgal assemblages and slow reef accretion rates following stabilisation

  3. The importance of spatial fishing behavior for coral reef resilience

    Science.gov (United States)

    Rassweiler, A.; Lauer, M.; Holbrook, S. J.

    2016-02-01

    Coral reefs are dynamic systems in which disturbances periodically reduce coral cover but are normally followed by recovery of the coral community. However, human activity may have reduced this resilience to disturbance in many coral reef systems, as an increasing number of reefs have undergone persistent transitions from coral-dominated to macroalgal-dominated community states. Fishing on herbivores may be one cause of reduced reef resilience, as lower herbivory can make it easier for macroalgae to become established after a disturbance. Despite the acknowledged importance of fishing, relatively little attention has been paid to the potential for feedbacks between ecosystem state and fisher behavior. Here we couple methods from environmental anthropology and ecology to explore these feedbacks between small-scale fisheries and coral reefs in Moorea, French Polynesia. We document how aspects of ecological state such as the abundance of macroalgae affect people's preference for fishing in particular lagoon habitats. We then incorporate biases towards fishing in certain ecological states into a spatially explicit bio-economic model of ecological dynamics and fishing in Moorea's lagoons. We find that feedbacks between spatial fishing behavior and ecological state can have critical effects on coral reefs. Presence of these spatial behaviors consistently leads to more coherence across the reef-scape. However, whether this coherence manifests as increased resilience or increased fragility depends on the spatial scales of fisher movement and the magnitudes of disturbance. These results emphasize the potential importance of spatially-explicit fishing behavior for reef resilience, but also the complexity of the feedbacks involved.

  4. Temporal and taxonomic contrasts in coral growth at Davies Reef, central Great Barrier Reef, Australia

    Science.gov (United States)

    Anderson, Kristen D.; Cantin, Neal E.; Heron, Scott F.; Lough, Janice M.; Pratchett, Morgan S.

    2018-06-01

    Demographic processes, such as growth, can have an important influence on the population and community structure of reef-building corals. Importantly, ongoing changes in environmental conditions (e.g. ocean warming) are expected to affect coral growth, contributing to changes in the structure of coral populations and communities. This study quantified contemporary growth rates (linear extension and calcification) for the staghorn coral, Acropora muricata, at Davies Reef, central Great Barrier Reef, Australia. Growth rates were measured at three different depths (5, 10, and 15 m) over 2 yr (2012-2014) assessing both seasonal and inter-annual variability. Results of this study were compared to equivalent measurements made in 1980-1982 at the same location. To assist in understanding inter-annual variability in coral growth, we also examined annual growth bands from massive Porites providing continuous growth and records of flooding history for Davies Reef over the period 1979-2012. Linear extension rates of A. muricata were substantially (11-62%) lower in 2012-2014 compared to 1980-1982, especially at 10 and 15 m depths. These declines in growth coincide with a + 0.14 °C change in annual mean temperature. For massive Porites, however, calcification rates were highly variable among years and there was no discernible long-term change in growth despite sustained increases in temperature of 0.064 °C per decade. Apparent differences in the growth rates of Acropora between 1980-1982 and 2012-2014 may reflect inter-annual variation in coral growth (as seen for massive Porites), though it is known branching Acropora is much more sensitive to changing environmental conditions than massive corals. There are persistent issues in assessing the sensitivities of branching corals to environmental change due to limited capacity for retrospective analyses of growth, but given their disproportionate contribution to habitat complexity and reef structure, it is critical to ascertain

  5. Understanding Reef Flat Sediment Regimes and Hydrodynamics can Inform Erosion Mitigation on Land

    Directory of Open Access Journals (Sweden)

    Lida Tenkova Teneva

    2016-01-01

    Full Text Available Coral reefs worldwide are affected by excessive sediment and nutrient delivery from adjacent watersheds. Land cover and land use changes contribute to reef ecosystem degradation, which in turn, diminish many ecosystem services, including coastal protection, recreation, and food provisioning. The objectives of this work were to understand the role of coastal oceanic and biophysical processes in mediating the effects of sedimentation in shallow reef environments, and to assess the efficacy of land-based sediment remediation in the coastal areas near Maunalei reef, Lāna’i Island, Hawai’i. To the best of our knowledge, this was the first study of sediment dynamics on an east-facing (i.e., facing the trade winds reef in the Hawaiian Islands. We developed ridge-to-reef monitoring systems at two paired stream bed-to-reef sites, where one of the reef sites was adjacent to a community stream sediment remediation project. We found that the two reef sites were characterized by different processes that affected the sediment removal rates; the two sites were also exposed to different amounts of sediment runoff. The community stream sediment remediation project appeared to keep at least 77 tonnes of sediment off the reef flat in one wet season. We found that resuspension of sediments on this reef was similar to that on north-facing and south-facing reefs that also are exposed to the trade winds. We posit that sites with slower sediment removal rates due to slower current velocities or high resuspension rates will require more-robust sediment capture systems on land to reduce sediment input rates and maximize potential for reef health recovery. This suggests that interventions such as local sediment remediation and watershed restoration may mitigate sediment delivery to coral reefs, but these interventions are more likely to be effective if they account for how adjacent coastal oceanographic processes distribute, accumulate, or advect sediment away from

  6. Management and conservation options for Indian coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    for management of the reefs. The approaches proposed for management of Indian reefs are (1) decision on the need for management, (2) preparation of a use and impact analysis chart, to evaluate the type of management approach needed, (3) preparation of management...

  7. Holocene emerged coral reef in Takarajima and Kodakarajima, Ryukyu islands, Southwest Japan

    International Nuclear Information System (INIS)

    Nakata, Takashi; Omoto, Kunio; Koba, Motoharu

    1978-01-01

    Due to the recent development of radiometric dating, coral reefs emerged in Holocene epoch are studied intensively worldwidely in relation to sea level change and coral reef formation. Attempt was made to determine the age, pattern and growth rate of coral reefs in the marginal area of coral sea in the Northwest Pacific. Field observation was made in the emerged coral reefs in Takarajima and Kodakarajima islands and the samples for radiocarbon dating were taken from geological sections across the emerged reefs. These islands are located at about 29 deg 10 min N, 129 deg 15 min E, where warm Kuroshio current pushes the margin of coral sea northward, and furnished with flourishing development of coral reefs emerged in both pleistocence and Holocene epochs. Though without earthquake records, it is assumed that Holocene reefs have been terraced due to sudden uplift associated with major earthquakes. (Mori, K.)

  8. Holocene emerged coral reef in Takarajima and Kodakarajima, Ryukyu islands, Southwest Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, T; Omoto, K; Koba, M [Tohoku Univ., Sendai (Japan). Faculty of Science

    1978-06-01

    Due to the recent development of radiometric dating, coral reefs emerged in Holocene epoch are studied intensively worldwidely in relation to sea level change and coral reef formation. Attempt was made to determine the age, pattern and growth rate of coral reefs in the marginal area of coral sea in the Northwest Pacific. Field observation was made in the emerged coral reefs in Takarajima and Kodakarajima islands and the samples for radiocarbon dating were taken from geological sections across the emerged reefs. These islands are located at about 29 deg 10 min N, 129 deg 15 min E, where warm Kuroshio current pushes the margin of coral sea northward, and furnished with flourishing development of coral reefs emerged in both pleistocence and Holocene epochs. Though without earthquake records, it is assumed that Holocene reefs have been terraced due to sudden uplift associated with major earthquakes.

  9. Proterozoic microbial reef complexes and associated hydrothermal mineralizations in the Banfora Cliffs, Burkina Faso

    Science.gov (United States)

    Álvaro, J. Javier; Vizcaïno, Daniel

    2012-07-01

    The Proterozoic Guena-Souroukoundinga Formation of the Mopti arm (Gourma Aulacogen, southerm Taoudeni Basin) consists of a shale-dominated succession, up to 200 m thick, with scattered microbial reef complexes. Quarry exposures of the Tiara reef complex allow reconstruction of a transect across back-reef peritidal laminites, reef margin and peri-reef ooidal shoals, and fore-reef slope strata. Microbial carbonate productivity nucleated on isolated palaeohighs during transgression, whereas its end was controlled by two tectonically induced drowning pulses that led to the successive record of onlapping kerogenous limestones and pelagic shales. Reef carbonates are crosscut by fractures and fissures occluded by hydrothermal mineralizations, which are related to the rifting activity of the Gourma Aulacogen. The Tiara reef complex is similar to other Proterozoic reefs in being composed nearly entirely of stromatolites, although calcimicrobial (filamentous) and thromboid textures are locally abundant, which contrast with their scarcity or absence in coeval stable-platform microbial reefs of the northern Taoudeni Basin.

  10. Partial Regularity for Holonomic Minimisers of Quasiconvex Functionals

    Science.gov (United States)

    Hopper, Christopher P.

    2016-10-01

    We prove partial regularity for local minimisers of certain strictly quasiconvex integral functionals, over a class of Sobolev mappings into a compact Riemannian manifold, to which such mappings are said to be holonomically constrained. Our approach uses the lifting of Sobolev mappings to the universal covering space, the connectedness of the covering space, an application of Ekeland's variational principle and a certain tangential A-harmonic approximation lemma obtained directly via a Lipschitz approximation argument. This allows regularity to be established directly on the level of the gradient. Several applications to variational problems in condensed matter physics with broken symmetries are also discussed, in particular those concerning the superfluidity of liquid helium-3 and nematic liquid crystals.

  11. Overview on artificial reefs in Europe

    Directory of Open Access Journals (Sweden)

    Gianna Fabi

    2011-01-01

    Full Text Available Artificial reefs in Europe have been developed over the last 40 yrs. Most of these reefs have been placed in the Mediterranean Sea, but there is an increasing interest on the part of northern European countries. Fish stock enhancement and fishery management are the main purposes of reef construction in the Mediterranean Sea and on the Atlantic coast of the Iberian Peninsula, while nature conservation/restoration, research, and recreation have been the main purposes served in the other European regions to date. Artificial reef deployment falls under some general regulations concerning the protection of the sea against pollution due to the dumping of unsuitable materials. Specific Regional Plans relating to the use of artificial reefs in the marine environment and Guidelines for reef construction have been derived from these general regulations. In spite of recent developments, national and/or regional programs for the deployment of artificial reefs and/or their inclusion in overall management plans for integrated management of coastal zones are in force only in the majority of Mediterranean countries, while only a few projects have, to date, been undertaken in the other European Regions. Moreover, there is a noteworthy lack of plans, in many countries, for the management of the reefs after their deployment.Os recifes artificiais, na Europa, foram desenvolvidos nos últimos 40 anos. A maioria desses recifes foram instalados no Mar Mediterrâneo, mas despertam um interesse crescente por parte dos paises do norte europeu. O incentivo aos estoques pesqueiros e o manejo da pesca são os principais objetivos da construção de recifes no Mar Mediterrâneo e na costa Atlântica da Península Ibérica, enquanto a preservação / recuperação da natureza, a pesquisa e a recreação tem sido os principais objetivos das demais regiões européias até hoje. A implantação de recifes artificiais está submetida a algumas regulamentações básicas quanto

  12. Ocean Acidification Refugia of the Florida Reef Tract

    Science.gov (United States)

    Manzello, Derek P.; Enochs, Ian C.; Melo, Nelson; Gledhill, Dwight K.; Johns, Elizabeth M.

    2012-01-01

    Ocean acidification (OA) is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT). During periods of heightened productivity, there is a net uptake of total CO2 (TCO2) which increases aragonite saturation state (Ωarag) values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ωarag than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error) Ωarag-values in spring = 4.69 (±0.101). Conversely, Ωarag-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA. PMID:22848575

  13. Ocean acidification refugia of the Florida Reef Tract.

    Directory of Open Access Journals (Sweden)

    Derek P Manzello

    Full Text Available Ocean acidification (OA is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO(2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT. During periods of heightened productivity, there is a net uptake of total CO(2 (TCO(2 which increases aragonite saturation state (Ω(arag values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ω(arag than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error Ω(arag-values in spring = 4.69 (±0.101. Conversely, Ω(arag-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO(2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA.

  14. Status and trends of Caribbean coral reefs: 1970-2012

    Science.gov (United States)

    Jackson, Jeremy; Donovan, Mary; Cramer, Katie; Lam, Vivian

    2014-01-01

    This it the 9th status report since the Global Coral Reef Monitoring Network (GCRMN) was founded in 1995 was the data arm of the International Coral Reef Initiative (ICRI) to document the ecological condition or corral reefs, strengthen monitoring efforts, and link existing organizations and people working on reefs worldwide. The US Government provided the initial funding to help set up a global network of coral reef workers and has continued to provide core support. Since then, the series of reports have aimed to present the current status of coral reefs of the world or particular regions, the major threats to reefs and their consequences, and any initiative undertaken under the auspices of ICRI or other bodies to arrest or reverse the decline of coral reefs.IUCN assumed responsibility for hosting the global coordination of the GCRMN in 2010 under the scientific direction of Jeremy Jackson with the following objectives:1. Document quantitatively the global status and trends for corals, macroalgae, sea urchins, and fishes based on available data from individual scientists as well as the peer reviewed scientific literature, monitoring programs, and report.2. Bring together regional experts in a series of workshops to involve them in data compilation, analysis, and synthesis.3. Integrate coral reef status and trends with independent environmental, management, and socioeconomic data to better understand the primary factors responsible for coral reef decline, the possible synergies among factors that may further magnify their impacts, and how these stresses may be more effectively alleviated.Work with GCRMN partners to establish simple and practical standardized protocols for future monitoring and assessment.Disseminate information and results to help guide member state policy and actions.The overarching objective is to understand why some reefs are much healthier than others, to identify what kinds of actions have been particularly beneficial or harmful, and to

  15. Diel coral reef acidification driven by porewater advection in permeable sands, Heron Island, Great Barrier Reef

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Glud, Ronnie N.; Maher, Damien

    2011-01-01

    Little is known about how biogeochemical processes in permeable sediments affect the pH of coastal waters. We demonstrate that seawater recirculation in permeable sands can play a major role in proton (H+) cycling in a coral reef lagoon. The diel pH range (up to 0.75 units) in the Heron Island...... lagoon was the broadest ever reported for reef waters, and the night‐time pH (7.69) was comparable to worst‐case scenario predictions for seawater pH in 2100. The net contribution of coarse carbonate sands to the whole system H+ fluxes was only 9% during the day, but approached 100% at night when small...... scale (i.e., flow and topography‐induced pressure gradients) and large scale (i.e., tidal pumping as traced by radon) seawater recirculation processes were synergistic. Reef lagoon sands were a net sink for H+, and the sink strength was a function of porewater flushing rate. Our observations suggest...

  16. Tight coupling between coral reef morphology and mapped resilience in the Red Sea.

    Science.gov (United States)

    Rowlands, Gwilym; Purkis, Sam; Bruckner, Andrew

    2016-04-30

    Lack of knowledge on the conservation value of different reef types can stymie decision making, and result in less optimal management solutions. Addressing the information gap of coral reef resilience, we produce a map-based Remote Sensed Resilience Index (RSRI) from data describing the spatial distribution of stressors, and properties of reef habitats on the Farasan Banks, Saudi Arabia. We contrast the distribution of this index among fourteen reef types, categorized on a scale of maturity that includes juvenile (poorly aggraded), mature (partially aggraded), and senile (fully aggraded) reefs. Sites with high reef resilience can be found in most detached reef types; however they are most common in mature reefs. We aim to stimulate debate on the coupling that exists between geomorphology and conservation biology, and consider how such information can be used to inform management decisions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Sand-mediated divergence between shallow reef communities on ...

    African Journals Online (AJOL)

    Sand-mediated divergence between shallow reef communities on horizontal and vertical substrata in the western Indian Ocean. SN Porter, GM Branch, KJ Sink. Abstract. Distinctions are rarely made between vertical and horizontal surfaces when assessing reef community composition, yet physical differences are expected ...

  18. Calibration of Community-based Coral Reef Monitoring Protocols ...

    African Journals Online (AJOL)

    Coral reef monitoring (CRM) has been recognised as an important management tool and has consequently been incorporated in Integrated Coastal Area Management (ICAM) programmes in the Western Indian Ocean (WIO). Community-based coral reef monitoring (CB-CRM), which uses simplified procedures suitable for ...

  19. Ocular media transmission of coral reef fish--can coral reef fish see ultraviolet light?

    Science.gov (United States)

    Siebeck, U E; Marshall, N J

    2001-01-15

    Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N. (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible.

  20. Coral diseases and their research in Colombian reefs

    International Nuclear Information System (INIS)

    Gil A, Diego L; Navas C, Raul; RodrIguez, Alberto; Reyes, Maria C

    2009-01-01

    Coral reefs are one of the most beautiful and important ecosystems in the planet. These ecosystems have existed for over 200 million years and have survived extreme episodes such as glaciation and mass extinctions during their history. Nonetheless, during the last three decades, these ecosystems have registered sudden and dramatic changes that, according to some researchers, endanger their survival and persistence. One of the major problems coral reefs are facing nowadays is the outbreak of diseases that affect corals, which constitute the basic unit of this ecosystem. There is no consensus regarding whether these disease outbreaks are recent episodes; but what seems to be true is that some of these diseases have favored unprecedented changes in coral reefs. Coral reefs in Colombia have also been affected by disease events, and since the 1980, several coral diseases have been observed and studied, and even one of them was first described in Colombian reefs. This work presents a compendium of the main coral diseases registered around the world and is meant to serve as a guide for new studies in this topic. Similarly, a summary of coral disease research carried out in Colombia is presented as well as a discussion on current perspectives for the study of this field in the country.

  1. Guam Long-term Coral Reef Monitoring Program Reef Fish Surveys since 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Government of Guam's Long-term Coral Reef Monitoring Program, coordinated by the Guam Coastal Management Program until October 2013 and now coordinated by the...

  2. NOAA's Coral Reef Conservation Program: Coral Reef Habitat Mapping Projects in 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Maps are a critical cornerstone of coral reef management, research and planning, with direct links to management needs in a number of forms. To accurately...

  3. Synergistic impacts of global warming on the resilience of coral reefs

    Science.gov (United States)

    Bozec, Yves-Marie; Mumby, Peter J.

    2015-01-01

    Recent epizootics have removed important functional species from Caribbean coral reefs and left communities vulnerable to alternative attractors. Global warming will impact reefs further through two mechanisms. A chronic mechanism reduces coral calcification, which can result in depressed somatic growth. An acute mechanism, coral bleaching, causes extreme mortality when sea temperatures become anomalously high. We ask how these two mechanisms interact in driving future reef state (coral cover) and resilience (the probability of a reef remaining within a coral attractor). We find that acute mechanisms have the greatest impact overall, but the nature of the interaction with chronic stress depends on the metric considered. Chronic and acute stress act additively on reef state but form a strong synergy when influencing resilience by intensifying a regime shift. Chronic stress increases the size of the algal basin of attraction (at the expense of the coral basin), whereas coral bleaching pushes the system closer to the algal attractor. Resilience can change faster—and earlier—than a change in reef state. Therefore, we caution against basing management solely on measures of reef state because a loss of resilience can go unnoticed for many years and then become disproportionately more difficult to restore.

  4. Decapod crustaceans associated with an artificial reef (Adriatic Sea

    Directory of Open Access Journals (Sweden)

    A. SANTELLI

    2013-10-01

    Full Text Available The aim of this study is to increase the knowledge on the distribution of decapod crustaceans associated with an artificial reef positioned on sandy-mud bottoms in the central Adriatic Sea. The reef is constituted of concrete modules assembled in pyramids and concrete poles. Hard and soft bottom samples were collected from 2001, just after reef construction, to 2005 (4 surveys per year. Regarding the soft seabed, three sites close to a pyramid, three inside the reef area at a distance of 10-15 m from the structures, and three 200 m outside the reef (control sites were randomly sampled during each survey. At the same time, three pyramids (vertical and horizontal walls and three poles were also investigated. After taxonomical analysis, decapod crustaceans were analysed using abundance and species richness. Sites and years were compared using a balanced, fixed effect, 2-way ANOVA and PERMANOVA. In addition, SIMPER analysis was performed to identify those species typifying each community inhabiting both the soft bottom and the artificial substrates. The results showed that the artificial reef induced an increase in both abundance and diversity of the decapods of the natural habitat. In fact, man-made substrates may offer new available space for biological colonization and allow the settlement of new species usually living on hard bottoms, thus increasing the complexity of the original benthic communities.

  5. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs.

    Science.gov (United States)

    Dell, Claire L A; Longo, Guilherme O; Hay, Mark E

    2016-01-01

    Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds.

  6. Project Overview: A Reef Manager's Guide to Coral Bleaching ...

    Science.gov (United States)

    The purpose of this report is to provide the latest scientific knowledge and discuss available management options to assist local and regional managers in responding effectively to mass coral bleaching events. Background A Reef Manager’s Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) share the best available scientific information on climate-related coral bleaching; and (2) compile a tool kit of currently available strategies for adaptive management of coral reefs in a changing climate. The result is a compendium of current information, tools, and practical suggestions to aid managers in their efforts to protect reefs in a way that maximizes reef resilience in the face of continuing climate change. The Guide is a joint publication of the National Oceanic and Atmospheric Administration, the Great Barrier Reef Marine Park Authority, and The World Conservation Union, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. EPA’s Office of Research and Development was a major contributor to the Guide through authorship and participation in the final review and editing process for the entire report. A Reef Manager’s Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) share the best available scientific information on climate-related coral blea

  7. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Claire L A Dell

    Full Text Available Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds.

  8. Coral and artificial reef shape files, Broward County, Florida, (NODC Accession 0000244)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral reef and artificial reef location shape files and accompanying table files for reefs located off shore of Broward County, Florida. Accompanying "attribute"...

  9. Workshop on Biological Integrity of Coral Reefs August 21-22, 2012, Caribbean Coral Reef Institute, Isla Magueyes, La Parguera, Puerto Rico.

    Science.gov (United States)

    This report summarizes an EPA-sponsored workshop on coral reef biological integrity held at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico on August 21-22, 2012. The goals of this workshop were to:• Identify key qualitative and quantitative ecological characterist...

  10. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    Science.gov (United States)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  11. SEAMAP Caribbean Reef Fish Survey (PC1202, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Caribbean Reef Fish Survey were to assess relative abundance of reef fish species around the US Caribbean Islands, estimate...

  12. SEAMAP Caribbean Reef Fish Survey (PC1202, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Caribbean Reef Fish Survey were to assess relative abundance of reef fish species around the US Caribbean Islands, estimate...

  13. Two ;pillars; of cold-water coral reefs along Atlantic European margins: Prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale

    Science.gov (United States)

    Arnaud-Haond, S.; Van den Beld, I. M. J.; Becheler, R.; Orejas, C.; Menot, L.; Frank, N.; Grehan, A.; Bourillet, J. F.

    2017-11-01

    The scleractinian coral Lophelia pertusa has been the focus of deep-sea research since the recognition of the vast extent of coral reefs in North Atlantic waters two decades ago, long after their existence was mentioned by fishermen. These reefs where shown to provide habitat, concentrate biomass and act as feeding or nursery grounds for many species, including those targeted by commercial fisheries. Thus, the attention given to this cold-water coral (CWC) species from researchers and the wider public has increased. Consequently, new research programs triggered research to determine the full extent of the corals geographic distribution and ecological dynamics of ;Lophelia reefs;. The present study is based on a systematic standardised sampling design to analyze the distribution and coverage of CWC reefs along European margins from the Bay of Biscay to Iceland. Based on Remotely Operated Vehicle (ROV) image analysis, we report an almost systematic occurrence of Madrepora oculata in association with L. pertusa with similar abundances of both species within explored reefs, despite a tendency of increased abundance of L. pertusa compared to M. oculata toward higher latitudes. This systematic association occasionally reached the colony scale, with ;twin; colonies of both species often observed growing next to each other when isolated structures were occurring off-reefs. Finally, several ;false chimaera; were observed within reefs, confirming that colonial structures can be ;coral bushes; formed by an accumulation of multiple colonies even at the inter-specific scale, with no need for self-recognition mechanisms. Thus, we underline the importance of the hitherto underexplored M. oculata in the Eastern Atlantic, re-establishing a more balanced view that both species and their yet unknown interactions are required to better elucidate the ecology, dynamics and fate of European CWC reefs in a changing environment.

  14. Movement patterns of silvertip sharks ( Carcharhinus albimarginatus) on coral reefs

    Science.gov (United States)

    Espinoza, Mario; Heupel, Michelle. R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2015-09-01

    Understanding how sharks use coral reefs is essential for assessing risk of exposure to fisheries, habitat loss, and climate change. Despite a wide Indo-Pacific distribution, little is known about the spatial ecology of silvertip sharks ( Carcharhinus albimarginatus), compromising the ability to effectively manage their populations. We examined the residency and movements of silvertip sharks in the central Great Barrier Reef (GBR). An array of 56 VR2W acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Twenty-seven individuals tagged with acoustic transmitters were monitored from 70 to 731 d. Residency index to the study site ranged from 0.05 to 0.97, with a mean residency (±SD) of 0.57 ± 0.26, but most individuals were detected at or near their tagging reef. Clear seasonal patterns were apparent, with fewer individuals detected between September and February. A large proportion of the tagged population (>71 %) moved regularly between reefs. Silvertip sharks were detected less during daytime and exhibited a strong diel pattern in depth use, which may be a strategy for optimizing energetic budgets and foraging opportunities. This study provides the first detailed examination of the spatial ecology and behavior of silvertip sharks on coral reefs. Silvertip sharks remained resident at coral reef habitats over long periods, but our results also suggest this species may have more complex movement patterns and use larger areas of the GBR than common reef shark species. Our findings highlight the need to further understand the movement ecology of silvertip sharks at different spatial and temporal scales, which is critical for developing effective management approaches.

  15. Pacific Circulation and the Resilience of its Equatorial Reefs

    Science.gov (United States)

    Cohen, A. L.; Drenkard, E.

    2012-12-01

    High rates of calcification by tropical reef-building corals are paramount to the maintenance of healthy reefs. Investigations of the impact of ocean acidification in both laboratory and field studies demonstrate unequivocally the dependence of coral and coral reef calcification on the carbonate ion concentration of seawater, a dependence predicted by fundamental laws of physical chemistry. Nevertheless, results from a new generation of experiments that exploit the biology of coral calcification, suggest that effects of ocean acidification can - in some instances - be mitigated with simultaneous manipulation of multiple factors. These laboratory results imply that coral reefs in regions projected to experience changes in, for example, nutrient delivery, light and flow, in addition to pH and carbonate ion concentration, may be more resilient (or vulnerable) to the effects of ocean acidification alone. If demonstrated to be true, these observations have profound implications for the conservation and management of coral reefs in the 21st century. We quantified spatial and temporal variability in rates of calcification of a dominant Indo-Pacific reef building coral across sites where changes in ocean circulation patterns drive variability in multiple physical, chemical and biological parameters. Such changes are occurring against a background of variability and trends in carbonate system chemistry. Our field data provide support for hypotheses based on laboratory observations, and show that impacts of ocean acidification on coral calcification can be partially and in some cases, fully, offset by simultaneous changes in multiple factors. Our results imply that projected changes in oceanic and atmospheric circulation patterns, driven by global warming, must be considered when predicting coral reef resilience, or vulnerability, to 21st century ocean acidification.

  16. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    Science.gov (United States)

    Reis, Vanessa Moura Dos; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes

    2016-01-01

    The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.

  17. Feedbacks Between Wave Energy And Declining Coral Reef Structure: Implications For Coastal Morphodynamics

    Science.gov (United States)

    Grady, A. E.; Jenkins, C. J.; Moore, L. J.; Potts, D. C.; Burgess, P. M.; Storlazzi, C. D.; Elias, E.; Reidenbach, M. A.

    2013-12-01

    The incident wave energy dissipated by the structural complexity and bottom roughness of coral reef ecosystems, and the carbonate sediment produced by framework-building corals, provide natural shoreline protection and nourishment, respectively. Globally, coral reef ecosystems are in decline as a result of ocean warming and acidification, which is exacerbated by chronic regional stressors such as pollution and disease. As a consequence of declining reef health, many reef ecosystems are experiencing reduced coral cover and shifts to dominance by macroalgae, resulting in a loss of rugosity and thus hydrodynamic roughness. As coral reef architecture is compromised and carbonate skeletons are eroded, wave energy dissipation and sediment transport patterns--along with the carbonate sediment budget of the coastal environment--may be altered. Using a Delft3D numerical model of the south-central Molokai, Hawaii, fringing reef, we simulate the effects of changing reef states on wave energy and sediment transport. To determine the temporally-varying effects of biotic and abiotic stressors such as storms and bleaching on the reef structure and carbonate production, we couple Delft3D with CarboLOT, a model that simulates growth and competition of carbonate-producing organisms. CarboLOT is driven by the Lotka-Volterra population ecology equations and niche suitability principles, and accesses the CarboKB database for region-specific, carbonate-producing species information on growth rates, reproduction patterns, habitat suitability, as well as organism geometries. Simulations assess how changing reef states--which alter carbonate sediment production and reef morphology and thus hydrodynamic roughness--impact wave attenuation and sediment transport gradients along reef-fronted beaches. Initial results suggest that along fringing reefs having characteristics similar to the Molokai fringing reef, projected sea level rise will likely outpace coral reef accretion, and the increased

  18. Biorock Electric Reefs Grow Back Severely Eroded Beaches in Months

    Directory of Open Access Journals (Sweden)

    Thomas J. F. Goreau

    2017-10-01

    Full Text Available Severely eroded beaches on low lying islands in Indonesia were grown back in a few months—believed to be a record—using an innovative method of shore protection, Biorock electric reef technology. Biorock shore protection reefs are growing limestone structures that get stronger with age and repair themselves, are cheaper than concrete or rock sea walls and breakwaters, and are much more effective at shore protection and beach growth. Biorock reefs are permeable, porous, growing, self-repairing structures of any size or shape, which dissipate wave energy by internal refraction, diffraction, and frictional dissipation. They do not cause reflection of waves like hard sea walls and breakwaters, which erodes the sand in front of, and then underneath, such structures, until they collapse. Biorock reefs stimulate settlement, growth, survival, and resistance to the environmental stress of all forms of marine life, restoring coral reefs, sea grasses, biological sand production, and fisheries habitat. Biorock reefs can grow back eroded beaches and islands faster than the rate of sea level rise, and are the most cost-effective method of shore protection and adaptation to global sea level rise for low lying islands and coasts.

  19. 2015 Carbbean Reef Fish Survey (PC1505, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2015 Caribbean Reef Fish Survey were to assess relative abundance of reef fish species around the US Caribbean Islands, estimate length-frequency...

  20. 2015 Carbbean Reef Fish Survey (PC1505, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2015 Caribbean Reef Fish Survey were to assess relative abundance of reef fish species around the US Caribbean Islands, estimate length-frequency...

  1. Climatic and tectonic controls on late Quaternary reef growth in New Caledonia

    International Nuclear Information System (INIS)

    Cabioch, G.; Recy, J.; Jouannic, CH.; Turpin, L.

    1996-01-01

    Sedimentological and stratigraphic analysis of about 40 sub-surface cores drilled through the reefs of New Caledonia provides valuable data on the processes of reef recolonization following the past post glacial sea-level rise, and on the vertical tectonic behaviour of the island over the past 125,000 years. Holocene reefs in New Caledonia are not older than 8.5 ky. The fringing reef which developed during the last interglacial high sea-level 125 ky ago, is today uplifted and lies along some 30 km of coast in the area of 10 m, while the present-day barrier reef is deeply submerged (around - 15 to - 20 m). Near Hienghene (east coast), a double system of two notches is markedly deformed by a bulge, but is much more localized (3 km long) than in the Yate area, with a maximum uplift of 13 m of the upper double notch system (interpreted as having formed during the last interglacial event). Relics of the 125 ky fringing reef are emergent at various locations in the Bourail region (west coast). However, their altitudes are lower than that generally admitted (+ 6 m) for their construction at 125 ky, thus most probably reflecting a slight subsidence of the area. Elsewhere, the 125 ky fringing reef underlies the Holocene reef: in the SW of the island, in particular, the Holocene - Pleistocene unconformity is observed at - 6 m. In areas of higher subsidence rates, such as the NW or NE of the island, the 125 ky fringing reef may be more deeply buried. In that case, the Holocene reef rests directly on a metamorphic or sedimentary substratum. Within the barrier reef build-up itself, the 125 ky reef flat is overlain by a Holocene sequence, whose thickness depends on local subsidence rates. The observation of notches, raised becah-rocks or coral reefs (dated ar around 5,500 yr) uplifted up to 1 to 1,5 m above MLWS reflects the existence of a hydro-isostatic rebound. Traces of this rebound disappear in areas of high subsidence rate, illustrating the action of local tectonics

  2. Are coral reefs victims of their own past success?

    Science.gov (United States)

    Renema, Willem; Pandolfi, John M; Kiessling, Wolfgang; Bosellini, Francesca R; Klaus, James S; Korpanty, Chelsea; Rosen, Brian R; Santodomingo, Nadiezhda; Wallace, Carden C; Webster, Jody M; Johnson, Kenneth G

    2016-04-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs' ability to provide ecosystem services.

  3. Guam Long-term Coral Reef Monitoring Program Reef Fish Surveys FY2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Government of Guam's Long-term Coral Reef Monitoring Program, coordinated by the University of Guam Marine Lab, involves the collection of data for a suite of...

  4. Understanding Resilience in a Vulnerable Industry: the Case of Reef Tourism in Australia

    Directory of Open Access Journals (Sweden)

    Duan Biggs

    2011-03-01

    Full Text Available Understanding the resilience of vulnerable sectors of social-ecological systems is critical in an era of escalating global change. The coral reef tourism sector is highly vulnerable not only to ecological effects of climate change and other anthropogenic disturbances on reefs, but also to shocks such as economic recession and energy price escalation. Commercial tourism enterprises are key players in reef tourism in Australia and elsewhere. However, the factors that confer resilience to reef-based tourism enterprises, or the reef tourism sector more broadly, in the face of large disturbances have not been investigated to date. This paper empirically examines the perceived resilience of reef tourism enterprises on Australia's Great Barrier Reef to large disturbances or shocks. Binary logistic regression analysis of two measures of enterprise resilience demonstrates the importance of human capital in strengthening enterprise resilience. Lifestyle identity, measured as the extent to which owners and senior managers are active in reef tourism as a lifestyle choice, is positively related to enterprise resilience. Finally, reef tourism enterprises indicate that financial and marketing support are the most important actions that government can take to support enterprises in the face of a large shock.

  5. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Science.gov (United States)

    Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider

  6. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Directory of Open Access Journals (Sweden)

    Joseph E Serafy

    Full Text Available Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1 Are reef fish abundances limited by mangrove forest area?; and (2 Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1 focus analyses on species that use mangroves as nurseries, (2 consider more than the mean fish abundance response to mangrove forest extent; and/or (3 quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i

  7. Shell Games. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experiences supported by multimedia instruction. This document presents an overview on the biology of…

  8. Modeling regional coral reef responses to global warming and changes in ocean chemistry: Caribbean case study

    Science.gov (United States)

    Buddemeier, R.W.; Lane, D.R.; Martinich, J.A.

    2011-01-01

    Climatic change threatens the future of coral reefs in the Caribbean and the important ecosystem services they provide. We used a simulation model [Combo ("COral Mortality and Bleaching Output")] to estimate future coral cover in the part of the eastern Caribbean impacted by a massive coral bleaching event in 2005. Combo calculates impacts of future climate change on coral reefs by combining impacts from long-term changes in average sea surface temperature (SST) and ocean acidification with impacts from episodic high temperature mortality (bleaching) events. We used mortality and heat dose data from the 2005 bleaching event to select historic temperature datasets, to use as a baseline for running Combo under different future climate scenarios and sets of assumptions. Results suggest a bleak future for coral reefs in the eastern Caribbean. For three different emissions scenarios from the Intergovernmental Panel on Climate Change (IPCC; B1, A1B, and A1FI), coral cover on most Caribbean reefs is projected to drop below 5% by the year 2035, if future mortality rates are equivalent to some of those observed in the 2005 event (50%). For a scenario where corals gain an additional 1-1. 5??C of heat tolerance through a shift in the algae that live in the coral tissue, coral cover above 5% is prolonged until 2065. Additional impacts such as storms or anthropogenic damage could result in declines in coral cover even faster than those projected here. These results suggest the need to identify and preserve the locations that are likely to have a higher resiliency to bleaching to save as many remnant populations of corals as possible in the face of projected wide-spread coral loss. ?? 2011 The Author(s).

  9. Intra-annual variation in turbidity in response to terrestrial runoff on near-shore coral reefs of the Great Barrier Reef

    Science.gov (United States)

    Fabricius, Katharina E.; De'ath, Glenn; Humphrey, Craig; Zagorskis, Irena; Schaffelke, Britta

    2013-01-01

    Seawater turbidity is a fundamental driver of the ecology of coastal marine systems, and is widely used as indicator for environmental reporting. However, the time scales and processes leading to changes in turbidity in tropical coastal waters remain poorly understood. This study investigates the main determinants of inshore turbidity in four inshore regions along ˜1000 km of the Australian Great Barrier Reef, based on ˜3 years of almost continuous in situ turbidity logger data on 14 reefs. Generalized additive mixed models were used to predict spatial and temporal variation in weekly mean turbidity based on variation in resuspension and runoff conditions. At any given wave height, wave period and tidal range, turbidity was significantly affected by river flow and rainfall. Averaged across all reefs, turbidity was 13% lower (range: 5-37%) in weeks with low compared with high rainfall and river flows. Additionally, turbidity was on average 43% lower 250 days into the dry season than at the start of the dry season on reefs with long-term mean turbidity >1.1 NTU. The data suggest the time scale of winnowing or consolidation of newly imported materials in this zone is months to years. In contrast, turbidity returned to low levels within weeks after river flows and rainfall on reefs with long-term mean turbidity of <1.1 NTU. Turbidity was also up to 10-fold higher on reefs near compared to away from river mouths, suggesting inter-annual accumulation of fine resuspendible sediments. The study suggests that a reduction in the river loads of fine sediments and nutrients through improved land management should lead to measurably improved inshore water clarity in the most turbid parts of the GBR.

  10. Evaluating the attractiveness and effectiveness of artificial coral reefs as a recreational ecosystem service.

    Science.gov (United States)

    Belhassen, Yaniv; Rousseau, Meghan; Tynyakov, Jenny; Shashar, Nadav

    2017-12-01

    Artificial reefs are increasingly being used around the globe to attract recreational divers, for both environmental and commercial reasons. This paper examines artificial coral reefs as recreational ecosystem services (RES) by evaluating their attractiveness and effectiveness and by examining divers' attitudes toward them. An online survey targeted at divers in Israel (n = 263) indicated that 35% of the dives in Eilat (a resort city on the shore of the Red Sea) take place at artificial reefs. A second study monitored divers' behavior around the Tamar artificial reef, one of the most popular submerged artificial reefs in Eilat, and juxtaposed it with divers' activities around two adjacent natural reefs. Findings show that the average diver density at the artificial reef was higher than at the two nearby natural knolls and that the artificial reef effectively diverts divers from natural knolls. A third study that examined the attitudes towards natural vs. artificial reefs found that the artificial reefs are considered more appropriate for training, but that divers feel less relaxed around them. By utilizing the RES approach as a framework, the study offers a comprehensive methodology that brings together the aesthetic, behavioral, and attitudinal aspects in terms of which artificial reefs can be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Norwegian deep-water coral reefs: cultivation and molecular analysis of planktonic microbial communities.

    Science.gov (United States)

    Jensen, Sigmund; Lynch, Michael D J; Ray, Jessica L; Neufeld, Josh D; Hovland, Martin

    2015-10-01

    Deep-sea coral reefs do not receive sunlight and depend on plankton. Little is known about the plankton composition at such reefs, even though they constitute habitats for many invertebrates and fish. We investigated plankton communities from three reefs at 260-350 m depth at hydrocarbon fields off the mid-Norwegian coast using a combination of cultivation and small subunit (SSU) rRNA gene and transcript sequencing. Eight months incubations of a reef water sample with minimal medium, supplemented with carbon dioxide and gaseous alkanes at in situ-like conditions, enabled isolation of mostly Alphaproteobacteria (Sulfitobacter, Loktanella), Gammaproteobacteria (Colwellia) and Flavobacteria (Polaribacter). The relative abundance of isolates in the original sample ranged from ∼ 0.01% to 0.80%. Comparisons of bacterial SSU sequences from filtered plankton of reef and non-reef control samples indicated high abundance and metabolic activity of primarily Alphaproteobacteria (SAR11 Ia), Gammaproteobacteria (ARCTIC96BD-19), but also of Deltaproteobacteria (Nitrospina, SAR324). Eukaryote SSU sequences indicated metabolically active microalgae and animals, including codfish, at the reef sites. The plankton community composition varied between reefs and differed between DNA and RNA assessments. Over 5000 operational taxonomic units were detected, some indicators of reef sites (e.g. Flavobacteria, Cercozoa, Demospongiae) and some more active at reef sites (e.g. Gammaproteobacteria, Ciliophora, Copepoda). © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Artificial reef evaluation capabilities of Florida counties

    OpenAIRE

    Halusky, Joseph G.; Antonini, Gustavo A.; Seaman, William

    1993-01-01

    Florida's coastal county artificial reef sampling and data management programs are surveyed in this report. The survey describes the county level capability for artificial reef documentation and performance assessment based on their needs, interests, organizational structure and "in-situ" data collection and data management techniques. The. primary purpose of this study is to describe what staffing, training, techniques, organizational procedures and equipment are used by the c...

  13. Phylogenetic perspectives on reef fish functional traits.

    Science.gov (United States)

    Floeter, Sergio R; Bender, Mariana G; Siqueira, Alexandre C; Cowman, Peter F

    2018-02-01

    Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef-associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid-sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait-environment interactions as well as by species and trait-trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a

  14. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    Science.gov (United States)

    Garrison, Virginia H.; Ward, Greg A.

    2012-01-01

    In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands) in 1999 and was followed for 12 years. The primary objectives were to (1) identify a source of coral colonies for transplantation that would not result in damage to reefs, (2) test the feasibility of transplanting storm-generated coral fragments, and (3) develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community.  The ultimate goal was to enhance abundance of threatened reef-building species on local reefs.  Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae)] and another fast-growing species [Porites porites (Poritidae)] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs.  Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate.  Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place.  Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only.  Location was a factor in survival only for A. palmata reference colonies and after year 10.  Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are

  15. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    Directory of Open Access Journals (Sweden)

    Vanessa Moura Dos Reis

    Full Text Available The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.

  16. Wave attenuation over the Great Barrier Reef matrix

    NARCIS (Netherlands)

    Gallop, S.; Young, I.; Ranasinghe, Ranasinghe W M R J B; Durrant, T.; Haigh, I.; Mynett, Arthur

    2015-01-01

    This is the first large-scale study of the influence of an offshore reef matrix on wave transmission. The focus was on the Great Barrier Reef (GBR), Australia, utilizing a 16 yr-record of wave height, from seven satellite altimeters. Within the GBR matrix, wave height is not strongly dependent on

  17. 2013 SEAMAP Reef Fish Survey (PC1302, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2013 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  18. 2013 SEAMAP Reef Fish Survey (PC1302, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2013 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  19. 2016 SEAMAP Reef Fish Survey (PC1601, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2016 SEAMAP Reef Fish Survey were to assess relative abundance of reef fish species on continental shelf-edge banks of the Gulf of Mexico, estimate...

  20. 2012 SEAMAP Reef Fish Survey (PC1201, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  1. 2012 SEAMAP Reef Fish Survey (PC1201, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  2. Widespread hybridization and bidirectional introgression in sympatric species of coral reef fish

    KAUST Repository

    Harrison, Hugo B.; Berumen, Michael L.; Saenz-Agudelo, Pablo; Salas, Eva; Williamson, David H.; Jones, Geoffrey P.

    2017-01-01

    interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid-shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary

  3. Microbial and sponge loops modify fish production in phase-shifting coral reefs.

    Science.gov (United States)

    Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L

    2015-10-01

    Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Socio-ecological dynamics of Caribbean coral reef ecosystems and conservation opinion propagation.

    Science.gov (United States)

    Thampi, Vivek A; Anand, Madhur; Bauch, Chris T

    2018-02-07

    The Caribbean coral reef ecosystem has experienced a long history of deterioration due to various stressors. For instance, over-fishing of parrotfish - an important grazer of macroalgae that can prevent destructive overgrowth of macroalgae - has threatened reef ecosystems in recent decades and stimulated conservation efforts such as the formation of marine protected areas. Here we develop a mathematical model of coupled socio-ecological interactions between reef dynamics and conservation opinion dynamics to better understand how natural and human factors interact individually and in combination to determine coral reef cover. We find that the coupling opinion and reef systems generates complex dynamics that are difficult to anticipate without use of a model. For instance, instead of converging to a stable state of constant coral cover and conservationist opinion, the system can oscillate between low and high live coral cover as human opinion oscillates in a boom-bust cycle between complacency and concern. Out of various possible parameter manipulations, we also find that raising awareness of coral reef endangerment best avoids counter-productive nonlinear feedbacks and always increases and stabilizes live coral reef cover. In conclusion, an improved understanding of coupled opinion-reef dynamics under anthrogenic stressors is possible using coupled socio-ecological models, and such models should be further researched.

  5. Impact of herbivore identity on algal succession and coral growth on a Caribbean reef.

    Directory of Open Access Journals (Sweden)

    Deron E Burkepile

    2010-01-01

    -specific effects of herbivorous fishes suggest that a species-rich herbivore fauna can be critical in providing the resilience that reefs need for recovery from common disturbances such as coral bleaching and storm damage.

  6. Calcite/aragonite-biocoated artificial coral reefs for marine parks

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2017-08-01

    Full Text Available Natural formation of the coral reefs is complicated by slow biomediated precipitation of calcium carbonate from seawater. Therefore, manufactured artificial coral reefs can be used for the formation of “underwater gardens” in marine parks for the recreational fishing and diving that will protect natural coral reefs from negative anthropogenic effects. Additionally, the coating of the concrete, plastic or wooden surfaces of artificial coral reef with calcium carbonate layer could promote attachment and growth of coral larvae and photosynthetic epibiota on these surfaces. Three methods of biotechnological coating of the artificial coral reefs have been tested: (1 microbially induced calcium carbonate precipitation from concentrated calcium chloride solution using live bacterial culture of Bacillus sp. VS1 or dead but urease-active cells of Yaniella sp. VS8; (2 precipitation from calcium bicarbonate solution; (3 precipitation using aerobic oxidation of calcium acetate by bacteria Bacillus ginsengi strain VSA1. The thickness of biotechnologically produced calcium carbonate coating layer was from 0.3 to 3 mm. Biocoating using calcium salt and urea produced calcite in fresh water and aragonite in seawater. The calcium carbonate-coated surfaces were colonized in aquarium with seawater and hard corals as inoculum or in aquarium with fresh water using cyanobacteria Chlorella sorokiana as inoculum. The biofilm on the light-exposed side of calcium carbonate-coated surfaces was formed after six weeks of incubation and developed up to the average thickness of 250 µm in seawater and about 150 µm in fresh water after six weeks of incubation. The biotechnological manufacturing of calcium carbonate-coated concrete, plastic, or wooden surfaces of the structures imitating natural coral reef is technologically feasible. It could be commercially attractive solution for the introduction of aesthetically pleasant artificial coral reefs in marine parks and

  7. Is proximity to land-based sources of coral stressors an appropriate measure of risk to coral reefs? An example from the Florida Reef Tract.

    Science.gov (United States)

    Lirman, Diego; Fong, Peggy

    2007-06-01

    Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species

  8. Zooplankton diversity across three Red Sea reefs using pyrosequencing

    KAUST Repository

    Pearman, John K.

    2014-07-30

    Coral reefs are considered among the most diverse ecosystems on Earth, yet little is known about the diversity of plankton in the surrounding water column. Moreover, few studies have utilized genomic methods to investigate zooplankton diversity in any habitat. This study investigated the diversity of taxa by sampling 45 stations around three reef systems in the central/southern Red Sea. The diversity of metazoan plankton was investigated by targeting the 18S rRNA gene and clustering OTUs at 97% sequence similarity. A total of 754 and 854 metazoan OTUs were observed in the data set for the 1380F and 1389F primer sets respectively. The phylum Arthropoda dominated both primer sets accounting for ~60% of reads followed by Cnidaria (~20%). Only about 20% of OTUs were shared between all three reef systems and the relation between geographic distance and Jaccard Similarity measures was not significant. Cluster analysis showed that there was no distinct split between reefs and stations from different reefs clustered together both for metazoans as a whole and for the phyla Arthropoda, Cnidaria and Chordata separately. This suggests that distance may not be a determining factor in the taxonomic composition of stations.

  9. Land-based nutrient enrichment of the Buccoo Reef Complex and fringing coral reefs of Tobago, West Indies

    International Nuclear Information System (INIS)

    Lapointe, Brian E.; Langton, Richard; Bedford, Bradley J.; Potts, Arthur C.; Day, Owen; Hu, Chuanmin

    2010-01-01

    Tobago's fringing coral reefs (FR) and Buccoo Reef Complex (BRC) can be affected locally by wastewater and stormwater, and regionally by the Orinoco River. In 2001, seasonal effects of these inputs on water-column nutrients and phytoplankton (Chl a), macroalgal C:N:P and δ 15 N values, and biocover at FR and BRC sites were examined. Dissolved inorganic nitrogen (DIN, particularly ammonium) increased and soluble reactive phosphorus (SRP) decreased from the dry to wet season. Wet season satellite and Chl a data showed that Orinoco runoff reaching Tobago contained chromophoric dissolved organic matter (CDOM) but little Chl a, suggesting minimal riverine nutrient transport to Tobago. C:N ratios were lower (16 vs. 21) and macroalgal δ 15 N values higher (6.6 per mille vs. 5.5 per mille ) in the BRC vs. FR, indicating relatively more wastewater N in the BRC. High macroalgae and low coral cover in the BRC further indicated that better wastewater treatment could improve the health of Tobago's coral reefs.

  10. Ecological States and the Resilience of Coral Reefs

    Directory of Open Access Journals (Sweden)

    Tim McClanahan

    2002-12-01

    Full Text Available We review the evidence for multiple ecological states and the factors that create ecological resilience in coral reef ecosystems. There are natural differences among benthic communities along gradients of water temperature, light, nutrients, and organic matter associated with upwelling-downwelling and onshore-offshore systems. Along gradients from oligotrophy to eutrophy, plant-animal symbioses tend to decrease, and the abundance of algae and heterotrophic suspension feeders and the ratio of organic to inorganic carbon production tend to increase. Human influences such as fishing, increased organic matter and nutrients, sediments, warm water, and transportation of xenobiotics and diseases are common causes of a large number of recently reported ecological shifts. It is often the interaction of persistent and multiple synergistic disturbances that causes permanent ecological transitions, rather than the succession of individual short-term disturbances. For example, fishing can remove top-level predators, resulting in the ecological release of prey such as sea urchins and coral-eating invertebrates. When sea urchins are not common because of unsuitable habitat, recruitment limitations, and diseases, and when overfishing removes herbivorous fish, frondose brown algae can dominate. Terrigenous sediments carried onto reefs as a result of increased soil erosion largely promote the dominance of turf or articulated green algae. Elevated nutrients and organic matter can increase internal eroders of reef substratum and a mixture of filamentous algae. Local conservation actions that attempt to reduce fishing and terrestrial influences promote the high production of inorganic carbon that is necessary for reef growth. However, global climate change threatens to undermine such actions because of increased bleaching and mortality caused by warm-water anomalies, weakened coral skeletons caused by reduced aragonite availability in reef waters, and increased

  11. Temporal variation in development of ecosystem services from oyster reef restoration

    Science.gov (United States)

    LaPeyre, Megan K.; Humphries, Austin T.; Casas, Sandra M.; La Peyre, Jerome F.

    2014-01-01

    Restoration ecology relies heavily on ecosystem development theories that generally assume development of fully functioning natural systems over time, but often fail to identify the time-frame required for provision of desired functions, or acknowledge different pathways of functional development. In estuaries, a decline of overall habitat quality and functioning has led to significant efforts to restore critical ecosystem services, recently through the creation and restoration of oyster reefs. Oyster reef restoration generally occurs with goals of (1) increasing water quality via filtration through sustainable oyster recruitment, (2) stabilizing shorelines, and (3) creating and enhancing critical estuarine habitat for fish and invertebrates. We restored over 260 m2 of oyster reef habitat in coastal Louisiana and followed the development and provision of these ecosystem services from 2009 through 2012. Oysters recruited to reefs immediately, with densities of oysters greater than 75 mm exceeding 80 ind m−2 after 3 years, and provision of filtration rates of 1002 ± 187 L h−1 m−2; shoreline stabilization effects of the created reefs were minimal over the three years of monitoring, with some evidence of positive shoreline stabilization during higher wind/energy events only; increased nekton abundance of resident, but not larger transient fish was immediately measurable at the reefs, however, this failed to increase through time. Our results provide critical insights into the development trajectories of ecosystem services provided by restored oyster reefs, as well as the mechanisms mediating these changes. This is critical both ecologically to understand how and where a reef thrives, and for policy and management to guide decision-making related to oyster reef restoration and the crediting and accounting of ecosystem services.

  12. Possible recovery of Acropora palmata (Scleractinia:Acroporidae within the Veracruz Reef System, Gulf of Mexico: a survey of 24 reefs to assess the benthic communities

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Larson

    2014-09-01

    Full Text Available Recent evidence shows that Acropora palmata within the Veracruz Reef System, located in the southwestern Gulf of Mexico, may be recovering after the die off from the flooding of the Jamapa River and a dramatic cold water event in the 1970s. Since this decline, few surveys have documented the status of A. palmata. The 28 named reefs in the system are divided into 13 northern and 15 southern groups by the River. Between 2007 and 2013, we surveyed 24 reefs to assess the benthic communities. Seven of the 11 reefs surveyed in the northern group and all in the southern group had A. palmata. Colonies were typically found on the windward side of the reefs in shallow waters along the reef edges or crest. We also recorded colony diameter and condition along belt transects at two reefs in the north (Anegada de Adentro and Verde and two in the south (Periferico and Sargazo, between 2011 and 2013. In addition, eight permanent transects were surveyed at Rizo (south. A total of 1 804 colonies were assessed; densities ranged from 0.02 to 0.28 colonies/m² (mean (±SD, colony diameter of 58 ± 73cm, and 89 ± 18% live tissue per colony. Total prevalence of predation by damselfish was 5%, by snails 2%, and <1% by fireworms, disease prevalence was <3%. Size frequency distributions indicated that all of the sites had a moderate to high spawning potential, 15-68% of the colonies at each site were mature, measuring over 1 600cm². The presence of these healthy and potentially reproductive colonies is important for species recovery, particularly because much of the greater Caribbean still shows little to no signs of recovery. Conservation and management efforts of these reefs are vital.

  13. Importance of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for Important Coral Reef Fishes, Using a Visual Census Technique

    Science.gov (United States)

    Nagelkerken, I.; van der Velde, G.; Gorissen, M. W.; Meijer, G. J.; Van't Hof, T.; den Hartog, C.

    2000-07-01

    The nursery function of various biotopes for coral reef fishes was investigated on Bonaire, Netherlands Antilles. Length and abundance of 16 commercially important reef fish species were determined by means of visual censuses during the day in six different biotopes: mangrove prop-roots ( Rhizophora mangle) and seagrass beds ( Thalassia testudinum) in Lac Bay, and four depth zones on the coral reef (0 to 3 m, 3 to 5 m, 10 to 15 m and 15 to 20 m). The mangroves, seagrass beds and shallow coral reef (0 to 3 m) appeared to be the main nursery biotopes for the juveniles of the selected species. Mutual comparison between biotopes showed that the seagrass beds were the most important nursery biotope for juvenile Haemulon flavolineatum, H. sciurus, Ocyurus chrysurus, Acanthurus chirurgus and Sparisoma viride, the mangroves for juvenile Lutjanus apodus, L. griseus, Sphyraena barracuda and Chaetodon capistratus, and the shallow coral reef for juvenile H. chrysargyreum, L. mahogoni , A. bahianus and Abudefduf saxatilis. Juvenile Acanthurus coeruleus utilized all six biotopes, while juvenile H. carbonarium and Anisotremus surinamensis were not observed in any of the six biotopes. Although fishes showed a clear preference for a specific nursery biotope, most fish species utilized multiple nursery biotopes simultaneously. The almost complete absence of juveniles on the deeper reef zones indicates the high dependence of juveniles on the shallow water biotopes as a nursery. For most fish species an (partial) ontogenetic shift was observed at a particular life stage from their (shallow) nursery biotopes to the (deeper) coral reef. Cluster analyses showed that closely related species within the families Haemulidae, Lutjanidae and Acanthuridae, and the different size classes within species in most cases had a spatial separation in biotope utilization.

  14. Integration of coral reef ecosystem process studies and remote sensing: Chapter 5

    Science.gov (United States)

    Brook, John; Yates, Kimberly; Halley, Robert

    2006-01-01

    Worldwide, local-scale anthropogenic stress combined with global climate change is driving shifts in the state of reef benthic communities from coral-rich to micro- or macroalgal-dominated (Knowlton, 1992; Done, 1999). Such phase shifts in reef benthic communities may be either abrupt or gradual, and case studies from diverse ocean basins demonstrate that recovery, while uncertain (Hughes, 1994), typically involves progression through successional stages (Done, 1992). These transitions in benthic community structure involve changes in community metabolism, and accordingly, the holistic evaluation of associated biogeochemical variables is of great intrinsic value (Done, 1992). Effective reef management requires advance prediction of coral reef alteration in the face of anthropogenic stress and change in the global environment (Hatcher, 1997a). In practice, this goal requires techniques that can rapidly discern, at an early stage, sublethal effects that may cause long-term increases in mortality (brown, 1988; Grigg and Dollar, 1990). Such methods would improve our understanding of the differences in the population, community, and ecosystem structure, as well as function, between pristine and degraded reefs. This knowledge base could then support scientifically based management strategies (Done, 1992). Brown (1988) noted the general lack of rigor in the assessment of stress on coral reefs and suggested that more quantitative approaches than currently exist are needed to allow objective understanding of coral reef dynamics. Sensitive techniques for the timely appraisal of pollution effects or generalized endemic stress in coral reefs are sorely lacking (Grigg and Dollar, 1990; Wilkinsin, 1992). Moreover, monitoring methods based on population inventories, sclerochronology, or reproductive biology tend to myopic and may give inconsistent results. Ideally, an improved means of evaluating reef stress would discriminate mortality due to natural causes from morality to

  15. The distribution and abundance of reef-associated predatory fishes on the Great Barrier Reef

    Science.gov (United States)

    Emslie, Michael J.; Cheal, Alistair J.; Logan, Murray

    2017-09-01

    Predatory fishes are important components of coral-reef ecosystems of the Great Barrier Reef (GBR) through both the ecological functions they perform and their high value to recreational and commercial fisheries, estimated at 30 million in 2014. However, management of GBR predatory fish populations is hampered by a lack of knowledge of their distribution and abundance, aside from that of the highly targeted coral trout ( Plectropomus spp. and Variola spp.). Furthermore, there is little information on how these fishes respond to environmental stressors such as coral bleaching, outbreaks of coral-feeding starfishes ( Acanthaster planci) and storms, which limits adaptive management of their populations as the frequency or severity of such natural disturbances increases under climate change. Here, we document the distribution and abundance of 48 species of reef-associated predatory fishes and assess their vulnerability to a range of natural disturbances. There were clear differences in predatory fish assemblages across the continental shelf, but many species were widespread, with few species restricted to either inshore or offshore waters. There was weak latitudinal structure with only a few species restricted to either the northern or southern GBR. On the whole, predatory fishes were surprisingly resistant to the effects of disturbance, with few clear changes in abundance or species richness following 66 documented disturbances of varying magnitudes.

  16. Coral Reefs and Their Management in Tanzania | Wagner | Western ...

    African Journals Online (AJOL)

    management approaches and strategies implemented by various ICM programs, conservation areas and marine parks in Tanzania. It also provides recommendations for further research and coral reef management strategies. Keywords: coral reefs, threats, management, recent initiatives, Tanzania West Indian Ocean ...

  17. Coral reefs as eco-factories for fixing CO2

    International Nuclear Information System (INIS)

    Kayanne, H.

    1994-01-01

    This paper presents an estimation of carbon dioxide fixation rate by the natural coral reefs. The author explains mechanism and rate of carbon dioxide fixation; then he presents the fixation by coral reefs on Ishigaki Island. (TEC). 3 refs., 3 figs

  18. Holocene reef building on eastern St. Croix, US Virgin Islands: Lang Bank revisited

    Science.gov (United States)

    Hubbard, D. K.; Gill, I. P.; Burke, R. B.

    2013-09-01

    New core and seismic data suggest that widespread reef building started on Lang Bank by 8,900 CalBP and was dominated by Acropora palmata for the next three millennia. Accretion rates averaged 5.81 m ky-1, a rate that was sufficient for reefs to keep pace with rising sea level on the bank throughout their history. Seismic data show a deep platform interior that was flooded well in advance of reef building along the elevated rim. As a result, those reefs were buffered from sediment stress by their higher positions and active water flow to the west. A. palmata disappeared from the shallow margin by 6,350 yr ago, and reef building on Lang Bank largely ceased by 5,035 CalBP. The reasons for these dramatic events are unclear. Water depth over the reefs was generally shallower than when they started to build, and sea level was slowing dramatically. The new data described here show that reefs flourished on Lang Bank throughout the hiatus suggested by earlier studies (10-7 kyrs BP), and the ultimate demise of shelf-edge reefs is clearly not associated with either poor water quality or sudden sea-level rise. In addition, accretion rates from eastern St. Croix and throughout the Caribbean were well below the high values (≥10 m ky-1) that have been widely assumed. These data collectively argue against models that require extreme environmental or oceanographic phenomena to drown reefs on Lang Bank where reef building was too fast to be outpaced by Holocene sea-level rise. This also bears on more generalized Caribbean models that depend on the presumed reef history on eastern St. Croix.

  19. The significance of coral reefs as global carbon sinks - response to Greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Kinsey, D W; Hopley, D [Great Barrier Reef Marine Park Authority, Townsville, Qld. (Australia)

    1991-03-01

    Coral reefs are net sinks for C, principally as CaCO{sub 3} accretion. For the Great Barrier Reef (GBR) net production (G) 1 (kg CaCO{sub 3} m{sup -2} yr{sup -1}) for fringing reefs, G 1.9 for planar (infilled platform) reefs, and G 3 for ribbon reefs and lagoonal reefs is suggested. GBR is estimated to produce approximately 50 million tonnes yr{sup -1}. In a 50-100 year Greenhouse scenario of rising sealevel, recolonisation of present reef flats will be extensive. Production will increase perhaps by {approximately} 40% to give 70 million tonnes yr{sup -1} given a sealevel rise of 6-8 mm yr{sup -1}. An estimated 115,000 km{sup 2} of oceanic atolls worldwide, produce 160 million tonnes yr{sup -1}. A similar increase could be possible. Global reef production, at present {approximately} 900 million tonnes yr{sup -1}, could almost double to within the next 100 years. Long term (several centuries), the trend of recolonisation could result in the production of {gt}3000 million tonnes yr{sup -1} given a sealevel rise of 6-8 mm yr{sup -1}. However, the reefs could 'drown' if the sealevel rise significantly exceeds 6-8 mm yr{sup -1}. Coral reefs are a sink for 111 million tonnes C yr{sup -1}, the equivalent of 2% of anthropogenic CO{sub 2} output. This could increase to {approximately} 4% in the short term (100 years) and {approximately} 9% in the longer term. The immediate effect of CaCO{sub 3} precipitation is to raise the P{sub CO{sub 2}} of the surface oceans, giving a negative value in alleviating Greenhouse effects. Other Greenhouse changes e.g. increases in seawater temperature, and changes in dissolved CO{sub 2} concentration circulation may complicate the reef response. However, during the next 100 years, sealevel rise will be the dominant influence. 45 refs., 1 fig., 4 tabs.

  20. Patterns in reef fish assemblages: Insights from the Chagos Archipelago.

    Science.gov (United States)

    Samoilys, Melita; Roche, Ronan; Koldewey, Heather; Turner, John

    2018-01-01

    Understanding the drivers of variability in the composition of fish assemblages across the Indo-Pacific region is crucial to support coral reef ecosystem resilience. Whilst numerous relationships and feedback mechanisms between the functional roles of coral reef fishes and reef benthic composition have been investigated, certain key groups, such as the herbivores, are widely suggested to maintain reefs in a coral-dominated state. Examining links between fishes and reef benthos is complicated by the interactions between natural processes, disturbance events and anthropogenic impacts, particularly fishing pressure. This study examined fish assemblages and associated benthic variables across five atolls within the Chagos Archipelago, where fishing pressure is largely absent, to better understand these relationships. We found high variability in fish assemblages among atolls and sites across the archipelago, especially for key groups such as a suite of grazer-detritivore surgeonfish, and the parrotfishes which varied in density over 40-fold between sites. Differences in fish assemblages were significantly associated with variable levels of both live and recently dead coral cover and rugosity. We suggest these results reflect differing coral recovery trajectories following coral bleaching events and a strong influence of 'bottom-up' control mechanisms on fish assemblages. Species level analyses revealed that Scarus niger, Acanthurus nigrofuscus and Chlorurus strongylocephalos were key species driving differences in fish assemblage structure. Clarifying the trophic roles of herbivorous and detritivorous reef fishes will require species-level studies, which also examine feeding behaviour, to fully understand their contribution in maintaining reef resilience to climate change and fishing impacts.

  1. Patterns in reef fish assemblages: Insights from the Chagos Archipelago

    Science.gov (United States)

    Roche, Ronan; Koldewey, Heather; Turner, John

    2018-01-01

    Understanding the drivers of variability in the composition of fish assemblages across the Indo-Pacific region is crucial to support coral reef ecosystem resilience. Whilst numerous relationships and feedback mechanisms between the functional roles of coral reef fishes and reef benthic composition have been investigated, certain key groups, such as the herbivores, are widely suggested to maintain reefs in a coral-dominated state. Examining links between fishes and reef benthos is complicated by the interactions between natural processes, disturbance events and anthropogenic impacts, particularly fishing pressure. This study examined fish assemblages and associated benthic variables across five atolls within the Chagos Archipelago, where fishing pressure is largely absent, to better understand these relationships. We found high variability in fish assemblages among atolls and sites across the archipelago, especially for key groups such as a suite of grazer-detritivore surgeonfish, and the parrotfishes which varied in density over 40-fold between sites. Differences in fish assemblages were significantly associated with variable levels of both live and recently dead coral cover and rugosity. We suggest these results reflect differing coral recovery trajectories following coral bleaching events and a strong influence of ‘bottom-up’ control mechanisms on fish assemblages. Species level analyses revealed that Scarus niger, Acanthurus nigrofuscus and Chlorurus strongylocephalos were key species driving differences in fish assemblage structure. Clarifying the trophic roles of herbivorous and detritivorous reef fishes will require species-level studies, which also examine feeding behaviour, to fully understand their contribution in maintaining reef resilience to climate change and fishing impacts. PMID:29351566

  2. Observations of the thermal environment on Red Sea platform reefs: a heat budget analysis

    KAUST Repository

    Davis, K. A.

    2011-03-11

    Hydrographic measurements were collected on nine offshore reef platforms in the eastern Red Sea shelf region, north of Jeddah, Saudi Arabia. The data were analyzed for spatial and temporal patterns of temperature variation, and a simple heat budget analysis was performed with the goal of advancing our understanding of the physical processes that control temperature variability on the reef. In 2009 and 2010, temperature variability on Red Sea reef platforms was dominated by diurnal variability. The daily temperature range on the reefs, at times, exceeded 5°C-as large as the annual range of water temperature on the shelf. Additionally, our observations reveal the proximity of distinct thermal microclimates within the bounds of one reef platform. Circulation on the reef flat is largely wave driven. The greatest diurnal variation in water temperature occurs in the center of larger reef flats and on reefs protected from direct wave forcing, while smaller knolls or sites on the edges of the reef flat tend to experience less diurnal temperature variability. We found that both the temporal and spatial variability in water temperature on the reef platforms is well predicted by a heat budget model that includes the transfer of heat at the air-water interface and the advection of heat by currents flowing over the reef. Using this simple model, we predicted the temperature across three different reefs to within 0.4°C on the outer shelf using only information about bathymetry, surface heat flux, and offshore wave conditions. © 2011 Springer-Verlag.

  3. How to minimise the incidence of transport-related problem behaviours in horses: a review.

    Science.gov (United States)

    York, Amanda; Matusiewicz, Judith; Padalino, Barbara

    2017-01-01

    This review aims to provide practical outcomes on how to minimise the incidence of transport-related problem behaviours (TRPBs) in horses. TRPBs are unwanted behaviours occurring during different phases of transport, most commonly, a reluctance to load and scrambling during travelling. TRPBs can result in injuries to horses and horse handlers, horse trailer accidents, disruption of time schedules, inability to attend competitions, and poor performance following travel. Therefore, TRPBs are recognised as both a horse-related risk to humans and a human-related risk to horses. From the literature, it is apparent that TRPBs are common throughout the entire equine industry, and a YouTube keyword search of 'horse trailer loading' produced over 67,000 results, demonstrating considerable interest in this topic and the variety of solutions suggested. Drawing upon articles published over the last 35 years, this review summarises current knowledge on TRPBs and provides recommendations on their identification, management, and prevention. It appears that a positive human-horse relationship, in-hand pre-training, systematic training for loading and travelling, appropriate horse handling, and the vehicle driving skills of the transporters are crucial to minimise the incidence of TRPBs. In-hand pre-training based on correct application of the principles of learning for horses and horse handlers, habituation to loading and travelling, and self-loading appear to minimise the risk of TRPBs and are therefore strongly recommended to safeguard horse and horse-handler health and welfare. This review indicates that further research and education with respect to transport management are essential to substantially decrease the incidence of TRPBs in horses.

  4. NOAA's Coral Reef Conservation Program: 2016 projects to address coral reef conservation issues

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2016 the following projects will take place to address aspects of coral reef conservation: Enhancing Management of Pacific ESA-listed Corals with Improved Utility...

  5. 78 FR 66683 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Science.gov (United States)

    2013-11-06

    ... the Western Pacific; Special Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries... special coral reef ecosystem fishing permit. SUMMARY: NMFS issued a Special Coral Reef Ecosystem Fishing Permit that authorizes Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem management unit...

  6. Ecohydrodynamics of cold-water coral reefs: a case study of the Mingulay Reef Complex (western Scotland.

    Directory of Open Access Journals (Sweden)

    Juan Moreno Navas

    Full Text Available Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

  7. Coral reefs will transition to net dissolving before end of century

    Science.gov (United States)

    Eyre, Bradley D.; Cyronak, Tyler; Drupp, Patrick; De Carlo, Eric Heinen; Sachs, Julian P.; Andersson, Andreas J.

    2018-02-01

    Ocean acidification refers to the lowering of the ocean’s pH due to the uptake of anthropogenic CO2 from the atmosphere. Coral reef calcification is expected to decrease as the oceans become more acidic. Dissolving calcium carbonate (CaCO3) sands could greatly exacerbate reef loss associated with reduced calcification but is presently poorly constrained. Here we show that CaCO3 dissolution in reef sediments across five globally distributed sites is negatively correlated with the aragonite saturation state (Ωar) of overlying seawater and that CaCO3 sediment dissolution is 10-fold more sensitive to ocean acidification than coral calcification. Consequently, reef sediments globally will transition from net precipitation to net dissolution when seawater Ωar reaches 2.92 ± 0.16 (expected circa 2050 CE). Notably, some reefs are already experiencing net sediment dissolution.

  8. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.; Brewin, Robert J. W.; Zhan, Peng; Dreano, Denis; Pradhan, Yaswant; Nanninga, Gerrit B.; Hoteit, Ibrahim

    2017-01-01

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  9. Sensing coral reef connectivity pathways from space

    KAUST Repository

    Raitsos, Dionysios E.

    2017-08-18

    Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

  10. Preliminary numerical simulation for shallow strata stability of coral reef in South China Sea

    Science.gov (United States)

    Tang, Qinqin; Zhan, Wenhuan; Zhang, Jinchang

    2017-04-01

    Coral reefs are the geologic material and special rock and soil, which live in shallow water of the tropic ocean and are formed through biological and geological action. Since infrastructure construction is being increasingly developed on coral reefs during recent years, it is necessary to evaluate the shallow strata stability of coral reefs in the South China Sea. The paper is to study the borehole profiles for shallow strata of coral reefs in the South China Sea, especially in the hydrodynamic marine environment?, and to establish a geological model for numerical simulation with Geo-Studio software. Five drilling holes show a six-layer shallow structure of South China Sea, including filling layer, mid-coarse sand, coral sand gravel, fine sand, limestone debris and reef limestone. The shallow coral reef profile next to lagoon is similar to "layers cake", in which the right side close to the sea is analogous to "block cake". The simulation results show that coral reef stability depends on wave loads and earthquake strength, as well as the physical properties of coral reefs themselves. The safety factor of the outer reef is greater than 10.0 in the static condition, indicating that outer reefs are less affected by the wave and earthquake. However, the safety factor next to lagoon is ranging from 0.1 to 4.9. The main reason for the variations that the strata of coral reefs close to the sea are thick. For example, the thickness of reef limestone is more than 10 m and equivalent to the block. When the thickness of inside strata is less than 10 m, they show weak engineering geological characteristics. These findings can provide useful information for coral reef constructions in future. This work was funded by National Basic Research Program of China (contract: 2013CB956104) and National Natural Science Foundation of China (contract: 41376063).

  11. Impact of Iron Baron oil spill on subtidal reef assemblages in Tasmania

    International Nuclear Information System (INIS)

    Edgara, Graham J.; Barrett, Neville S.

    2000-01-01

    The biological impact of the grounding of the bulk carrier Iron Baron on Hebe Reef in northern Tasmania, with release of approximately 350 tonnes of Bunker C fuel oil, was assessed using quantitative underwater censuses at numerous reef sites before and after the spill. Physical abrasion of the ship's hull during ground caused the complete destruction of the subtidal reef community within a localised area of ∼170 m by ∼20 m on Hebe Reef. However, the release of fuel oil did not appear to have substantially affected populations of subtidal reef-associated organisms in the near vicinity. Analyses of changes over time outside the hull impact area of oiled sites before and after the spill, and comparisons with undisturbed reference sites, indicated no significant change in number of species on reefs or densities of the most abundant animal and plant species. Post-impact monitoring of the grounding zone in adjacent reference sites on Hebe Reef indicated that the fish assemblages associated with the hull scar recovered rapidly in terms of species composition and species richness within one year, whereas plant and invertebrate assemblages had not reached inferred pre-disturbance levels after two years. Wave disturbance appeared to be hindering re-establishment of large macroalgae over part of the abrasion zone where the reef substrata had been converted to unstable gravels. (Author)

  12. Forecasted coral reef decline in marine biodiversity hotspots under climate change.

    Science.gov (United States)

    Descombes, Patrice; Wisz, Mary S; Leprieur, Fabien; Parravicini, Valerianio; Heine, Christian; Olsen, Steffen M; Swingedouw, Didier; Kulbicki, Michel; Mouillot, David; Pellissier, Loïc

    2015-01-21

    Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low-latitude climatic conditions have no present-day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo-Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change. © 2015 John Wiley & Sons Ltd.

  13. Carbon dioxide addition to coral reef waters suppresses net community calcification

    Science.gov (United States)

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A.; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-01

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  14. Prediction of reef fish spawning aggregations using remote sensing: A review

    International Nuclear Information System (INIS)

    Rosli, M R; Ibrahim, A L; Masron, T

    2014-01-01

    Spawning aggregation is a very important occurrence to particular reef fish species as they use this opportunity to reproduce. However, due to their predictable nature, these aggregations have always been vulnerable to overexploitation. This problem leads to the importance of identifying the exact time and location for reef fish spawning aggregation. Thus, this paper review a little bit about spawning aggregation of reef fish as well as their characteristics, and problems regarding this phenomena. The use of remote sensing in marine applications is also described here in order to discuss how remote sensing can be utilize to predict reef fish spawning aggregation. Based on the unique geomorphological characteristics of the spawning aggregation, remote sensing seems to be a powerful tool to determine their exact times and locations. It has been proved that satellite imagery was able to delineate specific reef geomorphologies such as shelf edges and reef promontories. Despite of the widely use of remote sensing in marine applications, in fact there are still lack of studies had been carried out regarding spawning aggregations of reef fish due to the skeptical point-of-view by certain researchers over the capability of this technique. However, there is actually no doubt that the use of remote sensing will provide a better hand to the authorities in order to establish a more effective monitoring and conservation plan for these spawning aggregations

  15. Water column productivity and temperature predict coral reef regeneration across the Indo-Pacific

    Science.gov (United States)

    Riegl, B.; Glynn, P. W.; Wieters, E.; Purkis, S.; D'Angelo, C.; Wiedenmann, J.

    2015-02-01

    Predicted increases in seawater temperatures accelerate coral reef decline due to mortality by heat-driven coral bleaching. Alteration of the natural nutrient environment of reef corals reduces tolerance of corals to heat and light stress and thus will exacerbate impacts of global warming on reefs. Still, many reefs demonstrate remarkable regeneration from past stress events. This paper investigates the effects of sea surface temperature (SST) and water column productivity on recovery of coral reefs. In 71 Indo-Pacific sites, coral cover changes over the past 1-3 decades correlated negative-exponentially with mean SST, chlorophyll a, and SST rise. At six monitoring sites (Persian/Arabian Gulf, Red Sea, northern and southern Galápagos, Easter Island, Panama), over half of all corals were coral reefs presently have the best chances for survival. However, reefs best buffered against temperature and nutrient effects are those that current studies suggest to be most at peril from future ocean acidification.

  16. Coral reefs - sources or sinks of atmospheric CO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J R; Smith, S V; Reakakudla, M L [Hawaii University, Honolulu, HI (USA). Dept. of Oceanography

    1992-09-01

    Because the precipitation of calcium carbonate results in the sequestering of carbon, it frequently has been thought that coral reefs function as sinks of global atmospheric CO[sub 2]. However, the precipitation of calcium carbonate is accompanied by a shift of pH that results in the release of CO[sub 2]. This release of CO[sub 2] is less in buffered sea water than fresh water systems; nevertheless, coral reefs are sources, not sinks, of atmospheric carbon. Using estimated rates of coral reef carbonate production, we compute that coral reefs release 0.02 to 0.08 Gt C as CO[sub 2] annually. This is approximately 0.4% to 1.4% of the current anthropogenic CO[sub 2] production due to fossil fuel combustion.

  17. Thermal Consolidation of Dredge Sand for Artificial Reef Formations

    Science.gov (United States)

    Trevino, Alexandro

    Coral Reef ecosystems have degraded over years due to a variety of environmental issues such as ocean acidification. The continuous stress has detrimental effects on coral reef ecosystems that can possibly lead to the loss of the ecosystem. Our research aims to construct a prototype of an artificial reef by consolidating dredge sand from the ship channels of South Texas. Consolidation is achieved through an aluminum polytetrafluoroethylene self-propagating high temperature process that yields a solid formation to mimic the physical properties of coral reef structures. Using thermodynamic calculations, the variation of initial components was determined that reached an adiabatic temperature with a maximum peak of 2000 K. The self-sustaining reaction front was obtained to rigidly consolidate the dredge sand only at composition concentrations exceeding a critical value of 24 wt.% Al, and 3 wt.% PTFE. The combustion synthesis produced a consolidated formation with a hardened and porous structure.

  18. Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia.

    Science.gov (United States)

    Rowlands, Gwilym; Purkis, Sam; Riegl, Bernhard; Metsamaa, Liisa; Bruckner, Andrew; Renaud, Philip

    2012-06-01

    We propose a framework for spatially estimating a proxy for coral reef resilience using remote sensing. Data spanning large areas of coral reef habitat were obtained using the commercial QuickBird satellite, and freely available imagery (NASA, Google Earth). Principles of coral reef ecology, field observation, and remote observations, were combined to devise mapped indices. These capture important and accessible components of coral reef resilience. Indices are divided between factors known to stress corals, and factors incorporating properties of the reef landscape that resist stress or promote coral growth. The first-basis for a remote sensed resilience index (RSRI), an estimate of expected reef resilience, is proposed. Developed for the Red Sea, the framework of our analysis is flexible and with minimal adaptation, could be extended to other reef regions. We aim to stimulate discussion as to use of remote sensing to do more than simply deliver habitat maps of coral reefs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. From Citizen Science to Policy Development on the Coral Reefs of Jamaica

    Directory of Open Access Journals (Sweden)

    M. James C. Crabbe

    2012-01-01

    Full Text Available This paper explores the application of citizen science to help generation of scientific data and capacity-building, and so underpin scientific ideas and policy development in the area of coral reef management, on the coral reefs of Jamaica. From 2000 to 2008, ninety Earthwatch volunteers were trained in coral reef data acquisition and analysis and made over 6,000 measurements on fringing reef sites along the north coast of Jamaica. Their work showed that while recruitment of small corals is returning after the major bleaching event of 2005, larger corals are not necessarily so resilient and so need careful management if the reefs are to survive such major extreme events. These findings were used in the development of an action plan for Jamaican coral reefs, presented to the Jamaican National Environmental Protection Agency. It was agreed that a number of themes and tactics need to be implemented in order to facilitate coral reef conservation in the Caribbean. The use of volunteers and citizen scientists from both developed and developing countries can help in forging links which can assist in data collection and analysis and, ultimately, in ecosystem management and policy development.

  20. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    Science.gov (United States)

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  1. Historical baselines of coral cover on tropical reefs as estimated by expert opinion

    Directory of Open Access Journals (Sweden)

    Tyler D. Eddy

    2018-01-01

    Full Text Available Coral reefs are important habitats that represent global marine biodiversity hotspots and provide important benefits to people in many tropical regions. However, coral reefs are becoming increasingly threatened by climate change, overfishing, habitat destruction, and pollution. Historical baselines of coral cover are important to understand how much coral cover has been lost, e.g., to avoid the ‘shifting baseline syndrome’. There are few quantitative observations of coral reef cover prior to the industrial revolution, and therefore baselines of coral reef cover are difficult to estimate. Here, we use expert and ocean-user opinion surveys to estimate baselines of global coral reef cover. The overall mean estimated baseline coral cover was 59% (±19% standard deviation, compared to an average of 58% (±18% standard deviation estimated by professional scientists. We did not find evidence of the shifting baseline syndrome, whereby respondents who first observed coral reefs more recently report lower estimates of baseline coral cover. These estimates of historical coral reef baseline cover are important for scientists, policy makers, and managers to understand the extent to which coral reefs have become depleted and to set appropriate recovery targets.

  2. Historical baselines of coral cover on tropical reefs as estimated by expert opinion.

    Science.gov (United States)

    Eddy, Tyler D; Cheung, William W L; Bruno, John F

    2018-01-01

    Coral reefs are important habitats that represent global marine biodiversity hotspots and provide important benefits to people in many tropical regions. However, coral reefs are becoming increasingly threatened by climate change, overfishing, habitat destruction, and pollution. Historical baselines of coral cover are important to understand how much coral cover has been lost, e.g., to avoid the 'shifting baseline syndrome'. There are few quantitative observations of coral reef cover prior to the industrial revolution, and therefore baselines of coral reef cover are difficult to estimate. Here, we use expert and ocean-user opinion surveys to estimate baselines of global coral reef cover. The overall mean estimated baseline coral cover was 59% (±19% standard deviation), compared to an average of 58% (±18% standard deviation) estimated by professional scientists. We did not find evidence of the shifting baseline syndrome, whereby respondents who first observed coral reefs more recently report lower estimates of baseline coral cover. These estimates of historical coral reef baseline cover are important for scientists, policy makers, and managers to understand the extent to which coral reefs have become depleted and to set appropriate recovery targets.

  3. Coral reefs as eco-energy factories. Eco-energy kichi to shite no sangosho

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, K [Electrochemical Laboratory, Tsukuba (Japan)

    1993-05-01

    This paper gives an outline of basic problems related to possibilities of CO2 fixing technologies using coral reefs, and problems in their development. The paper describes that primary production (of organic matters) per unit area of a coral reef shows a value exceeding that with tropical rain forests. However, with respect to whether an effective CO2 fixing system could be structured, there are questions to be answered to CO2 fixing mechanisms in coral reefs and to where organic matters produced in coral reefs would go. For the latter problem, the following three cases may be assumed: Accumulation in coral bottom materials; flow-out from a coral reef and transfer to deep ocean layers; and decomposition into CO2 and water as a result of actions of microorganisms. As regards development of CO2 fixing technologies, the paper indicates necessity of discussions on the following matters: Utilization of ocean thermal energy conversion in addition to promoting CO2 fixation using coral reefs; dissolution of coral reef limestone by injecting liquefied CO2; and utilization of coral reefs as energy transportation relaying stations. 3 refs., 2 figs.

  4. Minimising the expectation value of the procurement cost in electricity markets based on the prediction error of energy consumption

    OpenAIRE

    Yamaguchi, Naoya; Hori, Maiya; Ideguchi, Yoshinari

    2018-01-01

    In this paper, we formulate a method for minimising the expectation value of the procurement cost of electricity in two popular spot markets: {\\it day-ahead} and {\\it intra-day}, under the assumption that expectation value of unit prices and the distributions of prediction errors for the electricity demand traded in two markets are known. The expectation value of the total electricity cost is minimised over two parameters that change the amounts of electricity. Two parameters depend only on t...

  5. Diet and condition of mesopredators on coral reefs in relation to shark abundance.

    Directory of Open Access Journals (Sweden)

    Shanta C Barley

    Full Text Available Reef sharks may influence the foraging behaviour of mesopredatory teleosts on coral reefs via both risk effects and competitive exclusion. We used a "natural experiment" to test the hypothesis that the loss of sharks on coral reefs can influence the diet and body condition of mesopredatory fishes by comparing two remote, atoll-like reef systems, the Rowley Shoals and the Scott Reefs, in northwestern Australia. The Rowley Shoals are a marine reserve where sharks are abundant, whereas at the Scott Reefs numbers of sharks have been reduced by centuries of targeted fishing. On reefs where sharks were rare, the gut contents of five species of mesopredatory teleosts largely contained fish while on reefs with abundant sharks, the same mesopredatory species consumed a larger proportion of benthic invertebrates. These measures of diet were correlated with changes in body condition, such that the condition of mesopredatory teleosts was significantly poorer on reefs with higher shark abundance. Condition was defined as body weight, height and width for a given length and also estimated via several indices of condition. Due to the nature of natural experiments, alternative explanations cannot be discounted. However, the results were consistent with the hypothesis that loss of sharks may influence the diet and condition of mesopredators and by association, their fecundity and trophic role. Regardless of the mechanism (risk effects, competitive release, or other, our findings suggest that overfishing of sharks has the potential to trigger trophic cascades on coral reefs and that further declines in shark populations globally should be prevented to protect ecosystem health.

  6. Diet and condition of mesopredators on coral reefs in relation to shark abundance.

    Science.gov (United States)

    Barley, Shanta C; Meekan, Mark G; Meeuwig, Jessica J

    2017-01-01

    Reef sharks may influence the foraging behaviour of mesopredatory teleosts on coral reefs via both risk effects and competitive exclusion. We used a "natural experiment" to test the hypothesis that the loss of sharks on coral reefs can influence the diet and body condition of mesopredatory fishes by comparing two remote, atoll-like reef systems, the Rowley Shoals and the Scott Reefs, in northwestern Australia. The Rowley Shoals are a marine reserve where sharks are abundant, whereas at the Scott Reefs numbers of sharks have been reduced by centuries of targeted fishing. On reefs where sharks were rare, the gut contents of five species of mesopredatory teleosts largely contained fish while on reefs with abundant sharks, the same mesopredatory species consumed a larger proportion of benthic invertebrates. These measures of diet were correlated with changes in body condition, such that the condition of mesopredatory teleosts was significantly poorer on reefs with higher shark abundance. Condition was defined as body weight, height and width for a given length and also estimated via several indices of condition. Due to the nature of natural experiments, alternative explanations cannot be discounted. However, the results were consistent with the hypothesis that loss of sharks may influence the diet and condition of mesopredators and by association, their fecundity and trophic role. Regardless of the mechanism (risk effects, competitive release, or other), our findings suggest that overfishing of sharks has the potential to trigger trophic cascades on coral reefs and that further declines in shark populations globally should be prevented to protect ecosystem health.

  7. A decadal analysis of bioeroding sponge cover on the inshore Great Barrier Reef.

    Science.gov (United States)

    Ramsby, Blake D; Hoogenboom, Mia O; Whalan, Steve; Webster, Nicole S; Thompson, Angus

    2017-06-02

    Decreasing coral cover on the Great Barrier Reef (GBR) may provide opportunities for rapid growth and expansion of other taxa. The bioeroding sponges Cliona spp. are strong competitors for space and may take advantage of coral bleaching, damage, and mortality. Benthic surveys of the inshore GBR (2005-2014) revealed that the percent cover of the most abundant bioeroding sponge species, Cliona orientalis, has not increased. However, considerable variation in C. orientalis cover, and change in cover over time, was evident between survey locations. We assessed whether biotic or environmental characteristics were associated with variation in C. orientalis distribution and abundance. The proportion of fine particles in the sediments was negatively associated with the presence-absence and the percent cover of C. orientalis, indicating that the sponge requires exposed habitat. The cover of corals and other sponges explained little variation in C. orientalis cover or distribution. The fastest increases in C. orientalis cover coincided with the lowest macroalgal cover and chlorophyll a concentration, highlighting the importance of macroalgal competition and local environmental conditions for this bioeroding sponge. Given the observed distribution and habitat preferences of C. orientalis, bioeroding sponges likely represent site-specific - rather than regional - threats to corals and reef accretion.

  8. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs.

    Science.gov (United States)

    van Hooidonk, Ruben; Maynard, Jeffrey Allen; Manzello, Derek; Planes, Serge

    2014-01-01

    Coral reefs and the services they provide are seriously threatened by ocean acidification and climate change impacts like coral bleaching. Here, we present updated global projections for these key threats to coral reefs based on ensembles of IPCC AR5 climate models using the new Representative Concentration Pathway (RCP) experiments. For all tropical reef locations, we project absolute and percentage changes in aragonite saturation state (Ωarag) for the period between 2006 and the onset of annual severe bleaching (thermal stress >8 degree heating weeks); a point at which it is difficult to believe reefs can persist as we know them. Severe annual bleaching is projected to start 10-15 years later at high-latitude reefs than for reefs in low latitudes under RCP8.5. In these 10-15 years, Ωarag keeps declining and thus any benefits for high-latitude reefs of later onset of annual bleaching may be negated by the effects of acidification. There are no long-term refugia from the effects of both acidification and bleaching. Of all reef locations, 90% are projected to experience severe bleaching annually by 2055. Furthermore, 5% declines in calcification are projected for all reef locations by 2034 under RCP8.5, assuming a 15% decline in calcification per unit of Ωarag. Drastic emissions cuts, such as those represented by RCP6.0, result in an average year for the onset of annual severe bleaching that is ~20 years later (2062 vs. 2044). However, global emissions are tracking above the current worst-case scenario devised by the scientific community, as has happened in previous generations of emission scenarios. The projections here for conditions on coral reefs are dire, but provide the most up-to-date assessment of what the changing climate and ocean acidification mean for the persistence of coral reefs. © 2013 John Wiley & Sons Ltd.

  9. Gear and survey efficiency of patent tongs for oyster populations on restoration reefs.

    Science.gov (United States)

    Schulte, David M; Lipcius, Romuald N; Burke, Russell P

    2018-01-01

    Surveys of restored oyster reefs need to produce accurate population estimates to assess the efficacy of restoration. Due to the complex structure of subtidal oyster reefs, one effective and efficient means to sample is by patent tongs, rather than SCUBA, dredges, or bottom cores. Restored reefs vary in relief and oyster density, either of which could affect survey efficiency. This study is the first to evaluate gear (the first full grab) and survey (which includes selecting a specific half portion of the first grab for further processing) efficiencies of hand-operated patent tongs as a function of reef height and oyster density on subtidal restoration reefs. In the Great Wicomico River, a tributary of lower Chesapeake Bay, restored reefs of high- and low-relief (25-45 cm, and 8-12 cm, respectively) were constructed throughout the river as the first large-scale oyster sanctuary reef restoration effort (sanctuary acreage > 20 ha at one site) in Chesapeake Bay. We designed a metal frame to guide a non-hydraulic mechanical patent tong repeatedly into the same plot on a restored reef until all oysters within the grab area were captured. Full capture was verified by an underwater remotely-operated vehicle. Samples (n = 19) were taken on nine different reefs, including five low- (n = 8) and four high-relief reefs (n = 11), over a two-year period. The gear efficiency of the patent tong was estimated to be 76% (± 5% standard error), whereas survey efficiency increased to 81% (± 10%) due to processing. Neither efficiency differed significantly between young-of-the-year oysters (spat) and adults, high- and low-relief reefs, or years. As this type of patent tong is a common and cost-effective tool to evaluate oyster restoration projects as well as population density on fished habitat, knowing the gear and survey efficiencies allows for accurate and precise population estimates.

  10. Community Structure Of Reef Fish In Eastern Luwu Water Territory

    Directory of Open Access Journals (Sweden)

    Henny Tribuana Cinnawara

    2015-01-01

    Full Text Available Abstract One bio-indicators the condition of coral reefs is a presence of reef fish. The purpose of research is to determine species composition abundance distribution and structure of reef fish communities in these waters. Data collection was conducted in April at six locations in the north and the south eastern Luwu. Mechanical Underwater Visual Cencus UVC and transect method Line intercept Transec LIT with SCUBA equipment used for research data collection. Total reef fish species collected as many as 366 species belonging to 31 families consisting of 150 species of fish target fish consumption 10 species of indicator fish indicator species 206 types of major fissh. The most dominant indicator type of fish is Chaetodon octofasciatus while the major dominant family Pomacentridae Labridae and Apogonidae. Diversity index values ranged from 2.145 to 3.408. Dominance index C is in the range of 0.056 to 0.298. The result is expected to be a reference literature as basic data for the management of reef fish especially in the waters of eastern Luwu.

  11. The ecology of intertidal oyster reefs of the South Atlantic Coast: A community profile

    Science.gov (United States)

    Bahr, Leonard M.; Lanier, William P.

    1981-01-01

    The functional role of the intertidal oyster reef community in the southeastern Atlantic coastal zone is described. This description is based on a compilation of published data, as well as some unpublished information presented as hypotheses. The profile is organized in a hierarchical manner, such that relevant details of reef oyster biology (autecology) are presented, followed by a description of the reef community level of organization. Then the reef community is described as a subsystem of the coastal marsh-ecosystem (synecoloqy). This information is also synthesized in a series of nested conceptual models of oyster reefs at the regional level, the drainage basin level, and the individual reef level. The final chapter includes a summary overview and a section on management implications and guidelines. Intertidal oyster reefs are relatively persistent features of the salt marsh estuarine ecosystem in the southeastern Atlantic coastal zone. The average areal extent of the oyster reef subsystem in this larger ecosystem is relatively small (about 0.05%). This proportion does not reflect, however, the functional importance of the reef subsystem in stablizing the marsh, providing food for estuarine consumers, mineralizing organic matter, and providing firm substrates in this otherwise soft environment.

  12. Mesophotic bioerosion: Variability and structural impact on U.S. Virgin Island deep reefs

    Science.gov (United States)

    Weinstein, David K.; Smith, Tyler B.; Klaus, James S.

    2014-10-01

    Mesophotic reef corals, found 30-150 m below sea level, build complex structures that provide habitats for diverse ecosystems. Whereas bioerosion is known to impact the development and persistence of shallow reef structures, little is known regarding the extent of mesophotic bioerosion or how it might affect deeper reef geomorphology and carbonate accretion. Originally pristine experimental coral substrates and collected coral rubble were both used to investigate the variation and significance of mesophotic coral reef bioerosion south of St. Thomas, U.S. Virgin Islands. Bioerosion rates were calculated from experimental coral substrates exposed as framework for 1 and 2 years at four structurally distinct mesophotic coral reef habitats (between 30 and 45 m) as well as at a mid-shelf patch reef (21 m) and a shallow fringing patch reef (9 m). The long-term effects of macroboring were assessed by examining coral rubble collected at all sites. Overall, differences in bioerosional processes were found between shallow and mesophotic reefs. Increases in bioerosion on experimental substrates (amount of weight lost) were related to both decreasing seawater depth and increasing biomass of bioeroding parrotfish. Significant differences in coral skeleton bioerosion rates were also found between the transitional mesophotic reef zone (30-35 m) and the upper mesophotic reef zone (35-50 m) after 2 years of exposure, ranging from - 19.6 to 3.7 g/year. Total coral rubble macroboring was greater at most deep sites compared to shallower sites. Bioerosional grazing was found to dominate initial substrate modification in reefs 30.7 m and shallower, but sponges are believed to act as the main time-averaged long-term substrate bioeroders in reefs between 35 and 50 m. Although initial substrate bioerosion rates of a uniform substrate were relatively homogeneous in the 35-50 m depth zone, comparison of site composition suggests that mesophotic bioerosion will vary depending on the amount

  13. Testing the effect of habitat structure and complexity on nekton assemblages using experimental oyster reefs

    Science.gov (United States)

    Humphries, Austin T.; LaPeyre, Megan K.; Kimball, Matthew E.; Rozas, Lawrence P.

    2011-01-01

    Structurally complex habitats are often associated with more diverse and abundant species assemblages in both aquatic and terrestrial ecosystems. Biogenic reefs formed by the eastern oyster (Crassostrea virginica) are complex in nature and are recognized for their potential habitat value in estuarine systems along the US Atlantic and Gulf of Mexico coasts. Few studies, however, have examined the response of nekton to structural complexity within oyster reefs. We used a quantitative sampling technique to examine how the presence and complexity of experimental oyster reefs influence the abundance, biomass, and distribution of nekton by sampling reefs 4 months and 16 months post-construction. Experimental oyster reefs were colonized immediately by resident fishes and decapod crustaceans, and reefs supported a distinct nekton assemblage compared to mud-bottom habitat. Neither increased reef complexity, nor age of the experimental reef resulted in further changes in nekton assemblages or increases in nekton abundance or diversity. The presence of oyster reefs per se was the most important factor determining nekton usage.

  14. Carbonate system parameters of an algal-dominated reef along West Maui

    Science.gov (United States)

    Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan; Gallagher, Chris; Cheriton, Olivia; Storlazzi, Curt D.

    2018-04-01

    Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-day sampling period in March 2016. Abiotic process - primarily SGD fluxes - controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean endmember TA and DIC measurements. A shift from positive net community production and positive net community calcification to negative net community production and negative net community calcification was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.

  15. Coral reefs: threats and conservation in an era of global change.

    Science.gov (United States)

    Riegl, Bernhard; Bruckner, Andy; Coles, Steve L; Renaud, Philip; Dodge, Richard E

    2009-04-01

    Coral reefs are iconic, threatened ecosystems that have been in existence for approximately 500 million years, yet their continued ecological persistence seems doubtful at present. Anthropogenic modification of chemical and physical atmospheric dynamics that cause coral death by bleaching and newly emergent diseases due to increased heat and irradiation, as well as decline in calcification caused by ocean acidification due to increased CO(2), are the most important large-scale threats. On more local scales, overfishing and destructive fisheries, coastal construction, nutrient enrichment, increased runoff and sedimentation, and the introduction of nonindigenous invasive species have caused phase shifts away from corals. Already approximately 20% of the world's reefs are lost and approximately 26% are under imminent threat. Conservation science of coral reefs is well advanced, but its practical application has often been lagging. Societal priorites, economic pressures, and legal/administrative systems of many countries are more prone to destroy rather than conserve coral-reef ecosystems. Nevertheless, many examples of successful conservation exist from the national level to community-enforced local action. When effectively managed, protected areas have contributed to regeneration of coral reefs and stocks of associated marine resources. Local communities often support coral-reef conservation in order to raise income potential associated with tourism and/or improved resource levels. Coral reefs create an annual income in S-Florida alone of over $4 billion. Thus, no conflict between development, societal welfare, and coral-reef conservation needs to exist. Despite growing threats, it is not too late for decisive action to protect and save these economically and ecologically high-value ecosystems. Conservation science plays a critical role in designing effective strategies.

  16. Pleistocene corals of the Florida keys: Architects of imposing reefs - Why?

    Science.gov (United States)

    Lidz, B.H.

    2006-01-01

    Five asymmetrical, discontinuous, stratigraphically successive Pleistocene reef tracts rim the windward platform margin off the Florida Keys. Built of large head corals, the reefs are imposing in relief (???30 m high by 1 km wide), as measured from seismic profiles. Well dated to marine oxygen isotope substages 5c, 5b, and 5a, corals at depth are inferred to date to the Stage 6/5 transition. The size of these reefs attests to late Pleistocene conditions that repeatedly induced vigorous and sustained coral growth. In contrast, the setting today, linked to Florida Bay and the Gulf of Mexico, is generally deemed marginal for reef accretion. Incursion onto the reef tract of waters that contain seasonally inconsistent temperature, salinity, turbidity, and nutrient content impedes coral growth. Fluctuating sea level and consequent settings controlled deposition. The primary dynamic was position of eustatic zeniths relative to regional topographic elevations. Sea level during the past 150 ka reached a maximum of ???10.6 m higher than at present ???125 ka, which gave rise to an inland coral reef (Key Largo Limestone) and ooid complex (Miami Limestone) during isotope substage 5e. These formations now form the Florida Keys and a bedrock ridge beneath The Quicksands (Gulf of Mexico). High-precision radiometric ages and depths of dated corals indicate subsequent apices remained ???15 to 9 m, respectively, below present sea level. Those peaks provided accommodation space sufficient for vertical reef growth yet exposed a broad landmass landward of the reefs for >100 ka. With time, space, lack of bay waters, and protection from the Gulf of Mexico, corals thrived in clear oceanic waters of the Gulf Stream, the only waters to reach them.

  17. Carbonate system parameters of an algal-dominated reef along west Maui

    Science.gov (United States)

    Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan A.; Gallagher, Christopher; Cheriton, Olivia; Storlazzi, Curt

    2018-01-01

    Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process – primarily SGD fluxes – controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean end-member TA and DIC measurements. A shift from net community production and calcification to net respiration and carbonate dissolution was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.

  18. Potential effects of invasive Pterois volitans in coral reefs

    Directory of Open Access Journals (Sweden)

    Banamali Maji

    2016-01-01

    Full Text Available The invasion of predatory lionfish (Pterois volitans represents a major threat to the western Atlantic coral reef ecosystems. The proliferation of venomous, fast reproducing and aggressive P. volitans in coral reefs causes severe declines in the abundance and diversity of reef herbivores. There is also widespread cannibalism amongst P. volitans populations. A mathematical model is proposed to study the effects of predation on the biomass of herbivorous reef fishes by considering two life stages and intraguild predation of P. volitans population with harvesting of adult P. volitans. The system undergoes a supercritical Hopf bifurcation when the invasiveness of P. volitans crosses a certain critical value. It is observed that cannibalism of P. volitans induces stability in the system even with high invasiveness of adult P. volitans. The dynamic instability of the system due to higher invasiveness of P. volitans can be controlled by increasing the rate of harvesting of P. volitans. It is also proven that P. volitans goes extinct when the harvest rate is greater than some critical threshold value. These results indicate that the dynamical behaviour of the model is very sensitive to the harvesting of P. volitans, which in turn is useful in the conservation of reef herbivores.

  19. Sewage pollution: mitigation is key for coral reef stewardship.

    Science.gov (United States)

    Wear, Stephanie L; Thurber, Rebecca Vega

    2015-10-01

    Coral reefs are in decline worldwide, and land-derived sources of pollution, including sewage, are a major force driving that deterioration. This review presents evidence that sewage discharge occurs in waters surrounding at least 104 of 112 reef geographies. Studies often refer to sewage as a single stressor. However, we show that it is more accurately characterized as a multiple stressor. Many of the individual agents found within sewage, specifically freshwater, inorganic nutrients, pathogens, endocrine disrupters, suspended solids, sediments, and heavy metals, can severely impair coral growth and/or reproduction. These components of sewage may interact with each other to create as-yet poorly understood synergisms (e.g., nutrients facilitate pathogen growth), and escalate impacts of other, non-sewage-based stressors. Surprisingly few published studies have examined impacts of sewage in the field, but those that have suggest negative effects on coral reefs. Because sewage discharge proximal to sensitive coral reefs is widespread across the tropics, it is imperative for coral reef-focused institutions to increase investment in threat-abatement strategies for mitigating sewage pollution. © 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  20. Coral reef degradation is not correlated with local human population density

    Science.gov (United States)

    Bruno, John F.; Valdivia, Abel

    2016-07-01

    The global decline of reef-building corals is understood to be due to a combination of local and global stressors. However, many reef scientists assume that local factors predominate and that isolated reefs, far from human activities, are generally healthier and more resilient. Here we show that coral reef degradation is not correlated with human population density. This suggests that local factors such as fishing and pollution are having minimal effects or that their impacts are masked by global drivers such as ocean warming. Our results also suggest that the effects of local and global stressors are antagonistic, rather than synergistic as widely assumed. These findings indicate that local management alone cannot restore coral populations or increase the resilience of reefs to large-scale impacts. They also highlight the truly global reach of anthropogenic warming and the immediate need for drastic and sustained cuts in carbon emissions.